1
|
Zhang X, Wang Y, Zhang M, Liu B, Li X, Zhao J, Qiao W, Liu Y, Liu Y, Chen L. Association between fat-soluble vitamins in breast milk and neonatal gut microbiome in Tibetan mother-infant dyads during the first month postnatal. Food Res Int 2025; 212:116350. [PMID: 40382082 DOI: 10.1016/j.foodres.2025.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 03/18/2025] [Accepted: 04/15/2025] [Indexed: 05/20/2025]
Abstract
The Tibetan Plateau is a high-altitude environment characterized by hypoxic conditions, strong ultraviolet rays, and significant temperature variations that affect the well-being of local residents, including mother-infant dyads. Adaptive evolution through lifestyle and dietary patterns plays an important role in nutrition during the maternal lactation period, which offers unique merits for investigation at the intersection of environmental and nutritional fields. Specifically, changes in the nutrient composition of human milk among Tibetan lactating mothers and their associated consequences for infants provide insight into early nutrition research and infant food production. In this study, the concentrations of vitamins A, D, E, and β-carotene in the human milk of Tibetan mothers, as well as the fecal microbiome profiles of their infants, were analyzed within the first month postnatal. The results showed that the fat-soluble vitamins in Tibetan human milk were at satisfactory levels, particularly during the colostrum stage, which may be attributed to the advantages of their dietary pattern and dwelling environment. Dynamic changes in the gut microbiota composition of Tibetan infants were observed, with the phyla Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria being relatively abundant. The abundance of Bifidobacterium increased as infants aged within the first month postnatal. Correlations were found between the fat-soluble vitamin composition in human milk and the characteristics of the infant gut microbiota, including alpha (α)-diversity indices and microbial abundances. These findings will help enhance the understanding of early nutrition under harsh natural conditions and will guide relevant innovations and improvements in the maternal and infant food industry.
Collapse
Affiliation(s)
- Xiaomei Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yaling Wang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Minghui Zhang
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Bin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Xianping Li
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Junying Zhao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Weicang Qiao
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yan Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Yanpin Liu
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China
| | - Lijun Chen
- National Engineering Research Center of Dairy Health for Maternal and Child, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China; Beijing Engineering Research Center of Dairy, Beijing Technical Innovation Center of Human Milk Research, Beijing Sanyuan Foods Co. Ltd., Beijing 100163, China.
| |
Collapse
|
2
|
Bhatnagar K, Jha K, Dalal N, Patki N, Gupta G, Kumar A, Kumar A, Chaudhary S. Exploring micronutrients and microbiome synergy: pioneering new paths in cancer therapy. Front Immunol 2024; 15:1442788. [PMID: 39676876 PMCID: PMC11638209 DOI: 10.3389/fimmu.2024.1442788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024] Open
Abstract
The human microbiome is the complex ecosystem consisting of trillions of microorganisms that play a key role in developing the immune system and nutrient metabolism. Alterations in the gut microbiome have been linked to cancer initiation, progression, metastasis, and response to treatment. Accumulating evidence suggests that levels of vitamins and minerals influence the gut environment and may have implications for cancer risk and progression. Bifidobacterium has been reported to reduce the colorectal cancer risk by binding to free iron. Additionally, zinc ions have been shown to activate the immune cells and enhance the effectiveness of immunotherapy. Higher selenium levels have been associated with a reduced risk of several cancers, including colorectal cancer. In contrast, enhanced copper uptake has been implicated in promoting cancer progression, including colon cancer. The interaction between cancer and gut bacteria, as well as dysbiosis impact has been studied in animal models. The interplay between prebiotics, probiotics, synbiotics, postbiotics and gut bacteria in cancer offers the diverse physiological benefits. We also explored the particular probiotic formulations like VSL#3, Prohep, Lactobacillus rhamnosus GG (LGG), etc., for their ability to modulate immune responses and reduce tumor burden in preclinical models. Targeting the gut microbiome through antibiotics, bacteriophage, microbiome transplantation-based therapies will offer a new perspective in cancer research. Hence, to understand this interplay, we outline the importance of micronutrients with an emphasis on the immunomodulatory function of the microbiome and highlight the microbiome's potential as a target for precision medicine in cancer treatment.
Collapse
Affiliation(s)
- Kartik Bhatnagar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Kanupriya Jha
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Nishu Dalal
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Ninad Patki
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Garima Gupta
- Biological Engineering and Sciences, Indian Institute of Technology Gandhinagar Palaj, Gandhinagar, Gujarat, India
| | - Amit Kumar
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| | - Anil Kumar
- Gene Regulation Laboratory, National Institute of Immunology, New Delhi, India
| | - Sarika Chaudhary
- Department of Biotechnology, School of Engineering and Applied Sciences, Bennett University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
3
|
Chowdhury SSA, Kundu S, Jahan I, Dey R, Sharif AB, Hossain A. Trends and socioeconomic inequalities in receiving vitamin A supplementation among children aged 6-59 months in Bangladesh: analysis of nationwide cross-sectional data from 2004 to 2017. BMJ Nutr Prev Health 2024; 7:e000944. [PMID: 39882300 PMCID: PMC11773645 DOI: 10.1136/bmjnph-2024-000944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 11/06/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction The coverage of vitamin A supplementation (VAS) is still short of the target set by the government to reach 90% coverage of VAS in Bangladesh. The present study aims to examine the socioeconomic and geographical inequalities in receiving VAS among children aged 6-59 months in Bangladesh from 2004 to 2017. Methods The Bangladesh Demographic and Health Surveys for the years 2004-2017 were accessed through the WHO's Health Equity Assessment Toolkit. Inequalities were explored from socioeconomic and geographical perspectives. Specifically, it considered wealth quintile and education as socioeconomic dimensions and place of residence as geographical dimensions. We calculated difference, population attributable fraction (PAF), population attributable risk (PAR) and ratio as summary measures and their associated 95% CIs to quantify and assess the extent of health disparities. Results The study revealed a fluctuating trend over the years in the prevalence of receiving VAS among children in Bangladesh. The prevalence shifted from 78.68% in 2004 to a low of 62.09% in 2011, subsequently increasing to 79.29% in 2017. The PAF in 2017 for the variable wealth was 4.61 (95% CI 2.38 to 6.85), highlighting the extent of the disparity that favoured wealthier individuals. The study also detected inequalities based on educational levels; in 2017, the difference measure of inequality was 9.24 (95% CI 3.69 to 14.79), indicating a notable advantage for children from the higher educated group. Children from urban areas were also observed to have a higher likelihood of receiving VAS compared with their rural counterparts. Conclusion This study identified a persistent regional inequality in receiving VAS in Bangladesh over time. These inequalities remained a concern, especially for children from poor wealth groups, low-educated families and rural regions. This understanding will inform the development of a comprehensive programme aimed at increasing the prevalence of VAS among all children in Bangladesh.
Collapse
Affiliation(s)
- Syed Sharaf Ahmed Chowdhury
- Department of Public Health, North South University, Dhaka, Bangladesh
- Global Health Institute, North South University, Dhaka, Bangladesh
| | - Satyajit Kundu
- School of Medicine and Dentistry, Griffith University, Gold Coast, Queensland, Australia
| | - Ishrat Jahan
- Department of Public Health, North South University, Dhaka, Bangladesh
| | - Rakhi Dey
- Statistics Discipline, Khulna University, Khulna, Bangladesh
| | - Azaz Bin Sharif
- Department of Public Health, North South University, Dhaka, Bangladesh
- Global Health Institute, North South University, Dhaka, Bangladesh
| | - Ahmed Hossain
- College of Health Sciences, University of Sharjah, Sharjah, UAE
| |
Collapse
|
4
|
Michael H, Weng GW, Vallas MM, Lovos D, Chen E, Sheiffele P, Weng W. Metabolomics analysis reveals resembling metabolites between humanized γδ TCR mice and human plasma. Sci Rep 2024; 14:29321. [PMID: 39592837 PMCID: PMC11599612 DOI: 10.1038/s41598-024-81003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/22/2024] [Indexed: 11/28/2024] Open
Abstract
Gamma delta (γδ) T cells, which reside in mucosal and epithelial tissues, are integral to immune responses and are involved in various cancers, autoimmune, and infectious diseases. To study human γδ T cells to a translational level, we developed γδ humanized TCR-T1 (HuTCR-T1) mice using our TruHumanization platform. We compared the metabolomic profiles from plasma samples of wild-type (WT), γδ HuTCR-T1 mice, and humans using UHPLC-MS/MS. Untargeted metabolomics and lipidomics were used to screen all detectable metabolites. Principal component analysis revealed that the metabolomic profiles of γδ HuTCR-T1 mice closely resemble those of humans, with a clear segregation of metabolites between γδ HuTCR-T1 and WT mice. Most humanized γδ metabolites were classified as lipids, followed by organic compounds and amino acids. Pathway analysis identified significant alterations in the metabolism of tryptophan, tyrosine, sphingolipids, and glycerophospholipids, shifting these pathways towards a more human-like profile. Immunophenotyping showed that γδ HuTCR-T1 mice maintained normal proportions of both lymphoid and myeloid immune cell populations, closely resembling WT mice, with only a few exceptions. These findings demonstrate that the γδ HuTCR-T1 mouse model exhibits a metabolomic profile that is remarkably similar to that of humans, highlighting its potential as a relevant model for investigating the role of metabolites in disease development and progression. This model also offers an opportunity to discover therapeutic human TCRs.
Collapse
Affiliation(s)
- Husheem Michael
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America.
| | - Gene W Weng
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Mikaela M Vallas
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Douglas Lovos
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Ellen Chen
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Paul Sheiffele
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America
| | - Wei Weng
- InGenious Targeting Laboratory, 2200 Smithtown Avenue Ronkonkoma, Ronkonkoma, NY, 11779, United States of America.
| |
Collapse
|
5
|
Meng S, Xing S, Xu H, Li J, Jiang Y, He H, Cai H, Li M. Integrated analysis of intestinal microbial community and muscle transcriptome profile in rabbits. Anim Biotechnol 2024; 35:2387015. [PMID: 39145993 DOI: 10.1080/10495398.2024.2387015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Intestinal microbial community plays an important part in maintaining health and skeletal muscle development in livestock. This study is the first of its kind in the world. In order to better understand the relationship between gut microbiota and gene expression in skeletal muscle of rabbits, caecum contents and longissimus dorsi tissues of rabbits at 0 d (S1), 35 d (S2) and 70d (S3) were collected and subjected for 16S rRNA sequencing and transcriptome sequencing. Our results showed that, among three groups of rabbits, Firmicutes and Bacteroidetes were the dominant phyla at the phylum level, while Akmansia, Bacteroides and Ruminobacter were the dominant genera at the genus level, and the relative abundance of Akmansia and Bacteroides increased firstly and then decreased from 0 d to 70 d. By analyzing the transcriptome sequencing data, we identified 2866, 2446 and 4541 differentially expressed genes (DEGs) in S1 vs S2, S2 vs S3 and S1 vs S3 groups, respectively. Finally, we performed correlation analysis between gut microbiota and the expression levels of muscle development-related genes of rabbits at 0 d and 70 d. Compared with 0 day old rabbits, in 70 day old rabbits Acinetobacter and Cronbacter with decreased abundance, and Ruminococcaceae_UCG-014 and Ruminococcus_1 with increase abundance is beneficial to caecum health in rabbits. These results will lay a foundation for further re-searches about the relationship between caecum microflora and muscle development in rabbits.
Collapse
Affiliation(s)
- Shengbo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Shanshan Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Henan, P.R. China
| | - Yixuan Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| |
Collapse
|
6
|
Ignatiou A, Pitsouli C. Host-diet-microbiota interplay in intestinal nutrition and health. FEBS Lett 2024; 598:2482-2517. [PMID: 38946050 DOI: 10.1002/1873-3468.14966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/11/2024] [Indexed: 07/02/2024]
Abstract
The intestine is populated by a complex and dynamic assortment of microbes, collectively called gut microbiota, that interact with the host and contribute to its metabolism and physiology. Diet is considered a key regulator of intestinal microbiota, as ingested nutrients interact with and shape the resident microbiota composition. Furthermore, recent studies underscore the interplay of dietary and microbiota-derived nutrients, which directly impinge on intestinal stem cells regulating their turnover to ensure a healthy gut barrier. Although advanced sequencing methodologies have allowed the characterization of the human gut microbiome, mechanistic studies assessing diet-microbiota-host interactions depend on the use of genetically tractable models, such as Drosophila melanogaster. In this review, we first discuss the similarities between the human and fly intestines and then we focus on the effects of diet and microbiota on nutrient-sensing signaling cascades controlling intestinal stem cell self-renewal and differentiation, as well as disease. Finally, we underline the use of the Drosophila model in assessing the role of microbiota in gut-related pathologies and in understanding the mechanisms that mediate different whole-body manifestations of gut dysfunction.
