1
|
Tiddy IC, Neill CM, Rosén A, Hasegawa Y, Domenici P, Johansen JL, Steffensen JF. Effects of social environment and energy efficiency on preferred swim speed in a marine generalist fish, pile perch (Phanerodon vacca). J Exp Biol 2025; 228:JEB249546. [PMID: 40067260 DOI: 10.1242/jeb.249546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/03/2025] [Indexed: 03/14/2025]
Abstract
Energy efficiency is a key component of movement strategy for many species. In fish, optimal swimming speed (Uopt) is the speed at which the mass-specific energetic cost to move a given distance is minimised. However, additional factors may influence an individual's preferred swimming speed (Upref). Activities requiring consistent sensory inputs, such as food finding, may require slower swimming speeds than Uopt. Further, although the majority of fish display some form of social behaviour, the influence of social interactions on Upref remains unclear. It is unlikely that all fish within a group will have the same Upref, and fish may therefore compromise individual Upref to swim with a conspecific. This study measured the Uopt, Upref and Upref in the presence of a conspecific (Upair) of pile perch, Phanerodon vacca, a non-migratory coastal marine generalist. Uopt was significantly higher than, and was not correlated with, Upref. Fish therefore chose to swim at speeds below their energetic optimum, possibly because slower swimming allows for greater awareness of surroundings. Mean Upair was significantly lower than the Upref of the faster fish in each pair but did not differ significantly from the Upref of the slower fish. Therefore, faster fish appear to slow their speed to remain with a slower conspecific. Our study suggests that environmental factors, including social surroundings, may be more important than energetic efficiency for determining swim speed in P. vacca. Further studies of fish species from various habitats will be necessary to elucidate the environmental and energetic factors underpinning Upref.
Collapse
Affiliation(s)
- Izzy C Tiddy
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - C Melman Neill
- Marine Science Institute, University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Alexander Rosén
- DTU Aqua: National Institute of Aquatic Resources, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Yuha Hasegawa
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, Bunkyo, Nagasaki 852-8521, Japan
| | - Paolo Domenici
- Istituto di Biofisica, Italian National Research Council, 56124 Pisa, Italy
| | - Jacob L Johansen
- Hawai'i Institute of Marine Biology, University of Hawai'i, Manoa, Kaneohe, HI 96744, USA
| | - John F Steffensen
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Hetem RS, Haylock KA, Boyers M, Parrini F, Owen-Smith N, Beytell P, Strauss WM. Integrating physiology into movement ecology of large terrestrial mammals. J Exp Biol 2025; 228:JEB248112. [PMID: 39973194 DOI: 10.1242/jeb.248112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Movement paths are influenced by external factors and depend on an individual's navigation capacity (Where to move?), motion capacity (How to move?) and are ultimately driven by internal physiological state (Why move?). Despite physiology underlying most aspects of this movement ecology framework, the physiology-movement nexus remains understudied in large terrestrial mammals. Within this Commentary, we highlight the physiological processes that underpin the movement ecology framework and how integrating physiological measurements can provide mechanistic insights that may enhance our understanding of the drivers of animal movement. We focus on large terrestrial mammals, which are well represented within the movement ecology literature but are under-represented in movement studies that integrate physiological state. Recent advances in biologging technology allow for physiological variables, such as heart rate and body movements, to be recorded remotely and continuously in free-living animals. Biologging of body temperature may provide additional insights into the physiological states driving movement. Body temperature not only provides a measure of thermal stress, but also an index of animal wellbeing through quantification of nutrition, hydration, reproductive and disease states that may drive animal movements. Integrating measures of body temperature with fine-scale GPS locations may provide insights into causality and improve our mechanistic understanding of animal movement, which is crucial for understanding population performance and monitoring reintroduction success. We recommend that baseline studies are undertaken, linking animal movement to the underlying physiological mechanisms, to allow for the development of realistic predictive models to improve conservation efforts in the Anthropocene.
Collapse
Affiliation(s)
- Robyn S Hetem
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Kiara A Haylock
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Melinda Boyers
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow G12 8QQ, UK
| | - Francesca Parrini
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Norman Owen-Smith
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | - Piet Beytell
- Namibian Ministry of Environment, Forestry and Tourism, Windhoek 10005, Namibia
| | - W Maartin Strauss
- School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- ABEERU, Department of Environmental Science, University of South Africa, Johannesburg 1709, South Africa
| |
Collapse
|
3
|
Cherif M, Brose U, Hirt MR, Ryser R, Silve V, Albert G, Arnott R, Berti E, Cirtwill A, Dyer A, Gauzens B, Gupta A, Ho HC, Portalier SMJ, Wain D, Wootton K. The environment to the rescue: can physics help predict predator-prey interactions? Biol Rev Camb Philos Soc 2024; 99:1927-1947. [PMID: 38855988 DOI: 10.1111/brv.13105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
Understanding the factors that determine the occurrence and strength of ecological interactions under specific abiotic and biotic conditions is fundamental since many aspects of ecological community stability and ecosystem functioning depend on patterns of interactions among species. Current approaches to mapping food webs are mostly based on traits, expert knowledge, experiments, and/or statistical inference. However, they do not offer clear mechanisms explaining how trophic interactions are affected by the interplay between organism characteristics and aspects of the physical environment, such as temperature, light intensity or viscosity. Hence, they cannot yet predict accurately how local food webs will respond to anthropogenic pressures, notably to climate change and species invasions. Herein, we propose a framework that synthesises recent developments in food-web theory, integrating body size and metabolism with the physical properties of ecosystems. We advocate for combination of the movement paradigm with a modular definition of the predation sequence, because movement is central to predator-prey interactions, and a generic, modular model is needed to describe all the possible variation in predator-prey interactions. Pending sufficient empirical and theoretical knowledge, our framework will help predict the food-web impacts of well-studied physical factors, such as temperature and oxygen availability, as well as less commonly considered variables such as wind, turbidity or electrical conductivity. An improved predictive capability will facilitate a better understanding of ecosystem responses to a changing world.
Collapse
Affiliation(s)
- Mehdi Cherif
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Myriam R Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Violette Silve
- Aquatic Ecosystems and Global Change Research Unit, National Research Institute for Agriculture Food and the Environment, 50 avenue de Verdun, Cestas Cedex, 33612, France
| | - Georg Albert
- Department of Forest Nature Conservation, Georg-August-Universität, Büsgenweg 3, Göttingen, 37077, Germany
| | - Russell Arnott
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, Cambridgeshire, CB2 1LR, UK
| | - Emilio Berti
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Alyssa Cirtwill
- Spatial Foodweb Ecology Group, Research Centre for Ecological Change (REC), Faculty of Biological and Environmental Sciences, University of Helsinki, P.O. Box 4 (Yliopistonkatu 3), Helsinki, 00014, Finland
| | - Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, Leipzig, 04103, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Straße 159, Jena, 07743, Germany
| | - Anhubav Gupta
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, Zürich, 8057, Switzerland
| | - Hsi-Cheng Ho
- Institute of Ecology and Evolutionary Biology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd, Taipei, 106, Taiwan
| | - Sébastien M J Portalier
- Department of Mathematics and Statistics, University of Ottawa, STEM Complex, room 342, 150 Louis-Pasteur Pvt, Ottawa, Ontario, K1N 6N5, Canada
| | - Danielle Wain
- 7 Lakes Alliance, Belgrade Lakes, 137 Main St, Belgrade Lakes, ME, 04918, USA
| | - Kate Wootton
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| |
Collapse
|
4
|
Head A, Vaughn PL, Livingston EH, Colwell C, Muñoz MM, Gangloff EJ. Include the females: morphology-performance relationships vary between sexes in lizards. J Exp Biol 2024; 227:jeb248014. [PMID: 39155657 DOI: 10.1242/jeb.248014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/02/2024] [Indexed: 08/20/2024]
Abstract
An animal's morphology influences its ability to perform essential tasks, such as locomoting to obtain prey or escape predators. While morphology-performance relationships are well-studied in lizards, most conclusions have been based only on male study subjects, leaving unanswered questions about females. Sex-specific differences are important to understand because females carry the bulk of the physiological demands of reproduction. Consequently, their health and survival can determine the fate of the population as a whole. To address this knowledge gap, we sampled introduced populations of common wall lizards (Podarcis muralis) in Ohio, USA. We measured a complete suite of limb and body dimensions of both males and females, and we measured sprint speeds while following straight and curved paths on different substrates. Using a multivariate statistical approach, we identified that body dimensions relative to snout-to-vent length in males were much larger compared with females and that body dimensions of P. muralis have changed over time in both sexes. We found that sprint speed along curved paths increased with relative limb size in both males and females. When following straight paths, male speed similarly increased as body dimensions increased; conversely, female speed decreased as body dimensions increased. Female sprint speed was also found to have less variation than that of males and was less affected by changes in body size and hindfoot length compared with males. This study thus provides insights into how selective pressures might shape males and females differently and the functional implications of sexual dimorphism.
