1
|
Patel PN, Diouf A, Dickey TH, Tang WK, Hopp CS, Traore B, Long CA, Miura K, Crompton PD, Tolia NH. A strain-transcending anti-AMA1 human monoclonal antibody neutralizes malaria parasites independent of direct RON2L receptor blockade. Cell Rep Med 2025; 6:101985. [PMID: 40020675 PMCID: PMC11970402 DOI: 10.1016/j.xcrm.2025.101985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/06/2025] [Accepted: 01/31/2025] [Indexed: 03/03/2025]
Abstract
Plasmodium falciparum apical membrane antigen 1 (AMA1) binds a loop in rhoptry neck protein 2 (RON2L) during red cell invasion and is a target for vaccines and therapeutic antibodies against malaria. Here, we report a panel of AMA1-specific naturally acquired human monoclonal antibodies (hmAbs) derived from individuals living in malaria-endemic regions. Two neutralizing hmAbs engage AMA1 independent of the RON2L-binding site. The hmAb 75B10 demonstrates potent strain-transcending neutralization that is independent of RON2L blockade, emphasizing that epitopes outside the RON2L-binding site elicit broad protection against variant parasite strains. The combination of these hmAbs synergistically enhances parasite neutralization. Vaccination with a structure-based design (SBD1) that mimics the AMA1-RON2L complex elicited antibodies similar to the two neutralizing hmAbs connecting vaccination to naturally acquired immunity in humans. The structural definition of a strain-transcending epitope on AMA1 targeted by naturally acquired hmAb establishes paradigms for developing AMA1-based vaccines and therapeutic antibodies.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wai Kwan Tang
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christine S Hopp
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Boubacar Traore
- Malaria Research and Training Centre, Mali International Center of Excellence in Research, University of Sciences, Techniques and Technologies of Bamako, Point G, Bamako 1805, Mali
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
2
|
Hawadak J, Kojom Foko LP, Dongang Nana RR, Yadav K, Pande V, Das A, Singh V. Genetic diversity and natural selection of apical membrane antigen-1 (ama-1) in Cameroonian Plasmodium falciparum isolates. Gene 2024; 894:147956. [PMID: 37925116 DOI: 10.1016/j.gene.2023.147956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 10/16/2023] [Accepted: 10/31/2023] [Indexed: 11/06/2023]
Abstract
Antigenic variation associated with genetic diversity in global Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a major impediment to designing an effective malaria vaccine. Here, we report the first study on genetic diversity and natural selection of the Pfama-1 gene in P. falciparum isolates from Cameroon. A total of 328 P. falciparum positive samples collected during 2016 and 2019 from five localities of Cameroon were analysed. The ectodomain coding fragment of Pfama-1 gene was amplified for polymorphism profiling and natural selection analysis. A total of 108 distinct haplotypes were found in 203 P. falciparum isolates with considerable nucleotide diversity (π = 0.016) and haplotype diversity (Hd = 0.976). Most amino acid substitutions detected were scattered in ectodomain-I and few specific mutations viz P145L, K148Q, K462I, L463F, N471K, S482L, E537G, K546R and I547F were seen only in Cameroonian isolates. A tendency of natural selection towards positive diversifying selection was observed (Taj-D = 2.058). Five positively selected codon sites (P145L, S283L, Q308E/K, P330S and I547F) were identified, which overlapped with predicted B-cell epitopes and red blood cell (RBC) binding sites, suggesting their potential implication in host immune pressure and parasite-RBC binding complex modulation. The Cameroonian P. falciparum populations indicated a moderate level of genetic differentiation when compared with global sequences, with few exceptions from Vietnam and Venezuela. Our findings provide baseline data on existing Pfama-1 gene polymorphisms in Cameroonian field isolates, which will be useful information for malaria vaccine design.
Collapse
Affiliation(s)
- Joseph Hawadak
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Loick Pradel Kojom Foko
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Rodrigue Roman Dongang Nana
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India; Institut de Recherches Médicales et D'Etudes des Plantes Médicinales (IMPM), Yaoundé, Cameroon
| | - Karmveer Yadav
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand, India
| | - Aparup Das
- ICMR-National Institute for Research in Tribal Health (NIRTH), Jabalpur, India.
| | - Vineeta Singh
- ICMR-National Institute of Malaria Research (NIMR), Delhi, India.
| |
Collapse
|
3
|
Stevens L, Martínez-Ugalde I, King E, Wagah M, Absolon D, Bancroft R, Gonzalez de la Rosa P, Hall JL, Kieninger M, Kloch A, Pelan S, Robertson E, Pedersen AB, Abreu-Goodger C, Buck AH, Blaxter M. Ancient diversity in host-parasite interaction genes in a model parasitic nematode. Nat Commun 2023; 14:7776. [PMID: 38012132 PMCID: PMC10682056 DOI: 10.1038/s41467-023-43556-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023] Open
Abstract
Host-parasite interactions exert strong selection pressures on the genomes of both host and parasite. These interactions can lead to negative frequency-dependent selection, a form of balancing selection that is hypothesised to explain the high levels of polymorphism seen in many host immune and parasite antigen loci. Here, we sequence the genomes of several individuals of Heligmosomoides bakeri, a model parasite of house mice, and Heligmosomoides polygyrus, a closely related parasite of wood mice. Although H. bakeri is commonly referred to as H. polygyrus in the literature, their genomes show levels of divergence that are consistent with at least a million years of independent evolution. The genomes of both species contain hyper-divergent haplotypes that are enriched for proteins that interact with the host immune response. Many of these haplotypes originated prior to the divergence between H. bakeri and H. polygyrus, suggesting that they have been maintained by long-term balancing selection. Together, our results suggest that the selection pressures exerted by the host immune response have played a key role in shaping patterns of genetic diversity in the genomes of parasitic nematodes.
Collapse
Affiliation(s)
- Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| | - Isaac Martínez-Ugalde
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Erna King
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Martin Wagah
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | | | - Rowan Bancroft
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | - Jessica L Hall
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | | | | | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK
| | - Elaine Robertson
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy B Pedersen
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Cei Abreu-Goodger
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Amy H Buck
- Institute of Immunology & Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Mark Blaxter
- Tree of Life, Wellcome Sanger Institute, Hinxton, UK.
| |
Collapse
|
4
|
Patel PN, Dickey TH, Diouf A, Salinas ND, McAleese H, Ouahes T, Long CA, Miura K, Lambert LE, Tolia NH. Structure-based design of a strain transcending AMA1-RON2L malaria vaccine. Nat Commun 2023; 14:5345. [PMID: 37660103 PMCID: PMC10475129 DOI: 10.1038/s41467-023-40878-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/14/2023] [Indexed: 09/04/2023] Open
Abstract
Apical membrane antigen 1 (AMA1) is a key malaria vaccine candidate and target of neutralizing antibodies. AMA1 binds to a loop in rhoptry neck protein 2 (RON2L) to form the moving junction during parasite invasion of host cells, and this complex is conserved among apicomplexan parasites. AMA1-RON2L complex immunization achieves higher growth inhibitory activity than AMA1 alone and protects mice against Plasmodium yoelii challenge. Here, three single-component AMA1-RON2L immunogens were designed that retain the structure of the two-component AMA1-RON2L complex: one structure-based design (SBD1) and two insertion fusions. All immunogens elicited high antibody titers with potent growth inhibitory activity, yet these antibodies did not block RON2L binding to AMA1. The SBD1 immunogen induced significantly more potent strain-transcending neutralizing antibody responses against diverse strains of Plasmodium falciparum than AMA1 or AMA1-RON2L complex vaccination. This indicates that SBD1 directs neutralizing antibody responses to strain-transcending epitopes in AMA1 that are independent of RON2L binding. This work underscores the importance of neutralization mechanisms that are distinct from RON2 blockade. The stable single-component SBD1 immunogen elicits potent strain-transcending protection that may drive the development of next-generation vaccines for improved malaria and apicomplexan parasite control.
Collapse
Affiliation(s)
- Palak N Patel
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Thayne H Dickey
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ababacar Diouf
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nichole D Salinas
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Holly McAleese
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tarik Ouahes
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Carole A Long
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Lynn E Lambert
- Vaccine Development Unit, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Niraj H Tolia
- Host-Pathogen Interactions and Structural Vaccinology Section, Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
5
|
Osii RS, Otto TD, Garside P, Ndungu FM, Brewer JM. The Impact of Malaria Parasites on Dendritic Cell-T Cell Interaction. Front Immunol 2020; 11:1597. [PMID: 32793231 PMCID: PMC7393936 DOI: 10.3389/fimmu.2020.01597] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022] Open
Abstract
Malaria is caused by apicomplexan parasites of the genus Plasmodium. While infection continues to pose a risk for the majority of the global population, the burden of disease mainly resides in Sub-Saharan Africa. Although immunity develops against disease, this requires years of persistent exposure and is not associated with protection against infection. Repeat infections occur due to the parasite's ability to disrupt or evade the host immune responses. However, despite many years of study, the mechanisms of this disruption remain unclear. Previous studies have demonstrated a parasite-induced failure in dendritic cell (DCs) function affecting the generation of helper T cell responses. These T cells fail to help B cell responses, reducing the production of antibodies that are necessary to control malaria infection. This review focuses on our current understanding of the effect of Plasmodium parasite on DC function, DC-T cell interaction, and T cell activation. A better understanding of how parasites disrupt DC-T cell interactions will lead to new targets and approaches to reinstate adaptive immune responses and enhance parasite immunity.
Collapse
Affiliation(s)
- Rowland S Osii
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,KEMRI-CGMRC/Wellcome Trust Research Programme, Kilifi, Kenya
| | - Thomas D Otto
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul Garside
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Francis M Ndungu
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom.,KEMRI-CGMRC/Wellcome Trust Research Programme, Kilifi, Kenya.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - James M Brewer
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
6
|
Wang YN, Lin M, Liang XY, Chen JT, Xie DD, Wang YL, Ehapo CS, Eyi UM, Huang HY, Wu JL, Xu DY, Chen ZM, Cao YL, Chen HB. Natural selection and genetic diversity of domain I of Plasmodium falciparum apical membrane antigen-1 on Bioko Island. Malar J 2019; 18:317. [PMID: 31533747 PMCID: PMC6751645 DOI: 10.1186/s12936-019-2948-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 09/06/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Plasmodium falciparum apical membrane antigen-1 (PfAMA-1) is a promising candidate antigen for a blood-stage malaria vaccine. However, antigenic variation and diversity of PfAMA-1 are still major problems to design a universal malaria vaccine based on this antigen, especially against domain I (DI). Detail understanding of the PfAMA-1 gene polymorphism can provide useful information on this potential vaccine component. Here, general characteristics of genetic structure and the effect of natural selection of DIs among Bioko P. falciparum isolates were analysed. METHODS 214 blood samples were collected from Bioko Island patients with P. falciparum malaria between 2011 and 2017. A fragment spanning DI of PfAMA-1 was amplified by nested polymerase chain reaction and sequenced. Polymorphic characteristics and the effect of natural selection were analysed using MEGA 5.0, DnaSP 6.0 and Popart programs. Genetic diversity in 576 global PfAMA-1 DIs were also analysed. Protein function prediction of new amino acid mutation sites was performed using PolyPhen-2 program. RESULTS 131 different haplotypes of PfAMA-1 were identified in 214 Bioko Island P. falciparum isolates. Most amino acid changes identified on Bioko Island were found in C1L. 32 amino acid changes identified in PfAMA-1 sequences from Bioko Island were found in predicted RBC-binding sites, B cell epitopes or IUR regions. Overall patterns of amino acid changes of Bioko PfAMA-1 DIs were similar to those in global PfAMA-1 isolates. Differential amino acid substitution frequencies were observed for samples from different geographical regions. Eight new amino acid changes of Bioko island isolates were also identified and their three-dimensional protein structural consequences were predicted. Evidence for natural selection and recombination event were observed in global isolates. CONCLUSIONS Patterns of nucleotide diversity and amino acid polymorphisms of Bioko Island isolates were similar to those of global PfAMA-1 DIs. Balancing natural selection across DIs might play a major role in generating genetic diversity in global isolates. Most amino acid changes in DIs occurred in predicted B-cell epitopes. Novel sites mapped on a three dimensional structure of PfAMA-1 showed that these regions were located at the corner. These results may provide significant value in the design of a malaria vaccine based on this antigen.
