1
|
Vuic B, Milos T, Kvak E, Konjevod M, Tudor L, Farkas S, Nedic Erjavec G, Nikolac Perkovic M, Zelena D, Svob Strac D. Neuroprotective Effects of Dehydroepiandrosterone Sulphate Against Aβ Toxicity and Accumulation in Cellular and Animal Model of Alzheimer's Disease. Biomedicines 2025; 13:432. [PMID: 40002846 PMCID: PMC11853520 DOI: 10.3390/biomedicines13020432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/04/2025] [Accepted: 02/09/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Beneficial effects of neurosteroid dehydroepiandrosterone sulphate (DHEAS) on cognition, emotions and behavior have been previously reported, suggesting its potential in the prevention and treatment of various neuropsychiatric and neurodegenerative disorders, including Alzheimer's disease (AD). This study aimed to investigate the potential neuroprotective actions of DHEAS against Aβ toxicity in both cellular and animal models of AD. Methods: After optimizing the AD model in vitro, we investigated the DHEAS effects on the viability and death of primary mouse neurons exposed to toxic Aβ42 oligomers for 24 h. In order to extend our research to an in vivo study, we further tested the acute effects of intraperitoneal DHEAS administration on the Aβ plaque density in different brain regions of 3xTg-AD mice, an animal model of AD. Results: In cell culture, DHEAS hampered the decrease in the neuronal viability caused by toxic Aβ oligomers, primarily by influencing mitochondrial function and apoptosis. DHEAS also counteracted the increase in the mRNA expression of selected genes (PI3K, Akt, Bcl2, Bax), induced in neuronal culture by treatment with Aβ42 oligomers. Obtained data suggested the involvement of mitochondria, caspases 3 and 7, as well as the PI3K/Akt and Bcl2 signaling network in the antiapoptotic properties of DHEAS in neurons. Forty-eight hours after DHEAS treatment, a significantly lower number of Aβ plaques was observed in the motor cortex but not in other brain areas of 3xTg-AD mice. Conclusions: Results indicated potential neuroprotective effects of DHEAS against Aβ toxicity and accumulation, suggesting that DHEAS supplementation should be further studied as a novel option for AD prevention and/or treatment.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| | - Erika Kvak
- Laboratory of Behavioural and Stress Studies, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (E.K.); (S.F.); (D.Z.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| | - Szidónia Farkas
- Laboratory of Behavioural and Stress Studies, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (E.K.); (S.F.); (D.Z.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| | - Dora Zelena
- Laboratory of Behavioural and Stress Studies, Institute of Physiology, Medical School, University of Pécs, 7624 Pécs, Hungary; (E.K.); (S.F.); (D.Z.)
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Ruder Boskovic Institute, Division of Molecular Medicine, Bijenicka cesta 54, 10 000 Zagreb, Croatia; (B.V.); (T.M.); (M.K.); (L.T.); (G.N.E.); (M.N.P.)
| |
Collapse
|
2
|
Özdemir AY, Hofbauerová K, Kopecký V, Novotný J, Rudajev V. Different amyloid β42 preparations induce different cell death pathways in the model of SH-SY5Y neuroblastoma cells. Cell Mol Biol Lett 2024; 29:143. [PMID: 39551742 PMCID: PMC11572474 DOI: 10.1186/s11658-024-00657-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/22/2024] [Indexed: 11/19/2024] Open
Abstract
Amyloid β42 (Aβ42) plays a decisive role in the pathology of Alzheimer's disease. The Aβ42 peptide can aggregate into various supramolecular structures, with oligomers being the most toxic form. However, different Aβ species that cause different effects have been described. Many cell death pathways can be activated in connection with Aβ action, including apoptosis, necroptosis, pyroptosis, oxidative stress, ferroptosis, alterations in mitophagy, autophagy, and endo/lysosomal functions. In this study, we used a model of differentiated SH-SY5Y cells and applied two different Aβ42 preparations for 2 and 4 days. Although we found no difference in the shape and size of Aβ species prepared by two different methods (NaOH or NH4OH for Aβ solubilization), we observed strong differences in their effects. Treatment of cells with NaOH-Aβ42 mainly resulted in damage of mitochondrial function and increased production of reactive oxygen species, whereas application of NH4OH-Aβ42 induced necroptosis and first steps of apoptosis, but also caused an increase in protective Hsp27. Moreover, the two Aβ42 preparations differed in the mechanism of interaction with the cells, with the effect of NaOH-Aβ42 being dependent on monosialotetrahexosylganglioside (GM1) content, whereas the effect of NH4OH-Aβ42 was independent of GM1. This suggests that, although both preparations were similar in size, minor differences in secondary/tertiary structure are likely to strongly influence the resulting processes. Our work reveals, at least in part, one of the possible causes of the inconsistency in the data observed in different studies on Aβ-toxicity pathways.
Collapse
Affiliation(s)
- Alp Yigit Özdemir
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Kateřina Hofbauerová
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Vladimír Kopecký
- Institute of Physics, Faculty of Mathematics and Physics, Charles University, Ke Karlovu 5, 12116, Prague 2, Czech Republic
| | - Jiří Novotný
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic
| | - Vladimír Rudajev
- Department of Physiology, Faculty of Sciences, Charles University, Viničná 7, 12844, Prague 2, Czech Republic.
| |
Collapse
|
3
|
Alami M, Boumezough K, Zerif E, Zoubdane N, Khalil A, Bunt T, Laurent B, Witkowski JM, Ramassamy C, Boulbaroud S, Fulop T, Berrougui H. In Vitro Assessment of the Neuroprotective Effects of Pomegranate ( Punica granatum L.) Polyphenols Against Tau Phosphorylation, Neuroinflammation, and Oxidative Stress. Nutrients 2024; 16:3667. [PMID: 39519499 PMCID: PMC11547808 DOI: 10.3390/nu16213667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Oxidative stress and chronic inflammation, at both the systemic and the central level, are critical early events in atherosclerosis and Alzheimer's disease (AD). PURPOSE To investigate the oxidative stress-, inflammation-, and Tau-phosphorylation-lowering effects of pomegranate polyphenols (PPs) (punicalagin, ellagic acid, peel, and aril extracts). METHODS We used flow cytometry to quantify the protein expression of proinflammatory cytokines (IL-1β) and anti-inflammatory mediators (IL-10) in THP-1 macrophages, as well as M1/M2 cell-specific marker (CD86 and CD163) expression in human microglia HMC3 cells. The IL-10 protein expression was also quantified in U373-MG human astrocytes. The effect of PPs on human amyloid beta 1-42 (Aβ1-42)-induced oxidative stress was assessed in the microglia by measuring ROS generation and lipid peroxidation, using 2',7'-dichlorofluorescein diacetate (DCFH-DA) and thiobarbituric acid reactive substance (TBARS) tests, respectively. Neuronal viability and cell apoptotic response to Aβ1-42 toxicity were assayed using the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay and the annexin-V-FITC apoptosis detection kit, respectively. Finally, flow cytometry analysis was also performed to evaluate the ability of PPs to modulate Aβ1-42-induced Tau-181 phosphorylation (pTau-181). RESULTS Our data indicate that PPs are significantly (p < 0.05) effective in countering Aβ1-42-induced inflammation through increasing the anti-inflammatory cytokines (IL-10) in U373-MG astrocytes and THP1 macrophages and decreasing proinflammatory marker (IL-1β) expression in THP1 macrophages. The PPs were also significantly (p < 0.05) effective in inducing the phenotypic transition of THP-1 macrophages and microglial cells from M1 to M2 by decreasing CD86 and increasing CD163 surface receptor expression. Moreover, our treatments have a significant (p < 0.05) beneficial impact on oxidative stress, illustrated in the reduction in TBARS and ROS generation. Our treatments have significant (p < 0.05) cell viability improvement capacities and anti-apoptotic effects on human H4 neurons. Furthermore, our results suggest that Aβ1-42 significantly (p < 0.05) increases pTau-181. This effect is significantly (p < 0.05) attenuated by arils, peels, and punicalagin and drastically reduced by the ellagic acid treatment. CONCLUSION Overall, our results attribute to PPs anti-inflammatory, antioxidant, anti-apoptotic, and anti-Tau-pathology potential. Future studies should aim to extend our knowledge of the potential role of PPs in Aβ1-42-induced neurodegeneration, particularly concerning its association with the tauopathy involved in AD.
Collapse
Affiliation(s)
- Mehdi Alami
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Kaoutar Boumezough
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Echarki Zerif
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Nada Zoubdane
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Abdelouahed Khalil
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Ton Bunt
- Izumi Biosciences, Inc., Lexington, MA 02420, USA;
| | - Benoit Laurent
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Jacek M. Witkowski
- Department of Embryology, Medical University of Gdansk, 80-210 Gdańsk, Poland;
| | - Charles Ramassamy
- INRS-Centre Armand-Frappier Santé Biotechnologie, Laval, QC H7V 1B7, Canada;
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
| | - Tamas Fulop
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, Beni Mellal 23020, Morocco; (M.A.); (K.B.); (S.B.)
- Research Center on Aging, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, QC J1H 4N4, Canada; (E.Z.); (N.Z.); (A.K.); (B.L.); (T.F.)
| |
Collapse
|
4
|
Choi SB, Kwon S, Kim JH, Ahn NH, Lee JH, Yang SH. The Molecular Mechanisms of Neuroinflammation in Alzheimer's Disease, the Consequence of Neural Cell Death. Int J Mol Sci 2023; 24:11757. [PMID: 37511515 PMCID: PMC10380735 DOI: 10.3390/ijms241411757] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is accompanied by neural cell loss and memory deficit. Neural cell death, occurring via apoptosis and autophagy, is widely observed in the AD brain in addition to neuroinflammation mediated by necroptosis and the NLRP3 inflammasome. Neurotoxicity induced by amyloid-beta (Aβ) and tau aggregates leads to excessive neural cell death and neuroinflammation in the AD brain. During AD progression, uncontrolled neural cell death results in the dysregulation of cellular activity and synaptic function. Apoptosis mediated by pro-apoptotic caspases, autophagy regulated by autophagy-related proteins, and necroptosis controlled by the RIPK/MLKL axis are representative of neural cell death occurred during AD. Necroptosis causes the release of cellular components, contributing to the pro-inflammatory environment in the AD brain. Inordinately high levels of neural cell death and pro-inflammatory events lead to the production of pro-inflammatory cytokines and feed-forward hyper neuroinflammation. Thus, neural cell death and neuroinflammation cause synaptic dysfunction and memory deficits in the AD brain. In this review, we briefly introduce the mechanisms of neural cell death and neuroinflammation observed in the AD brain. Combined with a typical strategy for targeting Aβ and tau, regulation of neural cell death and neuroinflammation may be effective for the amelioration of AD pathologies.