Collapse
Affiliation(s)
- Alyssa Head
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
- Department of Evolutionary Biology, San Diego State University, San Diego, CA 92182, USA
| | - Princeton L Vaughn
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Ethan H Livingston
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Cece Colwell
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| | - Martha M Muñoz
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
| | - Eric J Gangloff
- Department of Biological Sciences, Ohio Wesleyan University, Delaware, OH 43015, USA
| |
Collapse
|
5
|
Kodama T, Sakamoto SH, Mori A. Cold kiss still hot: limited temperature effects on envenomation performance in predatory strikes of a Japanese pit viper ( Gloydius blomhoffii). Proc Biol Sci 2024; 291:20240719. [PMID: 39079665 PMCID: PMC11288664 DOI: 10.1098/rspb.2024.0719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/24/2024] [Accepted: 07/04/2024] [Indexed: 08/03/2024] Open
Abstract
Understanding how environmental factors affect the performance of predators can provide profound insights into predator-prey interactions from evolutionary and ecological perspectives and the global distributional patterns of each taxon. Almost all venomous predators are ectotherms, with muscle contraction properties depending on temperature. For predators having venom transportation systems driven by muscle contraction, temperature may have quite large effects on envenomation performance for prey subjugation. Here, we used videography and enzyme-linked immunosorbent assay to examine thermal effects on envenomation kinematics and venom expenditure in predatory strikes of a venomous snake, the Mamushi Gloydius blomhoffii, to its main rodent prey at various body temperatures under both field and laboratory experimental conditions. Unexpectedly, we found that the thermal effects on envenomation performance are limited over nearly the entire ecologically relevant range of temperature (from 13.2°C to 26.2°C). Although temperature statistically significantly affected the mass of venom injected under field conditions, temperature explained only a minor proportion of the variation in venom expenditure. These findings suggest that the Mamushi is able to maintain prey subjugation performance across a wide range of temperatures, which is highly advantageous for ectothermic predators. Further studies should examine the underlying mechanisms of the limited thermal effects and their ubiquity across venomous predators.
Collapse
Affiliation(s)
- Tomonori Kodama
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto606-8502, Japan
| | - Shinsuke H. Sakamoto
- Faculty of Agriculture, University of Miyazaki, Miyazaki889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki889-2192, Japan
| | - Akira Mori
- Department of Zoology, Graduate School of Science, Kyoto University, Sakyo, Kyoto606-8502, Japan
| |
Collapse
|
6
|
Scharf I, Hanna K, Gottlieb D. Experimental arena settings might lead to misinterpretation of movement properties. INSECT SCIENCE 2024; 31:271-284. [PMID: 37231528 DOI: 10.1111/1744-7917.13213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023]
Abstract
Movement is an important animal behavior contributing to reproduction and survival. Animal movement is often examined in arenas or enclosures under laboratory conditions. We used the red flour beetle (Tribolium castaneum) to examine here the effect of the arena size, shape, number of barriers, access to the arena's center, and illumination on six movement properties. We demonstrate great differences among arenas. For example, the beetles moved over longer distances in clear arenas than in obstructed ones. Movement along the arena's perimeter was greater in smaller arenas than in larger ones. Movement was more directional in round arenas than in rectangular ones. In general, the beetles stopped moving closer to the perimeter and closer to corners (in the square and rectangular arenas) than expected by chance. In some cases, the arena properties interacted with the beetle sex to affect several movement properties. All these suggest that arena properties might also interact with experimental manipulations to affect the outcome of studies and lead to results specific to the arena used. In other words, instead of examining animal movement, we in fact examine the animal interaction with the arena structure. Caution is therefore advised in interpreting the results of studies on movement in arenas under laboratory conditions and we recommend paying attention also to barriers or obstacles in field experiments. For instance, movement along the arena's perimeter is often interpreted as centrophobism or thigmotaxis but the results here show that such movement is arena dependent.
Collapse
Affiliation(s)
- Inon Scharf
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Kimberley Hanna
- The George S. Wise Faculty of Life Sciences, School of Zoology, Tel Aviv University, Tel Aviv, Israel
| | - Daphna Gottlieb
- Department of Food Science, Institute of Post-Harvest and Food Science, Volcani Center, ARO, Rishon LeZion, Israel
| |
Collapse
|
7
|
Ramirez-Agudelo J, Puillet L, Friggens N. A framework to estimate the environmentally attainable intake of dairy cows in constraining environments. Animal 2023. [DOI: 10.1016/j.animal.2023.100799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
|
8
|
Ruaux G, Monmasson K, Hedrick TL, Lumineau S, de Margerie E. Drink safely: common swifts (Apus apus) dissipate mechanical energy to decrease flight speed before touch-and-go drinking. J Exp Biol 2023; 226:jeb244961. [PMID: 36806419 DOI: 10.1242/jeb.244961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/14/2023] [Indexed: 02/22/2023]
Abstract
Flight is an efficient way of transport over a unit of distance, but it can be very costly over each unit of time, and reducing flight energy expenditure is a major selective pressure in birds. The common swift (Apus apus) is one of the most aerial bird species, performing most behaviours in flight: foraging, sleeping and also drinking by regularly descending to various waterbodies and skimming over the surface. An energy-saving way to perform such touch-and-go drinking would be to strive to conserve mechanical energy, by transforming potential energy to kinetic energy during the gliding descent, touching water at high speed, and regaining height with minimal muscular work. Using 3D optical tracking, we recorded 163 swift drinking trajectories, over three waterbodies near Rennes, France. Contrary to the energy conservation hypothesis, we show that swifts approaching a waterbody with a higher mechanical energy (higher height and/or speed 5 s before contact) do not reach the water at higher speeds, but do brake, i.e. dissipate mechanical energy to lose both height and speed. Braking seems to be linked with sharp turns and the use of headwind to some extent, but finer turns and postural adjustments, beyond the resolving power of our tracking data, could also be involved. We hypothesize that this surprisingly costly behaviour results from a trade-off between energy expenditure and safety, because approaching a water surface requires fine motor control, and high speed increases the risk of falling into the water, which would have serious energetic and survival costs for a swift.
Collapse
Affiliation(s)
- Geoffrey Ruaux
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Kyra Monmasson
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Tyson L Hedrick
- Department of Biology , University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sophie Lumineau
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Emmanuel de Margerie
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| |
Collapse
|
9
|
Jahn M, Seebacher F. Variations in cost of transport and their ecological consequences: a review. J Exp Biol 2022; 225:276242. [PMID: 35942859 DOI: 10.1242/jeb.243646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Movement is essential in the ecology of most animals, and it typically consumes a large proportion of individual energy budgets. Environmental conditions modulate the energetic cost of movement (cost of transport, COT), and there are pronounced differences in COT between individuals within species and across species. Differences in morphology affect COT, but the physiological mechanisms underlying variation in COT remain unresolved. Candidates include mitochondrial efficiency and the efficiency of muscle contraction-relaxation dynamics. Animals can offset increased COT behaviourally by adjusting movement rate and habitat selection. Here, we review the theory underlying COT and the impact of environmental changes on COT. Increasing temperatures, in particular, increase COT and its variability between individuals. Thermal acclimation and exercise can affect COT, but this is not consistent across taxa. Anthropogenic pollutants can increase COT, although few chemical pollutants have been investigated. Ecologically, COT may modify the allocation of energy to different fitness-related functions, and thereby influence fitness of individuals, and the dynamics of animal groups and communities. Future research should consider the effects of multiple stressors on COT, including a broader range of pollutants, the underlying mechanisms of COT and experimental quantifications of potential COT-induced allocation trade-offs.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
10
|
Guitard J, Chrétien E, Bonville JD, Roche DG, Boisclair D, Binning SA. Increased parasite load is associated with reduced metabolic rates and escape responsiveness in pumpkinseed sunfish. J Exp Biol 2022; 225:276167. [PMID: 35818812 DOI: 10.1242/jeb.243160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/05/2022] [Indexed: 11/20/2022]
Abstract
Wild animals have parasites that can compromise their physiological and/or behavioural performance. Yet, the extent to which parasite load is related to intraspecific variation in performance traits within wild populations remains relatively unexplored. We used pumpkinseed sunfish (Lepomis gibbosus) and their endoparasites as a model system to explore the effects of infection load on host aerobic metabolism and escape performance. Metabolic traits (standard and maximum metabolic rates, aerobic scope) and fast-start escape responses following a simulated aerial attack by a predator (responsiveness, response latency, and escape distance) were measured in fish from across a gradient of visible (i.e. trematodes causing black spot disease counted on fish surfaces) and non-visible (i.e. cestodes in fish abdominal cavity counted post-mortem) endoparasite infection. We found that a higher infection load of non-visible endoparasites was related to lower standard and maximum metabolic rates, but not aerobic scope in fish. Non-visible endoparasite infection load was also related to decreased responsiveness of the host to a simulated aerial attack. Visible endoparasites were not related to changes in metabolic traits nor fast-start escape responses. Our results suggest that infection with parasites that are inconspicuous to researchers can result in intraspecific variation in physiological and behavioral performance in wild populations, highlighting the need to more explicitly acknowledge and account for the role played by natural infections in studies of wild animal performance.