Collapse
Affiliation(s)
- Ya-Nan Wang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Min Lin
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Xue-Yan Liang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Jiang-Tao Chen
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
- The Chinese Medical Aid Team to the Republic of Equatorial Guinea, Guangzhou, Guangdong, People's Republic of China
| | - Dong-De Xie
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Yu-Ling Wang
- Laboratory Medical Centre, Huizhou Municipal Central Hospital, Huizhou, Guangdong, People's Republic of China
| | - Carlos Salas Ehapo
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Urbano Monsuy Eyi
- Department of Medical Laboratory, Malabo Regional Hospital, Malabo, Equatorial Guinea
| | - Hui-Ying Huang
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
- School of Food Engineering and Biotechnology, Hanshan Normal University, Chaozhou, Guangdong, People's Republic of China
| | - Jing-Li Wu
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Dan-Yan Xu
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Zhi-Mao Chen
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yi-Long Cao
- 2014 Clinical Medicine Programme, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Hai-Bin Chen
- Department of Histology and Embryology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China.
| |
Collapse
|
7
|
Oboh MA, Singh US, Antony HA, Ndiaye D, Badiane AS, Ali NA, Bharti PK, Das A. Molecular epidemiology and evolution of drug-resistant genes in the malaria parasite Plasmodium falciparum in southwestern Nigeria. INFECTION GENETICS AND EVOLUTION 2018; 66:222-228. [PMID: 30316883 DOI: 10.1016/j.meegid.2018.10.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 10/02/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022]
Abstract
Malaria is an age-old disease of human kind living in the tropical and sub-tropical regions of the globe, with Africa contributing the highest incidence of morbidity and mortality. Among many hurdles, evolution and spread of drug-resistant Plasmodium falciparum parasites constitute major challenges to malaria control and elimination. Information on molecular epidemiology and pattern of evolution of genes conferring resistance to different antimalarials are needed to track the route of the spread of resistant parasites and also to inform if the drug-resistant genes are adapted in the population following the Darwinian model of evolution. In the present study, we have followed molecular methods to detect both the known and emerging mutations in three genes (Pfcrt, Pfdhfr and Pfdhps) of P. falciparum conferring resistance to chloroquine and sulfadoxine-pyrimethamine from two different states (Edo: meso-endemic and Lagos: hypo-endemic) in southwestern Nigeria. High diversities in haplotypes and nucleotides in genes responsible for chloroquine (Pfcrt) and sulfadoxine (Pfdhps) resistance are recorded. About 96% of Pfdhfr and Pfdhps gene in both the meso- and hypo- endemic areas were mutant type, followed by 61% in Pfcrt gene. Many unique haplotypes of Pfdhps and Pfcrt were found to be segregated in these two populations. One particular mutant haplotype of Pfdhfr (AIRNI) was found to be in very high frequency in both Lagos and Edo. While the net haplotype diversity was highest in Pfdhps (0.81 in Lagos, 0.87 in Edo), followed by Pfcrt (0.69 in Lagos, 0.65 in Edo); highest number of haplotype was found in Pfdhps with 13 distinct haplotypes, followed by seven in Pfcrt and four in Pfdhfr gene. Moreover, detection of strong linkage among mutations of Pfcrt and Pfdhfr and feeble evidence for balancing selection in Pfdhps are indicative of evolutionary potential of mutation in genes responsible for drug resistance in Nigerian populations of P. falciparum.
Collapse
Affiliation(s)
- Mary Aigbiremo Oboh
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Upasana Shyamsunder Singh
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Hiasindh Ashmi Antony
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Daouda Ndiaye
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Aida Sadikh Badiane
- Parasitology and Mycology Laboratory, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nazia Anwar Ali
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Praveen Kumar Bharti
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India
| | - Aparup Das
- Division of Vector Borne Diseases, ICMR-National Institute of Research in Tribal Health, Jabalpur, India.
| |
Collapse
|
8
|
Guy AJ, Irani V, Richards JS, Ramsland PA. Structural patterns of selection and diversity for Plasmodium vivax antigens DBP and AMA1. Malar J 2018; 17:183. [PMID: 29720179 PMCID: PMC5930944 DOI: 10.1186/s12936-018-2324-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 04/18/2018] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Plasmodium vivax is a significant contributor to the global malaria burden, and a vaccine targeting vivax malaria is urgently needed. An understanding of the targets of functional immune responses during the course of natural infection will aid in the development of a vaccine. Antibodies play a key role in this process, with responses against particular epitopes leading to immune selection pressure on these epitopes. A number of techniques exist to estimate levels of immune selection pressure on particular epitopes, with a sliding window analysis often used to determine particular regions likely to be under immune pressure. However, such analysis neglects protein three-dimensional structural information. With this in mind, a newly developed tool, BioStructMap, was applied to two key antigens from Plasmodium vivax: PvAMA1 and PvDBP Region II. This tool incorporates structural information into tests of selection pressure. RESULTS Sequences from a number of populations were analysed, examining spatially-derived nucleotide diversity and Tajima's D over protein structures for PvAMA1 and PvDBP. Structural patterns of nucleotide diversity were similar across all populations examined, with Domain I of PvAMA1 having the highest nucleotide diversity and displaying significant signatures of immune selection pressure (Tajima's D > 0). Nucleotide diversity for PvDBP was highest bordering the dimerization and DARC-binding interface, although there was less evidence of immune selection pressure on PvDBP compared with PvAMA1. This study supports previous work that has identified Domain I as the main target of immune-mediated selection pressure for PvAMA1, and also supports studies that have identified functional epitopes within PvDBP Region II. CONCLUSIONS The BioStructMap tool was applied to leading vaccine candidates from P. vivax, to examine structural patterns of selection and diversity across a number of geographic populations. There were striking similarities in structural patterns of diversity across multiple populations. Furthermore, whilst regions of high diversity tended to surround conserved binding interfaces, a number of protein regions with very low diversity were also identified, and these may be useful targets for further vaccine development, given previous evidence of functional antibody responses against these regions.
Collapse
Affiliation(s)
- Andrew J Guy
- Life Sciences, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Immunology, Monash University, Melbourne, Australia
| | - Vashti Irani
- Life Sciences, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia.,Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Jack S Richards
- Life Sciences, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Medicine, University of Melbourne, Melbourne, Australia. .,Department of Infectious Diseases, Monash University, Melbourne, Australia. .,Victorian Infectious Diseases Service, Royal Melbourne Hospital, Melbourne, Australia.
| | - Paul A Ramsland
- Life Sciences, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia. .,Department of Immunology, Monash University, Melbourne, Australia. .,School of Science, RMIT University, Plenty Road, Bundoora, VIC, 3083, Australia. .,Department of Surgery Austin Health, University of Melbourne, Heidelberg, Australia.
| |
Collapse
|
9
|
Lumkul L, Sawaswong V, Simpalipan P, Kaewthamasorn M, Harnyuttanakorn P, Pattaradilokrat S. Unraveling Haplotype Diversity of the Apical Membrane Antigen-1 Gene in Plasmodium falciparum Populations in Thailand. THE KOREAN JOURNAL OF PARASITOLOGY 2018; 56:153-165. [PMID: 29742870 PMCID: PMC5976018 DOI: 10.3347/kjp.2018.56.2.153] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 03/14/2018] [Accepted: 04/05/2018] [Indexed: 12/20/2022]
Abstract
Development of an effective vaccine is critically needed for the prevention of malaria. One of the key antigens for malaria vaccines is the apical membrane antigen 1 (AMA-1) of the human malaria parasite Plasmodium falciparum, the surface protein for erythrocyte invasion of the parasite. The gene encoding AMA-1 has been sequenced from populations of P. falciparum worldwide, but the haplotype diversity of the gene in P. falciparum populations in the Greater Mekong Subregion (GMS), including Thailand, remains to be characterized. In the present study, the AMA-1 gene was PCR amplified and sequenced from the genomic DNA of 65 P. falciparum isolates from 5 endemic areas in Thailand. The nearly full-length 1,848 nucleotide sequence of AMA-1 was subjected to molecular analyses, including nucleotide sequence diversity, haplotype diversity and deduced amino acid sequence diversity and neutrality tests. Phylogenetic analysis and pairwise population differentiation (Fst indices) were performed to infer the population structure. The analyses identified 60 single nucleotide polymorphic loci, predominately located in domain I of AMA-1. A total of 31 unique AMA-1 haplotypes were identified, which included 11 novel ones. The phylogenetic tree of the AMA-1 haplotypes revealed multiple clades of AMA-1, each of which contained parasites of multiple geographical origins, consistent with the Fst indices indicating genetic homogeneity or gene flow among geographically distinct populations of P. falciparum in Thailand’s borders with Myanmar, Laos and Cambodia. In summary, the study revealed novel haplotypes and population structure needed for the further advancement of AMA-1-based malaria vaccines in the GMS.
Collapse
Affiliation(s)
- Lalita Lumkul
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Vorthon Sawaswong
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Phumin Simpalipan
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Morakot Kaewthamasorn
- Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Sittiporn Pattaradilokrat
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.,Veterinary Parasitology Research Group, Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
10
|
Miller RH, Hathaway NJ, Kharabora O, Mwandagalirwa K, Tshefu A, Meshnick SR, Taylor SM, Juliano JJ, Stewart VA, Bailey JA. A deep sequencing approach to estimate Plasmodium falciparum complexity of infection (COI) and explore apical membrane antigen 1 diversity. Malar J 2017; 16:490. [PMID: 29246158 PMCID: PMC5732508 DOI: 10.1186/s12936-017-2137-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplotypes identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and Mali. RESULTS A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between parasite populations in the DRC and Mali. CONCLUSIONS Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse markers under balancing selection may perform well for understanding COI, they may offer little geographic or temporal discrimination between parasite populations.
Collapse
Affiliation(s)
- Robin H Miller
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA
| | - Oksana Kharabora
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Kashamuka Mwandagalirwa
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Antoinette Tshefu
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Steven R Meshnick
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University Medical Center, 303 Research Drive, Durham, NC, USA
| | - Jonathan J Juliano
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - V Ann Stewart
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA.
| |
Collapse
|
11
|
Kusi KA, Faber BW, Koopman G, Remarque EJ. EDiP: the Epitope Dilution Phenomenon. Lessons learnt from a malaria vaccine antigen and its applicability to polymorphic antigens. Expert Rev Vaccines 2017; 17:13-21. [PMID: 29224404 DOI: 10.1080/14760584.2018.1411198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Polymorphism in vaccine antigens poses major challenges to vaccinologists. The Plasmodium falciparum Apical Membrane Antigen 1 (AMA1) poses such a challenge. We found that immunization with a mixture of three variants yielded functional antibody levels to all variants comparable to levels induced by monovalent immunization. The mechanism behind the observed broadening was shown to be an increase in the fraction of cross-reactive antibodies, most likely because strain-specific epitopes are present at lower frequency relative to conserved epitopes. Areas covered: We hereby introduce the Epitope Dilution Phenomenon (EDiP) as a practical strategy for the induction of broad, cross-variant antibody responses against polymorphic antigens and discuss the utility and applicability of this phenomenon for the development of vaccines against polymorphic antigens of pathogens like Influenza, HIV, Dengue and Plasmodium. Expert commentary: EDiP can be used to broaden antibody responses by immunizing with a mixture of at least 3 antigenic variants, where the variants included can differ, yet yield broadened responses.
Collapse
Affiliation(s)
- Kwadwo Asamoah Kusi
- a Immunology Department , Noguchi Memorial Institute for Medical Research, College of Health Sciences University of Ghana , Accra , Ghana
| | - Bart W Faber
- b Department of Parasitology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| | - Gerrit Koopman
- c Department of Virology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| | - Edmond Joseph Remarque
- c Department of Virology , Biomedical Primate Research Centre , Rijswijk , The Netherlands
| |
Collapse
|
12
|
Spiegel H, Boes A, Fendel R, Reimann A, Schillberg S, Fischer R. Immunization with the Malaria Diversity-Covering Blood-Stage Vaccine Candidate Plasmodium falciparum Apical Membrane Antigen 1 DiCo in Complex with Its Natural Ligand PfRon2 Does Not Improve the In Vitro Efficacy. Front Immunol 2017; 8:743. [PMID: 28702028 PMCID: PMC5484772 DOI: 10.3389/fimmu.2017.00743] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 06/12/2017] [Indexed: 01/05/2023] Open
Abstract
The blood-stage malaria vaccine candidate Plasmodium falciparum apical membrane antigen 1 (PfAMA1) can induce strong parasite growth-inhibitory antibody responses in animals but has not achieved the anticipated efficacy in clinical trials. Possible explanations in humans are the insufficient potency of the elicited antibody responses, as well as the high degree of sequence polymorphisms found in the field. Several strategies have been developed to improve the cross-strain coverage of PfAMA1-based vaccines, whereas innovative concepts to increase the potency of PfAMA1-specific IgG responses have received little attention even though this may be an essential requirement for protective efficacy. A previous study has demonstrated that immunization with a complex of PyAMA1 and PyRON2, a ligand with an essential functional role in erythrocyte invasion, leads to protection from lethal Plasmodium yoelli challenge in an animal model and suggested to extend this strategy toward improved strain coverage by using multiple PfAMA1 alleles in combination with PfRon2L. As an alternative approach along this line, we decided to use PfRon2L in combination with three PfAMA1 diversity covering variants (DiCo) to investigate the potential of this complex to induce more potent parasite growth inhibitory immune response in combination with better cross-strain-specific efficacy. Within the limits of the study design, the ability of the PfAMA1 DiCo-Mix to induce cross-strain-specific antibodies was not affected in all immunization groups, but the DiCo-PfRon2L complexes did not improve the potency of PfAMA1-specific IgG responses.