Collapse
Affiliation(s)
- Su-Bin Choi
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Sehee Kwon
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Ji-Hye Kim
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Na-Hyun Ahn
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Joo-Hee Lee
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| | - Seung-Hoon Yang
- Department of Biomedical Engineering, College of Life Science and Biotechnology, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
5
|
Dong D, Ren A, Yang Y, Su J, Liu L, Zhuo W, Liang Y. VX-765 Alleviates β-Amyloid Deposition and Secondary Degeneration in the Ipsilateral Hippocampus and Ameliorates Cognitive Decline after Focal Cortical Infarction in Rats. J Mol Neurosci 2022; 72:2389-2397. [PMID: 36441377 PMCID: PMC9805416 DOI: 10.1007/s12031-022-02088-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 11/18/2022] [Indexed: 11/29/2022]
Abstract
Focal cortical infarction leads to secondary degeneration of the ipsilateral hippocampus, which is associated with poststroke cognitive impairment. VX-765 is a potent small-molecule caspase-1 inhibitor that protects against central nervous system diseases. The present study aimed to determine the protective effects of VX-765 on β-amyloid (Aβ) deposition and secondary degeneration in the hippocampus as well as cognitive decline after cortical infarction. Sprague-Dawley rats were used to establish a distal middle cerebral artery occlusion (dMCAO) model and randomly divided into the vehicle and VX-765 groups. Rats in the vehicle and VX-765 groups, respectively, were subcutaneously injected with VX-765 (50 mg/kg/d) and an isopycnic vehicle once a day for 28 days, starting 1 h after dMCAO. At the end of this 28-day period, cognitive impairment was evaluated with the Morris water maze, and secondary hippocampal damage was evaluated with Nissl staining and immunostaining methods. Neuronal damage and pyroptosis were detected by TUNEL and immunoblotting. The results revealed that VX-765 treatment ameliorated poststroke cognitive dysfunction after ischemia. VX-765 reduced Aβ deposition, neuronal loss, and glial activation compared with the vehicle control. In addition, VX-765 treatment increased BDNF levels and normalized synaptophysin protein levels in the hippocampus after cortical infarction. Notably, VX-765 treatment significantly reduced the expression of the pyroptosis-related molecules caspase-1, NLRP3, apoptosis-associated speck-like protein (ASC), gasdermin D, IL-1β, and IL-18. Additionally, VX-765 significantly decreased the numbers of TUNEL-positive cells and the levels of Bax and cleaved caspase-3 (cC3) and enhanced the levels of Bcl-2 and Bcl-xl after ischemia. Inflammatory pathways, such as the NF-κB and mitogen-activated protein kinase (MAPK) pathways, were inhibited by VX-765 treatment after ischemia. These findings revealed that VX-765 reduced Aβ deposition, pyroptosis, and apoptosis in the ipsilateral hippocampus, which may be associated with reduced secondary degeneration and cognitive decline following focal cortical infarction.
Collapse
Affiliation(s)
- Dawei Dong
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Aihui Ren
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Ying Yang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong, China
| | - Jiayi Su
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Libin Liu
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Wenyan Zhuo
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China
| | - Yubin Liang
- Department of Neurology, Zhuhai People's Hospital (Zhuhai Hospital Affiliated With Jinan University), Zhuhai, China.
| |
Collapse
|
6
|
Islam MI, Nagakannan P, Shcholok T, Contu F, Mai S, Albensi BC, Del Bigio MR, Wang J, Sharoar M, Yan R, Park I, Eftekharpour E. Regulatory role of cathepsin L in induction of nuclear laminopathy in Alzheimer's disease. Aging Cell 2022; 21:e13531. [PMID: 34905652 PMCID: PMC8761039 DOI: 10.1111/acel.13531] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 01/13/2023] Open
Abstract
Experimental and clinical therapies in the field of Alzheimer's disease (AD) have focused on elimination of extracellular amyloid beta aggregates or prevention of cytoplasmic neuronal fibrillary tangles formation, yet these approaches have been generally ineffective. Interruption of nuclear lamina integrity, or laminopathy, is a newly identified concept in AD pathophysiology. Unraveling the molecular players in the induction of nuclear lamina damage may lead to identification of new therapies. Here, using 3xTg and APP/PS1 mouse models of AD, and in vitro model of amyloid beta42 (Aβ42) toxicity in primary neuronal cultures and SH‐SY5Y neuroblastoma cells, we have uncovered a key role for cathepsin L in the induction of nuclear lamina damage. The applicability of our findings to AD pathophysiology was validated in brain autopsy samples from patients. We report that upregulation of cathepsin L is an important process in the induction of nuclear lamina damage, shown by lamin B1 cleavage, and is associated with epigenetic modifications in AD pathophysiology. More importantly, pharmacological targeting and genetic knock out of cathepsin L mitigated Aβ42 induced lamin B1 degradation and downstream structural and molecular changes. Affirming these findings, overexpression of cathepsin L alone was sufficient to induce lamin B1 cleavage. The proteolytic activity of cathepsin L on lamin B1 was confirmed using mass spectrometry. Our research identifies cathepsin L as a newly identified lamin B1 protease and mediator of laminopathy observed in AD. These results uncover a new aspect in the pathophysiology of AD that can be pharmacologically prevented, raising hope for potential therapeutic interventions.
Collapse
Affiliation(s)
- Md Imamul Islam
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Pandian Nagakannan
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Tetiana Shcholok
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| | - Fabio Contu
- Cell Biology Research Institute of Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg MB Canada
| | - Sabine Mai
- Cell Biology Research Institute of Oncology and Hematology CancerCare Manitoba University of Manitoba Winnipeg MB Canada
| | - Benedict C Albensi
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- St Boniface Hospital Albrechtsen Research Centre Winnipeg MB Canada
- Department of Pharmaceutical Sciences College of Pharmacy Nova Southeastern University Fort Lauderdale Florida USA
| | - Marc R. Del Bigio
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- Department of Pathology Shared Health Manitoba University of Manitoba Winnipeg MB Canada
| | - Jun‐Feng Wang
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
- Department of Pharmacology and Therapeutics University of Manitoba Winnipeg MB Canada
| | - Md Golam Sharoar
- Department of Neuroscience University of Connecticut Health Farmington Connecticut USA
| | - Riqiang Yan
- Department of Neuroscience University of Connecticut Health Farmington Connecticut USA
| | - Il‐Seon Park
- Department of Cellular and Molecular Medicine Chosun University Gwangju South Korea
| | - Eftekhar Eftekharpour
- Department of Physiology and Pathophysiology University of Manitoba Winnipeg MB Canada
- Rady Faculty of Health Sciences University of Manitoba Winnipeg MB Canada
| |
Collapse
|
7
|
Choi JH, Lee EB, Jang HH, Cha YS, Park YS, Lee SH. Allium hookeri Extracts Improve Scopolamine-Induced Cognitive Impairment via Activation of the Cholinergic System and Anti-Neuroinflammation in Mice. Nutrients 2021; 13:2890. [PMID: 34445062 PMCID: PMC8400157 DOI: 10.3390/nu13082890] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/14/2021] [Accepted: 08/16/2021] [Indexed: 11/25/2022] Open
Abstract
Allium hookeri (AH) is a medicinal food that has been used in Southeast Asia for various physiological activities. The objective of this study was to investigate the activation of the cholinergic system and the anti-neuroinflammation effects of AH on scopolamine-induced memory impairment in mice. Scopolamine (1 mg/kg body weight, i.p.) impaired the performance of the mice on the Y-maze test, passive avoidance test, and water maze test. However, the number of error actions was reduced in the AH groups supplemented with leaf and root extracts from AH. AH treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. AH significantly improved the cholinergic system by decreasing acetylcholinesterase activity, and increasing acetylcholine concentration. The serum inflammatory cytokines (IL-1β, IL-6, and IFN-γ) increased by scopolamine treatment were regulated by the administration of AH extracts. Overexpression of NF-κB signaling and cytokines in liver tissue due to scopolamine were controlled by administration of AH extracts. AH also significantly decreased Aβ and caspase-3 expression but increased NeuN and ChAT. The results suggest that AH extracts improve cognitive effects, and the root extracts are more effective in relieving the scopolamine-induced memory impairment. They have neuroprotective effects and reduce the development of neuroinflammation.
Collapse
Affiliation(s)
- Ji-Hye Choi
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Jeonbuk, Korea; (J.-H.C.); (E.-B.L.); (H.-H.J.)
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea;
| | - Eun-Byeol Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Jeonbuk, Korea; (J.-H.C.); (E.-B.L.); (H.-H.J.)
| | - Hwan-Hee Jang
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Jeonbuk, Korea; (J.-H.C.); (E.-B.L.); (H.-H.J.)
| | - Youn-Soo Cha
- Department of Food Science and Human Nutrition, Jeonbuk National University, Jeonju 54896, Jeonbuk, Korea;
| | - Yong-Soon Park
- Department of Food and Nutrition, Hanyang University, Seongdong, Seoul 04763, Korea;
| | - Sung-Hyen Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Jeonbuk, Korea; (J.-H.C.); (E.-B.L.); (H.-H.J.)
| |
Collapse
|
8
|
Li K, van Delft MF, Dewson G. Too much death can kill you: inhibiting intrinsic apoptosis to treat disease. EMBO J 2021; 40:e107341. [PMID: 34037273 DOI: 10.15252/embj.2020107341] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/11/2021] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell death is implicated in both physiological and pathological processes. Since many types of cancerous cells intrinsically evade apoptotic elimination, induction of apoptosis has become an attractive and often necessary cancer therapeutic approach. Conversely, some cells are extremely sensitive to apoptotic stimuli leading to neurodegenerative disease and immune pathologies. However, due to several challenges, pharmacological inhibition of apoptosis is still only a recently emerging strategy to combat pathological cell loss. Here, we describe several key steps in the intrinsic (mitochondrial) apoptosis pathway that represent potential targets for inhibitors in disease contexts. We also discuss the mechanisms of action, advantages and limitations of small-molecule and peptide-based inhibitors that have been developed to date. These inhibitors serve as important research tools to dissect apoptotic signalling and may foster new treatments to reduce unwanted cell loss.
Collapse
Affiliation(s)
- Kaiming Li
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Mark F van Delft
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| | - Grant Dewson
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Royal Parade, Melbourne, VIC, Australia
| |
Collapse
|
9
|
Xu ZJ, Li Q, Ding L, Shi HH, Xue CH, Mao XZ, Wang YM, Zhang TT. A comparative study of the effects of phosphatidylserine rich in DHA and EPA on Aβ-induced Alzheimer's disease using cell models. Food Funct 2021; 12:4411-4423. [PMID: 33876786 DOI: 10.1039/d1fo00286d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) is an age-dependent, irreversible neurodegenerative disease, and one of the pathological features is amyloid-β (Aβ) deposition. Previous studies have shown that phosphatidylserine (PS) enriched with eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) exhibited significant effects in preventing and alleviating the progress of AD. However, no studies have focused on the differences in the preventive effects on AD between EPA-PS and DHA-PS. Here, the effects of EPA-PS and DHA-PS on Aβ production, Aβ-induced neurotoxicity and Aβ clearance have been studied. The results show that DHA-PS significantly reduced Aβ production in CHO-APP/PS1 cells compared to EPA-PS. Moreover, both EPA-PS and DHA-PS significantly protected the primary hippocampal neurons against Aβ-induced toxicity by inhibiting the mitochondrial-dependent apoptotic pathway and phosphorylation of JNK and p38. Compared to DHA-PS, EPA-PS administration significantly improved the Aβ phagocytic capacity of BV2 cells. In addition, EPA-PS and DHA-PS significantly promoted the neurite outgrowth of primary hippocampal neurons. These findings might provide dietary guidance for the prevention of AD as well as a reference for the development of related functional foods.
