1
|
Boks M, Lilja M, Lindam A, Widerström M, Persson A, Karling P, Sjöström M. Long-term symptoms in children after a Cryptosporidium hominis outbreak in Sweden: a 10-year follow-up. Parasitol Res 2025; 124:13. [PMID: 39862254 PMCID: PMC11762772 DOI: 10.1007/s00436-025-08455-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
In 2010, a Cryptosporidium hominis outbreak resulted in 27,000 clinical cryptosporidiosis cases (45% of the population) in Östersund, Sweden. Long-term abdominal and joint symptoms are common following cryptosporidiosis in adults, and it can affect the development of children in low-income countries. We investigated the potential consequences for children in a high-income setting. In 2011, we prospectively surveyed 600 randomly selected children aged 0-5 years from Östersund. Cases were defined as respondents reporting new episodes of diarrhoea during the outbreak. After 10 years, respondents received a follow-up questionnaire about long-term symptoms (n = 423). We used X2 and Mann-Whitney U tests to assess between-group differences in demographics and the mean number of symptoms. Logistic regressions adjusted for sex, age, and prior issues with loose stools were used to examine associations between case status and symptoms reported at follow-up. We retrieved data on healthcare visits from patient records. In total, 121 cases and 174 non-cases responded to the follow-up questionnaire (69.7%). Cases reported 1.74 (median 1.00, range 0-14) symptoms and non-cases 1.37 (median 0.00, range 0-11) symptoms (p = 0.029). Cases were more likely to report joint symptoms (aOR 4.0, CI 1.3-12.0) and fatigue (aOR 1.9, CI 1.1-3.4), but numbers were generally low. We found no between-group differences in abdominal symptoms, healthcare utilization, or disease diagnoses. Children aged 0-5 years from high-income countries may experience long-term symptoms after cryptosporidiosis, but may not be affected to the same extent as adults or their peers living in low-income countries.
Collapse
Affiliation(s)
- Marije Boks
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Mikael Lilja
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development-Östersund, Umeå University, Umeå, Sweden
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development-Östersund, Umeå University, Umeå, Sweden
| | | | - Angelica Persson
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Malin Sjöström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
2
|
Ali M, Ji Y, Xu C, Hina Q, Javed U, Li K. Food and Waterborne Cryptosporidiosis from a One Health Perspective: A Comprehensive Review. Animals (Basel) 2024; 14:3287. [PMID: 39595339 PMCID: PMC11591251 DOI: 10.3390/ani14223287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/07/2024] [Accepted: 11/13/2024] [Indexed: 11/28/2024] Open
Abstract
A sharp rise in the global population and improved lifestyles has led to questions about the quality of both food and water. Among protozoan parasites, Cryptosporidium is of great importance in this regard. Hence, Cryptosporidium's associated risk factors, its unique characteristics compared to other protozoan parasites, its zoonotic transmission, and associated economic losses in the public health and livestock sectors need to be focused on from a One Health perspective, including collaboration by experts from all three sectors. Cryptosporidium, being the fifth largest food threat, and the second largest cause of mortality in children under five years of age, is of great significance. The contamination of vegetables, fresh fruits, juices, unpasteurized raw milk, uncooked meat, and fish by Cryptosporidium oocysts occurs through infected food handlers, sewage-based contamination, agricultural effluents, infected animal manure being used as biofertilizer, etc., leading to severe foodborne outbreaks. The only Food and Drug Administration (FDA)-approved drug, Nitazoxanide (NTZ), provides inconsistent results in all groups of patients, and currently, there is no vaccine against it. The prime concerns of this review are to provide a deep insight into the Cryptosporidium's global burden, associated water- and foodborne outbreaks, and some future perspectives in an attempt to effectively manage this protozoal disease. A thorough literature search was performed to organize the most relevant, latest, and quantified data, justifying the title. The estimation of its true burden, strategies to break the transmission pathways and life cycle of Cryptosporidium, and the search for vaccine targets through genome editing technology represent some future research perspectives.
Collapse
Affiliation(s)
- Munwar Ali
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaru Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chang Xu
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Qazal Hina
- Department of Animal Nutrition, University of Veterinary and Animal Sciences, Lahore 54000, Pakistan
| | - Usama Javed
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (M.A.)
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Grout L, Hales S, Baker MG, French N, Wilson N. Severe weather events and cryptosporidiosis in Aotearoa New Zealand: A case series of space-time clusters. Epidemiol Infect 2024; 152:e64. [PMID: 38616329 PMCID: PMC11062783 DOI: 10.1017/s095026882400058x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/18/2024] [Accepted: 04/02/2024] [Indexed: 04/16/2024] Open
Abstract
Occurrence of cryptosporidiosis has been associated with weather conditions in many settings internationally. We explored statistical clusters of human cryptosporidiosis and their relationship with severe weather events in New Zealand (NZ). Notified cases of cryptosporidiosis from 1997 to 2015 were obtained from the national surveillance system. Retrospective space-time permutation was used to identify statistical clusters. Cluster data were compared to severe weather events in a national database. SaTScan analysis detected 38 statistically significant cryptosporidiosis clusters. Around a third (34.2%, 13/38) of these clusters showed temporal and spatial alignment with severe weather events. Of these, nearly half (46.2%, 6/13) occurred in the spring. Only five (38%, 5/13) of these clusters corresponded to a previously reported cryptosporidiosis outbreak. This study provides additional evidence that severe weather events may contribute to the development of some cryptosporidiosis clusters. Further research on this association is needed as rainfall intensity is projected to rise in NZ due to climate change. The findings also provide further arguments for upgrading the quality of drinking water sources to minimize contamination with pathogens from runoff from livestock agriculture.
Collapse
Affiliation(s)
- Leah Grout
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Simon Hales
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Michael G. Baker
- Department of Public Health, University of Otago, Wellington, New Zealand
| | - Nigel French
- Tāwharau Ora, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Nick Wilson
- Department of Public Health, University of Otago, Wellington, New Zealand
| |
Collapse
|
4
|
Visentini CB. Estimation and evaluation of the risks of protozoa infections associated to the water from a treatment plant in southern Brazil using the Quantitative Microbiological Risk Assessment Methodology (QMRA). ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:439. [PMID: 38592554 DOI: 10.1007/s10661-024-12577-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 03/23/2024] [Indexed: 04/10/2024]
Abstract
In this study, the Quantitative Microbial Risk Assessment (QMRA) methodology was applied to estimate the annual risk of Giardia and Cryptosporidium infection associated with a water treatment plant in southern Brazil. The efficiency of the treatment plant in removing protozoa and the effectiveness of the Brazilian legislation on microbiological protection were evaluated, emphasizing the relevance of implementing the QMRA in this context. Two distinct approaches were employed to estimate the mechanical removal of protozoa: The definitions provided by the United States Environmental Protection Agency (USEPA), and the model proposed by Neminski and Ongerth. Although the raw water collected had a higher concentration of Giardia cysts than Cryptosporidium oocysts, the estimated values for the annual risk of infection were significantly higher for Cryptosporidium than for Giardia. From a general perspective, the risk values of protozoa infection were either below or very near the limit set by the World Health Organization (WHO). In contrast, all the risk values of Cryptosporidium infection exceeded the threshold established by the USEPA. Ultimately, it was concluded that the implementation of the QMRA methodology should be considered by the Brazilian authorities, as the requirements and guidelines provided by the Brazilian legislation proved to be insufficient to guarantee the microbiological safety of drinking water. In this context, the QMRA application can effectively contribute to the prevention and investigation of outbreaks of waterborne disease.
Collapse
Affiliation(s)
- Claudia Bauer Visentini
- Municipal Department of Water and Sewage (DMAE), St. 24 de Outubro, nº 200, Moinhos de Vento, Porto Alegre, Rio Grande Do Sul, 90510-000, Brazil.
| |
Collapse
|
5
|
Korpe P, Ni Z, Kabir M, Alam M, Ferdous T, Ara R, Munday RM, Haque R, Duggal P. Prospective Cohort Study of Cryptosporidium Infection and Shedding in Infants and Their Households. Clin Infect Dis 2023; 76:2178-2186. [PMID: 36750491 PMCID: PMC10273363 DOI: 10.1093/cid/ciad059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Cryptosporidium spp. are responsible for significant diarrheal morbidity and mortality in under-5 children. There is no vaccine; thus, a focus on prevention is paramount. Prior studies suggest that person-to-person spread may be an important pathway for transmission to young children. Here we describe a longitudinal cohort study of 100 families with infants to determine rates of cryptosporidiosis within households during the coronavirus disease 2019 (COVID-19) pandemic. METHODS Families living in Mirpur, Bangladesh, with 1 infant aged 6-8 months were enrolled and followed with weekly illness survey and stool testing for Cryptosporidium for 8 months. RESULTS From December 2020 to August 2021, 100 families were enrolled. Forty-four percent of index children and 35% of siblings had at least 1 Cryptosporidium infection. Shedding of Cryptosporidium occurred for a mean (standard deviation) of 19 (8.3) days in index infants, 16.1 (11.6) days in children 1-5 years, and 16.2 (12.8) days in adults. A longer duration of Cryptosporidium shedding was associated with growth faltering in infants. There was a spike in Cryptosporidium cases in May 2021, which coincided with a spike in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases in the region. CONCLUSIONS In this intensive, longitudinal study of Cryptosporidium infection in families we found high rates of cryptosporidiosis in infants and children, and prolonged parasite shedding, especially among malnourished children. These data support that transmission within the household is an important route of exposure for young infants and that treatment of nondiarrheal infection to interrupt person-to-person transmission within the home may be essential for preventing cryptosporidiosis in infants.
Collapse
Affiliation(s)
- Poonum Korpe
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Zhanmo Ni
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Mamun Kabir
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Masud Alam
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Tahsin Ferdous
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rifat Ara
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Rebecca M Munday
- Department of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Rashidul Haque
- Emerging Infections and Parasitology Laboratory, International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Boks M, Lilja M, Widerström M, Karling P, Lindam A, Sjöström M. Persisting symptoms after Cryptosporidium hominis outbreak: a 10-year follow-up from Östersund, Sweden. Parasitol Res 2023:10.1007/s00436-023-07866-8. [PMID: 37199767 DOI: 10.1007/s00436-023-07866-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
In late 2010, an outbreak of Cryptosporidium hominis affected 27,000 inhabitants (45%) of Östersund, Sweden. Previous research shows that abdomen and joint symptoms commonly persist up to 5 years post-infection. It is unknown whether Cryptosporidium is associated with sequelae for a longer duration, how persisting symptoms present over time, and whether sequelae are associated with prolonged infection. In this prospective cohort study, a randomly selected cohort in Östersund was surveyed about cryptosporidiosis symptoms in 2011 (response rate 69.2%). A case was defined as a respondent reporting new diarrhoea episodes during the outbreak. Follow-up questionnaires were sent after 5 and 10 years. Logistic regressions were used to examine associations between case status and symptoms reported after 10 years, with results presented as adjusted odds ratios (aOR) with 95% confidence intervals. Consistency of symptoms and associations with case status and number of days with symptoms during outbreak were analysed using X2 and Mann-Whitney U tests. The response rate after 10 years was 74% (n = 538). Case status was associated with reporting symptoms, with aOR of ~3 for abdominal symptoms and ~2 for joint symptoms. Cases were more likely to report consistent symptoms. Cases with consistent abdominal symptoms at follow-up reported 9.2 days with symptoms during the outbreak (SD 8.1), compared to 6.6 days (SD 6.1) for cases reporting varying or no symptoms (p = 0.003). We conclude that cryptosporidiosis was associated with an up to threefold risk for reporting symptoms 10 years post-infection. Consistent symptoms were associated with prolonged infection.