Collapse
Affiliation(s)
- Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Alexander Boes
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,Institute for Phytopathology and Applied Zoology, Justus-Liebig University Giessen, Giessen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany.,RWTH Aachen University, Institute for Molecular Biotechnology, Aachen, Germany.,Indiana Biosciences Research Institute (IBRI), Indianapolis, IN, United States
| |
Collapse
|
13
|
Gitaka JN, Takeda M, Kimura M, Idris ZM, Chan CW, Kongere J, Yahata K, Muregi FW, Ichinose Y, Kaneko A, Kaneko O. Selections, frameshift mutations, and copy number variation detected on the surf 4.1 gene in the western Kenyan Plasmodium falciparum population. Malar J 2017; 16:98. [PMID: 28253868 PMCID: PMC5335827 DOI: 10.1186/s12936-017-1743-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Plasmodium falciparum SURFIN4.1 is a putative ligand expressed on the merozoite and likely on the infected red blood cell, whose gene was suggested to be under directional selection in the eastern Kenyan population, but under balancing selection in the Thai population. To understand this difference, surf 4.1 sequences of western Kenyan P. falciparum isolates were analysed. Frameshift mutations and copy number variation (CNV) were also examined for the parasites from western Kenya and Thailand. RESULTS Positively significant departures from neutral expectations were detected on the surf 4.1 region encoding C-terminus of the variable region 2 (Var2) by 3 population-based tests in the western Kenyan population as similar in the Thai population, which was not covered by the previous analysis for eastern Kenyan population. Significant excess of non-synonymous substitutions per nonsynonymous site over synonymous substitutions per synonymous site was also detected in the Var2 region. Negatively significant departures from neutral expectations was detected on the region encoding Var1 C-terminus consistent to the previous observation in the eastern Kenyan population. Parasites possessing a frameshift mutation resulting a product without intracellular Trp-rich (WR) domains were 22/23 in western Kenya and 22/36 in Thailand. More than one copy of surf 4.1 gene was detected in western Kenya (4/24), but no CNV was found in Thailand (0/36). CONCLUSIONS The authors infer that the high polymorphism of SURFIN4.1 Var2 C-terminus in both Kenyan and Thai populations were shaped-up by diversifying selection and maintained by balancing selection. These phenomena were most likely driven by immunological pressure. Whereas the SURFIN4.1 Var1 C-terminus is suggested to be under directional selection consistent to the previous report for the eastern Kenyan population. Most western Kenyan isolates possess a frameshift mutation that would limit the expression of SURFIN4.1 on the merozoite, but only 60% of Thai isolates possess this frameshift, which would affect the level and type of the selection pressure against this protein as seen in the two extremities of Tajima's D values for Var1 C-terminus between Kenyan and Thai populations. CNV observed in Kenyan isolates may be a consequence of this frameshift mutation to increase benefits on the merozoite surface.
Collapse
Affiliation(s)
- Jesse N. Gitaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Mika Takeda
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Masatsugu Kimura
- Radioisotope Centre, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
| | - Zulkarnain Md Idris
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Medical Entomology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia
| | - Chim W. Chan
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
| | - James Kongere
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Kazuhide Yahata
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Francis W. Muregi
- Department of Clinical Medicine, Mount Kenya University, PO Box 342-01000, Thika, Kenya
| | - Yoshio Ichinose
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Nairobi Research Station, Nagasaki University Institute of Tropical Medicine-Kenya Medical Research Institute (NUITM-KEMRI) Project, Institute of Tropical Medicine (NEKKEN), Nagasaki University, P. O. Box 19993-00202, Nairobi, Kenya
| | - Akira Kaneko
- Island Malaria Group, Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Nobels väg 16, SE 171 77 Stockholm, Sweden
- Department of Parasitology and Research Center for Infectious Disease Sciences, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abeno-ku, Osaka, 545-8585 Japan
- Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Osamu Kaneko
- Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
- Department of Protozoology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| |
Collapse
|
14
|
Rojas TCG, Lobo FP, Hongo JA, Vicentini R, Verma R, Maluta RP, da Silveira WD. Genome-Wide Survey of Genes Under Positive Selection in Avian Pathogenic Escherichia coli Strains. Foodborne Pathog Dis 2017; 14:245-252. [PMID: 28398866 DOI: 10.1089/fpd.2016.2219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The ability to obtain bacterial genomes from the same host has allowed for comparative studies that help in the understanding of the molecular evolution of specific pathotypes. Avian pathogenic Escherichia coli (APEC) is a group of extraintestinal strains responsible for causing colibacillosis in birds. APEC is also suggested to possess a role as a zoonotic agent. Despite its importance, APEC pathogenesis still has several cryptic pathogenic processes that need to be better understood. In this work, a genome-wide survey of eight APEC strains for genes with evidence of recombination revealed that ∼14% of the homologous groups evaluated present signs of recombination. Enrichment analyses revealed that nine Gene Ontology (GO) terms were significantly more represented in recombinant genes. Among these GO terms, several were noted to be ATP-related categories. The search for positive selection in these APEC genomes revealed 32 groups of homologous genes with evidence of positive selection. Among these groups, we found several related to cell metabolism, as well as several uncharacterized genes, beyond the well-known virulence factors ompC, lamB, waaW, waaL, and fliC. A GO term enrichment test showed a prevalence of terms related to bacterial cell contact with the external environment (e.g., viral entry into host cell, detection of virus, pore complex, bacterial-type flagellum filament C, and porin activity). Finally, the genes with evidence of positive selection were retrieved from genomes of non-APEC strains and tested as were done for APEC strains. The result revealed that none of the groups of genes presented evidence of positive selection, confirming that the analysis was effective in inferring positive selection for APEC and not for E. coli in general, which means that the study of the genes with evidence of positive selection identified in this study can contribute for the better understanding of APEC pathogenesis processes.
Collapse
Affiliation(s)
- Thaís Cabrera Galvão Rojas
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Francisco Pereira Lobo
- 2 Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária , Campinas, Brazil
| | - Jorge Augusto Hongo
- 2 Laboratório Multiusuário de Bioinformática, Embrapa Informática Agropecuária , Campinas, Brazil
| | - Renato Vicentini
- 3 Systems Biology Laboratory, Centre for Molecular Biology and Genetic Engineering, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Renu Verma
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Renato Pariz Maluta
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| | - Wanderley Dias da Silveira
- 1 Department of Genetics, Evolution and Bioagents, Institute of Biology, State University of Campinas (UNICAMP) , Campinas, Brazil
| |
Collapse
|
15
|
Overlap Extension Barcoding for the Next Generation Sequencing and Genotyping of Plasmodium falciparum in Individual Patients in Western Kenya. Sci Rep 2017; 7:41108. [PMID: 28117350 PMCID: PMC5259759 DOI: 10.1038/srep41108] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/15/2016] [Indexed: 12/23/2022] Open
Abstract
Large-scale molecular epidemiologic studies of Plasmodium falciparum parasites have provided insights into parasite biology and transmission, can identify the spread of drug resistance, and are useful in assessing vaccine targets. The polyclonal nature infections in high transmission settings is problematic for traditional genotyping approaches. Next-generation sequencing (NGS) approaches to parasite genotyping allow sensitive detection of minority variants, disaggregation of complex parasite mixtures, and scalable processing of large samples sets. Therefore, we designed, validated, and applied to field parasites an approach that leverages sequencing of individually barcoded samples in a multiplex manner. We utilize variant barcodes, invariant linker sequences and modular template-specific primers to allow for the simultaneous generation of high-dimensional sequencing data of multiple gene targets. This modularity permits a cost-effective and reproducible way to query many genes at once. In mixtures of reference parasite genomes, we quantitatively detected unique haplotypes comprising as little as 2% of a polyclonal infection. We applied this genotyping approach to field-collected parasites collected in Western Kenya in order to simultaneously obtain parasites genotypes at three unlinked loci. In summary, we present a rapid, scalable, and flexible method for genotyping individual parasites that enables molecular epidemiologic studies of parasite evolution, population structure and transmission.
Collapse
|
16
|
Maskus DJ, Królik M, Bethke S, Spiegel H, Kapelski S, Seidel M, Addai-Mensah O, Reimann A, Klockenbring T, Barth S, Fischer R, Fendel R. Characterization of a novel inhibitory human monoclonal antibody directed against Plasmodium falciparum Apical Membrane Antigen 1. Sci Rep 2016; 6:39462. [PMID: 28000709 PMCID: PMC5175200 DOI: 10.1038/srep39462] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 11/22/2016] [Indexed: 01/07/2023] Open
Abstract
Malaria remains a major challenge to global health causing extensive morbidity and mortality. Yet, there is no efficient vaccine and the immune response remains incompletely understood. Apical Membrane Antigen 1 (AMA1), a leading vaccine candidate, plays a key role during merozoite invasion into erythrocytes by interacting with Rhoptry Neck Protein 2 (RON2). We generated a human anti-AMA1-antibody (humAbAMA1) by EBV-transformation of sorted B-lymphocytes from a Ghanaian donor and subsequent rescue of antibody variable regions. The antibody was expressed in Nicotiana benthamiana and in HEK239-6E, characterized for binding specificity and epitope, and analyzed for its inhibitory effect on Plasmodium falciparum. The generated humAbAMA1 shows an affinity of 106-135 pM. It inhibits the parasite strain 3D7A growth in vitro with an expression system-independent IC50-value of 35 μg/ml (95% confidence interval: 33 μg/ml-37 μg/ml), which is three to eight times lower than the IC50-values of inhibitory antibodies 4G2 and 1F9. The epitope was mapped to the close proximity of the RON2-peptide binding groove. Competition for binding between the RON2-peptide and humAbAMA1 was confirmed by surface plasmon resonance spectroscopy measurements. The particularly advantageous inhibitory activity of this fully human antibody might provide a basis for future therapeutic applications.
Collapse
Affiliation(s)
- Dominika J. Maskus
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Michał Królik
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Susanne Bethke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stephanie Kapelski
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Melanie Seidel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Otchere Addai-Mensah
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Faculty of Allied Health Sciences, Kwame Nkrumah University of Science and Technology, KNUST, Kumasi, Ghana
| | - Andreas Reimann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Torsten Klockenbring
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Barth
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| | - Rainer Fischer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Rolf Fendel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Molecular Biotechnology, RWTH Aachen University, Aachen, Germany
- Institute for Applied Medical Engineering at RWTH Aachen University and Hospital, Department of Experimental Medicine and Immunotherapy, Aachen, Germany
| |
Collapse
|
17
|
McAssey EV, Corbi J, Burke JM. Range-wide phenotypic and genetic differentiation in wild sunflower. BMC PLANT BIOLOGY 2016; 16:249. [PMID: 27829377 PMCID: PMC5103407 DOI: 10.1186/s12870-016-0937-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/28/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Divergent phenotypes and genotypes are key signals for identifying the targets of natural selection in locally adapted populations. Here, we used a combination of common garden phenotyping for a variety of growth, plant architecture, and seed traits, along with single-nucleotide polymorphism (SNP) genotyping to characterize range-wide patterns of diversity in 15 populations of wild sunflower (Helianthus annuus L.) sampled along a latitudinal gradient in central North America. We analyzed geographic patterns of phenotypic diversity, quantified levels of within-population SNP diversity, and also determined the extent of population structure across the range of this species. We then used these data to identify significantly over-differentiated loci as indicators of genomic regions that likely contribute to local adaptation. RESULTS Traits including flowering time, plant height, and seed oil composition (i.e., percentage of saturated fatty acids) were significantly correlated with latitude, and thus differentiated northern vs. southern populations. Average pairwise FST was found to be 0.21, and a STRUCTURE analysis identified two significant clusters that largely separated northern and southern individuals. The significant FST outliers included a SNP in HaFT2, a flowering time gene that has been previously shown to co-localize with flowering time QTL, and which exhibits a known cline in gene expression. CONCLUSIONS Latitudinal differentiation in both phenotypic traits and SNP allele frequencies is observed across wild sunflower populations in central North America. Such differentiation may play an important adaptive role across the range of this species, and could facilitate adaptation to a changing climate.
