1
|
Costanzo K, Occhino D. Effects of Temperature on Blood Feeding and Activity Levels in the Tiger Mosquito, Aedes albopictus. INSECTS 2023; 14:752. [PMID: 37754720 PMCID: PMC10531981 DOI: 10.3390/insects14090752] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Temperature has been shown to have profound effects on mosquito population dynamics and life history. Understanding these effects can provide insight into how mosquito populations and the diseases they transmit may vary across space and time and under the changes imposed by climate change. In this study, we evaluated how temperature affects the blood feeding and general activity patterns in the globally invasive mosquito species Aedes albopictus. We reared cohorts of Ae. albopictus from hatch through adulthood across three temperatures (26 °C, 29 °C, and 32 °C). The propensity of adult females to take a blood meal and the size of the blood meal were compared across temperatures. We also observed the overall activity levels of adult females over a 13.5 h period. At the highest temperature tested (32 °C), females were less likely to take a blood meal and were most active, as measured through frequency of movement. We postulate that our highest-temperature treatment imposes heat stress on adult female Ae. albopictus, where many abstain from blood feeding and increase movement in an attempt to escape the heat stress and find a more favorable resting location.
Collapse
Affiliation(s)
- Katie Costanzo
- Biology Department, Canisius University, 2001 Main St., Buffalo, NY 14208, USA;
| | | |
Collapse
|
2
|
Lutrat C, Burckbuchler M, Olmo RP, Beugnon R, Fontaine A, Akbari OS, Argilés-Herrero R, Baldet T, Bouyer J, Marois E. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun Biol 2023; 6:646. [PMID: 37328568 PMCID: PMC10275924 DOI: 10.1038/s42003-023-05030-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023] Open
Abstract
Chemical control of disease vectoring mosquitoes Aedes albopictus and Aedes aegypti is costly, unsustainable, and increasingly ineffective due to the spread of insecticide resistance. The Sterile Insect Technique is a valuable alternative but is limited by slow, error-prone, and wasteful sex-separation methods. Here, we present four Genetic Sexing Strains (two for each Aedes species) based on fluorescence markers linked to the m and M sex loci, allowing for the isolation of transgenic males. Furthermore, we demonstrate how combining these sexing strains enables the production of non-transgenic males. In a mass-rearing facility, 100,000 first instar male larvae could be sorted in under 1.5 h with an estimated 0.01-0.1% female contamination on a single machine. Cost-efficiency analyses revealed that using these strains could result in important savings while setting up and running a mass-rearing facility. Altogether, these Genetic Sexing Strains should enable a major upscaling in control programmes against these important vectors.
Collapse
Affiliation(s)
- Célia Lutrat
- CIRAD, UMR ASTRE, F-34398, Montpellier, France.
- ASTRE, CIRAD, INRA, Univ. Montpellier, Montpellier, France.
- Université de Montpellier, Montpellier, France.
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| | | | | | - Rémy Beugnon
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstrasse 4, 04103, Leipzig, Germany
- Institute of Biology, Leipzig University, Puschstrasse 4, 04103, Leipzig, Germany
| | - Albin Fontaine
- Unité Parasitologie et Entomologie, Département Microbiologie et maladies infectieuses, Institut de Recherche Biomédicale des Armées (IRBA), Marseille, France
| | - Omar S Akbari
- School of Biological Sciences, Department of Cell and Developmental Biology, University of California, San Diego, CA, 92093, USA
| | | | - Thierry Baldet
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Sainte-Clotilde, F-97490, Reunion, France
| | - Jérémy Bouyer
- CIRAD, UMR ASTRE, F-34398, Montpellier, France
- CIRAD, UMR ASTRE, Saint-Pierre, F-97410, Reunion, France
- Insect Pest Control Sub-Programme, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, International Atomic Energy Agency (IAEA), Vienna, Austria
| | - Eric Marois
- CNRS UPR9022, INSERM U1257, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
3
|
Touray M, Bakirci S, Ulug D, Gulsen SH, Cimen H, Yavasoglu SI, Simsek FM, Ertabaklar H, Ozbel Y, Hazir S. Arthropod vectors of disease agents: their role in public and veterinary health in Turkiye and their control measures. Acta Trop 2023; 243:106893. [PMID: 37004805 DOI: 10.1016/j.actatropica.2023.106893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023]
Abstract
Mosquitoes, sandflies, and ticks are hematophagous arthropods that pose a huge threat to public and veterinary health. They are capable of serving as vectors of disease agents that can and have caused explosive epidemics affecting millions of people and animals. Several factors like climate change, urbanization, and international travel contribute substantially to the persistence and dispersal of these vectors from their established areas to newly invaded areas. Once established in their new home, they can serve as vectors for disease transmission or increase the risk of disease emergence. Turkiye is vulnerable to climate change and has experienced upward trends in annual temperatures and rising sea levels, and greater fluctuations in precipitation rates. It is a potential hotspot for important vector species because the climate in various regions is conducive for several insect and acari species and serves as a conduit for refugees and immigrants fleeing areas troubled with armed conflicts and natural disasters, which have increased substantially in recent years. These people may serve as carriers of the vectors or be infected by disease agents that require arthropod vectors for transmission. Although it cannot be supposed that every arthropod species is a competent vector, this review aims to (1)illustrate the factors that contribute to the persistence and dispersal of arthropod vectors, (2)determine the status of the established arthropod vector species in Turkiye and their capability of serving as vectors of disease agents, and (3)assess the role of newly-introduced arthropod vectors into Turkiye and how they were introduced into the country. We also provide information on important disease incidence (if there's any) and control measures applied by public health officials from different provinces.
Collapse
Affiliation(s)
- Mustapha Touray
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Turkey.
| | - Serkan Bakirci
- Department of Parasitology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University, Turkey
| | - Derya Ulug
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Turkey
| | - Sebnem H Gulsen
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Turkey
| | - Harun Cimen
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Turkey
| | | | - Fatih M Simsek
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Turkey
| | - Hatice Ertabaklar
- Department of Parasitology, Faculty of Medicine, Aydin Adnan Menderes University, Turkey
| | - Yusuf Ozbel
- Department of Parasitology, Faculty of Medicine, Ege University, Turkey
| | - Selcuk Hazir
- Department of Biology, Faculty of Science, Aydin Adnan Menderes University, Turkey; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 602105, Tamil Nadu India
| |
Collapse
|
4
|
Chen Y, Bian S, Liu Y, Zhang Z. A novel method based on neural architecture search for Diptera insect classification on embedded devices. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Abernathy HA, Hollingsworth BD, Giandomenico DA, Moser KA, Juliano JJ, Bowman NM, George PJ, Reiskind MH, Boyce RM. Prevalence of Knock-Down Resistance F1534S Mutations in Aedes albopictus (Skuse) (Diptera: Culicidae) in North Carolina. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1363-1367. [PMID: 35640258 DOI: 10.1093/jme/tjac054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 06/15/2023]
Abstract
Knock-down resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes species mosquitoes are biomarkers for resistance to pyrethroid insecticides. In the United States, few studies have reported kdr mutations among Aedes albopictus (Skuse) (Diptera: Culicidae) populations. In this study, we sought to compare the presence of kdr alleles among Ae. albopictus mosquitoes collected from Fort Bragg and Wake County, North Carolina. We collected 538 Ae. albopictus mosquitoes, including 156 from 4 sites at Fort Bragg, North Carolina and 382 from 15 sites in Wake County, North Carolina to compare the prevalence of kdr mutations. Of those successfully sequenced, we identified 12 (3.0%) mosquitoes with kdr mutations, all of which were attributed to variants at position 1534 within domain 3. All mutations were found in mosquitoes collected at Wake County sites; no mutations were identified in collections from Fort Bragg. There was a focus of mutations observed at the Wake County sites with approximately 92% (11 of 12) of the mosquitoes with the mutation coming from one site, where kdr mutations represented 24.4% (11 of 45) of all mosquitoes collected. We observed highly focal resistance in a suburban area of Raleigh, which may be attributable to peri-domestic mosquito control activities that involve area dispersal of pyrethroid insecticides. More robust surveillance is needed to monitor the emergence and spread of resistance.
