1
|
Chen F, Yang A, Lu Y, Zhang Y, Zhang J, Bu J, Guo R, Han Y, Wu D, Wu Y. Differential transport pathways of saturated and unsaturated fatty acid esters in male mouse hepatocytes. Nat Commun 2025; 16:1344. [PMID: 39905035 PMCID: PMC11794647 DOI: 10.1038/s41467-025-56620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 01/20/2025] [Indexed: 02/06/2025] Open
Abstract
Saturated fatty acid (SFA) and unsaturated fatty acid (UFA) have distinct impacts on health. Whether SFA and UFA are differentially transported in liver remains elusive. Here, we find the secretion of UFA but not SFA esters is retarded in a male mouse hepatic endoplasmic reticulum (ER) stress model. Among 13 members of protein disulfide isomerase (PDI) family, only PDIA1 (PDI) deficiency leads to hepatosteatosis and hypolipidemia. In PDI-deficient male mouse liver, there is a severe accumulation but secretory blockade of UFA esters, whereas the accumulation and secretion of SFA esters remain normal. PDI catalyzes the oxidative folding of microsomal triglyceride transfer protein (MTP). In addition, PDI deficiency in hepatocytes abolishes Apolipoprotein B-100 (ApoB-100) very low-density lipoprotein (VLDL) secretion while maintaining partial ApoB-48 VLDL secretion. In summary, we find that the secretion of UFA esters is PDI-MTP indispensable, while SFA esters could be transferred out of liver via ApoB-48 VLDL through a PDI-MTP-independent pathway.
Collapse
Grants
- 81970128, 82170129, 82470132, 31970890, 8217011021, 82020108003, 82270136 National Natural Science Foundation of China (National Science Foundation of China)
- Translational Research Grant of NCRCH (2020ZKPA02, 2020WSA04), the collaboration fund from State Key Laboratory of Radiation Medicine and Protection (GZN1201802), the Suzhou Science and Technology Development Project (SKJY2021043), the Priority Academic Program Development of Jiangsu Higher Education Institutions.
Collapse
Affiliation(s)
- Fengwu Chen
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- The State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Aizhen Yang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Lu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yuxin Zhang
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyu Zhang
- Department of Hematology, Key Laboratory of Hematology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jianan Bu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Runlin Guo
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China
| | - Yue Han
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Yi Wu
- National Clinical Research Center for Hematologic Diseases, Cyrus Tang Medical Institute, Collaborative Innovation Center of Hematology, State Key Laboratory of Radiation Medicine and Prevention, Soochow University, Suzhou, 215123, China.
- National Clinical Research Center for Hematologic Diseases, Institute of Blood and Marrow Transplantation, Collaborative Innovation Center of Hematology, First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
2
|
Riley TM, Sapp PA, Kris-Etherton PM, Petersen KS. Effects of saturated fatty acid consumption on lipoprotein (a): a systematic review and meta-analysis of randomized controlled trials. Am J Clin Nutr 2024; 120:619-629. [PMID: 38964657 DOI: 10.1016/j.ajcnut.2024.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/10/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND An inverse relationship between saturated fatty acid (SFA) intake and Lp(a) concentration has been observed; however, there has been no quantification of this effect. OBJECTIVES The objective was to determine whether SFA consumption alters Lp(a) concentrations among adults without atherosclerotic cardiovascular disease (ASCVD). METHODS A systematic review and meta-analysis of randomized controlled trials contrasting a lower SFA diet(s) with a higher SFA diet(s) among adults without ASCVD was conducted. PubMed, Cochrane Central Register of Clinical Trials, clinicaltrials.gov, and Web of Science databases and registers were searched through October 2023. The standardized mean difference (SMD) in Lp(a) between diets lower and higher in SFA [percentage of energy (%E)] was determined using random-effects meta-analysis. Analyses were also conducted to examine the effect of replacing SFA with carbohydrates (CHO), monounsaturated (MUFAs), polyunsaturated (PUFAs), or trans fatty acids (TFAs). RESULTS In total, 6255 publications were identified in the systematic search. Twenty-six publications reporting 27 randomized controlled trials, including 1325 participants and 49 diet comparisons, were included. The mean difference in SFA between lower and higher SFA diets was 7.6%E (3.7%-17.8%E). After lower SFA diets, Lp(a) concentration was higher (SMD: 0.14; 95% confidence interval [CI]: 0.03, 0.24) than after higher SFA diets. Subgroup analyses showed higher Lp(a) following diets where SFA was replaced by CHO (trials = 8; n = 539; SMD: 0.21; 95% CI: 0.02, 0.40) or TFAs (trials = 8; n = 300; SMD: 0.32; 95% CI: 0.17, 0.48). No differences in Lp(a) were observed when MUFA (trials = 16; n = 641; SMD: 0.04; 95% CI: -0.08, 0.16) or PUFA (trials = 8; n = 415; SMD: 0.09; 95% CI: -0.04, 0.22) replaced SFA. CONCLUSIONS Lower SFA diets modestly increase Lp(a) compared to higher SFA diets among individuals without ASCVD. This effect appeared to be driven by replacement of SFA with CHO or TFA. Research investigating the atherogenicity of diet-induced Lp(a) changes is needed to inform dietary management of lipid/lipoprotein disorders. This trial was registered with PROSPERO as CRD42020154169.
Collapse
Affiliation(s)
- Terrence M Riley
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States; Department of Nutritional Sciences, The Pennsylvania State University, PA, United States.
| | - Philip A Sapp
- Department of Nutritional Sciences, The Pennsylvania State University, PA, United States; Research, Nutrition, and Innovation, Athletic Greens International, Carson City, NV, United States
| | - Penny M Kris-Etherton
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| | - Kristina S Petersen
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
3
|
Omachi DO, Aryee ANA, Onuh JO. Functional Lipids and Cardiovascular Disease Reduction: A Concise Review. Nutrients 2024; 16:2453. [PMID: 39125334 PMCID: PMC11314407 DOI: 10.3390/nu16152453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Functional lipids are dietary substances that may have an impact on human health by lowering the risk of chronic illnesses and enhancing the quality of life. Numerous functional lipids have been reported to have potential health benefits in the prevention, management, and treatment of cardiovascular disease, the leading cause of death in the United States. However, there is still insufficient and contradictory information in the literature about their effectiveness and associated mechanisms of action. The objective of this review, therefore, is to evaluate available literature regarding these functional lipids and their health benefits. Various studies have been conducted to understand the links between functional lipids and the prevention and treatment of chronic diseases. Recent studies on phytosterols have reported that CLA, medium-chain triglycerides, and omega-3 and 6 fatty acids have positive effects on human health. Also, eicosanoids, which are the metabolites of these fatty acids, are produced in relation to the ratio of omega-3 to omega-6 polyunsaturated fatty acids and may modulate disease conditions. These functional lipids are available either in dietary or supplement forms and have been proven to be efficient, accessible, and inexpensive to be included in the diet. However, further research is required to properly elucidate the dosages, dietary intake, effectiveness, and their mechanisms of action in addition to the development of valid disease biomarkers and long-term effects in humans.
Collapse
Affiliation(s)
- Deborah O. Omachi
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| | - Alberta N. A. Aryee
- Food Science and Biotechnology Program, Department of Human Ecology, Delaware State University, 1200 Dupont Highway, Dover, DE 19901, USA;
| | - John O. Onuh
- Department of Food and Nutritional Sciences, Tuskegee University, 1200 W. Montgomery Rd, Tuskegee, AL 36088, USA;
| |
Collapse
|
4
|
Bråtveit M, Van Parys A, Olsen T, Strand E, Marienborg I, Laupsa-Borge J, Haugsgjerd TR, McCann A, Dhar I, Ueland PM, Dierkes J, Dankel SN, Nygård OK, Lysne V. Association between dietary macronutrient composition and plasma one-carbon metabolites and B-vitamin cofactors in patients with stable angina pectoris. Br J Nutr 2024; 131:1678-1690. [PMID: 38361451 PMCID: PMC11063666 DOI: 10.1017/s0007114524000473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 01/03/2024] [Accepted: 02/13/2024] [Indexed: 02/17/2024]
Abstract
Elevated plasma concentrations of several one-carbon metabolites are associated with increased CVD risk. Both diet-induced regulation and dietary content of one-carbon metabolites can influence circulating concentrations of these markers. We cross-sectionally analysed 1928 patients with suspected stable angina pectoris (geometric mean age 61), representing elevated CVD risk, to assess associations between dietary macronutrient composition (FFQ) and plasma one-carbon metabolites and related B-vitamin status markers (GC-MS/MS, LC-MS/MS or microbiological assay). Diet-metabolite associations were modelled on the continuous scale, adjusted for age, sex, BMI, smoking, alcohol and total energy intake. Average (geometric mean (95 % prediction interval)) intake was forty-nine (38, 63) energy percent (E%) from carbohydrate, thirty-one (22, 45) E% from fat and seventeen (12, 22) E% from protein. The strongest associations were seen for higher protein intake, i.e. with higher plasma pyridoxal 5'-phosphate (PLP) (% change (95 % CI) 3·1 (2·1, 4·1)), cobalamin (2·9 (2·1, 3·7)), riboflavin (2·4 (1·1, 3·7)) and folate (2·1 (1·2, 3·1)) and lower total homocysteine (tHcy) (-1·4 (-1·9, -0·9)) and methylmalonic acid (MMA) (-1·4 (-2·0, -0·8)). Substitution analyses replacing MUFA or PUFA with SFA demonstrated higher plasma concentrations of riboflavin (5·0 (0·9, 9·3) and 3·3 (1·1, 5·6)), tHcy (2·3 (0·7, 3·8) and 1·3 (0·5, 2·2)) and MMA (2·0 (0·2, 3·9) and 1·7 (0·7, 2·7)) and lower PLP (-2·5 (-5·3, 0·3) and -2·7 (-4·2, -1·2)). In conclusion, a higher protein intake and replacing saturated with MUFA and PUFA were associated with a more favourable metabolic phenotype regarding metabolites associated with CVD risk.
