1
|
Dery KJ, Najjar SM, Beauchemin N, Shively JE, Kupiec‐Weglinski JW. Mechanism and function of CEACAM1 splice isoforms. Eur J Clin Invest 2024; 54 Suppl 2:e14350. [PMID: 39674874 PMCID: PMC11646291 DOI: 10.1111/eci.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/29/2024] [Indexed: 12/17/2024]
Abstract
BACKGROUND Alternative splicing is a fundamental mechanism in the post-transcriptional regulation of genes. The multifunctional transmembrane glycoprotein receptor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) undergoes extensive alternative splicing to allow for tunable functions in cell signalling, adhesion and modulation of immune and metabolic responses. Splice isoforms that differ in their ectodomain and short or long cytoplasmic tail (CEACAM1-S/CEACAM1-L) have distinct functional roles. The mechanisms that regulate CEACAM1 RNA splicing remain elusive. METHODS This narrative review summarizes the current knowledge of the mechanism and function of CEACAM1 splice isoforms. Historical perspectives address the biological significance of the glycosylated Ig domains, the variable exon 7, and phosphorylation events that dictate its signal transduction pathways. The use of small antisense molecules to target mis-spliced variable exon 7 is discussed. RESULTS The Ig variable-like N domain mediates cell adhesion and immune checkpoint inhibitory functions. Gly and Tyr residues in the transmembrane (TM) domain are essential for dimerization. Calmodulin, Calcium/Calmodulin-dependent protein kinase II delta (CamK2D), Actin and Annexin A2 are binding partners of CEACAM1-S. Homology studies of the muCEACAM1-S and huCEACAM1-S TM predict differences in their signal transduction pathways. Hypoxia-inducible factor 1-α (HIF-1-α) induces alternative splicing to produce CEACAM1-S under limited oxygen conditions. Antisense small molecules directed to exon 7 may correct faulty expression of the short and long cytoplasmic tail splicing isoforms. CONCLUSION More pre-clinical and clinical studies are needed to elucidate the precise mechanisms by which CEACAM1 RNA splicing may be exploited to develop targeted interventions towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth J. Dery
- Department of SurgeryUniversity of California Los AngelesLos AngelesCaliforniaUSA
| | - Sonia M. Najjar
- Department of Biomedical Sciences, Heritage College of Osteopathic MedicineOhio UniversityAthensOhioUSA
| | - Nicole Beauchemin
- Rosalind and Morris Goodman Cancer InstituteMcGill UniversityMontrealQuebecCanada
| | - John E. Shively
- Department of Theranostics and Immunology, Arthur D. Riggs Diabetes and Metabolism Research Institute, Beckman Research InstituteCity of Hope National Medical CenterDuarteCaliforniaUSA
| | | |
Collapse
|
2
|
Carrion SA, Michal JJ, Jiang Z. Alternative Transcripts Diversify Genome Function for Phenome Relevance to Health and Diseases. Genes (Basel) 2023; 14:2051. [PMID: 38002994 PMCID: PMC10671453 DOI: 10.3390/genes14112051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Manipulation using alternative exon splicing (AES), alternative transcription start (ATS), and alternative polyadenylation (APA) sites are key to transcript diversity underlying health and disease. All three are pervasive in organisms, present in at least 50% of human protein-coding genes. In fact, ATS and APA site use has the highest impact on protein identity, with their ability to alter which first and last exons are utilized as well as impacting stability and translation efficiency. These RNA variants have been shown to be highly specific, both in tissue type and stage, with demonstrated importance to cell proliferation, differentiation and the transition from fetal to adult cells. While alternative exon splicing has a limited effect on protein identity, its ubiquity highlights the importance of these minor alterations, which can alter other features such as localization. The three processes are also highly interwoven, with overlapping, complementary, and competing factors, RNA polymerase II and its CTD (C-terminal domain) chief among them. Their role in development means dysregulation leads to a wide variety of disorders and cancers, with some forms of disease disproportionately affected by specific mechanisms (AES, ATS, or APA). Challenges associated with the genome-wide profiling of RNA variants and their potential solutions are also discussed in this review.
Collapse
Affiliation(s)
| | | | - Zhihua Jiang
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99164-7620, USA; (S.A.C.); (J.J.M.)
| |
Collapse
|
3
|
Chean J, Chen CJ, Gugiu G, Wong P, Cha S, Li H, Nguyen T, Bhatticharya S, Shively JE. Human CEACAM1-LF regulates lipid storage in HepG2 cells via fatty acid transporter CD36. J Biol Chem 2021; 297:101311. [PMID: 34666041 PMCID: PMC8577156 DOI: 10.1016/j.jbc.2021.101311] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/07/2021] [Accepted: 10/14/2021] [Indexed: 12/12/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is expressed in the liver and secreted as biliary glycoprotein 1 (BGP1) via bile canaliculi (BCs). CEACAM1-LF is a 72 amino acid cytoplasmic domain mRNA splice isoform with two immunoreceptor tyrosine-based inhibitory motifs (ITIMs). Ceacam1−/− or Ser503Ala transgenic mice have been shown to develop insulin resistance and nonalcoholic fatty liver disease; however, the role of the human equivalent residue, Ser508, in lipid dysregulation is unknown. Human HepG2 hepatocytes that express CEACAM1 and form BC in vitro were compared with CEACAM1−/− cells and CEACAM1−/− cells expressing Ser508Ala null or Ser508Asp phosphorylation mimic mutations or to phosphorylation null mutations in the tyrosine ITIMs known to be phosphorylated by the tyrosine kinase Src. CEACAM1−/− cells and the Ser508Asp and Tyr520Phe mutants strongly retained lipids, while Ser508Ala and Tyr493Phe mutants had low lipid levels compared with wild-type cells, indicating that the ITIM mutants phenocopied the Ser508 mutants. We found that the fatty acid transporter CD36 was upregulated in the S508A mutant, coexpressed in BCs with CEACAM1, co-IPed with CEACAM1 and Src, and when downregulated via RNAi, an increase in lipid droplet content was observed. Nuclear translocation of CD36 associated kinase LKB1 was increased sevenfold in the S508A mutant versus CEACAM1−/− cells and correlated with increased activation of CD36-associated kinase AMPK in CEACAM1−/− cells. Thus, while CEACAM1−/− HepG2 cells upregulate lipid storage similar to Ceacam1−/− in murine liver, the null mutation Ser508Ala led to decreased lipid storage, emphasizing evolutionary changes between the CEACAM1 genes in mouse and humans.
Collapse
Affiliation(s)
- Jennifer Chean
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Charng-Jui Chen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Gabriel Gugiu
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Seung Cha
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Harry Li
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Tung Nguyen
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhatticharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Immunology and Theranostics, Beckman Research Institute of City of Hope, Duarte, California, USA.
| |
Collapse
|
4
|
Size Matters: The Functional Role of the CEACAM1 Isoform Signature and Its Impact for NK Cell-Mediated Killing in Melanoma. Cancers (Basel) 2019; 11:cancers11030356. [PMID: 30871206 PMCID: PMC6468645 DOI: 10.3390/cancers11030356] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/21/2019] [Accepted: 03/09/2019] [Indexed: 12/22/2022] Open
Abstract
Malignant melanoma is the most aggressive and treatment resistant type of skin cancer. It is characterized by continuously rising incidence and high mortality rate due to its high metastatic potential. Various types of cell adhesion molecules have been implicated in tumor progression in melanoma. One of these, the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), is a multi-functional receptor protein potentially expressed in epithelia, endothelia, and leukocytes. CEACAM1 often appears in four isoforms differing in the length of their extracellular and intracellular domains. Both the CEACAM1 expression in general, and the ratio of the expressed CEACAM1 splice variants appear very dynamic. They depend on both the cell activation stage and the cell growth phase. Interestingly, normal melanocytes are negative for CEACAM1, while melanomas often show high expression. As a cell–cell communication molecule, CEACAM1 mediates the direct interaction between tumor and immune cells. In the tumor cell this interaction leads to functional inhibitions, and indirectly to decreased cancer cell immunogenicity by down-regulation of ligands of the NKG2D receptor. On natural killer (NK) cells it inhibits NKG2D-mediated cytolysis and signaling. This review focuses on novel mechanistic insights into CEACAM1 isoforms for NK cell-mediated immune escape mechanisms in melanoma, and their clinical relevance in patients suffering from malignant melanoma.
Collapse
|
5
|
Rueckschloss U, Kuerten S, Ergün S. The role of CEA-related cell adhesion molecule-1 (CEACAM1) in vascular homeostasis. Histochem Cell Biol 2016; 146:657-671. [PMID: 27695943 DOI: 10.1007/s00418-016-1505-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2016] [Indexed: 12/11/2022]
Abstract
Carcinoembryonic antigen (CEA)-related cell adhesion molecules belong to the immunoglobulin superfamily, are expressed in a broad spectrum of tissues and cell types and exert context-dependent activating as well as inhibitory effects. Among these molecules, the CEA-related cell adhesion molecule-1 (CEACAM1) is a transmembrane molecule with an extracellular, a transmembrane and a cytoplasmic domain. The latter contains immunoreceptor tyrosine-based inhibitory motifs and functions as a signaling molecule. CEACAM1 can form homo- and heterodimers which is relevant for its signaling activities. CEACAM1 acts as co-receptor that modulates the activity of different receptor types including VEGFR-2, and B and T cell receptors. CEACAM1 is expressed in endothelial cells, in pericytes of developing and newly formed immature blood vessels and in angiogenically activated adult vessels, e.g., tumor blood vessels. However, it is either undetectable or only weakly expressed in quiescent blood vessels. Recent studies indicated that CEACAM1 is involved in the regulation of the endothelial barrier function. In CEACAM1 -/- mice, increased vascular permeability and development of small atherosclerotic lesions was observed in the aortae. CEACAM1 is also detectable in activated lymphatic endothelial cells and plays a role in tumor lymphangiogenesis. This review summarizes the vascular effects of CEACAM1 and focuses on its role in vascular morphogenesis and endothelial barrier regulation.
Collapse
Affiliation(s)
- Uwe Rueckschloss
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany
| | - Stefanie Kuerten
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, Köllikerstrasse 6, 97070, Würzburg, Germany.
| |
Collapse
|
6
|
Kaposi's Sarcoma-Associated Herpesvirus Interleukin-6 Modulates Endothelial Cell Movement by Upregulating Cellular Genes Involved in Migration. mBio 2015; 6:e01499-15. [PMID: 26646010 PMCID: PMC4676281 DOI: 10.1128/mbio.01499-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Kaposi’s sarcoma-associated herpesvirus (KSHV) is the causative agent of human Kaposi’s sarcoma, a tumor that arises from endothelial cells, as well as two B cell lymphoproliferative diseases, primary effusion lymphoma and multicentric Castleman’s disease. KSHV utilizes a variety of mechanisms to evade host immune responses and promote cellular transformation and growth in order to persist for the life of the host. A viral homolog of human interleukin-6 (hIL-6) named viral interleukin-6 (vIL-6) is encoded by KSHV and expressed in KSHV-associated cancers. Similar to hIL-6, vIL-6 is secreted, but the majority of vIL-6 is retained within the endoplasmic reticulum, where it can initiate functional signaling through part of the interleukin-6 receptor complex. We sought to determine how intracellular vIL-6 modulates the host endothelial cell environment by analyzing vIL-6’s impact on the endothelial cell transcriptome. vIL-6 significantly altered the expression of many cellular genes associated with cell migration. In particular, vIL-6 upregulated the host factor carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) at the protein and message levels. CEACAM1 has been implicated in tumor invasion and metastasis and promotes migration and vascular remodeling in endothelial cells. We report that vIL-6 upregulates CEACAM1 by a STAT3-dependent mechanism and that CEACAM1 promotes vIL-6-mediated migration. Furthermore, latent and de novo KSHV infections of endothelial cells also induce CEACAM1 expression. Collectively, our data suggest that vIL-6 modulates endothelial cell migration by upregulating the expression of cellular factors, including CEACAM1. Kaposi’s sarcoma-associated herpesvirus (KSHV) is linked with the development of three human malignancies, Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. KSHV expresses many factors that enable the virus to manipulate the host environment in order to persist and induce disease. The viral interleukin-6 (vIL-6) produced by KSHV is structurally and functionally homologous to the human cytokine interleukin-6, except that vIL-6 is secreted slowly and functions primarily from inside the host cell. To investigate the unique intracellular role of vIL-6, we analyzed the impact of vIL-6 on endothelial cell gene expression. We report that vIL-6 significantly alters the expression of genes associated with cell movement, including that for CEACAM1. The gene for CEACAM1 was upregulated by vIL-6 and by latent and primary KSHV infection and promotes vIL-6-mediated endothelial cell migration. This work advances the field’s understanding of vIL-6 function and its contribution to KSHV pathogenesis.