Collapse
Affiliation(s)
- Marije Boks
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden.
| | - Mikael Lilja
- Unit of Research, Education and Development - Östersund, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | | | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anna Lindam
- Unit of Research, Education and Development - Östersund, Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Malin Sjöström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
7
|
Boks M, Lilja M, Widerström M, Karling P, Lindam A, Eriksson A, Sjöström M. Increased incidence of late-onset inflammatory bowel disease and microscopic colitis after a Cryptosporidium hominis outbreak. Scand J Gastroenterol 2022; 57:1443-1449. [PMID: 35802626 DOI: 10.1080/00365521.2022.2094722] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES In 2010, 27,000 inhabitants (45% of the population) of Östersund, Sweden, contracted clinical cryptosporidiosis after drinking water contaminated with Cryptosporidium hominis. After the outbreak, local physicians perceived that the incidence of inflammatory bowel disease (IBD), including ulcerative colitis (UC), Crohn's disease (CD), and IBD-unclassified, and microscopic colitis (MC) increased. This study assessed whether this perception was correct. MATERIALS AND METHODS This observational study included adult patients (≥18 years old) from the local health care region who were diagnosed with pathology-confirmed IBD or MC during 2006-2019. We collected and validated the diagnosis, date of diagnosis, age at diagnosis, and sex from the Swedish quality register SWIBREG and electronic patient records. Population data were collected from Statistics Sweden. The incidences for 2006-2010 (pre-outbreak) and 2011-2019 (post-outbreak) were evaluated by negative binomial regression analysis and presented as incidence rate ratios (IRRs). Data were analyzed for IBD, for UC and CD separately, and MC. RESULTS During the study period, we identified 410 patients with new onset IBD and 155 new cases of MC. Overall, we found a trend toward an increased incidence of IBD post-outbreak (IRR 1.39, confidence interval (CI) 0.99-1.94). In individuals ≥40 years old, the post-outbreak incidence significantly increased for IBD (IRR 1.69, CI 1.13-2.51) and CD (IRR 2.23, CI 1.08-4.62). Post-outbreak incidence of MC increased 6-fold in all age groups (IRR 6.43, CI 2.78-14.87). CONCLUSIONS The incidence of late-onset IBD and MC increased after the Cryptosporidium outbreak. Cryptosporidiosis may be an environmental risk factor for IBD and MC.
Collapse
Affiliation(s)
- Marije Boks
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Mikael Lilja
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development - Östersund, Umeå University, Umeå, Sweden
| | | | - Pontus Karling
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| | - Anna Lindam
- Department of Public Health and Clinical Medicine, Unit of Research, Education and Development - Östersund, Umeå University, Umeå, Sweden
| | - Axel Eriksson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden
| | - Malin Sjöström
- Department of Public Health and Clinical Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
8
|
Prospective cohort study of Cryptosporidium infection and shedding in infants and their households. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2022:2022.10.25.22281515. [PMID: 36324811 PMCID: PMC9628208 DOI: 10.1101/2022.10.25.22281515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Background Cryptosporidium spp are responsible for significant diarrheal morbidity and mortality in under-five children. There is no vaccine, thus a focus on prevention is paramount. Prior studies suggest that person-to-person spread may be an important pathway for transmission to young children. Here we describe a longitudinal cohort study of 100 families with infants to determine rates of cryptosporidiosis within households during the COVID-19 pandemic. Methods Families living in Mirpur, Bangladesh with one infant age 6-8 months were enrolled and followed with weekly illness survey and stool testing for Cryptosporidium for 8 months. Results From December 2020 to August 2021, 100 families were enrolled. Forty-four percent of index children, and 35% of siblings had at least one Cryptosporidium infection. Shedding of Cryptosporidium occurred for a mean of 19 days (sd 8.3 days) in index infants, 16.1 days (sd 11.6) in children 1-5 years, and 16.2 days (sd 12.8) in adults. A longer duration of Cryptosporidium shedding was associated with growth faltering in infants. There was a spike in Cryptosporidium cases in May 2021, which coincided with a spike in SARS-CoV-2 cases in the region. Conclusion In this intensive, longitudinal study of Cryptosporidium infection in families we found high rates of cryptosporidiosis in infants and children, and prolonged parasite shedding, especially among malnourished children. These data support that transmission within the household is an important route of exposure for young infants, and that treatment of non-diarrheal infection to interrupt person-to-person transmission within the home may be essential for preventing cryptosporidiosis in infants. summary Cryptosporidiosis is a leading cause of morbidity and mortality among children. We followed 100 families with infants living in Bangladesh and studied the incidence of Cryptosporidium infection. We found prolonged Cryptosporidium shedding in stool was common among infants and adults.
Collapse
|
9
|
Ramírez-Flores CJ, Tibabuzo Perdomo AM, Gallego-López GM, Knoll LJ. Transcending Dimensions in Apicomplexan Research: from Two-Dimensional to Three-Dimensional In Vitro Cultures. Microbiol Mol Biol Rev 2022; 86:e0002522. [PMID: 35412359 PMCID: PMC9199416 DOI: 10.1128/mmbr.00025-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Parasites belonging to the Apicomplexa phylum are among the most successful pathogens known in nature. They can infect a wide range of hosts, often remain undetected by the immune system, and cause acute and chronic illness. In this phylum, we can find parasites of human and veterinary health relevance, such as Toxoplasma, Plasmodium, Cryptosporidium, and Eimeria. There are still many unknowns about the biology of these pathogens due to the ethical and practical issues of performing research in their natural hosts. Animal models are often difficult or nonexistent, and as a result, there are apicomplexan life cycle stages that have not been studied. One recent alternative has been the use of three-dimensional (3D) systems such as organoids, 3D scaffolds with different matrices, microfluidic devices, organs-on-a-chip, and other tissue culture models. These 3D systems have facilitated and expanded the research of apicomplexans, allowing us to explore life stages that were previously out of reach and experimental procedures that were practically impossible to perform in animal models. Human- and animal-derived 3D systems can be obtained from different organs, allowing us to model host-pathogen interactions for diagnostic methods and vaccine development, drug testing, exploratory biology, and other applications. In this review, we summarize the most recent advances in the use of 3D systems applied to apicomplexans. We show the wide array of strategies that have been successfully used so far and apply them to explore other organisms that have been less studied.
Collapse
Affiliation(s)
- Carlos J. Ramírez-Flores
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Andrés M. Tibabuzo Perdomo
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Gina M. Gallego-López
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Laura J. Knoll
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
10
|
Costa D, Razakandrainibe R, Basmaciyan L, Raibaut J, Delaunay P, Morio F, Gargala G, Villier V, Mouhajir A, Levy B, Rieder C, Larreche S, Lesthelle S, Coron N, Menu E, Demar M, de Santi VP, Blanc V, Valot S, Dalle F, Favennec L. A summary of cryptosporidiosis outbreaks reported in France and overseas departments, 2017-2020. Food Waterborne Parasitol 2022; 27:e00160. [PMID: 35586547 PMCID: PMC9108463 DOI: 10.1016/j.fawpar.2022.e00160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 11/03/2022] Open
Abstract
Cryptosporidium is a known foodborne pathogen, ranked fifth out of 24 among foodborne parasites in terms of importance and a cause of many cryptosporidiosis outbreaks worldwide. In France, very few outbreaks were reported before 2017, and data recently obtained by the Expert Laboratory of the Cryptosporidiosis National Reference Center (CNR-LE-Cryptosporidiosis) have shown that outbreaks are in fact common and frequently underreported. In this work, we aim to report the characteristics of outbreaks detected in France during the period 2017-2020 and present a summary of investigations carried out by the CNR-LE-Cryptosporidiosis. During the study period, there were eleven cryptosporidiosis outbreaks, including three with no identified origin. Among the eight identified outbreaks: six were due to water contamination (five tap water and one recreational water), one was due to direct contact with infected calves, and one was due to consumption of contaminated curd cheese. Among these outbreaks, five of them exceeded one hundred cases. Recent results obtained by the CNR-LE-Cryptosporidiosis revealed the multiannual occurrence of Cryptosporidium outbreaks in France. Waterborne outbreaks were more frequently detected, while foodborne outbreaks which are more difficult to detect were likely underreported.
Collapse
Affiliation(s)
- Damien Costa
- Department of Parasitology/Mycology, University Hospital of Rouen, 76000 Rouen, France
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| | - Romy Razakandrainibe
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| | - Louise Basmaciyan
- CNR-LE Cryptosporidiosis Collaborating Laboratory, Santé Publique France, 21000 Dijon, France
| | - Jérôme Raibaut
- Regional Health Agency PACA, Santé Publique France, 13002 Marseille, France
| | - Pascal Delaunay
- Parasitology and Mycology Department, Université Côte d'Azur, CHU Nice, 06000 Nice, France
| | - Florent Morio
- Parasitology-Mycology Laboratory, Institut de Biologie, CHU de Nantes, 44093 Nantes, France
| | - Gilles Gargala
- Department of Parasitology/Mycology, University Hospital of Rouen, 76000 Rouen, France
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| | - Venceslas Villier
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
| | | | - Bernard Levy
- INSERM: Institut National de la Santé et de la Recherche Médicale, 75015 Paris, France
| | | | | | | | - Noémie Coron
- Laboratoire Bioesterel, 06210 Mandelieu La Napoule, France
| | - Estelle Menu
- Parasitology-Mycology Laboratory, CH Andrée-Rosemon, 97300 Cayenne, French Guiana
| | - Magalie Demar
- Department of Biology, Immunology and Parasitology, Cayenne Hospital Center, 97300 Cayenne, French Guiana
| | - Vincent Pommier de Santi
- French Military Health Service, French Armed Forces Centre for Epidemiology and Public Health (CESPA), 13002 Marseille, France
| | | | - Stéphane Valot
- CNR-LE Cryptosporidiosis Collaborating Laboratory, Santé Publique France, 21000 Dijon, France
| | - Frédéric Dalle
- CNR-LE Cryptosporidiosis Collaborating Laboratory, Santé Publique France, 21000 Dijon, France
| | - Loic Favennec
- Department of Parasitology/Mycology, University Hospital of Rouen, 76000 Rouen, France
- EA ESCAPE 7510, University of Medicine Pharmacy Rouen, 76000 Rouen, France
- CNR-LE Cryptosporidiosis, Santé Publique France, 76000 Rouen, France
| |
Collapse
|
11
|
López Ureña NM, Chaudhry U, Calero Bernal R, Cano Alsua S, Messina D, Evangelista F, Betson M, Lalle M, Jokelainen P, Ortega Mora LM, Álvarez García G. Contamination of Soil, Water, Fresh Produce, and Bivalve Mollusks with Toxoplasma gondii Oocysts: A Systematic Review. Microorganisms 2022; 10:517. [PMID: 35336093 PMCID: PMC8954419 DOI: 10.3390/microorganisms10030517] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Toxoplasma gondii is a major foodborne pathogen capable of infecting all warm-blooded animals, including humans. Although oocyst-associated toxoplasmosis outbreaks have been documented, the relevance of the environmental transmission route remains poorly investigated. Thus, we carried out an extensive systematic review on T. gondii oocyst contamination of soil, water, fresh produce, and mollusk bivalves, following the PRISMA guidelines. Studies published up to the end of 2020 were searched for in public databases and screened. The reference sections of the selected articles were examined to identify additional studies. A total of 102 out of 3201 articles were selected: 34 articles focused on soil, 40 focused on water, 23 focused on fresh produce (vegetables/fruits), and 21 focused on bivalve mollusks. Toxoplasma gondii oocysts were found in all matrices worldwide, with detection rates ranging from 0.09% (1/1109) to 100% (8/8) using bioassay or PCR-based detection methods. There was a high heterogeneity (I2 = 98.9%), which was influenced by both the sampling strategy (e.g., sampling site and sample type, sample composition, sample origin, season, number of samples, cat presence) and methodology (recovery and detection methods). Harmonized approaches are needed for the detection of T. gondii in different environmental matrices in order to obtain robust and comparable results.