Collapse
Affiliation(s)
- Zhen-Jing Xu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, Shandong, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Scrophularia buergeriana Extract Improves Memory Impairment via Inhibition of the Apoptosis Pathway in the Mouse Hippocampus. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10227987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Scrophularia buergeriana (SB) Miq. (Scrophulariaceae) has been used to help cure swelling and fever and has reported antioxidant and neuro-protective effects. However, few mechanism–based studies have evaluated the memory-improving effects in a beta-amyloid induced memory loss model. As a result of Scrophularia buergeriana extract (SBE) administration (30 and 100 mg/kg) for 28 days significantly recovered beta-amyloid-induced amnesia in the passive avoidance test and improved the impairment of spatial memory in the Morris Water Maze (MWM) task. Furthermore, SBE up-regulated superoxide dismutase-1 (SOD)-1, SOD-2, glutathione peroxidase-1, and B-cell lymphoma (Bcl)-2 protein expression levels. Additionally, SBE downregulated Bcl-2-associated X protein, cleaved caspase-9, cleaved poly (adenosine diphosphate-ribose) polymerase, and Aβ protein expression levels and inhibited the phosphorylation of the tau protein of Aβ-treated mice hippocampus. These results demonstrate that SBE improved memory impairment by reducing beta-amyloid induced neurotoxicity and regulated oxidative stress, anti-apoptotic pathways.
Collapse
|
11
|
Anti-Apoptotic Effects of Carotenoids in Neurodegeneration. Molecules 2020; 25:molecules25153453. [PMID: 32751250 PMCID: PMC7436041 DOI: 10.3390/molecules25153453] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Apoptosis, programmed cell death type I, is a critical part of neurodegeneration in cerebral ischemia, Parkinson’s, and Alzheimer’s disease. Apoptosis begins with activation of pro-death proteins Bax and Bak, release of cytochrome c and activation of caspases, loss of membrane integrity of intracellular organelles, and ultimately cell death. Approaches that block apoptotic pathways may prevent or delay neurodegenerative processes. Carotenoids are a group of pigments found in fruits, vegetables, and seaweeds that possess antioxidant properties. Over the last several decades, an increasing number of studies have demonstrated a protective role of carotenoids in neurodegenerative disease. In this review, we describe functions of commonly consumed carotenoids including lycopene, β-carotene, lutein, astaxanthin, and fucoxanthin and their roles in neurodegenerative disease models. We also discuss the underlying cellular mechanisms of carotenoid-mediated neuroprotection, including their antioxidant properties, role as signaling molecules, and as gene regulators that alleviate apoptosis-associated brain cell death.
Collapse
|
12
|
Afshar S, Shahidi S, Rohani AH, Soleimani Asl S, Komaki A. Protective effects of 5-HT1A receptor antagonist and 5-HT2A receptor agonist on the biochemical and histological features in a rat model of Alzheimer’s disease. J Chem Neuroanat 2019; 96:140-147. [DOI: 10.1016/j.jchemneu.2019.01.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/21/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
|
13
|
Arbo BD, Hoppe JB, Rodrigues K, Garcia-Segura LM, Salbego CG, Ribeiro MF. 4'-Chlorodiazepam is neuroprotective against amyloid-beta in organotypic hippocampal cultures. J Steroid Biochem Mol Biol 2017; 171:281-287. [PMID: 28442392 DOI: 10.1016/j.jsbmb.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 02/23/2017] [Accepted: 04/19/2017] [Indexed: 01/15/2023]
Abstract
The translocator protein (TSPO) is an outer mitochondrial membrane protein involved in the transport of cholesterol into the mitochondria, which is the first step for the synthesis of steroid hormones, as well as in the regulation of mitochondrial permeability transition pore opening and apoptosis. Studies have shown that the activation of TSPO may promote neuroprotective actions in experimental models of neurodegeneration and brain injury. In a previous study, our group showed that 4'-chlorodiazepam (4'-CD), a TSPO ligand, was neuroprotective against amyloid-beta (Aβ) in SHSY-5Y neuroblastoma cells. The aim of this study was to evaluate if 4'-CD was also neuroprotective against Aβ in organotypic hippocampal cultures and to identify its mechanisms of action. Aβ decreased the cell viability of organotypic hippocampal cultures, while 4'-CD had a neuroprotective effect when administered at 100nM and 1000nM. The neuroprotective effects of 4'-CD against Aβ were associated with an increased expression of superoxide dismutase (SOD). No differences were found in the expression of catalase, glial fibrillary acidic protein, Akt and procaspase-3. In summary, our results show that 4'-CD is neuroprotective against Aβ by a mechanism involving the modulation of SOD protein expression.
Collapse
Affiliation(s)
- B D Arbo
- Laboratório de Interação Neuro-Humoral - Department of Physiology - ICBS - Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil.
| | - J B Hoppe
- Laboratório de Neuroproteção e Sinalização Celular - Department of Biochemistry - Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, 90035-003, Porto Alegre, RS, Brazil
| | - K Rodrigues
- Laboratório de Neuroproteção e Sinalização Celular - Department of Biochemistry - Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, 90035-003, Porto Alegre, RS, Brazil
| | - L M Garcia-Segura
- Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002, Madrid, Spain
| | - C G Salbego
- Laboratório de Neuroproteção e Sinalização Celular - Department of Biochemistry - Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600, 90035-003, Porto Alegre, RS, Brazil
| | - M F Ribeiro
- Laboratório de Interação Neuro-Humoral - Department of Physiology - ICBS - Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|
14
|
Ramasamy VS, Islam MI, Haque MA, Shin SY, Park IS. β-Amyloid induces nuclear protease-mediated lamin fragmentation independent of caspase activation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1189-99. [PMID: 26876308 DOI: 10.1016/j.bbamcr.2016.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 01/18/2016] [Accepted: 02/09/2016] [Indexed: 01/22/2023]
Abstract
β-Amyloid (Aβ), a hallmark peptide of Alzheimer's disease, induces both caspase-dependent apoptosis and non-apoptotic cell death. In this study, we examined caspase-independent non-apoptotic cell death preceding caspase activation in Aβ42-treated cells. We first determined the optimal treatment conditions for inducing cell death without caspase activation and selected a double-treatment method involving the incubation of cells with Aβ42 for 4 and 6 h (4+6 h sample). We observed that levels of lamin A (LA) and lamin B (LB) were reduced in the 4+6 h samples. This reduction was decreased by treatment with suc-AAPF-CMK, an inhibitor of nuclear scaffold (NS) protease, but not by treatment with z-VAD-FMK, a pan-caspase inhibitor. In addition, suc-AAPF-CMK decreased the changes in nuclear morphology observed in cells in the 4+6 h samples, which were different from nuclear fragmentation observed in STS-treated cells. Furthermore, suc-AAPF-CMK inhibited cell death in the 4+6 h samples. LA and LB fragmentation occurred in the isolated nuclei and was also inhibited by suc-AAPF-CMK. Together, these data indicated that the fragmentation of LA and LB in the Aβ42-treated cells was induced by an NS protease, whose identity is not clearly determined yet. A correlation between Aβ42 toxicity and the lamin fragmentation by NS protease suggests that inhibition of the protease could be an effective method for controlling the pathological process of AD.
Collapse
Affiliation(s)
- Vijay Sankar Ramasamy
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Md Imamul Islam
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Md Aminul Haque
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea
| | - Song Yub Shin
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea; Cellular and Molecular Medicine, Chosun University, Gwangju 501-759, Republic of Korea
| | - Il-Seon Park
- Department of Bio-Materials Engineering, Chosun University, Gwangju 501-759, Republic of Korea; Cellular and Molecular Medicine, Chosun University, Gwangju 501-759, Republic of Korea.
| |
Collapse
|
15
|
Arbo BD, Marques CV, Ruiz-Palmero I, Ortiz-Rodriguez A, Ghorbanpoor S, Arevalo MA, Garcia-Segura LM, Ribeiro MF. 4'-Chlorodiazepam is neuroprotective against amyloid-beta through the modulation of survivin and bax protein expression in vitro. Brain Res 2015; 1632:91-7. [PMID: 26707976 DOI: 10.1016/j.brainres.2015.12.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 12/06/2015] [Accepted: 12/11/2015] [Indexed: 12/12/2022]
Abstract
The translocator protein of 18kDa (TSPO) is located in the outer mitochondrial membrane and is involved in the cholesterol transport into the mitochondria and in the regulation of steroidogenesis, mitochondrial permeability transition pore opening and apoptosis. TSPO ligands have been investigated as therapeutic agents that promote neuroprotective effects in experimental models of brain injury and neurodegenerative diseases. The aim of this study was to identify the neuroprotective effects of 4'-chlorodiazepam (4'-CD), a ligand of TSPO, against amyloid-beta (Aβ) in SHSY-5Y neuroblastoma cells and its mechanisms of action. Aβ decreased the viability of SHSY-5Y neuroblastoma cells, while 4'-CD had a neuroprotective effect at the doses of 1nM and 10nM. The neuroprotective effects of 4'-CD against Aβ were associated with the inhibition of Aβ-induced upregulation of Bax and downregulation of survivin. In summary, our findings indicate that 4'-CD is neuroprotective against Aβ-induced neurotoxicity by a mechanism that may involve the regulation of Bax and survivin expression.