Collapse
|
7
|
Ullrich N, Heinemann A, Nilewski E, Scheffrahn I, Klode J, Scherag A, Schadendorf D, Singer BB, Helfrich I. CEACAM1-3S Drives Melanoma Cells into NK Cell-Mediated Cytolysis and Enhances Patient Survival. Cancer Res 2015; 75:1897-907. [PMID: 25744717 DOI: 10.1158/0008-5472.can-14-1752] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 02/17/2015] [Indexed: 11/16/2022]
Abstract
CEACAM1 is a widely expressed multifunctional cell-cell adhesion protein reported to serve as a poor prognosis marker in melanoma patients. In this study, we examine the functional and clinical contributions of the four splice isoforms of CEACAM1. Specifically, we present in vitro and in vivo evidence that they affect melanoma progression and immune surveillance in a negative or positive manner that is isoform specific in action. In contrast with isoforms CEACAM1-4S and CEACAM1-4L, expression of isoforms CEACAM1-3S and CEACAM1-3L is induced during disease progression shown to correlate with clinical stage. Unexpectedly, overall survival was prolonged in patients with advanced melanomas expressing CEACAM1-3S. The favorable effects of CEACAM1-3S related to enhanced immunogenicity, which was mediated by cell surface upregulation of NKG2D receptor ligands, thereby sensitizing melanoma cells to lysis by natural killer cells. Conversely, CEACAM1-4L downregulated cell surface levels of the NKG2D ligands MICA and ULBP2 by enhanced shedding, thereby promoting malignant character. Overall, our results define the splice isoform-specific immunomodulatory and cell biologic functions of CEACAM1 in melanoma pathogenesis.
Collapse
Affiliation(s)
- Nico Ullrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Anja Heinemann
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Elena Nilewski
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany
| | - Inka Scheffrahn
- Institute for Gastroenterology and Hepatology, Medical Faculty, University Duisburg-Essen, Essen, Germany
| | - Joachim Klode
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - André Scherag
- Clinical Epidemiology, Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), Jena University Hospital, Jena, Germany
| | - Dirk Schadendorf
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Bernhard B Singer
- Institute of Anatomy, University Hospital, University Duisburg-Essen, Essen, Germany.
| | - Iris Helfrich
- Skin Cancer Unit of the Dermatology Department, Medical Faculty, West German Cancer Center, University Duisburg-Essen, Essen, Germany. German Cancer Consortium (DKTK), Heidelberg, Germany.
| |
Collapse
|
8
|
Kiriyama S, Yokoyama S, Ueno M, Hayami S, Ieda J, Yamamoto N, Yamaguchi S, Mitani Y, Nakamura Y, Tani M, Mishra L, Shively JE, Yamaue H. CEACAM1 long cytoplasmic domain isoform is associated with invasion and recurrence of hepatocellular carcinoma. Ann Surg Oncol 2014; 21 Suppl 4:S505-S514. [PMID: 24390710 PMCID: PMC4216236 DOI: 10.1245/s10434-013-3460-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Indexed: 11/18/2022]
Abstract
BACKGROUND The two isoforms of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), 1 with a long cytoplasmic domain (CEACAM1-L) and 1 with a short (CEACAM1-S), are involved in different signaling pathways. β2-spectrin (β2SP) is an adaptor protein that plays critical roles in the proper control of Smad access to activate receptors involved in regulation of TGF-β signaling. In this study, we examined the association between CEACAM1 isoform balance and hepatocellular carcinoma (HCC) malignant potential and investigated the possibility of a molecular interaction between CEACAM1 and β2SP. METHODS Immunohistochemical analysis was carried out with CEACAM1-L or CEACAM1-S antibodies on 154 HCC tissues to correlate with the factors of malignancy. Invasion assay was performed for the effect of CEACAM1 expression on HCC cell lines. Moreover, immunohistochemical analysis and immunoprecipitation analysis were performed to investigate the association between CEACAM1 isoform balance and β2SP. RESULTS In immunohistochemical analysis, CEACAM1-L expression dominance was a risk factor for HCC recurrence (p = 0.04) and was significantly associated with a shorter survival compared with CEACAM1-S expression dominance. Invasion assay indicated that CEACAM1-4L-transfected HLF and PLC/PRF/5 cells showed significantly increased invasion (p < 0.0001) and CEACAM1-4S-transfected HLF cells showed significantly decreased invasion. Immunohistochemical analysis of β2SP suggested that the HCCs with CEACAM1-L-dominant expression were more strongly stained with β2SP than the HCCs with CEACAM1-S-dominant expression (p = 0.013), and coprecipitation assays indicated that CEACAM1-L could bind to β2SP. CONCLUSIONS CEACAM1-L may enhance the HCC invasiveness through an interaction with β2SP and subsequent effects on TGF-β signaling.
Collapse
Affiliation(s)
- Shigehisa Kiriyama
- Second Department of Surgery, School of Medicine, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Beauchemin N, Arabzadeh A. Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 2013; 32:643-71. [DOI: 10.1007/s10555-013-9444-6] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Li Y, Shively JE. CEACAM1 regulates Fas-mediated apoptosis in Jurkat T-cells via its interaction with β-catenin. Exp Cell Res 2013; 319:1061-72. [PMID: 23499736 DOI: 10.1016/j.yexcr.2013.02.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 01/12/2013] [Accepted: 02/27/2013] [Indexed: 12/21/2022]
Abstract
CEACAM1 (Carcinoembryonic Antigen Cell Adhesion molecule 1), an activation induced cell surface marker of T-cells, modulates the T-cell immune response by inhibition of the T-cell and IL-2 receptors. Since T-cells undergo activation induced cell death via Fas activation, it was of interest to determine if this pathway was also affected by CEACAM1. Previously, we identified a novel biochemical interaction between CEACAM1 and the armadillo repeats of β-catenin in Jurkat cells, in which two critical residues, H469 and K470 of the cytoplasmic domain of CEACAM1-4L played an essential role; while in other studies, β-catenin was shown to regulate Fas-mediated apoptosis in Jurkat cells. CEACAM1 expression in Jurkat cells leads to the re-distribution of β-catenin to the actin cytoskeleton as well as inhibition of β-catenin tyrosine phosphorylation and its degradation after Fas stimulation. As a result, Fas-mediated apoptosis in these cells was inhibited. The K470A mutation of CEACAM1 partially rescued the inhibitory effect, in agreement with the prediction that a CEACAM1-β-catenin interaction pathway is involved. Although CEACAM1 has two ITIMs, they were not tyrosine-phosphorylated upon Fas ligation, indicating an ITIM independent mechanism; however, mutation of the critical residue S508, located between the ITIMs, to aspartic acid and a prerequisite for ITIM activation, abrogates the inhibitory activity of CEACAM1 to Fas-mediated apoptosis. Since Fas-mediated apoptosis is a major form of activation-induced cell death, our finding supports the idea that CEACAM1 is a general inhibitory molecule for T-cell activation utilizing a variety of pathways.
Collapse
Affiliation(s)
- Yun Li
- City of Hope Irell & Manella Graduate School of Biological Sciences, Duarte, CA 91010, USA
| | | |
Collapse
|
11
|
Abstract
The carcinoembryonic antigen (CEA) family comprises a large number of cellular surface molecules, the CEA-related cell adhesion molecules (CEACAMs), which belong to the Ig superfamily. CEACAMs exhibit a complex expression pattern in normal and malignant tissues. The majority of the CEACAMs are cellular adhesion molecules that are involved in a great variety of distinct cellular processes, for example in the integration of cellular responses through homo- and heterophilic adhesion and interaction with a broad selection of signal regulatory proteins, i.e., integrins or cytoskeletal components and tyrosine kinases. Moreover, expression of CEACAMs affects tumor growth, angiogenesis, cellular differentiation, immune responses, and they serve as receptors for commensal and pathogenic microbes. Recently, new insights into CEACAM structure and function became available, providing further elucidation of their kaleidoscopic functions.
Collapse
|
12
|
Nouvion AL, Oubaha M, LeBlanc S, Davis EC, Jastrow H, Kammerer R, Breton V, Turbide C, Ergun S, Gratton JP, Beauchemin N. CEACAM1: a key regulator of vascular permeability. J Cell Sci 2010; 123:4221-30. [DOI: 10.1242/jcs.073635] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Carcinoembryonic antigen cell adhesion molecule-1 (CEACAM1) is an immunoglobulin-like cell surface co-receptor expressed on epithelial, hematopoietic and endothelial cells. CEACAM1 functions as an adhesion molecule, mainly binding to itself or other members of the CEA family. We and others have previously shown that CEACAM1 is crucial for in vivo vascular integrity during ischemic neo-vascularization. Here, we have deciphered the roles of CEACAM1 in normal and pathological vascularization. We have found that Ceacam1−/− mice exhibit a significant increase in basal vascular permeability related to increased basal Akt and endothelial nitric oxide synthase (eNOS) activation in primary murine lung endothelial cells (MLECs). Moreover, CEACAM1 deletion in MLECs inhibits VEGF-mediated nitric oxide (NO) production, consistent with defective VEGF-dependent in vivo permeability in Ceacam1−/− mice. In addition, Ceacam1-null mice exhibit increased permeability of tumor vasculature. Finally, we demonstrate that CEACAM1 is tyrosine-phosphorylated upon VEGF treatment in a SHP-1- and Src-dependent manner, and that the key residues of the long cytoplasmic domain of CEACAM1 are crucial for CEACAM1 phosphorylation and NO production. This data represents the first report, to our knowledge, of a functional link between CEACAM1 and the VEGFR2/Akt/eNOS-mediated vascular permeability pathway.
Collapse
Affiliation(s)
- Anne-Laure Nouvion
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Malika Oubaha
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 2T2, Canada
| | - Sarah LeBlanc
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Elaine C. Davis
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Holger Jastrow
- Institute of Anatomy, University Hospital Essen, Essen 45147, Germany
| | - Robert Kammerer
- Institute of Immunology, Friedrich-Loeffler-Institute, Tuebingen 72076, Germany
| | - Valérie Breton
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Claire Turbide
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Suleyman Ergun
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 2B2, Canada
| | - Jean-Philippe Gratton
- Laboratory of Endothelial Cell Biology, Institut de Recherches Cliniques de Montréal, Université de Montréal, Montréal, QC H2W 2T2, Canada
| | - Nicole Beauchemin
- Goodman Cancer Research Centre, McGill University, Montreal, QC H3G 1Y6, Canada
- Departments of Biochemistry, Medicine and Oncology, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
13
|
Generation of human CEACAM1 transgenic mice and binding of Neisseria Opa protein to their neutrophils. PLoS One 2010; 5:e10067. [PMID: 20404914 PMCID: PMC2852402 DOI: 10.1371/journal.pone.0010067] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Accepted: 03/12/2010] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Human CEACAM1 is a cell-cell adhesion molecule with multiple functions including insulin clearance in the liver, vasculogenesis in endothelial cells, lumen formation in the mammary gland, and binding of certain human pathogens. PRINCIPAL FINDINGS Three genomic BAC clones containing the human CEACAM1 gene were microinjected into pronuclei of fertilized FVB mouse oocytes. The embryos were implanted in the oviducts of pseudopregnant females and allowed to develop to term. DNA from newborn mice was evaluated by PCR for the presence of the human CEACAM1 gene. Feces of the PCR positive offspring screened for expression of human CEACAM1. Using this assay, one out of five PCR positive lines was positive for human CEACAM1 expression and showed stable transmission to the F1 generation with the expected transmission frequency (0.5) for heterozygotes. Liver, lung, intestine, kidney, mammary gland, and prostate were strongly positive for the dual expression of both murine and human CEACAM1 and mimic that seen in human tissue. Peripheral blood and bone marrow granulocytes stained strongly for human CEACAM1 and bound Neisseria Opa proteins similar to that in human neutrophils. CONCLUSION These transgenic animals may serve as a model for the binding of human pathogens to human CEACAM1.