Collapse
Affiliation(s)
- Anastasia Ignatiou
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
7
|
YANG C, LUO J, PENG W, DAI W. Huaiyu pill alleviates inflammatory bowel disease in mice blocking toll like receptor 4/ myeloid differentiation primary response gene 88/ nuclear factor kappa B subunit 1 pathway. J TRADIT CHIN MED 2024; 44:916-925. [PMID: 39380222 PMCID: PMC11462535 DOI: 10.19852/j.cnki.jtcm.20240719.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/15/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE To investigate the therapeutic effects of Huaiyu pill (, HYP) on inflammatory bowel disease (IBD) and the underlying mechanisms have not been elucidated. METHODS To establish the IBD model, mice were administered with dextran sulfate sodium (DSS). Mice were intragastrically pre-treated with sulfasalazine (SASP) and HYP. Disease activity index (DAI) and colon length were monitored, and the colonic tissues were subjected to hematoxylin-eosin staining. Pro-inflammatory factors and vascular inflammation-related proteins were determined using enzyme-linked immunosorbent assay (ELISA). The potential mechanisms of HYP were examined using network pharmacology analysis.The expressions of zona occludens 1 (ZO-1), occludin, toll like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MYD88), and nuclear factor kappa B p65 subunit (NF-κB p65) in colon tissues were examined using Western blotting or immunohistochemical analyses. RESULTS Pre-treatment with HYP enhanced the colon length, decreased DAI scores, and mitigated histopathological alterations in DSS-treated mice. HYP alleviated intestinal inflammation by downregulating the levels of interleukin 1 beta (IL-1β), interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α) and interleukin 17 (IL-17). Additionally, HYP suppressed the disruption of the gut barrier by upregulating the ZO-1, occludin, and mucin 2 (MUC2) levels and downregulating the endothelin 1 (ET-1) and erythropoietin (EPO) levels. Network pharmacological analysis and experimental results revealed that HYP downregulated the colonic tissue levels of TLR4, MYD88, and NF-κB p65 in DSS-treated mice. CONCLUSION This study investigated the in vivotherapeutic effects of HYP on IBD and the underlying molecular mechanisms. These findings provide an experimental foundation for the clinical application of HYP.
Collapse
Affiliation(s)
- Chunyan YANG
- 1 Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Jia LUO
- 1 Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China
| | - Weijie PENG
- 2 Department of Pharmacy, Shenshan Medical Center Memorial Hospital of Sun Yat-Sen University Sun Yat-Sen University, Shanwei 516600, China
| | - Weibo DAI
- 1 Department of Pharmacy, Zhongshan Hospital of Traditional Chinese Medicine, Guangzhou University of Traditional Chinese Medicine, Zhongshan 528400, China
| |
Collapse
|
8
|
Randeni N, Bordiga M, Xu B. A Comprehensive Review of the Triangular Relationship among Diet-Gut Microbiota-Inflammation. Int J Mol Sci 2024; 25:9366. [PMID: 39273314 PMCID: PMC11394685 DOI: 10.3390/ijms25179366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
The human gastrointestinal tract hosts a complex and dynamic community of microorganisms known as the gut microbiota, which play a pivotal role in numerous physiological processes, including digestion, metabolism, and immune function. Recent research has highlighted the significant impact of diet on the gut microbiota composition and functionality, and the consequential effects on host health. Concurrently, there is growing evidence linking the gut microbiota to inflammation, a key factor in many chronic diseases such as inflammatory bowel disease (IBD), obesity, diabetes, and cardiovascular diseases (CVDs). This review explores how dietary components influence the gut microbiota composition, how these microbial changes affect inflammatory pathways, and the therapeutic implications of modulating this axis for chronic inflammatory disease prevention and management. Beneficial dietary patterns, such as the Mediterranean diet (MD) and plant-based diets, promote a diverse and balanced gut microbiota composition, supporting anti-inflammatory pathways. Conversely, the Western diet (WD), high in saturated fats and refined sugars, is associated with dysbiosis and increased inflammation. With all the links between the three variables considered, this review attempts to offer a thorough examination of the triangle formed by inflammation, the gut microbiota, and food.
Collapse
Affiliation(s)
- Nidesha Randeni
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
- Department of Agricultural and Plantation Engineering, Faculty of Engineering Technology, The Open University of Sri Lanka, Nawala, Nugegoda 10250, Sri Lanka
| | - Matteo Bordiga
- Department of Pharmaceutical Sciences, Università degli Studi del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy
| | - Baojun Xu
- Food Science and Technology Program, Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China
| |
Collapse
|
9
|
Martínez A, Velázquez L, Díaz R, Huaiquipán R, Pérez I, Muñoz A, Valdés M, Sepúlveda N, Paz E, Quiñones J. Impact of Novel Foods on the Human Gut Microbiome: Current Status. Microorganisms 2024; 12:1750. [PMID: 39338424 PMCID: PMC11433882 DOI: 10.3390/microorganisms12091750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
The microbiome is a complex ecosystem of microorganisms that inhabit a specific environment. It plays a significant role in human health, from food digestion to immune system strengthening. The "Novel Foods" refer to foods or ingredients that have not been consumed by humans in the European Union before 1997. Currently, there is growing interest in understanding how "Novel Foods" affect the microbiome and human health. The aim of this review was to assess the effects of "Novel Foods" on the human gut microbiome. Research was conducted using scientific databases, focusing on the literature published since 2000, with an emphasis on the past decade. In general, the benefits derived from this type of diet are due to the interaction between polyphenols, oligosaccharides, prebiotics, probiotics, fibre content, and the gut microbiome, which selectively promotes specific microbial species and increases microbial diversity. More research is being conducted on the consumption of novel foods to demonstrate how they affect the microbiome and, thus, human health. Consumption of novel foods with health-promoting properties should be further explored to maintain the diversity and functionality of the gut microbiome as a potential tool to prevent the onset and progression of chronic diseases.
Collapse
Affiliation(s)
- Ailín Martínez
- Doctoral Program in Science Major in Applied Cellular and Molecular Biology, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4800000, Chile;
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
| | - Lidiana Velázquez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rommy Díaz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| | - Rodrigo Huaiquipán
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Isabela Pérez
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Alex Muñoz
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Marcos Valdés
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Néstor Sepúlveda
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
- Doctoral Program in Agrifood and Environment Sciences, Universidad de La Frontera, Temuco 4780000, Chile
| | - Erwin Paz
- UWA Institute of Agriculture, The University of Western Australia, Perth 6009, Australia;
| | - John Quiñones
- Meat Quality Innovation and Technology Centre (CTI-Carne), Universidad de La Frontera, Temuco 4780000, Chile; (L.V.); (R.D.); (R.H.); (I.P.); (A.M.); (M.V.)
- Faculty of Agricultural and Environmental Sciences, Universidad de La Frontera, Av. Francisco Salazar 01145, Temuco 4780000, Chile;
| |
Collapse
|
10
|
Fan C, Xu J, Tong H, Fang Y, Chen Y, Lin Y, Chen R, Chen F, Wu G. Gut-brain communication mediates the impact of dietary lipids on cognitive capacity. Food Funct 2024; 15:1803-1824. [PMID: 38314832 DOI: 10.1039/d3fo05288e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Cognitive impairment, as a prevalent symptom of nervous system disorders, poses one of the most challenging aspects in the management of brain diseases. Lipids present in the cell membranes of all neurons within the brain and dietary lipids can regulate the cognition and memory function. In recent years, the advancements in gut microbiome research have enabled the exploration of dietary lipids targeting the gut-brain axis as a strategy for regulating cognition. This present review provides an in-depth overview of how lipids modulate cognition via the gut-brain axis depending on metabolic, immune, neural and endocrine pathways. It also comprehensively analyzes the effects of diverse lipids on the gut microbiota and intestinal barrier function, thereby affecting the central nervous system and cognitive capacity. Moreover, comparative analysis of the positive and negative effects is presented between beneficial and detrimental lipids. The former encompass monounsaturated fatty acids, short-chain fatty acids, omega-3 polyunsaturated fatty acids, phospholipids, phytosterols, fungal sterols and bioactive lipid-soluble vitamins, as well as lipid-derived gut metabolites, whereas the latter (detrimental lipids) include medium- or long-chain fatty acids, excessive proportions of n-6 polyunsaturated fatty acids, industrial trans fatty acids, and zoosterols. To sum up, the focus of this review is on how gut-brain communication mediates the impact of dietary lipids on cognitive capacity, providing a novel theoretical foundation for promoting brain cognitive health and scientific lipid consumption patterns.
Collapse
Affiliation(s)
- Chenhan Fan
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Jingxuan Xu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Haoxiang Tong
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yucheng Fang
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yiming Chen
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yangzhuo Lin
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Rui Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Fuhao Chen
- School of Basic Medical Science, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Guoqing Wu
- School of Public Health, Health Science Center, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
11
|
Dje Kouadio DK, Wieringa F, Greffeuille V, Humblot C. Bacteria from the gut influence the host micronutrient status. Crit Rev Food Sci Nutr 2023; 64:10714-10729. [PMID: 37366286 DOI: 10.1080/10408398.2023.2227888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Micronutrient deficiencies or "hidden hunger" remains a serious public health problem in most low- and middle-income countries, with severe consequences for child development. Traditional methods of treatment and prevention, such as supplementation and fortification, have not always proven to be effective and may have undesirable side-effects (i.e., digestive troubles with iron supplementation). Commensal bacteria in the gut may increase bioavailability of specific micronutrients (i.e., minerals), notably by removing anti-nutritional compounds, such as phytates and polyphenols, or by the synthesis of vitamins. Together with the gastrointestinal mucosa, gut microbiota is also the first line of protection against pathogens. It contributes to the reinforcement of the integrity of the intestinal epithelium and to a better absorption of micronutrients. However, its role in micronutrient malnutrition is still poorly understood. Moreover, the bacterial metabolism is also dependent of micronutrients acquired from the gut environment and resident bacteria may compete or collaborate to maintain micronutrient homeostasis. Gut microbiota composition can therefore be modulated by micronutrient availability. This review brings together current knowledge on this two-way relationship between micronutrients and gut microbiota bacteria, with a focus on iron, zinc, vitamin A and folate (vitamin B9), as these deficiencies are public health concerns in a global context.
Collapse
Affiliation(s)
- Dorgeles Kouakou Dje Kouadio
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Frank Wieringa
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Valérie Greffeuille
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| | - Christèle Humblot
- QualiSud, Univ Montpellier, Avignon Université, CIRAD, Institut Agro, IRD, Université de La Réunion, Montpellier, France
- French National Research Institute for Sustainable Development (IRD), Montpellier, France, France
| |
Collapse
|
12
|
Jackson C, Kolba N, Tako E. Assessing the Interactions between Zinc and Vitamin A on Intestinal Functionality, Morphology, and the Microbiome In Vivo ( Gallus gallus). Nutrients 2023; 15:2754. [PMID: 37375657 PMCID: PMC10302570 DOI: 10.3390/nu15122754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Dietary deficiencies in zinc (Zn) and vitamin A (VA) are among the leading micronutrient deficiencies globally and previous research has proposed a notable interaction between Zn and VA physiological status. This study aimed to assess the effects of zinc and vitamin A (isolated and combined) on intestinal functionality and morphology, and the gut microbiome (Gallus gallus). The study included nine treatment groups (n~11)-no-injection (NI); H2O; 0.5% oil; normal zinc (40 mg/kg ZnSO4) (ZN); low zinc (20 mg/kg) (ZL); normal retinoid (1500 IU/kg retinyl palmitate) (RN); low retinoid (100 IU/kg) (RL); normal zinc and retinoid (40 mg/kg; 1500 IU/kg) (ZNRN); low zinc and retinoid (ZLRL) (20 mg/kg; 100 IU/kg). Samples were injected into the amniotic fluid of the fertile broiler eggs. Tissue samples were collected upon hatch to target biomarkers. ZLRL reduced ZIP4 gene expression and upregulated ZnT1 gene expression (p < 0.05). Duodenal surface area increased the greatest in RL compared to RN (p < 0.01), and ZLRL compared to ZNRN (p < 0.05). All nutrient treatments yielded shorter crypt depths (p < 0.01). Compared to the oil control, ZLRL and ZNRN reduced (p < 0.05) the cecal abundance of Bifidobacterium and Clostridium genera (p < 0.05). These results suggest a potentially improved intestinal epithelium proceeding with Zn and VA intra-amniotic administration. Intestinal functionality and gut bacteria were modulated. Further research should characterize long-term responses and the microbiome profile.
Collapse
Affiliation(s)
| | | | - Elad Tako
- Department of Food Science, Cornell University, Ithaca, NY 14850, USA; (C.J.); (N.K.)
| |
Collapse
|
13
|
Fontaine F, Turjeman S, Callens K, Koren O. The intersection of undernutrition, microbiome, and child development in the first years of life. Nat Commun 2023; 14:3554. [PMID: 37322020 PMCID: PMC10272168 DOI: 10.1038/s41467-023-39285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.