Collapse
Affiliation(s)
- Marianne Bråtveit
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Anthea Van Parys
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Thomas Olsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Elin Strand
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ingvild Marienborg
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Johnny Laupsa-Borge
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | | | - Indu Dhar
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | | | - Jutta Dierkes
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
- Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Ottar Kjell Nygård
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Laboratory Medicine and Pathology, Haukeland University Hospital, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Vegard Lysne
- Centre for Nutrition, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
5
|
Christensen JJ, Arnesen EK, Rundblad A, Telle-Hansen VH, Narverud I, Blomhoff R, Bogsrud MP, Retterstøl K, Ulven SM, Holven KB. Dietary fat quality, plasma atherogenic lipoproteins, and atherosclerotic cardiovascular disease: An overview of the rationale for dietary recommendations for fat intake. Atherosclerosis 2024; 389:117433. [PMID: 38219649 DOI: 10.1016/j.atherosclerosis.2023.117433] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/29/2023] [Accepted: 12/20/2023] [Indexed: 01/16/2024]
Abstract
The scientific evidence supporting the current dietary recommendations for fat quality keeps accumulating; however, a paradoxical distrust has taken root among many researchers, clinicians, and in parts of the general public. One explanation for this distrust may relate to an incomplete overview of the totality of the evidence for the link between fat quality as a dietary exposure, and health outcomes such as atherosclerotic cardiovascular disease (ASCVD). Therefore, the main aim of the present narrative review was to provide a comprehensive overview of the rationale for dietary recommendations for fat intake, limiting our discussion to ASCVD as outcome. Herein, we provide a core framework - a causal model - that can help us understand the evidence that has accumulated to date, and that can help us understand new evidence that may become available in the future. The causal model for fat quality and ASCVD is comprised of three key research questions (RQs), each of which determine which scientific methods are most appropriate to use, and thereby which lines of evidence that should feed into the causal model. First, we discuss the link between low-density lipoprotein (LDL) particles and ASCVD (RQ1); we draw especially on evidence from genetic studies, randomized controlled trials (RCTs), epidemiology, and mechanistic studies. Second, we explain the link between dietary fat quality and LDL particles (RQ2); we draw especially on metabolic ward studies, controlled trials (randomized and non-randomized), and mechanistic studies. Third, we explain the link between dietary fat quality, LDL particles, and ASCVD (RQ3); we draw especially on RCTs in animals and humans, epidemiology, population-based changes, and experiments of nature. Additionally, the distrust over dietary recommendations for fat quality may partly relate to an unclear understanding of the scientific method, especially as applied in nutrition research, including the process of developing dietary guidelines. We therefore also aimed to clarify this process. We discuss how we assess causality in nutrition research, and how we progress from scientific evidence to providing dietary recommendations.
Collapse
Affiliation(s)
- Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Erik Kristoffer Arnesen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Ingunn Narverud
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin P Bogsrud
- Unit for Cardiac and Cardiovascular Genetics, Oslo University Hospital, Oslo, Norway
| | - Kjetil Retterstøl
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Kheirkhah A, Schachtl-Riess JF, Lamina C, Di Maio S, Koller A, Schönherr S, Coassin S, Forer L, Sekula P, Gieger C, Peters A, Köttgen A, Eckardt KU, Kronenberg F. Meta-GWAS on PCSK9 concentrations reveals associations of novel loci outside the PCSK9 locus in White populations. Atherosclerosis 2023; 386:117384. [PMID: 37989062 DOI: 10.1016/j.atherosclerosis.2023.117384] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
BACKGROUND AND AIMS Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a key regulator of lipid homeostasis. A few earlier genome-wide association studies (GWAS) investigated genetic variants associated with circulating PCSK9 concentrations. However, uncertainty remains about some of the genetic loci discovered beyond the PCSK9 locus. By conducting the largest PCSK9 meta-analysis of GWAS (meta-GWAS) so far, we aimed to identify novel loci and validate the previously reported loci that regulate PCSK9 concentrations. METHODS We performed GWAS for PCSK9 concentrations in two large cohorts (GCKD (n = 4,963) and KORA F3 (n = 2,895)). These were meta-analyzed with previously published data encompassing together 20,579 individuals. We further conducted a second meta-analysis in statin-naïve individuals (n = 15,390). A genetic risk score (GRS) was constructed on PCSK9-increasing SNPs and assessed its impact on the risk for coronary artery disease (CAD) in 394,943 statin-naïve participants (17,077 with events) of the UK Biobank by performing CAD-free survival analysis. RESULTS Nine loci were genome-wide significantly associated with PCSK9 concentrations. These included the previously described PCSK9, APOB, KCNA1/KCNA5, and TM6SF2/SUGP1 loci. All imputed SNPs in the PCSK9 locus account for ∼15% of variance of PCSK9 concentrations. We further identified FADS2 as a novel locus that was also found in statin-naïve participants. All imputed SNPs within the FADS2 locus explain ∼1.2% of variance of PCSK9 concentrations. Additionally, four further loci (a region on chromosome 5, SDK1, SPATA16 and HPR) were genome-wide significant in either the main model or the statin-naïve subset. The linear increase in a PCSK9 genetic risk score was associated with 1.41-fold (95%CI 1.16-1.72, p < 0.001) higher risk for incident CAD. CONCLUSIONS We identified five novel loci (FADS2, SPATA16, SDK1, HPR and a region on chromosome 5) for PCSK9 concentrations that would require further research. Additionally, we confirm the genome-wide significant loci that were previously detected.
Collapse
Affiliation(s)
- Azin Kheirkhah
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Claudia Lamina
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Silvia Di Maio
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Adriana Koller
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Coassin
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Peggy Sekula
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Christian Gieger
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Annette Peters
- Institute of Epidemiology II, Helmholtz Zentrum München - German Research Center for Environmental Health, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center - University of Freiburg, Freiburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany; German Chronic Kidney Disease Study, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
7
|
Clarke ED, Ferguson JJ, Stanford J, Collins CE. Dietary Assessment and Metabolomic Methodologies in Human Feeding Studies: A Scoping Review. Adv Nutr 2023; 14:1453-1465. [PMID: 37604308 PMCID: PMC10721540 DOI: 10.1016/j.advnut.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/01/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023] Open
Abstract
Dietary metabolomics is a relatively objective approach to identifying new biomarkers of dietary intake and for use alongside traditional methods. However, methods used across dietary feeding studies vary, thus making it challenging to compare results. The objective of this study was to synthesize methodological components of controlled human feeding studies designed to quantify the diet-related metabolome in biospecimens, including plasma, serum, and urine after dietary interventions. Six electronic databases were searched. Included studies were as follows: 1) conducted in healthy adults; 2) intervention studies; 3) feeding studies focusing on dietary patterns; and 4) measured the dietary metabolome. From 12,425 texts, 50 met all inclusion criteria. Interventions were primarily crossover (n = 25) and parallel randomized controlled trials (n = 22), with between 8 and 395 participants. Seventeen different dietary patterns were tested, with the most common being the "High versus Low-Glycemic Index/Load" pattern (n = 11) and "Typical Country Intake" (n = 11); with 32 providing all or the majority (90%) of food, 16 providing some food, and 2 providing no food. Metabolites were identified in urine (n = 31) and plasma/serum (n = 30). Metabolites were quantified using liquid chromatography, mass spectroscopy (n = 31) and used untargeted metabolomics (n = 37). There was extensive variability in the methods used in controlled human feeding studies examining the metabolome, including dietary patterns tested, biospecimen sample collection, and metabolomic analysis techniques. To improve the comparability and reproducibility of controlled human feeding studies examining the metabolome, it is important to provide detailed information about the dietary interventions being tested, including information about included or restricted foods, food groups, and meal plans provided. Strategies to control for individual variability, such as a crossover study design, statistical adjustment methods, dietary-controlled run-in periods, or providing standardized meals or test foods throughout the study should also be considered. The protocol for this review has been registered at Open Science Framework (https://doi.org/10.17605/OSF.IO/DAHGS).