Collapse
|
14
|
Moh MC, Tian Q, Zhang T, Lee LH, Shen S. The immunoglobulin-like cell adhesion molecule hepaCAM modulates cell adhesion and motility through direct interaction with the actin cytoskeleton. J Cell Physiol 2009; 219:382-91. [PMID: 19142852 DOI: 10.1002/jcp.21685] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Previously, we reported the identification of a novel immunoglobulin-like cell adhesion molecule hepaCAM that promotes cell-extracellular matrix (ECM) interactions including cell adhesion and motility. Cell-ECM interactions are known to be directed by the actin cytoskeleton. In this study, we examined the association of hepaCAM with the actin cytoskeleton. We found that hepaCAM was partially insoluble in Triton X-100 and colocalized with the actin cytoskeleton on the plasma membrane. Disruption of F-actin decreased the detergent insolubility and disturbed the subcellular localization of hepaCAM. Coimmunoprecipitation and F-actin cosedimentation assays revealed that hepaCAM directly bound to F-actin. In addition, we constructed three N- and C-terminal domain-deleted mutants of hepaCAM to determine the actin-binding region as well as to evaluate the effect of the domains on the biological function of hepaCAM. Detergent solubility assays showed that the cytoplasmic domain of hepaCAM might be required for actin association. However, deletion of either the extracellular or the cytoplasmic domain of hepaCAM abolished actin coprecipitation as well as delayed cell-ECM adhesion and cell motility. The data suggest that an intact hepaCAM protein is critical for establishing a stable physical association with the actin cytoskeleton; and such association is important for modulating hepaCAM-mediated cell adhesion and motility.
Collapse
Affiliation(s)
- Mei Chung Moh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
15
|
Gu A, Tsark W, Holmes KV, Shively JE. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture. Exp Cell Res 2009; 315:1668-82. [PMID: 19285068 DOI: 10.1016/j.yexcr.2009.02.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 02/11/2009] [Accepted: 02/25/2009] [Indexed: 01/12/2023]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (-8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as -5 to -3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased over time. QRT-PCR analysis of the anti-CEACAM1 treated ES cells revealed a significant decrease in the expression of Ceacam1, Pecam1, Tie-1, and Flk-1, while VE-Cad and Tie-2 expression were unaffected. These results suggest that the expression and signaling of CEACAM1 may affect the expression of other factors known to play critical roles in vasculogenesis. Furthermore this 3D model of vasculogenesis in an environment of extracellular matrix may be a useful model for comparison to existing models of angiogenesis.
Collapse
Affiliation(s)
- Angel Gu
- Department of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
16
|
Li C, Chen CJ, Shively JE. Mutational analysis of the cytoplasmic domain of CEACAM1-4L in humanized mammary glands reveals key residues involved in lumen formation: stimulation by Thr-457 and inhibition by Ser-461. Exp Cell Res 2008; 315:1225-33. [PMID: 19146852 DOI: 10.1016/j.yexcr.2008.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2008] [Revised: 12/13/2008] [Accepted: 12/15/2008] [Indexed: 12/19/2022]
Abstract
CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion, undergoes extensive alternative splicing, resulting in isoforms with 1-4 Ig-like extracellular domains (ECDs) with either long or short cytoplasmic tails. We have previously shown that CEACAM1-4L (4 ECDs with a long cytoplasmic domain) formed glands with lumena in humanized mammary mouse fat pads in NOD/SCID mice. In order to identify the key residues of CEACAM1-4L that play essential roles in lumen formation, we introduced phosphorylation mimic (e.g., Thr-457 or Ser-461 to Asp) or null mutations (Thr-457 or Ser-461 to Ala) into the cytoplasmic domain of CEACAM1-4L and tested them in both the in vivo mouse model and in vitro Matrigel model of mammary morphogenesis. MCF7 cells stably expressing CEACAM1-4L with the single mutation T457D or the double mutant T457D+S461D, but not the null mutants induced central lumen formation in 3D Matrigel and in humanized mammary fat pads. However, the single phosphorylation mimic mutation S461D, but not the null mutation blocked lumen formation in both models, suggesting that S461 has inhibitory function in glandular lumen formation. Compared to our results for the -4S isoform (Chen et al., J. Biol. Chem, 282: 5749-5760, 2008), the T457A null mutation blocks lumen formation for the -4L but not for the -4S isoform. This difference is likely due to the fact that phosphorylation of S459 (absent in the -4L isoform) positively compensates for loss of T457 in the -4S isoform, while S461 (absent in the -4S isoform) negatively regulates lumen formation in the -4L isoform. Thus, phosphorylation of these key residues may exert a fine control over the role of the -4L isoform (compared to the -4S isoform) in lumen formation.
Collapse
Affiliation(s)
- Chunxia Li
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
17
|
DeAngelis AM, Heinrich G, Dai T, Bowman TA, Patel PR, Lee SJ, Hong EG, Jung DY, Assmann A, Kulkarni RN, Kim JK, Najjar SM. Carcinoembryonic antigen-related cell adhesion molecule 1: a link between insulin and lipid metabolism. Diabetes 2008; 57:2296-303. [PMID: 18544705 PMCID: PMC2518480 DOI: 10.2337/db08-0379] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 06/02/2008] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Liver-specific inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) by a dominant-negative transgene (l-SACC1 mice) impaired insulin clearance, caused insulin resistance, and increased hepatic lipogenesis. To discern whether this phenotype reflects a physiological function of CEACAM1 rather than the effect of the dominant-negative transgene, we characterized the metabolic phenotype of mice with null mutation of the Ceacam1 gene (Cc1(-/-)). RESEARCH DESIGN AND METHODS Mice were originally generated on a mixed C57BL/6x129sv genetic background and then backcrossed 12 times onto the C57BL/6 background. More than 70 male mice of each of the Cc1(-/-) and wild-type Cc1(+/+) groups were subjected to metabolic analyses, including insulin tolerance, hyperinsulinemic-euglycemic clamp studies, insulin secretion in response to glucose, and determination of fasting serum insulin, C-peptide, triglyceride, and free fatty acid levels. RESULTS Like l-SACC1, Cc1(-/-) mice exhibited impairment of insulin clearance and hyperinsulinemia, which caused insulin resistance beginning at 2 months of age, when the mutation was maintained on a mixed C57BL/6x129sv background, but not until 5-6 months of age on a homogeneous inbred C57BL/6 genetic background. Hyperinsulinemic-euglycemic clamp studies revealed that the inbred Cc1(-/-) mice developed insulin resistance primarily in liver. Despite substantial expression of CEACAM1 in pancreatic beta-cells, insulin secretion in response to glucose in vivo and in isolated islets was normal in Cc1(-/-) mice (inbred and outbred strains). CONCLUSIONS Intact insulin secretion in response to glucose and impairment of insulin clearance in l-SACC1 and Cc1(-/-) mice suggest that the principal role of CEACAM1 in insulin action is to mediate insulin clearance in liver.
Collapse
Affiliation(s)
- Anthony M. DeAngelis
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Garrett Heinrich
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Tong Dai
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Thomas A. Bowman
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Payal R. Patel
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Sang Jun Lee
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| | - Eun-Gyoung Hong
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Dae Young Jung
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Anke Assmann
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
| | | | - Jason K. Kim
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sonia M. Najjar
- Center for Diabetes and Endocrine Research and the Department of Physiology and Pharmacology, University of Toledo College of Medicine, Toledo, Ohio
| |
Collapse
|
18
|
Muenzner P, Bachmann V, Kuespert K, Hauck CR. The CEACAM1 transmembrane domain, but not the cytoplasmic domain, directs internalization of human pathogens via membrane microdomains. Cell Microbiol 2007; 10:1074-92. [PMID: 18081725 DOI: 10.1111/j.1462-5822.2007.01106.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Several bacterial pathogens exploit carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) to promote attachment and uptake into eukaryotic host cells. The widely expressed isoform CEACAM1 is involved in cell-cell adhesion, regulation of cell proliferation, insulin homeostasis, and neo-angiogenesis, processes that depend on the cytoplasmic domain of CEACAM1. By analysing the molecular requirements for CEACAM1-mediated internalization of bacteria, we surprisingly find that the CEACAM1 cytoplasmic domain is completely obsolete for bacterial uptake. Accordingly, CEACAM1-4L as well as a CEACAM1 mutant with a complete deletion of the cytoplasmic domain (CEACAM1 DeltaCT) promote equivalent internalization of several human pathogens. CEACAM1-4L- and CEACAM1 DeltaCT-mediated uptake proceeds in the presence of inhibitors of actin microfilament dynamics, which is in contrast to CEACAM3-mediated internalization. Bacteria-engaged CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3, localize to a gangliosid GM1- and GPI-anchored protein-containing portion of the plasma membrane. In addition, interference with cholesterol-rich membrane microdomains severely blocks bacterial uptake via CEACAM1-4L and CEACAM1 DeltaCT, but not CEACAM3. Similar to GPI-anchored CEACAM6, both CEACAM1-4L as well as CEACAM1 DeltaCT partition into a low-density, Triton-insoluble membrane fraction upon receptor clustering, whereas CEACAM3 is not detected in this fraction. Bacterial uptake by truncated CEACAM1 or chimeric CEACAM1/CEACAM3 molecules reveals that the transmembrane domain of CEACAM1 is responsible for its association with membrane microdomains. Together, these data argue for a functional role of lipid rafts in CEACAM1-mediated endocytosis that is promoted by the transmembrane domain of the receptor and that might be relevant for CEACAM1 function in physiologic settings.
Collapse
Affiliation(s)
- Petra Muenzner
- Lehrstuhl für Zellbiologie, Universität Konstanz, Postfach X908, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
19
|
Rougeaux C, Berger CN, Servin AL. hCEACAM1-4L downregulates hDAF-associated signalling after being recognized by the Dr adhesin of diffusely adhering Escherichia coli. Cell Microbiol 2007; 10:632-54. [PMID: 17979980 DOI: 10.1111/j.1462-5822.2007.01072.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human decay accelerating factor (hDAF, CD55) and members of the carcinoembryonic-antigen-related cell-adhesion molecules (hCEACAMs) family are recognized as receptors by Gram-negative, diffusely adhering Escherichia coli (DAEC) strains expressing Afa/Dr adhesins. We report here that hCEACAM1-4L has a key function in downregulating the protein tyrosine Src kinase associated with hDAF signalling. After infecting HeLa epithelial cells stably transfected with hCEACAM1-4L cDNA with Dr adhesin-positive E. coli, the amount of the pTyr(416)-active form of the Src protein decreased, whereas that of the pTyr(527)-inactive form of Src protein did not increase. This downregulation of the Src protein implies that part of the hCEACAM1-4L protein had been translocated into lipid rafts, the protein was phosphorylated at Tyr residues in the cytoplasmic domain, and it was physically associated with the protein tyrosine phosphatase, SHP-2. Finally, we found that the hCEACAM1-4L-associated SHP-2 was not phosphorylated and lacked phosphatase activity, suggesting that the downregulation of Src protein associated with hDAF signalling results from the absence of dephosphorylation of the pTyr(527)-inactive form necessary for Src kinase activation.