Collapse
Affiliation(s)
- Nadia María López Ureña
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| | - Umer Chaudhry
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
| | - Rafael Calero Bernal
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| | - Santiago Cano Alsua
- Computing Services, Research Support Center, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Davide Messina
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
- Division of Veterinary Clinical Science, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Francisco Evangelista
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
| | - Martha Betson
- Veterinary Epidemiology and Public Health Department, School of Veterinary Medicine, University of Surrey, Guildford GU2 7XH, UK; (U.C.); or (D.M.); (F.E.); (M.B.)
| | - Marco Lalle
- Unit of Foodborne and Neglected Parasitic Diseases, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Roma, Italy;
| | - Pikka Jokelainen
- Department of Bacteria, Parasites and Fungi, Infectious Disease Preparedness, Statens Serum Institute, University of Copenhagen, 2300 Copenhagen, Denmark;
| | - Luis Miguel Ortega Mora
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| | - Gema Álvarez García
- SALUVET Research Group, Animal Health Department, Veterinary Faculty, Complutense University of Madrid, 28040 Madrid, Spain; (N.M.L.U.); (R.C.B.); (L.M.O.M.)
| |
Collapse
|
12
|
Ryan U, Zahedi A, Feng Y, Xiao L. An Update on Zoonotic Cryptosporidium Species and Genotypes in Humans. Animals (Basel) 2021; 11:3307. [PMID: 34828043 PMCID: PMC8614385 DOI: 10.3390/ani11113307] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
The enteric parasite, Cryptosporidium is a major cause of diarrhoeal illness in humans and animals worldwide. No effective therapeutics or vaccines are available and therefore control is dependent on understanding transmission dynamics. The development of molecular detection and typing tools has resulted in the identification of a large number of cryptic species and genotypes and facilitated our understanding of their potential for zoonotic transmission. Of the 44 recognised Cryptosporidium species and >120 genotypes, 19 species, and four genotypes have been reported in humans with C. hominis, C. parvum, C. meleagridis, C. canis and C. felis being the most prevalent. The development of typing tools that are still lacking some zoonotic species and genotypes and more extensive molecular epidemiological studies in countries where the potential for transmission is highest are required to further our understanding of this important zoonotic pathogen. Similarly, whole-genome sequencing (WGS) and amplicon next-generation sequencing (NGS) are important for more accurately tracking transmission and understanding the mechanisms behind host specificity.
Collapse
Affiliation(s)
- Una Ryan
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, WA 6152, Australia;
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.F.); (L.X.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
13
|
Ryan UM, Feng Y, Fayer R, Xiao L. Taxonomy and molecular epidemiology of Cryptosporidium and Giardia - a 50 year perspective (1971-2021). Int J Parasitol 2021; 51:1099-1119. [PMID: 34715087 DOI: 10.1016/j.ijpara.2021.08.007] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022]
Abstract
The protozoan parasites Cryptosporidium and Giardia are significant causes of diarrhoea worldwide and are responsible for numerous waterborne and foodborne outbreaks of diseases. Over the last 50 years, the development of improved detection and typing tools has facilitated the expanding range of named species. Currently at least 44 Cryptosporidium spp. and >120 genotypes, and nine Giardia spp., are recognised. Many of these Cryptosporidium genotypes will likely be described as species in the future. The phylogenetic placement of Cryptosporidium at the genus level is still unclear and further research is required to better understand its evolutionary origins. Zoonotic transmission has long been known to play an important role in the epidemiology of cryptosporidiosis and giardiasis, and the development and application of next generation sequencing tools is providing evidence for this. Comparative whole genome sequencing is also providing key information on the genetic mechanisms for host specificity and human infectivity, and will enable One Health management of these zoonotic parasites in the future.
Collapse
Affiliation(s)
- Una M Ryan
- Harry Butler Institute, Murdoch University, Perth, Western Australia, Australia.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| | - Ronald Fayer
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Avenue, BARC-East, Building 173, Beltsville, MD 20705, USA
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, China
| |
Collapse
|
14
|
O'Leary JK, Sleator RD, Lucey B. Cryptosporidium spp. diagnosis and research in the 21 st century. Food Waterborne Parasitol 2021; 24:e00131. [PMID: 34471706 PMCID: PMC8390533 DOI: 10.1016/j.fawpar.2021.e00131] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/06/2021] [Accepted: 08/17/2021] [Indexed: 01/01/2023] Open
Abstract
The protozoan parasite Cryptosporidium has emerged as a leading cause of diarrhoeal illness worldwide, posing a significant threat to young children and immunocompromised patients. While endemic in the vast majority of developing countries, Cryptosporidium also has the potential to cause waterborne epidemics and large scale outbreaks in both developing and developed nations. Anthroponontic and zoonotic transmission routes are well defined, with the ingestion of faecally contaminated food and water supplies a common source of infection. Microscopy, the current diagnostic mainstay, is considered by many to be suboptimal. This has prompted a shift towards alternative diagnostic techniques in the advent of the molecular era. Molecular methods, particularly PCR, are gaining traction in a diagnostic capacity over microscopy in the diagnosis of cryptosporidiosis, given the laborious and often tedious nature of the latter. Until now, developments in the field of Cryptosporidium detection and research have been somewhat hampered by the intractable nature of this parasite. However, recent advances in the field have taken the tentative first steps towards bringing Cryptosporidium research into the 21st century. Herein, we provide a review of these advances.
Collapse
Affiliation(s)
- Jennifer K. O'Leary
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Roy D. Sleator
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown Campus, Cork, Ireland
| |
Collapse
|
15
|
Boromycin Has Potent Anti- Toxoplasma and Anti- Cryptosporidium Activity. Antimicrob Agents Chemother 2021; 65:AAC.01278-20. [PMID: 33468470 DOI: 10.1128/aac.01278-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 01/05/2021] [Indexed: 02/02/2023] Open
Abstract
Toxoplasma gondii and Cryptosporidium parvum, members of the phylum Apicomplexa, are significant pathogens of both humans and animals worldwide for which new and effective therapeutics are needed. Here, we describe the activity of the antibiotic boromycin against Toxoplasma and Cryptosporidium Boromycin potently inhibited intracellular proliferation of both T. gondii and C. parvum at half-maximal effective concentrations (EC50) of 2.27 nM and 4.99 nM, respectively. Treatment of extracellular T. gondii tachyzoites with 25 nM boromycin for 30 min suppressed 84% of parasite growth, but T. gondii tachyzoite invasion into host cells was not affected by boromycin. Immunofluorescence of boromycin-treated T. gondii showed loss of morphologically intact parasites with randomly distributed surface antigens inside the parasitophorous vacuoles. Boromycin exhibited a high selectivity for the parasites over their host cells. These results suggest that boromycin is a promising new drug candidate for treating toxoplasmosis and cryptosporidiosis.
Collapse
|
16
|
Abstract
Biofilms are increasingly implicated as playing a major role in waterborne cryptosporidiosis. This review aims to synthesize all currently available data on interactions between Cryptosporidium oocysts and biofilms. Initially described following a waterborne outbreak, the integration of Cryptosporidium oocysts in biofilm has been well demonstrated. Biofilms appear important in the dissemination/protection of oocysts in the environment. Consequently, it has been suggested that substrate-associated biofilms should be systematically considered in oocyst water quality assessment. The influence of physicochemical parameters has been studied on oocyst biofilm retention. Biofilm surface roughness, ionic concentration (especially Ca2+), laminar/turbulent flow, shear stress, and electrostatic repulsion forces appear important to consider regarding oocyst release from biofilm. However, data analysis carried out during this review also revealed important gaps in biological interactions within biofilms, offering many perspectives for future work.
Collapse
|
17
|
Carter BL, Chalmers RM, Davies AP. Health sequelae of human cryptosporidiosis in industrialised countries: a systematic review. Parasit Vectors 2020; 13:443. [PMID: 32887663 PMCID: PMC7650228 DOI: 10.1186/s13071-020-04308-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 08/19/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cryptosporidium is a protozoan parasite which is a common cause of gastroenteritis worldwide. In developing countries, it is one of the most important causes of moderate to severe diarrhoea in young children; in industrialised countries it is a cause of outbreaks of gastroenteritis associated with drinking water, swimming pools and other environmental sources and a particular concern in certain immunocompromised patient groups, where it can cause severe disease. However, over recent years, longer-term sequelae of infection have been recognised and a number of studies have been published on this topic. The purpose of this systematic review was to examine the literature in order to better understand the medium- to long-term impact of cryptosporidiosis. METHODS This was a systematic review of studies in PubMed, ProQuest and Web of Science databases, with no limitations on publication year or language. Studies from any country were included in qualitative synthesis, but only those in industrialised countries were included in quantitative analysis. RESULTS Fifteen studies were identified for qualitative analysis which included 3670 Cryptosporidium cases; eight studies conducted in Europe between 2004-2019 were suitable for quantitative analysis, including five case-control studies. The most common reported long-term sequelae were diarrhoea (25%), abdominal pain (25%), nausea (24%), fatigue (24%) and headache (21%). Overall, long-term sequelae were more prevalent following infection with Cryptosporidium hominis, with only weight loss and blood in stool being more prevalent following infection with Cryptosporidium parvum. Analysis of the case-control studies found that individuals were 6 times more likely to report chronic diarrhoea and weight loss up to 28 months after a Cryptosporidium infection than were controls. Long-term abdominal pain, loss of appetite, fatigue, vomiting, joint pain, headache and eye pain were also between 2-3 times more likely following a Cryptosporidium infection. CONCLUSIONS This is the first systematic review of the long-term sequelae of cryptosporidiosis. A better understanding of long-term outcomes of cryptosporidiosis is valuable to inform the expectations of clinicians and their patients, and public health policy-makers regarding the control and prevention of this infection. Systematic review registration PROSPERO Registration number CRD42019141311.
Collapse
Affiliation(s)
- Bethan L Carter
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Rachel M Chalmers
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK.,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty Lane, Swansea, Wales, UK
| | - Angharad P Davies
- Swansea University Medical School, Swansea University, Singleton Park, Swansea, UK. .,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty Lane, Swansea, Wales, UK.
| |
Collapse
|
18
|
Chique C, Hynds PD, Andrade L, Burke L, Morris D, Ryan MP, O'Dwyer J. Cryptosporidium spp. in groundwater supplies intended for human consumption - A descriptive review of global prevalence, risk factors and knowledge gaps. WATER RESEARCH 2020; 176:115726. [PMID: 32247994 DOI: 10.1016/j.watres.2020.115726] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/05/2020] [Accepted: 03/15/2020] [Indexed: 06/11/2023]
Abstract
Cryptosporidiosis is one of the leading causes of diarrhoeal illness and mortality induced by protozoan pathogens worldwide. As a largely waterborne disease, emphasis has been given to the study of Cryptosporidium spp. in surface waters, readily susceptible to pathogenic contamination. Conversely, the status of Cryptosporidium in potable groundwater sources, generally regarded as a pristine and "safe" drinking-water supply owing to (sub)-soil protection, remains largely unknown. As such, this investigation presents the first literature review aimed to ascertain the global prevalence of Cryptosporidium in groundwater supply sources intended for human consumption. Thirty-seven peer-reviewed studies were identified and included in the review. Groundwater sample and supply detection rates (estimated 10-20%) indicate Cryptosporidium is frequently present in domestic groundwater sources, representing a latent health concern for groundwater consumers. Specifically, sample (10.4%) and source (19.1%) detection rates deriving from comprehensive "temporal" investigations are put forward as representative of a contamination 'baseline' for Cryptosporidium in 'domestic' groundwater supplies. Proposed 'baseline' prevalence figures are largely applicable in preventive risk-based catchment and groundwater quality management including the formulation of Quantitative Microbial Risk Assessment (QMRA). Notwithstanding, a large geographical disparity in available investigations and lack of standardized reporting restrict the transferability of research findings. Overall, the mechanisms responsible for Cryptosporidium transport and ingress into groundwater supplies remain ambiguous, representing a critical knowledge gap, and denoting a distinctive lack of integration between groundwater and public-health sub-disciplines among investigations. Key recommendations and guidelines are provided for prospective studies directed at more integrative and multi-disciplinary research.