Collapse
Affiliation(s)
- Erin D Clarke
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia; Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jessica Ja Ferguson
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia; Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Jordan Stanford
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia; Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia
| | - Clare E Collins
- School of Health Sciences, College of Health Medicine and Wellbeing, The University of Newcastle, Callaghan, NSW, Australia; Food and Nutrition Research Program, Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.
| |
Collapse
|
8
|
Parnell LD, McCaffrey KS, Brooks AW, Smith CE, Lai CQ, Christensen JJ, Wiley CD, Ordovas JM. Rate-Limiting Enzymes in Cardiometabolic Health and Aging in Humans. Lifestyle Genom 2023; 16:124-138. [PMID: 37473740 DOI: 10.1159/000531350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/24/2023] [Indexed: 07/22/2023] Open
Abstract
INTRODUCTION Rate-limiting enzymes (RLEs) are innate slow points in metabolic pathways, and many function in bio-processes related to nutrient sensing. Many RLEs carry causal mutations relevant to inherited metabolic disorders. Because the activity of RLEs in cardiovascular health is poorly characterized, our objective was to assess their involvement in cardiometabolic health and disease and where altered biophysical and biochemical functions can promote disease. METHODS A dataset of 380 human RLEs was compared to protein and gene datasets for factors likely to contribute to cardiometabolic disease, including proteins showing significant age-related altered expression in blood and genetic loci with variants that associate with common cardiometabolic phenotypes. The biochemical reactions catalyzed by RLEs were evaluated for metabolites enriched in RLE subsets associating with various cardiometabolic phenotypes. Most significance tests were based on Z-score enrichment converted to p values with a normal distribution function. RESULTS Of 380 RLEs analyzed, 112 function in mitochondria, and 53 are assigned to inherited metabolic disorders. There was a depletion of RLE proteins known as aging biomarkers. At the gene level, RLEs were assessed for common genetic variants that associated with important cardiometabolic traits of LDL-cholesterol or any of the five outcomes pertinent to metabolic syndrome. This revealed several RLEs with links to cardiometabolic traits, from a minimum of 26 for HDL-cholesterol to a maximum of 45 for plasma glucose. Analysis of these GWAS-linked RLEs for enrichment of the molecular constituents of the catalyzed reactions disclosed a number of significant phenotype-metabolite links. These included blood pressure with acetate (p = 2.2 × 10-4) and NADP+ (p = 0.0091), plasma HDL-cholesterol and triglyceride with diacylglycerol (p = 2.6 × 10-5, 6.4 × 10-5, respectively) and diolein (p = 2.2 × 10-6, 5.9 × 10-6), and waist circumference with d-glucosamine-6-phosphate (p = 1.8 × 10-4). CONCLUSION In the context of cardiometabolic health, aging, and disease, these results highlight key diet-derived metabolites that are central to specific rate-limited processes that are linked to cardiometabolic health. These metabolites include acetate and diacylglycerol, pertinent to blood pressure and triglycerides, respectively, as well as diacylglycerol and HDL-cholesterol.
Collapse
Affiliation(s)
- Laurence D Parnell
- US Department of Agriculture, Nutrition and Genomics Laboratory, Agricultural Research Service, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | | | | | - Caren E Smith
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Chao-Qiang Lai
- US Department of Agriculture, Nutrition and Genomics Laboratory, Agricultural Research Service, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Oslo, Norway
- Department of Nutrition, University of Oslo, Oslo, Norway
| | - Christopher D Wiley
- Vitamin K Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| | - Jose M Ordovas
- Nutrition and Genomics Laboratory, JM-USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Feng S, Guo L, Wang S, Chen L, Chang H, Hang B, Mao J, Snijders AM, Lu Y, Ding D. Association of Serum Bile Acid and Unsaturated Fatty Acid Profiles with the Risk of Diabetic Retinopathy in Type 2 Diabetic Patients. Diabetes Metab Syndr Obes 2023; 16:2117-2128. [PMID: 37465650 PMCID: PMC10351529 DOI: 10.2147/dmso.s411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/10/2023] [Indexed: 07/20/2023] Open
Abstract
AIM We aimed to identify the ability of serum bile acids (BAs) and unsaturated fatty acids (UFAs) profiles to predict the development of diabetic retinopathy (DR) in type 2 diabetes mellitus (T2DM) patients. METHODS We first used univariate and multivariate analysis to compare 15 serum BA and 11 UFA levels in healthy control (HC) group (n = 82), T2DM patients with DR (n = 58) and T2DM patients without DR (n = 60). Forty T2DM patients were considered for validation. Then, the receiver operating characteristic curve (ROC) and decision curve analysis were used to assess the diagnostic value and clinical benefit of serum biomarkers alone, clinical variables alone or in combination, and the area under the curve (AUC), integrated discrimination improvement (IDI), and net reclassification improvement (NRI) were used to further assess whether the addition of biomarkers significantly improved the predictive ability of the model. RESULTS Orthogonal partial least squares-discriminant analysis (OPLS-DA) of serum BAs and UFAs separated the three cohorts including HC, T2DM patients with or without DR. The difference in serum BA and UFA profiles of T2DM patients with or without DR was mainly manifested in the three metabolites of taurolithocholic acid (TLCA), tauroursodeoxycholic acid (TUDCA) and arachidonic acid (AA). Together, they had an AUC of 0.785 (0.918 for validation cohort) for predicting DR in T2DM patients. After adjusting for numerous confounding factors, TLCA, TUDCA, and AA were independent predictors that differentiated T2DM with or without DR. The results of AUC, IDI, and NRI demonstrated that adding these three biomarkers to a model with clinical variables statistically increased their predictive value and were replicated in our independent validation cohort. CONCLUSION These findings highlight the association of three metabolites, TLCA, TUDCA and AA, with DR and may indicate their potential value in the pathogenesis of DR.
Collapse
Affiliation(s)
- Susu Feng
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lin Guo
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Sijing Wang
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Lijuan Chen
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Hang Chang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bo Hang
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Biomaterials, Berkeley-Nanjing Research Center, Nanjing, People's Republic of China
| | - Jianhua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Antoine M Snijders
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yibing Lu
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Dafa Ding
- Department of Endocrinology, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
10
|
McCullough D, Harrison T, Enright KJ, Amirabdollahian F, Mazidi M, Lane KE, Stewart CE, Davies IG. The Effect of Carbohydrate Restriction on Lipids, Lipoproteins, and Nuclear Magnetic Resonance-Based Metabolites: CALIBER, a Randomised Parallel Trial. Nutrients 2023; 15:3002. [PMID: 37447328 DOI: 10.3390/nu15133002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Low-carbohydrate high-fat (LCHF) diets can be just as effective as high-carbohydrate, lower-fat (HCLF) diets for improving cardiovascular disease risk markers. Few studies have compared the effects of the UK HCLF dietary guidelines with an LCHF diet on lipids and lipoprotein metabolism using high-throughput NMR spectroscopy. This study aimed to explore the effect of an ad libitum 8-week LCHF diet compared to an HCLF diet on lipids and lipoprotein metabolism and CVD risk factors. For 8 weeks, n = 16 adults were randomly assigned to follow either an LCHF (n = 8, <50 g CHO p/day) or an HCLF diet (n = 8). Fasted blood samples at weeks 0, 4, and 8 were collected and analysed for lipids, lipoprotein subclasses, and energy-related metabolism markers via NMR spectroscopy. The LCHF diet increased (p < 0.05) very small VLDL, IDL, and large HDL cholesterol levels, whereas the HCLF diet increased (p < 0.05) IDL and large LDL cholesterol levels. Following the LCHF diet alone, triglycerides in VLDL and HDL lipoproteins significantly (p < 0.05) decreased, and HDL phospholipids significantly (p < 0.05) increased. Furthermore, the LCHF diet significantly (p < 0.05) increased the large and small HDL particle concentrations compared to the HCLF diet. In conclusion, the LCHF diet may reduce CVD risk factors by reducing triglyceride-rich lipoproteins and improving HDL functionality.