Collapse
Affiliation(s)
- Edward V. McAssey
- Department of Plant Biology, University of Georgia, Miller Plant Sciences Building, Athens, GA 30602 USA
- University of Georgia, Center for Applied Genetic Technologies, 111 Riverbend Road, Athens, GA 30602 USA
| | - Jonathan Corbi
- Department of Plant Biology, University of Georgia, Miller Plant Sciences Building, Athens, GA 30602 USA
- Université de Lyon, F-69000, Lyon; Université Lyon 1; CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, F-69622 Villeurbanne, France
| | - John M. Burke
- Department of Plant Biology, University of Georgia, Miller Plant Sciences Building, Athens, GA 30602 USA
| |
Collapse
|
18
|
Wang G, Drinkwater N, Drew DR, MacRaild CA, Chalmers DK, Mohanty B, Lim SS, Anders RF, Beeson JG, Thompson PE, McGowan S, Simpson JS, Norton RS, Scanlon MJ. Structure–Activity Studies of β-Hairpin Peptide Inhibitors of the Plasmodium falciparum AMA1–RON2 Interaction. J Mol Biol 2016; 428:3986-3998. [DOI: 10.1016/j.jmb.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/25/2016] [Accepted: 07/04/2016] [Indexed: 12/01/2022]
|
19
|
Ochola-Oyier LI, Okombo J, Wagatua N, Ochieng J, Tetteh KK, Fegan G, Bejon P, Marsh K. Comparison of allele frequencies of Plasmodium falciparum merozoite antigens in malaria infections sampled in different years in a Kenyan population. Malar J 2016; 15:261. [PMID: 27154310 PMCID: PMC4858837 DOI: 10.1186/s12936-016-1304-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 04/20/2016] [Indexed: 11/24/2022] Open
Abstract
Background Plasmodium falciparum merozoite antigens elicit antibody responses in malaria-endemic populations, some of which are clinically protective, which is one of the reasons why merozoite antigens are the focus of malaria vaccine development efforts. Polymorphisms in several merozoite antigen-encoding genes are thought to arise as a result of selection by the human immune system. Methods The allele frequency distribution of 15 merozoite antigens over a two-year period, 2007 and 2008, was examined in parasites obtained from children with uncomplicated malaria. In the same population, allele frequency changes pre- and post-anti-malarial treatment were also examined. Any gene which showed a significant shift in allele frequencies was also assessed longitudinally in asymptomatic and complicated malaria infections. Results Fluctuating allele frequencies were identified in codons 147 and 148 of reticulocyte-binding homologue (Rh) 5, with a shift from HD to YH haplotypes over the two-year period in uncomplicated malaria infections. However, in both the asymptomatic and complicated malaria infections YH was the dominant and stable haplotype over the two-year and ten-year periods, respectively. A logistic regression analysis of all three malaria infection populations between 2007 and 2009 revealed, that the chance of being infected with the HD haplotype decreased with time from 2007 to 2009 and increased in the uncomplicated and asymptomatic infections. Conclusion Rh5 codons 147 and 148 showed heterogeneity at both an individual and population level and may be under some degree of immune selection. Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1304-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - John Okombo
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Njoroge Wagatua
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Jacob Ochieng
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin K Tetteh
- Department of Immunology and Infection, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Greg Fegan
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Philip Bejon
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| | - Kevin Marsh
- KEMRI-Wellcome Trust Collaborative Programme, P.O. Box 230, Kilifi, 80108, Kenya
| |
Collapse
|
20
|
Zhu X, Zhao Z, Feng Y, Li P, Liu F, Liu J, Yang Z, Yan G, Fan Q, Cao Y, Cui L. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area. INFECTION GENETICS AND EVOLUTION 2016; 39:155-162. [PMID: 26825252 DOI: 10.1016/j.meegid.2016.01.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 01/20/2016] [Accepted: 01/23/2016] [Indexed: 11/28/2022]
Abstract
To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs.
Collapse
Affiliation(s)
- Xiaotong Zhu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhenjun Zhao
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yonghui Feng
- Department of Laboratory Medicine, The First Hospital of China Medical University, Shenyang, Liaoning 110001, China
| | - Peipei Li
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Fei Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Jun Liu
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China
| | - Zhaoqing Yang
- Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA, USA
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Yaming Cao
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China.
| | - Liwang Cui
- Department of Immunology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, China; Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
21
|
Kang JM, Lee J, Cho PY, Moon SU, Ju HL, Ahn SK, Sohn WM, Lee HW, Kim TS, Na BK. Population genetic structure and natural selection of apical membrane antigen-1 in Plasmodium vivax Korean isolates. Malar J 2015; 14:455. [PMID: 26572984 PMCID: PMC4647566 DOI: 10.1186/s12936-015-0942-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Accepted: 10/09/2015] [Indexed: 12/27/2022] Open
Abstract
Background Plasmodium vivax apical membrane antigen-1 (PvAMA-1) is a leading candidate antigen for blood stage malaria vaccine. However, antigenic variation is a major obstacle in the development of an effective vaccine based on this antigen. In this study, the genetic structure and the effect of natural selection of PvAMA-1 among Korean P. vivax isolates were analysed. Methods Blood samples were collected from 66 Korean patients with vivax malaria. The entire PvAMA-1 gene was amplified by polymerase chain reaction and cloned into a TA cloning vector. The PvAMA-1 sequence of each isolate was sequenced and the polymorphic characteristics and effect of natural selection were analysed using the DNASTAR, MEGA4, and DnaSP programs. Results Thirty haplotypes of PvAMA-1, which were further classified into seven different clusters, were identified in the 66 Korean P. vivax isolates. Domain II was highly conserved among the sequences, but substantial nucleotide diversity was observed in domains I and III. The difference between the rates of non-synonymous and synonymous mutations suggested that the gene has evolved under natural selection. No strong evidence indicating balancing or positive selection on PvAMA-1 was identified. Recombination may also play a role in the resulting genetic diversity of PvAMA-1. Conclusions This study is the first comprehensive analysis of nucleotide diversity across the entire PvAMA-1 gene using a single population sample from Korea. Korean PvAMA-1 had limited genetic diversity compared to PvAMA-1 in global isolates. The overall pattern of genetic polymorphism of Korean PvAMA-1 differed from other global isolates and novel amino acid changes were also identified in Korean PvAMA-1. Evidences for natural selection and recombination event were observed, which is likely to play an important role in generating genetic diversity across the PvAMA-1. These results provide useful information for the understanding the population structure of P. vivax circulating in Korea and have important implications for the design of a vaccine incorporating PvAMA-1.
Collapse
Affiliation(s)
- Jung-Mi Kang
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Jinyoung Lee
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Pyo-Yun Cho
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, 400-712, Republic of Korea.
| | - Sung-Ung Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, 463-707, Republic of Korea.
| | - Hye-Lim Ju
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Seong Kyu Ahn
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, 400-712, Republic of Korea.
| | - Woon-Mok Sohn
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| | - Hyeong-Woo Lee
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, J-566, 1275 Center Drive, Gainesville, FL, 32610, USA.
| | - Tong-Soo Kim
- Department of Tropical Medicine, Inha Research Institute for Medical Sciences, Inha University School of Medicine, Incheon, 400-712, Republic of Korea.
| | - Byoung-Kuk Na
- Department of Parasitology and Tropical Medicine, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, 660-751, Republic of Korea.
| |
Collapse
|
22
|
Gupta B, Reddy BPN, Fan Q, Yan G, Sirichaisinthop J, Sattabongkot J, Escalante AA, Cui L. Molecular Evolution of PvMSP3α Block II in Plasmodium vivax from Diverse Geographic Origins. PLoS One 2015; 10:e0135396. [PMID: 26266539 PMCID: PMC4534382 DOI: 10.1371/journal.pone.0135396] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 07/21/2015] [Indexed: 11/29/2022] Open
Abstract
Block II of Plasmodium vivax merozoite surface protein 3α (PvMSP3α) is conserved and has been proposed as a potential candidate for a malaria vaccine. The present study aimed to compare sequence diversity in PvMSP3a block II at a local microgeographic scale in a village as well as from larger geographic regions (countries and worldwide). Blood samples were collected from asymptomatic carriers of P. vivax in a village at the western border of Thailand and PvMSP3α was amplified and sequenced. For population genetic analysis, 237 PvMSP3α block II sequences from eleven P. vivax endemic countries were analyzed. PvMSP3α sequences from 20 village-level samples revealed two length variant types with one type containing a large deletion in block I. In contrast, block II was relatively conserved; especially, some non-synonymous mutations were extensively shared among 11 parasite populations. However, the majority of the low-frequency synonymous variations were population specific. The conserved pattern of nucleotide diversity in block II sequences was probably due to functional/structural constraints, which were further supported by the tests of neutrality. Notably, a small region in block II that encodes a predicted B cell epitope was highly polymorphic and showed signs of balancing selection, signifying that this region might be influenced by the immune selection and may serve as a starting point for designing multi-antigen/stage epitope based vaccines against this parasite.
Collapse
Affiliation(s)
- Bhavna Gupta
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - B. P. Niranjan Reddy
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
| | - Qi Fan
- Dalian Institute of Biotechnology, Dalian, Liaoning, China
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697, United States of America
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400 Thailand
| | - Ananias A. Escalante
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, United States of America
| | - Liwang Cui
- Department of Entomology, Pennsylvania State University, University Park, PA 16802, United States of America
- * E-mail:
| |
Collapse
|
23
|
Faber BW, Abdul Kadir K, Rodriguez-Garcia R, Remarque EJ, Saul FA, Vulliez-Le Normand B, Bentley GA, Kocken CHM, Singh B. Low levels of polymorphisms and no evidence for diversifying selection on the Plasmodium knowlesi Apical Membrane Antigen 1 gene. PLoS One 2015; 10:e0124400. [PMID: 25881166 PMCID: PMC4400157 DOI: 10.1371/journal.pone.0124400] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/03/2015] [Indexed: 11/19/2022] Open
Abstract
Infection with Plasmodium knowlesi, a zoonotic primate malaria, is a growing human health problem in Southeast Asia. P. knowlesi is being used in malaria vaccine studies, and a number of proteins are being considered as candidate malaria vaccine antigens, including the Apical Membrane Antigen 1 (AMA1). In order to determine genetic diversity of the ama1 gene and to identify epitopes of AMA1 under strongest immune selection, the ama1 gene of 52 P. knowlesi isolates derived from human infections was sequenced. Sequence analysis of isolates from two geographically isolated regions in Sarawak showed that polymorphism in the protein is low compared to that of AMA1 of the major human malaria parasites, P. falciparum and P. vivax. Although the number of haplotypes was 27, the frequency of mutations at the majority of the polymorphic positions was low, and only six positions had a variance frequency higher than 10%. Only two positions had more than one alternative amino acid. Interestingly, three of the high-frequency polymorphic sites correspond to invariant sites in PfAMA1 or PvAMA1. Statistically significant differences in the quantity of three of the six high frequency mutations were observed between the two regions. These analyses suggest that the pkama1 gene is not under balancing selection, as observed for pfama1 and pvama1, and that the PkAMA1 protein is not a primary target for protective humoral immune responses in their reservoir macaque hosts, unlike PfAMA1 and PvAMA1 in humans. The low level of polymorphism justifies the development of a single allele PkAMA1-based vaccine.
Collapse
Affiliation(s)
- Bart W. Faber
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
- * E-mail: (BWF); (BS)
| | - Khamisah Abdul Kadir
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
| | | | - Edmond J Remarque
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Frederick A. Saul
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Brigitte Vulliez-Le Normand
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Graham A. Bentley
- Institut Pasteur, Unité d’Immunologie Structurale, Département de Biologie Structurale et Chimie, Paris, France
- CNRS URA 2185, Paris, France
| | - Clemens H. M. Kocken
- Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands
| | - Balbir Singh
- Malaria Research Centre, Faculty of Medicine and Health Sciences, Universiti Malaysia Sarawak, Kuching, Sarawak, Malaysia
- * E-mail: (BWF); (BS)
| |
Collapse
|
24
|
Molecular insights into the interaction between Plasmodium falciparum apical membrane antigen 1 and an invasion-inhibitory peptide. PLoS One 2014; 9:e109674. [PMID: 25343578 PMCID: PMC4208761 DOI: 10.1371/journal.pone.0109674] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 09/03/2014] [Indexed: 11/28/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) of the human malaria parasite Plasmodium falciparum has been implicated in invasion of the host erythrocyte. It interacts with malarial rhoptry neck (RON) proteins in the moving junction that forms between the host cell and the invading parasite. Agents that block this interaction inhibit invasion and may serve as promising leads for anti-malarial drug development. The invasion-inhibitory peptide R1 binds to a hydrophobic cleft on AMA1, which is an attractive target site for small molecules that block parasite invasion. In this work, truncation and mutational analyses show that Phe5-Phe9, Phe12 and Arg15 in R1 are the most important residues for high affinity binding to AMA1. These residues interact with two well-defined binding hot spots on AMA1. Computational solvent mapping reveals that one of these hot spots is suitable for small molecule targeting. We also confirm that R1 in solution binds to AMA1 with 1∶1 stoichiometry and adopts a secondary structure consistent with the major form of R1 observed in the crystal structure of the complex. Our results provide a basis for designing high affinity inhibitors of the AMA1-RON2 interaction.