Collapse
Affiliation(s)
- Fanette Fontaine
- Food and Agriculture Organization of the United Nations, Rome, Italy
- Université Paris- Cité, 75006, Paris, France
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karel Callens
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
14
|
Wang C, Shan H, Chen H, Bai X, Ding J, Ye D, Adam FEA, Yang Y, Wang J, Yang Z. Probiotics and vitamins modulate the cecal microbiota of laying hens submitted to induced molting. Front Microbiol 2023; 14:1180838. [PMID: 37228378 PMCID: PMC10203222 DOI: 10.3389/fmicb.2023.1180838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
Induced molting enables laying hens to relax, restore energy and prolong the laying hen cycle, resolving problems such as poor egg quality and minimizing economic losses caused by rising global feeding costs. However, traditional molting methods may disrupt gut microflora and promote potential pathogens infections. This study used a customized additive with a mixture of probiotics and vitamins to induce molting and examine the cecal microbiota post molting. A total of two hundred 377 day-of-ISA Brown laying hens were randomly assigned to four groups: non-molt with basal diet (C), 12-day feeding restriction (FR) in earlier-molting (B), feed again to 27.12% egg production in middle-molting (A) and reach second peak of egg production over 81.36% in post-molting (D). Sequencing 16S rRNA to analyze cecal microbial composition revealed that there is no significant change in bacterial community abundance post-molting. In contrast to group C, the number of potentially harmful bacteria such as E. coli and Enterococcus was not found to increase in groups B, A, or D. This additive keeps cecal microbiota diversity and community richness steady. In cecal contents, hens in group B had lower Lactobacillus, Lachnospiraceae and Prevotellaceae (vsC, A, and D), no significant differences were found between post-molting and the non-molting. Furthermore, cecal microbiota and other chemicals (antibodies, hormones, and enzymes, etc.) strongly affect immunological function and health. Most biochemical indicators are significantly positively correlated with Prevotellaceae, Ruminococcaceae and Subdoligranulum, while negatively with Phascolarctobacterium and Desulfovibrio. In conclusion, the additive of probiotics and vitamins improved the cecal microbiota composition, no increase in the associated pathogenic microbial community due to traditional molting methods, and enhances hepatic lipid metabolism and adaptive immunological function, supporting their application and induced molting technology in the poultry breeding industry.
Collapse
Affiliation(s)
- Chunyang Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Honghu Shan
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Hui Chen
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Xindong Bai
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Jingru Ding
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Dongyang Ye
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | | | - Yawei Yang
- Hongyan Molting Research Institute, Xianyang, Shanxi, China
| | - Juan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| | - Zengqi Yang
- College of Veterinary Medicine, Northwest A&F University, Xianyang, Shanxi, China
| |
Collapse
|
15
|
Lin D, Medeiros DM. The microbiome as a major function of the gastrointestinal tract and its implication in micronutrient metabolism and chronic diseases. Nutr Res 2023; 112:30-45. [PMID: 36965327 DOI: 10.1016/j.nutres.2023.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
The composition and function of microbes harbored in the human gastrointestinal lumen have been underestimated for centuries because of the underdevelopment of nucleotide sequencing techniques and the lack of humanized gnotobiotic models. Now, we appreciate that the gut microbiome is an integral part of the human body and exerts considerable roles in host health and diseases. Dietary factors can induce changes in the microbial community composition, metabolism, and function, thereby altering the host immune response, and consequently, may influence disease risks. An imbalance of gut microbiome homeostasis (i.e., dysbiosis) has been linked to several chronic diseases, such as inflammatory bowel diseases, obesity, and diabetes. Remarkable progress has recently been made in better understanding the extent to which the influence of the diet-microbiota interaction on host health outcomes in both animal models and human participants. However, the exact causality of the gut microbiome on the development of diseases is still controversial. In this review, we will briefly describe the general structure and function of the intestine and the process of nutrient absorption in humans. This is followed by a summarization of the recent updates on interactions between gut microbiota and individual micronutrients, including carotenoids, vitamin A, vitamin D, vitamin C, folate, iron, and zinc. In the opinion of the authors, these nutrients were identified as representative of vitamins and minerals with sufficient research on their roles in the microbiome. The host responses to the gut microbiome will also be discussed. Future direction in microbiome research, for example, precision microbiome, will be proposed.
Collapse
Affiliation(s)
- Dingbo Lin
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Denis M Medeiros
- Division of Molecular Biology and Biochemistry, University of Missouri-Kansas City, Kansas City, MO 64108
| |
Collapse
|
16
|
Fujisaka S, Watanabe Y, Tobe K. The gut microbiome: a core regulator of metabolism. J Endocrinol 2023; 256:e220111. [PMID: 36458804 PMCID: PMC9874984 DOI: 10.1530/joe-22-0111] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/02/2022] [Indexed: 12/03/2022]
Abstract
The human body is inhabited by numerous bacteria, fungi, and viruses, and each part has a unique microbial community structure. The gastrointestinal tract harbors approximately 100 trillion strains comprising more than 1000 bacterial species that maintain symbiotic relationships with the host. The gut microbiota consists mainly of the phyla Firmicutes, Bacteroidetes, Proteobacteria, and Actinobacteria. Of these, Firmicutes and Bacteroidetes constitute 70-90% of the total abundance. Gut microbiota utilize nutrients ingested by the host, interact with other bacterial species, and help maintain healthy homeostasis in the host. In recent years, it has become increasingly clear that a breakdown of the microbial structure and its functions, known as dysbiosis, is associated with the development of allergies, autoimmune diseases, cancers, and arteriosclerosis, among others. Metabolic diseases, such as obesity and diabetes, also have a causal relationship with dysbiosis. The present review provides a brief overview of the general roles of the gut microbiota and their relationship with metabolic disorders.
Collapse
Affiliation(s)
- Shiho Fujisaka
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Yoshiyuki Watanabe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| | - Kazuyuki Tobe
- First Department of Internal Medicine, Faculty of Medicine, University of Toyama, Sugitani, Toyama, Japan
| |
Collapse
|
17
|
Immune Impairment Associated with Vitamin A Deficiency: Insights from Clinical Studies and Animal Model Research. Nutrients 2022; 14:nu14235038. [PMID: 36501067 PMCID: PMC9738822 DOI: 10.3390/nu14235038] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Vitamin A (VA) is critical for many biological processes, including embryonic development, hormone production and function, the maintenance and modulation of immunity, and the homeostasis of epithelium and mucosa. Specifically, VA affects cell integrity, cytokine production, innate immune cell activation, antigen presentation, and lymphocyte trafficking to mucosal surfaces. VA also has been reported to influence the gut microbiota composition and diversity. Consequently, VA deficiency (VAD) results in the imbalanced production of inflammatory and immunomodulatory cytokines, intestinal inflammation, weakened mucosal barrier functions, reduced reactive oxygen species (ROS) and disruption of the gut microbiome. Although VAD is primarily known to cause xerophthalmia, its role in the impairment of anti-infectious defense mechanisms is less defined. Infectious diseases lead to temporary anorexia and lower dietary intake; furthermore, they adversely affect VA status by interfering with VA absorption, utilization and excretion. Thus, there is a tri-directional relationship between VAD, immune response and infections, as VAD affects immune response and predisposes the host to infection, and infection decreases the intestinal absorption of the VA, thereby contributing to secondary VAD development. This has been demonstrated using nutritional and clinical studies, radiotracer studies and knockout animal models. An in-depth understanding of the relationship between VAD, immune response, gut microbiota and infections is critical for optimizing vaccine efficacy and the development of effective immunization programs for countries with high prevalence of VAD. Therefore, in this review, we have comprehensively summarized the existing knowledge regarding VAD impacts on immune responses to infections and post vaccination. We have detailed pathological conditions associated with clinical and subclinical VAD, gut microbiome adaptation to VAD and VAD effects on the immune responses to infection and vaccines.
Collapse
|
18
|
Frąk M, Grenda A, Krawczyk P, Milanowski J, Kalinka E. Interactions between Dietary Micronutrients, Composition of the Microbiome and Efficacy of Immunotherapy in Cancer Patients. Cancers (Basel) 2022; 14:5577. [PMID: 36428677 PMCID: PMC9688200 DOI: 10.3390/cancers14225577] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/07/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of immunotherapy in cancer patients depends on the activity of the host's immune system. The intestinal microbiome is a proven immune system modulator, which plays an important role in the development of many cancers and may affect the effectiveness of anti-cancer therapy. The richness of certain bacteria in the gut microbiome (e.g., Bifidobacterium spp., Akkermanisa muciniphila and Enterococcus hire) improves anti-tumor specific immunity and the response to anti-PD-1 or anti-PD-L1 immunotherapy by activating antigen-presenting cells and cytotoxic T cells within the tumor. Moreover, micronutrients affect directly the activities of the immune system or regulate their function by influencing the composition of the microbiome. Therefore, micronutrients can significantly influence the effectiveness of immunotherapy and the development of immunorelated adverse events. In this review, we describe the relationship between the supply of microelements and the abundance of various bacteria in the intestinal microbiome and the effectiveness of immunotherapy in cancer patients. We also point to the function of the immune system in the case of shifts in the composition of the microbiome and disturbances in the supply of microelements. This may in the future become a therapeutic target supporting the effects of immunotherapy in cancer patients.
Collapse
Affiliation(s)
- Małgorzata Frąk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Anna Grenda
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Paweł Krawczyk
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Janusz Milanowski
- Chair and Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Ewa Kalinka
- Department of Oncology, Polish Mother’s Memorial Hospital—Research Institute, 93-338 Lodz, Poland
| |
Collapse
|
19
|
Berger PK, Bansal R, Sawardekar S, Yonemitsu C, Furst A, Hampson HE, Schmidt KA, Alderete TL, Bode L, Goran MI, Peterson BS. Associations of Human Milk Oligosaccharides with Infant Brain Tissue Organization and Regional Blood Flow at 1 Month of Age. Nutrients 2022; 14:nu14183820. [PMID: 36145194 PMCID: PMC9501015 DOI: 10.3390/nu14183820] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Animal studies have shown that human milk oligosaccharides (HMOs) are important in early brain development, yet their roles have not been assessed in humans. The purpose of this study was to determine the associations of HMOs with MRI indices of tissue microstructure and regional cerebral blood flow (rCBF) in infants. Mother–infant pairs (N = 20) were recruited at 1 month postpartum. Milk was assayed for the concentrations of the HMOs 2′-fucosyllactose (2′FL), 3-fucosyllactose (3FL), 3′-sialyllactose (3′SL), and 6′-sialyllactose (6′SL). Diffusion and arterial spin labeling measures were acquired using a 3.0-Tesla MRI scanner. Multiple linear regression was used to assess the voxel-wise associations of HMOs with fractional anisotropy (FA), mean diffusivity (MD), and rCBF values across the brain. After adjusting for pre-pregnancy BMI, sex, birthweight, and postmenstrual age at time of scan, a higher 2′FL concentration was associated with reduced FA, increased MD, and reduced rCBF in similar locations within the cortical mantle. Higher 3FL and 3′SL concentrations were associated with increased FA, reduced MD, and increased rCBF in similar regions within the developing white matter. The concentration of 6′SL was not associated with MRI indices. Our data reveal that fucosylated and sialylated HMOs differentially associate with indices of tissue microstructure and rCBF, suggesting specific roles for 2′FL, 3FL, and 3′SL in early brain maturation.
Collapse
Affiliation(s)
- Paige K. Berger
- Department of Pediatric Newborn Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ravi Bansal
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Siddhant Sawardekar
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Chloe Yonemitsu
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92093, USA
| | - Annalee Furst
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92093, USA
| | - Hailey E. Hampson
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Kelsey A. Schmidt
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Tanya L. Alderete
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Lars Bode
- Department of Pediatrics and Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, CA 92093, USA
| | - Michael I. Goran
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Bradley S. Peterson
- Department of Pediatrics, The Saban Research Institute, Children’s Hospital Los Angeles, Los Angeles, CA 90027, USA
- Correspondence: ; Tel.: +1-323-361-3654
| |
Collapse
|
20
|
Nel Van Zyl K, Whitelaw AC, Hesseling AC, Seddon JA, Demers AM, Newton-Foot M. Fungal diversity in the gut microbiome of young South African children. BMC Microbiol 2022; 22:201. [PMID: 35978282 PMCID: PMC9387017 DOI: 10.1186/s12866-022-02615-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The fungal microbiome, or mycobiome, is a poorly described component of the gut ecosystem and little is known about its structure and development in children. In South Africa, there have been no culture-independent evaluations of the child gut mycobiota. This study aimed to characterise the gut mycobiota and explore the relationships between fungi and bacteria in the gut microbiome of children from Cape Town communities. METHODS Stool samples were collected from children enrolled in the TB-CHAMP clinical trial. Internal transcribed spacer 1 (ITS1) gene sequencing was performed on a total of 115 stool samples using the Illumina MiSeq platform. Differences in fungal diversity and composition in relation to demographic, clinical, and environmental factors were investigated, and correlations between fungi and previously described bacterial populations in the same samples were described. RESULTS Taxa from the genera Candida and Saccharomyces were detected in all participants. Differential abundance analysis showed that Candida spp. were significantly more abundant in children younger than 2 years compared to older children. The gut mycobiota was less diverse than the bacterial microbiota of the same participants, consistent with the findings of other human microbiome studies. The variation in richness and evenness of fungi was substantial, even between individuals of the same age. There was significant association between vitamin A supplementation and higher fungal alpha diversity (p = 0.047), and girls were shown to have lower fungal alpha diversity (p = 0.003). Co-occurrence between several bacterial taxa and Candida albicans was observed. CONCLUSIONS The dominant fungal taxa in our study population were similar to those reported in other paediatric studies; however, it remains difficult to identify the true core gut mycobiota due to the challenges set by the low abundance of gut fungi and the lack of true gut colonising species. The connection between the microbiota, vitamin A supplementation, and growth and immunity warrants exploration, especially in populations at risk for micronutrient deficiencies. While we were able to provide insight into the gut mycobiota of young South African children, further functional studies are necessary to explain the role of the mycobiota and the correlations between bacteria and fungi in human health.