Collapse
Affiliation(s)
- Clémence Rougeaux
- INSERM, UMR756 Signalisation et Physiopathologie des Cellules Epithéliales, Châtenay-Malabry, France, and Université Paris-Sud XI, Faculté de Pharmacie, Châtenay-Malabry, France
| | | | | |
Collapse
|
20
|
Park SY, Cho YR, Kim HJ, Hong EG, Higashimori T, Lee SJ, Goldberg IJ, Shulman GI, Najjar SM, Kim JK. Mechanism of glucose intolerance in mice with dominant negative mutation of CEACAM1. Am J Physiol Endocrinol Metab 2006; 291:E517-24. [PMID: 16638824 DOI: 10.1152/ajpendo.00077.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Mice with liver-specific overexpression of dominant negative phosphorylation-defective S503A-CEACAM1 mutant (L-SACC1) developed chronic hyperinsulinemia resulting from blunted hepatic clearance of insulin, visceral obesity, and glucose intolerance. To determine the underlying mechanism of altered glucose homeostasis, a 2-h hyperinsulinemic euglycemic clamp was performed, and tissue-specific glucose and lipid metabolism was assessed in awake L-SACC1 and wild-type mice. Inactivation of carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) caused insulin resistance in liver that was mostly due to increased expression of fatty acid synthase and lipid metabolism, resulting in elevated intrahepatic levels of triglyceride and long-chain acyl-CoAs. Whole body insulin resistance in the L-SACC1 mice was further attributed to defects in insulin-stimulated glucose uptake in skeletal muscle and adipose tissue. Insulin resistance in peripheral tissues was associated with significantly elevated intramuscular fat contents that may be secondary to increased whole body adiposity (assessed by (1)H-MRS) in the L-SACC1 mice. Overall, these results demonstrate that L-SACC1 is a mouse model in which chronic hyperinsulinemia acts as a cause, and not a consequence, of insulin resistance. Our findings further indicate the important role of CEACAM1 and hepatic insulin clearance in the pathogenesis of obesity and insulin resistance.
Collapse
Affiliation(s)
- So-Young Park
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nagaishi T, Iijima H, Nakajima A, Chen D, Blumberg RS. Role of CEACAM1 as a Regulator of T Cells. Ann N Y Acad Sci 2006; 1072:155-75. [PMID: 17057197 DOI: 10.1196/annals.1326.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A major immunological attribute of inflammatory bowel disease (IBD) is the presence of unrestrained activation of T cells that produce a variety of inflammatory cytokines and other mediators. Gaining an understanding of T cell regulation is therefore of major importance to IBD. Carcinoembryonic antigen-related cell adhesion molecule 1 CEACAM1) is a novel protein that has been recently recognized as being expressed by immune cells and T lymphocytes, in particular; this protein appears to function as a coinhibitory receptor after T cell activation. Ligation of CEACAM1 on T cells induces a signal cascade that leads inhibition of T cell cytokine production and IBD. CEACAM1 is thus a novel potential therapeutic target in the treatment of IBD.
Collapse
Affiliation(s)
- Takashi Nagaishi
- Gastroenterology Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115 USA
| | | | | | | | | |
Collapse
|
22
|
Abstract
The carcinoembryonic-antigen-related cell-adhesion molecule (CEACAM) family of proteins has been implicated in various intercellular-adhesion and intracellular-signalling-mediated effects that govern the growth and differentiation of normal and cancerous cells. Recent studies show that there is an important role for members of the CEACAM family in modulating the immune responses associated with infection, inflammation and cancer. In this Review, we consider the evidence for CEACAM involvement in immunity, with a particular emphasis on CEACAM1, which functions as a regulatory co-receptor for both lymphoid and myeloid cell types.
Collapse
Affiliation(s)
- Scott D Gray-Owen
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.
| | | |
Collapse
|
23
|
Braga VM, Yap AS. The challenges of abundance: epithelial junctions and small GTPase signalling. Curr Opin Cell Biol 2005; 17:466-74. [PMID: 16112561 DOI: 10.1016/j.ceb.2005.08.012] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/03/2005] [Indexed: 01/11/2023]
Abstract
Small GTPases of the Ras superfamily play critical roles in epithelial biogenesis. Many key morphogenetic functions occur when small GTPases act at epithelial junctions, where they mediate an increasingly complex interplay between cell-cell adhesion molecules and fundamental cellular processes, such as cytoskeletal activity, polarity and trafficking. Important recent advances in this field include the role of additional members of the Ras superfamily in cell-cell contact stability and the capacity for polarity determinants to regulate small GTPase signalling. Interestingly, small GTPases may participate in the cross-talk between different adhesive receptors: in tissues classical cadherins can selectively regulate other junctions through cell signalling rather than through a global influence on cell-cell cohesion.
Collapse
Affiliation(s)
- Vania Mm Braga
- Cell and Molecular Biology Section, Division of Biomedical Sciences, Faculty of Life Sciences, Imperial College London, SW7 2AZ, London.
| | | |
Collapse
|
24
|
Klaile E, Müller MM, Kannicht C, Singer BB, Lucka L. CEACAM1 functionally interacts with filamin A and exerts a dual role in the regulation of cell migration. J Cell Sci 2005; 118:5513-24. [PMID: 16291724 DOI: 10.1242/jcs.02660] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The carcinoembryonic antigen-related cell adhesion molecule CEACAM1 (CD66a) and the scaffolding protein filamin A have both been implicated in tumor cell migration. In the present study we identified filamin A as a novel binding partner for the CEACAM1-L cytoplasmic domain in a yeast two-hybrid screen. Direct binding was shown by surface plasmon resonance analysis and by affinity precipitation assays. The association was shown for human and rodent CEACAM1-L in endogenous CEACAM1-L expressing cells. To address functional aspects of the interaction, we used a well-established melanoma cell system. We found in different migration studies that the interaction of CEACAM1-L and filamin A drastically reduced migration and cell scattering, whereas each of these proteins when expressed alone, acted promigratory. CEACAM1-L binding to filamin A reduced the interaction of the latter with RalA, a member of the Ras-family of GTPases. Furthermore, co-expression of CEACAM1-L and filamin A led to a reduced focal adhesion turnover. Independent of the presence of filamin A, the expression of CEACAM1-L led to an increased phosphorylation of focal adhesions and to altered cytoskeletal rearrangements during monolayer wound healing assays. Together, our data demonstrate a novel mechanism for how CEACAM1-L regulates cell migration via its interaction with filamin A.
Collapse
Affiliation(s)
- Esther Klaile
- Institut für Biochemie und Molekularbiologie, Charité, Universitätsmedizin Berlin, Campus Benjamin Franklin, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
25
|
Najjar SM, Yang Y, Fernström MA, Lee SJ, Deangelis AM, Rjaily GAA, Al-Share QY, Dai T, Miller TA, Ratnam S, Ruch RJ, Smith S, Lin SH, Beauchemin N, Oyarce AM. Insulin acutely decreases hepatic fatty acid synthase activity. Cell Metab 2005; 2:43-53. [PMID: 16054098 DOI: 10.1016/j.cmet.2005.06.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2004] [Revised: 04/06/2005] [Accepted: 06/06/2005] [Indexed: 10/25/2022]
Abstract
Insulin is viewed as a positive regulator of fatty acid synthesis by increasing fatty acid synthase (FAS) mRNA transcription. We uncover a new mechanism by which insulin acutely reduces hepatic FAS activity by inducing phosphorylation of the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) and its interaction with FAS. Ceacam1 null mice (Cc1(-/-)) show loss of insulin's ability to acutely decrease hepatic FAS activity. Moreover, adenoviral delivery of wild-type, but not the phosphorylation-defective Ceacam1 mutant, restores the acute effect of insulin on FAS activity in Cc1(-/-) primary hepatocytes. Failure of insulin to acutely reduce hepatic FAS activity in hyperinsulinemic mice, including L-SACC1 transgenics with liver inactivation of CEACAM1, and Ob/Ob obese mice, suggests that the acute effect of insulin on FAS activity depends on the prior insulinemic state. We propose that this mechanism acts to reduce hepatic lipogenesis incurred by insulin pulses during refeeding.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department of Pharmacology, Cardiovascular Biology and Metabolic Diseases, The Medical University of Ohio, 3035 Arlington Avenue, HSci Building, Room 270, Toledo, OH 43614, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Over the last few years, dramatic increases in our knowledge about diffusely adhering Escherichia coli (DAEC) pathogenesis have taken place. The typical class of DAEC includes E. coli strains harboring AfaE-I, AfaE-II, AfaE-III, AfaE-V, Dr, Dr-II, F1845, and NFA-I adhesins (Afa/Dr DAEC); these strains (i) have an identical genetic organization and (ii) allow binding to human decay-accelerating factor (DAF) (Afa/Dr(DAF) subclass) or carcinoembryonic antigen (CEA) (Afa/Dr(CEA) subclass). The atypical class of DAEC includes two subclasses of strains; the atypical subclass 1 includes E. coli strains that express AfaE-VII, AfaE-VIII, AAF-I, AAF-II, and AAF-III adhesins, which (i) have an identical genetic organization and (ii) do not bind to human DAF, and the atypical subclass 2 includes E. coli strains that harbor Afa/Dr adhesins or others adhesins promoting diffuse adhesion, together with pathogenicity islands such as the LEE pathogenicity island (DA-EPEC). In this review, the focus is on Afa/Dr DAEC strains that have been found to be associated with urinary tract infections and with enteric infection. The review aims to provide a broad overview and update of the virulence aspects of these intriguing pathogens. Epidemiological studies, diagnostic techniques, characteristic molecular features of Afa/Dr operons, and the respective role of Afa/Dr adhesins and invasins in pathogenesis are described. Following the recognition of membrane-bound receptors, including type IV collagen, DAF, CEACAM1, CEA, and CEACAM6, by Afa/Dr adhesins, activation of signal transduction pathways leads to structural and functional injuries at brush border and junctional domains and to proinflammatory responses in polarized intestinal cells. In addition, uropathogenic Afa/Dr DAEC strains, following recognition of beta(1) integrin as a receptor, enter epithelial cells by a zipper-like, raft- and microtubule-dependent mechanism. Finally, the presence of other, unknown virulence factors and the way that an Afa/Dr DAEC strain emerges from the human intestinal microbiota as a "silent pathogen" are discussed.