Collapse
|
25
|
Use of immunodampening to overcome diversity in the malarial vaccine candidate apical membrane antigen 1. Infect Immun 2014; 82:4707-17. [PMID: 25156737 DOI: 10.1128/iai.02061-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a leading malarial vaccine candidate; however, its polymorphic nature may limit its success in the field. This study aimed to circumvent AMA1 diversity by dampening the antibody response to the highly polymorphic loop Id, previously identified as a major target of strain-specific, invasion-inhibitory antibodies. To achieve this, five polymorphic residues within this loop were mutated to alanine, glycine, or serine in AMA1 of the 3D7 and FVO Plasmodium falciparum strains. Initially, the corresponding antigens were displayed on the surface of bacteriophage, where the alanine and serine but not glycine mutants folded correctly. The alanine and serine AMA1 mutants were expressed in Escherichia coli, refolded in vitro, and used to immunize rabbits. Serological analyses indicated that immunization with a single mutated form of 3D7 AMA1 was sufficient to increase the cross-reactive antibody response. Targeting the corresponding residues in an FVO backbone did not achieve this outcome. The inclusion of at least one engineered form of AMA1 in a biallelic formulation resulted in an antibody response with broader reactivity against different AMA1 alleles than combining the wild-type forms of 3D7 and FVO AMA1 alleles. For one combination, this extended to an enhanced relative growth inhibition of a heterologous parasite line, although this was at the cost of reduced overall inhibitory activity. These results suggest that targeted mutagenesis of AMA1 is a promising strategy for overcoming antigenic diversity in AMA1 and reducing the number of variants required to induce an antibody response that protects against a broad range of Plasmodium falciparum AMA1 genotypes. However, optimization of the immunization regime and mutation strategy will be required for this potential to be realized.
Collapse
|
26
|
Devine SM, Lim SS, Chandrashekaran IR, MacRaild CA, Drew DR, Debono CO, Lam R, Anders RF, Beeson JG, Scanlon MJ, Scammells PJ, Norton RS. A critical evaluation of pyrrolo[2,3-d]pyrimidine-4-amines as Plasmodium falciparum apical membrane antigen 1 (AMA1) inhibitors. MEDCHEMCOMM 2014. [DOI: 10.1039/c4md00090k] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyrrolo[2,3-d]pyrimidines are low affinity AMA1 binders that are also prone to aggregation.
Collapse
Affiliation(s)
- Shane M. Devine
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - San Sui Lim
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Indu R. Chandrashekaran
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Christopher A. MacRaild
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Damien R. Drew
- Centre for Biomedical Research
- Burnet Institute
- Melbourne, Australia
| | - Cael O. Debono
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Raymond Lam
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Robin F. Anders
- Department of Biochemistry
- La Trobe University
- Melbourne, Australia
| | - James G. Beeson
- Centre for Biomedical Research
- Burnet Institute
- Melbourne, Australia
| | - Martin J. Scanlon
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
- Centre of Excellence for Coherent X-Ray Science
| | - Peter J. Scammells
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| | - Raymond S. Norton
- Medicinal Chemistry
- Monash Institute of Pharmaceutical Sciences
- Monash University
- Parkville, Australia
| |
Collapse
|
27
|
Dutta S, Dlugosz LS, Drew DR, Ge X, Ababacar D, Rovira YI, Moch JK, Shi M, Long CA, Foley M, Beeson JG, Anders RF, Miura K, Haynes JD, Batchelor AH. Overcoming antigenic diversity by enhancing the immunogenicity of conserved epitopes on the malaria vaccine candidate apical membrane antigen-1. PLoS Pathog 2013; 9:e1003840. [PMID: 24385910 PMCID: PMC3873463 DOI: 10.1371/journal.ppat.1003840] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022] Open
Abstract
Malaria vaccine candidate Apical Membrane Antigen-1 (AMA1) induces protection, but only against parasite strains that are closely related to the vaccine. Overcoming the AMA1 diversity problem will require an understanding of the structural basis of cross-strain invasion inhibition. A vaccine containing four diverse allelic proteins 3D7, FVO, HB3 and W2mef (AMA1 Quadvax or QV) elicited polyclonal rabbit antibodies that similarly inhibited the invasion of four vaccine and 22 non-vaccine strains of P. falciparum. Comparing polyclonal anti-QV with antibodies against a strain-specific, monovalent, 3D7 AMA1 vaccine revealed that QV induced higher levels of broadly inhibitory antibodies which were associated with increased conserved face and domain-3 responses and reduced domain-2 response. Inhibitory monoclonal antibodies (mAb) raised against the QV reacted with a novel cross-reactive epitope at the rim of the hydrophobic trough on domain-1; this epitope mapped to the conserved face of AMA1 and it encompassed the 1e-loop. MAbs binding to the 1e-loop region (1B10, 4E8 and 4E11) were ∼10-fold more potent than previously characterized AMA1-inhibitory mAbs and a mode of action of these 1e-loop mAbs was the inhibition of AMA1 binding to its ligand RON2. Unlike the epitope of a previously characterized 3D7-specific mAb, 1F9, the 1e-loop inhibitory epitope was partially conserved across strains. Another novel mAb, 1E10, which bound to domain-3, was broadly inhibitory and it blocked the proteolytic processing of AMA1. By itself mAb 1E10 was weakly inhibitory but it synergized with a previously characterized, strain-transcending mAb, 4G2, which binds close to the hydrophobic trough on the conserved face and inhibits RON2 binding to AMA1. Novel inhibition susceptible regions and epitopes, identified here, can form the basis for improving the antigenic breadth and inhibitory response of AMA1 vaccines. Vaccination with a few diverse antigenic proteins could provide universal coverage by redirecting the immune response towards conserved epitopes. Numerous reports of vaccine failure are attributed to a mismatch between the genotype of the vaccine and the circulating target strains. This observation is congruent to the view that polyvalent vaccines protect broadly by inducing a multitude of type-specific antibodies. Polyvalent vaccines that can overcome antigenic diversity by refocusing antibody responses towards conserved functional epitopes are highly desirable. Development of an Apical Membrane Antigen-1 (AMA1) malaria vaccine has been impeded by extreme antigenic diversity in the field. We present here a solution to the AMA1 diversity problem. Antibodies against a mixture of only four naturally occurring AMA1 allelic proteins “Quadvax” inhibited invasion of red blood cells by a diverse panel of malaria parasites that represented the global diversity of AMA1 in the field. Competition experiments suggested that in addition to improving the diversity of strain-specific antibodies, the mechanism of broadened inhibition involved an increase in responses against conserved inhibitory epitopes. Monoclonal antibodies against the Quadvax inhibited invasion either by blocking the binding of AMA1 to its receptor RON2 or by blocking a crucial proteolytic processing event. Some mixtures of these antibodies were much more effective than expected and were shown to act synergistically. Together these two classes of functional invasion inhibitory epitopes can be targeted to engineer a more potent AMA1 vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/immunology
- Antigenic Variation/genetics
- Antigenic Variation/immunology
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Cells, Cultured
- Conserved Sequence/immunology
- Epitope Mapping
- Epitopes/genetics
- Epitopes/immunology
- Immunity, Humoral
- Malaria Vaccines/chemistry
- Malaria Vaccines/immunology
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Nude
- Models, Molecular
- Plasmodium berghei/genetics
- Plasmodium berghei/immunology
- Plasmodium falciparum/immunology
- Protein Structure, Tertiary
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Rabbits
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/immunology
Collapse
Affiliation(s)
- Sheetij Dutta
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
- * E-mail:
| | - Lisa S. Dlugosz
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | | | - Xiopeng Ge
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Diouf Ababacar
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, Maryland, United States of America
| | - Yazmin I. Rovira
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - J. Kathleen Moch
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Meng Shi
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Carole A. Long
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, Maryland, United States of America
| | - Michael Foley
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | | | - Robin F. Anders
- Department of Biochemistry, La Trobe University, Victoria, Australia
| | - Kazutoyo Miura
- Laboratory of Malaria and Vector Research, National Institutes of Health, Rockville, Maryland, United States of America
| | - J. David Haynes
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Adrian H. Batchelor
- Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|
28
|
HEIDARI A, KESHAVARZ H, HAJJARAN H, EBRAHIMI SM, KABIR K, NASERI MH. Genetic Variation and Selection of Domain I of the Plasmodium vivax Apical Membrane Antigen-1(AMA-1) Gene in Clinical Isolates from Iran. IRANIAN JOURNAL OF PARASITOLOGY 2013; 8:536-44. [PMID: 25516734 PMCID: PMC4266117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Accepted: 09/17/2013] [Indexed: 10/29/2022]
Abstract
BACKGROUND Apical Membrane antigen 1 (AMA-1) is positioned on the surface of merozoite and it may play a role in attack to red blood cells. The main aim of present study was to determine the genetic variation, as well as, to detect of selection at domain I of AMA-1 gene Plasmodium vivax isolates in Iran. METHODS Blood samples were collected from 58 patients positive for P. vivax, mono infection and the domain I of AMA-1 gene was amplified by nested PCR and then sequenced. RESULTS A total 33 different haplotypes were identified among 58 Iranian sequences. The 23 new haplotypes were determined in this study that was not reported previously in other regions of the world. There were totally observed 36 point mutations at the nucleotide level in the analyzed sequences. Sequences analyses indicated 25 amino acid changes at 20 positions in which 5 sites demonstrated thrimorphic polymorphism and the others were dimorphic in the domain I of the Iranian PvAMA-1 isolates. CONCLUSION Our findings indicated relatively high level of allelic diversity at the domain I of PvAMA-1 among P.vivax isolates of Iran. Since, PvAMA-1 is considering as vaccine candidate antigen, these data provide valuable information for the development of a PvAMA-1 based malaria vaccine.
Collapse
Affiliation(s)
- Aliehsan HEIDARI
- Dept. of Parasitology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Hossein KESHAVARZ
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran,Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran,Correspondence
| | - Homa HAJJARAN
- Dept. of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyyed Meisam EBRAHIMI
- Dept. of Anesthesiology, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Kourosh KABIR
- Dept. of Surgery, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan NASERI
- Dept. of Surgery, Baqiyatallah University of Medical Sciences, Tehran, Iran,Dept. of Surgery, Alborz University of Medical Sciences, Karaj, Iran
| |
Collapse
|
29
|
Mugyenyi CK, Elliott SR, McCallum FJ, Anders RF, Marsh K, Beeson JG. Antibodies to polymorphic invasion-inhibitory and non-Inhibitory epitopes of Plasmodium falciparum apical membrane antigen 1 in human malaria. PLoS One 2013; 8:e68304. [PMID: 23861883 PMCID: PMC3702562 DOI: 10.1371/journal.pone.0068304] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
Background Antibodies to P. falciparum apical membrane protein 1 (AMA1) may contribute to protective immunity against clinical malaria by inhibiting blood stage growth of P. falciparum, and AMA1 is a leading malaria vaccine candidate. Currently, there is limited knowledge of the acquisition of strain-specific and cross-reactive antibodies to AMA1 in humans, or the acquisition of invasion-inhibitory antibodies to AMA1. Methodology/Findings We examined the acquisition of human antibodies to specific polymorphic invasion-inhibitory and non-inhibitory AMA1 epitopes, defined by the monoclonal antibodies 1F9 and 2C5, respectively. Naturally acquired antibodies were measured in cohorts of Kenyan children and adults. Antibodies to the invasion-inhibitory 1F9 epitope and non-inhibitory 2C5 epitope were measured indirectly by competition ELISA. Antibodies to the 1F9 and 2C5 epitopes were acquired by children and correlated with exposure, and higher antibody levels and prevalence were observed with increasing age and with active P. falciparum infection. Of note, the prevalence of antibodies to the inhibitory 1F9 epitope was lower than antibodies to AMA1 or the 2C5 epitope. Antibodies to AMA1 ectodomain, the 1F9 or 2C5 epitopes, or a combination of responses, showed some association with protection from P. falciparum malaria in a prospective longitudinal study. Furthermore, antibodies to the invasion-inhibitory 1F9 epitope were positively correlated with parasite growth-inhibitory activity of serum antibodies. Conclusions/Significance Individuals acquire antibodies to functional, polymorphic epitopes of AMA1 that may contribute to protective immunity, and these findings have implications for AMA1 vaccine development. Measuring antibodies to the 1F9 epitope by competition ELISA may be a valuable approach to assessing human antibodies with invasion-inhibitory activity in studies of acquired immunity and vaccine trials of AMA1.