Collapse
Affiliation(s)
- B D Arbo
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain.
| | - C V Marques
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil; Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | - I Ruiz-Palmero
- Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | - A Ortiz-Rodriguez
- Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | - S Ghorbanpoor
- Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | - M A Arevalo
- Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | - L M Garcia-Segura
- Instituto Cajal - CSIC, Avenida Doctor Arce, 37, 28002 Madrid, Spain
| | - M F Ribeiro
- Laboratório de Interação Neuro-Humoral, Department of Physiology, ICBS, Universidade Federal do Rio Grande do Sul (UFRGS), Rua Sarmento Leite, 500, 90050-170 Porto Alegre, RS, Brazil
| |
Collapse
|
16
|
Yang Y, Wang M, Lv B, Ma R, Hu J, Dun Y, Sun S, Li G. Sphingosine Kinase-1 Protects Differentiated N2a Cells Against Beta-Amyloid25–35-Induced Neurotoxicity Via the Mitochondrial Pathway. Neurochem Res 2014; 39:932-40. [DOI: 10.1007/s11064-014-1290-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 03/09/2014] [Accepted: 03/20/2014] [Indexed: 12/14/2022]
|
17
|
Akhter R, Sanphui P, Biswas SC. The essential role of p53-up-regulated modulator of apoptosis (Puma) and its regulation by FoxO3a transcription factor in β-amyloid-induced neuron death. J Biol Chem 2014; 289:10812-10822. [PMID: 24567336 DOI: 10.1074/jbc.m113.519355] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Neurodegeneration underlies the pathology of Alzheimer disease (AD). The molecules responsible for such neurodegeneration in AD brain are mostly unknown. Recent findings indicate that the BH3-only proteins of the Bcl-2 family play an essential role in various cell death paradigms, including neurodegeneration. Here we report that Puma (p53-up-regulated modulator of apoptosis), an important member of the BH3-only protein family, is up-regulated in neurons upon toxic β-amyloid 1-42 (Aβ(1-42)) exposure both in vitro and in vivo. Down-regulation of Puma by specific siRNA provides significant protection against neuron death induced by Aβ(1-42). We further demonstrate that the activation of p53 and inhibition of PI3K/Akt pathways induce Puma. The transcription factor FoxO3a, which is activated when PI3K/Akt signaling is inhibited, directly binds with the Puma gene and induces its expression upon exposure of neurons to oligomeric Aβ(1-42). Moreover, Puma cooperates with another BH3-only protein, Bim, which is already implicated in AD. Our results thus suggest that Puma is activated by both p53 and PI3K/Akt/FoxO3a pathways and cooperates with Bim to induce neuron death in response to Aβ(1-42).
Collapse
Affiliation(s)
- Rumana Akhter
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Priyankar Sanphui
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India
| | - Subhas Chandra Biswas
- Cell Biology and Physiology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
18
|
Xing S, Zhang J, Dang C, Liu G, Zhang Y, Li J, Fan Y, Pei Z, Zeng J. Cerebrolysin reduces amyloid-β deposits, apoptosis and autophagy in the thalamus and improves functional recovery after cortical infarction. J Neurol Sci 2013; 337:104-11. [PMID: 24315581 DOI: 10.1016/j.jns.2013.11.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/03/2013] [Accepted: 11/18/2013] [Indexed: 11/25/2022]
Abstract
Focal cerebral infarction causes amyloid-β (Aβ) deposits and secondary thalamic neuronal degeneration. The present study aimed to determine the protective effects of Cerebrolysin on Aβ deposits and secondary neuronal damage in thalamus after cerebral infarction. At 24h after distal middle cerebral artery occlusion (MCAO), Cerebrolysin (5 ml/kg) or saline as control was once daily administered for consecutive 13 days by intraperitoneal injection. Sensory function and secondary thalamic damage were assessed with adhesive-removal test, Nissl staining and immunofluorescence at 14 days after MCAO. Aβ deposits, activity of β-site amyloid precursor protein-cleaving enzyme 1 (BACE1), apoptosis and autophagy were determined by TUNEL staining, immunofluorescence and immunoblot. The results showed that Cerebrolysin significantly improved sensory deficit compared to controls (p<0.05). Aβ deposits and BACE1 were obviously reduced by Cerebrolysin, which was accompanied by decreases in neuronal loss and astroglial activation compared to controls (all p < 0.05). Coincidently, Cerebrolysin markedly inhibited cleaved caspase-3, conversion of LC3-II, downregulation of Bcl-2 and upregulation of Bax in the ipsilateral thalamus compared to controls (all p<0.05). These findings suggest that Cerebrolysin reduces Aβ deposits, apoptosis and autophagy in the ipsilateral thalamus, which may be associated with amelioration of secondary thalamic damage and functional recovery after cerebral infarction.
Collapse
Affiliation(s)
- Shihui Xing
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jian Zhang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Chao Dang
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Gang Liu
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yusheng Zhang
- Department of Neurology, The First Affiliated Hospital, Jinan University, No. 613 Huangpu Avenue West, Guangzhou 510630, China
| | - Jingjing Li
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Yuhua Fan
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Zhong Pei
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China
| | - Jinsheng Zeng
- Department of Neurology and Stroke Center, The First Affiliated Hospital, Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
19
|
Wani WY, Sunkaria A, Sharma DR, Kandimalla RJL, Kaushal A, Gerace E, Chiarugi A, Gill KD. Caspase inhibition augments Dichlorvos-induced dopaminergic neuronal cell death by increasing ROS production and PARP1 activation. Neuroscience 2013; 258:1-15. [PMID: 24231740 DOI: 10.1016/j.neuroscience.2013.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 10/30/2013] [Accepted: 11/03/2013] [Indexed: 01/07/2023]
Abstract
Numerous epidemiological studies have shown an association between pesticide exposure and the increased risk of developing Parkinson's disease. Previously we have reported that Dichlorvos exposure can induce oxidative stress, resulting in over-expression of pro-apoptotic genes and finally caspase-dependent nigrostriatal dopaminergic neuronal cell death in rat brain. Here, we examined the effect of caspase inhibition on PC12 cell death induced by Dichlorvos (30 μM). Reactive oxygen species (ROS) generation followed by protein carbonylation, lipid peroxidation, decreased antioxidant defenses (decreased Mn-superoxide dismutase (MnSOD) activity and decreased glutathione levels) and subsequent caspase activation mediated the apoptosis. Inhibition of caspase cascade with Boc-aspartyl(OMe)-fluoromethylketone (BAF) enhanced the Dichlorvos-induced PC12 cell death, as assessed by the increased cellular efflux of lactate dehydrogenase (LDH). This increase in cell death was accompanied by a marked increase in poly(ADP-ribose) polymerase-1 (PARP1) activity, increased oxidative stress, a reduction in the mitochondrial membrane potential and reduced cellular NAD and ATP levels. Pretreatment of cells with PJ34, a PARP1 inhibitor prevented the cells from undergoing cell death and preserved intracellular NAD and ATP levels. Subsequent release of the apoptosis-inducing factor (AIF) from mitochondria and its translocation into the nucleus was also prevented by PJ34 pretreatment. In conclusion, the results of the present study show that caspase inhibition without concurrent inhibition of PARP1 is unlikely to be effective in preventing cell death because in the presence of the caspase inhibitor, caspase-independent cell death predominates due to PARP activation. These results suggest that combined therapeutic strategies directed at multiple cell death pathways may provide superior neuroprotection than those directed at a single mechanism.
Collapse
Affiliation(s)
- W Y Wani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - A Sunkaria
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - D R Sharma
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - R J L Kandimalla
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - A Kaushal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | - E Gerace
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - A Chiarugi
- Department of Preclinical and Clinical Pharmacology, University of Florence, Florence, Italy
| | - K D Gill
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India.
| |
Collapse
|
20
|
Wang ZJ, Han WN, Yang GZ, Yuan L, Liu XJ, Li QS, Qi JS. The neuroprotection of Rattin against amyloid β peptide in spatial memory and synaptic plasticity of rats. Hippocampus 2013; 24:44-53. [PMID: 23996574 DOI: 10.1002/hipo.22202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 08/21/2013] [Accepted: 08/22/2013] [Indexed: 12/22/2022]
Abstract
Rattin, a specific derivative of humanin in rats, shares the ability with HN to protect neurons against amyloid β (Aβ) peptide-induced cellular toxicity. However, it is still unclear whether Rattin can protect against Aβ-induced deficits in cognition and synaptic plasticity in rats. In the present study, we observed the effects of Rattin and Aβ31-35 on the spatial reference memory and in vivo hippocampal Long-term potentiation of rats by using Morris water maze test and hippocampal field potential recording. Furthermore, the probable molecular mechanism underlying the neuroprotective roles of Rattin was investigated. We showed that intra-hippocampal injection of Rattin effectively prevented the Aβ31-35-induced spatial memory deficits and hippocampal LTP suppression in rats; the Aβ31-35-induced activation of Caspase-3 and inhibition of STAT3 in the hippocampus were also prevented by Rattin treatment. These findings indicate that Rattin treatment can protect spatial memory and synaptic plasticity of rats against Aβ31-35-induced impairments, and the underlying protective mechanism of Rattin may be involved in STAT3 and Caspases-3 pathways. Therefore, application of Rattin or activation of its signaling pathways in the brain might be beneficial to the prevention of Aβ-related cognitive deficits.
Collapse
Affiliation(s)
- Zhao-Jun Wang
- Department of Neurobiology, Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
21
|
Gao X, Zheng CY, Qin GW, Tang XC, Zhang HY. S-52, a novel nootropic compound, protects against β-amyloid induced neuronal injury by attenuating mitochondrial dysfunction. J Neurosci Res 2012; 90:1981-8. [PMID: 22714678 DOI: 10.1002/jnr.23086] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2012] [Revised: 04/10/2012] [Accepted: 04/15/2012] [Indexed: 11/11/2022]
Abstract
Accumulating evidence suggests that β-amyloid (Aβ)-induced oxidative DNA damage and mitochondrial dysfunction may initiate and contribute to the progression of Alzheimer's disease (AD). This study evaluated the neuroprotective effects of S-52, a novel nootropic compound, on Aβ-induced mitochondrial failure. In an established paradigm of moderate cellular injury induced by Aβ, S-52 was observed to attenuate the toxicity of Aβ to energy metabolism, mitochondrial membrane structure, and key enzymes in the electron transport chain and tricarboxylic acid cycle. In addition, S-52 also effectively inhibited reactive oxygen species accumulation dose dependently not only in Aβ-harmed cells but also in unharmed, normal cells. The role of S-52 as a scavenger of free radicals is involved in the antioxidative effect of this compound. The beneficial effects on mitochondria and oxidative stress extend the neuroprotective effects of S-52. The present study provides crucial information for better understanding the beneficial profiles of this compound and discovering novel potential drug candidates for AD therapy.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | | | | | | | |
Collapse
|
22
|
Wang ZJ, Zhou B, Mao WW, Yin M. Overexpression of 5-lipoxygenase increases the neuronal vulnerability of PC12 cells to Aβ₄₂. YAKUGAKU ZASSHI 2012; 131:1843-53. [PMID: 22129883 DOI: 10.1248/yakushi.131.1843] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
5-Lipoxygenase (5-LOX), which is believed to be a major source of oxidative stress, participates in somatostatin-receptor transmembrane signaling in the central nervous system. We used the Tet-On inducible expression system in PC12 cells to obtain cell lines with reproducible, stable 5-LOX expression levels to study its function. Cell apoptosis rates induced by Aβ(42) were determined using an apo-BrdDU kit. Lipid peroxide, antioxidant enzyme, and caspase-3 activities were evaluated with respective commercial kits. The expression of 5-LOX, bcl-2, and bax were detected by immunoblotting. A subclone of PC18 with Tet-On inducible expression of 5-LOX was selected from PC12 transfectants. Expression of 5-LOX had no significant inhibitory effect on the cell viability of the PC18 clone. In contrast, compared with the control group, the cell viability of clone PC18 was significantly reduced after the induction of 5-LOX during Aβ exposure. The differences in cell viability before and after the induction of 5-LOX during Aβ insult were significantly offset by AA861. Overexpression of 5-LOX only slightly improved the activities of superoxide dismutase (SOD). The levels of intracellular peroxides, SOD and caspase-3 activity, and Bax expression were significantly upregulated, and the levels of glutathione peroxidase and catalase were downregulated correspondingly in clone PC18 during Aβ exposure. These results indicate that constitutive expression of 5-LOX is not detrimental per se, but overexpression of 5-LOX may become problematic during Aβ exposure.