Collapse
Affiliation(s)
- Alain L Servin
- Institut National de la Santé et de la Recherche Médicale, Unité 510, Faculté de Pharmacie Paris XI, Châtenay-Malabry, France.
| |
Collapse
|
27
|
Waltregny D, Glénisson W, Tran SL, North BJ, Verdin E, Colige A, Castronovo V. Histone deacetylase HDAC8 associates with smooth muscle alpha-actin and is essential for smooth muscle cell contractility. FASEB J 2005; 19:966-8. [PMID: 15772115 DOI: 10.1096/fj.04-2303fje] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although originally characterized as nuclear enzymes controlling the stability of nucleosomes, histone deacetylases (HDACs) may also exert their activity within the cytosol. Recently, we have demonstrated that HDAC8, a class I HDAC, is a novel, prominently cytosolic marker of smooth muscle differentiation. As HDAC8 displays a striking stress fiber-like pattern of distribution and is coexpressed in vivo with smooth muscle alpha-actin (alpha-SMA) and smooth muscle myosin heavy chain, we have explored the possible participation of this HDAC in smooth muscle cytoskeleton regulation. Cell fractionation assays performed with primary human smooth muscle cells (HSMCs) showed that HDAC8, in contrast to HDAC1 and HDAC3, was enriched in cytoskeleton-bound protein fractions and insoluble cell pellets, suggesting an association of HDAC8 with the cystoskeleton. Coimmunoprecipitation experiments using HSMCs, NIH-3T3 cells, and human prostate tissue lysates further demonstrated that HDAC8 associates with alpha-SMA but not with beta-actin. HDAC8 silencing through RNA interference strongly reduced the capacity of HSMCs to contract collagen lattices. Mock transfections had no effect on HSMC contractily, and transfections with small interfering RNAs (siRNAs) specific for HDAC6, a cytosolic HDAC that functions as an alpha-tubulin deacetylase, resulted in a weak contraction inhibition. Although mock- and HDAC6 siRNA-transfected HSMCs showed no noticeable morphological changes, HDAC8 siRNA-transfected HSMCs displayed a size reduction with diminished cell spreading after replating. Altogether, our findings indicate that HDAC8 associates with the smooth muscle actin cytoskeleton and may regulate the contractile capacity of smooth muscle cells.
Collapse
Affiliation(s)
- David Waltregny
- Metastasis Research Laboratory, University of Liège, Liège, Belgium.
| | | | | | | | | | | | | |
Collapse
|
28
|
Galletta BJ, Chakravarti M, Banerjee R, Abmayr SM. SNS: adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev 2004; 121:1455-68. [PMID: 15511638 DOI: 10.1016/j.mod.2004.08.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/20/2004] [Accepted: 08/04/2004] [Indexed: 11/30/2022]
Abstract
The body wall muscles in the Drosophila larva arise from interactions between Duf/Kirre and Irregular chiasm C-roughest (IrreC-rst)-expressing founder myoblasts and sticks-and-stones (SNS)-expressing fusion competent myoblasts in the embryo. Herein, we demonstrate that SNS mediates heterotypic adhesion of S2 cells with Duf/Kirre and IrreC-rst-expressing S2 cells, and colocalizes with these proteins at points of cell contact. These properties are independent of their transmembrane and cytoplasmic domains, and are observed quite readily with GPI-anchored forms of the ectodomains. Heterotypic interactions between Duf/Kirre and SNS-expressing S2 cells occur more rapidly and to a greater extent than homotypic interactions with other Duf/Kirre-expressing cells. In addition, Duf/Kirre and SNS are present in an immunoprecipitable complex from S2 cells. In the embryo, Duf/Kirre and SNS are present at points of contact between founder and fusion competent cells. Moreover, SNS clustering on the cell surface is dependent on Duf/Kirre and/or IrreC-rst. Finally, although the cytoplasmic and transmembrane domains of SNS are expendable for interactions in culture, they are essential for fusion of embryonic myoblasts.
Collapse
Affiliation(s)
- Brian J Galletta
- Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA
| | | | | | | |
Collapse
|
29
|
Abou-Rjaily GA, Lee SJ, May D, Al-Share QY, Deangelis AM, Ruch RJ, Neumaier M, Kalthoff H, Lin SH, Najjar SM. CEACAM1 modulates epidermal growth factor receptor--mediated cell proliferation. J Clin Invest 2004; 114:944-52. [PMID: 15467833 PMCID: PMC518664 DOI: 10.1172/jci21786] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 07/28/2004] [Indexed: 11/17/2022] Open
Abstract
Phosphorylation of the cell adhesion protein CEACAM1 increases insulin sensitivity and decreases insulin-dependent mitogenesis in vivo. Here we show that CEACAM1 is a substrate of the EGFR and that upon being phosphorylated, CEACAM1 reduces EGFR-mediated growth of transfected Cos-7 and MCF-7 cells in response to EGF. Using transgenic mice overexpressing a phosphorylation-defective CEACAM1 mutant in liver (L-SACC1), we show that the effect of CEACAM1 on EGF-dependent cell proliferation is mediated by its ability to bind to and sequester Shc, thus uncoupling EGFR signaling from the ras/MAPK pathway. In L-SACC1 mice, we also show that impaired CEACAM1 phosphorylation leads to ligand-independent increase of EGFR-mediated cell proliferation. This appears to be secondary to visceral obesity and the metabolic syndrome, with increased levels of output of free fatty acids and heparin-binding EGF-like growth factor from the adipose tissue of the mice. Thus, L-SACC1 mice provide a model for the mechanistic link between increased cell proliferation in states of impaired metabolism and visceral obesity.
Collapse
Affiliation(s)
- George A Abou-Rjaily
- Department of Pharmacology and Therapeutics, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abou-Rjaily GA, Lee SJ, May D, Al-Share QY, DeAngelis AM, Ruch RJ, Neumaier M, Kalthoff H, Lin SH, Najjar SM. CEACAM1 modulates epidermal growth factor receptor–mediated cell proliferation. J Clin Invest 2004. [DOI: 10.1172/jci200421786] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
McCaw SE, Liao EH, Gray-Owen SD. Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors. Infect Immun 2004; 72:2742-52. [PMID: 15102784 PMCID: PMC387857 DOI: 10.1128/iai.72.5.2742-2752.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individual Neisseria gonorrhoeae colony opacity-associated (Opa) protein variants can bind up to four different carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Most human cells encountered by gonococci express a combination of CEACAM receptors, thereby complicating the elucidation of intracellular signaling pathways triggered by individual receptors. Here, we compare the process of bacterial engulfment by a panel of stably transfected HeLa epithelial cell lines expressing each CEACAM receptor in isolation. CEACAM1 and CEACAM3 each contain proteinaceous transmembrane and cytoplasmic domains; however, the processes of neisserial uptake mediated by these receptors differ with respect to their susceptibilities to both tyrosine kinase inhibitors and the actin microfilament-disrupting agent cytochalasin D. Neisserial uptake mediated by glycosylphosphatidylinositol (GPI)-anchored CEACAM5 and CEACAM6 was not significantly affected by any of a broad spectrum of inhibitors tested. However, cleavage of the GPI anchor by phosphatidylinositol-specific phospholipase C reduced bacterial uptake by HeLa cells expressing CEACAM5, consistent with a single zipper-like mechanism of uptake mediated by this receptor. Regardless of the CEACAM receptor expressed, internalized gonococci were effectively killed by a microtubule-dependent process that required acidification of the bacterium-containing phagosome. Given the phase-variable nature of neisserial Opa proteins, these results indicate that the mechanism of bacterial engulfment and the cellular response to gonococcal infection depend on both the receptor specificities of the neisserial Opa protein variants expressed and the spectrum of CEACAM receptors present on target cells, each of which determines the combination of receptors ultimately engaged.
Collapse
Affiliation(s)
- Shannon E McCaw
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
32
|
Chen CJ, Shively JE. The Cell-Cell Adhesion Molecule Carcinoembryonic Antigen-Related Cellular Adhesion Molecule 1 Inhibits IL-2 Production and Proliferation in Human T Cells by Association with Src Homology Protein-1 and Down-Regulates IL-2 Receptor. THE JOURNAL OF IMMUNOLOGY 2004; 172:3544-52. [PMID: 15004155 DOI: 10.4049/jimmunol.172.6.3544] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cell adhesion molecule, carcinoembryonic Ag-related cellular adhesion molecule 1, shown by others to both activate and inhibit T cell proliferation, exhibits a reciprocal relationship to IL-2R expression over the time course of activation of PBMCs, and upon Ab ligation, inhibits both the production of IL-2 and cell proliferation. Carcinoembryonic Ag-related cellular adhesion molecule 1 associates with CD3 and is found in lipid rafts of PBMCs, is phosphorylated on the immunoreceptor tyrosine-based inhibitory motifs (ITIMs) of the -4L isoform, and associates with Src homology protein-1, providing an explanation for its inhibitory activity. When the ITIM-containing -4L and non-ITIM-containing -4S isoforms are transfected into Jurkat cells that produce, but do not depend on IL-2 for growth, both IL-2 production and cell proliferation are differentially inhibited, demonstrating that the two isoforms signal via different pathways. When the two isoforms are transfected into Kit-225 cells that depend on IL-2 for growth, IL-2Rbeta and gamma, but not alpha subunits are down-regulated, and the -4L, but not the -4S isoform inhibits cell proliferation by 6-fold in an IL-2 dose-response study.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CD3 Complex/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Down-Regulation/immunology
- G(M1) Ganglioside/metabolism
- Green Fluorescent Proteins
- Growth Inhibitors/physiology
- Humans
- Immune Sera/pharmacology
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 3
- Jurkat Cells
- Kinetics
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Luminescent Proteins/metabolism
- Lymphocyte Activation/immunology
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Isoforms/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Receptor Aggregation/immunology
- Receptors, Interleukin-2/antagonists & inhibitors
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Transfection
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Charng-Jui Chen
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|
33
|
Sundberg U, Beauchemin N, Obrink B. The cytoplasmic domain of CEACAM1-L controls its lateral localization and the organization of desmosomes in polarized epithelial cells. J Cell Sci 2004; 117:1091-104. [PMID: 14970258 DOI: 10.1242/jcs.00944] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Two CEACAM1 isoforms with different cytoplasmic domains, CEACAM1-L and CEACAM1-S, are unequally distributed in polarized epithelial MDCK cells. CEACAM1-S is exclusively apical whereas CEACAM1-L occurs both in apical and lateral cell surfaces. Using confocal microscopy and CEACAM1-L mutants, we identified several amino acids in the cytoplasmic domain that were instrumental for the lateral localization. Tyr515, but not Tyr488, constituted a prominent lateral targeting signal. Pervanadate-stimulated Tyr phosphorylation induced rapid phosphatidylinositol 3-kinase-dependent disappearance of lateral CEACAM1-L, whereas staurosporine, a Ser/Thr kinase inhibitor, resulted in slower phosphatidylinositol 3-kinase-independent disappearance. Both drugs caused accumulation of CEACAM1-L in a late endosome/lysosome compartment. Colocalization studies of occludin, ZO-1, E-cadherin, beta-catenin and desmoplakin indicated that laterally localized CEACAM1-L was present in adherens junctions but not in tight junctions or desmosomes. Overexpressed CEACAM1-L did not affect the organization of tight junction or adherens junction proteins, but perturbed the arrangement of desmosomes. The abundance of desmosomes in the lateral cell surfaces decreased significantly and the submembraneous cytokeratin filaments became disorganized. The signal for desmosomal perturbance resided within amino acids 484-518 in the C-terminal part of the cytoplasmic domain, among which an intact Tyr515 was indispensable.
Collapse
Affiliation(s)
- Ulla Sundberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
34
|
Håkansson P, Lassen C, Olofsson T, Baldetorp B, Karlsson A, Gullberg U, Fioretos T. Establishment and phenotypic characterization of human U937 cells with inducible P210 BCR/ABL expression reveals upregulation of CEACAM1 (CD66a). Leukemia 2004; 18:538-47. [PMID: 14712293 DOI: 10.1038/sj.leu.2403255] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chronic myeloid leukemia (CML) is characterized by the expression of the P210 BCR/ABL fusion protein. The molecular mechanisms behind this oncogene-mediated hematological disease are, however, not fully understood. Here, we describe the establishment and phenotypic characterization of U937 cells in which P210 BCR/ABL can be conditionally expressed using tetracycline. The induction of BCR/ABL in the obtained clones resulted in a rapid phosphorylation of the STAT1, STAT3 and STAT5 molecules, consistent with the findings in other model systems. Phenotypic characterization of the clones revealed that BCR/ABL induces a slight decrease in the proliferation and viability, without a marked effect on cell cycle distribution, the rate of apoptosis or on cellular differentiation, as judged by several cell surface markers and capacity to reduce nitro blue tetrazolium. Interestingly, BCR/ABL was found to upregulate the expression of carcinoembryonic-related antigen (CEA)CAM1 (CD66a), which is a plasma membrane-linked glycoprotein belonging to the CEAs and involved in signal transduction and cellular adhesion. The expression of CEACAM1 was reversible upon imatinib treatment in BCR/ABL-expressing U937 cells as well as in BCR/ABL-positive K562 cells. The established cell lines may prove useful in further modeling and dissection of BCR/ABL-induced leukemogenesis.