Collapse
Affiliation(s)
- K Nel Van Zyl
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa.
| | - A C Whitelaw
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
- African Microbiome Institute, Stellenbosch University, Stellenbosch, South Africa
| | - A C Hesseling
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
| | - J A Seddon
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Department of Infectious Diseases, Imperial College London, London, UK
| | - A-M Demers
- Desmond Tutu TB Centre, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, South Africa
- Service de Microbiologie, Département Clinique de Médecine de Laboratoire, Centre Hospitalier Universitaire Sainte-Justine, Montréal, Canada
| | - M Newton-Foot
- Division of Medical Microbiology, Department of Pathology, Stellenbosch University, Stellenbosch, South Africa
- National Health Laboratory Service, Tygerberg Hospital, Cape Town, South Africa
| |
Collapse
|
21
|
Najmi N, Megantara I, Andriani L, Goenawan H, Lesmana R. Importance of gut microbiome regulation for the prevention and recovery process after SARS-CoV-2 respiratory viral infection (Review). Biomed Rep 2022; 16:25. [PMID: 35251612 PMCID: PMC8889546 DOI: 10.3892/br.2022.1508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been reported to affect organs other than the lungs, including the liver, brain, kidneys and intestine, and gastrointestinal symptoms, such as nausea, vomiting, diarrhea and abdominal discomfort, have also been reported. Thus, SARS-CoV-2 could potentially directly or indirectly regulate the gut microbiome profile and its homeostasis. The abundance of Coprobacillus, Clostridium ramosum and Clostridium are associated with the severity of COVID-19, and Firmicutes, Bacteriodetes, Proteobacteria and Actinobacteria are also related to COVID-19 infection. The four phyla are correlated with the severity of COVID-19 infection in patients. The modulation of factors that control the physiological growth of the gut microbiome will determine the proportionate ratio of microbiome types (profile). Taken together, gut microbiome profile alterations in COVID-19 patients may have a cross effect with the modulation of cytokine levels in COVID-19 infection. With these findings, several factors that regulate gut microbiome homeostasis may support the degree of the clinical symptoms and hasten the recovery process after COVID-19 infection.
Collapse
Affiliation(s)
- Nuroh Najmi
- Department of Oral Biology, Faculty of Dentistry, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Imam Megantara
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Lovita Andriani
- Faculty of Animal Husbandry, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
| | - Hanna Goenawan
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Bandung, West Java 45363, Indonesia
| | - Ronny Lesmana
- Division of Biological Activty Central Laboratory, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Department of Biomedical Sciences, Physiology Division, Faculty of Medicine, Universitas Padjadjaran, Bandung, West Java 45363, Indonesia
- Center of Excellence in Higher Education for Pharmaceutical Care Innovation, Bandung, West Java 45363, Indonesia
| |
Collapse
|
22
|
The Nutrition-Microbiota-Physical Activity Triad: An Inspiring New Concept for Health and Sports Performance. Nutrients 2022; 14:nu14050924. [PMID: 35267899 PMCID: PMC8912693 DOI: 10.3390/nu14050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/10/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
The human gut microbiota is currently the focus of converging interest in many diseases and sports performance. This review presents gut microbiota as a real “orchestra conductor” in the host’s physio(patho)logy due to its implications in many aspects of health and disease. Reciprocally, gut microbiota composition and activity are influenced by many different factors, such as diet and physical activity. Literature data have shown that macro- and micro-nutrients influence gut microbiota composition. Cumulative data indicate that gut bacteria are sensitive to modulation by physical activity, as shown by studies using training and hypoactivity models. Sports performance studies have also presented interesting and promising results. Therefore, gut microbiota could be considered a “pivotal” organ for health and sports performance, leading to a new concept: the nutrition-microbiota-physical activity triad. The next challenge for the scientific and medical communities is to test this concept in clinical studies. The long-term aim is to find the best combination of the three elements of this triad to optimize treatments, delay disease onset, or enhance sports performance. The many possibilities offered by biotic supplementation and training modalities open different avenues for future research.
Collapse
|
23
|
Akimbekov NS, Digel I, Razzaque MS. Role of Vitamins in Maintaining Structure and Function of Intestinal Microbiome. COMPREHENSIVE GUT MICROBIOTA 2022:320-334. [DOI: 10.1016/b978-0-12-819265-8.00043-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
24
|
Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res 2021; 95:35-53. [PMID: 34798467 DOI: 10.1016/j.nutres.2021.09.001] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/07/2023]
Abstract
The gut microbiome plays important roles in the maintenance of host health and the pathogenesis of many diseases. Diet is a key modulator of the gut microbiome. There is increasing evidence that nutrients other than fermentable fiber affect the gut microbial composition. In this review, we discuss the effects of vitamins on the gut microbiome, and related gastrointestinal health, based on in vitro, animal and human studies. Some vitamins, when provided in large doses or when delivered to the large intestine, have been shown to beneficially modulate the gut microbiome by increasing the abundance of presumed commensals (vitamins A, B2, D, E, and beta-carotene), increasing or maintaining microbial diversity (vitamins A, B2, B3, C, K) and richness (vitamin D), increasing short chain fatty acid production (vitamin C), or increasing the abundance of short chain fatty acid producers (vitamins B2, E). Others, such as vitamins A and D, modulate the gut immune response or barrier function, thus, indirectly influencing gastrointestinal health or the microbiome. Future research is needed to explore these potential effects and to elucidate the underlying mechanisms and host health benefits.
Collapse
Affiliation(s)
- Van T Pham
- DSM Nutritional Products, Kaiseraugst, Switzerland.
| | - Susanne Dold
- DSM Nutritional Products, Kaiseraugst, Switzerland
| | | | | | - Robert E Steinert
- DSM Nutritional Products, Kaiseraugst, Switzerland; Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
25
|
Amat S, Holman DB, Schmidt K, Menezes ACB, Baumgaertner F, Winders T, Kirsch JD, Liu T, Schwinghamer TD, Sedivec KK, Dahlen CR. The Nasopharyngeal, Ruminal, and Vaginal Microbiota and the Core Taxa Shared across These Microbiomes in Virgin Yearling Heifers Exposed to Divergent In Utero Nutrition during Their First Trimester of Gestation and in Pregnant Beef Heifers in Response to Mineral Supplementation. Microorganisms 2021; 9:2011. [PMID: 34683332 PMCID: PMC8537542 DOI: 10.3390/microorganisms9102011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/11/2021] [Accepted: 09/20/2021] [Indexed: 12/26/2022] Open
Abstract
In the present study, we evaluated whether the nasopharyngeal, ruminal, and vaginal microbiota would diverge (1) in virgin yearling beef heifers (9 months old) due to the maternal restricted gain during the first trimester of gestation; and (2) in pregnant beef heifers in response to the vitamin and mineral (VTM) supplementation during the first 6 months of pregnancy. As a secondary objective, using the microbiota data obtained from these two cohorts of beef heifers managed at the same location and sampled at the same time, we performed a holistic assessment of the microbial ecology residing within the respiratory, gastrointestinal, and reproductive tract of cattle. Our 16S rRNA gene sequencing results revealed that both α and β-diversity of the nasopharyngeal, ruminal and vaginal microbiota did not differ between virgin heifers raised from dams exposed to either a low gain (targeted average daily gain of 0.28 kg/d, n = 22) or a moderate gain treatment (0.79 kg/d, n = 23) during the first 84 days of gestation. Only in the vaginal microbiota were there relatively abundant genera that were affected by maternal rate of gain during early gestation. Whilst there was no significant difference in community structure and diversity in any of the three microbiota between pregnant heifers received no VTM (n = 15) and VTM supplemented (n = 17) diets, the VTM supplementation resulted in subtle compositional alterations in the nasopharyngeal and ruminal microbiota. Although the nasopharyngeal, ruminal, and vaginal microbiota were clearly distinct, a total of 41 OTUs, including methanogenic archaea, were identified as core taxa shared across the respiratory, gastrointestinal, and reproductive tracts of both virgin and pregnant heifers.
Collapse
Affiliation(s)
- Samat Amat
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Devin B. Holman
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada; (D.B.H.); (T.L.)
| | - Kaycie Schmidt
- Department of Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA;
| | - Ana Clara B. Menezes
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - Friederike Baumgaertner
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - Thomas Winders
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - James D. Kirsch
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| | - Tingting Liu
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, 6000 C & E Trail, Lacombe, AB T4L 1W1, Canada; (D.B.H.); (T.L.)
| | - Timothy D. Schwinghamer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB T1J 4B1, Canada;
| | - Kevin K. Sedivec
- Central Grasslands Research Extension Center, North Dakota State University, Streeter, ND 58483, USA;
| | - Carl R. Dahlen
- Department of Animal Sciences, North Dakota State University, Fargo, ND 58102, USA; (A.C.B.M.); (F.B.); (T.W.); (J.D.K.); (C.R.D.)
| |
Collapse
|
26
|
Hossain MM, Yeasmin S, Abdulla F, Rahman A. Rural-urban determinants of vitamin a deficiency among under 5 children in Bangladesh: Evidence from National Survey 2017-18. BMC Public Health 2021; 21:1569. [PMID: 34412622 PMCID: PMC8375182 DOI: 10.1186/s12889-021-11607-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
Background Vitamin A supplementation reduces child morbidity, mortality, and blindness of people, especially in developing countries like Bangladesh. This study explores significant determinants of vitamin A deficiency among preschool children in rural and urban areas of Bangladesh. Methods The data set was extracted from a nationally representative survey based on a cross-sectional study, the BDHS-2017-18. The base survey was conducted using a two-stage stratified sample of households. A sample of 8364 (urban 2911, rural 5453) children under-5 years old was analyzed using bivariate and multivariate statistical techniques. Results Results have demonstrated that 73.9 and 73.2% of children have had a vitamin A supplementation from urban and rural areas, respectively. Logistic regression analysis showed that parents’ education plays a vital role in consuming vitamin A supplements in urban and rural areas. Children whose mothers have secondary (OR: 1.17, CI: 0.76–1.81) and higher (OR: 1.21, CI: 0.72–2.04) education were more likely to consume vitamin A supplementation than children whose mothers were illiterate in urban areas. However, in rural areas, children whose mothers have secondary education were about 24% and higher education with 60% more likely to consume vitamin A supplementation than children whose mothers were illiterate. Child’s age, regional variation and wealth index also contributing factors for vitamin A deficiency in Bangladesh. Conclusions These findings indicated that the consumption of vitamin A does not cover the target of sustainable development goals. Thus special national and community level efforts are required to ensure the coverage of the national vitamin A program is increased adequately to the most vulnerable groups of children in Bangladesh.