Collapse
Affiliation(s)
- D McCullough
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QS, UK
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - T Harrison
- Department of Clinical Sciences and Nutrition, University of Chester, Chester CH1 4BJ, UK
| | - K J Enright
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - F Amirabdollahian
- School of Health and Society, University of Wolverhampton, Wolverhampton WV1 1LY, UK
| | - M Mazidi
- Medical Research Council Population Health Research Unit, University of Oxford, Oxford OX1 7LF, UK
- Clinical Trial Service Unit and Epidemiological Studies Unit (CTSU), Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
- Department of Twin Research & Genetic Epidemiology, South Wing St Thomas', King's College London, London SE1 7EH, UK
| | - K E Lane
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - C E Stewart
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| | - I G Davies
- Research Institute of Sport and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK
| |
Collapse
|
11
|
Parker DC, Kraus WE, Whitson HE, Kraus VB, Smith PJ, Cohen HJ, Pieper CF, Faldowski RA, Hall KS, Huebner JL, Ilkayeva OR, Bain JR, Newby LK, Huffman KM. Tryptophan Metabolism and Neurodegeneration: Longitudinal Associations of Kynurenine Pathway Metabolites with Cognitive Performance and Plasma Alzheimer's Disease and Related Dementias Biomarkers in the Duke Physical Performance Across the LifeSpan Study. J Alzheimers Dis 2023; 91:1141-1150. [PMID: 36565121 PMCID: PMC10074831 DOI: 10.3233/jad-220906] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND The kynurenine pathway (KP) comprises a family of tryptophan-derived metabolites that some studies have reported are associated with poorer cognitive performance and an increased risk of Alzheimer's disease and related dementias (ADRD). OBJECTIVE The objective of this study was to determine the associations of plasma KP metabolites (kynurenine [KYN], kynurenic acid [KA], and tryptophan [TRP]) with a panel of plasma ADRD biomarkers (Aβ42/ β40 ratio, pTau-181, glial fibrillary acidic protein [GFAP], and neurofilament light [NfL]) and cognitive performance in a subset of older adults drawn from the Duke Physical Performance Across the LifeSpan (PALS) study. METHODS The Montreal Cognitive Assessment (MoCA) was used to assess cognitive performance. We used multivariate multiple regression to evaluate associations of the KYN/TRP and KA/KYN ratios with MoCA score and plasma ADRD biomarkers at baseline and over two years (n = 301; Age = 74.8±8.7). RESULTS Over two years, an increasing KYN/TRP ratio was associated with increasing plasma concentrations of plasma p-Tau181 (β= 6.151; 95% CI [0.29, 12.01]; p = 0.040), GFAP (β= 11.12; 95% CI [1.73, 20.51]; p = 0.020), and NfL (β= 11.13; 95% CI [2.745, 19.52]; p = 0.009), but not MoCA score or the Aβ42/Aβ40 ratio. There were no significant associations of KA/KYN with MoCA score or plasma ADRD biomarkers. CONCLUSION Our findings provide evidence that greater concentrations of KP metabolites are associated longitudinally over two years with greater biomarker evidence of neurofibrillary tau pathology (pTau-181), neuroinflammation (GFAP), and neurodegeneration (NfL), suggesting that dysregulated KP metabolism may play a role in ADRD pathogenesis.
Collapse
Affiliation(s)
- Daniel C Parker
- Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
| | - William E Kraus
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke University School of Medicine, Division of Cardiology, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
| | - Heather E Whitson
- Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
| | - Virginia B Kraus
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
- Duke University School of Medicine, Division of Rheumatology and Immunology, Durham, NC, USA
| | - Patrick J Smith
- Department of Psychiatry, University of North Carolina, Chapel Hill, Chapel Hill, NC, USA
| | - Harvey Jay Cohen
- Duke University School of Medicine, Division of Geriatrics, Durham, NC, USA
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
| | - Carl F Pieper
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Richard A Faldowski
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Katherine S Hall
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Medical Center, Durham, NC, USA
| | - Janet L Huebner
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
| | - Olga R Ilkayeva
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC, USA
| | - James R Bain
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Claude D. Pepper Older Americans Independence Center, Duke University School of Medicine, Durham, NC, USA
- Sarah W. Stedman Nutrition and Metabolism Center, Duke University School of Medicine, Durham, NC, USA
- Department of Medicine, Duke University School of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Durham, NC, USA
| | - L Kristin Newby
- Duke University School of Medicine, Division of Cardiology, Durham, NC, USA
- Duke University Clinical and Translational Science Institute, Durham, NC, USA
| | - Kim M Huffman
- Duke University Center for the Study of Aging and Human Development, Durham, NC, USA
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, USA
- Duke University School of Medicine, Division of Rheumatology and Immunology, Durham, NC, USA
| |
Collapse
|
12
|
Pigsborg K, Gürdeniz G, Rangel-Huerta OD, Holven KB, Dragsted LO, Ulven SM. Effects of changing from a diet with saturated fat to a diet with n-6 polyunsaturated fat on the serum metabolome in relation to cardiovascular disease risk factors. Eur J Nutr 2022; 61:2079-2089. [PMID: 34999928 PMCID: PMC9106625 DOI: 10.1007/s00394-021-02796-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/21/2021] [Indexed: 11/27/2022]
Abstract
Purpose Replacing saturated fatty acids (SFA) with polyunsaturated fatty acids (PUFA) is associated with a reduced risk of cardiovascular disease. Yet, the changes in the serum metabolome after this replacement is not well known. Therefore, the present study aims to identify the metabolites differentiating diets where six energy percentage SFA is replaced with PUFA and to elucidate the association of dietary metabolites with cardiometabolic risk markers. Methods In an 8-week, double-blind, randomized, controlled trial, 99 moderately hyper-cholesterolemic adults (25–70 years) were assigned to a control diet (C-diet) or an experimental diet (Ex-diet). Both groups received commercially available food items with different fatty acid compositions. In the Ex-diet group, products were given where SFA was replaced mostly with n-6 PUFA. Fasting serum samples were analysed by untargeted ultra-performance liquid chromatography high-resolution mass spectrometry (UPLC-HRMS). Pre-processed data were analysed by double cross-validated Partial Least-Squares Discriminant Analysis (PLS-DA) to detect features differentiating the two diet groups. Results PLS-DA differentiated the metabolic profiles of the Ex-diet and the C-diet groups with an area under the curve of 0.83. The Ex-diet group showed higher levels of unsaturated phosphatidylcholine plasmalogens, an unsaturated acylcarnitine, and a secondary bile acid. The C-diet group was characterized by odd-numbered phospholipids and a saturated acylcarnitine. The Principal Component analysis scores of the serum metabolic profiles characterizing the diets were significantly associated with low-density lipoprotein cholesterol, total cholesterol, and triglyceride levels but not with glycaemia. Conclusion The serum metabolic profiles confirmed the compliance of the participants based on their diet-specific metabolome after replacing SFA with mostly n-6 PUFA. The participants' metabolic profiles in response to the change in diet were associated with cardiovascular disease risk markers. This study was registered at clinicaltrials.gov as NCT 01679496 on September 6th 2012. Supplementary Information The online version contains supplementary material available at 10.1007/s00394-021-02796-6.
Collapse
Affiliation(s)
- Kristina Pigsborg
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark.
| | - Gözde Gürdeniz
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway.,Norwegian National Advisory Unit On Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital Aker, Nydalen, PO Box 4959, 0424, Oslo, Norway
| | - Lars Ove Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Rolighedsvej 26, 1958, Frederiksberg, Denmark
| | - Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
13
|
Large-scale genomic study reveals robust activation of the immune system following advanced Inner Engineering meditation retreat. Proc Natl Acad Sci U S A 2021; 118:2110455118. [PMID: 34907015 DOI: 10.1073/pnas.2110455118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 12/15/2022] Open
Abstract
The positive impact of meditation on human well-being is well documented, yet its molecular mechanisms are incompletely understood. We applied a comprehensive systems biology approach starting with whole-blood gene expression profiling combined with multilevel bioinformatic analyses to characterize the coexpression, transcriptional, and protein-protein interaction networks to identify a meditation-specific core network after an advanced 8-d Inner Engineering retreat program. We found the response to oxidative stress, detoxification, and cell cycle regulation pathways were down-regulated after meditation. Strikingly, 220 genes directly associated with immune response, including 68 genes related to interferon signaling, were up-regulated, with no significant expression changes in the inflammatory genes. This robust meditation-specific immune response network is significantly dysregulated in multiple sclerosis and severe COVID-19 patients. The work provides a foundation for understanding the effect of meditation and suggests that meditation as a behavioral intervention can voluntarily and nonpharmacologically improve the immune response for treating various conditions associated with excessive or persistent inflammation with a dampened immune system profile.