Collapse
Affiliation(s)
- Ze-Jian Wang
- Shanghai Jiaotong University School of Pharmacy, Shanghai, P R China
| | | | | | | |
Collapse
|
23
|
Frago LM, Baquedano E, Argente J, Chowen JA. Neuroprotective actions of ghrelin and growth hormone secretagogues. Front Mol Neurosci 2011; 4:23. [PMID: 21994488 PMCID: PMC3182030 DOI: 10.3389/fnmol.2011.00023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/29/2011] [Indexed: 11/21/2022] Open
Abstract
The brain incorporates and coordinates information based on the hormonal environment, receiving information from peripheral tissues through the circulation. Although it was initially thought that hormones only acted on the hypothalamus to perform endocrine functions, it is now known that they in fact exert diverse actions on many different brain regions including the hypothalamus. Ghrelin is a gastric hormone that stimulates growth hormone secretion and food intake to regulate energy homeostasis and body weight by binding to its receptor, growth hormone secretagogues–GH secretagogue-receptor, which is most highly expressed in the pituitary and hypothalamus. In addition, ghrelin has effects on learning and memory, reward and motivation, anxiety, and depression, and could be a potential therapeutic agent in neurodegenerative disorders where excitotoxic neuronal cell death and inflammatory processes are involved.
Collapse
Affiliation(s)
- Laura M Frago
- Department of Pediatrics, Universidad Autónoma de Madrid Madrid, Spain
| | | | | | | |
Collapse
|
24
|
Kisiswa L, Albon J, Morgan JE, Wride MA. Cellular inhibitor of apoptosis (cIAP1) is down-regulated during Retinal ganglion cell (RGC) maturation. Exp Eye Res 2010; 91:739-47. [DOI: 10.1016/j.exer.2010.08.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 08/20/2010] [Accepted: 08/26/2010] [Indexed: 10/19/2022]
|
25
|
Sharifi AM, Hoda FE, Noor AM. Studying the effect of LPS on cytotoxicity and apoptosis in PC12 neuronal cells: Role of Bax, Bcl-2, and Caspase-3 protein expression. Toxicol Mech Methods 2010; 20:316-20. [DOI: 10.3109/15376516.2010.486420] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Biswas SC, Zhang Y, Iyirhiaro G, Willett RT, Rodriguez Gonzalez Y, Cregan SP, Slack RS, Park DS, Greene LA. Sertad1 plays an essential role in developmental and pathological neuron death. J Neurosci 2010; 30:3973-82. [PMID: 20237268 PMCID: PMC2861041 DOI: 10.1523/jneurosci.6421-09.2010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Accepted: 01/25/2010] [Indexed: 02/07/2023] Open
Abstract
Developmental and pathological death of neurons requires activation of a defined pathway of cell cycle proteins. However, it is unclear how this pathway is regulated and whether it is relevant in vivo. A screen for transcripts robustly induced in cultured neurons by DNA damage identified Sertad1, a Cdk4 (cyclin-dependent kinase 4) activator. Sertad1 is also induced in neurons by nerve growth factor (NGF) deprivation and Abeta (beta-amyloid). RNA interference-mediated downregulation of Sertad1 protects neurons in all three death models. Studies of NGF withdrawal indicate that Sertad1 is required to initiate the apoptotic cell cycle pathway since its knockdown blocks subsequent pathway events. Finally, we find that Sertad1 expression is required for developmental neuronal death in the cerebral cortex. Sertad1 thus appears to be essential for neuron death in trophic support deprivation in vitro and in vivo and in models of DNA damage and Alzheimer's disease. It may therefore be a suitable target for therapeutic intervention.
Collapse
Affiliation(s)
- Subhas C. Biswas
- Department of Pathology and Cell Biology and Taub Center for Alzheimer's Disease Research and
| | - Yi Zhang
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Grace Iyirhiaro
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - Ryan T. Willett
- Department of Pharmacology, Columbia University College of Physicians and Surgeons, New York, New York 10032
| | | | - Sean P. Cregan
- Robarts Research Institute and Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada, and
| | - Ruth S. Slack
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | - David S. Park
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 609-735, Korea
| | - Lloyd A. Greene
- Department of Pathology and Cell Biology and Taub Center for Alzheimer's Disease Research and
| |
Collapse
|
27
|
Sharifi AM, Eslami H, Larijani B, Davoodi J. Involvement of caspase-8, -9, and -3 in high glucose-induced apoptosis in PC12 cells. Neurosci Lett 2009; 459:47-51. [DOI: 10.1016/j.neulet.2009.03.100] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/17/2009] [Accepted: 03/30/2009] [Indexed: 01/06/2023]
|
28
|
Delgado-Rubín A, Chowen JA, Argente J, Frago LM. Growth hormone-releasing peptide 6 protection of hypothalamic neurons from glutamate excitotoxicity is caspase independent and not mediated by insulin-like growth factor I. Eur J Neurosci 2009; 29:2115-24. [DOI: 10.1111/j.1460-9568.2009.06770.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
29
|
Pivtoraiko VN, Stone SL, Roth KA, Shacka JJ. Oxidative stress and autophagy in the regulation of lysosome-dependent neuron death. Antioxid Redox Signal 2009; 11:481-96. [PMID: 18764739 PMCID: PMC2933567 DOI: 10.1089/ars.2008.2263] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Lysosomes critically regulate the pH-dependent catabolism of extracellular and intracellular macromolecules delivered from the endocytic/heterophagy and autophagy pathways, respectively. The importance of lysosomes to cell survival is underscored not only by their unique ability effectively to degrade metalloproteins and oxidatively damaged macromolecules, but also by the distinct potential for induction of both caspase-dependent and -independent cell death with a compromise in the integrity of lysosome function. Oxidative stress and free radical damage play a principal role in cell death induced by lysosome dysfunction and may be linked to several upstream and downstream stimuli, including alterations in the autophagy degradation pathway, inhibition of lysosome enzyme function, and lysosome membrane damage. Neurons are sensitive to lysosome dysfunction, and the contribution of oxidative stress and free radical damage to lysosome dysfunction may contribute to the etiology of neurodegenerative disease. This review provides a broad overview of lysosome function and explores the contribution of oxidative stress and autophagy to lysosome dysfunction-induced neuron death. Putative signaling pathways that either induce lysosome dysfunction or result from lysosome dysfunction or both, and the role of oxidative stress, free radical damage, and lysosome dysfunction in pediatric lysosomal storage disorders (neuronal ceroid lipofuscinoses or NCL/Batten disease) and in Alzheimer's disease are emphasized.
Collapse
Affiliation(s)
- Violetta N Pivtoraiko
- Department of Pathology, Neuropathology Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | |
Collapse
|
30
|
Excitatory tonus is required for the survival of granule cell precursors during postnatal development within the cerebellum. Neuroscience 2008; 158:1364-77. [PMID: 19056468 DOI: 10.1016/j.neuroscience.2008.10.062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Revised: 10/23/2008] [Accepted: 10/29/2008] [Indexed: 11/23/2022]
Abstract
In addition to protective effects within the adult central nervous system (CNS), in vivo application of N-methyl-d-aspartate inhibitors such as (+) MK-801 have been shown to induce neurodegeneration in neonatal rats over a specific developmental period. We have systematically mapped the nature and extent of MK-801-induced neurodegeneration throughout the neonatal murine brain in order to genetically dissect the mechanism of these effects. Highest levels of MK-801-induced neurodegeneration are seen in the cerebellar external germinal layer; while mature neurons of the internal granule layer are unaffected by MK-801 treatment. Examination of external germinal layer neurons by electron microscopy, terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling (TUNEL) and bromodeoxyuridine (BrdU) labeling, and caspase-3 activation demonstrate that these neurons die through the process of programmed cell death soon after they exit from the cell cycle. Significantly, ablation of caspase-3 activity completely inhibited the MK-801-induced (and developmental) programmed cell death of external germinal layer neurons. Similar to caspase-3, inactivation of muscarinic acetylcholine receptors in vivo using scopolamine inhibited MK-801-induced programmed cell death. By contrast, the GABAergic agonist diazepam, either alone or in combination with MK-801, enhanced programmed cell death within external germinal layer neurons. These data demonstrate that, in vivo, cerebellar granule neurons undergo a dramatic change in intracellular signaling in response to molecules present in the local cellular milieu during their first 24 h following exit from the cell cycle.
Collapse
|
31
|
Tang XQ, Yang CT, Chen J, Yin WL, Tian SW, Hu B, Feng JQ, Li YJ. Effect of hydrogen sulphide on beta-amyloid-induced damage in PC12 cells. Clin Exp Pharmacol Physiol 2007; 35:180-6. [PMID: 17892504 DOI: 10.1111/j.1440-1681.2007.04799.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Hydrogen sulphide (H(2)S) is a well-known cytotoxic gas. Recently, H(2)S has been shown to protect neurons against oxidative stress caused by glutamate, peroxynitrite and HOCl. Considerably lower H(2)S levels have been reported in the brain of Alzheimer's disease (AD) patients with accumulation of beta-amyloid (A beta). 2. The aim of present study was to explore the cytoprotection by H(2)S against A beta(25-35)-induced apoptosis and the molecular mechanisms underlying this effect in PC12 cells. 3. Our findings indicated that A beta(25-35) significantly reduced cell viability and induced apoptosis of PC12 cells, along with dissipation of the mitochondrial membrane potential (MMP) and overproduction of reactive oxygen species (ROS). 4. Sodium hydrosulphide (NaHS), an H(2)S donor, protected PC12 cells against A beta(25-35)-induced cytotoxicity and apoptosis not only by reducing the loss of MMP, but also by attenuating the increase in intracellular ROS. 5. The results of the present study suggest that the cytoprotection by H(2)S is related to the preservation of MMP and attenuation of A beta(25-35)-induced intracellular ROS generation. These findings could significantly advance therapeutic approaches to the neurodegenerative diseases that are associated with oxidative stress, such as AD.
