1
|
Wang X, Chen L, Wei J, Zheng H, Zhou N, Xu X, Deng X, Liu T, Zou Y. The immune system in cardiovascular diseases: from basic mechanisms to therapeutic implications. Signal Transduct Target Ther 2025; 10:166. [PMID: 40404619 PMCID: PMC12098830 DOI: 10.1038/s41392-025-02220-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/24/2025] Open
Abstract
Immune system plays a crucial role in the physiological and pathological regulation of the cardiovascular system. The exploration history and milestones of immune system in cardiovascular diseases (CVDs) have evolved from the initial discovery of chronic inflammation in atherosclerosis to large-scale clinical studies confirming the importance of anti-inflammatory therapy in treating CVDs. This progress has been facilitated by advancements in various technological approaches, including multi-omics analysis (single-cell sequencing, spatial transcriptome et al.) and significant improvements in immunotherapy techniques such as chimeric antigen receptor (CAR)-T cell therapy. Both innate and adaptive immunity holds a pivotal role in CVDs, involving Toll-like receptor (TLR) signaling pathway, nucleotide-binding oligomerization domain-containing proteins 1 and 2 (NOD1/2) signaling pathway, inflammasome signaling pathway, RNA and DNA sensing signaling pathway, as well as antibody-mediated and complement-dependent systems. Meanwhile, immune responses are simultaneously regulated by multi-level regulations in CVDs, including epigenetics (DNA, RNA, protein) and other key signaling pathways in CVDs, interactions among immune cells, and interactions between immune and cardiac or vascular cells. Remarkably, based on the progress in basic research on immune responses in the cardiovascular system, significant advancements have also been made in pre-clinical and clinical studies of immunotherapy. This review provides an overview of the role of immune system in the cardiovascular system, providing in-depth insights into the physiological and pathological regulation of immune responses in various CVDs, highlighting the impact of multi-level regulation of immune responses in CVDs. Finally, we also discuss pre-clinical and clinical strategies targeting the immune system and translational implications in CVDs.
Collapse
Affiliation(s)
- Xiaoyan Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Liming Chen
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Wei
- Central Diagnostics Laboratory, University Medical Center Utrecht, University Utrecht, Utrecht, The Netherlands
| | - Hao Zheng
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China
| | - Ning Zhou
- Department of Cardiovascular Medicine, Anzhen Hospital Affiliated to Capital Medical University, Beijing, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Deng
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Liu
- Jiangsu Provincial Key Laboratory of Critical Care Medicine and Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, China.
- Department of Biochemistry and Molecular Biology, School of Medicine, Southeast University, Jiangsu, Nanjing, China.
- State Key Laboratory of Respiratory Disease, Joint International Research Laboratory of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Allergy and Clinical Immunology, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
- State Key Laboratory of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
- Institutes of Advanced Medical Sciences and Huaihe Hospital, Henan University, Kaifeng, Henan, China.
| |
Collapse
|
2
|
Lim CC, Lim TS. Profiling the broad antibody diversity of lymphatic filariasis immune antibody repertoire by deep sequencing. Int J Biol Macromol 2025; 290:140037. [PMID: 39828167 DOI: 10.1016/j.ijbiomac.2025.140037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/16/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Lymphatic filariasis is caused by infections of thread-like filarial worms, namely Wuchereria bancrofti, Brugia Malayi and Brugia timori. However, in-depth analysis of the antibody repertoire against Lymphatic filariasis is lacking. Using high-throughput sequencing of antibody repertoires, immunome analysis of IgG (LG) and IgM (LM) repertoires were studied. Despite significant differences between LG and LM in V(D)J gene usage, IGHV4-34, IGHV6-1, IGHD3-10 and IGHJ4 were preferred in both repertoires. The CDR3 in the LG repertoire showed a longer length than LM. Higher SHM level were observed in LG sequences and presence of oligoclonal sequences indicates the extent of clonal expansion. The prevalence of rare clonotypes in LM repertoire depicts the high clonal diversity when compared to LG repertoire. Monoclonal antibodies against closely related parasitic infections were present within the LG repertoire suggesting that immune repertoires may not be as exclusive and biased against the target infection as initially thought. The characterization of the immune repertoire can provide critical insight into the antibody response patterns in disease state, antibody generation process during infections and future antibody designs.