Collapse
|
14
|
Larsen SV, Holven KB, Christensen JJ, Flatberg A, Rundblad A, Leder L, Blomhoff R, Telle-Hansen V, Kolehmainen M, Carlberg C, Myhrstad MC, Thoresen M, Ulven SM. Replacing Saturated Fat with Polyunsaturated Fat Modulates Peripheral Blood Mononuclear Cell Gene Expression and Pathways Related to Cardiovascular Disease Risk Using a Whole Transcriptome Approach. Mol Nutr Food Res 2021; 65:e2100633. [PMID: 34708513 DOI: 10.1002/mnfr.202100633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/03/2021] [Indexed: 12/17/2022]
Abstract
SCOPE The aim of this study is to explore the molecular mechanisms underlying the effect of replacing dietary saturated fat (SFA) with polyunsaturated fat (PUFA) on cardiovascular disease (CVD) risk using a whole transcriptome approach. METHODS AND RESULTS Healthy subjects with moderate hypercholesterolemia (n = 115) are randomly assigned to a control diet (C-diet) group or an experimental diet (Ex-diet) group receiving comparable food items with different fatty acid composition for 8 weeks. RNA isolated from peripheral blood mononuclear cells (PBMCs) at baseline and after 8 weeks of intervention is analyzed by microarray technology (n = 95). By use of a linear regression model (n = 92), 14 gene transcripts are differentially altered in the Ex-diet group compared to the C-diet group. These include transcripts related to vascular smooth muscle cell proliferation, low-density lipoprotein receptor folding, and regulation of blood pressure. Furthermore, pathways mainly related to immune response and inflammation, signal transduction, development, and cytoskeleton remodeling, gene expression and protein function, are differentially enriched between the groups. CONCLUSION Replacing dietary SFA with PUFA for 8 weeks modulates PBMC gene expression and pathways related to CVD risk in healthy subjects with moderate hypercholesterolemia.
Collapse
Affiliation(s)
- Sunniva V Larsen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Jacob J Christensen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Norwegian National Advisory Unit on Familial Hypercholesterolemia, Oslo University Hospital, Nydalen, Oslo, Norway
| | - Arnar Flatberg
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Central Administration, St. Olavs Hospital, The University Hospital in Trondheim, Trondheim, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | | | - Rune Blomhoff
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
- Department of Clinical Service, Division of Cancer Medicine, Oslo University Hospital, Oslo, Norway
| | - Vibeke Telle-Hansen
- Department of Nutrition, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, Oslo, Norway
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Carsten Carlberg
- School of Medicine, Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Mari C Myhrstad
- Department of Nutrition, Faculty of Health Sciences, Oslo Metropolitan University, St. Olavs Plass, Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Blindern, Oslo, Norway
| |
Collapse
|
15
|
Froyen E. The effects of fat consumption on low-density lipoprotein particle size in healthy individuals: a narrative review. Lipids Health Dis 2021; 20:86. [PMID: 34362390 PMCID: PMC8348839 DOI: 10.1186/s12944-021-01501-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Cardiovascular disease (CVD) is the number one contributor to death in the United States and worldwide. A risk factor for CVD is high serum low-density lipoprotein cholesterol (LDL-C) concentrations; however, LDL particles exist in a variety of sizes that may differentially affect the progression of CVD. The small, dense LDL particles, compared to the large, buoyant LDL subclass, are considered to be more atherogenic. It has been suggested that replacing saturated fatty acids with monounsaturated and polyunsaturated fatty acids decreases the risk for CVD. However, certain studies are not in agreement with this recommendation, as saturated fatty acid intake did not increase the risk for CVD, cardiovascular events, and/or mortality. Furthermore, consumption of saturated fat has been demonstrated to increase large, buoyant LDL particles, which may explain, in part, for the differing outcomes regarding fat consumption on CVD risk. Therefore, the objective was to review intervention trials that explored the effects of fat consumption on LDL particle size in healthy individuals. PubMed and Web of Science were utilized during the search process for journal articles. The results of this review provided evidence that fat consumption increases large, buoyant LDL and/or decreases small, dense LDL particles, and therefore, influences CVD risk.
Collapse
Affiliation(s)
- Erik Froyen
- Department of Nutrition and Food Science, Huntley College of Agriculture, California State Polytechnic University, 3801 West Temple Avenue, Pomona, CA, 91768, USA.
| |
Collapse
|
16
|
Del Cornò M, Varì R, Scazzocchio B, Varano B, Masella R, Conti L. Dietary Fatty Acids at the Crossroad between Obesity and Colorectal Cancer: Fine Regulators of Adipose Tissue Homeostasis and Immune Response. Cells 2021; 10:cells10071738. [PMID: 34359908 PMCID: PMC8304920 DOI: 10.3390/cells10071738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Colorectal cancer (CRC) is among the major threatening diseases worldwide, being the third most common cancer, and a leading cause of death, with a global incidence expected to increase in the coming years. Enhanced adiposity, particularly visceral fat, is a major risk factor for the development of several tumours, including CRC, and represents an important indicator of incidence, survival, prognosis, recurrence rates, and response to therapy. The obesity-associated low-grade chronic inflammation is thought to be a key determinant in CRC development, with the adipocytes and the adipose tissue (AT) playing a significant role in the integration of diet-related endocrine, metabolic, and inflammatory signals. Furthermore, AT infiltrating immune cells contribute to local and systemic inflammation by affecting immune and cancer cell functions through the release of soluble mediators. Among the factors introduced with diet and enriched in AT, fatty acids (FA) represent major players in inflammation and are able to deeply regulate AT homeostasis and immune cell function through gene expression regulation and by modulating the activity of several transcription factors (TF). This review summarizes human studies on the effects of dietary FA on AT homeostasis and immune cell functions, highlighting the molecular pathways and TF involved. The relevance of FA balance in linking diet, AT inflammation, and CRC is also discussed. Original and review articles were searched in PubMed without temporal limitation up to March 2021, by using fatty acid as a keyword in combination with diet, obesity, colorectal cancer, inflammation, adipose tissue, immune cells, and transcription factors.
Collapse
|
17
|
Nutrigenomics of Dietary Lipids. Antioxidants (Basel) 2021; 10:antiox10070994. [PMID: 34206632 PMCID: PMC8300813 DOI: 10.3390/antiox10070994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Dietary lipids have a major role in nutrition, not only for their fuel value, but also as essential and bioactive nutrients. This narrative review aims to describe the current evidence on nutrigenomic effects of dietary lipids. Firstly, the different chemical and biological properties of fatty acids contained both in plant- and animal-based food are illustrated. A description of lipid bioavailability, bioaccessibility, and lipotoxicity is provided, together with an overview of the modulatory role of lipids as pro- or anti-inflammatory agents. Current findings concerning the metabolic impact of lipids on gene expression, epigenome, and gut microbiome in animal and human studies are summarized. Finally, the effect of the individual’s genetic make-up on lipid metabolism is described. The main goal is to provide an overview about the interaction between dietary lipids and the genome, by identifying and discussing recent scientific evidence, recognizing strengths and weaknesses, to address future investigations and fill the gaps in the current knowledge on metabolic impact of dietary fats on health.
Collapse
|
18
|
Zinöcker MK, Svendsen K, Dankel SN. The homeoviscous adaptation to dietary lipids (HADL) model explains controversies over saturated fat, cholesterol, and cardiovascular disease risk. Am J Clin Nutr 2021; 113:277-289. [PMID: 33471045 DOI: 10.1093/ajcn/nqaa322] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/09/2020] [Indexed: 12/16/2022] Open
Abstract
SFAs play the leading role in 1 of the greatest controversies in nutrition science. Relative to PUFAs, SFAs generally increase circulating concentrations of LDL cholesterol, a risk factor for atherosclerotic cardiovascular disease (ASCVD). However, the purpose of regulatory mechanisms that control the diet-induced lipoprotein cholesterol dynamics is rarely discussed in the context of human adaptive biology. We argue that better mechanistic explanations can help resolve lingering controversies, with the potential to redefine aspects of research, clinical practice, dietary advice, public health management, and food policy. In this paper we propose a novel model, the homeoviscous adaptation to dietary lipids (HADL) model, which explains changes in lipoprotein cholesterol as adaptive homeostatic adjustments that serve to maintain cell membrane fluidity and hence optimal cell function. Due to the highly variable intake of fatty acids in humans and other omnivore species, we propose that circulating lipoproteins serve as a buffer to enable the rapid redistribution of cholesterol molecules between specific cells and tissues that is necessary with changes in dietary fatty acid supply. Hence, circulating levels of LDL cholesterol may change for nonpathological reasons. Accordingly, an SFA-induced raise in LDL cholesterol in healthy individuals could represent a normal rather than a pathologic response. These regulatory mechanisms may become disrupted secondarily to pathogenic processes in association with insulin resistance and the presence of other ASCVD risk factors, as supported by evidence showing diverging lipoprotein responses in healthy individuals as opposed to those with metabolic disorders such as insulin resistance and obesity. Corresponding with the model, we suggest alternative contributing factors to the association between elevated LDL cholesterol concentrations and ASCVD, involving dietary factors beyond SFAs, such as an increased endotoxin load from diet-gut microbiome interactions and subsequent chronic low-grade inflammation that interferes with fine-tuned signaling pathways.