Collapse
Affiliation(s)
- C Chique
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland
| | - P D Hynds
- Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland; Environmental Sustainability and Health Institute (ESIH), Technological University Dublin, Ireland.
| | - L Andrade
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland
| | - L Burke
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - D Morris
- Antimicrobial Resistance and Microbial Ecology Group, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, Ireland
| | - M P Ryan
- Department of Chemical Sciences, University of Limerick, Limerick, Ireland
| | - J O'Dwyer
- School of Biological, Earth and Environmental Science (BEES), University College Cork, Cork, Ireland; Environmental Research Institute, University College Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences, University College Dublin, Dublin, Ireland.
| |
Collapse
|
19
|
Riebold D, Russow K, Schlegel M, Wollny T, Thiel J, Freise J, Hüppop O, Eccard JA, Plenge-Bönig A, Loebermann M, Ulrich RG, Klammt S, Mettenleiter TC, Reisinger EC. Occurrence of Gastrointestinal Parasites in Small Mammals from Germany. Vector Borne Zoonotic Dis 2019; 20:125-133. [PMID: 31513468 DOI: 10.1089/vbz.2019.2457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
An increase in zoonotic infections in humans in recent years has led to a high level of public interest. However, the extent of infestation of free-living small mammals with pathogens and especially parasites is not well understood. This pilot study was carried out within the framework of the "Rodent-borne pathogens" network to identify zoonotic parasites in small mammals in Germany. From 2008 to 2009, 111 small mammals of 8 rodent and 5 insectivore species were collected. Feces and intestine samples from every mammal were examined microscopically for the presence of intestinal parasites by using Telemann concentration for worm eggs, Kinyoun staining for coccidia, and Heidenhain staining for other protozoa. Adult helminths were additionally stained with carmine acid for species determination. Eleven different helminth species, five coccidians, and three other protozoa species were detected. Simultaneous infection of one host by different helminths was common. Hymenolepis spp. (20.7%) were the most common zoonotic helminths in the investigated hosts. Coccidia, including Eimeria spp. (30.6%), Cryptosporidium spp. (17.1%), and Sarcocystis spp. (17.1%), were present in 40.5% of the feces samples of small mammals. Protozoa, such as Giardia spp. and amoebae, were rarely detected, most likely because of the repeated freeze-thawing of the samples during preparation. The zoonotic pathogens detected in this pilot study may be potentially transmitted to humans by drinking water, smear infection, and airborne transmission.
Collapse
Affiliation(s)
- Diana Riebold
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany.,Host Septomics Research Group, ZIK Septomics, University Jena Medical School, Jena, Germany
| | - Kati Russow
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | - Mathias Schlegel
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Theres Wollny
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany.,Faculty of Natural Sciences, Lausitz University of Applied Sciences, Senftenberg, Germany
| | - Jörg Thiel
- Forstliches Forschungs- und Kompetenzzentrum Gotha, Gotha, Germany
| | - Jona Freise
- Department of Pest Control, Veterinary Task-Force, Lower Saxony State Office for Consumer Protection and Food Safety (LAVES), Wardenburg, Germany
| | - Ommo Hüppop
- Institute of Avian Research "Vogelwarte Helgoland," Wilhelmshaven, Germany
| | - Jana Anja Eccard
- Animal Ecology, Institute for Biochemistry and Biology, University Potsdam, Potsdam, Germany
| | - Anita Plenge-Bönig
- Division of Hygiene and Infectious Diseases, Institute of Hygiene and Environment, Hamburg, Germany
| | - Micha Loebermann
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | - Rainer Günter Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Sebastian Klammt
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| | | | - Emil Christian Reisinger
- Division of Tropical Medicine and Infectious Diseases, Department of Medicine, University of Rostock, Rostock, Germany
| |
Collapse
|
20
|
Carter BL, Stiff RE, Elwin K, Hutchings HA, Mason BW, Davies AP, Chalmers RM. Health sequelae of human cryptosporidiosis—a 12-month prospective follow-up study. Eur J Clin Microbiol Infect Dis 2019; 38:1709-1717. [DOI: 10.1007/s10096-019-03603-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 05/24/2019] [Indexed: 12/17/2022]
|
21
|
McKerr C, Chalmers RM, Vivancos R, O'Brien SJ, Mugarza J, Christley RM. Cross-sectional investigation of household transmission of Cryptosporidium in England and Wales: the epiCrypt study protocol. BMJ Open 2019; 9:e026116. [PMID: 31230003 PMCID: PMC6596955 DOI: 10.1136/bmjopen-2018-026116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 04/08/2019] [Accepted: 05/23/2019] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Infection with the Cryptosporidium parasite causes over 4000 cases of diagnosed illness (cryptosporidiosis) in England and Wales each year. Risk factors are often estimated from outbreak investigations, and in the UK include ingestion of contaminated water and food, farm/animal contact and person-to-person spread in institutions. However, reported outbreaks only represent about 10% of cases and the transmission routes for sporadic disease may not be the same. Contact with other people has been highlighted as a factor in the transmission of Cryptosporidium, but the incidence of sporadic disease has not been sufficiently established, and how frequently this arises from contact with other infected people is not well documented. This project will estimate the amount of secondary spread that occurs in the home and potentially identify asymptomatic infections which might have a role in transmission. Risk factors and characteristics associated with secondary spread will be described including any differences in transmission between Cryptosporidium species. METHODS AND ANALYSIS The study will prospectively identify cryptosporidiosis cases from North West England and Wales over 1 year and invite them and their household to take part. Each household will complete a questionnaire and each household member will be asked to provide a stool sample. Clinical, demographic and home variables will be described, and further analyses undertaken to investigate associations with secondary spread in the home. Cryptosporidium-positive stool samples, identified by immunofluorescence microscopy, will be characterised using molecular methods to describe patterns of transmission. Data collection is expected to take 1 year, beginning in September 2018. ETHICS AND DISSEMINATION The study has been approved by the North West-Liverpool East NHS Research Ethics Committee (Reference: 18/NW/0300) and the Confidentiality and Advisory Group (Reference 18/CAG/0084). Outputs will include scientific conferences and peer-reviewed publications. In addition, a short, lay report of findings will be produced for participants, who can opt to receive this when they take part. TRIAL REGISTRATION NUMBER CPMS ID: 39458.
Collapse
Affiliation(s)
- Caoimhe McKerr
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Neston, UK
| | - Rachel M Chalmers
- Cryptosporidium Reference Unit, Public Health Wales, Swansea, UK
- Swansea University Medical School, Swansea, UK
| | - Roberto Vivancos
- Field Epidemiology Services, Health Protection, Public Health England, Liverpool, UK
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, The University of Liverpool, Liverpool, UK
| | - Sarah J O'Brien
- NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK
- Institute of Psychology, Health and Society, University of Liverpool, Liverpool, UK
| | - Julie Mugarza
- NIHR Clinical Research Network North West Coast, Liverpool, UK
| | - Robert M Christley
- NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Neston, UK
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, UK
| |
Collapse
|
22
|
Shapiro K, Bahia-Oliveira L, Dixon B, Dumètre A, de Wit LA, VanWormer E, Villena I. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterborne Parasitol 2019; 15:e00049. [PMID: 32095620 PMCID: PMC7033973 DOI: 10.1016/j.fawpar.2019.e00049] [Citation(s) in RCA: 173] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/19/2019] [Accepted: 03/19/2019] [Indexed: 12/11/2022] Open
Abstract
Toxoplasma gondii is a zoonotic protozoan parasite that can cause morbidity and mortality in humans, domestic animals, and terrestrial and aquatic wildlife. The environmentally robust oocyst stage of T. gondii is fundamentally critical to the parasite's success, both in terms of its worldwide distribution as well as the extensive range of infected intermediate hosts. Despite the limited definitive host species (domestic and wild felids), infections have been reported on every continent, and in terrestrial as well as aquatic environments. The remarkable resistance of the oocyst wall enables dissemination of T. gondii through watersheds and ecosystems, and long-term persistence in diverse foods such as shellfish and fresh produce. Here, we review the key attributes of oocyst biophysical properties that confer their ability to disseminate and survive in the environment, as well as the epidemiological dynamics of oocyst sources including domestic and wild felids. This manuscript further provides a comprehensive review of the pathways by which T. gondii oocysts can infect animals and people through the environment, including in contaminated foods, water or soil. We conclude by identifying critical control points for reducing risk of exposure to oocysts as well as opportunities for future synergies and new directions for research aimed at reducing the burden of oocyst-borne toxoplasmosis in humans, domestic animals, and wildlife.
Collapse
Affiliation(s)
- Karen Shapiro
- Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, One Shields Ave, 4206 VM3A, University of California, Davis, CA 95616-5270, USA
| | - Lillian Bahia-Oliveira
- Laboratory of Immunoparasitology, Federal University of Rio de Janeiro, Macaé, RJ, Brazil
| | - Brent Dixon
- Bureau of Microbial Hazards, Food Directorate, Health Canada, 251 Sir Frederick Banting Driveway, A.L. 2204E, Ottawa, ON K1A 0K9, Canada
| | - Aurélien Dumètre
- Aix Marseille Univ, IRD 257, AP-HM, SSA, VITROME, IHU-Méditerranée Infection, Marseille, France
| | - Luz A. de Wit
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, 130 McAllister Way, Santa Cruz, CA 95050, USA
| | - Elizabeth VanWormer
- School of Veterinary Medicine and Biomedical Sciences, School of Natural Resources, University of Nebraska-Lincoln, VBS 111, Lincoln, NE 68583, USA
| | - Isabelle Villena
- EA 7510, UFR Medicine, University Reims Champagne-Ardenne, National Reference Center on Toxoplasmosis, Hospital Maison Blanche, Reims, France
| |
Collapse
|
23
|
|
24
|
Monge S, Pijnacker R, van Pelt W, Franz E, Kortbeek LM, Mangen MJJ. Accounting for long-term manifestations of Cryptosporidium spp infection in burden of disease and cost-of-illness estimations, the Netherlands (2013-2017). PLoS One 2019; 14:e0213752. [PMID: 30861047 PMCID: PMC6413911 DOI: 10.1371/journal.pone.0213752] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/27/2019] [Indexed: 12/18/2022] Open
Abstract
Background Burden of disease (BoD) estimations are increasingly used to prioritize public health interventions. Previous Cryptosporidium BoD models accounted only for acute episodes, while there is increasing evidence of long-term manifestations. Our objective was to update Cryptosporidium BoD and cost-of-illness (COI) models and to estimate BoD and COI for the Netherlands in years 2013–2017. Methods We performed a scoping literature review and drew an outcome tree including long-term manifestations for which sufficient evidence was found, such as recurrent diarrhea and joint pain. We chose the Disability-Adjusted Life Year (DALY) metric to synthesize years of life lost due mortality (YLLs) and years lived with disability due to non-fatal outcomes (YLDs). For the costs, we adopted a societal perspective accounting for direct healthcare costs, patient costs and productivity losses. Uncertainty was managed using Latin Hypercube sampling (30,000 iterations). Results In the Netherlands in 2017, we estimated 50,000 Cryptosporidium cases (95% uncertainty interval (UI): 15,000–102,000), 7,000 GP visits, 300 hospitalizations and 3 deaths, resulting in 137 DALYs (95%UI: 54–255) and €19.2 million COI (95%UI: €7.2 million– €36.2 million). Estimates were highest for 2016 (218 DALYs and €31.1 million in COI), and lowest in 2013 (100 DALYs and €13.8 million in COI). Most of the BoD was attributable to YLD (≈80% of DALYs). The most important cost was productivity losses (≈90% of total COI). Long-term manifestations, including recurring diarrhea and joint pain, accounted for 9% of the total DALYs and 7% of the total COI. Conclusion Current evidence supports the inclusion of long-term manifestations in Cryptosporidium models, which contribute close to 10% of the total DALYs and costs. This may be an underestimation, as we were conservative in our assumptions. Cryptosporidium should be considered a priority organism with respect to public health surveillance, even in industrialized countries with high hygiene standards.
Collapse
Affiliation(s)
- Susana Monge
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control, (ECDC), Stockholm, Sweden
- * E-mail:
| | - Roan Pijnacker
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Wilfrid van Pelt
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Laetitia M. Kortbeek
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Marie-Josée J. Mangen
- Centre for Infectious Disease Control Netherlands (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
25
|
Walker JT. The influence of climate change on waterborne disease and Legionella: a review. Perspect Public Health 2019; 138:282-286. [PMID: 30156484 DOI: 10.1177/1757913918791198] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Climate change is predicted to have a major impact on people's lives with the recent extreme weather events and varying abnormal temperature profiles across the world raising concerns. The impacts of global warming are already being observed, from rising sea levels and melting snow and ice to changing weather patterns. Scientists state unequivocally that these trends cannot be explained by natural variability in climate alone. Human activities, especially the burning of fossil fuels, have warmed the earth by dramatically increasing concentrations of heat-trapping gases in the atmosphere; as these concentrations increase, the more the earth will warm. Climate change and related extreme weather events are being exacerbated sooner than has previously been considered and are already adversely affecting ecosystems and human health by increasing the burden and type of disease at a local level. Changes to the marine environment and freshwater supplies already affect significant parts of the world's population and warmer temperatures, especially in more temperate regions, may see an increased spread and transmission of diseases usually associated with warmer climes including, for example, cholera and malaria; these impacts are likely to become more severe in a greater number of countries. This review discusses the impacts of climate change including changes in infectious disease transmission, patterns of waterborne diseases and the likely consequences of climate change due to warmer water, drought, higher rainfall, rising sea levels and flooding.