Collapse
Affiliation(s)
- Haley A Abernathy
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | - Dana A Giandomenico
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kara A Moser
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jonathan J Juliano
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Natalie M Bowman
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Phillip J George
- Department of Public Health, United States Army, Fort Bragg, NC 28310, USA
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Ross M Boyce
- Institute for Global Health and Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Susong KM, Tucker BJ, Bron GM, Irwin P, Kirsch JM, Vimont D, Stone C, Paskewitz SM, Bartholomay LC. Snow-Covered Tires Generate Microhabitats That Enhance Overwintering Survival of Aedes albopictus (Diptera: Culicidae) in the Midwest, USA. ENVIRONMENTAL ENTOMOLOGY 2022; 51:586-594. [PMID: 35552675 DOI: 10.1093/ee/nvac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Indexed: 06/15/2023]
Abstract
The Asian tiger mosquito, Aedes albopictus (Skuse), is a public health threat because it can potentially transmit multiple pathogenic arboviruses, exhibits aggressive diurnal biting, and is highly invasive. As Ae. albopictus moved northward into the United States, the limits of expansion were predicted as locations with a mean January temperature warmer than -2.5°C. We postulated that the range of Ae. albopictus could exceed these temperature limits if eggs in diapause overwinter in tires that provide an insulating effect from extreme temperatures. Fifteen tires with Ae. albopictus and Aedes triseriatus (Say) eggs, a native cold hardy species, were placed outside at five locations along a latitudinal gradient in Wisconsin and Illinois during the winter of 2018-2019; notably, in January 2019, a regional arctic air event brought the lowest temperatures recorded in over 20 yr. External and internal tire temperatures were recorded at 3 hr intervals, and egg survival was recorded after six months. Aedes albopictus eggs survived only from tires at northernmost locations. The mean internal January temperature of tires that supported survival was -1.8°C, while externally the mean temperature was -5.3°C, indicating that tires provided an average of +3.5°C of insulation. Tires that supported egg survival also had over 100 mm of snow cover during January. In the absence of snow cover, tires across the study area provided an average +0.79°C [95% CI 0.34-1.11] insulation. This work provides strong argument for the inclusion of microhabitats in models of dispersal and establishment of Ae. albopictus and other vector species.
Collapse
Affiliation(s)
- Katie M Susong
- Department of Pathobiological Sciences, School of Veterinary Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Bradley J Tucker
- Department of Entomology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Gebienna M Bron
- Department of Entomology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Quantitative Veterinary Epidemiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick Irwin
- Northwest Mosquito Abatement District, Wheeling, IL, USA
| | - John Mitchell Kirsch
- Department of Pathobiological Sciences, School of Veterinary Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Daniel Vimont
- Center for Climatic Research, Nelson Institute, College of Letters and Science, University of Wisconsin-Madison, Madison, WI, USA
| | - Chris Stone
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, 1816 South Oak Street, Champaign, IL, USA
| | - Susan M Paskewitz
- Department of Entomology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Lyric C Bartholomay
- Department of Pathobiological Sciences, School of Veterinary Science, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Zettle M, Anderson E, LaDeau SL. Changes in Container-Breeding Mosquito Diversity and Abundance Along an Urbanization Gradient are Associated With Dominance of Arboviral Vectors. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:843-854. [PMID: 35388898 DOI: 10.1093/jme/tjac023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Indexed: 06/14/2023]
Abstract
Environmental conditions associated with urbanization are likely to influence the composition and abundance of mosquito (Diptera, Culicidae) assemblages through effects on juvenile stages, with important consequences for human disease risk. We present six years (2011-2016) of weekly juvenile mosquito data from distributed standardized ovitraps and evaluate how variation in impervious cover and temperature affect the composition and abundance of container-breeding mosquito species in Maryland, USA. Species richness and evenness were lowest at sites with high impervious cover (>60% in 100-m buffer). However, peak diversity was recorded at sites with intermediate impervious cover (28-35%). Four species were observed at all sites, including two recent invasives (Aedes albopictus Skuse, Ae. japonicus Theobald), an established resident (Culex pipiens L), and one native (Cx. restuans Theobald). All four are viral vectors in zoonotic or human transmission cycles. Temperature was a positive predictor of weekly larval abundance during the growing season for each species, as well as a positive predictor of rapid pupal development. Despite being observed at all sites, each species responded differently to impervious cover. Abundance of Ae. albopictus larvae was positively associated with impervious cover, emphasizing that this medically-important vector not only persists in the warmer, impervious urban landscape but is positively associated with it. Positive temperature effects in our models of larval abundance and pupae occurrence in container habitats suggest that these four vector species are likely to continue to be present and abundant in temperate cities under future temperature scenarios.
Collapse
Affiliation(s)
- MyKenna Zettle
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
- Department of Biological Sciences, Old Dominion University, Norfolk, VA 23529, USA
| | - Elsa Anderson
- Cary Institute of Ecosystem Studies, Millbrook, NY 12545, USA
| | | |
Collapse
|
8
|
Little EAH, Hutchinson ML, Price KJ, Marini A, Shepard JJ, Molaei G. Spatiotemporal distribution, abundance, and host interactions of two invasive vectors of arboviruses, Aedes albopictus and Aedes japonicus, in Pennsylvania, USA. Parasit Vectors 2022; 15:36. [PMID: 35073977 PMCID: PMC8785538 DOI: 10.1186/s13071-022-05151-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/03/2022] [Indexed: 11/10/2022] Open
Abstract
Background Aedes albopictus and Aedes japonicus, two invasive mosquito species in the United States, are implicated in the transmission of arboviruses. Studies have shown interactions of these two mosquito species with a variety of vertebrate hosts; however, regional differences exist and may influence their contribution to arbovirus transmission. Methods We investigated the distribution, abundance, host interactions, and West Nile virus infection prevalence of Ae. albopictus and Ae. japonicus by examining Pennsylvania mosquito and arbovirus surveillance data for the period between 2010 and 2018. Mosquitoes were primarily collected using gravid traps and BG-Sentinel traps, and sources of blood meals were determined by analyzing mitochondrial cytochrome b gene sequences amplified in PCR assays. Results A total of 10,878,727 female mosquitoes representing 51 species were collected in Pennsylvania over the 9-year study period, with Ae. albopictus and Ae. japonicus representing 4.06% and 3.02% of all collected mosquitoes, respectively. Aedes albopictus was distributed in 39 counties and Ae. japonicus in all 67 counties, and the abundance of these species increased between 2010 and 2018. Models suggested an increase in the spatial extent of Ae. albopictus during the study period, while that of Ae. japonicus remained unchanged. We found a differential association between the abundance of the two mosquito species and environmental conditions, percent development, and median household income. Of 110 Ae. albopictus and 97 Ae. japonicus blood meals successfully identified to species level, 98% and 100% were derived from mammalian hosts, respectively. Among 12 mammalian species, domestic cats, humans, and white-tailed deer served as the most frequent hosts for the two mosquito species. A limited number of Ae. albopictus acquired blood meals from avian hosts solely or in mixed blood meals. West Nile virus was detected in 31 pools (n = 3582 total number of pools) of Ae. albopictus and 12 pools (n = 977 total pools) of Ae. japonicus. Conclusions Extensive distribution, high abundance, and frequent interactions with mammalian hosts suggest potential involvement of Ae. albopictus and Ae. japonicus in the transmission of human arboviruses including Cache Valley, Jamestown Canyon, La Crosse, dengue, chikungunya, and Zika should any of these viruses become prevalent in Pennsylvania. Limited interaction with avian hosts suggests that Ae. albopictus might occasionally be involved in transmission of arboviruses such as West Nile in the region. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05151-8.
Collapse
Affiliation(s)
- Eliza A H Little
- Department of Entomology, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.,Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Michael L Hutchinson
- Pennsylvania Department of Agriculture, 2301 North Cameron Street, Harrisburg, PA, 17110, USA.,Pennsylvania Department of Environmental Protection, 400 Market Street, Harrisburg, PA, 17101, USA
| | - Keith J Price
- Pennsylvania Department of Environmental Protection, 400 Market Street, Harrisburg, PA, 17101, USA
| | - Alyssa Marini
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - John J Shepard
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA.,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA
| | - Goudarz Molaei
- Center for Vector Biology and Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-Borne Diseases, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA. .,Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, USA. .,Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT, 06510, USA.
| |
Collapse
|
9
|
Șuleșco T, Bușmachiu G, Lange U, Schmidt-Chanasit J, Lühken R. The first record of the invasive mosquito species Aedes albopictus in Chişinӑu, Republic of Moldova, 2020. Parasit Vectors 2021; 14:565. [PMID: 34732241 PMCID: PMC8565072 DOI: 10.1186/s13071-021-05060-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In Europe, Aedes albopictus is an important vector of chikungunya virus and Dirofilaria nematodes and has been involved in local autochthonous circulation of dengue and Zika viruses. Due to the ongoing spread, targeted field surveillance at potential points of entry of invasive Aedes mosquitoes was initiated by the Republic of Moldova in 2020 as part of the transboundary "Invasive Aedes Mosquitoes COST-Action project." METHODS In 2020, ovitraps were positioned at each of three locations: the border crossing to Romania in Leuşeni (Hancesti region), Chişinӑu International Airport and Chişinӑu Botanical Garden. RESULTS A total of 188 Aedes spp. eggs were collected at the Chişinӑu International Airport between August and September 2020. Twenty-three adults reared in the laboratory were identified morphologically as Ae. albopictus (Skuse, 1895), and 12 selected specimens were confirmed by molecular barcoding of the cytochrome oxidase subunit I gene region. In addition, one adult Ae. albopictus female at the same site was caught with a manual aspirator. CONCLUSIONS This is the first documented report of Ae. albopictus in the Republic of Moldova. The presence of immature and adult stages indicates the local reproduction of the species in the country. Therefore, it is crucial to extend and strengthen surveillance of the invasive Aedes mosquitoes to prevent Ae. albopictus and other exotic mosquito species from becoming established in the Republic of Moldova.