Collapse
Affiliation(s)
- Joëlle Guitard
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.,Institut des sciences de la mer (ISMER), Université de Québec à Rimouski, 310 avenue des Ursulines, Rimouski, Québec, G5L 2Z9, Canada
| | - Emmanuelle Chrétien
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.,Centre eau, terre et environnement, Institut national de la recherche scientifique, Québec, Québec, G1K 9A9, Canada
| | - Jérémy De Bonville
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Dominique G Roche
- Institut de biologie, Université de Neuchâtel, Neuchâtel, Switzerland.,Department of Biology and Institute of Environmental and Interdisciplinary Sciences, Carleton University, Ottawa, Ontario, Canada
| | - Daniel Boisclair
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| | - Sandra A Binning
- Groupe de recherche interuniversitaire en limnologie et en environnement aquatique (GRIL), Département de sciences biologiques, Université de Montréal, 1375 Av. Thérèse- Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada
| |
Collapse
|
11
|
Wu NC, Seebacher F. Physiology can predict animal activity, exploration, and dispersal. Commun Biol 2022; 5:109. [PMID: 35115649 PMCID: PMC8814174 DOI: 10.1038/s42003-022-03055-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/12/2022] [Indexed: 12/29/2022] Open
Abstract
Physiology can underlie movement, including short-term activity, exploration of unfamiliar environments, and larger scale dispersal, and thereby influence species distributions in an environmentally sensitive manner. We conducted meta-analyses of the literature to establish, firstly, whether physiological traits underlie activity, exploration, and dispersal by individuals (88 studies), and secondly whether physiological characteristics differed between range core and edges of distributions (43 studies). We show that locomotor performance and metabolism influenced individual movement with varying levels of confidence. Range edges differed from cores in traits that may be associated with dispersal success, including metabolism, locomotor performance, corticosterone levels, and immunity, and differences increased with increasing time since separation. Physiological effects were particularly pronounced in birds and amphibians, but taxon-specific differences may reflect biased sampling in the literature, which also focussed primarily on North America, Europe, and Australia. Hence, physiology can influence movement, but undersampling and bias currently limits general conclusions.
Collapse
Affiliation(s)
- Nicholas C Wu
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
12
|
|
13
|
Beck HK, Schultz JT, Clemente CJ. A bio-inspired robotic climbing robot to understand kinematic and morphological determinants for an optimal climbing gait. BIOINSPIRATION & BIOMIMETICS 2021; 17:016005. [PMID: 34740206 DOI: 10.1088/1748-3190/ac370f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Robotic systems for complex tasks, such as search and rescue or exploration, are limited for wheeled designs, thus the study of legged locomotion for robotic applications has become increasingly important. To successfully navigate in regions with rough terrain, a robot must not only be able to negotiate obstacles, but also climb steep inclines. Following the principles of biomimetics, we developed a modular bio-inspired climbing robot, named X4, which mimics the lizard's bauplan including an actuated spine, shoulders, and feet which interlock with the surface via claws. We included the ability to modify gait and hardware parameters and simultaneously collect data with the robot's sensors on climbed distance, slip occurrence and efficiency. We first explored the speed-stability trade-off and its interaction with limb swing phase dynamics, finding a sigmoidal pattern of limb movement resulted in the greatest distance travelled. By modifying foot orientation, we found two optima for both speed and stability, suggesting multiple stable configurations. We varied spine and limb range of motion, again showing two possible optimum configurations, and finally varied the centre of pro- and retraction on climbing performance, showing an advantage for protracted limbs during the stride. We then stacked optimal regions of performance and show that combining optimal dynamic patterns with either foot angles or ROM configurations have the greatest performance, but further optima stacking resulted in a decrease in performance, suggesting complex interactions between kinematic parameters. The search of optimal parameter configurations might not only be beneficial to improve robotic in-field operations but may also further the study of the locomotive evolution of climbing of animals, like lizards or insects.
Collapse
Affiliation(s)
| | - Johanna T Schultz
- School of Science, Technology and Engineering, University of the Sunshine Coast, QLD, Australia
- The Robotics and Autonomous Systems Group, CSIRO Data61, QLD, Australia
| | - Christofer J Clemente
- School of Science, Technology and Engineering, University of the Sunshine Coast, QLD, Australia
| |
Collapse
|
14
|
Laskowski KL, Seebacher F, Habedank M, Meka J, Bierbach D. Two Locomotor Traits Show Different Patterns of Developmental Plasticity Between Closely Related Clonal and Sexual Fish. Front Physiol 2021; 12:740604. [PMID: 34712149 PMCID: PMC8546259 DOI: 10.3389/fphys.2021.740604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/22/2021] [Indexed: 12/11/2022] Open
Abstract
The capacity to compensate for environmental change determines population persistence and biogeography. In ectothermic organisms, performance at different temperatures can be strongly affected by temperatures experienced during early development. Such developmental plasticity is mediated through epigenetic mechanisms that induce phenotypic changes within the animal's lifetime. However, epigenetic modifiers themselves are encoded by DNA so that developmental plasticity could itself be contingent on genetic diversity. In this study, we test the hypothesis that the capacity for developmental plasticity depends on a species' among-individual genetic diversity. To test this, we exploited a unique species complex that contains both the clonal, genetically identical Amazon molly (Poecilia formosa), and the sexual, genetically diverse Atlantic molly (Poecilia mexicana). We predicted that the greater among-individual genetic diversity in the Atlantic molly may increase their capacity for developmental plasticity. We raised both clonal and sexual mollies at either warm (28°C) or cool (22°C) temperatures and then measured locomotor capacity (critical sustained swimming performance) and unforced movement in an open field across a temperature gradient that simulated environmental conditions often experienced by these species in the wild. In the clonal Amazon molly, differences in the developmental environment led to a shift in the thermal performance curve of unforced movement patterns, but much less so in maximal locomotor capacity. In contrast, the sexual Atlantic mollies exhibited the opposite pattern: developmental plasticity was present in maximal locomotor capacity, but not in unforced movement. Thus our data show that developmental plasticity in clones and their sexual, genetically more diverse sister species is trait dependent. This points toward mechanistic differences in how genetic diversity mediates plastic responses exhibited in different traits.
Collapse
Affiliation(s)
- Kate L Laskowski
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Evolution and Ecology, University of California, Davis, Davis, CA, United States
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, The University of Sydney, Sydney, NSW, Australia
| | - Marie Habedank
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - Johannes Meka
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany
| | - David Bierbach
- Department of Biology and Ecology of Fishes, Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Faculty of Life Sciences, Albrecht Daniel Thaer-Institute, Humboldt University of Berlin, Berlin, Germany.,Cluster of Excellence "Science of Intelligence," Technische Universität Berlin, Berlin, Germany
| |
Collapse
|
15
|
Nisi AC, Suraci JP, Ranc N, Frank LG, Oriol-Cotterill A, Ekwanga S, Williams TM, Wilmers CC. Temporal scale of habitat selection for large carnivores: Balancing energetics, risk and finding prey. J Anim Ecol 2021; 91:182-195. [PMID: 34668571 PMCID: PMC9298125 DOI: 10.1111/1365-2656.13613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 09/19/2021] [Indexed: 11/29/2022]
Abstract
When navigating heterogeneous landscapes, large carnivores must balance trade-offs between multiple goals, including minimizing energetic expenditure, maintaining access to hunting opportunities and avoiding potential risk from humans. The relative importance of these goals in driving carnivore movement likely changes across temporal scales, but our understanding of these dynamics remains limited. Here we quantified how drivers of movement and habitat selection changed with temporal grain for two large carnivore species living in human-dominated landscapes, providing insights into commonalities in carnivore movement strategies across regions. We used high-resolution GPS collar data and integrated step selection analyses to model movement and habitat selection for African lions Panthera leo in Laikipia, Kenya and pumas Puma concolor in the Santa Cruz Mountains of California across eight temporal grains, ranging from 5 min to 12 hr. Analyses considered landscape covariates that are related to energetics, resource acquisition and anthropogenic risk. For both species, topographic slope, which strongly influences energetic expenditure, drove habitat selection and movement patterns over fine temporal grains but was less important at longer temporal grains. In contrast, avoiding anthropogenic risk during the day, when risk was highest, was consistently important across grains, but the degree to which carnivores relaxed this avoidance at night was strongest for longer term movements. Lions and pumas modified their movement behaviour differently in response to anthropogenic features: lions sped up while near humans at fine temporal grains, while pumas slowed down in more developed areas at coarse temporal grains. Finally, pumas experienced a trade-off between energetically efficient movement and avoiding anthropogenic risk. Temporal grain is an important methodological consideration in habitat selection analyses, as drivers of both movement and habitat selection changed across temporal grain. Additionally, grain-dependent patterns can reflect meaningful behavioural processes, including how fitness-relevant goals influence behaviour over different periods of time. In applying multi-scale analysis to fine-resolution data, we showed that two large carnivore species in very different human-dominated landscapes balanced competing energetic and safety demands in largely similar ways. These commonalities suggest general strategies of landscape use across large carnivore species.