Collapse
Affiliation(s)
| | - Karianne Svendsen
- Department of Nutrition, University of Oslo, Oslo, Norway.,The Lipid Clinic, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Simon Nitter Dankel
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen, Norway
| |
Collapse
|
19
|
Dietary fruit and vegetable intake, gut microbiota, and type 2 diabetes: results from two large human cohort studies. BMC Med 2020; 18:371. [PMID: 33267887 PMCID: PMC7712977 DOI: 10.1186/s12916-020-01842-0] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Little is known about the inter-relationship among fruit and vegetable intake, gut microbiota and metabolites, and type 2 diabetes (T2D) in human prospective cohort study. The aim of the present study was to investigate the prospective association of fruit and vegetable intake with human gut microbiota and to examine the relationship between fruit and vegetable-related gut microbiota and their related metabolites with type 2 diabetes (T2D) risk. METHODS This study included 1879 middle-age elderly Chinese adults from Guangzhou Nutrition and Health Study (GNHS). Baseline dietary information was collected using a validated food frequency questionnaire (2008-2013). Fecal samples were collected at follow-up (2015-2019) and analyzed for 16S rRNA sequencing and targeted fecal metabolomics. Blood samples were collected and analyzed for glucose, insulin, and glycated hemoglobin. We used multivariable linear regression and logistic regression models to investigate the prospective associations of fruit and vegetable intake with gut microbiota and the association of the identified gut microbiota (fruit/vegetable-microbiota index) and their related fecal metabolites with T2D risk, respectively. Replications were performed in an independent cohort involving 6626 participants. RESULTS In the GNHS, dietary fruit intake, but not vegetable, was prospectively associated with gut microbiota diversity and composition. The fruit-microbiota index (FMI, created from 31 identified microbial features) was positively associated with fruit intake (p < 0.001) and inversely associated with T2D risk (odds ratio (OR) 0.83, 95%CI 0.71-0.97). The FMI-fruit association (p = 0.003) and the FMI-T2D association (OR 0.90, 95%CI 0.84-0.97) were both successfully replicated in the independent cohort. The FMI-positive associated metabolite sebacic acid was inversely associated with T2D risk (OR 0.67, 95%CI 0.51-0.86). The FMI-negative associated metabolites cholic acid (OR 1.35, 95%CI 1.13-1.62), 3-dehydrocholic acid (OR 1.30, 95%CI 1.09-1.54), oleylcarnitine (OR 1.77, 95%CI 1.45-2.20), linoleylcarnitine (OR 1.66, 95%CI 1.37-2.05), palmitoylcarnitine (OR 1.62, 95%CI 1.33-2.02), and 2-hydroglutaric acid (OR 1.47, 95%CI 1.25-1.72) were positively associated with T2D risk. CONCLUSIONS Higher fruit intake-associated gut microbiota and metabolic alteration were associated with a lower risk of T2D, supporting the public dietary recommendation of adopting high fruit intake for the T2D prevention.
Collapse
|
20
|
Sotos-Prieto M, Ruiz-Canela M, Song Y, Christophi C, Mofatt S, Rodriguez-Artalejo F, Kales SN. The Effects of a Mediterranean Diet Intervention on Targeted Plasma Metabolic Biomarkers among US Firefighters: A Pilot Cluster-Randomized Trial. Nutrients 2020; 12:E3610. [PMID: 33255353 PMCID: PMC7761450 DOI: 10.3390/nu12123610] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Metabolomics is improving the understanding of the mechanisms of the health effects of diet. Previous research has identified several metabolites associated with the Mediterranean Diet (MedDiet), but knowledge about longitudinal changes in metabolic biomarkers after a MedDiet intervention is scarce. A subsample of 48 firefighters from a cluster-randomized trial at Indianapolis fire stations was randomly selected for the metabolomics study at 12 months of follow up (time point 1), where Group 1 (n = 24) continued for another 6 months in a self-sustained MedDiet intervention, and Group 2 (n = 24), the control group at that time, started with an active MedDiet intervention for 6 months (time point 2). A total of 225 metabolites were assessed at the two time points by using a targeted NMR platform. The MedDiet score improved slightly but changes were non-significant (intervention: 24.2 vs. 26.0 points and control group: 26.1 vs. 26.5 points). The MedDiet intervention led to favorable changes in biomarkers related to lipid metabolism, including lower LDL-C, ApoB/ApoA1 ratio, remnant cholesterol, M-VLDL-CE; and higher HDL-C, and better lipoprotein composition. This MedDiet intervention induces only modest changes in adherence to the MedDiet and consequently in metabolic biomarkers. Further research should confirm these results based on larger study samples in workplace interventions with powerful study designs.
Collapse
Affiliation(s)
- Mercedes Sotos-Prieto
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Biomedical Research Network Centre of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, 28029 Madrid, Spain
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.C.); (S.N.K.)
| | - Miguel Ruiz-Canela
- Department of Preventive Medicine and Public Health, IdiSNA, University of Navarra, 31009 Pamplona, Spain;
- Biomedical Research Network Centre for Pathophysiology of Obesity and Nutrition (CIBEROBN), Carlos III Health Institute, 28029 Madrid, Spain
| | - Yiqing Song
- Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, IN 46202, USA;
| | - Costas Christophi
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.C.); (S.N.K.)
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, 30 Archbishop Kyprianou Str., 3036 Lemesos, Cyprus
| | - Steven Mofatt
- National Institute for Public Safety Health, Indianapolis, IN 46204, USA;
| | - Fernando Rodriguez-Artalejo
- Department of Preventive Medicine and Public Health, School of Medicine, Universidad Autónoma de Madrid, IdiPaz (Instituto de Investigación Sanitaria Hospital Universitario La Paz), Calle del Arzobispo Morcillo 4, 28029 Madrid, Spain;
- Biomedical Research Network Centre of Epidemiology and Public Health (CIBERESP), Carlos III Health Institute, 28029 Madrid, Spain
- IMDEA-Food Institute, CEI UAM+CSIC, 28049 Madrid, Spain
| | - Stefanos N. Kales
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; (C.C.); (S.N.K.)
- Department of Occupational Medicine, Cambridge Health Alliance, Harvard Medical School, Cambridge, MA 02145, USA
| |
Collapse
|
21
|
Christensen JJ, Ulven SM, Thoresen M, Westerman K, Holven KB, Andersen LF. Associations between dietary patterns and gene expression pattern in peripheral blood mononuclear cells: A cross-sectional study. Nutr Metab Cardiovasc Dis 2020; 30:2111-2122. [PMID: 32807640 DOI: 10.1016/j.numecd.2020.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/25/2020] [Accepted: 06/18/2020] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Diet may alter gene expression in immune cells involved in atherosclerotic cardiovascular disease susceptibility. However, we still lack a robust understanding of the association between diet and immune cell-related gene expression in humans. Therefore, we examined associations between dietary patterns (DPs) and gene expression profiles in peripheral blood mononuclear cells (PBMCs) in a population of healthy, Norwegian adults (n = 130 women and 105 men). METHODS AND RESULTS We used factor analysis to define a posteriori DPs from food frequency questionnaire-based dietary assessment data. In addition, we derived interpretable features from microarray-based gene expression data (13 967 transcripts) using two algorithms: CIBERSORT for estimation of cell subtype proportions, and weighted gene co-expression network analysis (WGCNA) for cluster discovery. Finally, we associated DPs with either CIBERSORT-predicted PBMC leukocyte distribution or WGCNA gene clusters using linear regression models. We detected three DPs that broadly reflected Western, Vegetarian, and Low carbohydrate diets. CIBERSORT-predicted percentage of monocytes associated negatively with the Vegetarian DP. For women, the Vegetarian DP associated with a large gene cluster consisting of 600 genes mainly involved in regulation of DNA transcription, whereas for men, the Western DP inversely associated with a smaller cluster of 36 genes mainly involved in regulation of metabolic and inflammatory processes. A subsequent protein-protein interaction network analysis suggested that genes within these clusters might physically interact in biological networks. CONCLUSIONS Although the present findings are exploratory, our analysis pipeline serves as a useful framework for studying the association between diet and gene expression.
Collapse
Affiliation(s)
- Jacob J Christensen
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway.