Collapse
Affiliation(s)
- Md Moyazzem Hossain
- Department of Statistics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh.
| | - Sabina Yeasmin
- Department of Statistics, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Faruq Abdulla
- Department of Statistics, Faculty of Sciences, Islamic University, Kushtia-7003, Bangladesh
| | - Azizur Rahman
- School of Computing, Mathematics and Engineering, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
27
|
Mehta S, Huey SL, McDonald D, Knight R, Finkelstein JL. Nutritional Interventions and the Gut Microbiome in Children. Annu Rev Nutr 2021; 41:479-510. [PMID: 34283919 DOI: 10.1146/annurev-nutr-021020-025755] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gut microbiome plays an integral role in health and disease, and diet is a major driver of its composition, diversity, and functional capacity. Given the dynamic development of the gut microbiome in infants and children, it is critical to address two major questions: (a) Can diet modify the composition, diversity, or function of the gut microbiome, and (b) will such modification affect functional/clinical outcomes including immune function, cognitive development, and overall health? We synthesize the evidence on the effect of nutritional interventions on the gut microbiome in infants and children across 26 studies. Findings indicate the need to study older children, assess the whole intestinal tract, and harmonize methods and interpretation of findings, which are critical for informing meaningful clinical and public health practice. These findings are relevant for precision health, may help identify windows of opportunity for intervention, and may inform the design and delivery of such interventions. Expected final online publication date for the Annual Review of Nutrition, Volume 41 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Saurabh Mehta
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Samantha L Huey
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Daniel McDonald
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA
| | - Rob Knight
- Center for Microbiome Innovation and Department of Pediatrics, University of California San Diego, La Jolla, California 92093, USA.,Departments of Bioengineering and Computer Science & Engineering, University of California San Diego, La Jolla, California 92093, USA
| | - Julia L Finkelstein
- Institute for Nutritional Sciences, Global Health, and Technology, Cornell University, Ithaca, New York 14853, USA; .,Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
28
|
Wang Z, Fu H, Zhou Y, Yan M, Chen D, Yang M, Xiao S, Chen C, Huang L. Identification of the gut microbiota biomarkers associated with heat cycle and failure to enter oestrus in gilts. Microb Biotechnol 2021; 14:1316-1330. [PMID: 33305898 PMCID: PMC8313273 DOI: 10.1111/1751-7915.13695] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 01/09/2023] Open
Abstract
Failed puberty is one of the main reasons for eliminating gilts from production herds. This is often caused by disorders of sex hormones. An increasing number of studies have suggested that the gut microbiota may regulate sex hormones and vice versa. Whether the gut microbiota is involved in the failure of oestrus in gilts remains unknown. We used 16S rRNA gene sequencing, network-based microbiota analysis and prediction of functional capacity from 16S rRNA gene sequences to explore the shifts in the gut microbiota throughout a heat cycle in 22 eight-month-old gilts. We found that a module of co-occurrence networks composed of Sphaerochaeta and Treponema, co-occurred with oestrus during a heat cycle. The mcode score of this module reflecting the stability and importance in the network achieved the highest value at the oestrus stage. We then identified bacterial biosignatures associated with the failure to show puberty in 163 gilts. Prevotella, Treponema, Faecalibacterium, Oribacterium, Succinivibrio and Anaerovibrio were enriched in gilts showing normal heat cycles, while Lachnospiraceae, Ruminococcus, Coprococcus and Oscillospira had higher abundance in gilts failing to show puberty. Prediction of functional capacity of the gut microbiome identified a lesser abundance of the pathway 'retinol metabolism' in gilts that failed to undergo puberty. This pathway was also significantly associated with those bacterial taxa involved in failed puberty identified in this study (P < 0.05). This result suggests that the changed gut bacteria might result in a disorder of retinol metabolism, and this may be an explanation for the failure to enter oestrus.
Collapse
Affiliation(s)
- Zhong Wang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Hao Fu
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Yunyan Zhou
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Min Yan
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Dong Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Ming Yang
- Zhongkai University of Agriculture and EngineeringGuangzhouGuangdong510225China
| | - Shijun Xiao
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Congying Chen
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production TechnologyJiangxi Agricultural UniversityNanchangJiangxi330045China
| |
Collapse
|
29
|
Ligezka AN, Sonmez AI, Corral-Frias MP, Golebiowski R, Lynch B, Croarkin PE, Romanowicz M. A systematic review of microbiome changes and impact of probiotic supplementation in children and adolescents with neuropsychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110187. [PMID: 33271210 PMCID: PMC8138744 DOI: 10.1016/j.pnpbp.2020.110187] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/27/2020] [Accepted: 11/23/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES In recent decades, the diagnostic and therapeutic implications of the microbiome changes and the impact of probiotic supplementation have increased rapidly. However, the potential for clinical translation of microbiome research for children and adolescents with psychiatric disorders is unclear. This review examined available evidence related to gut microbiota as well as the impact of probiotic supplementation on psychiatric disorders in the pediatric population reported to date. METHODS We performed a literature search for the gut microbiota in child and adolescent population (0-18 years old) with mental health disorders from July 1999 through July 2019 in several databases: ClinicalTrials.gov, Ovid EBM Reviews, Ovid Embase, Ovid Medline, Ovid PsycINFO, Scopus, and Web of Science. RESULTS A total of 7 studies met inclusion criteria consisting of randomized controlled trials and cohort studies that examined various associations between psychiatric disorders and gut microbiota in youth. Six studies examined the effects of various treatment interventions such as probiotic supplementation on microbiota composition and behaviors. One study showed an increase in prosocial behavior in children with Autism Spectrum Disorder (ASD) and an increase in the Lachnospiraceae family following prebiotic supplementation. Another study suggested that prebiotic supplementation increased bifidobacterial populations for ASD and healthy controls. A study evaluating infant supplementation of prebiotics showed both a decreased likelihood of developing Attention Deficit Hyperactivity Disorder (ADHD) or ASD and decreased gut Bifidobacterium. One study did not find significant differences in microbiome composition after micronutrient treatment. CONCLUSION The main goal of this systematic review was to comprehensively examine and summarize the current evidence focused on the potential effect of the relationship between microbiota gut composition as well as the effects of probiotic supplementation on psychiatric disorders in children and adolescents. This is a relatively new area of research and the number of included studies is limited. More studies are needed to determine whether gut dysbiosis leads to the development and/or contributes to the severity of mental disorders or whether gut dysbiosis is a result of other processes that accompany mental disorders. CLINICAL SIGNIFICANCE A better understanding of the specific bacteria contributions, gut-brain pathways, and role in pathophysiological mechanisms in neuropsychiatric disorders in the child and adolescent populations can possibly provide alternative tools for a clinical psychiatrist. Moreover, it may ultimately aid the clinician with intervention strategies, or detect populations at risk for developing neuropsychiatric disorders.
Collapse
Affiliation(s)
- Anna N Ligezka
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, MN, United States of America
| | - A Irem Sonmez
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, MN, United States of America
| | - Martha P Corral-Frias
- Universidad Autónoma de Nuevo León, School of Medicine and University Hospital "Dr. José Eleuterio González", Psychiatry Department, Monterrey, Mexico
| | - Raphael Golebiowski
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, MN, United States of America
| | - Brian Lynch
- Department of Pediatric and Adolescent Medicine Mayo Clinic, Rochester, MN, United States of America
| | - Paul E Croarkin
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, MN, United States of America
| | - Magdalena Romanowicz
- Department of Psychiatry and Psychology Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
30
|
Effect of Vitamin A Supplementation on Growth Performance, Serum Biochemical Parameters, Intestinal Immunity Response and Gut Microbiota in American Mink ( Neovison vison). Animals (Basel) 2021; 11:ani11061577. [PMID: 34071204 PMCID: PMC8229402 DOI: 10.3390/ani11061577] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Vitamin A is critical throughout life, but utilization of vitamin A often results in local and systemic toxicity. This study investigated the effect of vitamin A supplementation on mink growth and health. The results show that vitamin A deficiency decreased the ADG, villus height, villus height/crypt depth ratio and mRNA expression levels of IL-22, Occludin and ZO-1. Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia and Lachnospiraceae NK4A136 group. Abstract This experiment investigated the effect of vitamin A supplementation on growth, serum biochemical parameters, jejunum morphology and the microbial community in male growing-furring mink. Thirty healthy male mink were randomly assigned to three treatment groups, with 10 mink per group. Each mink was housed in an individual cage. The mink in the three groups were fed diets supplemented with vitamin A acetate at dosages of 0 (CON), 20,000 (LVitA) and 1,280,000 IU/kg (HVitA) of basal diet. A 7-day pretest period preceded a formal test period of 45 days. The results show that 20,000 IU/kg vitamin A increased the ADG, serum T-AOC and GSH-Px activities, villus height and villus height/crypt depth ratio (p < 0.05). The mRNA expression levels of IL-22, Occludin and ZO-1 in the jejunum of mink were significantly higher in the LVitA group than those in the CON and HVitA groups (p < 0.05). Vitamin A supplementation increased the diversity of jejunum bacteria, decreased the ratio of Firmicutes to Bacteroidetes and increased the relative abundance of Akkermansia, uncultured bacterium f Muribaculaceae, Allobaculum, Lachnospiraceae NK4A136 group, Rummeliibacillus and Parasutterella. The comparison of potential functions also showed enrichment of glycan biosynthesis and metabolism, transport and catabolism pathways in the vitamin A supplementation groups compared with the CON group. In conclusion, these results indicate that dietary vitamin A supplementation could mediate host growth by improving intestinal development, immunity and the relative abundance of the intestinal microbiota.
Collapse
|
31
|
Valeri F, Endres K. How biological sex of the host shapes its gut microbiota. Front Neuroendocrinol 2021; 61:100912. [PMID: 33713673 DOI: 10.1016/j.yfrne.2021.100912] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/10/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
The gut microbiota is a complex system, consisting of a dynamic population of microorganisms, involved in the regulation of the host's homeostasis. A vast number of factors are driving the gut microbiota composition including diet, antibiotics, environment, and lifestyle. However, in the past decade, a growing number of studies also focused on the role of sex in relationship to changes in the gut microbiota composition in animal experiments as well as in human beings. Despite the progress in investigation techniques, still little is known about the mechanism behind the observed sex-related differences. In this review, we summarized current knowledge on the sex-dependent differences of the intestinal commensals and discuss the probable direct impact of sex hormones and more indirect effects such as dietary habits or antibiotics. While we have to conclude limited data on specific developmental stages, a clear role for sexual hormones and most probably for testosterone emerges.
Collapse
Affiliation(s)
- Francesco Valeri
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany
| | - Kristina Endres
- Department of Psychiatry and Psychotherapy, University Medical Center, Johannes Gutenberg-University Mainz, Mainz 55131, Germany.