Collapse
Affiliation(s)
- P Håkansson
- Department of Clinical Genetics, Lund University Hospital, Lund, Sweden.
| | | | | | | | | | | | | |
Collapse
|
35
|
Kirshner J, Schumann D, Shively JE. CEACAM1, a Cell-Cell Adhesion Molecule, Directly Associates with Annexin II in a Three-dimensional Model of Mammary Morphogenesis. J Biol Chem 2003; 278:50338-45. [PMID: 14522961 DOI: 10.1074/jbc.m309115200] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The epithelial cell adhesion molecule CEACAM1 (carcinoembryonic antigen cell adhesion molecule-1) is down-regulated in colon, prostate, breast, and liver cancer. Here we show that CEACAM1-4S, a splice form with four Ig-like ectodomains and a short cytoplasmic domain (14 amino acids), directly associates with annexin II, a lipid raft-associated molecule, which is also down-regulated in many cancers. Annexin II was identified using a glutathione S-transferase pull-down assay in which the cytoplasmic domain of CEACAM-4S was fused to glutathione S-transferase, the fusion protein was incubated with cell lysates, and isolated proteins were sequenced by mass spectrometry. The interaction was confirmed first by reciprocal immunoprecipitations using anti-CEACAM1 and anti-annexin II antibodies and second by confocal laser microscopy showing co-localization of CEACAM1 with annexin II in mammary epithelial cells grown in Matrigel. In addition, CEACAM1 co-localized with p11, a component of the tetrameric AIIt complex at the plasma membrane, and with annexin II in secretory vesicles. Immobilized, oriented peptides from the cytoplasmic domain of CEACAM1-4S were shown to directly associate with bovine AIIt, which is 98% homologous to human AIIt, with average KD values of about 30 nM using surface plasmon resonance, demonstrating direct binding of functionally relevant AIIt to the cytoplasmic domain of CEACAM1-4S.
Collapse
Affiliation(s)
- Julia Kirshner
- Graduate School of the City of Hope and Beckman Research Institute, Duarte, California 91010, USA
| | | | | |
Collapse
|
36
|
Fahlgren A, Baranov V, Frängsmyr L, Zoubir F, Hammarström ML, Hammarström S. Interferon-gamma Tempers the Expression of Carcinoembryonic Antigen Family Molecules in Human Colon Cells: a Possible Role in Innate Mucosal Defence. Scand J Immunol 2003; 58:628-41. [PMID: 14636419 DOI: 10.1111/j.1365-3083.2003.01342.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four carcinoembryonic antigen-related cell adhesion molecule (CEACAM)s, i.e. CEA, CEACAM1, CEACAM6 and CEACAM7, are localized to the apical glycocalyx of normal colonic epithelium and have been suggested to play a role in innate immunity. The expression of these molecules in colon carcinoma cells was studied at the mRNA and protein levels after treatment with interferon-gamma (IFN-gamma), interleukin-1beta, live bacteria or lipopolysaccharide. The colon carcinoma cell lines LS174T and HT-29 were studied in detail using real-time quantitative reverse transcriptase-polymerase chain reaction, immunoflow cytometry and immunoelectron microscopy. IFN-gamma, but not the other agents, modified expression of CEA, CEACAM1 and CEACAM6. None of the agents upregulated CEACAM7 expression. Two expression patterns were seen. HT-29 cells, which initially showed low quantities of mRNAs and proteins, displayed marked upregulation of both mRNAs and proteins. LS174T cells transcribed stable high levels of mRNA before and after treatment. Additionally, IFN-gamma induced increased cell surface expression of CEA, CEACAM1 and CECAM6. IFN-gamma has two important effects on the expression levels of the CEA family molecules in colon epithelial cells: direct upregulation of CEACAM1 and promotion of cell differentiation resulting in increased expression of CEA and CEACAM6 and decreased expression of CEACAM7.
Collapse
Affiliation(s)
- A Fahlgren
- Department of Immunology, Umeå University, Umeå, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Fournès B, Farrah J, Olson M, Lamarche-Vane N, Beauchemin N. Distinct Rho GTPase activities regulate epithelial cell localization of the adhesion molecule CEACAM1: involvement of the CEACAM1 transmembrane domain. Mol Cell Biol 2003; 23:7291-304. [PMID: 14517298 PMCID: PMC230323 DOI: 10.1128/mcb.23.20.7291-7304.2003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CEACAM1 is an intercellular adhesion glycoprotein. As CEACAM1 plays an important role in epithelial cell signaling and functions, we have examined its localization in epithelial cells. We have observed that distribution at cell contacts is not always seen in these cells, suggesting that CEACAM1 localization might be regulated. In Swiss 3T3 cells, the targeting of CEACAM1 at cell-cell boundaries is regulated by the Rho GTPases. In the present study, we have used the MDCK epithelial cells to characterize the effects of the Rho GTPases and their effectors on CEACAM1 intercellular targeting. Activated Cdc42 and Rac1 or their downstream effector PAK1 targeted CEACAM1 to sites of cell-cell contacts. On the other hand, neither activated RhoA nor activated Rho kinase directed CEACAM1 to cell boundaries, resulting in a condensed distribution of CEACAM1 at the cell surface. Interestingly, inhibition of this pathway resulted in CEACAM1 intercellular localization suggesting that a tightly regulated balance of Rho GTPase activities is necessary to target CEACAM1 at cell-cell boundaries. In addition, using CEACAM1 mutants and chimeric fusion constructs containing domains of the colony-stimulating factor receptor, we have shown that the transmembrane domain of CEACAM1 is responsible for the Cdc42-induced targeting at cell-cell contacts.
Collapse
|
38
|
Jantscheff P, Terracciano L, Lowy A, Glatz-Krieger K, Grunert F, Micheel B, Brümmer J, Laffer U, Metzger U, Herrmann R, Rochlitz C. Expression of CEACAM6 in resectable colorectal cancer: a factor of independent prognostic significance. J Clin Oncol 2003; 21:3638-46. [PMID: 14512395 DOI: 10.1200/jco.2003.55.135] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
PURPOSE CEACAM6, CEACAM1, and human carcinoembryonic antigen (CEA) are coexpressed in normal colorectal epithelia, but show deregulated expression in colorectal cancers (CRC). Upregulation of CEACAM6 expression in hyperplastic polyps and early adenomas represents one of the earliest observable molecular events leading to colorectal tumors. The aim of our study was to evaluate the prognostic relevance of CEACAM6, CEACAM1, and CEA tissue expression in patients with CRC. PATIENTS AND METHODS Immunohistochemical analysis was carried out on tissue microarrays from 243 paraffin-embedded biopsies from a randomized controlled clinical trial (Swiss Group for Clinical Cancer Research [SAKK] 40/81) of adjuvant fluorouracil-based chemotherapy with CEACAM-specific monoclonal antibodies. The median follow-up was 8 years. Overall survival (OS) and disease-free survival (DFS) were calculated using Kaplan-Meier estimates and hazard ratios (HRs) estimated using Cox proportional hazards models. RESULTS Tissue expression of CEACAM6, CEACAM1, and CEA was enhanced in 55%, 58%, and 94% of patients, respectively. Multivariate Cox analysis including sex, age, tumor site, stage, differentiation grade, treatment, and nodal status as covariates showed that CEACAM6 overexpression independently predicted poor OS (HR, 1.86; P =.0100) and DFS (HR, 2.00; P =.0028), whereas CEACAM1 or CEA were not significantly related to these outcomes. The data did not provide evidence for or against the hypothesis that the CEACAM6 effect on survival differs according to treatment. CONCLUSION Expression of the cell adhesion molecule CEACAM6 in CRC is an independent prognostic factor allowing subdivision of patients into low- and high-risk groups. Whether CEACAM6 or CEA and CEACAM1 might be useful as predictive markers of chemotherapy benefit remains unclear.
Collapse
Affiliation(s)
- Peter Jantscheff
- Kantonsspital Basel, Department of Research, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Houde C, Roy S, Leung N, Nicholson DW, Beauchemin N. The cell adhesion molecule CEACAM1-L is a substrate of caspase-3-mediated cleavage in apoptotic mouse intestinal cells. J Biol Chem 2003; 278:16929-35. [PMID: 12637508 DOI: 10.1074/jbc.m301842200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The CEACAM1 cell adhesion molecule is a member of the carcinoembryonic antigen family. In the mouse, four distinct isoforms are generated by alternative splicing. These encode either two or four immunoglobulin domains linked through a transmembrane domain to a cytoplasmic domain that encompasses either a short 10-amino acid tail or a longer one of 73 amino acids. Inclusion of exon 7, well conserved in evolution, generates the long cytoplasmic domain. A potential caspase recognition site in mouse, rat, and human CEACAM1-L also becomes available within the peptide encoded by exon 7. We used CEACAM1-L-transfected mouse colon carcinoma CT51 cells treated with three different apoptotic agents to study its fate during cell death. We found that CEACAM1-L is cleaved resulting in rapid degradation of most of its 8-kDa cytoplasmic domain. Caspase-mediated cleavage was demonstrated using purified recombinant caspases. The long cytoplasmic domain was cleaved specifically by caspase-3 in vitro but not by caspase-7 or -8. Moreover cleavage of CEACAM1-L in apoptotic cells was blocked by addition of a selective caspase-3 inhibitor to the cultures. Using point and deletion mutants, the conserved DQRD motif in the membrane-proximal cytoplasmic domain was identified as a caspase cleavage site. We also show that once CEACAM1-L is caspase-cleaved it becomes a stronger adhesion molecule than both the shorter and the longer expressing isoforms.
Collapse
Affiliation(s)
- Caroline Houde
- McGill Cancer Centre, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | | | |
Collapse
|
40
|
Yoon SS, Jung KI, Choi YL, Choi EY, Lee IS, Park SH, Kim TJ. Engagement of CD99 triggers the exocytic transport of ganglioside GM1 and the reorganization of actin cytoskeleton. FEBS Lett 2003; 540:217-22. [PMID: 12681511 DOI: 10.1016/s0014-5793(03)00268-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We studied the role of lipid rafts and actin cytoskeleton in CD99-mediated signaling to elucidate the mechanism of protein transport upon CD99 engagement. CD99 engagement in Jurkat cells elicited the exocytic transport of GM1 as well as several surface molecules closely related with CD99 functions. In addition, CD99 molecules were rapidly incorporated into lipid rafts and appeared to rearrange the actin cytoskeleton upon CD99 stimulation. Association of CD99 with actin cytoskeleton was inhibited by methyl-beta-cyclodextrin, while CD99-mediated GM1 clustering was inhibited by cytochalasin D. Therefore, we suggest that CD99 may play a role in the vesicular transport of transmembrane proteins and lipid rafts from the intracellular location to the cell surface, possibly by effecting actin cytoskeleton reorganization.