Collapse
Affiliation(s)
- Chia Chiu Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
3
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
4
|
Farnia M, Tahiri N. New generalized metric based on branch length distance to compare B cell lineage trees. Algorithms Mol Biol 2024; 19:22. [PMID: 39369262 PMCID: PMC11453055 DOI: 10.1186/s13015-024-00267-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
The B cell lineage tree encapsulates the successive phases of B cell differentiation and maturation, transitioning from hematopoietic stem cells to mature, antibody-secreting cells within the immune system. Mathematically, this lineage can be conceptualized as an evolutionary tree, where each node represents a distinct stage in B cell development, and the edges reflect the differentiation pathways. To compare these lineage trees, a rigorous mathematical metric is essential. Analyzing B cell lineage trees mathematically and quantifying changes in lineage attributes over time necessitates a comparison methodology capable of accurately assessing and measuring these changes. Addressing the intricacies of multiple B cell lineage tree comparisons, this study introduces a novel metric that enhances the precision of comparative analysis. This metric is formulated on principles of metric theory and evolutionary biology, quantifying the dissimilarities between lineage trees by measuring branch length distance and weight. By providing a framework for systematically classifying lineage trees, this metric facilitates the development of predictive models that are crucial for the creation of targeted immunotherapy and vaccines. To validate the effectiveness of this new metric, synthetic datasets that mimic the complexity and variability of real B cell lineage structures are employed. We demonstrated the ability of the new metric method to accurately capture the evolutionary nuances of B cell lineages.
Collapse
Affiliation(s)
- Mahsa Farnia
- Department of Computer Science, University of Sherbrooke, 2500, boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada
| | - Nadia Tahiri
- Department of Computer Science, University of Sherbrooke, 2500, boul. de l'Université, Sherbrooke, QC, J1K 2R1, Canada.
| |
Collapse
|
5
|
Deguine J, Xavier RJ. B cell tolerance and autoimmunity: Lessons from repertoires. J Exp Med 2024; 221:e20231314. [PMID: 39093312 PMCID: PMC11296956 DOI: 10.1084/jem.20231314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/18/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
Adaptive immune cell function is regulated by a highly diverse receptor recombined from variable germline-encoded segments that can recognize an almost unlimited array of epitopes. While this diversity enables the recognition of any pathogen, it also poses a risk of self-recognition, leading to autoimmunity. Many layers of regulation are present during both the generation and activation of B cells to prevent this phenomenon, although they are evidently imperfect. In recent years, our ability to analyze immune repertoires at scale has drastically increased, both through advances in sequencing and single-cell analyses. Here, we review the current knowledge on B cell repertoire analyses, focusing on their implication for autoimmunity. These studies demonstrate that a failure of tolerance occurs at multiple independent checkpoints in different autoimmune contexts, particularly during B cell maturation, plasmablast differentiation, and within germinal centers. These failures are marked by distinct repertoire features that may be used to identify disease- or patient-specific therapeutic approaches.
Collapse
Affiliation(s)
- Jacques Deguine
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
| | - Ramnik J Xavier
- Immunology Program, Broad Institute of Massachusetts Institute of Technology and Harvard , Cambridge, MA, USA
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School , Boston, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Schreiner S, Berghaus N, Poos AM, Raab MS, Besemer B, Fenk R, Goldschmidt H, Mai EK, Müller-Tidow C, Weinhold N, Hegenbart U, Huhn S, Schönland SO. Sequence diversity of kappa light chains from patients with AL amyloidosis and multiple myeloma. Amyloid 2024; 31:86-94. [PMID: 38206120 DOI: 10.1080/13506129.2023.2295221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND AL amyloidosis (AL) results from the misfolding of immunoglobulin light chains (IG LCs). Aim of this study was to comprehensively analyse kappa LC sequences from AL patients in comparison with multiple myeloma (MM). OBJECTIVE We analysed IGKV/IGKJ usage and associated organ tropism and IGKV1/D-33 in terms of mutational analysis and theoretical biochemical properties. MATERIAL AND METHODS cDNA and bulk RNA sequencing of the LCs of AL and MM patients. RESULTS We studied 41 AL and 83 MM patients showing that IGKV1 was most expressed among kappa AL and MM, with higher frequency in AL (80% vs. 53%, p = .002). IGKV3 was underrepresented in AL (10% vs. 30%, p = .014). IGKJ2 was more commonly used in AL than in MM (39% vs. 29%). Patients with IGKV1/D-33 were associated with heart involvement (75%, p = .024). IGKV1/D-33-segments of AL had a higher mutation count (AL = 12.0 vs. MM = 10.0). FR3 and CDR3 were most frequently mutated in both, with a median mutation count in FR3 being the highest (AL = 4.0; MM = 3.5) and one mutation hotspot (FR3 (83I)) for IGKV1/D-33/IGKJ2 was associated with cardiac involvement. CONCLUSION This study confirmed that germline usage has an influence on AL amyloidosis risk and organ involvement.