Collapse
Affiliation(s)
- Cleopatra K. Mugyenyi
- Kenya Medical Research Institute, Centre for Geographic Medicine, Coast, Kilifi, Kenya
| | | | - Fiona J. McCallum
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
| | | | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine, Coast, Kilifi, Kenya
| | - James G. Beeson
- Burnet Institute, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Victoria, Australia
- Monash University, Victoria, Australia
- * E-mail:
| |
Collapse
|
30
|
Natural selection and population genetic structure of domain-I of Plasmodium falciparum apical membrane antigen-1 in India. INFECTION GENETICS AND EVOLUTION 2013; 18:247-56. [PMID: 23747831 DOI: 10.1016/j.meegid.2013.05.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/16/2013] [Accepted: 05/18/2013] [Indexed: 12/27/2022]
Abstract
Development of a vaccine against Plasmodium falciparum infection is an urgent priority particularly because of widespread resistance to most traditionally used drugs. Multiple evidences point to apical membrane antigen-1(AMA-1) as a prime vaccine candidate directed against P. falciparum asexual blood-stages. To gain understanding of the genetic and demographic forces shaping the parasite sequence diversity in Kolkata, a part of Pfama-1 gene covering domain-I was sequenced from 100 blood samples of malaria patients. Statistical and phylogenetic analyses of the sequences were performed using DnaSP and MEGA. Very high haplotype diversity was detected both at nucleotide (0.998±0.002) and amino-acid (0.996±0.001) levels. An abundance of low frequency polymorphisms (Tajima's D=-1.190, Fu & Li's D(∗) and F(∗)=-3.068 and -2.722), unimodal mismatch distribution and a star-like median-joining network of ama-1 haplotypes indicated a recent population expansion among Kolkata parasites. The high minimum number of recombination events (Rm=26) and a significantly high dN/dS of 3.705 (P<0.0001) in Kolkata suggested recombination and positive selection as major forces in the generation and maintenance of ama-1 allelic diversity. To evaluate the impact of observed non-synonymous substitutions in the context of AMA-1 functionality, PatchDock and FireDock protein-protein interaction solutions were mapped between PfAMA-1-PfRON2 and PfAMA-1-host IgNAR. Alterations in the desolvation and global energies of PfAMA-1-PfRON2 interaction complexes at the hotspot contact residues were observed together with redistribution of surface electrostatic potentials at the variant alleles with respect to referent Pf3D7 sequence. Finally, a comparison of P. falciparum subpopulations in five Indian regional isolates retrieved from GenBank revealed a significant level of genetic differentiation (FST=0.084-0.129) with respect to Kolkata sequences. Collectively, our results indicated a very high allelic and haplotype diversity, a high recombination rate and a signature of natural selection favoring accumulation of non-synonymous substitutions that facilitated PfAMA-1-PfRON2 interaction and hence parasite growth in Kolkata clinical isolates.
Collapse
|
31
|
Mehrizi AA, Sepehri M, Karimi F, Djadid ND, Zakeri S. Population genetics, sequence diversity and selection in the gene encoding the Plasmodium falciparum apical membrane antigen 1 in clinical isolates from the south-east of Iran. INFECTION GENETICS AND EVOLUTION 2013; 17:51-61. [PMID: 23557839 DOI: 10.1016/j.meegid.2013.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Revised: 03/17/2013] [Accepted: 03/23/2013] [Indexed: 12/26/2022]
Abstract
The Plasmodium falciparum apical membrane antigen1 (AMA1) is a leading malaria vaccine candidate antigen. In the present investigation, for the first time, the almost full length of the ama1 gene covering domain I (DI), DII and DIII was PCR amplified and sequenced in 21 P. falciparum isolates collected from the southeastern parts of Iran. The result showed the low genetic diversity of Iranian PfAMA1 with 11 PfAMA1 haplotypes in which nine out of 11 haplotypes are novel and have been reported for the first time. The Iranian P. falciparum population indicated a moderate level of genetic differentiation. The difference among the rates of non-synonymous and synonymous mutations, Tajima's D and McDonald-Kreitman tests suggested that the diversity at DI is due to positive natural selection. In addition, recombination contributes to the diversity of Iranian PfAMA1 and this is supported by the decline of the linkage disequilibrium index R(2) with increasing the nucleotide distance. The highly polymorphic residues (positions: 187, 197, 200, 230 and 243) were polymorphic; however, most of the SNPs in non-polymorphic residues were conserved except the residue at position 395. Nevertheless, no mutation was found in the DII loop of the Iranian PfAMA1, indicating that it is subjected to purifying selection. In conclusion, the low genetic diversity in PfAMA1 among Iranian isolates supports and provides valuable information for the development of a PfAMA1-based malaria vaccine.
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/genetics
- Antigens, Protozoan/immunology
- Epitopes, B-Lymphocyte/chemistry
- Epitopes, B-Lymphocyte/immunology
- Evolution, Molecular
- Gene Frequency
- Genetic Variation
- Haplotypes
- Humans
- Iran
- Malaria Vaccines/genetics
- Malaria Vaccines/immunology
- Malaria, Falciparum/immunology
- Malaria, Falciparum/prevention & control
- Membrane Proteins/chemistry
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Molecular Sequence Data
- Mutation
- Phylogeny
- Plasmodium falciparum/genetics
- Plasmodium falciparum/immunology
- Plasmodium falciparum/isolation & purification
- Polymorphism, Genetic
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Recombination, Genetic
- Selection, Genetic
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Akram Abouie Mehrizi
- Malaria and Vector Research Group, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | | | | | | | | |
Collapse
|
32
|
Overcoming allelic specificity by immunization with five allelic forms of Plasmodium falciparum apical membrane antigen 1. Infect Immun 2013; 81:1491-501. [PMID: 23429537 DOI: 10.1128/iai.01414-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Apical membrane antigen 1 (AMA1) is a leading vaccine candidate, but the allelic polymorphism is a stumbling block for vaccine development. We previously showed that a global set of AMA1 haplotypes could be grouped into six genetic populations. Using this information, six recombinant AMA1 proteins representing each population were produced. Rabbits were immunized with either a single recombinant AMA1 protein or mixtures of recombinant AMA1 proteins (mixtures of 4, 5, or 6 AMA1 proteins). Antibody levels were measured by enzyme-linked immunosorbent assay (ELISA), and purified IgG from each rabbit was used for growth inhibition assay (GIA) with 12 different clones of parasites (a total of 108 immunogen-parasite combinations). Levels of antibodies to all six AMA1 proteins were similar when the antibodies were tested against homologous antigens. When the percent inhibitions in GIA were plotted against the number of ELISA units measured with homologous AMA1, all data points followed a sigmoid curve, regardless of the immunogen. In homologous combinations, there were no differences in the percent inhibition between the single-allele and allele mixture groups. However, all allele mixture groups showed significantly higher percent inhibition than the single-allele groups in heterologous combinations. The 5-allele-mixture group showed significantly higher inhibition to heterologous parasites than the 4-allele-mixture group. On the other hand, there was no difference between the 5- and 6-allele-mixture groups. These data indicate that mixtures with a limited number of alleles may cover a majority of the parasite population. In addition, using the data from 72 immunogen-parasite combinations, we mathematically identified 13 amino acid polymorphic sites which significantly impact GIA activities. These results could be a foundation for the rational design of a future AMA1 vaccine.
Collapse
|
33
|
Within-population genetic diversity of Plasmodium falciparum vaccine candidate antigens reveals geographic distance from a Central sub-Saharan African origin. Vaccine 2013; 31:1334-9. [DOI: 10.1016/j.vaccine.2012.12.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/15/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
|
34
|
Drew DR, Hodder AN, Wilson DW, Foley M, Mueller I, Siba PM, Dent AE, Cowman AF, Beeson JG. Defining the antigenic diversity of Plasmodium falciparum apical membrane antigen 1 and the requirements for a multi-allele vaccine against malaria. PLoS One 2012; 7:e51023. [PMID: 23227229 PMCID: PMC3515520 DOI: 10.1371/journal.pone.0051023] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 10/29/2012] [Indexed: 11/19/2022] Open
Abstract
Apical Membrane Antigen 1 (AMA1) is a leading malaria vaccine candidate and a target of naturally-acquired human immunity. Plasmodium falciparum AMA1 is polymorphic and in vaccine trials it induces strain-specific protection. This antigenic diversity is a major roadblock to development of AMA1 as a malaria vaccine and understanding how to overcome it is essential. To assess how AMA1 antigenic diversity limits cross-strain growth inhibition, we assembled a panel of 18 different P. falciparum isolates which are broadly representative of global AMA1 sequence diversity. Antibodies raised against four well studied AMA1 alleles (W2Mef, 3D7, HB3 and FVO) were tested for growth inhibition of the 18 different P. falciparum isolates in growth inhibition assays (GIA). All antibodies demonstrated substantial cross-inhibitory activity against different isolates and a mixture of the four different AMA1 antibodies inhibited all 18 isolates tested, suggesting significant antigenic overlap between AMA1 alleles and limited antigenic diversity of AMA1. Cross-strain inhibition by antibodies was only moderately and inconsistently correlated with the level of sequence diversity between AMA1 alleles, suggesting that sequence differences are not a strong predictor of antigenic differences or the cross-inhibitory activity of anti-allele antibodies. The importance of the highly polymorphic C1-L region for inhibitory antibodies and potential vaccine escape was assessed by generating novel transgenic P. falciparum lines for testing in GIA. While the polymorphic C1-L epitope was identified as a significant target of some growth-inhibitory antibodies, these antibodies only constituted a minor proportion of the total inhibitory antibody repertoire, suggesting that the antigenic diversity of inhibitory epitopes is limited. Our findings support the concept that a multi-allele AMA1 vaccine would give broad coverage against the diversity of AMA1 alleles and establish new tools to define polymorphisms important for vaccine escape.
Collapse
Affiliation(s)
- Damien R. Drew
- The Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Anthony N. Hodder
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Danny W. Wilson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | | | - Ivo Mueller
- The Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Peter M. Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Arlene E. Dent
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Alan F. Cowman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - James G. Beeson
- The Burnet Institute for Medical Research and Public Health, Melbourne, Australia
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Microbiology, Monash University, Victoria, Australia
- * E-mail:
| |
Collapse
|
35
|
Amambua-Ngwa A, Tetteh KKA, Manske M, Gomez-Escobar N, Stewart LB, Deerhake ME, Cheeseman IH, Newbold CI, Holder AA, Knuepfer E, Janha O, Jallow M, Campino S, MacInnis B, Kwiatkowski DP, Conway DJ. Population genomic scan for candidate signatures of balancing selection to guide antigen characterization in malaria parasites. PLoS Genet 2012; 8:e1002992. [PMID: 23133397 PMCID: PMC3486833 DOI: 10.1371/journal.pgen.1002992] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Accepted: 08/13/2012] [Indexed: 11/19/2022] Open
Abstract
Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.
Collapse
Affiliation(s)
| | - Kevin K. A. Tetteh
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Magnus Manske
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Lindsay B. Stewart
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - M. Elizabeth Deerhake
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Ian H. Cheeseman
- Medical Research Council Unit, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Christopher I. Newbold
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Anthony A. Holder
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Ellen Knuepfer
- Division of Parasitology, MRC National Institute for Medical Research, London, United Kingdom
| | - Omar Janha
- Medical Research Council Unit, Fajara, Banjul, The Gambia
| | | | - Susana Campino
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Dominic P. Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David J. Conway
- Medical Research Council Unit, Fajara, Banjul, The Gambia
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Amambua-Ngwa A, Park DJ, Volkman SK, Barnes KG, Bei AK, Lukens AK, Sene P, Van Tyne D, Ndiaye D, Wirth DF, Conway DJ, Neafsey DE, Schaffner SF. SNP genotyping identifies new signatures of selection in a deep sample of West African Plasmodium falciparum malaria parasites. Mol Biol Evol 2012; 29:3249-53. [PMID: 22688945 PMCID: PMC3472499 DOI: 10.1093/molbev/mss151] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
We used a high-density single-nucleotide polymorphism array to genotype 75 Plasmodium falciparum isolates recently collected from Senegal and The Gambia to search for signals of selection in this malaria endemic region. We found little geographic or temporal stratification of the genetic diversity among the sampled parasites. Through application of the iHS and REHH haplotype-based tests for positive selection, we found evidence of recent selective sweeps at a known drug resistance locus, at several known antigenic loci, and at several genomic regions not previously identified as sites of recent selection. We discuss the value of deep population-specific genomic analyses for identifying selection signals within sampled endemic populations of parasites, which may correspond to local selection pressures such as distinctive therapeutic regimes or mosquito vectors.