Collapse
Affiliation(s)
- Tatiana Șuleșco
- Laboratory of Entomology, Institute of Zoology, MD-2028, Chişinӑu, Republic of Moldova.
| | - Galina Bușmachiu
- Laboratory of Entomology, Institute of Zoology, MD-2028, Chişinӑu, Republic of Moldova
| | - Unchana Lange
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany
| | - Jonas Schmidt-Chanasit
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.,Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Renke Lühken
- Department of Arbovirology, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359, Hamburg, Germany.
| |
Collapse
|
10
|
Mundis SJ, Hamerlinck G, Stone EK, Whiteman A, Delmelle E, Rapp T, Dulin M, Ryan SJ. Examining Wing Length-Abundance Relationships and Pyrethroid Resistance Mutations among Aedes albopictus in a Rapidly Growing Urban Area with Implications for Mosquito Surveillance and Control. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18189443. [PMID: 34574369 PMCID: PMC8472615 DOI: 10.3390/ijerph18189443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 11/16/2022]
Abstract
Aedes albopictus is a cosmopolitan mosquito species capable of transmitting arboviruses such as dengue, chikungunya, and Zika. To control this and similar species, public and private entities often rely on pyrethroid insecticides. In this study, we screened Ae. albopictus collected from June to August 2017 in Mecklenburg County, a rapidly growing urban area of North Carolina, for mutations conferring pyrethroid resistance and examined spatiotemporal patterns of specimen size as measured by wing length, hypothesizing that size variation could be closely linked to local abundance, making this easily measured trait a useful surveillance proxy. The genetic screening results indicated that pyrethroid resistance alleles are not present in this population, meaning that this population is likely to be susceptible to this commonly used insecticide class. We detected no significant associations between size and abundance-related factors, indicating that wing-size is not a useful proxy for abundance, and thus not useful to surveillance in this capacity. However, mosquitoes collected in June were significantly larger than July or August, which may result from meteorological conditions, suggesting that short-term weather cues may modulate morphological traits, which could then affect local fecundity and virus transmission dynamics, as previously reported.
Collapse
Affiliation(s)
- Stephanie J. Mundis
- Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (G.H.); (E.K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- Correspondence: (S.J.M.); (S.J.R.); Tel.: +1-352-294-7513 (S.J.R.)
| | - Gabriela Hamerlinck
- Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (G.H.); (E.K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Emily K. Stone
- Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (G.H.); (E.K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| | - Ari Whiteman
- Department of Geography and Earth Sciences and Center for Applied Geographic Information Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.W.); (E.D.); (T.R.)
| | - Eric Delmelle
- Department of Geography and Earth Sciences and Center for Applied Geographic Information Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.W.); (E.D.); (T.R.)
| | - Tyler Rapp
- Department of Geography and Earth Sciences and Center for Applied Geographic Information Science, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.W.); (E.D.); (T.R.)
| | - Michael Dulin
- Academy Population Health Initiative, Charlotte, NC 28223, USA;
| | - Sadie J. Ryan
- Quantitative Disease Ecology and Conservation Lab, Department of Geography, University of Florida, Gainesville, FL 32611, USA; (G.H.); (E.K.S.)
- Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
- School of Life Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa
- Correspondence: (S.J.M.); (S.J.R.); Tel.: +1-352-294-7513 (S.J.R.)
| |
Collapse
|
11
|
Little EAH, Harriott OT, Akaratovic KI, Kiser JP, Abadam CF, Shepard JJ, Molaei G. Host interactions of Aedes albopictus, an invasive vector of arboviruses, in Virginia, USA. PLoS Negl Trop Dis 2021; 15:e0009173. [PMID: 33600413 PMCID: PMC7924790 DOI: 10.1371/journal.pntd.0009173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 03/02/2021] [Accepted: 01/23/2021] [Indexed: 12/17/2022] Open
Abstract
Background As an invasive mosquito species in the United States, Aedes albopictus is a potential vector of arboviruses including dengue, chikungunya, and Zika, and may also be involved in occasional transmission of other arboviruses such as West Nile, Saint Louis encephalitis, eastern equine encephalitis, and La Crosse viruses. Aedes albopictus feeds on a wide variety of vertebrate hosts, wild and domestic, as well as humans. Methodology/Principal findings In order to investigate blood feeding patterns of Ae. albopictus, engorged specimens were collected from a variety of habitat types using the Centers for Disease Control and Prevention light traps, Biogents Sentinel 2 traps, and modified Reiter gravid traps in southeast Virginia. Sources of blood meals were determined by the analysis of mitochondrial cytochrome b gene sequences amplified in PCR assays. Our aims were to quantify degrees of Ae. albopictus interactions with vertebrate hosts as sources of blood meals, investigate arboviral infection status, assess the influence of key socioecological conditions on spatial variability in blood feeding, and investigate temporal differences in blood feeding by season. Analysis of 961 engorged specimens of Ae. albopictus sampled between 2017–2019 indicated that 96%, 4%, and less than 1% obtained blood meals from mammalian, reptilian, and avian hosts, respectively. Domestic cats were the most frequently identified (50.5%) hosts followed by Virginia opossums (17.1%), white-tailed deer (12.2%), and humans (7.3%), together representing 87.1% of all identified blood hosts. We found spatial patterns in blood feeding linked to socioecological conditions and seasonal shifts in Ae. albopictus blood feeding with implications for understanding human biting and disease risk. In Suffolk Virginia in areas of lower human development, the likelihood of human blood feeding increased as median household income increased and human blood feeding was more likely early in the season (May-June) compared to later (July-October). Screening of the head and thorax of engorged Ae. albopictus mosquitoes by cell culture and RT-PCR resulted in a single isolate of Potosi virus. Conclusion and significance Understanding mosquito-host interactions in nature is vital for evaluating vectorial capacity of mosquitoes. These interactions with competent reservoir hosts support transmission, maintenance, and amplification of zoonotic agents of human diseases. Results of our study in conjunction with abundance in urban/suburban settings, virus isolation from field-collected mosquitoes, and vector competence of Ae. albopictus, highlight the potential involvement of this species in the transmission of a number of arboviruses such as dengue, chikungunya, and Zika to humans. Limited interaction with avian hosts suggests that Ae. albopictus is unlikely to serve as a bridge vector of arboviruses such as West Nile and eastern equine encephalitis in the study region, but that possibility cannot be entirely ruled out. Native to Southeast Asia, breeding populations of Aedes albopictus were first discovered in Harris County, Texas, in 1985, and as of 2017, seasonal populations of this species have been reported in more than 40 states and the District of Columbia. Aedes albopictus breed readily in natural or man-made environment where stagnant water can accumulate such as gutters, flowerpots, discarded tires, and tree holes. This mosquito species has been implicated in outbreaks of chikungunya, dengue, and Zika viruses and is a competent vector of many arboviruses including West Nile, eastern equine encephalitis, yellow fever, Rift Valley fever, and Japanese encephalitis. Aedes albopictus is regarded as an opportunistic mosquito feeding on a variety of domestic and wild mammals, birds, reptiles and amphibians; however, a preference for human blood meals has been noted in blood meal analysis of field-collected mosquitoes and in laboratory investigations. We studied vector-host interactions of Ae. albopictus in Virginia, United States using molecular methods and identified ten mammalian, three reptilian, and two avian species as blood hosts of this mosquito species. Our study clarifies the host associations of Ae. albopictus and highlights concerns about the potential role of this mosquito species in transmission of emerging and reemerging arboviruses.
Collapse
Affiliation(s)
- Eliza A. H. Little
- Department of Entomology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology & Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-borne Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Olivia T. Harriott
- Biology Department, Fairfield University, Fairfield, Connecticut, United States of America
| | - Karen I. Akaratovic
- Suffolk Mosquito Control, Department of Public Works, Suffolk, Virginia, United States of America
| | - Jay P. Kiser
- Suffolk Mosquito Control, Department of Public Works, Suffolk, Virginia, United States of America
| | - Charles F. Abadam
- Suffolk Mosquito Control, Department of Public Works, Suffolk, Virginia, United States of America
| | - John J. Shepard
- Center for Vector Biology & Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-borne Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Goudarz Molaei
- Center for Vector Biology & Zoonotic Diseases and Northeast Regional Center for Excellence in Vector-borne Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- * E-mail: ,
| |
Collapse
|
12
|
Dieme C, Ciota AT, Kramer LD. Transmission potential of Mayaro virus by Aedes albopictus, and Anopheles quadrimaculatus from the USA. Parasit Vectors 2020; 13:613. [PMID: 33298165 PMCID: PMC7724717 DOI: 10.1186/s13071-020-04478-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/05/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mayaro virus (MAYV; Alphavirus, Togaviridae) is an emerging pathogen endemic in South American countries. The increase in intercontinental travel and tourism-based forest excursions has resulted in an increase in MAYV spread, with imported cases observed in Europe and North America. Intriguingly, no local transmission of MAYV has been reported outside South America, despite the presence of potential vectors. METHODS We assessed the vector competence of Aedes albopictus from New York and Anopheles quadrimaculatus for MAYV. RESULTS The results show that Ae. albopictus from New York and An. quadrimaculatus are competent vectors for MAYV. However, Ae. albopictus was more susceptible to infection. Transmission rates increased with time for both species, with rates of 37.16 and 64.44% for Ae. albopictus, and of 25.15 and 48.44% for An. quadrimaculatus, respectively, at 7 and 14 days post-infection. CONCLUSIONS Our results suggest there is a risk of further MAYV spread throughout the Americas and autochthonous transmission in the USA. Preventive measures, such as mosquito surveillance of MAYV, will be essential for early detection.