Collapse
Affiliation(s)
- Xiao-Qing Tang
- Department of Pharmacology, School of Pharmaceutical Sciences, Central South University, Changsha, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cheng A, Shin-ya K, Wan R, Tang SC, Miura T, Tang H, Khatri R, Gleichman M, Ouyang X, Liu D, Park HR, Chiang JY, Mattson MP. Telomere protection mechanisms change during neurogenesis and neuronal maturation: newly generated neurons are hypersensitive to telomere and DNA damage. J Neurosci 2007; 27:3722-33. [PMID: 17409236 PMCID: PMC6672411 DOI: 10.1523/jneurosci.0590-07.2007] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Telomeres are DNA-protein complexes at the ends of eukaryotic chromosomes that play an important role in maintaining the integrity of the genome. In proliferative stem cells and cancer cells, telomere length is maintained by telomerase, and telomere structure and functions are regulated by telomere-associated proteins. We find that telomerase levels are high in embryonic cortical neural progenitor cells (NPCs) and low in newly generated neurons (NGNs) and mature neurons (MNs). In contrast, telomere repeat-binding factor 2 (TRF2) expression is undetectable in early brain development in vivo and in cultured NPCs and is expressed at progressively higher levels as NPCs cease proliferation and differentiate into postmitotic neurons. The telomere-disrupting agent telomestatin induces a DNA damage response and apoptosis in NGNs (which have low levels of TRF2 and telomerase), whereas NPCs (which have high levels of telomerase) and MNs (which have high levels of TRF2) are resistant to telomere damage. Overexpression of TRF2 in NGNs protects them against death induced by telomestatin and other DNA-damaging agents. Knockdown of TRF2 expression in MNs and knock-out of telomerase reverse transcriptase in NPCs increased their sensitivity to telomere- and DNA-damaging agents but did not affect the vulnerability of NGNs. These findings suggest that TRF2 and telomerase function as distinct telomere protection mechanisms during the processes of neurogenesis and neuronal maturation and that hypersensitivity of NGNs to telomere damage results from relative deficiencies of both telomerase and TRF2.
Collapse
Affiliation(s)
- Aiwu Cheng
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Kazuo Shin-ya
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, 113-8656, Japan
| | - Ruiqian Wan
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Sung-chun Tang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Stroke Center, Neurology Department, National Taiwan University Hospital, Taipei, Taiwan, ROC 100
| | - Takumi Miura
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Hongyang Tang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Rina Khatri
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Marc Gleichman
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Xin Ouyang
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Dong Liu
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
| | - Hae-Rong Park
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo, 113-8656, Japan
| | - Jeffrey Y. Chiang
- Experimental Immunology Branch, National Cancer Institute, Bethesda, Maryland 20892, and
| | - Mark P. Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program, Baltimore, Maryland 21224
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
33
|
Zhang S, Zhang Z, Sandhu G, Ma X, Yang X, Geiger JD, Kong J. Evidence of oxidative stress-induced BNIP3 expression in amyloid beta neurotoxicity. Brain Res 2007; 1138:221-30. [PMID: 17274962 DOI: 10.1016/j.brainres.2006.12.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Revised: 12/25/2006] [Accepted: 12/27/2006] [Indexed: 11/16/2022]
Abstract
The formation of Abeta and its subsequent deposition in senile plaques are considered to be initial events that lead to a cascade of pathological changes in AD. Mediators of Abeta-induced oxidative stress are known to cause oxidative damage to macromolecules. However, the molecular mechanisms by which Abeta-induced oxidative stress leads to neuronal cell death are not fully understood. Here we show that Abeta-induced oxidative stress activates the pro-death gene BNIP3. Abeta treatment results in mitochondrial dysfunction, accumulation of reactive oxygen species, and subsequent expression of BNIP3 in rat primary cortical neurons. Pretreatment with antioxidants abolished Abeta-induced BNIP3 expression and attenuated cell death, demonstrating the role of oxidative stress in BNIP3 induction. Abeta-induced BNIP3 expression may be mediated by hypoxia-inducible factor-1 (HIF-1) because Abeta-treatment induced accumulation and nuclear translocation of HIF-1 and knock-down of HIF-1 by RNAi inhibited BNIP3 expression. Finally, knockdown of BNIP3 reduced Abeta-induced neuronal death. Together, these results suggest a potential pathological role of BNIP3 in the etiology of AD.
Collapse
Affiliation(s)
- Surong Zhang
- Department of Human Anatomy and Cell Science, University of Manitoba Faculty of Medicine, 730 William Avenue, Winnipeg, Manitoba, Canada R3E 0W3
| | | | | | | | | | | | | |
Collapse
|
34
|
Posse de Chaves EI. Sphingolipids in apoptosis, survival and regeneration in the nervous system. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2006; 1758:1995-2015. [PMID: 17084809 DOI: 10.1016/j.bbamem.2006.09.018] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 09/20/2006] [Accepted: 09/21/2006] [Indexed: 12/27/2022]
Abstract
Simple sphingolipids such as ceramide, sphingosine and sphingosine 1-phosphate are key regulators of diverse cellular functions. Their roles in the nervous system are supported by extensive evidence derived primarily from studies in cultured cells. More recently animal studies and studies with human samples have revealed the importance of ceramide and its metabolites in the development and progression of neurodegenerative disorders. The roles of sphingolipids in neurons and glial cells are complex, cell dependent, and many times contradictory. In this review I will summarize the effects elicited by ceramide and ceramide metabolites in cells of the nervous system, in particular those effects related to cell survival and death, emphasizing the molecular mechanisms involved. I also discuss recent evidence for the implication of sphingolipids in the development and progression of certain dementias.
Collapse
Affiliation(s)
- Elena I Posse de Chaves
- Centre for Alzheimer and Neurodegenerative Research, Signal Transduction Research Group and Department of Pharmacology, University of Alberta, Edmonton, Alberta, Canada T6G 2H7.
| |
Collapse
|
35
|
Niimura M, Takagi N, Takagi K, Mizutani R, Ishihara N, Matsumoto K, Funakoshi H, Nakamura T, Takeo S. Prevention of apoptosis-inducing factor translocation is a possible mechanism for protective effects of hepatocyte growth factor against neuronal cell death in the hippocampus after transient forebrain ischemia. J Cereb Blood Flow Metab 2006; 26:1354-65. [PMID: 16511502 DOI: 10.1038/sj.jcbfm.9600287] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepatocyte growth factor (HGF) is one of the prospective agents for therapy against a variety of neurologic and neurodegenerative disorders, although the precise mechanisms for the effect of HGF remain to be elucidated. We showed that treatment with HGF protected hippocampal cornu ammonis (CA) subregion 1 neurons from apoptotic cell death after transient forebrain ischemia. Accumulating evidence indicates that ischemia-induced neuronal damage occurs via caspase-independent pathways. In the present study, we focused on the localization of apoptosis-inducing factor (AIF), which is an important protein in the signal-transduction system through caspase-independent pathways, to investigate the possible mechanism for the protective effect of HGF after transient forebrain ischemia. Hepatocyte growth factor attenuated the increase in the expression of AIF protein in the nucleus after transient forebrain ischemia. We further explored the upstream components of AIF translocation. Primary DNA damage induced by Ca(2+) influx and subsequent NO formation are thought to be the initial events for AIF translocation, which results in the subsequent DNA damage by AIF. Hepatocyte growth factor prevented the primary oxidative DNA damage, as was estimated by using anti-8-OHdG (8-hydroxy-2'-deoxyguanosine) antibody. Oxidative DNA damage after ischemia is known to lead to the activation of poly(ADP-ribose) polymerase (PARP) and p53, resulting in AIF translocation. Marked increases in the PAR polymer formation and the expression of p53 protein after ischemia were effectively prevented by HGF treatment. In the present study, we first showed that HGF was capable of preventing neuronal cell death by inhibiting the primary oxidative DNA damage and then preventing the activation of the PARP/p53/AIF pathway.
Collapse
Affiliation(s)
- Makiko Niimura
- Department of Molecular and Cellular Pharmacology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ramalho RM, Borralho PM, Castro RE, Solá S, Steer CJ, Rodrigues CMP. Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer's disease mutant neuroblastoma cells. J Neurochem 2006; 98:1610-8. [PMID: 16923170 DOI: 10.1111/j.1471-4159.2006.04007.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Early onset familial Alzheimer's disease (FAD) is linked to autosomal dominant mutations in the amyloid precursor protein (APP) and presenilin 1 and 2 (PS1 and PS2) genes. These are critical mediators of total amyloid beta-peptide (Abeta) production, inducing cell death through uncertain mechanisms. Tauroursodeoxycholic acid (TUDCA) modulates exogenous Abeta-induced apoptosis by interfering with E2F-1/p53/Bax. Here, we used mouse neuroblastoma cells that express either wild-type APP, APP with the Swedish mutation (APPswe), or double-mutated human APP and PS1 (APPswe/DeltaE9), all exhibiting increased Abeta production and aggregation. Cell viability was decreased in APPswe and APPswe/DeltaE9 but was partially reversed by z-VAD.fmk. Nuclear fragmentation and caspase 2, 6 and 8 activation were also readily detected. TUDCA reduced nuclear fragmentation as well as caspase 2 and 6, but not caspase 8 activities. p53 activity, and Bcl-2 and Bax changes, were also modulated by TUDCA. Overexpression of p53, but not mutant p53, in wild-type and mutant neuroblastoma cells was sufficient to induce apoptosis, which, in turn, was reduced by TUDCA. In addition, inhibition of the phosphatidylinositide 3'-OH kinase pathway reduced TUDCA protection against p53-induced apoptosis. In conclusion, FAD mutations are associated with the activation of classical apoptotic pathways. TUDCA reduces p53-induced apoptosis and modulates expression of Bcl-2 family.
Collapse
Affiliation(s)
- Rita M Ramalho
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Portugal
| | | | | | | | | | | |
Collapse
|
37
|
O'Driscoll C, Donovan M, Cotter TG. Analysis of apoptotic and survival mediators in the early post-natal and mature retina. Exp Eye Res 2006; 83:1482-92. [PMID: 17011550 DOI: 10.1016/j.exer.2006.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Revised: 08/17/2006] [Accepted: 08/19/2006] [Indexed: 11/24/2022]
Abstract
Apoptosis, a cellular process critical to retinal neurogenesis, has been implicated in several neurodegenerative disorders. As the retina matures the suppression of apoptosis occurs and the emphasis shifts towards survival. To identify the cellular changes that bring about this critical shift in the balance, we performed an expression analysis of pro- and anti-apoptotic mediators in the immature, post-natal day 6 (P6) and the post-mitotic adult P60 mouse retina. Laser capture microdissection (LCM) of the P6 and the P60 retina, followed by reverse transcriptase-polymerase chain reaction (RT-PCR) was employed to elucidate changes in the mRNA expression of Apaf-1, caspase-3 and caspase-9 in the individual retinal layers in the young and mature tissue. RT-PCR and Western blotting of whole P6 and P60 retinal preparations was carried out to determine changes in other caspases and key survival mediators at the mRNA and protein level, respectively. Our results demonstrate that each neuronal cell layer in the adult retina down-regulates the gene expression of Apaf-1 and caspase-3, and to a lesser extent, caspase-9. The protein expression levels of other executioner and initiator caspases are also reduced in the adult tissue. Interestingly, XIAP, a potent caspase inhibitor, increases in expression in the adult retina. Additionally, we demonstrate age-dependent increased expression and activation status of the components of the MAPK transduction cascade. Conversely, we observe decreased PI3-K and AKT expression and decreased activity of AKT (pAKT) in the adult retina. Furthermore, results from RNAi experiments demonstrate an additional mechanism of PI3-K regulation in photoreceptor cells. Our findings suggest that a survival strategy adopted by the post-mitotic retina involves a down-regulation of key pro-apoptotic factors concomitant with changes in expression and activation status of certain pro-survival mediators.