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Magne Thoresen
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Kenneth Westerman
- Clinical and Translation Epidemiology Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kirsten B Holven
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Forskningsveien 2B, 0373 Oslo, Norway; Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| | - Lene F Andersen
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Sognsvannsveien 9, 0372 Oslo, Norway
| |
Collapse
|
22
|
Rundblad A, Holven KB, Øyri LKL, Hansson P, Ivan IH, Gjevestad GO, Thoresen M, Ulven SM. Intake of Fermented Dairy Products Induces a Less Pro-Inflammatory Postprandial Peripheral Blood Mononuclear Cell Gene Expression Response than Non-Fermented Dairy Products: A Randomized Controlled Cross-Over Trial. Mol Nutr Food Res 2020; 64:e2000319. [PMID: 32844586 DOI: 10.1002/mnfr.202000319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SCOPE It is aimed to investigate how intake of high-fat meals composed of different dairy products with a similar fat content affects postprandial peripheral blood mononuclear cell (PBMC) expression of inflammation-related genes, as well as circulating inflammatory markers and metabolites. METHODS AND RESULTS Healthy subjects (n = 47) consume four different high-fat meals composed of either butter, cheese, whipped cream, or sour cream in a randomized controlled cross-over study. Fasting and postprandial PBMC gene expression, plasma metabolites, and circulating inflammatory markers are measured. Using a linear mixed model, it is found that expression of genes related to lymphocyte activation, cytokine signaling, chemokine signaling, and cell adhesion is differentially altered between the four meals. In general, intake of the fermented products cheese and sour cream reduces, while intake of the non-fermented products butter and whipped cream increases, expression of these genes. Plasma amino acid concentrations increase after intake of cheese compared to the other meals, and the amino acid changes correlate with several of the differentially altered genes. CONCLUSION Intake of fermented dairy products, especially cheese, induces a less inflammatory postprandial PBMC gene expression response than non-fermented dairy products. These findings may partly explain inconsistent findings in studies on health effects of dairy products.
Collapse
Affiliation(s)
- Amanda Rundblad
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Boks 1072 Blindern, Oslo, 0316, Norway
| | - Kirsten B Holven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Boks 1072 Blindern, Oslo, 0316, Norway.,Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Postboks 4950 Nydalen, Oslo, 0424, Norway
| | - Linn K L Øyri
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Boks 1072 Blindern, Oslo, 0316, Norway
| | - Patrik Hansson
- Department of Clinical Medicine, Faculty of Health Sciences, UiT The Arctic University of Norway, Postboks 6050 Langnes, Tromsø, 9037, Norway
| | - Ingvild H Ivan
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Boks 1072 Blindern, Oslo, 0316, Norway
| | | | - Magne Thoresen
- Oslo Center for Biostatistics and Epidemiology, Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Boks 1072 Blindern, Oslo, 0316, Norway
| | - Stine M Ulven
- Department of Nutrition, Institute of Basic Medical Sciences, University of Oslo, Boks 1072 Blindern, Oslo, 0316, Norway
| |
Collapse
|
23
|
Tindall AM, Kris-Etherton PM, Petersen KS. Replacing Saturated Fats with Unsaturated Fats from Walnuts or Vegetable Oils Lowers Atherogenic Lipoprotein Classes Without Increasing Lipoprotein(a). J Nutr 2020; 150:818-825. [PMID: 31909809 PMCID: PMC7138686 DOI: 10.1093/jn/nxz313] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 10/01/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Walnuts have established lipid-/lipoprotein-lowering properties; however, their effect on lipoprotein subclasses has not been investigated. Furthermore, the mechanisms by which walnuts improve lipid/lipoprotein concentrations are incompletely understood. OBJECTIVES We aimed to examine, as exploratory outcomes of this trial, the effect of replacing SFAs with unsaturated fats from walnuts or vegetable oils on lipoprotein subclasses, cholesterol efflux, and proprotein convertase subtilisin/kexin type 9 (PCSK9). METHODS A randomized, crossover, controlled-feeding study was conducted in individuals at risk of cardiovascular disease (CVD) (n = 34; 62% men; mean ± SD age 44 ± 10 y; BMI: 30.1 ± 4.9 kg/m2). After a 2-wk run-in diet (12% SFAs, 7% PUFAs, 12% MUFAs), subjects consumed the following diets, in randomized order, for 6 wk: 1) walnut diet (WD) [57-99 g/d walnuts, 7% SFAs, 16% PUFAs [2.7% α-linolenic acid (ALA)], 9% MUFAs]; 2) walnut fatty acid-matched diet [7% SFAs, 16% PUFAs (2.6% ALA), 9% MUFAs]; and 3) oleic acid replaces ALA diet (ORAD) [7% SFAs, 14% PUFAs (0.4% ALA); 12% MUFAs] (all percentages listed are of total kilocalories ). Serum collected after the run-in (baseline) and each diet period was analyzed for lipoprotein classes and subclasses (vertical auto profile), cholesterol efflux, and PCSK9. Linear mixed models were used for data analysis. RESULTS Compared with the ORAD, total cholesterol (mean ± SEM -8.9± 2.3 mg/dL; -5.1%; P < 0.001), non-HDL cholesterol (-7.4 ± 2.0 mg/dL; -5.4%; P = 0.001), and LDL cholesterol (-6.9 ± 1.9 mg/dL; -6.5%; P = 0.001) were lower after the WD; no other pairwise differences existed. There were no between-diet differences for HDL-cholesterol or LDL-cholesterol subclasses. Lipoprotein(a) [Lp(a)], cholesterol efflux, and PCSK9 were unchanged after the diets. CONCLUSIONS In individuals at risk of CVD, replacement of SFAs with unsaturated fats from walnuts or vegetable oils improved lipid/lipoprotein classes, including LDL-cholesterol, non-HDL cholesterol, and total cholesterol, without an increase in Lp(a). These improvements were not explained by changes in cholesterol efflux capacity or PCSK9. This trial was registered at clinicaltrials.gov as NCT01235832.
Collapse
Affiliation(s)
- Alyssa M Tindall
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Penny M Kris-Etherton
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kristina S Petersen
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, PA, USA,Address correspondence to KSP (e-mail: )
| |
Collapse
|
24
|
Venter C, Eyerich S, Sarin T, Klatt KC. Nutrition and the Immune System: A Complicated Tango. Nutrients 2020; 12:E818. [PMID: 32204518 PMCID: PMC7146186 DOI: 10.3390/nu12030818] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/09/2020] [Accepted: 03/13/2020] [Indexed: 02/07/2023] Open
Abstract
Enthusiasm exists for the potential of diet to impact the immune system, prevent disease and its therapeutic potential. Herein, we describe the challenge to nutrition scientists in defining this relationship through case studies of diets and nutrients in the context of allergic and autoimmune diseases. Moderate-quality evidence exists from both human intervention and observational studies to suggest that diet and individual nutrients can influence systemic markers of immune function and inflammation; numerous challenges exist for demonstrating the impact of defined diets and nutrient interventions on clearly influencing immune-mediated-clinical disease endpoints. A growing body of evidence suggests that further consideration of dietary patterns, immune system and gut microbiome composition and function, and subsequent epigenetic modifications are needed to improve our understanding of diet-immune system interactions.
Collapse
Affiliation(s)
- Carina Venter
- Section of Allergy & Immunology, School of Medicine, University of Colorado Denver, Children’s Hospital Colorado, Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA;
| | - Stefanie Eyerich
- Center of Allergy and Environment (ZAUM), Technical University and Helmholtz Center Munich, Biedersteinerstrass 29, 80802 Munich, Germany;
| | - Tara Sarin
- Section of Allergy & Immunology, School of Medicine, University of Colorado Denver, Children’s Hospital Colorado, Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO 80045, USA;
| | - Kevin C. Klatt
- USDA/ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
25
|
Ulven SM, Holven KB. Metabolomic and gene expression analysis to study the effects of dietary saturated and polyunsaturated fats. Curr Opin Lipidol 2020; 31:15-19. [PMID: 31789669 DOI: 10.1097/mol.0000000000000651] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
PURPOSE OF REVIEW Give an update on recent dietary intervention studies that have used peripheral blood mononuclear cell gene expression analysis and/or metabolic profiling to understand how intake of polyunsaturated and saturated fat affects and biological pathways linked to cardiovascular disease. RECENT FINDINGS Several studies showed that intake of fish oil and vegetable oil, high in omega-3 fatty acids, reduced expression level of genes involved in inflammation. One intervention study showed that gene transcripts encoding genes involved inflammation and lipid metabolism increased after intake of polyunsaturated fat (mainly omega-6 fatty acids) compared to saturated fat. Additionally, using targeted metabolomics, the concentrations of atherogenic lipoprotein particles and several metabolites including palmitoylcarnitine, myristoylcarnitine, and kynurenine were reduced after intake of polyunsaturated fat compared to saturated fat, whereas acetate and acetoacetate were increased. The use of targeted metabolomics showed that overfeeding with polyunsaturated fat reduced the serum concentration of ceramides, dihydroceramides, glucosylceramides, and lactosylceramides, whereas overfeeding with saturated fat increased serum concentration of these metabolites. SUMMARY The use of gene expression profiling and metabolomics are promising tools to identify possible new biomarkers linking fat quality to cardiovascular disease risk.