Collapse
Affiliation(s)
- Sarah Schreiner
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Natalie Berghaus
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexandra M Poos
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, Germany
| | - Marc S Raab
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - Britta Besemer
- Department of Internal Medicine II, Tübingen University Hospital, Tübingen, Germany
| | - Roland Fenk
- Department of Hematology, Oncology, and Clinical Immunology, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Hartmut Goldschmidt
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | - Elias K Mai
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, National Centre for Tumor Diseases (NCT), Heidelberg, Germany
| | | | - Niels Weinhold
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, Germany
| | - Ute Hegenbart
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| | - Stefanie Huhn
- Medical Department V, Heidelberg Myeloma Center, Heidelberg University Hospital, Germany
| | - Stefan O Schönland
- Medical Department V, Amyloidosis Center, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Li Q, An N, Liu C, Ding Y, Yang C, Ma X, Yang W, Piao J, Zhu J, Liu J. Single-cell BCR and transcriptome analysis reveals peripheral immune signatures in patients with thyroid-associated ophthalmopathy. Aging (Albany NY) 2024; 16:8217-8245. [PMID: 38728262 PMCID: PMC11132005 DOI: 10.18632/aging.205814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024]
Abstract
Thyroid-associated ophthalmopathy (TAO) is the most prevalent orbital disease in adults caused by an autoimmune disorder, which can lead to disfigurement and vision impairment. Developing effective treatments for this condition presents challenges due to our limited understanding of its underlying immune aberrations. In this study, we profiled the immune components in the peripheral blood of patients with TAO as well as healthy individuals, utilizing single-cell RNA sequencing and B-cell receptor repertoires (BCR) analysis. We observed a significant reduction in the proportions of regulatory B cells (Bregs) and type 2 conventional dendritic cells (DCs) in patients with TAO during the active phase. Conversely, there was a significant increase in the proportion of type 1 DCs. Further analysis of cell differentiation trajectory revealed potential impairment in the transition of B cells towards Breg phenotype during the active phase of TAO. Besides, the activation process of TAO appeared to involve inflammation and immune dysfunction, as indicated by the dynamic changes in the activities of key regulators. The abnormalities in the peripheral immune system, such as the reduced capacity of Bregs to suppress inflammation, were primarily driven by the enhanced interaction among Breg, DCs, and monocytes (i.e., CD22-PTPRC and BTLA-TNFRSF14). Collectively, our findings offer a comprehensive insight into the molecular regulation and cellular reconfiguration during the active phase of TAO at the single-cell level, in order to explore the pathogenesis of TAO and provide new ideas for the future treatment of TAO.