Collapse
Affiliation(s)
- J T Walker
- Public Health England, Porton, Salisbury SP1 3DX, UK
| |
Collapse
|
26
|
Lilja M, Widerström M, Lindh J. Persisting post-infection symptoms 2 years after a large waterborne outbreak of Cryptosporidium hominis in northern Sweden. BMC Res Notes 2018; 11:625. [PMID: 30165888 PMCID: PMC6117891 DOI: 10.1186/s13104-018-3721-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/20/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES In 2010-2011, a large waterborne outbreak of Cryptosporidium hominis affected the city of Östersund in Sweden. Previous findings had suggested that gastrointestinal symptoms can persist for up to 11 months after the initial infection. Here we investigated whether the parasite could cause sequelae in infected individuals up to 28 months after the outbreak. We compared cases linked to the outbreak and the previous follow-up study with non-cases regarding symptoms present up to 28 months after the initial infection. We investigated whether cases were more likely to report a list of symptoms at follow-up compared to non-cases, calculating odds ratio and 95% confidence interval obtained through logistic regression. RESULTS A total of 559 individuals (215 cases) were included in the study. Forty-eight percent of the outbreak cases reported symptoms at follow-up. Compared to non-cases, cases were more likely to report watery diarrhea, diarrhea, abdominal pain, fatigue, nausea, headache, or joint stiffness/pain/discomfort at follow-up after adjusting for age and sex. Our findings suggest that gastrointestinal symptoms and joint pain can persist several years after the initial Cryptosporidium infection and should be regarded as a potential cause of unexplained gastrointestinal symptoms or joint pain in people who have had this infection.
Collapse
Affiliation(s)
- Mikael Lilja
- Department of Public Health and Clinical Medicine, Unit of Clinical Research Center-Östersund, Umeå University, Umeå, Sweden
| | - Micael Widerström
- Department of Clinical Microbiology, Unit of Communicable Disease Control and Prevention-Östersund, Umeå University, Umeå, Sweden
| | - Johan Lindh
- Department of Cell and Molecular Biology, Microbiology, Uppsala University, Box 256, 751 05, Uppsala, Sweden.
| |
Collapse
|
27
|
Mouly D, Goria S, Mounié M, Beaudeau P, Galey C, Gallay A, Ducrot C, Le Strat Y. Waterborne Disease Outbreak Detection: A Simulation-Based Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071505. [PMID: 30018195 PMCID: PMC6068474 DOI: 10.3390/ijerph15071505] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 07/07/2018] [Accepted: 07/10/2018] [Indexed: 11/16/2022]
Abstract
Waterborne disease outbreaks (WBDOs) remain a public health issue in developed countries, but to date the surveillance of WBDOs in France, mainly based on the voluntary reporting of clusters of acute gastrointestinal infections (AGIs) by general practitioners to health authorities, is characterized by low sensitivity. In this context, a detection algorithm using health insurance data and based on a space–time method was developed to improve WBDO detection. The objective of the present simulation-based study was to evaluate the performance of this algorithm for WBDO detection using health insurance data. The daily baseline counts of acute gastrointestinal infections were simulated. Two thousand simulated WBDO signals were then superimposed on the baseline data. Sensitivity (Se) and positive predictive value (PPV) were both used to evaluate the detection algorithm. Multivariate regression was also performed to identify the factors associated with WBDO detection. Almost three-quarters of the simulated WBDOs were detected (Se = 73.0%). More than 9 out of 10 detected signals corresponded to a WBDO (PPV = 90.5%). The probability of detecting a WBDO increased with the outbreak size. These results underline the value of using the detection algorithm for the implementation of a national surveillance system for WBDOs in France.
Collapse
Affiliation(s)
- Damien Mouly
- Santé Publique France, the French National Public Health Agency, 94 410 Saint-Maurice, France.
| | - Sarah Goria
- Santé Publique France, the French National Public Health Agency, 94 410 Saint-Maurice, France.
| | - Michael Mounié
- Unité D'évaluation Médico-Economique, Université Paul Sabatier, CHU 31059 Toulouse, France.
| | - Pascal Beaudeau
- Santé Publique France, the French National Public Health Agency, 94 410 Saint-Maurice, France.
| | - Catherine Galey
- Santé Publique France, the French National Public Health Agency, 94 410 Saint-Maurice, France.
| | - Anne Gallay
- Santé Publique France, the French National Public Health Agency, 94 410 Saint-Maurice, France.
| | - Christian Ducrot
- Institut National de la Recherche Agronomique, UR346-Unité d'Épidémiologie Animale, 63 122 Saint Genès Champanelle, France.
| | - Yann Le Strat
- Santé Publique France, the French National Public Health Agency, 94 410 Saint-Maurice, France.
| |
Collapse
|
28
|
Mohapatra S, Singh DP, Alcid D, Pitchumoni CS. Beyond O&P Times Three. Am J Gastroenterol 2018; 113:805-818. [PMID: 29867172 DOI: 10.1038/s41395-018-0083-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 02/23/2018] [Indexed: 12/11/2022]
Abstract
Although examination of the stool for ova and parasites times three (O&P ×3) is routinely performed in the United States (US) for the evaluation of persistent and/or chronic diarrhea, the result is almost always negative. This has contributed to the perception that parasitic diseases are nearly non-existent in the country unless there is a history of travel to an endemic area. The increasing number of immigrants from third-world countries, tourists, and students who present with symptoms of parasitic diseases are often misdiagnosed as having irritable bowel syndrome or inflammatory bowel disease. The consequences of such misdiagnosis need no explanation. However, certain parasitic diseases are endemic to the US and other developed nations and affect both immunocompetent and immunocompromised patients. Testing for parasitic diseases either with O&P or with other diagnostic tests, followed by the recommended treatment, is quite rewarding when appropriate. Most parasitic diseases are easily treatable and should not be confused with other chronic gastrointestinal (GI) disorders. In this review, we critically evaluate the symptomatology of luminal parasitic diseases, their differential diagnoses, appropriate diagnostic tests, and management.
Collapse
Affiliation(s)
- Sonmoon Mohapatra
- Department of Internal Medicine, Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA. Department of Infectious Diseases, Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA. 3Department of Gastroenterology, Hepatology and Clinical Nutrition Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - Dhruv Pratap Singh
- Department of Internal Medicine, Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA. Department of Infectious Diseases, Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA. 3Department of Gastroenterology, Hepatology and Clinical Nutrition Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | - David Alcid
- Department of Internal Medicine, Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA. Department of Infectious Diseases, Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA. 3Department of Gastroenterology, Hepatology and Clinical Nutrition Saint Peter's University Hospital - Rutgers Robert Wood Johnson School of Medicine, New Brunswick, NJ, USA
| | | |
Collapse
|
29
|
Iglói Z, Mughini-Gras L, Nic Lochlainn L, Barrasa A, Sane J, Mooij S, Schimmer B, Roelfsema J, van Pelt W, Kortbeek T. Long-term sequelae of sporadic cryptosporidiosis: a follow-up study. Eur J Clin Microbiol Infect Dis 2018; 37:1377-1384. [PMID: 29730717 PMCID: PMC6015106 DOI: 10.1007/s10096-018-3268-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/26/2018] [Indexed: 12/19/2022]
Abstract
To determine the frequency of occurrence of sequelae following cryptosporidiosis. A follow-up study was performed during a case-control study for sporadic cryptosporidiosis in the Netherlands (2013–2016). Cryptosporidiosis cases were invited to complete a follow-up questionnaire 4 months after diagnosis. Using a case-crossover study design, we compared the frequencies of reported symptoms 4 months after the acute phase to those reported 4 months before the onset of illness and during illness. Frequencies of symptoms in the pre- to post-infection phases were also compared with those of a population control group. Cryptosporidium species-specific effects were also studied. Logistic regression was used to calculate adjusted odds ratios (aOR) for symptoms occurrence. Of the 731 available cases, 443 (60%) responded and 308 (42%) could be included in the follow-up study. The median age was 26 years (range 1–80); 58% were female; 30% were infected with C. hominis and 70% with C. parvum. Compared to before illness, cases were significantly more likely to report dizziness (OR = 2.25), headache (OR = 2.15), fatigue (OR = 2.04), weight loss (OR = 1.82), diarrhoea (OR = 1.50), abdominal pain (OR = 1.38) or joint pain (OR = 1.84). However, symptoms of joint pain and headache occurred among cases after illness at a rate that was not significantly different from that observed in the general population. There were no significant differences in post-infection symptom occurrence between C. hominis and C. parvum. The disease burden of cryptosporidiosis extends beyond the acute phase of the infection, with cases reporting both intestinal and extra-intestinal symptoms up to 4 months following infection.
Collapse
Affiliation(s)
- Zsófia Iglói
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | - L Mughini-Gras
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - L Nic Lochlainn
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - A Barrasa
- National Centre for Epidemiology, Madrid, Spain
| | - J Sane
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - S Mooij
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - B Schimmer
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - J Roelfsema
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - W van Pelt
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - T Kortbeek
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
30
|
Zahedi A, Monis P, Gofton AW, Oskam CL, Ball A, Bath A, Bartkow M, Robertson I, Ryan U. Cryptosporidium species and subtypes in animals inhabiting drinking water catchments in three states across Australia. WATER RESEARCH 2018; 134:327-340. [PMID: 29438893 DOI: 10.1016/j.watres.2018.02.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/22/2018] [Accepted: 02/04/2018] [Indexed: 06/08/2023]
Abstract
As part of long-term monitoring of Cryptosporidium in water catchments serving Western Australia, New South Wales (Sydney) and Queensland, Australia, we characterised Cryptosporidium in a total of 5774 faecal samples from 17 known host species and 7 unknown bird samples, in 11 water catchment areas over a period of 30 months (July 2013 to December 2015). All samples were initially screened for Cryptosporidium spp. at the 18S rRNA locus using a quantitative PCR (qPCR). Positives samples were then typed by sequence analysis of an 825 bp fragment of the 18S gene and subtyped at the glycoprotein 60 (gp60) locus (832 bp). The overall prevalence of Cryptosporidium across the various hosts sampled was 18.3% (1054/5774; 95% CI, 17.3-19.3). Of these, 873 samples produced clean Sanger sequencing chromatograms, and the remaining 181 samples, which initially produced chromatograms suggesting the presence of multiple different sequences, were re-analysed by Next- Generation Sequencing (NGS) to resolve the presence of Cryptosporidium and the species composition of potential mixed infections. The overall prevalence of confirmed mixed infection was 1.7% (98/5774), and in the remaining 83 samples, NGS only detected one species of Cryptosporidium. Of the 17 Cryptosporidium species and four genotypes detected (Sanger sequencing combined with NGS), 13 are capable of infecting humans; C. parvum, C. hominis, C. ubiquitum, C. cuniculus, C. meleagridis, C. canis, C. felis, C. muris, C. suis, C. scrofarum, C. bovis, C. erinacei and C. fayeri. Oocyst numbers per gram of faeces (g-1) were also determined using qPCR, with medians varying from 6021-61,064 across the three states. The significant findings were the detection of C. hominis in cattle and kangaroo faeces and the high prevalence of C. parvum in cattle. In addition, two novel C. fayeri subtypes (IVaA11G3T1 and IVgA10G1T1R1) and one novel C. meleagridis subtype (IIIeA18G2R1) were identified. This is also the first report of C. erinacei in Australia. Future work to monitor the prevalence of Cryptosporidium species and subtypes in animals in these catchments is warranted.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Charlotte L Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | | | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Center for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
31
|
Bahk YY, Cho PY, Ahn SK, Park S, Jheong WH, Park YK, Shin HJ, Lee SS, Rhee O, Kim TS. Monitoring of Noxious Protozoa for Management of Natural Water Resources. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:205-210. [PMID: 29742877 PMCID: PMC5976025 DOI: 10.3347/kjp.2018.56.2.205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 11/23/2022]
Abstract
Waterborne parasitic protozoa, particularly Giardia lamblia and Cryptosporidium spp., are common causes of diarrhea and gastroenteritis worldwide. The most frequently identified source of infestation is water, and exposure involves either drinking water or recreation in swimming pools or natural bodies of water. In practice, studies on Cryptosporidium oocysts and Giardia cysts in surface water are challenging owing to the low concentrations of these microorganisms because of dilution. In this study, a 3-year monitoring of Cryptosporidium parvum, Giardia lamblia, and Naegleria fowleri was conducted from August 2014 to June 2016 at 5 surface water sites including 2 lakes, 1 river, and 2 water intake plants. A total of 50 water samples of 40 L were examined. Cryptosporidium oocysts were detected in 22% of samples and Giardia cysts in 32%. Water at the 5 sampling sites was all contaminated with Cryptosporidium oocysts (0-36/L), Giardia cysts (0-39/L), or both. The geometric mean concentrations of Cryptosporidium and Giardia were 1.14 oocysts/L and 4.62 cysts/L, respectively. Thus, effective monitoring plans must take into account the spatial and temporal parameters of contamination because they affect the prevalence and distribution of these protozoan cysts in local water resources.