Collapse
Affiliation(s)
- Sang Soon Yoon
- Department of Pathology and Center for Molecular Medicine, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Activation of the tyrosine kinase of the insulin receptor by insulin binding initiates a cascade of signaling pathways that mediates the metabolic and growth-promoting effects of insulin. Insulin action is regulated by the amount of circulating insulin, which is, in turn, partially regulated by insulin clearance in liver. Receptor-mediated insulin endocytosis followed by degradation mediates insulin clearance. Earlier studies in transfected cells suggested that the carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), a substrate of the insulin receptor in liver, upregulates receptor-mediated insulin endocytosis and degradation in a phosphorylation-dependent manner. To test this hypothesis, a transgenic mouse, L-SACC1, overexpressing a dominant-negative phosphorylation-defective S503A CEACAM1 mutant in liver was established. The transgenic mouse demonstrated that CEACAM1 increases insulin clearance to maintain insulin sensitivity. Because insulin resistance is the hallmark of type 2 diabetes, understanding the mechanism of CEACAM1 regulation of insulin clearance and action might lead to novel therapeutic strategies against this disease.
Collapse
Affiliation(s)
- Sonia M Najjar
- Department Pharmacology and Therapeutics, Medical College of Ohio, 3035 Arlington Ave., HSci Building, Room 270, Toledo, OH 43614, USA.
| |
Collapse
|
42
|
Thies A, Moll I, Berger J, Wagener C, Brümmer J, Schulze HJ, Brunner G, Schumacher U. CEACAM1 expression in cutaneous malignant melanoma predicts the development of metastatic disease. J Clin Oncol 2002; 20:2530-6. [PMID: 12011132 DOI: 10.1200/jco.2002.05.033] [Citation(s) in RCA: 139] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE The cell adhesion molecule CEACAM1 is involved in intercellular adhesion and subsequent signal transduction events in a number of epithelia. CEACAM1 downregulation has been demonstrated in colorectal and prostate carcinomas. This study sought to analyze whether its expression in malignant melanoma is associated with metastasis. PATIENTS AND METHODS CEACAM1 expression was immunohistochemically evaluated in 100 primary cutaneous malignant melanomas and correlated with metastasis in a 10-year follow-up. Furthermore, CEACAM1 expression was analyzed in metastatic lesions (11 distant metastases and six sentinel lymph node metastases). Univariate Kaplan-Meier analysis and multivariate Cox proportional hazard regression analysis adjusted for standard prognostic indicators were performed to assess the prognostic relevance of CEACAM1 expression. RESULTS A total of 28 of 40 patients with CEACAM1-positive primary melanomas developed metastatic disease, compared with only six of 60 patients with CEACAM1-negative melanomas. Often, the strongest CEACAM1 expression was observed at the invading front. In addition, CEACAM1 expression was preserved in the metastatic lesions. Kaplan-Meier analysis revealed a highly significant association between CEACAM1 expression and metastasis (P <.0001); multivariate Cox regression analysis, including CEACAM1 expression status adjusted for tumor thickness, presence of ulceration, and mitotic rate, confirmed that CEACAM1 is an independent factor for the risk of metastasis and demonstrated that the predictive value of CEACAM1 expression is superior to that of tumor thickness. CONCLUSION Expression of the cell adhesion molecule CEACAM1 in the primary tumors in melanoma patients is associated with the subsequent development of metastatic disease. This raises the possibility of a functional role for this cell adhesion molecule in the metastatic spread it indicates.
Collapse
Affiliation(s)
- Anka Thies
- Institute for Anatomy, University Hospital Hamburg-Eppendorf, Martinistrasse 52, D-20246 Hamburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Budt M, Cichocka I, Reutter W, Lucka L. Clustering-induced signaling of CEACAM1 in PC12 cells. Biol Chem 2002; 383:803-12. [PMID: 12108545 DOI: 10.1515/bc.2002.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1), an Ig-like transmembrane protein, functions in cell adhesion, angiogenesis and epithelial cell morphogenesis, and has been identified as a tumor suppressor. For all of these functions, CEACAM1 requires signaling capabilities. However, the mechanisms of CEACAM1-mediated signaling are only poorly understood. Here we characterized for the first time CEACAM1 expression and signaling in the neuroendocrine rat pheochromocytoma PC12 cell line. Stimulation of CEACAM1 by ligation on the cell surface with antibodies induced formation of large CEACAM1 clusters and a rapid and transient CEACAM1 tyrosine dephosphorylation. Functionally, this dephosphorylation correlated with a reduced association between CEACAM1 and the tyrosine phosphatase SHP2. Clustering also stimulated binding of CEACAM1 to the actin cytoskeleton, measured by a partial translocation of CEACAM1 into the insoluble fraction after detergent extraction. Both tyrosine dephosphorylation and interaction with the cytoskeleton were sensitive to neuronal differentiation of PC12 cells. The first detected downstream activation of the mitogen-activated protein kinases ERK1 and ERK2, but not of JNK or p38, describes a novel target of CEACAM1-mediated signaling and contributes to the understanding of how CEACAM1 regulates cellular function.
Collapse
Affiliation(s)
- Matthias Budt
- Institut für Molekularbiologie und Biochemie, Fachbereich Humanmedizin, Freie Universität Berlin, Germany
| | | | | | | |
Collapse
|
44
|
Sundberg U, Obrink B. CEACAM1 isoforms with different cytoplasmic domains show different localization, organization and adhesive properties in polarized epithelial cells. J Cell Sci 2002; 115:1273-84. [PMID: 11884526 DOI: 10.1242/jcs.115.6.1273] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CEACAM1 is a signaling cell adhesion molecule expressed in epithelia,vessel endothelia and leukocytes. It is expressed as two major isoforms with different cytoplasmic domains. CEACAM1 occurs both in cell-cell contact areas and on apical surfaces of polarized epithelial cells, but it is not known how the different isoforms are distributed in polarized cells or what the functions of CEACAM1 are in the apical surfaces. We investigated the localization and organization of the two CEACAM1 isoforms in transfected,polarized MDCK cells by confocal microscopy and differential surface labelling. CEACAM1-L was found on both the apical and the lateral surfaces,whereas CEACAM1-S appeared exclusively on the apical surfaces. Maintenance of the lateral localization of CEACAM1-L required homophilic binding between CEACAM1-L molecules on adjacent cells. Double-labelling with anti-CEACAM1 antibodies directed against different epitopes indicated that apical CEACAM1-L occurred either in a homophilic adhesive state or in a free non-adhesive state. CEACAM1-S appeared almost exclusively in the homophilic adhesive state. These findings suggest that CEACAM1 mediates adhesive bonds between adjacent microvilli on the apical surfaces.
Collapse
MESH Headings
- Antigens, CD/analysis
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- Antigens, Differentiation/analysis
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/genetics
- Antigens, Differentiation/physiology
- Cell Adhesion
- Cell Adhesion Molecules
- Cell Communication
- Cell Polarity
- Cells, Cultured
- Epithelial Cells/chemistry
- Epithelial Cells/physiology
- Gene Expression
- Models, Molecular
- Protein Conformation
- Protein Isoforms/analysis
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Protein Structure, Tertiary
Collapse
Affiliation(s)
- Ulla Sundberg
- Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
45
|
Billker O, Popp A, Brinkmann V, Wenig G, Schneider J, Caron E, Meyer TF. Distinct mechanisms of internalization of Neisseria gonorrhoeae by members of the CEACAM receptor family involving Rac1- and Cdc42-dependent and -independent pathways. EMBO J 2002; 21:560-71. [PMID: 11847104 PMCID: PMC125849 DOI: 10.1093/emboj/21.4.560] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2001] [Revised: 12/13/2001] [Accepted: 12/13/2001] [Indexed: 02/07/2023] Open
Abstract
Opa adhesins of pathogenic Neisseria species target four members of the human carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) family. CEACAM receptors mediate opsonization-independent phagocytosis of Neisseria gonorrhoeae by human granulocytes and each receptor individually can mediate gonococcal invasion of epithelial cells. We show here that gonococcal internalization occurs by distinct mechanisms depending on the CEACAM receptor expressed. For the invasion of epithelial cell lines via CEACAM1 and CEACAM6, a pathogen-directed reorganization of the actin cytoskeleton is not required. In marked contrast, ligation of CEACAM3 triggers a dramatic but localized reorganization of the host cell surface leading to highly efficient engulfment of bacteria in a process regulated by the small GTPases Rac1 and Cdc42, but not Rho. Two tyrosine residues of a cytoplasmic immune receptor tyrosine-based activating motif of CEACAM3 are essential for the induction of phagocytic actin structures and subsequent gonococcal internalization. The granulocyte-specific CEACAM3 receptor has properties of a single chain phagocytic receptor and may thus contribute to innate immunity by the elimination of Neisseria and other CEACAM-binding pathogens that colonize human mucosal surfaces.
Collapse
Affiliation(s)
| | | | | | | | - Jutta Schneider
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Schumannstraße 21/22, D-10117 Berlin,
Universität Freiburg, Institut für Immunbiologie, Stefan-Meier-Straße 8, D-79104 Freiburg, Germany and Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK Present address: Institut für Molekulare Medizin und Zellforschung, Breisacher Straße 66, D-79106 Freiburg, Germany Corresponding author e-mail:
| | - Emmanuelle Caron
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Schumannstraße 21/22, D-10117 Berlin,
Universität Freiburg, Institut für Immunbiologie, Stefan-Meier-Straße 8, D-79104 Freiburg, Germany and Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK Present address: Institut für Molekulare Medizin und Zellforschung, Breisacher Straße 66, D-79106 Freiburg, Germany Corresponding author e-mail:
| | - Thomas F. Meyer
- Max-Planck-Institut für Infektionsbiologie, Abteilung Molekulare Biologie, Schumannstraße 21/22, D-10117 Berlin,
Universität Freiburg, Institut für Immunbiologie, Stefan-Meier-Straße 8, D-79104 Freiburg, Germany and Medical Research Council Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK Present address: Institut für Molekulare Medizin und Zellforschung, Breisacher Straße 66, D-79106 Freiburg, Germany Corresponding author e-mail:
| |
Collapse
|
46
|
Nakajima A, Iijima H, Neurath MF, Nagaishi T, Nieuwenhuis EES, Raychowdhury R, Glickman J, Blau DM, Russell S, Holmes KV, Blumberg RS. Activation-induced expression of carcinoembryonic antigen-cell adhesion molecule 1 regulates mouse T lymphocyte function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:1028-35. [PMID: 11801635 DOI: 10.4049/jimmunol.168.3.1028] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) consists of highly related homologs in humans and rodents that are characterized by significant alternate splicing generating isoforms capable of negative intracellular signaling by virtue of two immunoreceptor tyrosine-based inhibition motifs in its cytoplasmic (cyt) tail. Although human T cells have been recently observed to express CEACAM1, the expression and function of CEACAM1 in mouse T cells have not been defined. Although resting mouse spleen T cells exhibited no evidence of CEACAM1 on the cell surface, CEACAM1 was rapidly up-regulated on CD4+ and CD8+ T cells after activation with either Con A or anti-CD3 without a requirement for either de novo transcription or translation due to the fact that CEACAM1 was present intracellularly before activation. Using a GST-CEACAM1-cytoplasmic tail fusion protein, it was shown that the cytoplasmic tail of CEACAM1 bound the src homology domain-containing phosphatase 1 and adaptor protein 1 complex in its phosphorylated and nonphosphorylated states, respectively. CEACAM1 ligation with an anti-CEACAM1 mAb resulted in inhibition of an allogeneic MLR and anti-CD3 plus anti-CD28 Ab-induced proliferation of spleen T cells in vitro and inhibition of a delayed-type hypersensitivity response to oxazolone in vivo. Inhibition of the delayed-type hypersensitivity response required that the anti-CEACAM1-specific mAb be present at the time of T cell sensitization. These studies support a role for CEACAM1 as a novel class of immunoreceptor tyrosine-based inhibition motif-bearing regulatory molecules on T cells that are active during early phases of the immune response in mice.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport
- Animals
- Antibodies, Monoclonal/administration & dosage
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- Carcinoembryonic Antigen/biosynthesis
- Carcinoembryonic Antigen/immunology
- Carcinoembryonic Antigen/metabolism
- Carcinoembryonic Antigen/physiology
- Carrier Proteins/metabolism
- Cell Adhesion Molecules/biosynthesis
- Cell Adhesion Molecules/immunology
- Cell Adhesion Molecules/metabolism
- Cell Adhesion Molecules/physiology
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cells, Cultured
- Injections, Intraperitoneal
- Interphase/immunology
- Intracellular Signaling Peptides and Proteins
- Ligands
- Lymphocyte Activation
- Male
- Membrane Proteins/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Protein Phosphatase 1
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Time Factors
- src Homology Domains/immunology
Collapse
Affiliation(s)
- Atsushi Nakajima
- Gastroenterology Division, Departments of Medicine and Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Poy MN, Ruch RJ, Fernstrom MA, Okabayashi Y, Najjar SM. Shc and CEACAM1 interact to regulate the mitogenic action of insulin. J Biol Chem 2002; 277:1076-84. [PMID: 11694516 DOI: 10.1074/jbc.m108415200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CEACAM1, a tumor suppressor (previously known as pp120), is a plasma membrane protein that undergoes phosphorylation on Tyr(488) in its cytoplasmic tail by the insulin receptor tyrosine kinase. Co-expression of CEACAM1 with insulin receptors decreased cell growth in response to insulin. Co-immunoprecipitation experiments in intact NIH 3T3 cells and glutathione S-transferase pull-down assays revealed that phosphorylated Tyr(488) in CEACAM1 binds to the SH2 domain of Shc, another substrate of the insulin receptor. Overexpressing Shc SH2 domain relieved endogenous Shc from binding to CEACAM1 and restored MAP kinase activity, growth of cells in response to insulin, and their colonization in soft agar. Thus, by binding to Shc, CEACAM1 sequesters this major coupler of Grb2 to the insulin receptor and down-regulates the Ras/MAP kinase mitogenesis pathway. Additionally, CEACAM1 binding to Shc enhances its ability to compete with IRS-1 for phosphorylation by the insulin receptor. This leads to a decrease in IRS-1 binding to phosphoinositide 3'-kinase and to the down-regulation of the phosphoinositide 3'-kinase/Akt pathway that mediates cell proliferation and survival. Thus, binding to Shc appears to constitute a major mechanism for the down-regulatory effect of CEACAM1 on cell proliferation.