| |
Collapse
|
32
|
Imdad A, Rehman F, Davis E, Ranjit D, Surin GSS, Attia SL, Lawler S, Smith AA, Bhutta ZA. Effects of neonatal nutrition interventions on neonatal mortality and child health and development outcomes: A systematic review. CAMPBELL SYSTEMATIC REVIEWS 2021; 17:e1141. [PMID: 37133295 PMCID: PMC8356300 DOI: 10.1002/cl2.1141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Background The last two decades have seen a significant decrease in mortality for children <5 years of age in low and middle-income countries (LMICs); however, neonatal (age, 0-28 days) mortality has not decreased at the same rate. We assessed three neonatal nutritional interventions that have the potential of reducing morbidity and mortality during infancy in LMICs. Objectives To determine the efficacy and effectiveness of synthetic vitamin A, dextrose oral gel, and probiotic supplementation during the neonatal period. Search Methods We conducted electronic searches for relevant studies on the following databases: PubMed, CINAHL, LILACS, SCOPUS, and CENTRAL, Cochrane Central Register for Controlled Trials, up to November 27, 2019. Selection Criteria We aimed to include randomized and quasi-experimental studies. The target population was neonates in LMICs. The interventions included synthetic vitamin A supplementation, oral dextrose gel supplementation, and probiotic supplementation during the neonatal period. We included studies from the community and hospital settings irrespective of the gestational age or birth weight of the neonate. Data Collection and Analysis Two authors screened the titles and extracted the data from selected studies. The risk of bias (ROB) in the included studies was assessed according to the Cochrane Handbook of Systematic Reviews. The primary outcome was all-cause mortality. The secondary outcomes were neonatal sepsis, necrotizing enterocolitis (NEC), prevention and treatment of neonatal hypoglycaemia, adverse events, and neurodevelopmental outcomes. Data were meta-analyzed by random effect models to obtain relative risk (RR) and 95% confidence interval (CI) for dichotomous outcomes and mean difference with 95% CI for continuous outcomes. The overall rating of evidence was determined by the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach. Main Results Sixteen randomized studies (total participants 169,366) assessed the effect of vitamin A supplementation during the neonatal period. All studies were conducted in low- and middle-income (LMIC) countries. Thirteen studies were conducted in the community setting and three studies were conducted in the hospital setting, specifically in neonatal intensive care units. Studies were conducted in 10 different countries including India (four studies), Guinea-Bissau (three studies), Bangladesh (two studies), and one study each in China, Ghana, Indonesia, Nepal, Pakistan, Tanzania, and Zimbabwe. The overall ROB was low in most of the included studies for neonatal vitamin A supplementation. The pooled results from the community based randomized studies showed that there was no significant difference in all-cause mortality in the vitamin A (intervention) group compared to controls at 1 month (RR, 0.99; 95% CI, 0.90-1.08; six studies with 126,548 participants, statistical heterogeneity I 2 0%, funnel plot symmetrical, grade rating high), 6 months (RR, 0.98; 95% CI, 0.89-1.07; 12 studies with 154,940 participants, statistical heterogeneity I 2 43%, funnel plot symmetrical, GRADE quality high) and 12 months of age (RR, 1.04; 95% CI, 0.94-1.14; eight studies with 118,376 participants, statistical heterogeneity I 2 46%, funnel plot symmetrical, GRADE quality high). Neonatal vitamin A supplementation increased the incidence of bulging fontanelle by 53% compared to control (RR, 1.53; 95% CI, 1.12-2.09; six studies with 100,256 participants, statistical heterogeneity I 2 65%, funnel plot symmetrical, GRADE quality high). We did not identify any experimental study that addressed the use of dextrose gel for the prevention and/or treatment of neonatal hypoglycaemia in LMIC. Thirty-three studies assessed the effect of probiotic supplementation during the neonatal period (total participants 11,595; probiotics: 5854 and controls: 5741). All of the included studies were conducted in LMIC and were randomized. Most of the studies were done in the hospital setting and included participants who were preterm (born < 37 weeks gestation) and/or low birth weight (<2500 g birth weight). Studies were conducted in 13 different countries with 10 studies conducted in India, six studies in Turkey, three studies each in China and Iran, two each in Mexico and South Africa, and one each in Bangladesh, Brazil, Colombia, Indonesia, Nepal, Pakistan, and Thailand. Three studies were at high ROB due to lack of appropriate randomization sequence or allocation concealment. Combined data from 25 studies showed that probiotic supplementation reduced all-cause mortality by 20% compared to controls (RR, 0.80; 95% CI, 0.66-0.96; total number of participants 10,998, number needed to treat 100, statistical heterogeneity I 2 0%, funnel plot symmetrical, GRADE quality high). Twenty-nine studies reported the effect of probiotics on the incidence of NEC, and the combined results showed a relative reduction of 54% in the intervention group compared to controls (RR, 0.46; 95% CI, 0.35-0.59; total number of participants 5574, number needed to treat 17, statistical heterogeneity I 2 24%, funnel plot symmetrical, GRADE quality high). Twenty-one studies assessed the effect of probiotic supplementation during the neonatal period on neonatal sepsis, and the combined results showed a relative reduction of 22% in the intervention group compared to controls (RR, 0.78; 95% CI, 0.70-0.86; total number of participants 9105, number needed to treat 14, statistical heterogeneity I 2 23%, funnel plot symmetrical, GRADE quality high). Authors' Conclusions Vitamin A supplementation during the neonatal period does not reduce all-cause neonatal or infant mortality in LMICs in the community setting. However, neonatal vitamin A supplementation increases the risk of Bulging Fontanelle. No experimental or quasi-experimental studies were available from LMICs to assess the effect of dextrose gel supplementation for the prevention or treatment of neonatal hypoglycaemia. Probiotic supplementation during the neonatal period seems to reduce all-cause mortality, NEC, and sepsis in babies born with low birth weight and/or preterm in the hospital setting. There was clinical heterogeneity in the use of probiotics, and we could not recommend any single strain of probiotics for wider use based on these results. There was a lack of studies on probiotic supplementation in the community setting. More research is needed to assess the effect of probiotics administered to neonates in-home/community setting in LMICs.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and NutritionSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Faseeha Rehman
- Department of MedicineRaritan Bay Medical CenterPerth AmboyNew YorkUSA
| | - Evans Davis
- Roswell Park Comprehensive Cancer Center, Department of Cancer Prevention and ControlUniversity of BuffaloBuffaloNew YorkUSA
| | - Deepika Ranjit
- College of MedicineSUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | | | - Suzanna L. Attia
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and NutritionUniversity of KentuckyLexingtonKentuckyUSA
| | - Sarah Lawler
- Health Science LibrarySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Abigail A. Smith
- Health Science LibraraySUNY Upstate Medical UniversitySyracuseNew YorkUSA
| | - Zulfiqar A. Bhutta
- Centre for Global Child HealthThe Hospital for Sick ChildrenTorontoOntarioCanada
| |
Collapse
|
33
|
Park HJ, Kim SA, Kang WS, Kim JW. Early-Life Stress Modulates Gut Microbiota and Peripheral and Central Inflammation in a Sex-Dependent Manner. Int J Mol Sci 2021; 22:1899. [PMID: 33672958 PMCID: PMC7918891 DOI: 10.3390/ijms22041899] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Recent studies have reported that changes in gut microbiota composition could induce neuropsychiatric problems. In this study, we investigated alterations in gut microbiota induced by early-life stress (ELS) in rats subjected to maternal separation (MS; 6 h a day, postnatal days (PNDs) 1-21), along with changes in inflammatory cytokines and tryptophan-kynurenine (TRP-KYN) metabolism, and assessed the differences between sexes. High-throughput sequencing of the bacterial 16S rRNA gene showed that the relative abundance of the Bacteroides genus was increased and that of the Lachnospiraceae family was decreased in the feces of MS rats of both sexes (PND 56). By comparison, MS increased the relative abundance of the Streptococcus genus and decreased that of the Staphylococcus genus only in males, whereas the abundance of the Sporobacter genus was enhanced and that of the Mucispirillum genus was reduced by MS only in females. In addition, the levels of proinflammatory cytokines were increased in the colons (IFN-γ and IL-6) and sera (IL-1β) of the male MS rats, together with the elevation of the KYN/TRP ratio in the sera, but not in females. In the hippocampus, MS elevated the level of IL-1β and the KYN/TRP ratio in both male and female rats. These results indicate that MS induces peripheral and central inflammation and TRP-KYN metabolism in a sex-dependent manner, together with sex-specific changes in gut microbes.
Collapse
Affiliation(s)
- Hae Jeong Park
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.J.P.); (S.A.K.)
| | - Sang A. Kim
- Department of Pharmacology, School of Medicine, Kyung Hee University, Seoul 02447, Korea; (H.J.P.); (S.A.K.)
| | - Won Sub Kang
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Jong Woo Kim
- Department of Neuropsychiatry, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| |
Collapse
|
34
|
Honarbakhsh M, Ericsson A, Zhong G, Isoherranen N, Zhu C, Bromberg Y, Van Buiten C, Malta K, Joseph L, Sampath H, Lackey AI, Storch J, Vetriani C, Chikindas ML, Breslin P, Quadro L. Impact of vitamin A transport and storage on intestinal retinoid homeostasis and functions. J Lipid Res 2021; 62:100046. [PMID: 33587919 PMCID: PMC8020483 DOI: 10.1016/j.jlr.2021.100046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/15/2021] [Accepted: 01/29/2021] [Indexed: 12/15/2022] Open
Abstract
Lecithin:retinol acyltransferase and retinol-binding protein enable vitamin A (VA) storage and transport, respectively, maintaining tissue homeostasis of retinoids (VA derivatives). The precarious VA status of the lecithin:retinol acyltransferase-deficient (Lrat-/-) retinol-binding protein-deficient (Rbp-/-) mice rapidly deteriorates upon dietary VA restriction, leading to signs of severe vitamin A deficiency (VAD). As retinoids impact gut morphology and functions, VAD is often linked to intestinal pathological conditions and microbial dysbiosis. Thus, we investigated the contribution of VA storage and transport to intestinal retinoid homeostasis and functionalities. We showed the occurrence of intestinal VAD in Lrat-/-Rbp-/- mice, demonstrating the critical role of both pathways in preserving gut retinoid homeostasis. Moreover, in the mutant colon, VAD resulted in a compromised intestinal barrier as manifested by reduced mucins and antimicrobial defense, leaky gut, increased inflammation and oxidative stress, and altered mucosal immunocytokine profiles. These perturbations were accompanied by fecal dysbiosis, revealing that the VA status (sufficient vs. deficient), rather than the amount of dietary VA per se, is likely a major initial discriminant of the intestinal microbiome. Our data also pointed to a specific fecal taxonomic profile and distinct microbial functionalities associated with VAD. Overall, our findings revealed the suitability of the Lrat-/-Rbp-/- mice as a model to study intestinal dysfunctions and dysbiosis promoted by changes in tissue retinoid homeostasis induced by the host VA status and/or intake.
Collapse
Affiliation(s)
| | - Aaron Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, University of Missouri, Columbia, MO, USA
| | - Guo Zhong
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, WA, USA
| | - Nina Isoherranen
- Department of Pharmaceutics Health Sciences, University of Washington, Seattle, WA, USA
| | - Chengsheng Zhu
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Yana Bromberg
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | - Charlene Van Buiten
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO, USA
| | - Kiana Malta
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA
| | - Laurie Joseph
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
| | - Harini Sampath
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Atreju I Lackey
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Judith Storch
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA
| | - Costantino Vetriani
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, USA
| | | | - Paul Breslin
- Department of Nutritional Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Loredana Quadro
- Department of Food Science, Rutgers University, New Brunswick, NJ, USA; Rutgers Center for Lipid Research and Institute of Food Nutrition and Health, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
35
|
Schmidt KM, Haddad EN, Sugino KY, Vevang KR, Peterson LA, Koratkar R, Gross MD, Kerver JM, Comstock SS. Dietary and plasma carotenoids are positively associated with alpha diversity in the fecal microbiota of pregnant women. J Food Sci 2021; 86:602-613. [PMID: 33449409 PMCID: PMC10035785 DOI: 10.1111/1750-3841.15586] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/17/2020] [Accepted: 12/04/2020] [Indexed: 12/14/2022]
Abstract
Because microbes use carotenoids as an antioxidant for protection, dietary carotenoids could be associated with gut microbiota composition. We aimed to determine associations among reported carotenoid intake, plasma carotenoid concentrations, and fecal bacterial communities in pregnant women. Pregnant women (n = 27) were enrolled in a two-arm study designed to assess feasibility of biospecimen collection and delivery of a practical nutrition intervention. Plasma and fecal samples were collected and women were surveyed with a 24-hr dietary checklist and recalls. Plasma carotenoids were analyzed by HPLC using photodiode array detection. Fecal bacteria were analyzed by 16S rRNA DNA sequencing. Results presented are cross-sectional from the 36-week gestational study visit combined across both study arms due to lack of significant differences between intervention and usual care groups (n = 23 women with complete data). Recent intake of carotenoid-containing foods included carrots, sweet potatoes, mangos, apricots, and/or bell peppers for 48% of women; oranges/orange juice (17%); egg (39%); tomato/tomato-based sauces (52%); fruits (83%); and vegetables (65%). Average plasma carotenoid concentrations were 6.4 µg/dL α-carotene (AC), 17.7 µg/dL β-carotene (BC), 11.4 µg/dL cryptoxanthin, 39.0 µg/dL trans-lycopene, and 29.8 µg/dL zeaxanthin and lutein. AC and BC concentrations were higher in women who recently consumed foods high in carotenoids. CR concentrations were higher in women who consumed oranges/orange juice. Microbiota α-diversity positively correlated with AC and BC. Microbiota β-diversity differed significantly across reported intake of carotenoid containing foods and plasma concentrations of AC. This may reflect an effect of high fiber or improved overall dietary quality, rather than a specific effect of carotenoids. PRACTICAL APPLICATION: Little is known about the association between the gut microbiome and specific dietary microconstituents, such as carotenoids, especially during pregnancy. This research demonstrates that a carotenoid-rich diet during pregnancy supports a diverse microbiota, which could be one mechanism by which carotenoids promote health.
Collapse
Affiliation(s)
- Kristen M. Schmidt
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Eliot N. Haddad
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Kameron Y. Sugino
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| | - Karin R. Vevang
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Lisa A. Peterson
- The Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Division of Environmental Health Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Revati Koratkar
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Myron D. Gross
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, USA
| | - Jean M. Kerver
- Department of Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| | - Sarah S. Comstock
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
36
|
Verduci E, Mameli C, Amatruda M, Petitti A, Vizzuso S, El Assadi F, Zuccotti G, Alabduljabbar S, Terranegra A. Early Nutrition and Risk of Type 1 Diabetes: The Role of Gut Microbiota. Front Nutr 2021; 7:612377. [PMID: 33425976 PMCID: PMC7785819 DOI: 10.3389/fnut.2020.612377] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) appears most frequently in childhood, with an alarming increasing incidence in the last decades. Although the genetic predisposition is a major risk factor, it cannot solely explain the complex etiology of T1D which is still not fully understood. In this paper, we reviewed the most recent findings on the role of early nutrition and the involvement of the gut microbiota in the etiopathogenesis of T1D. The main conclusions that are withdrawn from the current literature regarding alleviating the risk of developing T1D through nutrition are the encouragement of long-term breast-feeding for at least the first 6 months of life and the avoidance of early complementary foods and gluten introduction (before 4 months of age) as well as cow milk introduction before 12 months of life. These detrimental feeding habits create a gut microbiota dysbiotic state that can contribute to the onset of T1D in infancy. Finally, we discussed the possibility to introduce probiotics, prebiotics and post-biotics in the prevention of T1D.