Collapse
Affiliation(s)
- Young Yil Bahk
- Department of Biotechnology, College of Biomedical and Health Sciences, Konkuk University, Chungju 27478, Korea
| | - Pyo Yun Cho
- Protist Resources Research Division, Nakdonggang National Institute of Biological Resources Sciences, Sangju 37242, Korea
| | - Sung Kyu Ahn
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon 22212, Korea
| | - Sangjung Park
- Water Supply and Sewerage Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - Won Hwa Jheong
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Korea
| | - Yun-Kyu Park
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon 22212, Korea
| | - Ho-Joon Shin
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Sang-Seob Lee
- Department of Life Science, Kyonggi University, Suwon 16227, Korea
| | - Okjae Rhee
- DK EcoV Environmental Microbiology Lab., Cheonan 31075, Korea
| | - Tong-Soo Kim
- Department of Tropical Medicine and Parasitology, Inha University School of Medicine, Incheon 22212, Korea
| |
Collapse
|
32
|
Paziewska-Harris A, Schoone G, Schallig HDFH. Long-Term Storage of Cryptosporidium parvum for In Vitro Culture. J Parasitol 2018; 104:96-100. [PMID: 29095102 DOI: 10.1645/16-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The long-term storage of Cryptosporidium life-cycle stages is a prerequisite for in vitro culture of the parasite. Cryptosporidium parvum oocysts, sporozoites, and intracellular forms inside infected host cells were stored for 6-12 mo in liquid nitrogen utilizing different cryoprotectants (dimethyl sulfoxide [DMSO], glycerol and fetal calf serum [FCS]), then cultured in vitro. Performance in vitro was quantified by estimating the total Cryptosporidium copy number with quantitative polymerase chain reaction (qPCR) in 3- and 7-day-old cultures. Although few parasites were recovered either from stored oocysts or from infected host cells, sporozoites stored in liquid nitrogen recovered from freezing successfully. More copies of parasite DNA were obtained from culturing those sporozoites than sporozoites excysted from oocysts kept at 4 C for the same period. The best performance was observed for sporozoites stored in Roswell Park Memorial Institute (RPMI) medium with 10% FCS and 5% DMSO, which generated 240% and 330% greater number of parasite DNA copies (on days 3 and 7 post-infection, respectively) compared to controls. Storage of sporozoites in liquid nitrogen is more effective than oocyst storage at 4 C and represents a more consistent approach for storage of viable infective Cryptosporidium aliquots for in vitro culture.
Collapse
Affiliation(s)
- A Paziewska-Harris
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| | - G Schoone
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| | - H D F H Schallig
- School of Biosciences, Cardiff University, The Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, U.K
| |
Collapse
|
33
|
Ryan U, Hijjawi N, Xiao L. Foodborne cryptosporidiosis. Int J Parasitol 2017; 48:1-12. [PMID: 29122606 DOI: 10.1016/j.ijpara.2017.09.004] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 09/05/2017] [Accepted: 09/07/2017] [Indexed: 11/26/2022]
Abstract
Foodborne illness, the majority of which is caused by enteric infectious agents, costs global economies billions of dollars each year. The protozoan parasite Cryptosporidium is particularly suited to foodborne transmission and is responsible for >8 million cases of foodborne illness annually. Procedures have been developed for sensitive detection of Cryptosporidium oocysts on fresh produce and molecular diagnostic assays have been widely used in case linkages and infection source tracking, especially during outbreak investigations. The integrated use of advanced diagnostic techniques with conventional epidemiological studies is essential to improve our understanding of the occurrence, source and epidemiology of foodborne cryptosporidiosis. The implementation of food safety management tools such as Good Hygienic Practices (GHP), Hazard Analysis and Critical Control Points (HACCP), and Quantitative Microbial Risk Assessment (QMRA) in industrialised nations and Water, Sanitation, and Hygiene (WASH) in developing countries is central for prevention and control and foodborne cryptosporidiosis in the future.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Vector- and Water-Borne Pathogen Research Group, Murdoch University, Murdoch, Western Australia 6150, Australia.
| | - Nawal Hijjawi
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, The Hashemite University, PO Box 150459, Zarqa 13115, Jordan
| | - Lihua Xiao
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
34
|
Ogendo A, Obonyo M, Wasswa P, Bitek A, Mbugua A, Thumbi SM. Cryptosporidium infection in calves and the environment in Asembo, Western Kenya: 2015. Pan Afr Med J 2017; 28:9. [PMID: 30167034 PMCID: PMC6113697 DOI: 10.11604/pamj.supp.2017.28.1.9313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 09/16/2016] [Indexed: 11/11/2022] Open
Abstract
Introduction Cryptosporidium species, a zoonotic enteric coccidian parasite, is among the leading causes of diarrhea in children. We evaluated the prevalence of Cryptosporidium infections in calves, factors associated with calf infection, environmental contamination of manure by Cryptosporidium and factors that expose humans to zoonotic transmission in Asembo. Methods in a cross-sectional study conducted from January to July 2015, we collected fecal specimens from 350 randomly selected calves aged ≤ 6 months old and 187 manure samples from the same farms. We assessed farmers’ knowledge about Cryptosporidium and collected data on characteristics using structured questionnaires. Modified Ziehl Nielsen staining was used to detect Cryptosporidium oocysts from calves’ stool and manure. The prevalence of infected calves and 95% confidence interval (CI) were calculated. Odds ratios (OR) and 95% (CI) were calculated to identify possible factors associated with Cryptosporidium infection; multivariable logistic regression performed to identify factors independently associated with the presence of Cryptosporidium. Results calves’ fecal Cryptosporidium prevalence was 8.3% (95% CI: 5.7-11.8) and 7.5% (95% CI: 4.2-12.2) in manure. Odds of infection was higher in calves with loose stool compared to those with normal stool (AOR = 6.1, 95% C.I: 2.2-16.9), calves ≤ 2 months old compared to older calves (AOR=12.7, 95% C.I: 4.5-35.8) and calves in poor sanitation compared to calves in good hygienic conditions (AOR = 9.9, 95% C.I: 3.1-30.7). Conclusion presence of Cryptosporidium species in calves and environment and reported human contact with animals increases zoonotic risk. We recommend further studies that determine specific Cryptosporidium species infecting animals and humans which would better estimate risk of disease transmission to humans.
Collapse
Affiliation(s)
- Allan Ogendo
- Jomo Kenyatta University of Agriculture and Technology, College of Health Sciences, Kenya.,Ministry of Health, Kenya Field Epidemiology and Laboratory Training Program, Kenya
| | - Mark Obonyo
- Ministry of Health, Kenya Field Epidemiology and Laboratory Training Program, Kenya.,Ministry of Agriculture, Livestock and Fisheries, Directorate of Veterinary Services, Kenya
| | - Peter Wasswa
- African Field Epidemiology Network, Kampala, Uganda
| | - Austine Bitek
- Ministry of Agriculture, Livestock and Fisheries, Directorate of Veterinary Services, Kenya.,Kenya Zoonotic Disease Unit, Kenya
| | - Amos Mbugua
- Jomo Kenyatta University of Agriculture and Technology, College of Health Sciences, Kenya
| | | |
Collapse
|
35
|
Stiff RE, Davies AP, Mason BW, Hutchings HA, Chalmers RM. Long-term health effects after resolution of acute Cryptosporidium parvum infection: a 1-year follow-up of outbreak-associated cases. J Med Microbiol 2017; 66:1607-1611. [PMID: 28984243 DOI: 10.1099/jmm.0.000609] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
We describe a longitudinal study carried out in an adult outbreak-associated cohort to investigate health effects, including post-infectious irritable bowel syndrome, occurring after resolution of acute Cryptosporidium parvum infection. New symptoms self-reported up to 12 months included: weight loss (31 %), abdominal pain (38 %), diarrhoea (33 %), eye pain (9 %), joint pain (33 %), fatigue (22 %) and symptoms consistent with irritable bowel syndrome (IBS) (28 %). Two people were medically diagnosed with IBS. This study describes for the first time sequelae reported by patients up to 12 months after infection with C. parvum, which appear to be similar to those described with C. hominis.
Collapse
Affiliation(s)
- Rhianwen E Stiff
- Swansea University Medical School, Singleton Park, Swansea, Wales, SA2 8PP, UK.,Health Protection, Public Health Wales NHS Trust, Temple of Peace, Cathays Park, Cardiff, Wales, CF10 3NW, UK
| | - Angharad P Davies
- Swansea University Medical School, Singleton Park, Swansea, Wales, SA2 8PP, UK.,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, Wales, SA2 8QA, UK
| | - Brendan W Mason
- Swansea University Medical School, Singleton Park, Swansea, Wales, SA2 8PP, UK.,Communicable Disease Surveillance Centre, Public Health Wales NHS Trust, Temple of Peace, Cathays Park, Cardiff, Wales, CF10 3NW, UK
| | - Hayley A Hutchings
- Swansea University Medical School, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | - Rachel M Chalmers
- Swansea University Medical School, Singleton Park, Swansea, Wales, SA2 8PP, UK.,Cryptosporidium Reference Unit, Public Health Wales Microbiology, Singleton Hospital, Swansea, Wales, SA2 8QA, UK
| |
Collapse
|
36
|
Haserick JR, Klein JA, Costello CE, Samuelson J. Cryptosporidium parvum vaccine candidates are incompletely modified with O-linked-N-acetylgalactosamine or contain N-terminal N-myristate and S-palmitate. PLoS One 2017; 12:e0182395. [PMID: 28792526 PMCID: PMC5549699 DOI: 10.1371/journal.pone.0182395] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/17/2017] [Indexed: 12/29/2022] Open
Abstract
Cryptosporidium parvum (studied here) and Cryptosporidium hominis are important causes of diarrhea in infants and immunosuppressed persons. C. parvum vaccine candidates, which are on the surface of sporozoites, include glycoproteins with Ser- and Thr-rich domains (Gp15, Gp40, and Gp900) and a low complexity, acidic protein (Cp23). Here we used mass spectrometry to determine that O-linked GalNAc is present in dense arrays on a glycopeptide with consecutive Ser derived from Gp40 and on glycopeptides with consecutive Thr derived from Gp20, a novel C. parvum glycoprotein with a formula weight of ~20 kDa. In contrast, the occupied Ser or Thr residues in glycopeptides from Gp15 and Gp900 are isolated from one another. Gly at the N-terminus of Cp23 is N-myristoylated, while Cys, the second amino acid, is S-palmitoylated. In summary, C. parvum O-GalNAc transferases, which are homologs of host enzymes, densely modify arrays of Ser or Thr, as well as isolated Ser and Thr residues on C. parvum vaccine candidates. The N-terminus of an immunodominant antigen has lipid modifications similar to those of host cells and other apicomplexan parasites. Mass spectrometric demonstration here of glycopeptides with O-glycans complements previous identification C. parvum O-GalNAc transferases, lectin binding to vaccine candidates, and human and mouse antibodies binding to glycopeptides. The significance of these post-translational modifications is discussed with regards to the function of these proteins and the design of serological tests and vaccines.