Collapse
Affiliation(s)
- Anna C Nisi
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, USA
| | - Justin P Suraci
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, USA.,Conservation Science Partners, Truckee, CA, USA
| | - Nathan Ranc
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, USA
| | - Laurence G Frank
- Living with Lions, Mpala Research Centre, Nanyuki, Kenya.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Alayne Oriol-Cotterill
- Wildlife Conservation Research Unit, Zoology Department, Oxford University, Abingdon, UK.,Lion Landscapes, Teignmouth, UK
| | - Steven Ekwanga
- Living with Lions, Mpala Research Centre, Nanyuki, Kenya
| | - Terrie M Williams
- Ecology and Evolutionary Biology Department, University of California, Santa Cruz, CA, USA
| | - Christopher C Wilmers
- Center for Integrated Spatial Research, Environmental Studies Department, University of California, Santa Cruz, CA, USA
| |
Collapse
|
16
|
Seebacher F, Little AG. Plasticity of Performance Curves in Ectotherms: Individual Variation Modulates Population Responses to Environmental Change. Front Physiol 2021; 12:733305. [PMID: 34658917 PMCID: PMC8513571 DOI: 10.3389/fphys.2021.733305] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
Many ectothermic animals can respond to changes in their environment by altering the sensitivities of physiological rates, given sufficient time to do so. In other words, thermal acclimation and developmental plasticity can shift thermal performance curves so that performance may be completely or partially buffered against the effects of environmental temperature changes. Plastic responses can thereby increase the resilience to temperature change. However, there may be pronounced differences between individuals in their capacity for plasticity, and these differences are not necessarily reflected in population means. In a bet-hedging strategy, only a subsection of the population may persist under environmental conditions that favour either plasticity or fixed phenotypes. Thus, experimental approaches that measure means across individuals can not necessarily predict population responses to temperature change. Here, we collated published data of 608 mosquitofish (Gambusia holbrooki) each acclimated twice, to a cool and a warm temperature in random order, to model how diversity in individual capacity for plasticity can affect populations under different temperature regimes. The persistence of both plastic and fixed phenotypes indicates that on average, neither phenotype is selectively more advantageous. Fish with low acclimation capacity had greater maximal swimming performance in warm conditions, but their performance decreased to a greater extent with decreasing temperature in variable environments. In contrast, the performance of fish with high acclimation capacity decreased to a lesser extent with a decrease in temperature. Hence, even though fish with low acclimation capacity had greater maximal performance, high acclimation capacity may be advantageous when ecologically relevant behaviour requires submaximal locomotor performance. Trade-offs, developmental effects and the advantages of plastic phenotypes together are likely to explain the observed population variation.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Alexander G Little
- Department of Biology, Biosciences Complex, Queen's University, Kingston, ON, Canada
| |
Collapse
|
17
|
Kämmerle J, Taubmann J, Andrén H, Fiedler W, Coppes J. Environmental and seasonal correlates of capercaillie movement traits in a Swedish wind farm. Ecol Evol 2021; 11:11762-11773. [PMID: 34522339 PMCID: PMC8427587 DOI: 10.1002/ece3.7922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/20/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022] Open
Abstract
Animals continuously interact with their environment through behavioral decisions, rendering the appropriate choice of movement speed and directionality an important phenotypic trait. Anthropogenic activities may alter animal behavior, including movement. A detailed understanding of movement decisions is therefore of great relevance for science and conservation alike. The study of movement decisions in relation to environmental and seasonal cues requires continuous observation of movement behavior, recently made possible by high-resolution telemetry. We studied movement traits of 13 capercaillie (Tetrao urogallus), a mainly ground-moving forest bird species of conservation interest, over two summer seasons in a Swedish windfarm using high-resolution GPS tracking data (5-min sampling interval). We filtered and removed unreliable movement steps using accelerometer data and step characteristics. We explored variation in movement speed and directionality in relation to environmental and seasonal covariates using generalized additive mixed models (GAMMs). We found evidence for clear daily and seasonal variation in speed and directionality of movement that reflected behavioral adjustments to biological and environmental seasonality. Capercaillie moved slower when more turbines were visible and faster close to turbine access roads. Movement speed and directionality were highest on open bogs, lowest on recent clear-cuts (<5 y.o.), and intermediate in all types of forest. Our results provide novel insights into the seasonal and environmental correlates of capercaillie movement patterns and supplement previous behavioral observations on lekking behavior and wind turbine avoidance with a more mechanistic understanding.
Collapse
Affiliation(s)
- Jim‐Lino Kämmerle
- FVA Wildlife InstituteForest Research Institute of Baden‐Wuerttemberg FVAFreiburgGermany
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | - Julia Taubmann
- FVA Wildlife InstituteForest Research Institute of Baden‐Wuerttemberg FVAFreiburgGermany
- Chair of Wildlife Ecology and ManagementUniversity of FreiburgFreiburgGermany
| | - Henrik Andrén
- Grimsö Wildlife Research StationDepartment of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
| | - Wolfgang Fiedler
- Department of Migration and Immuno‐EcologyMax Planck Institute of Animal BehaviorRadolfzellGermany
| | - Joy Coppes
- FVA Wildlife InstituteForest Research Institute of Baden‐Wuerttemberg FVAFreiburgGermany
| |
Collapse
|
18
|
Miln C, Ward AJW, Seebacher F. Social rank and not physiological capacity determines competitive success in zebrafish ( Danio rerio). ROYAL SOCIETY OPEN SCIENCE 2021; 8:210146. [PMID: 33868699 PMCID: PMC8025299 DOI: 10.1098/rsos.210146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Competition for resources shapes ecological and evolutionary relationships. Physiological capacities such as in locomotor performance can influence the fitness of individuals by increasing competitive success. Social hierarchy too can affect outcomes of competition by altering locomotor behaviour or because higher ranking individuals monopolize resources. Here, we tested the hypotheses that competitive success is determined by sprint performance or by social status. We show that sprint performance of individuals measured during escape responses (fast start) or in an accelerated sprint test did not correlate with realized sprint speed while competing for food within a social group of five fish; fast start and accelerated sprint speed were higher than realized speed. Social status within the group was the best predictor of competitive success, followed by realized speed. Social hierarchies in zebrafish are established within 7 days of their first encounter, and interestingly, there was a positive correlation between social status and realized speed 1 and 4 days after fish were placed in a group, but not after 7 days. These data indicate that physiological performance decreases in importance as social relationships are established. Also, maximal physiological capacities were not important for competitive success, but swimming speed changed with social context.
Collapse
Affiliation(s)
- Clare Miln
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Ashley J. W. Ward
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, NSW 2006, Australia
| |
Collapse
|
19
|
Schultz JT, Beck HK, Haagensen T, Proost T, Clemente CJ. Using a biologically mimicking climbing robot to explore the performance landscape of climbing in lizards. Proc Biol Sci 2021; 288:20202576. [PMID: 33784869 DOI: 10.1098/rspb.2020.2576] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Locomotion is a key aspect associated with ecologically relevant tasks for many organisms, therefore, survival often depends on their ability to perform well at these tasks. Despite this significance, we have little idea how different performance tasks are weighted when increased performance in one task comes at the cost of decreased performance in another. Additionally, the ability for natural systems to become optimized to perform a specific task can be limited by structural, historic or functional constraints. Climbing lizards provide a good example of these constraints as climbing ability likely requires the optimization of tasks which may conflict with one another such as increasing speed, avoiding falls and reducing the cost of transport (COT). Understanding how modifications to the lizard bauplan can influence these tasks may allow us to understand the relative weighting of different performance objectives among species. Here, we reconstruct multiple performance landscapes of climbing locomotion using a 10 d.f. robot based upon the lizard bauplan, including an actuated spine, shoulders and feet, the latter which interlock with the surface via claws. This design allows us to independently vary speed, foot angles and range of motion (ROM), while simultaneously collecting data on climbed distance, stability and efficiency. We first demonstrate a trade-off between speed and stability, with high speeds resulting in decreased stability and low speeds an increased COT. By varying foot orientation of fore- and hindfeet independently, we found geckos converge on a narrow optimum of foot angles (fore 20°, hind 100°) for both speed and stability, but avoid a secondary wider optimum (fore -20°, hind -50°) highlighting a possible constraint. Modifying the spine and limb ROM revealed a gradient in performance. Evolutionary modifications in movement among extant species over time appear to follow this gradient towards areas which promote speed and efficiency.
Collapse
Affiliation(s)
- Johanna T Schultz
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia.,The Robotics and Autonomous Systems Group, CSIRO Data61, Pullenvale, Queensland, Australia
| | - Hendrik K Beck
- Biological Structures and Biomimetics, Bremen University of Applied Sciences, Hochschule Bremen, Germany
| | - Tina Haagensen
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Tasmin Proost
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Christofer J Clemente
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| |
Collapse
|
20
|
Sells SN, Mitchell MS, Podruzny KM, Gude JA, Keever AC, Boyd DK, Smucker TD, Nelson AA, Parks TW, Lance NJ, Ross MS, Inman RM. Evidence of economical territory selection in a cooperative carnivore. Proc Biol Sci 2021; 288:20210108. [PMID: 33653139 DOI: 10.1098/rspb.2021.0108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
As an outcome of natural selection, animals are probably adapted to select territories economically by maximizing benefits and minimizing costs of territory ownership. Theory and empirical precedent indicate that a primary benefit of many territories is exclusive access to food resources, and primary costs of defending and using space are associated with competition, travel and mortality risk. A recently developed mechanistic model for economical territory selection provided numerous empirically testable predictions. We tested these predictions using location data from grey wolves (Canis lupus) in Montana, USA. As predicted, territories were smaller in areas with greater densities of prey, competitors and low-use roads, and for groups of greater size. Territory size increased before decreasing curvilinearly with greater terrain ruggedness and harvest mortalities. Our study provides evidence for the economical selection of territories as a causal mechanism underlying ecological patterns observed in a cooperative carnivore. Results demonstrate how a wide range of environmental and social conditions will influence economical behaviour and resulting space use. We expect similar responses would be observed in numerous territorial species. A mechanistic approach enables understanding how and why animals select particular territories. This knowledge can be used to enhance conservation efforts and more successfully predict effects of conservation actions.