Collapse
Affiliation(s)
- Elvira Verduci
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy.,Department of Health Sciences, University of Milan, Milan, Italy
| | - Chiara Mameli
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Matilde Amatruda
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Agnese Petitti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | - Sara Vizzuso
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Farah El Assadi
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Gianvincenzo Zuccotti
- Department of Pediatrics, Vittore Buzzi Children's Hospital, University of Milan, Milan, Italy
| | | | | |
Collapse
|
37
|
Ehrlich AM, Pacheco AR, Henrick BM, Taft D, Xu G, Huda MN, Mishchuk D, Goodson ML, Slupsky C, Barile D, Lebrilla CB, Stephensen CB, Mills DA, Raybould HE. Indole-3-lactic acid associated with Bifidobacterium-dominated microbiota significantly decreases inflammation in intestinal epithelial cells. BMC Microbiol 2020; 20:357. [PMID: 33225894 PMCID: PMC7681996 DOI: 10.1186/s12866-020-02023-y] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bifidobacterium longum subsp. infantis (B. infantis) is a commensal bacterium that colonizes the gastrointestinal tract of breast-fed infants. B. infantis can efficiently utilize the abundant supply of oligosaccharides found in human milk (HMO) to help establish residence. We hypothesized that metabolites from B. infantis grown on HMO produce a beneficial effect on the host. RESULTS In a previous study, we demonstrated that B. infantis routinely dominated the fecal microbiota of a breast fed Bangladeshi infant cohort (1). Characterization of the fecal metabolome of binned samples representing high and low B. infantis populations from this cohort revealed higher amounts of the tryptophan metabolite indole-3-lactic acid (ILA) in feces with high levels of B. infantis. Further in vitro analysis confirmed that B. infantis produced significantly greater quantities of the ILA when grown on HMO versus lactose, suggesting a growth substrate relationship to ILA production. The direct effects of ILA were assessed in a macrophage cell line and intestinal epithelial cell lines. ILA (1-10 mM) significantly attenuated lipopolysaccharide (LPS)-induced activation of NF-kB in macrophages. ILA significantly attenuated TNF-α- and LPS-induced increase in the pro-inflammatory cytokine IL-8 in intestinal epithelial cells. ILA increased mRNA expression of the aryl hydrogen receptor (AhR)-target gene CYP1A1 and nuclear factor erythroid 2-related factor 2 (Nrf2)-targeted genes glutathione reductase 2 (GPX2), superoxide dismutase 2 (SOD2), and NAD(P) H dehydrogenase (NQO1). Pretreatment with either the AhR antagonist or Nrf-2 antagonist inhibited the response of ILA on downstream effectors. CONCLUSIONS These findings suggest that ILA, a predominant metabolite from B. infantis grown on HMO and elevated in infant stool high in B. infantis, and protects gut epithelial cells in culture via activation of the AhR and Nrf2 pathway.
Collapse
Affiliation(s)
- Amy M Ehrlich
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Alline R Pacheco
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of CA, Davis, CA, USA
| | - Bethany M Henrick
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of CA, Davis, CA, USA
| | - Diana Taft
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of CA, Davis, CA, USA
| | - Gege Xu
- Department of Chemistry, University of California, Davis, CA, USA
| | - M Nazmul Huda
- Enteric and Respiratory Infections Unit, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA, USA
| | - Darya Mishchuk
- Department of Food Science and Technology, University of CA, Davis, CA, USA
| | - Michael L Goodson
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Carolyn Slupsky
- Department of Food Science and Technology, University of CA, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - Daniela Barile
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of CA, Davis, CA, USA
| | | | - Charles B Stephensen
- US Department of Agriculture, Western Human Nutrition Research Center, Davis, CA, USA
- Department of Nutrition, University of California, Davis, CA, USA
| | - David A Mills
- Foods for Health Institute, University of California, Davis, CA, USA
- Department of Food Science and Technology, University of CA, Davis, CA, USA
| | - Helen E Raybould
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
38
|
Ahmad SM, Huda MN, Raqib R, Qadri F, Alam MJ, Afsar MNA, Peerson JM, Tanumihardjo SA, Stephensen CB. High-Dose Neonatal Vitamin A Supplementation to Bangladeshi Infants Increases the Percentage of CCR9-Positive Treg Cells in Infants with Lower Birthweight in Early Infancy, and Decreases Plasma sCD14 Concentration and the Prevalence of Vitamin A Deficiency at Two Years of Age. J Nutr 2020; 150:3005-3012. [PMID: 32939553 PMCID: PMC7675026 DOI: 10.1093/jn/nxaa260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/08/2020] [Accepted: 08/04/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Vitamin A (VA) stores are low in early infancy and may impair development of the immune system. OBJECTIVE This study determined if neonatal VA supplementation (VAS) affects the following: 1) development of regulatory T (Treg) cells; 2) chemokine receptor 9 (CCR9) expression, which directs mucosal targeting of immune cells; and 3) systemic endotoxin exposure as indicated by changed plasma concentrations of soluble CD14 (sCD14). Secondarily, VA status, growth, and systemic inflammation were investigated. METHODS In total, 306 Bangladeshi infants were randomly assigned to receive 50,000 IU VA or placebo (PL) within 48 h of birth, and immune function was assessed at 6 wk, 15 wk, and 2 y. Primary outcomes included the following: 1) peripheral blood Treg cells; 2) percentage of Treg, T, and B cells expressing CCR9; and 3) plasma sCD14. Secondary outcomes included the following: 4) VA status measured using the modified relative dose-response (MRDR) test and plasma retinol; 5) infant growth; and 6) plasma C-reactive protein (CRP). Statistical analysis identified group differences and interactions with sex and birthweight. RESULTS VAS increased (P = 0.004) the percentage of CCR9+ Treg cells (13.2 ± 1.37%) relative to PL (9.17 ± 1.15%) in children below the median birthweight but had the opposite effect (P = 0.04) in those with higher birthweight (VA, 9.13 ± 0.89; PL, 12.1 ± 1.31%) at 6 and 15 wk (values are combined mean ± SE). VAS decreased (P = 0.003) plasma sCD14 (1.56 ± 0.025 mg/L) relative to PL (1.67 ± 0.032 mg/L) and decreased (P = 0.034) the prevalence of VA deficiency (2.3%) relative to PL (9.2%) at 2 y. CONCLUSIONS Neonatal VAS enhanced mucosal targeting of Treg cells in low-birthweight infants. The decreased systemic exposure to endotoxin and improved VA status at 2 y may have been due to VA-mediated improvements in gut development resulting in improved barrier function and nutrient absorption. This trial was registered at clinicaltrials.gov as NCT01583972 and NCT02027610.
Collapse
Affiliation(s)
- Shaikh M Ahmad
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - M Nazmul Huda
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Rubhana Raqib
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Md Jahangir Alam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Md Nure Alam Afsar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh, Mohakhali, Dhaka, Bangladesh
| | - Janet M Peerson
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
| | - Sherry A Tanumihardjo
- University of Wisconsin–Madison, Department of Nutritional Sciences, Madison, WI, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| |
Collapse
|
39
|
Stull-Lane AR, Lokken-Toyli KL, Diaz-Ochoa VE, Walker GT, Cevallos SA, Winter ALN, Muñoz ADH, Yang GG, Velazquez EM, Wu CY, Tsolis RM. Vitamin A supplementation boosts control of antibiotic-resistant Salmonella infection in malnourished mice. PLoS Negl Trop Dis 2020; 14:e0008737. [PMID: 33006970 PMCID: PMC7556496 DOI: 10.1371/journal.pntd.0008737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 10/14/2020] [Accepted: 08/20/2020] [Indexed: 01/03/2023] Open
Abstract
Disseminated disease from non-typhoidal Salmonella enterica strains results in >20% mortality globally. Barriers to effective treatment include emerging multidrug resistance, antibiotic treatment failure, and risk factors such as malnutrition and related micronutrient deficiencies. Individuals in sub-Saharan Africa are disproportionately affected by non-typhoidal S. enterica bloodstream infections. To inform a clinical trial in people, we investigated vitamin A as a treatment in the context of antibiotic treatment failure in a mouse model of vitamin A deficiency. Vitamin A-deficient (VAD) mice exhibited higher systemic bacterial levels with a multidrug-resistant clinical isolate in comparison to mice on a control diet. Sex-specific differences in vitamin A deficiency and disseminated infection with S. enterica serotype Typhimurium (S. Typhimurium) were observed. VAD male mice had decreased weight gain compared to control male mice. Further, infected VAD male mice had significant weight loss and decreased survival during the course of infection. These differences were not apparent in female mice. In a model of disseminated S. Typhimurium infection and antibiotic treatment failure, we assessed the potential of two consecutive doses of vitamin A in alleviating infection in male and female mice on a VAD or control diet. We found that subtherapeutic antibiotic treatment synergized with vitamin A treatment in infected VAD male mice, significantly decreasing systemic bacterial levels, mitigating weight loss and improving survival. These results suggest that assessing vitamin A as a therapy during bacteremia in malnourished patients may lead to improved health outcomes in a subset of patients, especially in the context of antibiotic treatment failure. Non-typhoidal Salmonella serotypes generally cause diarrhea in people. However, there are certain factors that make people at risk of developing a more severe infection where the bacteria can enter the blood and cause fever and whole-body symptoms. Patients with this infection are usually hospitalized, and about one in five patients do not survive. The factors that make this bloodstream infection possible include pathogen features like resistance to antibiotics and patient factors like a malnourished state. Better treatments are needed. In this study, the authors assess vitamin A as a treatment during antibiotic treatment failure in a mouse model. Vitamin A-deficient male mice have better outcomes with vitamin A and antibiotic co-therapy, whereas female mice do not benefit. Despite similar levels of bacteria causing infection systemically, female mice show better outcomes in terms of weight loss and survival than male mice overall. This research provides evidence that a clinical study assessing vitamin A as a treatment in people could lead to improved survival for malnourished patients presenting with severe bloodstream infection.
Collapse
Affiliation(s)
- Annica R. Stull-Lane
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Kristen L. Lokken-Toyli
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
- Department of Microbiology, New York University, New York, New York, United States of America
| | - Vladimir E. Diaz-Ochoa
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Gregory T. Walker
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Stephanie A. Cevallos
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Andromeda L. N. Winter
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Ariel Del Hoyo Muñoz
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Guiyan G. Yang
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Eric M. Velazquez
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
| | - Chun-Yi Wu
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, California, United States of America
| | - Renée M. Tsolis
- Department of Microbiology & Immunology, School of Medicine, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
40
|
La Frano MR, Brito A, Johnson CM, Wilhelmson B, Gannon B, Fanter RK, Pedersen TL, Tanumihardjo SA, Newman JW. Metabolomics Reveals Altered Hepatic Bile Acids, Gut Microbiome Metabolites, and Cell Membrane Lipids Associated with Marginal Vitamin A Deficiency in a Mongolian Gerbil Model. Mol Nutr Food Res 2020; 64:e1901319. [PMID: 32453876 DOI: 10.1002/mnfr.201901319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 05/19/2020] [Indexed: 12/17/2022]
Abstract
SCOPE This study is designed to provide a broad evaluation of the impacts of vitamin A (VA) deficiency on hepatic metabolism in a gerbil model. METHODS AND RESULTS After 28 days of VA depletion, male Mongolian gerbils (Meriones unguiculatus) are randomly assigned to experimental diets for 28 days. Groups are fed a white-maize-based diet with ≈50 µL cottonseed oil vehicle either alone (VA-, n = 10) or containing 40 µg retinyl acetate (VA+, n = 10) for 28 days. Liver retinol is measured by high-performance liquid chromatography. Primary metabolomics, aminomics, lipidomics, bile acids, oxylipins, ceramides, and endocannabinoids are analyzed in post-mortem liver samples by liquid chromatography-mass spectrometry. RESULTS Liver retinol is lower (p < 0.001) in the VA- versus VA+ group, with concentrations indicating marginal VA deficiency. A total of 300 metabolites are identified. Marginal VA deficiency is associated with lower bile acids, trimethylamine N-oxide, and a variety of acylcarnitines, phospholipids and sphingomyelins (p < 0.05). Components of DNA, including deoxyguanosine, cytidine, and N-carbomoyl-beta-alanine (p < 0.05), are differentially altered. CONCLUSIONS Hepatic metabolomics in a marginally VA-deficient gerbil model revealed alterations in markers of the gut microbiome, fatty acid and nucleotide metabolism, and cellular structure and signaling.