Collapse
Affiliation(s)
| | | | - Sarah K. Volkman
- Broad Institute, Cambridge, Massachusetts
- Harvard School of Public Health
- Simmons College
| | | | | | | | - Papa Sene
- Cheikh Anta Diop University, Dakar, Senegal
| | | | | | - Dyann F. Wirth
- Broad Institute, Cambridge, Massachusetts
- Harvard School of Public Health
| | - David J. Conway
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | | |
Collapse
|
37
|
Kusi KA, Dodoo D, Bosomprah S, van der Eijk M, Faber BW, Kocken CHM, Remarque EJ. Measurement of the plasma levels of antibodies against the polymorphic vaccine candidate apical membrane antigen 1 in a malaria-exposed population. BMC Infect Dis 2012; 12:32. [PMID: 22299616 PMCID: PMC3317819 DOI: 10.1186/1471-2334-12-32] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Accepted: 02/02/2012] [Indexed: 11/24/2022] Open
Abstract
Background Establishing antibody correlates of protection against malaria in human field studies and clinical trials requires, amongst others, an accurate estimation of antibody levels. For polymorphic antigens such as apical membrane antigen 1 (AMA1), this may be confounded by the occurrence of a large number of allelic variants in nature. Methods To test this hypothesis, plasma antibody levels in an age-stratified cohort of naturally exposed children from a malaria-endemic area in Southern Ghana were determined by indirect ELISA. Titres against four single PfAMA1 alleles were compared with those against three different allele mixtures presumed to have a wider repertoire of epitope specificities. Associations of antibody levels with the incidence of clinical malaria as well as with previous exposure to parasites were also examined. Results Antibody titres against PfAMA1 alleles generally increased with age/exposure while antibody specificity for PfAMA1 variants decreased, implying that younger children (≤ 5 years) elicit a more strain-specific antibody response compared to older children. Antibody titre measurements against the FVO and 3D7 AMA1 alleles gave the best titre estimates as these varied least in pair-wise comparisons with titres against all PfAMA1 allele mixtures. There was no association between antibody levels against any capture antigen and either clinical malaria incidence or parasite density. Conclusions The current data shows that levels of naturally acquired antigen-specific antibodies, especially in infants and young children, are dependent on the antigenic allele used for measurement. This may be relevant to the interpretation of antibody titre data from measurements against single PfAMA1 alleles, especially in studies involving infants and young children who have experienced fewer infections.
Collapse
Affiliation(s)
- Kwadwo A Kusi
- Department of Parasitology, Biomedical Primate Research Centre, Postbox 3306, 2280, GH Rijswijk, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
38
|
Mardani A, Keshavarz H, Heidari A, Hajjaran H, Raeisi A, Khorramizadeh MR. Genetic diversity and natural selection at the domain I of apical membrane antigen-1 (AMA-1) of Plasmodium falciparum in isolates from Iran. Exp Parasitol 2012; 130:456-62. [PMID: 22306282 DOI: 10.1016/j.exppara.2012.01.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Revised: 10/26/2011] [Accepted: 01/10/2012] [Indexed: 11/24/2022]
Abstract
The apical membrane antigen-1 (AMA-1) of Plasmodium falciparum is a prime malaria asexual blood-stage vaccine candidate. Antigenic variation is one of the main obstacles in the development of a universal effective malaria vaccine. The extracellular region of P. falciparum AMA-1 (PfAMA-1) consists of three domains (I-III), of which the domain I is the most diverse region of this antigen. The objective of our study was to investigate and analyze the extent of genetic diversity and the effectiveness of natural selection at the AMA-1 domain I of P. falciparum in isolates from Iran. A fragment of ama-1 gene spanning domain I was amplified by nested PCR from 48 P. falciparum isolates collected from two major malaria endemic areas of Iran during 2009 to August 2010 and sequenced. Genetic polymorphism and statistical analyses were performed using DnaSP and MEGA software packages. Analysis of intrapopulation diversity revealed relatively high nucleotide and haplotype diversity at the PfAMA-1 domain I of Iranian isolates. Neutrality tests provided strong evidence of positive natural selection acting on the sequenced gene region. The findings also demonstrated that, in addition to natural selection, intragenic recombination may contribute to the diversity observed at the domain I. The results obtained will have significant implications in the design and the development of an AMA-1-based vaccine against falciparum malaria.
Collapse
Affiliation(s)
- Ahmad Mardani
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | | | | | | | | | | |
Collapse
|
39
|
Arnott A, Barry AE, Reeder JC. Understanding the population genetics of Plasmodium vivax is essential for malaria control and elimination. Malar J 2012; 11:14. [PMID: 22233585 PMCID: PMC3298510 DOI: 10.1186/1475-2875-11-14] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 01/10/2012] [Indexed: 11/22/2022] Open
Abstract
Traditionally, infection with Plasmodium vivax was thought to be benign and self-limiting, however, recent evidence has demonstrated that infection with P. vivax can also result in severe illness and death. Research into P. vivax has been relatively neglected and much remains unknown regarding the biology, pathogenesis and epidemiology of this parasite. One of the fundamental factors governing transmission and immunity is parasite diversity. An understanding of parasite population genetic structure is necessary to understand the epidemiology, diversity, distribution and dynamics of natural P. vivax populations. In addition, studying the population structure of genes under immune selection also enables investigation of the dynamic interplay between transmission and immunity, which is crucial for vaccine development. A lack of knowledge regarding the transmission and spread of P. vivax has been particularly highlighted in areas where malaria control and elimination programmes have made progress in reducing the burden of Plasmodium falciparum, yet P. vivax remains as a substantial obstacle. With malaria elimination back on the global agenda, mapping of global and local P. vivax population structure is essential prior to establishing goals for elimination and the roll-out of interventions. A detailed knowledge of the spatial distribution, transmission and clinical burden of P. vivax is required to act as a benchmark against which control targets can be set and measured. This paper presents an overview of what is known and what is yet to be fully understood regarding P. vivax population genetics, as well as the importance and application of P. vivax population genetics studies.
Collapse
Affiliation(s)
- Alicia Arnott
- Centre for Population Health, Burnet Institute, Melbourne, Australia
| | | | | |
Collapse
|
40
|
Tanabe K, Arisue N, Palacpac NMQ, Yagi M, Tougan T, Honma H, Ferreira MU, Färnert A, Björkman A, Kaneko A, Nakamura M, Hirayama K, Mita T, Horii T. Geographic differentiation of polymorphism in the Plasmodium falciparum malaria vaccine candidate gene SERA5. Vaccine 2012; 30:1583-93. [PMID: 22230587 DOI: 10.1016/j.vaccine.2011.12.124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 12/20/2011] [Accepted: 12/23/2011] [Indexed: 11/26/2022]
Abstract
SERA5 is regarded as a promising malaria vaccine candidate of the most virulent human malaria parasite Plasmodium falciparum. SERA5 is a 120 kDa abundantly expressed blood-stage protein containing a papain-like protease. Since substantial polymorphism in blood-stage vaccine candidates may potentially limit their efficacy, it is imperative to fully investigate polymorphism of the SERA5 gene (sera5). In this study, we performed evolutionary and population genetic analysis of sera5. The level of inter-species divergence (kS=0.076) between P. falciparum and Plasmodium reichenowi, a closely related chimpanzee malaria parasite is comparable to that of housekeeping protein genes. A signature of purifying selection was detected in the proenzyme and enzyme domains. Analysis of 445 near full-length P. falciparum sera5 sequences from nine countries in Africa, Southeast Asia, Oceania and South America revealed extensive variations in the number of octamer repeat (OR) and serine repeat (SR) regions as well as substantial level of single nucleotide polymorphism (SNP) in non-repeat regions (2562 bp). Remarkably, a 14 amino acid sequence of SERA5 (amino acids 59-72) that is known to be the in vitro target of parasite growth inhibitory antibodies was found to be perfectly conserved in all 445 worldwide isolates of P. falciparum evaluated. Unlike other major vaccine target antigen genes such as merozoite surface protein-1, apical membrane antigen-1 or circumsporozoite protein, no strong evidence for positive selection was detected for SNPs in the non-repeat regions of sera5. A biased geographical distribution was observed in SNPs as well as in the haplotypes of the sera5 OR and SR regions. In Africa, OR- and SR-haplotypes with low frequency (<5%) and SNPs with minor allele frequency (<5%) were abundant and were mostly continent-specific. Consistently, significant genetic differentiation, assessed by the Wright's fixation index (Fst) of inter-population variance in allele frequencies, was detected for SNPs and both OR- and SR-haplotypes among almost all parasite populations. The exception was parasite populations between Tanzania and Ghana, suggesting frequent gene flow in Africa. The present study points to the importance of investigating whether biased geographical distribution for SNPs and repeat variants in the OR and SR regions affect the reactivity of human serum antibodies to variants.
Collapse
Affiliation(s)
- Kazuyuki Tanabe
- Laboratory of Malariology, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sutherland CJ, Babiker H, Mackinnon MJ, Ranford-Cartwright L, El Sayed BB. Rational deployment of antimalarial drugs in Africa: should first-line combination drugs be reserved for paediatric malaria cases? Parasitology 2011; 138:1459-68. [PMID: 21810298 PMCID: PMC3575203 DOI: 10.1017/s0031182011001144] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Artemisinin-based combination therapy is exerting novel selective pressure upon populations of Plasmodium falciparum across Africa. Levels of resistance to non-artemisinin partner drugs differ among parasite populations, and so the artemisinins are not uniformly protected from developing resistance, already present in South East Asia. Here, we consider strategies for prolonging the period of high level efficacy of combination therapy for two particular endemicities common in Africa. Under high intensity transmission, two alternating first-line combinations, ideally with antagonistic selective effects on the parasite genome, are advocated for paediatric malaria cases. This leaves second-line and other therapies for adult cases, and for intermittent preventive therapy. The drug portfolio would be selected to protect the 'premier' combination regimen from selection for resistance, while maximising impact on severe disease and mortality in children. In endemic areas subject to low, seasonal transmission of Plasmodium falciparum, such a strategy may deliver little benefit, as children represent a minority of cases. Nevertheless, the deployment of other drug-based interventions in low transmission and highly seasonal areas, such as mass drug administration aimed to interrupt malaria transmission, or intermittent preventive therapy, does provide an opportunity to diversify drug pressure. We thus propose an integrated approach to drug deployment, which minimises direct selective pressure on parasite populations from any one drug component. This approach is suitable for qualitatively and quantitatively different burdens of malaria, and should be supported by a programme of routine surveillance for emerging resistance.
Collapse
Affiliation(s)
- Colin J Sutherland
- Department of Immunology & Infection, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK.
| | | | | | | | | |
Collapse
|
42
|
A new malaria antigen produces partial protection against Plasmodium yoelii challenge. Parasitol Res 2011; 110:1337-45. [PMID: 21915626 DOI: 10.1007/s00436-011-2630-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 08/31/2011] [Indexed: 10/17/2022]
Abstract
Of all the parasitic diseases, malaria is the number one killer. Despite tremendous efforts in disease control and research, nearly a million people, primarily children, still die from the disease each year, partly due to drug resistance and the lack of an effective vaccine. Many parasite antigens have been identified and evaluated for vaccine development; however, none has been approved for human use. Antigenic variation, complex life cycle, and inadequate understanding of the mechanisms of parasite-host interaction and of host immune response all contribute to the lack of an effective vaccine for malaria control. In a recent search of genome-wide polymorphism in Plasmodium falciparum, several molecules were found to be recognized by sera from patients infected with the P. falciparum parasite. Here, we have expressed a 350-amino acid N terminus from one of the homologous candidate antigen genes from the rodent malaria parasite Plasmodium yoelii (Py01157, a putative dentin phosphorin) in bacteria and evaluated the immune response and protection generated after immunization with the recombinant protein. We showed that the recombinant protein was recognized by sera from both mice and humans infected with malaria parasites. Partial protection was observed after challenge with non-lethal P. yoelii 17XNL but not with the lethal P. yoelii 17XL parasite. Further tests using a full-length protein or the conserved C terminus may provide additional information on whether this protein has the potential for being a malaria vaccine.
Collapse
|
43
|
Reiling L, Richards JS, Fowkes FJI, Barry AE, Triglia T, Chokejindachai W, Michon P, Tavul L, Siba PM, Cowman AF, Mueller I, Beeson JG. Evidence that the erythrocyte invasion ligand PfRh2 is a target of protective immunity against Plasmodium falciparum malaria. THE JOURNAL OF IMMUNOLOGY 2010; 185:6157-67. [PMID: 20962255 DOI: 10.4049/jimmunol.1001555] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abs targeting blood-stage Ags of Plasmodium falciparum are important in acquired immunity to malaria, but major targets remain unclear. The P. falciparum reticulocyte-binding homologs (PfRh) are key ligands used by merozoites during invasion of erythrocytes. PfRh2a and PfRh2b are functionally important members of this family and may be targets of protective immunity, but their potential role in human immunity has not been examined. We expressed eight recombinant proteins covering the entire PfRh2 common region, as well as PfRh2a- and PfRh2b-specific regions. Abs were measured among a cohort of 206 Papua New Guinean children who were followed prospectively for 6 mo for reinfection and malaria. At baseline, Abs were associated with increasing age and active infection. High levels of IgG to all PfRh2 protein constructs were strongly associated with protection from symptomatic malaria and high-density parasitemia. The predominant IgG subclasses were IgG1 and IgG3, with little IgG2 and IgG4 detected. To further understand the significance of PfRh2 as an immune target, we analyzed PfRh2 sequences and found that polymorphisms are concentrated in an N-terminal region of the protein and seem to be under diversifying selection, suggesting immune pressure. Cluster analysis arranged the sequences into two main groups, suggesting that many of the haplotypes identified may be antigenically similar. These findings provide evidence suggesting that PfRh2 is an important target of protective immunity in humans and that Abs act by controlling blood-stage parasitemia and support its potential for vaccine development.