Collapse
Affiliation(s)
- Constentin Dieme
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA.
| | - Alexander T Ciota
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| | - Laura D Kramer
- Wadsworth Center, New York State Department of Health, Slingerlands, New York, USA
- Department of Biomedical Sciences, School of Public Health, State University of New York at Albany, Albany, New York, USA
| |
Collapse
|
13
|
Hernández-Rodríguez JL, Perez-Pacheco R, Vásquez-López A, Mejenes-Hernández MC, Granados-Echegoyen CA, Arcos-Cordova IDR, Pérez-Rentería C, Benítez-Alva JI, Manrique-Saide P, Huerta H. Asian Tiger Mosquito in Yucatan Peninsula: First Record of Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Campeche, Mexico. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:2022-2024. [PMID: 32623458 DOI: 10.1093/jme/tjaa133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Indexed: 06/11/2023]
Abstract
This report describes the presence of Aedes albopictus Skuse (Diptera: Culicidae) in Yucatan Peninsula and represents the first record of the Asian tiger invasive mosquito in Campeche State, southeastern Mexico. We collected specimens using 11,326 ovitraps put into houses of urban and rural areas, as part of the entomological surveillance by the local Ministry of Health from January 2019 to February 2020. We found Ae. albopictus in five of the 12 municipalities of Campeche (San Francisco de Campeche, Tenabo, Hecelchakán, Calkíni and Escárcega). We record 68 positive ovitraps and 226 Ae. albopictus larvae. This finding increases the number of mosquito species recorded in Campeche, Mexico, and possibly the potential for 22 arbovirus transmission.
Collapse
Affiliation(s)
| | - Rafael Perez-Pacheco
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca (CIIDIR Oaxaca), Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | - Alfonso Vásquez-López
- Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional Unidad Oaxaca (CIIDIR Oaxaca), Instituto Politécnico Nacional, Santa Cruz Xoxocotlán, Oaxaca, Mexico
| | | | - Carlos Alejandro Granados-Echegoyen
- Centro de Estudios en Desarrollo Sustentable y Aprovechamiento de la Vida Silvestre (CEDESU), CONACYT-Universidad Autónoma de Campeche, San Francisco de Campeche, Campeche, Mexico
| | | | - Crescencio Pérez-Rentería
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de Mexico, Mexico
| | - José I Benítez-Alva
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de Mexico, Mexico
| | - Pablo Manrique-Saide
- Unidad Colaborativa para Bioensayos Entomológicos, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Mérida, Mexico
| | - Herón Huerta
- Laboratorio de Entomología, Instituto de Diagnóstico y Referencia Epidemiológicos, Ciudad de Mexico, Mexico
| |
Collapse
|
14
|
Yee DA, Glasgow WC, Ezeakacha NF. Quantifying species traits related to oviposition behavior and offspring survival in two important disease vectors. PLoS One 2020; 15:e0239636. [PMID: 32976497 PMCID: PMC7518596 DOI: 10.1371/journal.pone.0239636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/10/2020] [Indexed: 11/19/2022] Open
Abstract
Animals with complex life cycles have traits related to oviposition and juvenile survival that can respond to environmental factors in similar or dissimilar ways. We examined the preference-performance hypothesis (PPH), which states that females lacking parental care select juvenile habitats that maximize fitness, for two ubiquitous mosquito species, Aedes albopictus and Culex quinquefasciatus. Specifically, we examined if environmental factors known to affect larval abundance patterns in the field played a role in the PPH for these species. We first identified important environmental factors from a field survey that predicted larvae across different spatial scales. We then performed two experiments, the first testing the independent responses of oviposition and larval survival to these environmental factors, followed by a combined experiment where initial oviposition decisions were allowed to affect larval life history measures. We used path analysis for this last experiment to determine important links among factors in explaining egg numbers, larval mass, development time, and survival. For separate trials, Aedes albopictus displayed congruence between oviposition and larval survival, however C. quinquefasciatus did not. For the combined experiment path analysis suggested neither species completely fit predictions of the PPH, with density dependent effects of initial egg number on juvenile performance in A. albopictus. For these species the consequences of female oviposition choices on larval performance do not appear to fit expectations of the PPH.
Collapse
Affiliation(s)
- Donald A. Yee
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
- * E-mail:
| | - William C. Glasgow
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| | - Nnaemeka F. Ezeakacha
- School of Biological, Environmental, and Earth Sciences, University of Southern Mississippi, Hattiesburg, MS, United States of America
| |
Collapse
|
15
|
Effect of life stage and pesticide exposure on the gut microbiota of Aedes albopictus and Culex pipiens L. Sci Rep 2020; 10:9489. [PMID: 32528116 PMCID: PMC7289809 DOI: 10.1038/s41598-020-66452-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 05/11/2020] [Indexed: 02/01/2023] Open
Abstract
Pesticides commonly contaminate the aquatic environments inhabited by mosquito juveniles. However, their role in shaping the mosquito microbiota is not well understood. We hypothesized that environmentally relevant concentrations of atrazine, permethrin and malathion will mediate a shift in the mosquito gut bacterial community structure due to their toxic effect on the aquatic bacterial communities, and reduce mosquito gut bacterial diversity by enriching pesticide-degrading bacterial communities over susceptible taxa. Illumina MiSeq sequencing of the V3-V4 hypervariable regions of the 16 S rRNA gene was used to characterize the microbial communities of larval and adult stages of the two mosquito species and the water samples from microcosms treated with each of the pesticides, separately. Bacterial community composition differed by sample type (larval stage vs. adult stage) and water sampling date (day 3 vs. day 7), but not by pesticide treatment. In larval stages, bacterial OTU richness was highest in samples exposed to malathion, intermediate in permethrin, and lowest in controls. Bacterial richness was significantly higher in larval stages compared to adult stages for all treatments. This study provides a primer for future studies evaluating mosquito microbial responses to exposures to chemical pesticides and the possible implications for mosquito ecology.
Collapse
|
16
|
Pereira-dos-Santos T, Roiz D, Lourenço-de-Oliveira R, Paupy C. A Systematic Review: Is Aedes albopictus an Efficient Bridge Vector for Zoonotic Arboviruses? Pathogens 2020; 9:pathogens9040266. [PMID: 32272651 PMCID: PMC7238240 DOI: 10.3390/pathogens9040266] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022] Open
Abstract
Mosquito-borne arboviruses are increasing due to human disturbances of natural ecosystems and globalization of trade and travel. These anthropic changes may affect mosquito communities by modulating ecological traits that influence the “spill-over” dynamics of zoonotic pathogens, especially at the interface between natural and human environments. Particularly, the global invasion of Aedes albopictus is observed not only across urban and peri-urban settings, but also in newly invaded areas in natural settings. This could foster the interaction of Ae. albopictus with wildlife, including local reservoirs of enzootic arboviruses, with implications for the potential zoonotic transfer of pathogens. To evaluate the potential of Ae. albopictus as a bridge vector of arboviruses between wildlife and humans, we performed a bibliographic search and analysis focusing on three components: (1) The capacity of Ae. albopictus to exploit natural larval breeding sites, (2) the blood-feeding behaviour of Ae. albopictus, and (3) Ae. albopictus’ vector competence for arboviruses. Our analysis confirms the potential of Ae. albopictus as a bridge vector based on its colonization of natural breeding sites in newly invaded areas, its opportunistic feeding behaviour together with the preference for human blood, and the competence to transmit 14 arboviruses.