Collapse
Affiliation(s)
- Michael R La Frano
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.,Center for Health Research, California Polytechnic State University, San Luis Obispo, CA, 93407, USA.,West Coast Metabolomics Center, University of California, Davis, CA, USA.,Department of Nutrition, University of California Davis, Davis, CA, USA
| | - Alex Brito
- Laboratory of Pharmacokinetics and Metabolomic Analysis, Institute of Translational Medicine and Biotechnology, I. M. Sechenov First Moscow State Medical University, Moscow, 119991, Russia.,Luxembourg Institute of Health, Department of Population Health, Nutrition and Health Research Group, 1A-B, rue Thomas Edison, Strassen, 1445, Luxembourg
| | - Catherine M Johnson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Baylee Wilhelmson
- Department of Food Science and Nutrition, California Polytechnic State University, San Luis Obispo, CA, 93407, USA
| | - Bryan Gannon
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, USA.,Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA
| | - Rob K Fanter
- College of Agriculture, Food and Environmental Sciences, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Theresa L Pedersen
- Department of Food Science and Technology, University of California Davis, Davis, CA, USA
| | - Sherry A Tanumihardjo
- University of Wisconsin-Madison, Department of Nutritional Sciences, Madison, WI, USA
| | - John W Newman
- West Coast Metabolomics Center, University of California, Davis, CA, USA.,Department of Nutrition, University of California Davis, Davis, CA, USA.,Obesity and Metabolism Research Unit, United States Department of Agriculture, Agricultural Research Service, Western Human Nutrition Research Center, Davis, CA, USA
| |
Collapse
|
41
|
Fang S, Chen X, Pan J, Chen Q, Zhou L, Wang C, Xiao T, Gan QF. Dynamic distribution of gut microbiota in meat rabbits at different growth stages and relationship with average daily gain (ADG). BMC Microbiol 2020; 20:116. [PMID: 32410629 PMCID: PMC7227296 DOI: 10.1186/s12866-020-01797-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 04/21/2020] [Indexed: 02/07/2023] Open
Abstract
Background The mammalian intestinal tract harbors diverse and dynamic microbial communities that play pivotal roles in host health, metabolism, immunity, and development. Average daily gain (ADG) is an important growth trait in meat rabbit industry. The effects of gut microbiota on ADG in meat rabbits are still unknown. Results In this study, we investigated the dynamic distribution of gut microbiota in commercial Ira rabbits from weaning to finishing and uncover the relationship between the microbiota and average daily gain (ADG) via 16S rRNA gene sequencing. The results indicated that the richness and diversity of gut microbiota significantly increased with age. Gut microbial structure was less variable among finishing rabbits than among weaning rabbits. The relative abundances of the dominant phyla Firmicutes, Bacteroidetes, Verrucomicrobia and Cyanobacteria, and the 15 predominant genera significantly varied with age. Metagenomic prediction analysis showed that both KOs and KEGG pathways related to the metabolism of monosaccharides and vitamins were enriched in the weaning rabbits, while those related to the metabolism of amino acids and polysaccharides were more abundant in the finishing rabbits. We identified 34 OTUs, 125 KOs, and 25 KEGG pathways that were significantly associated with ADG. OTUs annotation suggested that butyrate producing bacteria belong to the family Ruminococcaceae and Bacteroidales_S24-7_group were positively associated with ADG. Conversely, Eubacterium_coprostanoligenes_group, Christensenellaceae_R-7_group, and opportunistic pathogens were negatively associated with ADG. Both KOs and KEGG pathways correlated with the metabolism of vitamins, basic amino acids, and short chain fatty acids (SCFAs) showed positive correlations with ADG, while those correlated with aromatic amino acids metabolism and immune response exhibited negative correlations with ADG. In addition, our results suggested that 10.42% of the variation in weaning weight could be explained by the gut microbiome. Conclusions Our findings give a glimpse into the dynamic shifts in gut microbiota of meat rabbits and provide a theoretical basis for gut microbiota modulation to improve ADG in the meat rabbit industry.
Collapse
Affiliation(s)
- Shaoming Fang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xuan Chen
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiahua Pan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaohui Chen
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liwen Zhou
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chongchong Wang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianfang Xiao
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Qian Fu Gan
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
42
|
Gan L, Zhao Y, Mahmood T, Guo Y. Effects of dietary vitamins supplementation level on the production performance and intestinal microbiota of aged laying hens. Poult Sci 2020; 99:3594-3605. [PMID: 32616256 PMCID: PMC7597815 DOI: 10.1016/j.psj.2020.04.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/08/2020] [Accepted: 04/01/2020] [Indexed: 12/14/2022] Open
Abstract
The objective of this study was to investigate the effects of higher vitamins supplementation level on the performance, immunity, and intestinal microbiota of old laying hens. Twelve birds were randomly chosen from 312 healthy, 65-wk-old Hy-Line Brown layers for sampling after a 7-wk acclimation period. The remaining 300 hens were randomly allocated to 1 of 4 dietary treatments for a 13-wk feeding trial: basal diet (CON), basal diet with 2-fold supplementation level of lipid-soluble vitamins (LV), 2-fold supplementation level of water-soluble vitamins (WV), or 2-fold supplementation level of both lipid-soluble and water-soluble vitamins (BV), respectively. Compared with 72-wk-old laying hens, the 85-wk-old laying hens showed declined egg quality, which implied by inferior eggshell strength and yolk color (P < 0.05). However, after 13 wks feeding trial, the birds in WV group had higher yellowness of yolk color, and LV group had increased laying rate (P < 0.05) compared with CON. Meanwhile, WV and/or BV groups showed improved GSH/GSSG levels in liver and increased secretory immunoglobulin A concentrations in jejunum compared with CON (P < 0.05). In addition, higher dietary vitamin supplementation levels significantly altered the composition of intestinal microbiota, as evidenced by increased abundance of ileal Lactobacillus, whereas reduced richness of ileal Romboutsia, Turicibacter, and cecal Faecalibacterium (P < 0.05) in WV group and increased cecal Megasphaera and Phascolarctobacterium (P < 0.05) in LV group compared with CON group. In conclusion, higher vitamin supplementation levels in the diet could improve laying performance and egg quality of aged hens, which was closely correlated with the increased abundance of beneficial microbiota in the intestine.
Collapse
Affiliation(s)
- Liping Gan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yizhu Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tahir Mahmood
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
43
|
Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients 2020; 12:381. [PMID: 32023943 PMCID: PMC7071260 DOI: 10.3390/nu12020381] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
Understanding how dietary nutrients modulate the gut microbiome is of great interest for the development of food products and eating patterns for combatting the global burden of non-communicable diseases. In this narrative review we assess scientific studies published from 2005 to 2019 that evaluated the effect of micro- and macro-nutrients on the composition of the gut microbiome using in vitro and in vivo models, and human clinical trials. The clinical evidence for micronutrients is less clear and generally lacking. However, preclinical evidence suggests that red wine- and tea-derived polyphenols and vitamin D can modulate potentially beneficial bacteria. Current research shows consistent clinical evidence that dietary fibers, including arabinoxylans, galacto-oligosaccharides, inulin, and oligofructose, promote a range of beneficial bacteria and suppress potentially detrimental species. The preclinical evidence suggests that both the quantity and type of fat modulate both beneficial and potentially detrimental microbes, as well as the Firmicutes/Bacteroides ratio in the gut. Clinical and preclinical studies suggest that the type and amount of proteins in the diet has substantial and differential effects on the gut microbiota. Further clinical investigation of the effect of micronutrients and macronutrients on the microbiome and metabolome is warranted, along with understanding how this influences host health.
Collapse
Affiliation(s)
- Qi Yang
- Center for Marine Drugs, State Key Laboratory of Oncogene and Related Genes, Department of Pharmacy, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China;
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | - Qi Liang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Biju Balakrishnan
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| | | | - Qian-Jin Feng
- Shanxi University of Chinese Medicine, Tai Yuan 030619, China;
| | - Wei Zhang
- Centre for Marine Biopro ducts Development, College of Medicine and Public Health, Flinders University, Adelaide, South Australia 5042, Australia; (Q.L.); (B.B.)
| |
Collapse
|
44
|
Ahmad SM, Raqib R, Huda MN, Alam MJ, Monirujjaman M, Akhter T, Wagatsuma Y, Qadri F, Zerofsky MS, Stephensen CB. High-Dose Neonatal Vitamin A Supplementation Transiently Decreases Thymic Function in Early Infancy. J Nutr 2020; 150:176-183. [PMID: 31504694 PMCID: PMC6946900 DOI: 10.1093/jn/nxz193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/15/2019] [Accepted: 07/24/2019] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Vitamin A deficiency (VAD) impairs T-cell-mediated immunity. In regions where VAD is prevalent, vitamin A supplementation (VAS) reduces child mortality, perhaps by improving immune function. OBJECTIVE Our objective was to determine if neonatal VAS would improve thymic function in Bangladeshi infants, and to determine if such effects differed by sex or nutritional status (i.e., birth weight above/below the median). METHODS Three hundred and six infants were randomly assigned to 50,000 IU vitamin A (VA) or placebo (PL) within 48 h of birth. Primary outcomes were measured at multiple ages and included 1) thymic index (TI) at 1, 6, 10, and 15 wk; 2) T-cell receptor excision circles (TREC), an index of thymic output of naïve T cells; and 3) total/naïve T cells in peripheral blood at 6 wk, 15 wk, and 2 y. A mixed linear model for repeated measures was used to assess group differences at each age and identify interactions with sex and birth weight. RESULTS VAS did not significantly (P = 0.21) affect TI overall (i.e., at all ages) but decreased TI by 7.8% (P = 0.029) at 6 wk: adjusted TI means for the PL and VA groups at 1, 6, 10, and 15 wk were 4.09 compared with 3.80 cm2, 7.78 compared with 7.18 cm2, 8.11 compared with 7.84 cm2, and 7.91 compared with 7.97 cm2, respectively. VAS did not significantly (P = 0.25) affect TREC overall but decreased TREC by 19% (P = 0.029) at 15 wk: adjusted TREC means for the PL and VA groups at 6 wk, 15 wk, and 2 y were 13.6 compared with 16.1 copies/pg DNA, 19.4 compared with 15.7 copies/pg DNA, and 11.8 compared with 10.0 copies/pg DNA, respectively. VAS did not significantly affect overall total (P = 0.10) or naïve (P = 0.092) T cells: adjusted naïve T-cell means for the PL and VA groups at 6 wk, 15 wk, and 2 y were 3259 compared with 3109 cells/µL, 3771 compared with 3487 cells/µL, and 1976 compared with 1898 cells/µL, respectively. CONCLUSION In contrast to our hypothesis, VAS decreased thymic function early in infancy but health effects are presumably negligible owing to the transience and small magnitude of this effect. This trial was registered at clinicaltrials.gov as NCT01583972 and NCT02027610.
Collapse
Affiliation(s)
- Shaikh M Ahmad
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Rubhana Raqib
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - M Nazmul Huda
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Md J Alam
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Md Monirujjaman
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Taslima Akhter
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Yukiko Wagatsuma
- Department of Clinical Trials and Clinical Epidemiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Firdausi Qadri
- Immunobiology, Nutrition, and Toxicology Laboratory, Infectious Diseases Division, icddr,b, Mohakhali, Dhaka, Bangladesh
| | - Melissa S Zerofsky
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| | - Charles B Stephensen
- USDA Western Human Nutrition Research Center at University of California, Davis, CA, USA
- Nutrition Department, University of California, Davis, CA, USA
| |
Collapse
|
45
|
Jaggar M, Rea K, Spichak S, Dinan TG, Cryan JF. You've got male: Sex and the microbiota-gut-brain axis across the lifespan. Front Neuroendocrinol 2020; 56:100815. [PMID: 31805290 DOI: 10.1016/j.yfrne.2019.100815] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/16/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023]
Abstract
Sex is a critical factor in the diagnosis and development of a number of mental health disorders including autism, schizophrenia, depression, anxiety, Parkinson's disease, multiple sclerosis, anorexia nervosa and others; likely due to differences in sex steroid hormones and genetics. Recent evidence suggests that sex can also influence the complexity and diversity of microbes that we harbour in our gut; and reciprocally that our gut microbes can directly and indirectly influence sex steroid hormones and central gene activation. There is a growing emphasis on the role of gastrointestinal microbiota in the maintenance of mental health and their role in the pathogenesis of disease. In this review, we introduce mechanisms by which gastrointestinal microbiota are thought to mediate positive health benefits along the gut-brain axis, we report how they may be modulated by sex, the role they play in sex steroid hormone regulation, and their sex-specific effects in various disorders relating to mental health.
Collapse
Affiliation(s)
- Minal Jaggar
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Kieran Rea
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Simon Spichak
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland.
| |
Collapse
|
46
|
Maes M, Anderson G, Betancort Medina SR, Seo M, Ojala JO. Integrating Autism Spectrum Disorder Pathophysiology: Mitochondria, Vitamin A, CD38, Oxytocin, Serotonin and Melatonergic Alterations in the Placenta and Gut. Curr Pharm Des 2019; 25:4405-4420. [PMID: 31682209 DOI: 10.2174/1381612825666191102165459] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND A diverse array of data has been associated with autism spectrum disorder (ASD), reflecting the complexity of its pathophysiology as well as its heterogeneity. Two important hubs have emerged, the placenta/prenatal period and the postnatal gut, with alterations in mitochondria functioning crucial in both. METHODS Factors acting to regulate mitochondria functioning in ASD across development are reviewed in this article. RESULTS Decreased vitamin A, and its retinoic acid metabolites, lead to a decrease in CD38 and associated changes that underpin a wide array of data on the biological underpinnings of ASD, including decreased oxytocin, with relevance both prenatally and in the gut. Decreased sirtuins, poly-ADP ribose polymerase-driven decreases in nicotinamide adenine dinucleotide (NAD+), hyperserotonemia, decreased monoamine oxidase, alterations in 14-3-3 proteins, microRNA alterations, dysregulated aryl hydrocarbon receptor activity, suboptimal mitochondria functioning, and decreases in the melatonergic pathways are intimately linked to this. Many of the above processes may be modulating, or mediated by, alterations in mitochondria functioning. Other bodies of data associated with ASD may also be incorporated within these basic processes, including how ASD risk factors such as maternal obesity and preeclampsia, as well as more general prenatal stressors, modulate the likelihood of offspring ASD. CONCLUSION Such a mitochondria-focussed integrated model of the pathophysiology of ASD has important preventative and treatment implications.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - George Anderson
- CRC Scotland & London, Eccleston Square, London, United Kingdom
| | | | - Moonsang Seo
- Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Johanna O Ojala
- Neurology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|