Collapse
Affiliation(s)
- John R. Haserick
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joshua A. Klein
- Program for Bioinformatics, Boston University, Boston, Massachusetts, United States of America
| | - Catherine E. Costello
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
37
|
Symptoms and risk factors of Cryptosporidium hominis infection in children: data from a large waterborne outbreak in Sweden. Parasitol Res 2017; 116:2613-2618. [PMID: 28776228 PMCID: PMC5599474 DOI: 10.1007/s00436-017-5558-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/10/2017] [Indexed: 12/24/2022]
Abstract
Cryptosporidium is a major cause of diarrheal disease worldwide. In developing countries, this infection is endemic and in children, associated with growth faltering and cognitive function deficits, with the most severe impact on those aged <2 years. Little has been reported about symptoms and risk factors for children in industrialized countries, although the disease incidence is increasing in such regions. In November 2010, a large waterborne outbreak of C. hominis occurred in the city of Östersund in Sweden. Approximately 27,000 of the 60,000 inhabitants were symptomatic. We aimed to describe duration of symptoms and the risk factors for infection with C. hominis in children aged <15 years in a Western setting. Within 2 months after a boil water advisory, a questionnaire was sent to randomly selected inhabitants of all ages, including 753 children aged <15 years. Those with ≥3 loose stools/day were defined as cases of diarrhoea. The response rate was 70.3%, and 211 children (39.9%) fulfilled the case definition. Mean duration of diarrhoea was 7.5 days (median 6, range 1-80 days). Recurrence, defined as a new episode of diarrhoea after ≥2 days of normal stools, occurred in 52.5% of the cases. Significant risk factors for infection, besides living within the distribution area of the contaminated water plant, included a high level of water consumption, male sex, and a previous history of loose stools. The outbreak was characterized by high attack and recurrence rates, emphasizing the necessity of water surveillance to prevent future outbreaks.
Collapse
|
38
|
Brouwer AF, Weir MH, Eisenberg MC, Meza R, Eisenberg JNS. Dose-response relationships for environmentally mediated infectious disease transmission models. PLoS Comput Biol 2017; 13:e1005481. [PMID: 28388665 PMCID: PMC5400279 DOI: 10.1371/journal.pcbi.1005481] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 04/21/2017] [Accepted: 03/27/2017] [Indexed: 11/18/2022] Open
Abstract
Environmentally mediated infectious disease transmission models provide a mechanistic approach to examining environmental interventions for outbreaks, such as water treatment or surface decontamination. The shift from the classical SIR framework to one incorporating the environment requires codifying the relationship between exposure to environmental pathogens and infection, i.e. the dose-response relationship. Much of the work characterizing the functional forms of dose-response relationships has used statistical fit to experimental data. However, there has been little research examining the consequences of the choice of functional form in the context of transmission dynamics. To this end, we identify four properties of dose-response functions that should be considered when selecting a functional form: low-dose linearity, scalability, concavity, and whether it is a single-hit model. We find that i) middle- and high-dose data do not constrain the low-dose response, and different dose-response forms that are equally plausible given the data can lead to significant differences in simulated outbreak dynamics; ii) the choice of how to aggregate continuous exposure into discrete doses can impact the modeled force of infection; iii) low-dose linear, concave functions allow the basic reproduction number to control global dynamics; and iv) identifiability analysis offers a way to manage multiple sources of uncertainty and leverage environmental monitoring to make inference about infectivity. By applying an environmentally mediated infectious disease model to the 1993 Milwaukee Cryptosporidium outbreak, we demonstrate that environmental monitoring allows for inference regarding the infectivity of the pathogen and thus improves our ability to identify outbreak characteristics such as pathogen strain.
Collapse
Affiliation(s)
- Andrew F. Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
- * E-mail:
| | - Mark H. Weir
- Division of Environmental Health Sciences, The Ohio State University, Columbus, OH, United States of America
| | - Marisa C. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Rafael Meza
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| | - Joseph N. S. Eisenberg
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
39
|
|
40
|
Haserick JR, Leon DR, Samuelson J, Costello CE. Asparagine-Linked Glycans of Cryptosporidium parvum Contain a Single Long Arm, Are Barely Processed in the Endoplasmic Reticulum (ER) or Golgi, and Show a Strong Bias for Sites with Threonine. Mol Cell Proteomics 2017; 16:S42-S53. [PMID: 28179475 PMCID: PMC5393390 DOI: 10.1074/mcp.m116.066035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/05/2017] [Indexed: 12/27/2022] Open
Abstract
Cryptosporidium parvum causes severe diarrhea in infants in developing countries and in immunosuppressed persons, including those with AIDS. We are interested in the Asn-linked glycans (N-glycans) of C. parvum, because (1) the N-glycan precursor is predicted to contain five mannose and two glucose residues on a single long arm versus nine mannose and three glucose residues on the three-armed structure common in host N-glycans, (2) C. parvum is a rare eukaryote that lacks the machinery for N-glycan-dependent quality control of protein folding in the lumen of the Endoplasmic Reticulum (ER), and (3) ER and Golgi mannosidases, as well as glycosyltransferases that build complex N-glycans, are absent from the predicted proteome. The C. parvum N-glycans reported here, which were determined using a combination of collision-induced dissociation and electronic excitation dissociation, contain a single, unprocessed mannose arm ± terminal glucose on the trimannosyl chitobiose core. Upon nanoUPLC-MS/MS separation and analysis of the C. parvum tryptic peptides, the total ion and extracted oxonium ion chromatograms delineated 32 peptides with occupied N-glycan sites; these were derived from 16 glycoproteins. Although the number of potential N-glycan sites with Thr (NxT) is only about twice that with Ser (NxS), almost 90% of the occupied N-glycan sites contain NxT. The two most abundant C. parvum proteins modified with N-glycans were an immunodominant antigen on the surface of sporozoites (gp900) and the possible oocyst wall protein 1 (POWP1). Seven other glycoproteins with N-glycans were unique to C. parvum; five shared common ancestry with other apicomplexans; two glycoproteins shared common ancestry with many organisms. In summary, C. parvum N-glycans are remarkable for the absence of ER and Golgi modification and for the strong bias toward occupancy of N-glycan motifs containing Thr.
Collapse
Affiliation(s)
- John R Haserick
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Deborah R Leon
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| | - John Samuelson
- §Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts 02118
| | - Catherine E Costello
- From the ‡Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology and Genomics, Boston University School of Medicine, Boston, Massachusetts 02118 and
| |
Collapse
|
41
|
Deng L, Li W, Zhong Z, Gong C, Cao X, Song Y, Wang W, Huang X, Liu X, Hu Y, Fu H, He M, Wang Y, Zhang Y, Wu K, Peng G. Occurrence and Genetic Characteristics of Cryptosporidium hominis and Cryptosporidium andersoni in Horses from Southwestern China. J Eukaryot Microbiol 2017; 64:716-720. [PMID: 28166378 PMCID: PMC5599969 DOI: 10.1111/jeu.12399] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/25/2017] [Accepted: 01/26/2017] [Indexed: 12/02/2022]
Abstract
A total of 333 fecal specimens from horses in southwestern China were genotyped based on analysis of the small subunit rRNA (SSUrRNA) gene. Cryptosporidium hominis and Cryptosporidium andersoni were identified in 2 and 4 stool specimens, respectively. The identification of C. hominis was confirmed by sequence analysis of the 70‐kDa heat shock protein (HSP70) and oocyst wall protein (COWP) genes. Subtyping analysis of the 60‐kDa glycoprotein (GP60) gene sequence of C. hominis revealed a new rare subtype Id, named IdA15; only three Id isolates have been reported in humans to date. Multilocus sequence typing (MLST) analysis indicated that the C. andersoni subtype was A6, A5, A2, and A1 at the four minisatellite loci (MS1, MS2, MS3, and MS16, respectively). This is the first report to identify the presence of C. andersoni and C. hominis in horses in southwestern China and the first to identify a rare zoonotic subtype Id of C. hominis in horses. These findings suggest that infected horses may act as potential reservoirs of Cryptosporidium to transmit infections to humans.
Collapse
Affiliation(s)
- Lei Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Wei Li
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Zhijun Zhong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Chao Gong
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xuefeng Cao
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yuan Song
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Wuyou Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xiangming Huang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Xuehan Liu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yanchun Hu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Hualin Fu
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Min He
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Ya Wang
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| | - Yue Zhang
- Chengdu Giant Panda Breeding Research Base, Chengdu, Sichuan Province, 625001, China
| | - Kongju Wu
- Chengdu Giant Panda Breeding Research Base, Chengdu, Sichuan Province, 625001, China
| | - Guangneng Peng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan Province, 611130, China
| |
Collapse
|
42
|
Incani RN, Ferrer E, Hoek D, Ramak R, Roelfsema J, Mughini-Gras L, Kortbeek T, Pinelli E. Diagnosis of intestinal parasites in a rural community of Venezuela: Advantages and disadvantages of using microscopy or RT-PCR. Acta Trop 2017; 167:64-70. [PMID: 28007484 DOI: 10.1016/j.actatropica.2016.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 12/06/2016] [Accepted: 12/12/2016] [Indexed: 12/25/2022]
Abstract
A cross-sectional study was carried out to determine the prevalence and diagnostic performance of microscopy and real time PCR (RT-PCR) for 14 intestinal parasites in a Venezuelan rural community with a long history of persistent intestinal parasitic infections despite the implementation of regular anthelminthic treatments. A total of 228 participants were included in this study. A multiplex RT-PCR was used for the detection of Dientamoeba fragilis, Giardia intestinalis, Cryptosporidium sp. and a monoplex RT-PCR for Entamoeba histolytica. Furthermore, a multiplex PCR was performed for detection of Ascaris lumbricoides, Strongyloides stercoralis, Necator americanus and Ancylostoma duodenale. Combined microscopy-PCR revealed prevalences of 49.3% for A. lumbricoides, 10.1% for N. americanus (no A. duodenale was detected), 2.0% for S. stercoralis, 40.4% for D. fragilis, 35.1% for G. intestinalis, and 7.9% for E. histolytica/dispar. Significant increases in prevalence at PCR vs. microscopy were found for A. lumbricoides, G. intestinalis and D. fragilis. Other parasites detected by microscopy alone were Trichuris trichiura (25.7%), Enterobius vermicularis (3.4%), Blastocystis sp. (65.8%), and the non-pathogenic Entamoeba coli (28.9%), Entamoeba hartmanni (12.3%), Endolimax nana (19.7%) and Iodamoeba bütschlii (7.5%). Age- but no gender-related differences in prevalences were found for A. lumbricoides, T. trichiura, G. intestinalis, and E. histolytica/dispar. The persistently high prevalences of intestinal helminths are probably related to the high faecal pollution as also evidenced by the high prevalences of non-pathogenic intestinal protozoans. These results highlight the importance of using sensitive diagnostic techniques in combination with microscopy to better estimate the prevalence of intestinal parasites, especially in the case of D. fragilis trophozoites, which deteriorate very rapidly and would be missed by microscopy. In addition, the differentiation between the pathogenic E. histolytica and the non-pathogenic E. dispar can be attained. However, microscopy remains an important diagnostic tool since it can detect other intestinal parasites for which no PCR is available.