Collapse
Affiliation(s)
- Stine M Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo
| | - Kirsten B Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo
- Norwegian National Advisory Unit on Familial Hypercholesterolemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
26
|
Ulven SM, Holven KB, Rundblad A, Myhrstad MCW, Leder L, Dahlman I, de Mello VD, Schwab U, Carlberg C, Pihlajamäki J, Hermansen K, Dragsted LO, Gunnarsdottir I, Cloetens L, Åkesson B, Rosqvist F, Hukkanen J, Herzig KH, Savolainen MJ, Risérus U, Thorsdottir I, Poutanen KS, Arner P, Uusitupa M, Kolehmainen M. An Isocaloric Nordic Diet Modulates RELA and TNFRSF1A Gene Expression in Peripheral Blood Mononuclear Cells in Individuals with Metabolic Syndrome-A SYSDIET Sub-Study. Nutrients 2019; 11:nu11122932. [PMID: 31816875 PMCID: PMC6950764 DOI: 10.3390/nu11122932] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 01/22/2023] Open
Abstract
A healthy dietary pattern is associated with a lower risk of metabolic syndrome (MetS) and reduced inflammation. To explore this at the molecular level, we investigated the effect of a Nordic diet (ND) on changes in the gene expression profiles of inflammatory and lipid-related genes in peripheral blood mononuclear cells (PBMCs) of individuals with MetS. We hypothesized that the intake of an ND compared to a control diet (CD) would alter the expression of inflammatory genes and genes involved in lipid metabolism. The individuals with MetS underwent an 18/24-week randomized intervention to compare a ND with a CD. Eighty-eight participants (66% women) were included in this sub-study of the larger SYSDIET study. Fasting PBMCs were collected before and after the intervention and changes in gene expression levels were measured using TaqMan Array Micro Fluidic Cards. Forty-eight pre-determined inflammatory and lipid related gene transcripts were analyzed. The expression level of the gene tumor necrosis factor (TNF) receptor superfamily member 1A (TNFRSF1A) was down-regulated (p = 0.004), whereas the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) subunit, RELAproto-oncogene, was up-regulated (p = 0.016) in the ND group compared to the CD group. In conclusion, intake of an ND in individuals with the MetS may affect immune function.
Collapse
Affiliation(s)
- Stine M. Ulven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (K.B.H.); (A.R.)
- Correspondence: ; Tel.: +47-22840208
| | - Kirsten B. Holven
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (K.B.H.); (A.R.)
- National Advisory Unit for Familial Hypercholesterlemia, Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, 0424 Oslo, Norway
| | - Amanda Rundblad
- Department of Nutrition, Institute for Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway; (K.B.H.); (A.R.)
| | - Mari C. W. Myhrstad
- Department of Nursing and Health Promotion, Faculty of Health Sciences, OsloMet—Oslo Metropolitan University, 0130 Oslo, Norway;
| | - Lena Leder
- Mills AS, Sofienberggt. 19, 0558 Oslo, Norway;
| | - Ingrid Dahlman
- Department of Medicine (H7), Karolinska Institute, 17176 Stockholm, Sweden; (I.D.); (P.A.)
| | - Vanessa D. de Mello
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; (V.D.d.M.); (U.S.); (J.P.); (K.S.P.); (M.U.); (M.K.)
| | - Ursula Schwab
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; (V.D.d.M.); (U.S.); (J.P.); (K.S.P.); (M.U.); (M.K.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Carsten Carlberg
- Institute of Biomedicine, University of Eastern Finland, 70211 Kuopio, Finland;
| | - Jussi Pihlajamäki
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; (V.D.d.M.); (U.S.); (J.P.); (K.S.P.); (M.U.); (M.K.)
- Department of Medicine, Endocrinology and Clinical Nutrition, Kuopio University Hospital, 70029 Kuopio, Finland
| | - Kjeld Hermansen
- Department of Endocrinology and Internal Medicine, Department of Clinical Medicine, Aarhus University Hospital, Aarhus University, 8200 Aarhus, Denmark;
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Ingibjörg Gunnarsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali—The National University Hospital of Iceland, 101 Reykjavík, Iceland; (I.G.); (I.T.)
| | - Lieselotte Cloetens
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (L.C.); (B.Å.)
| | - Björn Åkesson
- Biomedical Nutrition, Pure and Applied Biochemistry, Lund University, 221 00 Lund, Sweden; (L.C.); (B.Å.)
- Department of Clinical Nutrition, Skåne University Hospital, 221 00 Lund, Sweden
| | - Fredrik Rosqvist
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 751 22 Uppsala, Sweden; (F.R.); (U.R.)
| | - Janne Hukkanen
- Institute of Clinical Medicine, Department of Internal Medicine and Biocenter Oulu, University of Oulu, Medical Research Center, Oulu University Hospital, 90220 Oulu, Finland; (J.H.); (M.J.S.)
| | - Karl-Heinz Herzig
- Institute of Biomedicine, Biocenter of Oulu, Medical Research Center, Faculty of Medicine, University of Oulu, and Oulu University Hospital, 90220 Oulu, Finland;
- Department of Gastroenterology and Metabolism, Poznan University of Medical Sciences, 60572 Poznan, Poland
| | - Markku J Savolainen
- Institute of Clinical Medicine, Department of Internal Medicine and Biocenter Oulu, University of Oulu, Medical Research Center, Oulu University Hospital, 90220 Oulu, Finland; (J.H.); (M.J.S.)
| | - Ulf Risérus
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, 751 22 Uppsala, Sweden; (F.R.); (U.R.)
| | - Inga Thorsdottir
- Unit for Nutrition Research, University of Iceland and Landspitali—The National University Hospital of Iceland, 101 Reykjavík, Iceland; (I.G.); (I.T.)
| | - Kaisa S Poutanen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; (V.D.d.M.); (U.S.); (J.P.); (K.S.P.); (M.U.); (M.K.)
- VTT Technical Research Centre of Finland, 021100 Espoo, Finland
| | - Peter Arner
- Department of Medicine (H7), Karolinska Institute, 17176 Stockholm, Sweden; (I.D.); (P.A.)
| | - Matti Uusitupa
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; (V.D.d.M.); (U.S.); (J.P.); (K.S.P.); (M.U.); (M.K.)
| | - Marjukka Kolehmainen
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; (V.D.d.M.); (U.S.); (J.P.); (K.S.P.); (M.U.); (M.K.)
| |
Collapse
|
27
|
Postprandial changes in gene expression of cholesterol influx and efflux mediators after intake of SFA compared with n-6 PUFA in subjects with and without familial hypercholesterolaemia: secondary outcomes of a randomised controlled trial. J Nutr Sci 2019; 8:e27. [PMID: 31448116 PMCID: PMC6692810 DOI: 10.1017/jns.2019.25] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 07/04/2019] [Accepted: 07/09/2019] [Indexed: 12/24/2022] Open
Abstract
The long-term cholesterol-lowering effect of replacing intake of SFA with PUFA is well established, but has not been fully explained mechanistically. We examined the postprandial response of meals with different fat quality on expression of lipid genes in peripheral blood mononuclear cells (PBMC) in subjects with and without familial hypercholesterolaemia (FH). Thirteen subjects with FH (who had discontinued lipid-lowering treatment ≥4 weeks prior to both test days) and fourteen normolipidaemic controls were included in a randomised controlled double-blind crossover study with two meals, each with 60 g of fat either mainly SFA (about 40% energy) or n-6 PUFA (about 40% energy). PBMC were isolated in fasting, and 4 and 6 h postprandial blood samples. Expression of thirty-three lipid genes was analysed by reverse transcription quantitative PCR. A linear mixed model was used to assess postprandial effects between meals and groups. There was a significant interaction between meal and group for MSR1 (P = 0·03), where intake of SFA compared with n-6 PUFA induced a larger reduction in gene expression in controls only (P = 0·01). Intake of SFA compared with n-6 PUFA induced larger reductions in gene expression levels of LDLR and FADS1/2, smaller increases of INSIG1 and FASN, and larger increases of ABCA1 and ABCG1 (P = 0·01 for all, no group interaction). Intake of SFA compared with n-6 PUFA induced changes in gene expression of cholesterol influx and efflux mediators in PBMC including lower LDLR and higher ABCA1/G1, potentially explaining the long-term cholesterol-raising effect of a high SFA intake.
Collapse
|