Collapse
MESH Headings
- 3T3 Cells
- Adaptor Proteins, Signal Transducing
- Adaptor Proteins, Vesicular Transport
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation/genetics
- Antigens, Differentiation/metabolism
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Cell Division/physiology
- Cells, Cultured
- Culture Media, Serum-Free
- Down-Regulation/physiology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Insulin/metabolism
- Insulin/pharmacology
- MAP Kinase Signaling System/physiology
- Male
- Mice
- Mitogens/pharmacology
- Phosphatidylinositol 3-Kinases/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Binding
- Protein Serine-Threonine Kinases
- Proteins/genetics
- Proteins/metabolism
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Receptor, Insulin/metabolism
- Receptors, Mitogen/metabolism
- Recombinant Fusion Proteins/metabolism
- Shc Signaling Adaptor Proteins
- Src Homology 2 Domain-Containing, Transforming Protein 1
Collapse
Affiliation(s)
- Matthew N Poy
- Department of Pharmacology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | | | |
Collapse
|
48
|
Schumann D, Chen CJ, Kaplan B, Shively JE. Carcinoembryonic antigen cell adhesion molecule 1 directly associates with cytoskeleton proteins actin and tropomyosin. J Biol Chem 2001; 276:47421-33. [PMID: 11595750 DOI: 10.1074/jbc.m109110200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
CEA cell adhesion molecule 1 (CEACAM1), a type 1 transmembrane and homotypic cell adhesion protein belonging to the carcinoembryonic antigen (CEA) gene family and expressed on epithelial cells, is alternatively spliced to produce four major isoforms with three or four Ig-like ectodomains and either long (CEACAM1-L) or short (CEACAM1-S) cytoplasmic domains. When murine MC38 (methylcholanthrene-induced adenocarcinoma 38) cells were transfected with human CEACAM1-L and stimulated with sodium pervanadate, actin was found to co-localize with CEACAM1-L at cell-cell boundaries but not in untreated cells. When CEACAM1-L was immunoprecipitated from pervanadate-treated MC38/CEACAM1-L cells and the associated proteins were analyzed by two-dimensional gel analysis and mass spectrometry, actin and tropomyosin, among other proteins, were identified. Whereas a glutathione S-transferase (GST) fusion protein containing the l-isoform (GST-Cyto-L) bound poorly to F-actin in a co-sedimentation assay, the S-isoform fusion protein (GST-Cyto-S) co-sedimented with F-actin, especially when incubated with G-actin during polymerization (K(D) = 7.0 microm). Both GST-Cyto-S and GST-Cyto-L fusion proteins bind G-actin and tropomyosin by surface plasmon resonance studies with binding constants of 0.7 x 10(-8) and 1.0 x 10(-7) m for GST-Cyto-L to G-actin and tropomyosin, respectively, and 3.1 x 10(-8) and 1.3 x 10(-7) m for GST-Cyto-S to G-actin and tropomyosin, respectively. Calmodulin or EDTA inhibited binding of the GST-Cyto-L fusion protein to G-actin, whereas calmodulin and G-actin, but not EDTA, stimulated binding to tropomyosin. A biotinylated 14-amino acid peptide derived from the juxtamembrane portion of the cytoplasmic domain of CEACAM1-L associated with both G-actin and tropomyosin with K(D) values of 1.3 x 10(-5) and 1.8 x 10(-5) m, respectively. These studies demonstrate the direct interaction of CEACAM1 isoforms with G-actin and tropomyosin and the direct interaction of CEACAM1-S with F-actin.
Collapse
MESH Headings
- Actins/chemistry
- Actins/metabolism
- Amino Acids/chemistry
- Animals
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Antigens, Differentiation/chemistry
- Antigens, Differentiation/metabolism
- Biotinylation
- Carcinoembryonic Antigen
- Cell Adhesion
- Cell Adhesion Molecules
- Cytoplasm/metabolism
- Cytoskeleton/metabolism
- Dose-Response Relationship, Drug
- Electrophoresis, Gel, Two-Dimensional
- Electrophoresis, Polyacrylamide Gel
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/metabolism
- Glutathione Transferase/metabolism
- Humans
- Kinetics
- Mass Spectrometry
- Mice
- Microscopy, Confocal
- Peptides/chemistry
- Precipitin Tests
- Protein Binding
- Protein Isoforms
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/metabolism
- Recombinant Proteins/metabolism
- Surface Plasmon Resonance
- Time Factors
- Transfection
- Tropomyosin/chemistry
- Tropomyosin/metabolism
- Tumor Cells, Cultured
- Vanadates/pharmacology
Collapse
Affiliation(s)
- D Schumann
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | | | |
Collapse
|
49
|
Okumura S, Muraoka O, Tsukamoto Y, Tanaka H, Kohama K, Miki N, Taira E. Involvement of gicerin in the extension of microvilli. Exp Cell Res 2001; 271:269-76. [PMID: 11716539 DOI: 10.1006/excr.2001.5393] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gicerin is a cell adhesion molecule belonging to the immunoglobulin superfamily. To study the functional differences between l- and s-gicerin, we first examined the distribution of endogenous gicerin in B16 cells and found that l-gicerin was densely localized in microvilli. To clarify the relationship between gicerin and the microvilli, we established independent stable cell lines expressing l- and s-gicerin in L cells and found that l-gicerin localized to the microvilli. Scanning electron microscopic analysis revealed that the microvilli of l-gicerin-transfected cells were longer than those of s-gicerin and control transfectants. This suggested that l-gicerin might participate in the elongation of the microvilli. When cells were double-stained with antibodies to gicerin and moesin, a microvilli-specific protein, the staining of l-gicerin corresponded to that of moesin in the elongated microvilli. Moesin was coprecipitated with glutathione S-transferase-fusion proteins of the l-gicerin cytoplasmic domain but not with the s-gicerin cytoplasmic domain. To determine the region involved in the extension of microvilli, we generated transfectants of two truncated forms of l-gicerin cytoplasmic domain, and we found that only the transfectants of the longer mutant had the longer microvilli, while the shorter mutant exhibited short microvilli. These results suggested that l-gicerin-specific amino acid residues, especially amino acids 16-39, within the cytoplasmic domain of l-gicerin might be involved in the extension of microvilli.
Collapse
Affiliation(s)
- S Okumura
- Department of Pharmacology, Osaka University School of Medicine, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Blau DM, Turbide C, Tremblay M, Olson M, Létourneau S, Michaliszyn E, Jothy S, Holmes KV, Beauchemin N. Targeted disruption of the Ceacam1 (MHVR) gene leads to reduced susceptibility of mice to mouse hepatitis virus infection. J Virol 2001; 75:8173-86. [PMID: 11483763 PMCID: PMC115062 DOI: 10.1128/jvi.75.17.8173-8186.2001] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The CEACAM1 glycoproteins (formerly called biliary glycoproteins; BGP, C-CAM, CD66a, or MHVR) are members of the carcinoembryonic antigen family of cell adhesion molecules. In the mouse, splice variants of CEACAM1 have either two or four immunoglobulin (Ig) domains linked through a transmembrane domain to either a short or a long cytoplasmic tail. CEACAM1 has cell adhesion activity and acts as a signaling molecule, and long-tail isoforms inhibit the growth of colon and prostate tumor cells in rodents. CEACAM1 isoforms serve as receptors for several viral and bacterial pathogens, including the murine coronavirus mouse hepatitis virus (MHV) and Haemophilus influenzae, Neisseria gonorrhoeae, and Neisseria meningitidis in humans. To elucidate the mechanisms responsible for the many biological activities of CEACAM1, we modified the expression of the mouse Ceacam1 gene in vivo. Manipulation of the Ceacam1 gene in mouse embryonic stem cells that contained the Ceacam1a allele yielded a partial knockout. We obtained one line of mice in which the insert in the Ceacam1a gene had sustained a recombination event. This resulted in the markedly reduced expression of the two CEACAM1a isoforms with four Ig domains, whereas the expression of the two isoforms with two Ig domains was doubled relative to that in wild-type BALB/c (+/+) mice. Homozygous (p/p) Ceacam1a-targeted mice (Ceacam1aDelta4D) had no gross tissue abnormalities and were viable and fertile; however, they were more resistant to MHV A59 infection and death than normal (+/+) mice. Following intranasal inoculation with MHV A59, p/p mice developed markedly fewer and smaller lesions in the liver than +/+ or heterozygous (+/p) mice. The titers of virus produced in the livers were 50- to 100-fold lower in p/p mice than in +/p or +/+ mice. p/p mice survived a dose 100-fold higher than the lethal dose of virus for +/+ mice. +/p mice were intermediate between +/+ and p/p mice in susceptibility to liver damage, virus growth in liver, and susceptibility to killing by MHV. Ceacam1a-targeted mice provide a new model to study the effects of modulation of receptor expression on susceptibility to MHV infection in vivo.
Collapse
MESH Headings
- Animals
- Antigens, CD
- Carcinoembryonic Antigen
- Cell Adhesion Molecules
- Disease Susceptibility
- Gene Targeting
- Genetic Engineering/methods
- Glycoproteins/genetics
- Glycoproteins/metabolism
- Hepatitis, Viral, Animal/genetics
- Hepatitis, Viral, Animal/virology
- Kidney/pathology
- Liver/parasitology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Murine hepatitis virus/genetics
- Murine hepatitis virus/metabolism
- Murine hepatitis virus/pathogenicity
- Receptors, Virus/genetics
- Receptors, Virus/metabolism
Collapse
Affiliation(s)
- D M Blau
- Department of Microbiology, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | | | | | | | | | | | | | | | | |
Collapse
|