Collapse
Affiliation(s)
- Sarah N Sells
- Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, University of Montana, 205 Natural Sciences Building, Missoula, MT 59812, USA
| | - Michael S Mitchell
- US Geological Survey, Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, University of Montana, 205 Natural Sciences Building, Missoula, MT 59812, USA
| | - Kevin M Podruzny
- Montana Fish, Wildlife and Parks, 1420 E. 6th Street, Helena, MT 59620, USA
| | - Justin A Gude
- Montana Fish, Wildlife and Parks, 1420 E. 6th Street, Helena, MT 59620, USA
| | - Allison C Keever
- Montana Cooperative Wildlife Research Unit, Wildlife Biology Program, University of Montana, 205 Natural Sciences Building, Missoula, MT 59812, USA
| | - Diane K Boyd
- Montana Fish, Wildlife and Parks, 490 North Meridian Road, Kalispell, MT 59901, USA
| | - Ty D Smucker
- Montana Fish, Wildlife and Parks, 4600 Giant Springs Road, Great Falls, MT 59405, USA
| | | | - Tyler W Parks
- Montana Fish, Wildlife and Parks, 3201 Spurgin Road, Missoula, MT 59804, USA
| | - Nathan J Lance
- Montana Fish, Wildlife and Parks, 1400 South 19th, Bozeman, MT 59718, USA
| | - Michael S Ross
- Montana Fish, Wildlife and Parks, 1400 South 19th, Bozeman, MT 59718, USA
| | - Robert M Inman
- Montana Fish, Wildlife and Parks, 1420 E. 6th Street, Helena, MT 59620, USA
| |
Collapse
|
21
|
Wheatley R, Buettel JC, Brook BW, Johnson CN, Wilson RP. Accidents alter animal fitness landscapes. Ecol Lett 2021; 24:920-934. [PMID: 33751743 DOI: 10.1111/ele.13705] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023]
Abstract
Animals alter their habitat use in response to the energetic demands of movement ('energy landscapes') and the risk of predation ('the landscape of fear'). Recent research suggests that animals also select habitats and move in ways that minimise their chance of temporarily losing control of movement and thereby suffering slips, falls, collisions or other accidents, particularly when the consequences are likely to be severe (resulting in injury or death). We propose that animals respond to the costs of an 'accident landscape' in conjunction with predation risk and energetic costs when deciding when, where, and how to move in their daily lives. We develop a novel theoretical framework describing how features of physical landscapes interact with animal size, morphology, and behaviour to affect the risk and severity of accidents, and predict how accident risk might interact with predation risk and energetic costs to dictate movement decisions across the physical landscape. Future research should focus on testing the hypotheses presented here for different real-world systems to gain insight into the relative importance of theorised effects in the field.
Collapse
Affiliation(s)
- Rebecca Wheatley
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Jessie C Buettel
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Barry W Brook
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Christopher N Johnson
- School of Natural Sciences and the Australian Research Council Centre of Excellence for Australian Biodiversity and Heritage, University of Tasmania, Hobart, Tasmania, Australia
| | - Rory P Wilson
- Department of Biosciences, Swansea University, Swansea, UK
| |
Collapse
|
22
|
Mallpress DEW. Some theoretical notes on spatial discounting. Behav Processes 2021; 186:104355. [PMID: 33571612 DOI: 10.1016/j.beproc.2021.104355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Spatial discounting is a largely underexplored area of decision-making research, both theoretically and empirically, especially when compared to intertemporal choice, which has received significant attention in psychology and animal behaviour. Spatial decision problems seem to share some of the same features of a temporal decision problem (namely, the risk of reward objects disappearing and the opportunity cost of waiting), but there are several additional factors that affect the appropriate discount function for distant rewards. These include more significant opportunity costs, changes in the distances to all the other available opportunities, the post-reward costs of getting back home, the complex energetics associated with locomotion and all the additional risks faced by travelling itself. This paper organises and explores these factors and suggests some normative models that should predict the adaptive behaviour of animals and humans.
Collapse
Affiliation(s)
- Dave E W Mallpress
- Institute of Psychology, Chinese Academy of Sciences, 16 Lincui Road, Chaoyang District, Beijing, 100101, China.
| |
Collapse
|
23
|
Malishev M, Kramer-Schadt S. Movement, models, and metabolism: Individual-based energy budget models as next-generation extensions for predicting animal movement outcomes across scales. Ecol Modell 2021. [DOI: 10.1016/j.ecolmodel.2020.109413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
24
|
Papageorgiou D, Farine DR. Group size and composition influence collective movement in a highly social terrestrial bird. eLife 2020; 9:59902. [PMID: 33168135 PMCID: PMC7655099 DOI: 10.7554/elife.59902] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
A challenge of group-living is to maintain cohesion while navigating through heterogeneous landscapes. Larger groups benefit from information pooling, translating to greater ‘collective intelligence’, but face increased coordination challenges. If these facets interact, we should observe a non-linear relationship between group size and collective movement. We deployed high-resolution GPS tags to vulturine guineafowl from 21 distinct social groups and used continuous-time movement models to characterize group movements across five seasons. Our data revealed a quadratic relationship between group size and movement characteristics, with intermediate-sized groups exhibiting the largest home-range size and greater variation in space use. Intermediate-sized groups also had higher reproductive success, but having more young in the group reduced home-range size. Our study suggests the presence of an optimal group size, and composition, for collective movement. Many social animals live in stable groups that stay together for years, or even lifetimes. Being in a group offers a range of benefits, such as safety from predators, information on where to find food or water, and more accurate navigation. But these benefits come at a cost. The larger the group, the harder it is to make decisions that balance the needs of each individual. So, while members of a large group should be better at locating resources and finding their way, they may take longer to decide where to go next. In nature, groups of the same species can vary greatly in size and can have large or small numbers of offspring. This raises the question of whether there is an optimal group size where the benefits of living together are maximized relative to the costs? To help answer this question, Papageorgiou and Farine studied the group behaviour of vulturine guineafowl, a social, ground-dwelling bird found in the savannahs of East Africa. A lightweight GPS tracker was fitted to the members of 21 different groups of vulturine guineafowl to see how group size affects the movement of these birds. The tags collected data every five minutes from dawn until dusk each day, and remained active over five two-month spans of similar weather conditions. This revealed that groups of intermediate size, which contain 33 to 37 birds, ranged over larger areas allowing them to access more diverse resources, and used less energy by travelling shorter distances. Birds in these groups also explored more new areas, decreasing their chances of encountering a predator, and produced more chicks, suggesting that their collective behaviour gave them a reproductive advantage. These findings suggest that intermediate sized groups display an optimal level of movement compared to larger or smaller groups. Understanding how social groups of different sizes interact with their environment can aid conservation planning. Future work should focus on how this relationship changes with the seasons. This could reveal more about the effects of group size during challenging conditions, like drought.
Collapse
Affiliation(s)
- Danai Papageorgiou
- Max Planck Institute of Animal Behavior, Department of Collective Behavior, Universitätsstraße, Konstanz, Germany.,University of Konstanz, Department of Biology, Universitätsstraße, Konstanz, Germany.,University of Konstanz, Center for the Advanced Study of Collective Behaviour, Universitätsstraße, Konstanz, Germany.,Kenya Wildlife Service, Nairobi, Kenya
| | - Damien Roger Farine
- Max Planck Institute of Animal Behavior, Department of Collective Behavior, Universitätsstraße, Konstanz, Germany.,University of Konstanz, Department of Biology, Universitätsstraße, Konstanz, Germany.,University of Konstanz, Center for the Advanced Study of Collective Behaviour, Universitätsstraße, Konstanz, Germany.,Department of Ornithology, National Museums of Kenya, Nairobi, Kenya
| |
Collapse
|
25
|
Torsekar VR, Thaker M. Mate-searching context of prey influences the predator-prey space race. Proc Biol Sci 2020; 287:20201462. [PMID: 32962542 DOI: 10.1098/rspb.2020.1462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Predation risk is a strong driver of prey distribution and movement. However, fitness-influencing behaviours, such as mating, can alter risk and influence predator-prey space-use dynamics. In tree crickets, Oecanthus henryi, mate searching involves acoustic signalling by immobile males and phonotactic movement by females. Space-use patterns in tree crickets relative to their primary predators, green lynx spiders (Peucetia viridans), should therefore depend on their current mate-searching state; whether males are calling or non-calling and whether females are phonotactic or non-phonotactic. We first measured the degree of spatial anchoring of crickets to specific bushes in the field and determined whether that influenced the probability of broad-scale spatial overlap with spiders. In the absence of spiders, all crickets, independent of sex or male calling status, were found to be spatially anchored to specific types of bushes and not uniformly distributed on the landscape. At the broad spatial scale, spiders were more likely to be found on bushes with female crickets and, to a lesser degree, calling male crickets. At a finer spatial scale within a bush, movement strategies of crickets not only varied depending on the presence or absence of a spider, but also on their current mate-searching state. Phonotactic females showed clear predator avoidance, whereas calling and non-calling males moved towards the spider instead of away, similar to predator inspection behaviour seen in many taxa. As the strongly selected sex, males are more likely to undertake risky mate-searching activities, which includes inspection of predator positions. Overall, we found that all crickets were predictably anchored at the landscape scale, but their sex and mate-seeking behaviour influenced the degree of overlap with predators and their antipredator movement strategies. Reproductive strategies within a prey species, therefore, can alter predator-prey space race at multiple spatial scales.
Collapse
Affiliation(s)
- Viraj R Torsekar
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India.,Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
26
|
Adams DR, Gifford ME. Functional and Environmental Constraints on Prey Capture Speed in a Lizard. Integr Org Biol 2020; 2:obaa022. [PMID: 33791563 PMCID: PMC7715460 DOI: 10.1093/iob/obaa022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Movement is an important component of animal behavior and determines how an organism interacts with its environment. The speed at which an animal moves through its environment can be constrained by internal (e.g., physiological state) and external factors (e.g., habitat complexity). When foraging, animals should move at speeds that maximize prey capture while minimizing mistakes (i.e., missing prey, slipping). We used experimental arenas containing obstacles spaced in different arrays to test how variation in habitat complexity influenced attack distance, prey capture speed, and foraging success in the Prairie Lizard. Obstacles spaced uniformly across arenas resulted in 15% slower prey capture speed and 30–38% shorter attack distance compared to arenas with no obstacles or with obstacles clustered in opposite corners of the arena. Prey capture probability was not influenced by arena type or capture speed, but declined with increasing attack distance. Similarly, the probability of prey consumption declined with attack distance across arena types. However, prey consumption probability declined with increasing prey capture speed in more open arenas but not in the cluttered arena. Foraging accuracy declined with increasing speed in more open arenas, and remained relatively constant when obstacles were in closer proximity. Foraging success was primarily constrained by intrinsic properties (speed-maneuverability tradeoff) when ample space was available, but environmental conditions had a greater impact on foraging success in “cluttered” habitats. This empirical test of theoretical predictions about optimal movement speeds in animals provides a step forward in understanding how animals select speeds in nature.