Collapse
Affiliation(s)
- Linda Reiling
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Ochola LI, Tetteh KKA, Stewart LB, Riitho V, Marsh K, Conway DJ. Allele frequency-based and polymorphism-versus-divergence indices of balancing selection in a new filtered set of polymorphic genes in Plasmodium falciparum. Mol Biol Evol 2010; 27:2344-51. [PMID: 20457586 PMCID: PMC2944029 DOI: 10.1093/molbev/msq119] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Signatures of balancing selection operating on specific gene loci in endemic pathogens can identify candidate targets of naturally acquired immunity. In malaria parasites, several leading vaccine candidates convincingly show such signatures when subjected to several tests of neutrality, but the discovery of new targets affected by selection to a similar extent has been slow. A small minority of all genes are under such selection, as indicated by a recent study of 26 Plasmodium falciparum merozoite-stage genes that were not previously prioritized as vaccine candidates, of which only one (locus PF10_0348) showed a strong signature. Therefore, to focus discovery efforts on genes that are polymorphic, we scanned all available shotgun genome sequence data from laboratory lines of P. falciparum and chose six loci with more than five single nucleotide polymorphisms per kilobase (including PF10_0348) for in-depth frequency-based analyses in a Kenyan population (allele sample sizes >50 for each locus) and comparison of Hudson-Kreitman-Aguade (HKA) ratios of population diversity (π) to interspecific divergence (K) from the chimpanzee parasite Plasmodium reichenowi. Three of these (the msp3/6-like genes PF10_0348 and PF10_0355 and the surf(4.1) gene PFD1160w) showed exceptionally high positive values of Tajima's D and Fu and Li's F indices and have the highest HKA ratios, indicating that they are under balancing selection and should be prioritized for studies of their protein products as candidate targets of immunity. Combined with earlier results, there is now strong evidence that high HKA ratio (as well as the frequency-independent ratio of Watterson's /K) is predictive of high values of Tajima's D. Thus, the former offers value for use in genome-wide screening when numbers of genome sequences within a species are low or in combination with Tajima's D as a 2D test on large population genomic samples.
Collapse
Affiliation(s)
- Lynette Isabella Ochola
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin K. A. Tetteh
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lindsay B. Stewart
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Victor Riitho
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - Kevin Marsh
- Kenya Medical Research Institute, Centre for Geographic Medicine Research Coast, Kilifi, Kenya
| | - David J. Conway
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
45
|
Sedegah M, Kim Y, Peters B, McGrath S, Ganeshan H, Lejano J, Abot E, Banania G, Belmonte M, Sayo R, Farooq F, Doolan DL, Regis D, Tamminga C, Chuang I, Bruder JT, King CR, Ockenhouse CF, Faber B, Remarque E, Hollingdale MR, Richie TL, Sette A. Identification and localization of minimal MHC-restricted CD8+ T cell epitopes within the Plasmodium falciparum AMA1 protein. Malar J 2010; 9:241. [PMID: 20735847 PMCID: PMC2939619 DOI: 10.1186/1475-2875-9-241] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Accepted: 08/24/2010] [Indexed: 12/14/2022] Open
Abstract
Background Plasmodium falciparum apical membrane antigen-1 (AMA1) is a leading malaria vaccine candidate antigen that is expressed by sporozoite, liver and blood stage parasites. Since CD8+ T cell responses have been implicated in protection against pre-erythrocytic stage malaria, this study was designed to identify MHC class I-restricted epitopes within AMA1. Methods A recombinant adenovirus serotype 5 vector expressing P. falciparum AMA1 was highly immunogenic when administered to healthy, malaria-naive adult volunteers as determined by IFN-γ ELISpot responses to peptide pools containing overlapping 15-mer peptides spanning full-length AMA1. Computerized algorithms (NetMHC software) were used to predict minimal MHC-restricted 8-10-mer epitope sequences within AMA1 15-mer peptides active in ELISpot. A subset of epitopes was synthesized and tested for induction of CD8+ T cell IFN-γ responses by ELISpot depletion and ICS assays. A 3-dimensional model combining Domains I + II of P. falciparum AMA1 and Domain III of P. vivax AMA1 was used to map these epitopes. Results Fourteen 8-10-mer epitopes were predicted to bind to HLA supertypes A01 (3 epitopes), A02 (4 epitopes), B08 (2 epitopes) and B44 (5 epitopes). Nine of the 14 predicted epitopes were recognized in ELISpot or ELISpot and ICS assays by one or more volunteers. Depletion of T cell subsets confirmed that these epitopes were CD8+ T cell-dependent. A mixture of the 14 minimal epitopes was capable of recalling CD8+ T cell IFN-γ responses from PBMC of immunized volunteers. Thirteen of the 14 predicted epitopes were polymorphic and the majority localized to the more conserved front surface of the AMA1 model structure. Conclusions This study predicted 14 and confirmed nine MHC class I-restricted CD8+ T cell epitopes on AMA1 recognized in the context of seven HLA alleles. These HLA alleles belong to four HLA supertypes that have a phenotypic frequency between 23% - 100% in different human populations.
Collapse
Affiliation(s)
- Martha Sedegah
- USMMVP, Malaria Department, NMRC, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Allelic diversity and naturally acquired allele-specific antibody responses to Plasmodium falciparum apical membrane antigen 1 in Kenya. Infect Immun 2010; 78:4625-33. [PMID: 20732997 DOI: 10.1128/iai.00576-10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although Plasmodium falciparum apical membrane antigen 1 (AMA1) is a leading malaria vaccine candidate, extensive allelic diversity may compromise its vaccine potential. We have previously shown that naturally acquired antibodies to AMA1 were associated with protection from clinical malaria in this Kenyan population. To assess the impact of allelic diversity on naturally acquired immunity, we first sequenced the ectodomain-encoding region of P. falciparum ama1 from subjects with asymptomatic, mild, and severe malaria and measured allele frequency distributions. We then measured antibodies to three allelic AMA1 proteins (AMA1_3D7, AMA1_FVO, and AMA1_HB3) and used competition enzyme-linked immunosorbent assays (ELISAs) to analyze allele-specific antibodies. Seventy-eight unique haplotypes were identified from 129 alleles sampled. No clustering of allelic haplotypes with disease severity or year of sampling was observed. Differences in nucleotide frequencies in clinical (severe plus mild malaria) versus asymptomatic infections were observed at 16 polymorphic positions. Allele frequency distributions were indicative of balancing selection, with the strongest signature being identified in domain III (Tajima's D = 2.51; P < 0.05). Antibody reactivities to each of the three allelic AMA1 proteins were highly correlated (P < 0.001 for all pairwise comparisons). Although antibodies to conserved epitopes were abundant, 48% of selected children with anti-AMA1 IgG (n = 106) had detectable reactivity to allele-specific epitopes as determined by a competition ELISA. Antibodies to both conserved and allele-specific epitopes in AMA1 may contribute to clinical protection.
Collapse
|
47
|
Weedall GD, Conway DJ. Detecting signatures of balancing selection to identify targets of anti-parasite immunity. Trends Parasitol 2010; 26:363-9. [PMID: 20466591 DOI: 10.1016/j.pt.2010.04.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 04/04/2010] [Accepted: 04/06/2010] [Indexed: 10/19/2022]
Abstract
Parasite antigen genes might evolve under frequency-dependent immune selection. The distinctive patterns of polymorphism that result can be detected using population genetic methods that test for signatures of balancing selection, allowing genes encoding important targets of immunity to be identified. Analyses can be complicated by population structures, histories and features of a parasite's genome. However, new sequencing technologies facilitate scans of polymorphism throughout parasite genomes to identify the most exceptional gene specific signatures. We focus on malaria parasites to illustrate challenges and opportunities for detecting targets of frequency-dependent immune selection to discover new potential vaccine candidates.
Collapse
Affiliation(s)
- Gareth D Weedall
- School of Biological Sciences, University of Liverpool, Crown Street, Liverpool, UK, L69 7ZB.
| | | |
Collapse
|
48
|
Genetic polymorphism and effect of natural selection at domain I of apical membrane antigen-1 (AMA-1) in Plasmodium vivax isolates from Myanmar. Acta Trop 2010; 114:71-5. [PMID: 20096258 DOI: 10.1016/j.actatropica.2010.01.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 12/31/2009] [Accepted: 01/12/2010] [Indexed: 11/23/2022]
Abstract
Malaria is endemic or hypoendemic in Myanmar and the country still contributes to the high level of malaria deaths in South-East Asia. Although information on the nature and extent of population diversity within malaria parasites in the country is essential not only for understanding the epidemic situation but also to establish a proper control strategy, very little data is currently available on the extent of genetic polymorphisms of the malaria parasites in Myanmar. In this study, we analyzed the genetic polymorphism and natural selection at domain I of the apical membrane antigen-1 (AMA-1) among Plasmodium vivax Myanmar isolates. A total of 34 distinguishable haplotypes were identified among the 76 isolates sequenced. Comparison with the previously available PvAMA-1 sequences in the GenBank database revealed that 21 of them were new haplotypes that have never been reported till date. The difference between the rate of nonsynonymous (dN) and synonymous (dS) mutations was positive (dN-dS, 0.013+/-0.005), suggesting the domain I is under positive natural selection. The Tajima's D statistics was found to be -0.74652, suggesting that the gene has evolved under population size expansion and/or positive selection. The minimum recombination events were also high, indicating that recombination may occur within the domain I resulting in allelic diversity of PvAMA-1. Our results collectively suggest that PvAMA-1 displays high genetic polymorphism among Myanmar P. vivax isolates with highly diversifying selection at domain I. These results have significant implications in understanding the nature of P. vivax population circulating in Myanmar as well as providing useful information for malaria vaccine development based on this antigen.
Collapse
|
49
|
Atomic fidelity of subunit-based chemically-synthesized antimalarial vaccine components. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2010; 102:38-44. [DOI: 10.1016/j.pbiomolbio.2009.10.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/12/2009] [Indexed: 11/24/2022]
|
50
|
Barry AE, Schultz L, Buckee CO, Reeder JC. Contrasting population structures of the genes encoding ten leading vaccine-candidate antigens of the human malaria parasite, Plasmodium falciparum. PLoS One 2009; 4:e8497. [PMID: 20041125 PMCID: PMC2795866 DOI: 10.1371/journal.pone.0008497] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Accepted: 12/07/2009] [Indexed: 11/21/2022] Open
Abstract
The extensive diversity of Plasmodium falciparum antigens is a major obstacle to a broadly effective malaria vaccine but population genetics has rarely been used to guide vaccine design. We have completed a meta-population genetic analysis of the genes encoding ten leading P. falciparum vaccine antigens, including the pre-erythrocytic antigens csp, trap, lsa1 and glurp; the merozoite antigens eba175, ama1, msp's 1, 3 and 4, and the gametocyte antigen pfs48/45. A total of 4553 antigen sequences were assembled from published data and we estimated the range and distribution of diversity worldwide using traditional population genetics, Bayesian clustering and network analysis. Although a large number of distinct haplotypes were identified for each antigen, they were organized into a limited number of discrete subgroups. While the non-merozoite antigens showed geographically variable levels of diversity and geographic restriction of specific subgroups, the merozoite antigens had high levels of diversity globally, and a worldwide distribution of each subgroup. This shows that the diversity of the non-merozoite antigens is organized by physical or other location-specific barriers to gene flow and that of merozoite antigens by features intrinsic to all populations, one important possibility being the immune response of the human host. We also show that current malaria vaccine formulations are based upon low prevalence haplotypes from a single subgroup and thus may represent only a small proportion of the global parasite population. This study demonstrates significant contrasts in the population structure of P. falciparum vaccine candidates that are consistent with the merozoite antigens being under stronger balancing selection than non-merozoite antigens and suggesting that unique approaches to vaccine design will be required. The results of this study also provide a realistic framework for the diversity of these antigens to be incorporated into the design of next-generation malaria vaccines.
Collapse
Affiliation(s)
- Alyssa E Barry
- Centre for Population Health, Burnet Institute, Melbourne, Australia.
| | | | | | | |
Collapse
|