Collapse
Affiliation(s)
- Taissa Pereira-dos-Santos
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34090 Montpellier, France;
- Correspondence: (T.P.-d.-S.); (C.P.)
| | - David Roiz
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34090 Montpellier, France;
| | | | - Christophe Paupy
- MIVEGEC, Univ. Montpellier, IRD, CNRS, 34090 Montpellier, France;
- Correspondence: (T.P.-d.-S.); (C.P.)
| |
Collapse
|
17
|
Yee DA, Nelsen JA, Deerman JH, Dean CL, Price TL, Rogers RE, Varnado WC. Oviposition Responses and Potential Larval Control Methods of Aedes albopictus (Diptera: Culicidae) in Downspout Extensions. JOURNAL OF MEDICAL ENTOMOLOGY 2020; 57:224-230. [PMID: 31576407 DOI: 10.1093/jme/tjz159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Aedes albopictus (Skuse) is an important invasive species and vector of several important arboviruses across the globe. This species uses small water-holding cryptic containers as egg laying sites, which pose serious challenges to effective control of adult mosquito populations. Herein, we examined the response of gravid female Ae. albopictus to various features of common downspout extension tubes associated with human dwellings and the effectiveness of control efforts to eliminate larvae. Controlled field trials quantified oviposition in 1) extensions versus rubber bowls meant to mimic other container types, 2) among different shapes and materials of extensions, and 3) among different colors of extensions. We also investigated how flushing and use of Bti larvicides could control larvae. Females were more likely to lay eggs in flat plastic or metal extensions compared to rubber bowls. Eggs were also more plentiful in flat plastic extensions versus either corrugated or metal, and dark brown corrugated extensions had more eggs compared to tan or white. Flushing reduced nearly all larvae when the extensions were properly angled, and applications of Bti pellets or dunks were effective at killing most larvae. We show that dark extensions were preferred over other colors, and that larvae can be effectively removed with minimal effort. However, effective control will likely only come from better education of the public about proper installation of extensions.
Collapse
Affiliation(s)
- Donald A Yee
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Joseph A Nelsen
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - James H Deerman
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS
- Bureau of Environmental Health, Mississippi Department of Health, Jackson, MS
| | - Catherine L Dean
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Taylor L Price
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Rachel E Rogers
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS
| | - Wendy C Varnado
- Bureau of Environmental Health, Mississippi Department of Health, Jackson, MS
| |
Collapse
|
18
|
Ayers VB, Huang YJS, Lyons AC, Park SL, Dunlop JI, Unlu I, Kohl A, Higgs S, Blitvich BJ, Vanlandingham DL. Infection and transmission of Cache Valley virus by Aedes albopictus and Aedes aegypti mosquitoes. Parasit Vectors 2019; 12:384. [PMID: 31366369 PMCID: PMC6670168 DOI: 10.1186/s13071-019-3643-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/25/2019] [Indexed: 12/29/2022] Open
Abstract
Background Cache Valley virus (CVV; Bunyavirales, Peribunyaviridae) is a mosquito-borne arbovirus endemic in North America. Although severe diseases are mainly observed in pregnant ruminants, CVV has also been recognized as a zoonotic pathogen that can cause fatal encephalitis in humans. Human exposures to CVV and its related subtypes occur frequently under different ecological conditions in the New World; however, neurotropic disease is rarely reported. High prevalence rates of neutralizing antibodies have been detected among residents in several Latin American cities. However, zoophilic mosquito species involved in the enzootic transmission are unlikely to be responsible for the transmission leading to human exposures to CVV. Mechanisms that lead to frequent human exposures to CVV remain largely unknown. In this study, competence of two anthropophilic mosquitoes, Aedes albopictus and Ae. aegypti, for CVV was determined using per os infection to determine if these species could play a role in the transmission of CVV in the domestic and peridomestic settings of urban and suburban areas. Results Aedes albopictus were highly susceptible to CVV whereas infection of Ae. aegypti occurred at a significantly lower frequency. Whilst the dissemination rates of CVV were comparable in the two species, the relatively long period to attain maximal infectious titer in Ae. aegypti demonstrated a significant difference in the replication kinetics of CVV in these species. Detection of viral RNA in saliva suggests that both Ae. albopictus and Ae. aegypti are competent vectors for CVV under laboratory conditions. Conclusions Differential susceptibility to CVV was observed in Ae. albopictus and Ae. aegypti, reflecting their relatively different capacities for vectoring CVV in nature. The high susceptibility of Ae. albopictus to CVV observed in this study suggests its potential role as an efficient vector for CVV. Complemented by the reports of multiple CVV isolates derived from Ae. albopictus, our finding provides the basis for how the dispersal of Ae. albopictus across the New World may have a significant impact on the transmission and ecology of CVV.
Collapse
Affiliation(s)
- Victoria B Ayers
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA. .,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA.
| | - Amy C Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - So Lee Park
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - James I Dunlop
- Centre for Virus Research, MRC-University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Isik Unlu
- Broward County Mosquito Control, Pembroke Pines, FL, 33023, USA.,Center for Vector Biology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Alain Kohl
- Centre for Virus Research, MRC-University of Glasgow, Glasgow, G61 1QH, Scotland, UK
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA
| | - Bradley J Blitvich
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, 50011, USA
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA. .,Biosecurity Research Institute, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
19
|
Atovaquone Inhibits Arbovirus Replication through the Depletion of Intracellular Nucleotides. J Virol 2019; 93:JVI.00389-19. [PMID: 30894466 DOI: 10.1128/jvi.00389-19] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 12/11/2022] Open
Abstract
Arthropod-borne viruses represent a significant public health threat worldwide, yet there are few antiviral therapies or prophylaxes targeting these pathogens. In particular, the development of novel antivirals for high-risk populations such as pregnant women is essential to prevent devastating disease such as that which was experienced with the recent outbreak of Zika virus (ZIKV) in the Americas. One potential avenue to identify new and pregnancy-acceptable antiviral compounds is to repurpose well-known and widely used FDA-approved drugs. In this study, we addressed the antiviral role of atovaquone, an FDA Pregnancy Category C drug and pyrimidine biosynthesis inhibitor used for the prevention and treatment of parasitic infections. We found that atovaquone was able to inhibit ZIKV and chikungunya virus virion production in human cells and that this antiviral effect occurred early during infection at the initial steps of viral RNA replication. Moreover, we were able to complement viral replication and virion production with the addition of exogenous pyrimidine nucleosides, indicating that atovaquone functions through the inhibition of the pyrimidine biosynthesis pathway to inhibit viral replication. Finally, using an ex vivo human placental tissue model, we found that atovaquone could limit ZIKV infection in a dose-dependent manner, providing evidence that atovaquone may function as an antiviral in humans. Taken together, these studies suggest that atovaquone could be a broad-spectrum antiviral drug and a potential attractive candidate for the prophylaxis or treatment of arbovirus infection in vulnerable populations, such as pregnant women and children.IMPORTANCE The ability to protect vulnerable populations such as pregnant women and children from Zika virus and other arbovirus infections is essential to preventing the devastating complications induced by these viruses. One class of antiviral therapies may lie in known pregnancy-acceptable drugs that have the potential to mitigate arbovirus infections and disease, yet this has not been explored in detail. In this study, we show that the common antiparasitic drug atovaquone inhibits arbovirus replication through intracellular nucleotide depletion and can impair ZIKV infection in an ex vivo human placental explant model. Our study provides a novel function for atovaquone and highlights that the rediscovery of pregnancy-acceptable drugs with potential antiviral effects can be the key to better addressing the immediate need for treating viral infections and preventing potential birth complications and future disease.
Collapse
|
20
|
Zika; A Threat to Making Important Decisions on Maternal and Perinatal Health. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.1.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Göertz GP, Miesen P, Overheul GJ, van Rij RP, van Oers MM, Pijlman GP. Mosquito Small RNA Responses to West Nile and Insect-Specific Virus Infections in Aedes and Culex Mosquito Cells. Viruses 2019; 11:v11030271. [PMID: 30889941 PMCID: PMC6466260 DOI: 10.3390/v11030271] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/15/2022] Open
Abstract
Small RNA mediated responses are essential for antiviral defence in mosquitoes, however, they appear to differ per virus-vector combination. To further investigate the diversity of small RNA responses against viruses in mosquitoes, we applied a small RNA deep sequencing approach on five mosquito cell lines: Culex tarsalis CT cells, Aedes albopictus U4.4 and C6/36 cells, Ae. aegypti Aag2 cells (cleared from cell fusing agent virus and Culex Y virus (CYV) by repetitive dsRNA transfections) and Ae. pseudoscutellaris AP-61 cells. De novo assembly of small RNAs revealed the presence of Phasi Charoen-like virus (PCLV), Calbertado virus, Flock House virus and a novel narnavirus in CT cells, CYV in U4.4 cells, and PCLV in Aag2 cells, whereas no insect-specific viruses (ISVs) were detected in C6/36 and AP-61 cells. Next, we investigated the small RNA responses to the identified ISVs and to acute infection with the arthropod-borne West Nile virus (WNV). We demonstrate that AP-61 and C6/36 cells do not produce siRNAs to WNV infection, suggesting that AP-61, like C6/36, are Dicer-2 deficient. CT cells produced a strong siRNA response to the persistent ISVs and acute WNV infection. Interestingly, CT cells also produced viral PIWI-interacting (pi)RNAs to PCLV, but not to WNV or any of the other ISVs. In contrast, in U4.4 and Aag2 cells, WNV siRNAs, and pi-like RNAs without typical ping-pong piRNA signature were observed, while this signature was present in PCLV piRNAs in Aag2 cells. Together, our results demonstrate that mosquito small RNA responses are strongly dependent on both the mosquito cell type and/or the mosquito species and family of the infecting virus.