Collapse
Affiliation(s)
- D R Adams
- Vilonia High School, 1164 Main St, Vilonia, AR 72173, USA
| | - M E Gifford
- Department of Biology, University of Central Arkansas, 201 Donaghey Ave, Conway, AR 72035, USA
| |
Collapse
|
27
|
Wilson RS, Pavlic TP, Wheatley R, Niehaus AC, Levy O. Modeling escape success in terrestrial predator–prey interactions. Integr Comp Biol 2020; 60:497-508. [DOI: 10.1093/icb/icaa070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Synopsis
Prey species often modify their foraging and reproductive behaviors to avoid encounters with predators; yet once they are detected, survival depends on out-running, out-maneuvering, or fighting off the predator. Though predation attempts involve at least two individuals—namely, a predator and its prey—studies of escape performance typically measure a single trait (e.g., sprint speed) in the prey species only. Here, we develop a theoretical model in which the likelihood of escape is determined by the prey animal’s tactics (i.e., path trajectory) and its acceleration, top speed, agility, and deceleration relative to the performance capabilities of a predator. The model shows that acceleration, top speed, and agility are all important determinants of escape performance, and because speed and agility are biomechanically related to size, smaller prey with higher agility should force larger predators to run along curved paths that do not allow them to use their superior speeds. Our simulations provide clear predictions for the path and speed a prey animal should choose when escaping from predators of different sizes (thus, biomechanical constraints) and could be used to explore the dynamics between predators and prey.
Collapse
Affiliation(s)
- Robbie S Wilson
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Theodore P Pavlic
- School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA
- School of Sustainability, Arizona State University, Tempe, AZ, USA
| | - Rebecca Wheatley
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia
| | - Amanda C Niehaus
- School of Biological Sciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Ofir Levy
- School of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
28
|
Veelenturf CA, Peters WS. Size-dependent locomotory performance creates a behaviorally mediated prey size refuge in the marine snail Olivella semistriata: a study in the natural habitat. Curr Zool 2020; 66:57-62. [PMID: 32467705 PMCID: PMC7245010 DOI: 10.1093/cz/zoz022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/23/2019] [Indexed: 11/16/2022] Open
Abstract
The effects of the variability of individual prey locomotory performance on the vulnerability to predation are poorly understood, partly because individual performance is difficult to determine in natural habitats. To gain insights into the role(s) of individual variation in predatory relationships, we study a convenient model system, the neotropical sandy beach gastropod Olivella semistriata and its main predator, the carnivorous snail Agaronia propatula. The largest size class of O. semistriata is known to be missing from A. propatula’s spectrum of subdued prey, although the predator regularly captures much larger individuals of other taxa. To resolve this conundrum, we analyzed predation attempts in the wild. While A. propatula attacked O. semistriata of all sizes, large prey specimens usually escaped by ‘sculling’, an accelerated, stepping mode of locomotion. Olivella semistriata performed sculling locomotion regardless of size, but sculling velocities determined in the natural environment increased strongly with size. Thus, growth in size as such does not establish a prey size refuge in which O. semistriata is safe from predation. Rather, a behaviorally mediated size refuge is created through the size-dependence of sculling performance. Taken together, this work presents a rare quantitative characterization in the natural habitat of the causal sequence from the size-dependence of individual performance, to the prey size-dependent outcome of predation attempts, to the size bias in the predator’s prey spectrum.
Collapse
Affiliation(s)
- Callie A Veelenturf
- Biology Department, Purdue University Fort Wayne, Fort Wayne, IN 46805, USA.,Goldring-Gund Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica
| | - Winfried S Peters
- Goldring-Gund Marine Biology Station, Playa Grande, Santa Cruz, Guanacaste, Costa Rica.,School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
29
|
Halsey LG, Iosilevskii G. The energetics of 'airtime': estimating swim power from breaching behaviour in fishes and cetaceans. ACTA ACUST UNITED AC 2020; 223:jeb.216036. [PMID: 31767731 DOI: 10.1242/jeb.216036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 11/20/2019] [Indexed: 11/20/2022]
Abstract
Displays of maximum swimming speeds are rare in the laboratory and the wild, limiting our understanding of the top-end athletic capacities of aquatic vertebrates. However, jumps out of the water - exhibited by a diversity of fish and cetaceans - might sometimes represent a behaviour comprising maximum burst effort. We collected data on such breaching behaviour for 14 fish and cetacean species primarily from online videos, to calculate breaching speed. From newly derived formulae based on the drag coefficient and hydrodynamic efficiency, we also calculated the associated power. The fastest breaching speeds were exhibited by species 2 m in length, peaking at nearly 11 m s-1; as species size decreases below this, the fastest breaches become slower, while species larger than 2 m do not show a systematic pattern. The power associated with the fastest breaches was consistently ∼50 W kg-1 (equivalent to 200 W kg-1 muscle) in species from 20 cm to 2 m in length, suggesting that this value may represent a universal (conservative) upper boundary. And it is similar to the maximum recorded power output per muscle mass recorded in any species of similar size, suggesting that some breaches could indeed be representative of maximum capability.
Collapse
Affiliation(s)
- Lewis G Halsey
- Department of Life Sciences, University of Roehampton, London, SW15 4JD, UK
| | - Gil Iosilevskii
- Faculty of Aerospace Engineering, Technion, Haifa 32000, Israel
| |
Collapse
|
30
|
Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 2019; 191:829-842. [PMID: 31705273 DOI: 10.1007/s00442-019-04547-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 10/28/2019] [Indexed: 10/25/2022]
Abstract
Temperature is one of the most influential drivers of physiological performance and behaviour in ectotherms, determining how these animals relate to their ecosystems and their ability to succeed in particular habitats. Here, we analysed the largest set of acceleration data compiled to date for elasmobranchs to examine the relationship between volitional activity and temperature in 252 individuals from 8 species. We calculated activation energies for the thermal performance response in each species and estimated optimum temperatures using an Arrhenius breakpoint analysis, subsequently fitting thermal performance curves to the activity data. Juveniles living in confined nursery habitats not only spent substantially more time above their optimum temperature and at the upper limits of their performance breadths compared to larger, less site-restricted animals, but also showed lower activation energies and broader performance curves. Species or life stages occupying confined habitats featured more generalist behavioural responses to temperature change, whereas wider ranging elasmobranchs were characterised by more specialist behavioural responses. The relationships between the estimated performance regimes and environmental temperature limits suggest that animals in confined habitats, including many juvenile elasmobranchs within nursery habitats, are likely to experience a reduction of performance under a warming climate, although their flatter thermal response will likely dampen this impact. The effect of warming on less site-restricted species is difficult to forecast since three of four species studied here did not reach their optimum temperature in the wild, although their specialist performance characteristics may indicate a more rapid decline should optimum temperatures be exceeded.
Collapse
|
31
|
Jahn M, Seebacher F. Cost of transport is a repeatable trait but is not determined by mitochondrial efficiency in zebrafish ( Danio rerio). ACTA ACUST UNITED AC 2019; 222:jeb.201400. [PMID: 30962281 DOI: 10.1242/jeb.201400] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/02/2019] [Indexed: 01/05/2023]
Abstract
The energy used to move a given distance (cost of transport; CoT) varies significantly between individuals of the same species. A lower CoT allows animals to allocate more of their energy budget to growth and reproduction. A higher CoT may cause animals to adjust their movement across different environmental gradients to reduce energy allocated to movement. The aim of this project was to determine whether CoT is a repeatable trait within individuals, and to determine its physiological causes and ecological consequences. We found that CoT is a repeatable trait in zebrafish (Danio rerio). We rejected the hypothesis that mitochondrial efficiency (P/O ratios) predicted CoT. We also rejected the hypothesis that CoT is modulated by temperature acclimation, exercise training or their interaction, although CoT increased with increasing acute test temperature. There was a weak but significant negative correlation between CoT and dispersal, measured as the number of exploration decisions made by fish, and the distance travelled against the current in an artificial stream. However, CoT was not correlated with the voluntary speed of fish moving against the current. The implication of these results is that CoT reflects a fixed physiological phenotype of an individual, which is not plastic in response to persistent environmental changes. Consequently, individuals may have fundamentally different energy budgets as they move across environments, and may adjust movement patterns as a result of allocation trade-offs. It was surprising that mitochondrial efficiency did not explain differences in CoT, and our working hypothesis is that the energetics of muscle contraction and relaxation may determine CoT. The increase in CoT with increasing acute environmental temperature means that warming environments will increase the proportion of the energy budget allocated to locomotion unless individuals adjust their movement patterns.