Collapse
Affiliation(s)
- Carolyn O'Driscoll
- Cell Development and Disease Laboratory, Biochemistry Department, Bioscience Research Institute, University College Cork, Cork, Ireland.
| | | | | |
Collapse
|
38
|
Gao X, Tang XC. Huperzine A attenuates mitochondrial dysfunction in beta-amyloid-treated PC12 cells by reducing oxygen free radicals accumulation and improving mitochondrial energy metabolism. J Neurosci Res 2006; 83:1048-57. [PMID: 16493671 DOI: 10.1002/jnr.20791] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
We observed previously that huperzine A (HupA), a selective acetylcholinesterase inhibitor, can counteract neuronal apoptosis and cell damage induced by several neurotoxic substances, and that this neuroprotective action somehow involves the mitochondria. We investigated the ability of HupA to reduce mitochondrial dysfunction in neuron-like rat pheochromocytoma (PC12) cells exposed in culture to the amyloid beta-peptide fragment 25-35 (Abeta(25-35)). After exposure to 1 microM Abeta(25-35) for various periods, cells exhibited a rapid decline of ATP levels and obvious disruption of mitochondrial membrane homeostasis and integrity as determined by characteristic morphologic alterations, reduced membrane potential, and decreased activity of ion transport proteins. In addition, Abeta(25-35) treatment also led to inhibition of key enzyme activities in the electron transport chain and the tricarboxylic acid cycle, as well as an increase of intracellular reactive oxygen species (ROS). Pre-incubation with HupA for 2 hr not only attenuated these signs of cellular stress caused by Abeta, but also enhanced ATP concentration and decreased ROS accumulation in unharmed normal cells. Those results indicate that HupA protects mitochondria against Abeta-induced damages, at least in part by inhibiting oxidative stress and improving energy metabolism, and that these protective effects reduce the apoptosis of neuronal cells exposed to this toxic peptide.
Collapse
Affiliation(s)
- Xin Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | | |
Collapse
|
39
|
Ayala-Grosso C, Ng G, Roy S, Robertson GS. Caspase-cleaved amyloid precursor protein in Alzheimer's disease. Brain Pathol 2006; 12:430-41. [PMID: 12408229 PMCID: PMC8095892 DOI: 10.1111/j.1750-3639.2002.tb00460.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Caspase-3 mediated cleavage of the amyloid precursor protein (APP) has been proposed as a putative mechanism underlying amyloidosis and neuronal cell death in Alzheimer's disease (AD). We utilized an antibody that selectively recognizes the neo epitope generated by caspase-3 mediated cleavage of APP (alphadeltaC(csp)-APP) to determine if this proteolytic event occurs in senile plaques in the inferior frontal gyrus and superior temporal gyrus of autopsied AD and age-matched control brains. Consistent with a role for caspase-3 activation in AD pathology, alphadeltaC(csp)-APP immunoreactivity colocalized with a subset of TUNEL-positive pyramidal neurons in AD brains. AlphadeltaC(csp)-APP immunoreactivity was found in neurons and glial cells, as well as in small- and medium-size particulate elements, resembling dystrophic terminals and condensed nuclei, respectively, in AD and age-matched control brains. There were a larger number of alphadeltaC(csp)-APP immunoreactive elements in the inferior frontal gyrus and superior temporal gyrus of subjects with AD pathology than age-matched controls. AlphadeltaC(csp)-APP immunoreactivity in small and medium size particulate elements were the main component colocalized with 30% of senile plaques in the inferior frontal gyrus and superior temporal gyrus of AD brains. In some control brains, alphadeltaC(csp)-APP immunoreactivity appeared to be associated with a clinical history of metabolic encephalopathy. Our results suggest that apoptosis contributes to cell death resulting from amyloidosis and plaque deposition in AD.
Collapse
|
40
|
Abstract
UNLABELLED Apoptosis, Golgi fragmentation and elevated ceramide levels occur in Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) neurons, lymphoblasts and fibroblasts. Our purpose was to examine whether apoptosis is the mechanism of cell death in JNCL. This was tested by analyzing caspase-dependent/independent pathways and autophagy, and caspase effects on ceramide and Golgi fragmentation. zVAD prevented caspase activation, but not all cell death. Inhibiting caspase-8 suppressed caspases more than inhibition of any other caspase. Inhibiting caspase-8/6 was synergistic. zVAD suppressed autophagy. 3-methyladenine suppressed caspase activation less than zVAD did. Blocking autophagy/caspase-8/or-6 was synergistic. Blocking autophagy/caspase-3/or-9 was not. Inhibiting caspase-9/3 suppressed autophagy. Golgi fragmentation was suppressed by zVAD, and blocked by CLN3. CLN3, not zVAD, prevented ceramide elevation. IN CONCLUSION caspase-dependent/independent apoptosis and autophagy occur caspase-dependent pathways initiate autophagy Golgi fragmentation results from apoptosis ceramide elevation is independent of caspases, and CLN3 blocks all cell death, prevents Golgi fragmentation and elevation of ceramide in JNCL.
Collapse
Affiliation(s)
- D A Persaud-Sawin
- Departments of Pediatrics and Neurobiology, Duke University Medical Center, MSRB, Research Drive, Box 2604, Durham, NC 27710, USA
| | | |
Collapse
|
41
|
García-Morales P, Gómez-Martínez A, Carrato A, Martínez-Lacaci I, Barberá VM, Soto JL, Carrasco-García E, Menéndez-Gutierrez MP, Castro-Galache MD, Ferragut JA, Saceda M. Histone deacetylase inhibitors induced caspase-independent apoptosis in human pancreatic adenocarcinoma cell lines. Mol Cancer Ther 2005; 4:1222-30. [PMID: 16093438 DOI: 10.1158/1535-7163.mct-04-0186] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The antitumor activity of the histone deacetylase inhibitors was tested in three well-characterized pancreatic adenocarcinoma cell lines, IMIM-PC-1, IMIM-PC-2, and RWP-1. These cell lines have been previously characterized in terms of their origin, the status of relevant molecular markers for this kind of tumor, resistance to other antineoplastic drugs, and expression of differentiation markers. In this study, we report that histone deacetylase inhibitors induce apoptosis in pancreatic cancer cell lines, independently of their intrinsic resistance to conventional antineoplastic agents. The histone deacetylase inhibitor-induced apoptosis is due to a serine protease-dependent and caspase-independent mechanism. Initially, histone deacetylase inhibitors increase Bax protein levels without affecting Bcl-2 levels. Consequently, the apoptosis-inducing factor (AIF) and Omi/HtrA2 are released from the mitochondria, with the subsequent induction of the apoptotic program. These phenomena require AIF relocalization into the nuclei to induce DNA fragmentation and a serine protease activity of Omi/HtrA2. These data, together with previous results from other cellular models bearing the multidrug resistance phenotype, suggest a possible role of the histone deacetylase inhibitors as antineoplastic agents for the treatment of human pancreatic adenocarcinoma.
Collapse
Affiliation(s)
- Pilar García-Morales
- Instituto de Biologia Molecular y Celular, Ed. Torregaitan, Universidad Miguel Hernandez, 03202 Elche (Alicante), Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Kögel D, Schomburg R, Copanaki E, Prehn JHM. Regulation of gene expression by the amyloid precursor protein: inhibition of the JNK/c-Jun pathway. Cell Death Differ 2005; 12:1-9. [PMID: 15592359 DOI: 10.1038/sj.cdd.4401495] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The amyloid precursor protein (APP) has been suggested to regulate gene expression. GeneChip analysis and in vitro kinase assays revealed potent APP-dependent repression of c-Jun, its target gene SPARC and reduced basal c-Jun N-terminal kinase (JNK) activity in PC12 cells overexpressing APP. UV-induced activation of the JNK signalling pathway and subsequent apoptosis were likewise reduced by APP and this effect could be mimicked by the indirect JNK inhibitor CEP-11004. Treatment with a gamma-secretase inhibitor did not affect APP-mediated downmodulation of the JNK signalling pathway, suggesting that the effects might be mediated via alpha-secretase processing of APP. In support of these data, overexpression of the Swedish mutant of APP did not inhibit SPARC expression, UV-induced JNK activation and cell death. Our data suggest an important physiological role of APP and alpha-secretase activity in the control of JNK/c-Jun signalling, target gene expression and cell death activation in response to cytotoxic stress.
Collapse
Affiliation(s)
- D Kögel
- Experimental Neurosurgery, Center for Neurology and Neurosurgery, Johann Wolfgang Goethe University Clinics, D-60590 Frankfurt, Germany.
| | | | | | | |
Collapse
|
43
|
Song MS, Saavedra L, de Chaves EIP. Apoptosis is secondary to non-apoptotic axonal degeneration in neurons exposed to Abeta in distal axons. Neurobiol Aging 2005; 27:1224-38. [PMID: 16122841 DOI: 10.1016/j.neurobiolaging.2005.06.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 06/09/2005] [Accepted: 06/10/2005] [Indexed: 11/26/2022]
Abstract
The goal of this study was to assess if neurons exposed to amyloid-beta peptide (Abeta) exclusively in distal axons, undergo apoptosis. This is relevant to the loss of cholinergic neurons in Alzheimer's disease. Using a three-compartmented culture system for rat sympathetic neurons, we demonstrate that exposure of axons to Abeta1-42 activates an independent destruction program in axons, which leads to nuclear apoptosis. Abeta-induced axonal degeneration does not involve local caspase activation, but causes caspase activation in cell bodies. Accordingly, inhibition of caspase activation blocks Abeta-induced apoptosis but not axonal degeneration. In agreement with previous suggestions that disruption of nerve growth factor (NGF)-mediated signaling might contribute to the loss of cholinergic neurons, we found that provision of NGF to cell bodies protects sympathetic neurons from Abeta-induced apoptosis. However, our data indicate that Abeta-induced axonal degeneration follows a mechanism different than that activated by NGF withdrawal. Only Abeta-induced axonal degeneration is prevented by the calpain inhibitor calpastatin and is insensitive to the inhibitor of the ubiquitin-proteasome system MG132. Importantly, inhibition of Abeta-induced axonal degeneration by calpastatin prevents nuclear apoptosis.