Collapse
Affiliation(s)
- Giel P Göertz
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Pascal Miesen
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Gijs J Overheul
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Geert Grooteplein Zuid 28, 6525 GA Nijmegen, The Netherlands.
| | - Monique M van Oers
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Gorben P Pijlman
- Laboratory of Virology, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
22
|
Reed EMX, Byrd BD, Richards SL, Eckardt M, Williams C, Reiskind MH. A Statewide Survey of Container Aedes Mosquitoes (Diptera: Culicidae) in North Carolina, 2016: A Multiagency Surveillance Response to Zika Using Ovitraps. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:483-490. [PMID: 30380070 DOI: 10.1093/jme/tjy190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Native and invasive container-inhabiting Aedes mosquitoes (Diptera: Culicidae) play important roles in the transmission of endemic and traveler-introduced arboviruses in the United States. In response to the emergence of Zika virus into the Americas, we surveyed the distribution of container Aedes spp. of public health importance within North Carolina during 2016 using ovitraps. A seasonal survey was conducted in 18 counties from the mountains to the coast to identify species incriminated in the transmission of chikungunya, dengue, La Crosse, yellow fever, and Zika viruses. Multiple local, state, and federal agencies participated in the study and submitted more than 3,600 ovistrips. Aedes albopictus (Skuse) (81.4%, n = 54,458) was the most common and widespread species found in this survey, followed by Aedes triseriatus (Say) (10.7%, n = 7,169) and Aedes japonicus (Theobald) (7.9%, n = 5,262). We did not find Aedes aegypti and rarely found Aedes hendersoni (Cockerell). We assessed broad-scale climatic and other factors and determined that longitude, elevation, rainfall, and temperature had significant effects on explaining the variation in presence, abundance, and phenology of container Aedes in North Carolina. However, much of the variation in these outcomes was not explained at this coarse scale and may benefit from finer-scale analyses. These efforts represent the largest ovitrap survey ever conducted in the state.
Collapse
Affiliation(s)
- Emily M X Reed
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| | - Brian D Byrd
- Vector-borne Infectious Disease Laboratory, Environmental Health Science Program, Western Carolina University, Cullowhee, NC
| | - Stephanie L Richards
- Department of Health Education and Promotion, Environmental Health Science Program, East Carolina University, Greenville, NC
| | - Megan Eckardt
- Vector-borne Infectious Disease Laboratory, Environmental Health Science Program, Western Carolina University, Cullowhee, NC
| | - Carl Williams
- North Carolina Division of Public Health, Communicable Disease Branch, Raleigh, NC
| | - Michael H Reiskind
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC
| |
Collapse
|
23
|
Sanchez-Vargas I, Harrington LC, Black WC, Olson KE. Analysis of Salivary Glands and Saliva from Aedes albopictus and Aedes aegypti Infected with Chikungunya Viruses. INSECTS 2019; 10:insects10020039. [PMID: 30717086 PMCID: PMC6410068 DOI: 10.3390/insects10020039] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/17/2019] [Accepted: 01/19/2019] [Indexed: 11/16/2022]
Abstract
Chikungunya virus (CHIKV) is a medically important mosquito-borne virus transmitted to humans by infected Aedes (Stegomyia) species. In 2013–2014, Ae. aegypti transmitted CHIKV to humans in the Caribbean and in 2005–2006, Ae. albopictus transmitted CHIKV on La Réunion Island (Indian Ocean basin). CHIKV LR2006 OPY1 from the La Réunion epidemic was associated with a mutation (E1:A226V) in the viral E1 glycoprotein that enhanced CHIKV transmission by Ae. albopictus. CHIKV R99659 from the Caribbean outbreak did not have the E1:A226V mutation. Here, we analyzed the salivary glands and saliva of Ae. albopictus strains from New Jersey, Florida, Louisiana and La Réunion after infection with each virus to determine their transmission potential. We infected the Ae. albopictus strains with blood meals containing 3–7 × 107 PFU/mL of each virus and analyzed the mosquitoes nine days later to maximize infection of their salivary glands. All four Ae. albopictus strains were highly susceptible to LR2006 OPY1 and R99659 viruses and their CHIKV disseminated infection rates (DIR) were statistically similar (p = 0.3916). The transmission efficiency rate (TER) was significantly lower for R99659 virus compared to LR2006 OPY1 virus in all Ae. albopictus strains and Ae. aegypti (Poza Rica) (p = 0.012) suggesting a salivary gland exit barrier to R99659 virus not seen with LR2006 OPY1 infections. If introduced, LR2006 OPY1 virus poses an increased risk of transmission by both Aedes species in the western hemisphere.
Collapse
Affiliation(s)
- Irma Sanchez-Vargas
- Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Ft. Collins, CO 80523, USA.
| | | | - William C Black
- Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Ft. Collins, CO 80523, USA.
| | - Ken E Olson
- Arthropod-borne and Infectious Diseases Laboratory, Colorado State University, Ft. Collins, CO 80523, USA.
| |
Collapse
|
24
|
Huang YJS, Higgs S, Vanlandingham DL. Arbovirus-Mosquito Vector-Host Interactions and the Impact on Transmission and Disease Pathogenesis of Arboviruses. Front Microbiol 2019; 10:22. [PMID: 30728812 PMCID: PMC6351451 DOI: 10.3389/fmicb.2019.00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/09/2019] [Indexed: 12/11/2022] Open
Abstract
Hundreds of viruses, designated as arboviruses, are transmitted by arthropod vectors in complex transmission cycles between the virus, vertebrate host, and the vector. With millions of human and animal infections per year, it is critical to improve our understanding of the interactions between the biological and environmental factors that play a critical role in pathogenesis, disease outcomes, and transmission of arboviruses. This review focuses on mosquito-borne arboviruses and discusses current knowledge of the factors and underlying mechanisms that influence infection and transmission of arboviruses and discusses critical factors and pathways that can potentially become targets for intervention and therapeutics.
Collapse
Affiliation(s)
- Yan-Jang S Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| | - Dana L Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Biosecurity Research Institute, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
25
|
Richards T, Tucker BJ, Hassan H, Bron GM, Bartholomay L, Paskewitz S. First Detection of Aedes albopictus (Diptera: Culicidae) and Expansion of Aedes japonicus japonicus in Wisconsin, United States. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:291-296. [PMID: 30321385 DOI: 10.1093/jme/tjy184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Indexed: 06/08/2023]
Abstract
The 2015-2016 epidemic of Zika virus in the Americas raised concerns about the range of Aedes albopictus (Skuse) in the United States. In response, the University of Wisconsin Medical Entomology Laboratory coordinated with the Wisconsin Department of Health Services in 2016 to conduct Aedes spp. surveillance and set up an oviposition trap (ovitrap) network operated by local public health partners across southern and western Wisconsin. During 2016, 916 ovitrap events were processed, but only Aedes triseriatus Say (Diptera: Culicidae) and Aedes japonicus japonicus (Theobald) were detected. In 2017, a focused surveillance approach was employed to detect Ae. albopictus near sites with tires stored outdoors. Using this targeted approach, Ae. albopictus was detected from ovitraps in two out of seven counties surveyed during June, July, and August. This is the first record of Ae. albopictus in Wisconsin.
Collapse
Affiliation(s)
| | | | - Hassan Hassan
- Department of Entomology, University of Wisconsin-Madison
| | | | - Lyric Bartholomay
- Department of Pathobiological Sciences, University of Wisconsin-Madison
| | | |
Collapse
|
26
|
Lozano-Fuentes S, Kenney JL, Varnado W, Byrd BD, Burkhalter KL, Savage HM. Susceptibility and Vectorial Capacity of American Aedes albopictus and Aedes aegypti (Diptera: Culicidae) to American Zika Virus Strains. JOURNAL OF MEDICAL ENTOMOLOGY 2019; 56:233-240. [PMID: 30102327 PMCID: PMC6781865 DOI: 10.1093/jme/tjy114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Indexed: 06/08/2023]
Abstract
The rapid expansion of Zika virus (ZIKV), following the recent outbreaks of Chikungunya virus, overwhelmed the public health infrastructure in many countries and alarmed many in the scientific community. Aedes aegypti (L.) (Diptera: Culicidae) and Aedes albopictus (Skuse) (Diptera: Culicidae) have previously been incriminated as the vectors of these pathogens in addition to dengue virus. In our study, we challenged low generation Ae. aegypti (Chiapas, Mexico) and Ae. albopictus (North Carolina, Mississippi), with three strains of ZIKV, Puerto Rico (GenBank: KU501215), Honduras (GenBank: KX694534), and Miami (GenBank: MF988743). Following an oral challenge with 107.5 PFU/ml of the Puerto Rico strain, we observed high infection and dissemination rates in both species (95%). We report estimated transmission rates for both species (74 and 33%, for Ae. aegypti (L.) (Diptera: Culicidae) and Ae. albopictus (Skuse) (Diptera: Culicidae), respectively), and the presence of a probable salivary gland barrier in Ae. albopictus to Zika virus. Finally, we calculated vectorial capacity for both species and found that Ae. albopictus had a slightly lower vectorial capacity when compared with Ae. aegypti.Second Language Abstract: La rápida expansión del virus Zika, poco después de las epidemias de chikungunya, rebaso la infraestructura de salud pública en muchos países y sorprendió a muchos en la comunidad científica. Notablemente, Aedes aegypti y Aedes albopictus transmiten estos patógenos además del virus del dengue. En este estudio se expusieron con tres cepas americanas de virus Zika a grupos de Aedes aegypti y Aedes albopictus de generación reciente. Encontramos altos porcentajes de infección y diseminación en ambas especies (95%). Se reporta, la transmisión viral en ambas especies (74 y 33%, para Aedes aegypti and Aedes albopictus, respectivamente) y una probable barrera a nivel de glándulas salivarías. Finalmente, calculamos la capacidad vectorial para ambas especies.