Collapse
Affiliation(s)
- Miki Jahn
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
32
|
Campos-Candela A, Palmer M, Balle S, Álvarez A, Alós J. A mechanistic theory of personality-dependent movement behaviour based on dynamic energy budgets. Ecol Lett 2018; 22:213-232. [PMID: 30467933 DOI: 10.1111/ele.13187] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 01/04/2023]
Abstract
Consistent between-individual differences in movement are widely recognised across taxa. In addition, foraging plasticity at the within-individual level suggests a behavioural dependency on the internal energy demand. Because behaviour co-varies with fast-slow life history (LH) strategies in an adaptive context, as theoretically predicted by the pace-of-life syndrome hypothesis, mass/energy fluxes should link behaviour and its plasticity with physiology at both between- and within-individual levels. However, a mechanistic framework driving these links in a fluctuating ecological context is lacking. Focusing on home range behaviour, we propose a novel behavioural-bioenergetics theoretical model to address such complexities at the individual level based on energy balance. We propose explicit mechanistic links between behaviour, physiology/metabolism and LH by merging two well-founded theories, the movement ecology paradigm and the dynamic energetic budget theory. Overall, our behavioural-bioenergetics model integrates the mechanisms explaining how (1) behavioural between- and within-individual variabilities connect with internal state variable dynamics, (2) physiology and behaviour are explicitly interconnected by mass/energy fluxes, and (3) different LHs may arise from both behavioural and physiological variabilities in a given ecological context. Our novel theoretical model reveals encouraging opportunities for empiricists and theoreticians to delve into the eco-evolutionary processes that favour or hinder the development of between-individual differences in behaviour and the evolution of personality-dependent movement syndromes.
Collapse
Affiliation(s)
- Andrea Campos-Candela
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.,Department of Marine Sciences and Applied Biology, University of Alicante, P. O. Box 99, 03080, Alicante, Spain
| | - Miquel Palmer
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Salvador Balle
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Alberto Álvarez
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain
| | - Josep Alós
- Department of Marine Ecology, Institut Mediterrani d'Estudis Avançats, IMEDEA (CSIC-UIB), C/Miquel Marquès 21, 07190, Esporles, Balearic Islands, Spain.,Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
| |
Collapse
|
33
|
Abstract
During foraging, animals decide how long to stay at a patch and harvest reward, and then, they move with certain vigor to another location. How does the brain decide when to leave, and how does it determine the speed of the ensuing movement? Here, we considered the possibility that both the decision-making and the motor control problems aimed to maximize a single normative utility: the sum of all rewards acquired minus all efforts expended divided by total time. This optimization could be achieved if the brain compared a local measure of utility with its history. To test the theory, we examined behavior of people as they gazed at images: they chose how long to look at the image (harvesting information) and then moved their eyes to another image, controlling saccade speed. We varied reward via image content and effort via image eccentricity, and then, we measured how these changes affected decision making (gaze duration) and motor control (saccade speed). After a history of low rewards, people increased gaze duration and decreased saccade speed. In anticipation of future effort, they lowered saccade speed and increased gaze duration. After a history of high effort, they elevated their saccade speed and increased gaze duration. Therefore, the theory presented a principled way with which the brain may control two aspects of behavior: movement speed and harvest duration. Our experiments confirmed many (but not all) of the predictions, suggesting that harvest duration and movement speed, fundamental aspects of behavior during foraging, may be governed by a shared principle of control.
Collapse
|
34
|
Charters JE, Heiniger J, Clemente CJ, Cameron SF, Amir Abdul Nasir AF, Niehaus AC, Wilson RS. Multidimensional analyses of physical performance reveal a size‐dependent trade‐off between suites of traits. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13115] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jordan E. Charters
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Jaime Heiniger
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Christofer J. Clemente
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
- School of Life Sciences University of the Sunshine Coast Sippy Downs Qld Australia
| | - Skye F. Cameron
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | | | - Amanda C. Niehaus
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| | - Robbie S. Wilson
- School of Biological Sciences The University of Queensland Brisbane Qld Australia
| |
Collapse
|
35
|
Sathe EA, Husak JF. Substrate-specific locomotor performance is associated with habitat use in six-lined racerunners (Aspidoscelis sexlineata). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly039] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Erik A Sathe
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, St. Paul, MN, USA
| |
Collapse
|
36
|
Le Roy A, Seebacher F. Transgenerational effects and acclimation affect dispersal in guppies. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Amélie Le Roy
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences University of Sydney Sydney NSW Australia
| |
Collapse
|
37
|
Seebacher F, Krause J. Physiological mechanisms underlying animal social behaviour. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0231. [PMID: 28673909 DOI: 10.1098/rstb.2016.0231] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2017] [Indexed: 12/20/2022] Open
Abstract
Many species of animal live in groups, and the group represents the organizational level within which ecological and evolutionary processes occur. Understanding these processes, therefore, relies on knowledge of the mechanisms that permit or constrain group formation. We suggest that physiological capacities and differences in physiology between individuals modify fission-fusion dynamics. Differences between individuals in locomotor capacity and metabolism may lead to fission of groups and sorting of individuals into groups with similar physiological phenotypes. Environmental impacts such as hypoxia can influence maximum group sizes and structure in fish schools by altering access to oxygenated water. The nutritional environment determines group cohesion, and the increase in information collected by the group means that individuals should rely more on social information and form more cohesive groups in uncertain environments. Changing environmental contexts require rapid responses by individuals to maintain group coordination, which are mediated by neuroendocrine signalling systems such as nonapeptides and steroid hormones. Brain processing capacity may constrain social complexity by limiting information processing. Failure to evaluate socially relevant information correctly limits social interactions, which is seen, for example, in autism. Hence, functioning of a group relies to a large extent on the perception and appropriate processing of signals from conspecifics. Many if not all physiological systems are mechanistically linked, and therefore have synergistic effects on social behaviour. A challenge for the future lies in understanding these interactive effects, which will improve understanding of group dynamics, particularly in changing environments.This article is part of the themed issue 'Physiological determinants of social behaviour in animals'.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jens Krause
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587 Berlin, Germany.,Faculty of Life Sciences Humboldt-Universität zu Berlin, Invalidenstrasse 42, 10115 Berlin, Germany
| |
Collapse
|
38
|
Styga JM, Houslay TM, Wilson AJ, Earley RL. Ontogeny of the morphology-performance axis in an amphibious fish (Kryptolebias marmoratus). JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2018. [PMID: 29537626 DOI: 10.1002/jez.2150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Establishing links between morphology and performance is important for understanding the functional, ecological, and evolutionary implications of morphological diversity. Relationships between morphology and performance are expected to be age dependent if, at different points during ontogeny, animals must perform in different capacities to achieve high fitness returns. Few studies have examined how the relationship between form and function changes across ontogeny. Here, we assess this relationship in the amphibious mangrove rivulus (Kryptolebias marmoratus) fish, a species that is both capable of and reliant on "tail-flip jumping" for terrestrial locomotion. Tail-flip jumping entails an individual transferring its weight to the caudal region of the body, launching itself from the substrate to navigate to new aquatic or semi-aquatic habitats. By combining repeated trials of jumping performance in 237 individuals from distinct age classes with a clearing and staining procedure to visualize bones in the caudal region, we test the hypotheses that as age increases (i) average jumping performance (body lengths jumped) will increase, (ii) the amount of variation for each trait will change, and (iii) the patterns of covariation/correlation among traits, which tell us about the integration of form with function, will also change. We find a significant increase in size-adjusted jumping performance with age, and modification to the correlation structure among traits across ontogeny. However, we also find that significant links between form and function evident in young animals disappear at later ontogenetic stages. Our study suggests that different functional mechanisms may be associated with high performance at different stages of development.
Collapse
Affiliation(s)
- Joseph M Styga
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| | - Thomas M Houslay
- Centre for Ecology and Conservation, University of Exeter-Penryn Campus, Cornwall, UK
| | - Alastair J Wilson
- Centre for Ecology and Conservation, University of Exeter-Penryn Campus, Cornwall, UK
| | - Ryan L Earley
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL, USA
| |
Collapse
|
39
|
Kasumovic MM, Seebacher F. Casual movement speed but not maximal locomotor capacity predicts mate searching success. J Evol Biol 2018; 31:438-445. [DOI: 10.1111/jeb.13239] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 11/30/2017] [Accepted: 01/02/2018] [Indexed: 02/05/2023]
Affiliation(s)
- M. M. Kasumovic
- Evolution and Ecology Research Centre School of Biological, Earth, and Environmental Sciences UNSW Sydney Randwick NSW Australia
| | - F. Seebacher
- School of Life and Environmental Sciences The University of Sydney Sydney NSW Australia
| |
Collapse
|
40
|
Wheatley R, Niehaus AC, Fisher DO, Wilson RS. Ecological context and the probability of mistakes underlie speed choice. Funct Ecol 2018. [DOI: 10.1111/1365-2435.13036] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rebecca Wheatley
- School of Biological Sciences University of Queensland Brisbane Australia
| | - Amanda C. Niehaus
- School of Biological Sciences University of Queensland Brisbane Australia
| | - Diana O. Fisher
- School of Biological Sciences University of Queensland Brisbane Australia
| | - Robbie S. Wilson
- School of Biological Sciences University of Queensland Brisbane Australia
| |
Collapse
|
41
|
Wheatley R, Clemente CJ, Niehaus AC, Fisher DO, Wilson RS. Surface friction alters the agility of a small Australian marsupial. J Exp Biol 2018; 221:jeb.172544. [DOI: 10.1242/jeb.172544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 03/13/2018] [Indexed: 11/20/2022]
Abstract
Movement speed can underpin an animal's probability of success in ecological tasks. Prey often use agility to outmanoeuvre predators, however faster speeds increase inertia and reduce agility. Agility is also constrained by grip, as the foot must have sufficient friction with the ground to apply the forces required for turning. Consequently, ground surface should affect optimum turning speed. We tested the speed-agility trade-off in buff-footed antechinus (Antechinus mysticus) on two different surfaces. Antechinus used slower turning speeds over smaller turning radii on both surfaces, as predicted by the speed-agility trade-off. Slipping was 64% more likely on the low-friction surface, and had a higher probability of occurring the faster the antechinus were running before the turn. However, antechinus compensated for differences in surface friction by using slower pre-turn speeds as their amount of experience on the low-friction surface increased, which consequently reduced their probability of slipping. Conversely, on the high-friction surface, antechinus used faster pre-turn speeds in later trials, which had no effect on their probability of slipping. Overall, antechinus used larger turning radii (0.733 ± 0.062 vs 0.576 ± 0.051 m) and slower pre-turn (1.595 ± 0.058 vs 2.174 ± 0.050 ms-1) and turning speeds (1.649 ± 0.061 vs 2.01 ± 0.054 ms-1) on the low-friction surface. Our results demonstrate the interactive effect of surface friction and the speed-agility trade-off on speed choice. To predict wild animals’ movement speeds, future studies should examine the interactions between biomechanical trade-offs and terrain, and quantify the costs of motor mistakes in different ecological activities.