Collapse
Affiliation(s)
- Mee-Sook Song
- Centre for Alzheimer and Neurodegenerative Research, Signal Transduction Research Group and Department of Pharmacology, 928 Medical Science Building, Faculty of Medicine, University of Alberta, Edmonton, Alta., Canada T6G 2H7
| | | | | |
Collapse
|
44
|
Millet P, Lages CS, Haïk S, Nowak E, Allemand I, Granotier C, Boussin FD. Amyloid-beta peptide triggers Fas-independent apoptosis and differentiation of neural progenitor cells. Neurobiol Dis 2005; 19:57-65. [PMID: 15837561 DOI: 10.1016/j.nbd.2004.11.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 10/28/2004] [Accepted: 11/09/2004] [Indexed: 12/13/2022] Open
Abstract
Amyloid-beta peptide (A beta), derived from the amyloid-beta precursor protein (APP), plays a central role in the pathogenesis of Alzheimer's disease and induces neuronal apoptosis. Neural progenitor cells persist in the adult mammalian brain and continue to produce new neurons throughout the life. The aim of our study was to establish the effects of A beta on neural progenitor cells (NPC). We found that the neurotoxic peptide A beta 25-35 induced apoptosis of both neurons and NPC in wild-type (wt) primary cortical cultures derived from mouse embryos. Contrary to neurons, NPC were also subjected to apoptosis in response to A beta 25-35 in both fas-/- and Z-VAD/fmk (the broad-spectrum caspase inhibitor)-treated wt cortical cultures indicating that A beta triggers a Fas- and caspase-independent apoptotic pathway in NPC. Interestingly, we also show that A beta induces neurospheres adherence and NPC neuronal differentiation. Further studies are thus needed in order to understand the role of A beta effects on NPC in AD pathology. Understanding the mechanisms involved may also be essential for the development of new regenerative therapies in AD.
Collapse
Affiliation(s)
- Pascal Millet
- Laboratoire de Radiopathologie, DRR/DSV, CEA, IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Niikura T, Chiba T, Aiso S, Matsuoka M, Nishimoto I. Humanin: after the discovery. Mol Neurobiol 2005; 30:327-40. [PMID: 15655255 DOI: 10.1385/mn:30:3:327] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2004] [Accepted: 05/03/2004] [Indexed: 02/05/2023]
Abstract
Humanin (HN) is a novel neuroprotective factor that consists of 24 amino acid residues. HN suppresses neuronal cell death caused by Alzheimer's disease (AD)-specific insults, including both amyloid-beta (betaAbeta) peptides and familial AD-causative genes. Cerebrovascular smooth muscle cells are also protected from Abeta toxicity by HN, suggesting that HN affects both neuronal and non-neuronal cells when they are exposed to AD-related cytotoxicity. HN peptide exerts a neuroprotective effect through the cell surface via putative receptor(s). HN activates a cellular signaling cascade that intervenes (at least) in activation of c-Jun N-terminal kinase. The highly selective effect of HN on AD-relevant cell death indicates that HN is promising for AD therapy. Additionally, a recent study showed that intracellularly overexpressed HN suppressed mitochondria-mediated apoptosis by inhibiting Bax activity.
Collapse
Affiliation(s)
- Takako Niikura
- Department of Pharmacology, KEIO University School of Medicine, Medical Research Building, Tokyo 160-8582, Japan.
| | | | | | | | | |
Collapse
|
46
|
Spalding KL, Dharmarajan AM, Harvey AR. Caspase-independent retinal ganglion cell death after target ablation in the neonatal rat. Eur J Neurosci 2005; 21:33-45. [PMID: 15654841 DOI: 10.1111/j.1460-9568.2004.03826.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In neonatal rats, superior colliculus (SC) ablation results in a massive and rapid increase in retinal ganglion cell (RGC) death that peaks about 24 h post-lesion (PL). Naturally occurring cell death during normal development, and RGC death after axonal injury in neonatal and adult rats, has primarily been ascribed to apoptosis. Given that normal developmental cell death is reported to involve caspase 3 activation, and blocking caspase activity in adults reduces axotomy-induced death, we examined whether blocking caspases in vivo reduces RGC death after neonatal SC lesions. Neither general nor specific caspase inhibitors increased neonatal RGC survival 6 and 24 h PL. These inhibitors were, however, effective in blocking caspases in another well-defined in vitro apoptosis model, the corpus luteum. Caspase 3 protein and mRNA levels in retinas from normal and SC-lesioned neonatal rats were assessed 3, 6 and 24 h after SC removal using immunohistochemistry, western and northern blots and quantitative real-time polymerase chain reaction. Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labelling (TUNEL) was used to independently monitor retinal cell death. The polymerase chain reaction data showed a small but insignificant increase in caspase 3 mRNA in retinas 24 h PL. Western blot analysis did not reveal a significant shift to cleaved (activated) caspase 3 protein. There was a small increase in the number of cleaved caspase 3 immunolabelled cells in the ganglion cell layer 24 h PL but this represented only a fraction of the death revealed by TUNEL. Together, these data indicate that, unlike the situation in adults, most lesion-induced RGC death in neonatal rats occurs independently of caspase activation.
Collapse
Affiliation(s)
- Kirsty L Spalding
- School of Anatomy and Human Biology, The University of Western Australia, Crawley, WA, Australia.
| | | | | |
Collapse
|
47
|
|
48
|
Youn HJ, Kim HS, Jeon MH, Lee JH, Seo YJ, Lee YJ, Lee JH. Induction of caspase-independent apoptosis in H9c2 cardiomyocytes by adriamycin treatment. Mol Cell Biochem 2005; 270:13-9. [PMID: 15792349 DOI: 10.1007/s11010-005-2541-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The cardiotoxicity of adriamycin limits its clinical use as a powerful drug for solid tumors and malignant hematological disease. Although the precise mechanism by which it causes cardiac damage is not yet known, it has been suggested that apoptosis is the principal process in adriamycin-induced cardiomyopathy, which involves DNA fragmentation, cytochrome C release, and caspase activation. However, there has been no direct evidence for the critical involvement of caspase-3 in adriamycin-induced apoptosis. To determine the requirements for the activation of caspase-3 in adriamycin-treated cardiac cells, the effect of a caspase inhibitor on the survival of and apoptotic changes in H9c2 cells was examined. Exposure of H9c2 cells to adriamycin resulted in a time- and dose-dependent cell death, and the cleavage of pro-caspase-3 and of the nuclear protein poly (ADP'ribose) polymerase (PARP). However, neither the reduction of cell viability nor the characteristic morphological changes induced by adriamycin were prevented by pretreatment with the general caspase inhibitor z-VAD.FMK. In contrast, caspase inhibition effectively blocked the apoptosis induced by H202 in H9c2 cells, as determined by an MTT assay or microscopy. We also observed that p53 expression was increased by adriamycin, and this increase was not affected by the inhibition of caspase activity, suggesting a role for p53 in adriamycin-induced caspase-independent apoptosis in cardiac toxicity.
Collapse
Affiliation(s)
- Ho-Joong Youn
- Division of Cardiology, Department of Internal Medicine, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
49
|
Solá S, Castro RE, Laires PA, Steer CJ, Rodrigues CMP. Tauroursodeoxycholic acid prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-dependent signaling pathway. Mol Med 2005; 9:226-34. [PMID: 15208744 PMCID: PMC1430980 DOI: 10.2119/2003-00042.rodrigues] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tauroursodeoxycholic acid (TUDCA), an endogenous bile acid, modulates cell death by interrupting classic pathways of apoptosis. Amyloid-beta (Abeta) peptide has been implicated in the pathogenesis of Alzheimer's disease, where a significant loss of neuronal cells is thought to occur by apoptosis. In this study, we explored the cell death pathway and signaling mechanisms involved in Abeta-induced toxicity and further investigated the anti-apoptotic effect(s) of TUDCA. Our data show significant induction of apoptosis in isolated cortical neurons incubated with Abeta peptide. Apoptosis was associated with translocation of pro-apoptotic Bax to the mitochondria, followed by cytochrome c release, caspase activation, and DNA and nuclear fragmentation. In addition, there was almost immediate but weak activation of the serine/threonine protein kinase Akt. Inhibition of the phosphatidylinositide 3 prime-OH kinase (PI3K) pathway with wortmannin did not markedly affect Abeta-induced cell death, suggesting that this signaling pathway is not crucial for Abeta-mediated toxicity. Notably, co-incubation with TUDCA significantly modulated each of the Abeta-induced apoptotic events. Moreover, wortmannin decreased TUDCA protection against Abeta-induced apoptosis, reduced Akt phosphorylation, and increased Bax translocation to mitochondria. Together, these findings indicate that Abeta-induced apoptosis of cortical neurons proceeds through a Bax mitochondrial pathway. Further, the PI3K signaling cascade plays a role in regulating the anti-apoptotic effects of TUDCA.
Collapse
Affiliation(s)
- Susana Solá
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Portugal
| | - Rui E Castro
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Portugal
| | - Pedro A Laires
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Portugal
| | - Clifford J Steer
- Departments of Medicine, University of Minnesota Medical School, Minneapolis, Minnesota, USA
- Departments of Genetics, Cell Biology, and Development, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Cecília MP Rodrigues
- Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Portugal
- Address correspondence and reprint requests to Cecília MP Rodrigues, Centro de Patogénese Molecular, Faculty of Pharmacy, University of Lisbon, Lisbon 1600-083, Portugal. Phone: +351-21-794-6400; fax: +351-21-794-6491; e-mail:
| |
Collapse
|
50
|
Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F, Berry RW. Tau, tangles, and Alzheimer's disease. Biochim Biophys Acta Mol Basis Dis 2005; 1739:216-23. [PMID: 15615640 DOI: 10.1016/j.bbadis.2004.08.014] [Citation(s) in RCA: 300] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2004] [Accepted: 08/31/2004] [Indexed: 10/26/2022]
Abstract
Neurofibrillary tangles (NFT) are comprised of the microtubule-associated protein tau, in the form of filamentous aggregates. In addition to the well-known changes in phosphorylation state, tau undergoes multiple truncations and shifts in conformation as it transforms from an unfolded monomer to the structured polymer characteristic of NFT. Truncations at both the amino- and carboxy-termini directly influence the conformation into which the molecule folds, and hence the ability of tau to polymerize into fibrils. Certain of these truncations may be due to cleavage by caspases as part of the apoptotic cascade. In this review, we discuss evidence that strongly suggests that these truncations occur in an orderly pattern and directly influence the ability of tau to polymerize into filaments.
Collapse
Affiliation(s)
- Lester I Binder
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Avenue, Chicago, IL 60611, USA.
| | | | | | | |
Collapse
|