Collapse
Affiliation(s)
- Saul Lozano-Fuentes
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Joan L. Kenney
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Wendy Varnado
- Mississippi State Department of Health, 570 East Woodrow Wilson Avenue, Jackson, MS 39216
| | - Brian D. Byrd
- Vector-borne Infectious Disease Laboratory, Western Carolina University, 3971 Little Savannah Road, CHHS 416, Cullowhee, NC 28723
| | - Kristen L. Burkhalter
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| | - Harry M. Savage
- Arbovirus Diseases Branch, Centers for Disease Control and Prevention, 3156 Rampart Road, Fort Collins, CO 80521
| |
Collapse
|
27
|
Pereira Dos Santos T, Roiz D, Santos de Abreu FV, Luz SLB, Santalucia M, Jiolle D, Santos Neves MSA, Simard F, Lourenço-de-Oliveira R, Paupy C. Potential of Aedes albopictus as a bridge vector for enzootic pathogens at the urban-forest interface in Brazil. Emerg Microbes Infect 2018; 7:191. [PMID: 30482898 PMCID: PMC6258732 DOI: 10.1038/s41426-018-0194-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
The invasive species Aedes albopictus is present in 60% of Brazilian municipalities, including at the interfaces between urban settings and forests that are zoonotic arbovirus hotspots. We investigated Ae. albopictus colonization, adult dispersal and host feeding patterns in the anthropic-natural interface of three forested sites covering three biomes in Brazil in 2016. To evaluate whether an ecological overlap exists between Ae. albopictus and sylvatic yellow fever virus (YFV) in forests, we performed similar investigations in seven additional urban-forest interfaces where YFV circulated in 2017. We found Ae. albopictus in all forested sites. We detected eggs and adults up to 300 and 500 m into the forest, respectively, demonstrating that Ae. albopictus forest colonization and dispersal decrease with distance from the forest edge. Analysis of the host identity in blood-engorged females indicated that they fed mainly on humans and domestic mammals, suggesting rare contact with wildlife at the forest edge. Our results show that Ae. albopictus frequency declines as it penetrates into the forest and highlight its potential role as a bridge vector of zoonotic diseases at the edge of the Brazilian forests studied.
Collapse
Affiliation(s)
| | - David Roiz
- MIVEGEC Laboratory, IRD-CNRS-Montpellier Univ., Montpellier, 34394, France
| | | | | | - Marcelo Santalucia
- State of Goias Public Health Laboratory Dr. Giovanni Cysneiros, Goiania, GO, 74853-120, Brazil
| | - Davy Jiolle
- MIVEGEC Laboratory, IRD-CNRS-Montpellier Univ., Montpellier, 34394, France
| | | | - Frédéric Simard
- MIVEGEC Laboratory, IRD-CNRS-Montpellier Univ., Montpellier, 34394, France
| | | | - Christophe Paupy
- MIVEGEC Laboratory, IRD-CNRS-Montpellier Univ., Montpellier, 34394, France.
| |
Collapse
|
28
|
Cook CL, Huang YJS, Lyons AC, Alto BW, Unlu I, Higgs S, Vanlandingham DL. North American Culex pipiens and Culex quinquefasciatus are competent vectors for Usutu virus. PLoS Negl Trop Dis 2018; 12:e0006732. [PMID: 30118480 PMCID: PMC6114897 DOI: 10.1371/journal.pntd.0006732] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/29/2018] [Accepted: 08/03/2018] [Indexed: 11/19/2022] Open
Abstract
Background Usutu virus (USUV) is a member of the Japanese encephalitis virus (JEV) serocomplex in the Flaviviridae family. Emergence of USUV in Europe has led to disease burdens in birds and created increasing concern for the potential zoonotic transmission to humans. Whilst USUV has not been detected in the New World, the identification of competent vector species in North America is critical in the assessment of the likelihood of its dispersal and establishment of enzootic transmission cycles. The objective of this study was to determine vector competence of potential mosquito vectors in North America for USUV. Three medically important mosquito species were selected for testing because of their involvement in the transmission of West Nile virus and St. Louis encephalitis virus, two related JEV serocomplex flaviviruses in the New World. Methodology/Principal findings Oral challenge of Culex pipiens, Culex quinquefasciatus, and Aedes albopictus was performed to determine the susceptibility and vector competence of North American mosquitoes for USUV. Infection status was monitored by the isolation of virus from homogenized mosquito tissues. The disseminated form of infection was demonstrated by the detection of infectious virus in the head, wings, and legs of infected mosquitoes. The presence of viral RNA in saliva of infected Cx. pipiens and Cx. quinquefasciatus indicated that both species are competent for transmission of USUV. Conclusions/Significance Results indicate that members of the Cx. pipiens complex are susceptible to USUV and competent for its transmission potential in North America in the event of its introduction. In contrast, Ae. albopictus were highly refractory to USUV infection, suggesting that this species is unlikely to contribute to USUV transmission in North America. Usutu virus is an emerging mosquito-borne flavivirus maintained between avian and mosquito species. Although the pathogen has only been detected in Africa and Europe, a growing concern of its dispersal and zoonotic potential warrants the investigation on the vector competence of mosquito species outside the endemic regions for USUV. Identification of species involved in the transmission cycles allows for the formulation of disease control strategies such as vector control. As observed with West Nile virus and Japanese encephalitis virus, the presence of competent vector species is critical for the establishment of enzootic transmission cycles and contributes to the viral maintenance in nature. Despite differences in the genetics and bionomics of Culex pipiens in the Old World, members of the Cx. pipiens species in the New World are competent for USUV based on the results of per os challenges performed in this study. Cx. pipiens and Cx. quinquefasciatus are capable of initiating enzootic transmission cycles in the presence of susceptible avian species and should be targeted for vector control in the event of a disease outbreak.
Collapse
Affiliation(s)
- Christian L. Cook
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Yan-Jang S. Huang
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Amy C. Lyons
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, Florida, United States of America
| | - Isik Unlu
- Mercer County Mosquito Control, West Trenton, New Jersey, United States of America
- Center for Vector Biology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Stephen Higgs
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
| | - Dana L. Vanlandingham
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- Biosecurity Research Institute, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| |
Collapse
|
29
|
Nambala P, Su WC. Role of Zika Virus prM Protein in Viral Pathogenicity and Use in Vaccine Development. Front Microbiol 2018; 9:1797. [PMID: 30116235 PMCID: PMC6083217 DOI: 10.3389/fmicb.2018.01797] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 07/17/2018] [Indexed: 01/07/2023] Open
Abstract
Recent Zika virus (ZIKV) epidemics necessitate the urgent development of effective drugs and vaccines, which can be accelerated by an enhanced understanding of ZIKV biology. One of the ZIKV structural proteins, precursor membrane (prM), plays an important role in the assembly of mature virions through cleavage of prM into M protein. Recent studies have suggested that prM protein might be implicated in the neurovirulence of ZIKV. Most vaccines targeting ZIKV include prM as the immunogen. Here, we review progress in our understanding of ZIKV prM protein and its application in ZIKV vaccine development.
Collapse
Affiliation(s)
- Peter Nambala
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Wen-Chi Su
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan,Research Center for Emerging Viruses, China Medical University Hospital, Taichung, Taiwan,*Correspondence: Wen-Chi Su,
| |
Collapse
|
30
|
Binckley CA. Forest canopy, water level, and biopesticide interact to determine oviposition habitat selection in Aedes albopictus. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2017; 42:319-324. [PMID: 29125247 DOI: 10.1111/jvec.12272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
Understanding how interacting abiotic and biotic factors influence colonization rates into different habitat types is critical for both conserving and controlling species. For example, the rapid global spread of Asian tiger mosquitoes, Aedes albopictus, has reduced native species abundances and produced disease outbreaks. Fortunately, bacterial endospores of two Bacillus species (biospesticide) are highly lethal to Ae. albopictus larvae and have been commercially developed to reduce populations. Oviposition habitat selection is the first defense Ae. albopictus females possess against any control substance added to breeding sites, and considerable variation exists in their response to biopesticides. In a field experiment, I crossed the presence/absence of biopesticides, with two canopy (open, closed) and water (high, low) levels at 64 breeding sites, to examine if these interacted to influence oviposition site choice. Avoidance of biopesticide was most pronounced in closed canopy sites and those with low water levels, as all main effects and two-way interactions influenced oviposition. Oviposition habitat selection represents a possible mechanism of resistance to biopesticides and other methods used to kill mosquito larvae. Future experiments examining how larval density and mortality modify these results should allow for more effective control of this highly invasive species.