Collapse
Affiliation(s)
- Rebecca Wheatley
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | | | - Amanda C. Niehaus
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Diana O. Fisher
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| | - Robbie S. Wilson
- School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
42
|
Wilson RS, David GK, Murphy SC, Angilletta MJ, Niehaus AC, Hunter AH, Smith MD. Skill not athleticism predicts individual variation in match performance of soccer players. Proc Biol Sci 2017; 284:20170953. [PMID: 29187623 PMCID: PMC5740267 DOI: 10.1098/rspb.2017.0953] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 10/27/2017] [Indexed: 01/14/2023] Open
Abstract
Just as evolutionary biologists endeavour to link phenotypes to fitness, sport scientists try to identify traits that determine athlete success. Both disciplines would benefit from collaboration, and to illustrate this, we used an analytical approach common to evolutionary biology to isolate the phenotypes that promote success in soccer, a complex activity of humans played in nearly every modern society. Using path analysis, we quantified the relationships among morphology, balance, skill, athleticism and performance of soccer players. We focused on performance in two complex motor activities: a simple game of soccer tennis (1 on 1), and a standard soccer match (11 on 11). In both contests, players with greater skill and balance were more likely to perform better. However, maximal athletic ability was not associated with success in a game. A social network analysis revealed that skill also predicted movement. The relationships between phenotypes and success during individual and team sports have potential implications for how selection acts on these phenotypes, in humans and other species, and thus should ultimately interest evolutionary biologists. Hence, we propose a field of evolutionary sports science that lies at the nexus of evolutionary biology and sports science. This would allow biologists to take advantage of the staggering quantity of data on performance in sporting events to answer evolutionary questions that are more difficult to answer for other species. In return, sports scientists could benefit from the theoretical framework developed to study natural selection in non-human species.
Collapse
Affiliation(s)
- Robbie S Wilson
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Gwendolyn K David
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Sean C Murphy
- School of Psychology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Amanda C Niehaus
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Andrew H Hunter
- School of Biological Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Michelle D Smith
- School of Health and Rehabilitation Sciences, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
43
|
Individuals of the common Namib Day Gecko vary in how adaptive simplification alters sprint biomechanics. Sci Rep 2017; 7:15595. [PMID: 29142272 PMCID: PMC5688112 DOI: 10.1038/s41598-017-15459-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/24/2017] [Indexed: 11/08/2022] Open
Abstract
Locomotion inextricably links biomechanics to ecology as animals maneuver through mechanically challenging environments. Faster individuals are more likely to escape predators, surviving to produce more offspring. Fast sprint speed evolved several times in lizards, including geckos. However, the underlying mechanisms determining performance await discovery in many clades. Novel morphological structures influence these mechanisms by adding complexity to the government of locomotion. Gecko adhesion coevolves with modified muscles, tendons, and reflexes. We explored how the Namib Day Gecko, Rhoptropus afer, sprints on ecologically relevant substrates. Locomotion requires that many moving parts of the animal work together; we found knee and ankle extension are the principal drivers of speed on a level surface while contributions to sprinting uphill are more evenly distributed among motions of the femur, knee, and ankle. Although geckos are thought to propel themselves with specialized, proximally located muscles that retract and rotate the femur, we show with path analysis that locomotion is altered in this secondarily terrestrial gecko. We present evidence of intraspecific variation in the use of adhesive toe pads and suggest that the subdigital adhesive toe pad may increase sprint speed in this species. We argue kinematics coevolve with the secondarily terrestrial lifestyle of this species.
Collapse
|
44
|
Malishev M, Bull CM, Kearney MR. An individual‐based model of ectotherm movement integrating metabolic and microclimatic constraints. Methods Ecol Evol 2017. [DOI: 10.1111/2041-210x.12909] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Matthew Malishev
- Centre of Excellence for Biosecurity Risk Analysis Parkville Australia
- School of BioSciences University of Melbourne Parkville Australia
| | - C. Michael Bull
- School of Biological Sciences Flinders University Adelaide Australia
| | | |
Collapse
|
45
|
Freymiller GA, Whitford MD, Higham TE, Clark RW. Recent interactions with snakes enhance escape performance of desert kangaroo rats (Rodentia: Heteromyidae) during simulated attacks. Biol J Linn Soc Lond 2017. [DOI: 10.1093/biolinnean/blx091] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
46
|
Seebacher F, Borg J, Schlotfeldt K, Yan Z. Energetic cost determines voluntary movement speed only in familiar environments. ACTA ACUST UNITED AC 2017; 219:1625-31. [PMID: 27252454 DOI: 10.1242/jeb.136689] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 03/10/2016] [Indexed: 11/20/2022]
Abstract
Locomotor performance is closely related to fitness. However, in many ecological contexts, animals do not move at their maximal locomotor capacity, but adopt a voluntary speed that is lower than maximal. It is important to understand the mechanisms that underlie voluntary speed, because these determine movement patterns of animals across natural environments. We show that voluntary speed is a stable trait in zebrafish (Danio rerio), but there were pronounced differences between individuals in maximal sustained speed, voluntary speed and metabolic cost of locomotion. We accept the hypothesis that voluntary speed scales positively with maximal sustained swimming performance (Ucrit), but only in unfamiliar environments (1st minute in an open-field arena versus 10th minute) at high temperature (30°C). There was no significant effect of metabolic scope on Ucrit Contrary to expectation, we rejected the hypothesis that voluntary speed decreases with increasing metabolic cost of movement, except in familiar spatial (after 10 min of exploration) and thermal (24°C but not 18 or 30°C) environments. The implications of these data are that the energetic costs of exploration and dispersal in novel environments are higher than those for movement within familiar home ranges.
Collapse
Affiliation(s)
- Frank Seebacher
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Jason Borg
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Kathryn Schlotfeldt
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| | - Zhongning Yan
- School of Life and Environmental Sciences A08, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
47
|
Binning SA, Shaw AK, Roche DG. Parasites and Host Performance: Incorporating Infection into Our Understanding of Animal Movement. Integr Comp Biol 2017; 57:267-280. [DOI: 10.1093/icb/icx024] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
|
48
|
Husak JF, Lailvaux SP. How Do We Measure the Cost of Whole-Organism Performance Traits? Integr Comp Biol 2017; 57:333-343. [DOI: 10.1093/icb/icx048] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
49
|
Amir Abdul Nasir AF, Clemente CJ, Wynn ML, Wilson RS. Optimal running speeds when there is a trade‐off between speed and the probability of mistakes. Funct Ecol 2017. [DOI: 10.1111/1365-2435.12902] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Christofer J. Clemente
- School of Biological Sciences The University of Queensland St Lucia QLD4072 Australia
- School of Biological and Health Sciences University of Sunshine Coast Sunshine Coast QLD4556 Australia
| | - Melissa L. Wynn
- School of Biological Sciences The University of Queensland St Lucia QLD4072 Australia
| | - Robbie S. Wilson
- School of Biological Sciences The University of Queensland St Lucia QLD4072 Australia
| |
Collapse
|
50
|
Wilson RS, Husak JF. Introduction to the Symposium: Towards a General Framework for Predicting Animal Movement Speeds in Nature. Integr Comp Biol 2015; 55:1121-4. [PMID: 26493610 DOI: 10.1093/icb/icv107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Speed of movement is fundamental to animal behavior-defining the intensity of a task, the time needed to complete it, and the likelihood of success-but how does an animal decide how fast to move? Most studies of animal performance measure maximum capabilities, but animals rarely move at their maximum in the wild. It was the goal of our symposium to develop a conceptual framework to explore the choices of speed in nature. A major difference between our approach and previous work is our move toward understanding optimal rather than maximal speeds. In the following series of papers, we provide a starting point for future work on animal movement speeds, including a conceptual framework, a simple optimality model, an evolutionary context, and an exploration of the various biomechanical and energetic constraints on speed. By applying a cross-disciplinary approach to the study of the choice of speed-as we have done here-we can reveal much about the way animals use habitats, interact with conspecifics, avoid predators, obtain food, and negotiate human-modified landscapes.
Collapse
Affiliation(s)
- Robbie S Wilson
- *School of Biological Sciences, The University of Queensland, St Lucia QLD 4072, Australia;
| | - Jerry F Husak
- Department of Biology, University of St. Thomas, 2115 Summit Avenue, St Paul, MN 55105, USA
| |
Collapse
|