Collapse
Affiliation(s)
- Renzo Nino Incani
- Laboratorio de Investigaciones en Bilharzia, Departamento de Parasitología, Facultad de Ciencias de la Salud, Universidad de Carabobo, Campus Carabobo, Valencia, Venezuela.
| | - Elizabeth Ferrer
- Instituto de Investigaciones Biomédicas "Dr. Francisco J. Triana Alonso" (BIOMED) and Departamento de Parasitología, Facultad de Ciencias de la Salud, Universidad de Carabobo, Sede Aragua, Maracay, Venezuela
| | - Denise Hoek
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Robbert Ramak
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen Roelfsema
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Lapo Mughini-Gras
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands; Utrecht University, Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht, The Netherlands, The Netherlands
| | - Titia Kortbeek
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elena Pinelli
- Center for Infectious Diseases Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
43
|
Ryan U, Lawler S, Reid S. Limiting swimming pool outbreaks of cryptosporidiosis - the roles of regulations, staff, patrons and research. JOURNAL OF WATER AND HEALTH 2017; 15:1-16. [PMID: 28151435 DOI: 10.2166/wh.2016.160] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cryptosporidium is the leading cause of swimming pool outbreaks of gastroenteritis. Transmission occurs through the ingestion of oocysts that are passed in the faeces of an infected person or animal when an accidental faecal release event occurs. Cryptosporidium parasites present specific challenges for infection control as oocysts are highly resistant to chlorine levels used for pool disinfection, infected individuals can shed large numbers of oocysts, there is a long incubation period and shedding of oocysts occurs even after symptom resolution. The purposes of this review are to identify key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis and to outline needs for research and collaboration to advance co-ordinated management practices. We reviewed swimming pool-associated cryptosporidiosis outbreaks, disinfection teachniques, current regulations and the role of staff and patrons. Key barriers to limiting swimming pool-associated outbreaks of cryptosporidiosis are a lack of uniform national and international standards, poor adherence and understanding of regulations governing staff and patron behaviour, and low levels of public knowledge and awareness.
Collapse
Affiliation(s)
- Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia E-mail:
| | - Sheleigh Lawler
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| | - Simon Reid
- The University of Queensland, School of Public Health, Herston, Queensland 4006, Australia
| |
Collapse
|
44
|
Weber R. Intestinal Coccidia and Microsporidia. Infect Dis (Lond) 2017. [DOI: 10.1016/b978-0-7020-6285-8.00192-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Epidemiology of Cryptosporidiosis and Giardiasis: What Pediatricians Need to Know. CURRENT TROPICAL MEDICINE REPORTS 2016. [DOI: 10.1007/s40475-016-0081-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Brunet J, Lemoine JP, Pesson B, Valot S, Sautour M, Dalle F, Muller C, Borni-Duval C, Caillard S, Moulin B, Pfaff AW, Razakandrainibe R, Abou-Bacar A, Favennec L, Candolfi E. Ruling out nosocomial transmission of Cryptosporidium in a renal transplantation unit: case report. BMC Infect Dis 2016; 16:363. [PMID: 27484187 PMCID: PMC4969980 DOI: 10.1186/s12879-016-1661-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 06/08/2016] [Indexed: 01/10/2023] Open
Abstract
Background Cryptosporidium spp. is a ubiquitous parasite affecting humans as well as domestic and wild vertebrates, causing diarrhea in both immunocompetent and immunocompromised hosts worldwide. Its transmission occurs primarily by the fecal-oral route. In humans, C. parvum and C. hominis are the most prevalent species, whereas immunocompetent and immunocompromised individuals can also be infected by other zoonotic species. Renal transplant patients are prone to develop cryptosporidiosis, which can induce severe and life-threatening diarrhea. Case presentation We report here a series of nearly concomitant cases of acute symptomatic cryptosporidiosis in three renal transplant patients attending the Strasbourg University Hospital Nephrology Unit. The clinical presentation was persistent diarrhea and acute renal failure. The diagnosis was confirmed by microscopic stool examination using a modified Ziehl-Neelsen staining method and species identification by molecular tools. All patients were treated with nitazoxanide and recovered from diarrhea after 14 days of therapy. Conclusion Genotypic species identification was not consistent with an epidemic context, thus underlining the need for genotyping to monitor at risk patients.
Collapse
Affiliation(s)
- J Brunet
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France. .,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, 3 rue Koeberlé, F-67000, Strasbourg, France.
| | - J P Lemoine
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - B Pesson
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - S Valot
- Laboratoire de Parasitologie et de Mycologie, Plateau Technique de Biologie du CHU Dijon, 2 rue Angélique Ducoudray, BP 37013, F-21070, Dijon cedex, France
| | - M Sautour
- Laboratoire de Parasitologie et de Mycologie, Plateau Technique de Biologie du CHU Dijon, 2 rue Angélique Ducoudray, BP 37013, F-21070, Dijon cedex, France.,UMR 1347, Université de Bourgogne, 17 rue de Sully, F-21000, Dijon, France
| | - F Dalle
- Laboratoire de Parasitologie et de Mycologie, Plateau Technique de Biologie du CHU Dijon, 2 rue Angélique Ducoudray, BP 37013, F-21070, Dijon cedex, France.,UMR 1347, Université de Bourgogne, 17 rue de Sully, F-21000, Dijon, France
| | - C Muller
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - C Borni-Duval
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - S Caillard
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - B Moulin
- Département de Néphrologie et Transplantation, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - A W Pfaff
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France.,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, 3 rue Koeberlé, F-67000, Strasbourg, France
| | - R Razakandrainibe
- Laboratoire de Parasitologie-Mycologie, EA 3800, Centre Hospitalier Universitaire, Université de Rouen, 1, rue de Germont, F-76031, Rouen, France
| | - A Abou-Bacar
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France
| | - L Favennec
- Laboratoire de Parasitologie-Mycologie, EA 3800, Centre Hospitalier Universitaire, Université de Rouen, 1, rue de Germont, F-76031, Rouen, France
| | - E Candolfi
- Laboratoire de Parasitologie et de Mycologie Médicale, Plateau Technique de Microbiologie, Hôpitaux Universitaires de Strasbourg, 1 place de l'Hôpital, BP 426, F-67091, Strasbourg cedex, France.,Institut de Parasitologie et Pathologie Tropicale, EA 7292, Fédération de Médecine Translationnelle, Université de Strasbourg, 3 rue Koeberlé, F-67000, Strasbourg, France
| |
Collapse
|
47
|
Levy K, Klein M, Sarnat SE, Panwhar S, Huttinger A, Tolbert P, Moe C. Refined assessment of associations between drinking water residence time and emergency department visits for gastrointestinal illness in Metro Atlanta, Georgia. JOURNAL OF WATER AND HEALTH 2016; 14:672-681. [PMID: 27441862 PMCID: PMC5468164 DOI: 10.2166/wh.2016.178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent outbreak investigations suggest that a substantial proportion of waterborne disease outbreaks are attributable to water distribution system issues. In this analysis, we examine the relationship between modeled water residence time (WRT), a proxy for probability of microorganism intrusion into the distribution system, and emergency department visits for gastrointestinal (GI) illness for two water utilities in Metro Atlanta, USA during 1993-2004. We also examine the association between proximity to the nearest distribution system node, based on patients' residential address, and GI illness using logistic regression models. Comparing long (≥90th percentile) with intermediate WRTs (11th to 89th percentile), we observed a modestly increased risk for GI illness for Utility 1 (OR = 1.07, 95% CI: 1.02-1.13), which had substantially higher average WRT than Utility 2, for which we found no increased risk (OR = 0.98, 95% CI: 0.94-1.02). Examining finer, 12-hour increments of WRT, we found that exposures >48 h were associated with increased risk of GI illness, and exposures of >96 h had the strongest associations, although none of these associations was statistically significant. Our results suggest that utilities might consider reducing WRTs to <2-3 days or adding booster disinfection in areas with longer WRT, to minimize risk of GI illness from water consumption.
Collapse
Affiliation(s)
- Karen Levy
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail: ; Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Mitchel Klein
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail:
| | - Stefanie Ebelt Sarnat
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail:
| | - Samina Panwhar
- Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Present address: Oregon Health Authority, 500 Summer St. NE, E52, Salem, OR 97301, USA
| | - Alexandra Huttinger
- Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| | - Paige Tolbert
- Department of Environmental Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA E-mail:
| | - Christine Moe
- Center for Global Safe Water, Sanitation and Hygiene at Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA; Hubert Department of Global Health, Rollins School of Public Health, Emory University, 1518 Clifton Rd NE, Atlanta, GA 30322, USA
| |
Collapse
|
48
|
Long-Term Consequences of Cryptosporidium and Giardia Gastroenteritis. CURRENT TROPICAL MEDICINE REPORTS 2016. [DOI: 10.1007/s40475-016-0078-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
49
|
Koehler AV, Haydon SR, Jex AR, Gasser RB. Cryptosporidium and Giardia taxa in faecal samples from animals in catchments supplying the city of Melbourne with drinking water (2011 to 2015). Parasit Vectors 2016; 9:315. [PMID: 27251294 PMCID: PMC4888428 DOI: 10.1186/s13071-016-1607-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 05/25/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In a long-term program to monitor pathogens in water catchments serving the City of Melbourne in the State of Victoria in Australia, we detected and genetically characterised Cryptosporidium and Giardia in faecal samples from various animals in nine water reservoir areas over a period of 4 years (July 2011 to November 2015). METHODS This work was conducted using PCR-based single-strand conformation polymorphism (SSCP) and phylogenetic analyses of portions of the small subunit of ribosomal RNA (SSU) and 60 kDa glycoprotein (gp60) genes for Cryptosporidium, and triose-phosphate isomerase (tpi) gene for Giardia. RESULTS The prevalence of Cryptosporidium was 1.62 % (69 of 4,256 samples); 25 distinct sequence types were defined for pSSU, and six for gp60 which represented C. hominis (genotype Ib - subgenotype IbA10G2), C. cuniculus (genotype Vb - subgenotypes VbA26, and VbA25), and C. canis, C. fayeri, C. macropodum, C. parvum, C. ryanae, Cryptosporidium sp. "duck" genotype, C. suis and C. ubiquitum as well as 12 novel SSU sequence types. The prevalence of Giardia was 0.31 % (13 of 4,256 samples); all three distinct tpi sequence types defined represented assemblage A of G. duodenalis. CONCLUSIONS Of the 34 sequence types (genotypes) characterized here, five and one have been recorded previously for Cryptosporidium and Giardia, respectively, from humans. Novel genotypes of Cryptosporidium and Giardia were recorded for SSU (n = 12), gp60 (n = 4) and tpi (n = 1); the zoonotic potential of these novel genotypes is presently unknown. Future work will continue to monitor the prevalence of Cryptosporidium and Giardia genotypes in animals in these catchments, and expand investigations to humans. Nucleotide sequences reported in this paper are available in the GenBank database under accession nos. KU531647-KU531718.
Collapse
Affiliation(s)
- Anson V Koehler
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| | | | - Aaron R Jex
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia
- The Walter and Eliza Hall Institute, Parkville, Victoria, 3052, Australia
| | - Robin B Gasser
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria, 3010, Australia.
| |
Collapse
|
50
|
Galuppi R, Piva S, Castagnetti C, Sarli G, Iacono E, Fioravanti ML, Caffara M. Cryptosporidium parvum: From foal to veterinary students. Vet Parasitol 2016; 219:53-6. [PMID: 26921039 DOI: 10.1016/j.vetpar.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 01/27/2016] [Accepted: 02/01/2016] [Indexed: 11/30/2022]
Abstract
This paper describes the transmission of a zoonotic subtype of Cryptosporidium parvum between two foals hospitalized in an Equine Perinatology Unit (EPU) linked to an outbreak of cryptosporidiosis in veterinary students. Fecal specimens of 36 mares (105 samples) and 28 foals (122 samples) were subjected to Ziehl-Neelsen staining, nested PCR of 18S rDNA. Two foals tested positive for Cryptosporidium; PCR restriction fragment length polymorphism (PCR-RFLP) analysis and subtyping by nested PCR of the 60kDa glycoprotein (gp60) gene revealed C. parvum subtype IIdA23G1. The introduction of Cryptosporidium into the EPU is suspected to be in a foal showing no initial clinical signs that tested positive for C. parvum during an asymptomatic phase. A second foal, hospitalized afterwards for perinatal asphyxia syndrome complicated with failure of passive transfer and sepsis, showed severe watery diarrhea after 4 days of hospitalization and was positive for the same subtype. During this period, six students attending the EPU complained of abdominal pain and diarrhea and were positive for the same subtype of C. parvum. To the authors' knowledge, this is the first description of this subtype in foals and the first report of evidence of zoonotic transmission of cryptosporidiosis from foals to human.
Collapse
Affiliation(s)
- R Galuppi
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy.
| | - S Piva
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - C Castagnetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - G Sarli
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - E Iacono
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - M L Fioravanti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| | - M Caffara
- Department of Veterinary Medical Sciences, Alma Mater Studiorum Bologna University, Via Tolara di Sopra 50, 40064 Ozzano Emilia, BO, Italy
| |
Collapse
|