Collapse
|
31
|
Tavecchia G, Miranda MA, Borrás D, Bengoa M, Barceló C, Paredes-Esquivel C, Schwarz C. Modelling the range expansion of the Tiger mosquito in a Mediterranean Island accounting for imperfect detection. Front Zool 2017; 14:39. [PMID: 28769991 PMCID: PMC5531071 DOI: 10.1186/s12983-017-0217-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/15/2017] [Indexed: 11/13/2023] Open
Abstract
BACKGROUNDS Aedes albopictus (Diptera; Culicidae) is a highly invasive mosquito species and a competent vector of several arboviral diseases that have spread rapidly throughout the world. Prevalence and patterns of dispersal of the mosquito are of central importance for an effective control of the species. We used site-occupancy models accounting for false negative detections to estimate the prevalence, the turnover, the movement pattern and the growth rate in the number of sites occupied by the mosquito in 17 localities throughout Mallorca Island. RESULTS Site-occupancy probability increased from 0.35 in the 2012, year of first reported observation of the species, to 0.89 in 2015. Despite a steady increase in mosquito presence, the extinction probability was generally high indicating a high turnover in the occupied sites. We considered two site-dependent covariates, namely the distance from the point of first observation and the estimated yearly occupancy rate in the neighborhood, as predicted by diffusion models. Results suggested that mosquito distribution during the first year was consistent with what predicted by simple diffusion models, but was not consistent with the diffusion model in subsequent years when it was similar to those expected from leapfrog dispersal events. CONCLUSIONS Assuming a single initial colonization event, the spread of Ae. albopictus in Mallorca followed two distinct phases, an early one consistent with diffusion movements and a second consistent with long distance, 'leapfrog', movements. The colonization of the island was fast, with ~90% of the sites estimated to be occupied 3 years after the colonization. The fast spread was likely to have occurred through vectors related to human mobility such as cars or other vehicles. Surveillance and management actions near the introduction point would only be effective during the early steps of the colonization.
Collapse
Affiliation(s)
- Giacomo Tavecchia
- Population Ecology Group, IMEDEA (CSIC-UIB), c. Miquel Marqués 21, 07190 Esporles, Spain
| | - Miguel-Angel Miranda
- Laboratory of Zoology, Department of Biology, University of the Balearic Island, c. Valldemossa s/n, Palma de Mallorca, Spain
| | - David Borrás
- Laboratory of Zoology, Department of Biology, University of the Balearic Island, c. Valldemossa s/n, Palma de Mallorca, Spain
| | - Mikel Bengoa
- Consultoria Moscard Tigre, c. Gremi Passamaners 24, Local 15, 07009 Palma de Mallorca, Spain
| | - Carlos Barceló
- Laboratory of Zoology, Department of Biology, University of the Balearic Island, c. Valldemossa s/n, Palma de Mallorca, Spain
| | - Claudia Paredes-Esquivel
- Laboratory of Zoology, Department of Biology, University of the Balearic Island, c. Valldemossa s/n, Palma de Mallorca, Spain
| | - Carl Schwarz
- Department of Statistics and Acutarian Science, Simon Fraser University, Burnaby, BC Canada
| |
Collapse
|
32
|
Gould E, Pettersson J, Higgs S, Charrel R, de Lamballerie X. Emerging arboviruses: Why today? One Health 2017; 4:1-13. [PMID: 28785601 PMCID: PMC5501887 DOI: 10.1016/j.onehlt.2017.06.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/26/2017] [Accepted: 06/30/2017] [Indexed: 12/13/2022] Open
Abstract
The recent global (re)emergence of arthropod-borne viruses (arboviruses), such as chikungunya and Zika virus, was widely reported in the media as though it was a new phenomenon. This is not the case. Arboviruses and other human microbial pathogens have been (re)emerging for centuries. The major difference today is that arbovirus emergence and dispersion are more rapid and geographically extensive, largely due to intensive growth of global transportation systems, arthropod adaptation to increasing urbanisation, our failure to contain mosquito population density increases and land perturbation. Here we select examples of (re)emerging pathogenic arboviruses and explain the reasons for their emergence and different patterns of dispersal, focusing particularly on the mosquito vectors which are important determinants of arbovirus emergence. We also attempt to identify arboviruses likely to (re)emerge in the future.
Collapse
Affiliation(s)
- Ernest Gould
- Emergence des Pathologies Virales (EPV: Aix-Marseille Université-IRD 190-INSERM 1207-EHESP), Marseille, France
| | - John Pettersson
- Department of Infectious Disease Epidemiology and Modelling/Molecular Biology, Domain for Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway.,Department of Medical Biochemistry and Microbiology (IMBIM), Zoonosis Science Center, Uppsala University, Uppsala, Sweden
| | - Stephen Higgs
- Diagnostic Medicine and Pathobiology, Kansas State University, Manhattan, United States.,KS Biosecurity Research Institute, Kansas State University, Manhattan, United States
| | - Remi Charrel
- Emergence des Pathologies Virales (EPV: Aix-Marseille Université-IRD 190-INSERM 1207-EHESP), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| | - Xavier de Lamballerie
- Emergence des Pathologies Virales (EPV: Aix-Marseille Université-IRD 190-INSERM 1207-EHESP), Marseille, France.,Institut Hospitalo-Universitaire Méditerranée Infection, APHM Public Hospitals of Marseille, Marseille, France
| |
Collapse
|
33
|
Tsujimoto H, Hanley KA, Sundararajan A, Devitt NP, Schilkey FD, Hansen IA. Dengue virus serotype 2 infection alters midgut and carcass gene expression in the Asian tiger mosquito, Aedes albopictus. PLoS One 2017; 12:e0171345. [PMID: 28152011 PMCID: PMC5289563 DOI: 10.1371/journal.pone.0171345] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/19/2017] [Indexed: 12/20/2022] Open
Abstract
Background The Asian tiger mosquito, Aedes albopictus is currently an important vector for dengue, chikungunya and Zika virus, and its role in transmission of arthropod-borne viruses (arboviruses) may increase in the future due to its ability to colonize temperate regions. In contrast to Aedes aegypti, the dominant vector of dengue, chikungunya and Zika virus, genetic responses of Ae. albopictus upon infection with an arbovirus are not well characterized. Here we present a study of the changes in transcript expression in Ae. albopictus exposed to dengue virus serotype 2 via feeding on an artificial bloodmeal. Methodology/Principal findings We isolated midguts and midgut-free carcasses of Ae. albopictus fed on bloodmeals containing dengue virus as well as controls fed on virus-free control meals at day 1 and day 5 post-feeding. We confirmed infection of midguts from mosquitoes sampled on day 5 post-feeding via RT-PCR. RNAseq analysis revealed dynamic modulation of the expression of several putative immunity and dengue virus-responsive genes, some of whose expression was verified by qRT-PCR. For example, a serine protease gene was up-regulated in the midgut at 1 day post infection, which may potentially enhance mosquito susceptibility to dengue infection, while 14 leucine-rich repeat genes, previously shown to be involved in mosquito antiviral defenses, were down-regulated in the carcass at 5 days post infection. The number of significantly modulated genes decreased over time in midguts and increased in carcasses. Conclusion/Significance Dengue virus exposure results in the modulation of genes in a time- and site-specific manner. Previous literature on the interaction between mosquitoes and mosquito-borne pathogens suggests that most of the changes that occurred in Ae. albopictus exposed to DENV would favor virus infection. Many genes identified in this study warrant further characterization to understand their role in viral manipulation of and antiviral response of Ae. albopictus.
Collapse
Affiliation(s)
- Hitoshi Tsujimoto
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
- * E-mail:
| | - Kathryn A. Hanley
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Anitha Sundararajan
- NM-INBRE Sequencing and Bioinformatics Core, National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Nicholas P. Devitt
- NM-INBRE Sequencing and Bioinformatics Core, National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Faye D. Schilkey
- NM-INBRE Sequencing and Bioinformatics Core, National Center for Genome Resources, Santa Fe, New Mexico, United States of America
| | - Immo A. Hansen
- Department of Biology, New Mexico State University, Las Cruces, New Mexico, United States of America
| |
Collapse
|
34
|
Yee DA. Thirty Years of Aedes albopictus (Diptera: Culicidae) in America: An Introduction to Current Perspectives and Future Challenges. JOURNAL OF MEDICAL ENTOMOLOGY 2016; 53:989-991. [PMID: 27354439 DOI: 10.1093/jme/tjw063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- Donald A Yee
- Department of Biological Sciences, University of Southern Mississippi, Hattiesburg, MS 39460
| |
Collapse
|