Collapse
Affiliation(s)
- Qian Li
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Ningyu An
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Cheng Liu
- Medical Science Research Institution of Ningxia Hui Autonomous Region, Medical Sci-Tech Research Center of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Yungang Ding
- Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong, P.R. China
| | - Cuixia Yang
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Xiumei Ma
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Wei Yang
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Junfeng Piao
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
- Department of Ophthalmology, Guro Hospital, Korea University College of Medicine, Guro-gu, Seoul 152–703, South Korea
| | - Jinyan Zhu
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| | - Junxiu Liu
- Department of Ophthalmology, Peoples’ Hospital of Ningxia Hui Autonomous Region, The Third Affiliated Clinical College of Ningxia Medical University, Yinchuan, Ningxia, P.R. China
| |
Collapse
|
8
|
Lee HE, Cho AH, Hwang JH, Kim JW, Yang HR, Ryu T, Jung Y, Lee S. Development, High-Throughput Profiling, and Biopanning of a Large Phage Display Single-Domain Antibody Library. Int J Mol Sci 2024; 25:4791. [PMID: 38732011 PMCID: PMC11083953 DOI: 10.3390/ijms25094791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
Immunoglobulin G-based monoclonal antibodies (mAbs) have been effective in treating various diseases, but their large molecular size can limit their penetration of tissue and efficacy in multifactorial diseases, necessitating the exploration of alternative forms. In this study, we constructed a phage display library comprising single-domain antibodies (sdAbs; or "VHHs"), known for their small size and remarkable stability, using a total of 1.6 × 109 lymphocytes collected from 20 different alpacas, resulting in approximately 7.16 × 1010 colonies. To assess the quality of the constructed library, next-generation sequencing-based high-throughput profiling was performed, analyzing approximately 5.65 × 106 full-length VHH sequences, revealing 92% uniqueness and confirming the library's diverse composition. Systematic characterization of the library revealed multiple sdAbs with high affinity for three therapeutically relevant antigens. In conclusion, our alpaca sdAb phage display library provides a versatile resource for diagnostics and therapeutics. Furthermore, the library's vast natural VHH antibody repertoire offers insights for generating humanized synthetic sdAb libraries, further advancing sdAb-based therapeutics.
Collapse
Affiliation(s)
- Hee Eon Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ah Hyun Cho
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Jae Hyeon Hwang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ji Woong Kim
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Ha Rim Yang
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
| | - Taehoon Ryu
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Yushin Jung
- ATG Lifetech Inc., Seoul 08507, Republic of Korea; (T.R.); (Y.J.)
| | - Sukmook Lee
- Department of Biopharmaceutical Chemistry, Kookmin University, Seoul 02707, Republic of Korea; (H.E.L.); (A.H.C.); (J.H.H.); (J.W.K.); (H.R.Y.)
- Department of Applied Chemistry, Kookmin University, Seoul 02707, Republic of Korea
- Antibody Research Institute, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
9
|
Davies K, McLaren J. Destabilisation of T cell-dependent humoral immunity in sepsis. Clin Sci (Lond) 2024; 138:65-85. [PMID: 38197178 PMCID: PMC10781648 DOI: 10.1042/cs20230517] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/14/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Sepsis is a heterogeneous condition defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. For some, sepsis presents as a predominantly suppressive disorder, whilst others experience a pro-inflammatory condition which can culminate in a 'cytokine storm'. Frequently, patients experience signs of concurrent hyper-inflammation and immunosuppression, underpinning the difficulty in directing effective treatment. Although intensive care unit mortality rates have improved in recent years, one-third of discharged patients die within the following year. Half of post-sepsis deaths are due to exacerbation of pre-existing conditions, whilst half are due to complications arising from a deteriorated immune system. It has been suggested that the intense and dysregulated response to infection may induce irreversible metabolic reprogramming in immune cells. As a critical arm of immune protection in vertebrates, alterations to the adaptive immune system can have devastating repercussions. Indeed, a marked depletion of lymphocytes is observed in sepsis, correlating with increased rates of mortality. Such sepsis-induced lymphopenia has profound consequences on how T cells respond to infection but equally on the humoral immune response that is both elicited by B cells and supported by distinct CD4+ T follicular helper (TFH) cell subsets. The immunosuppressive state is further exacerbated by functional impairments to the remaining lymphocyte population, including the presence of cells expressing dysfunctional or exhausted phenotypes. This review will specifically focus on how sepsis destabilises the adaptive immune system, with a closer examination on how B cells and CD4+ TFH cells are affected by sepsis and the corresponding impact on humoral immunity.
Collapse
Affiliation(s)
- Kate Davies
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| | - James E. McLaren
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff CF14 4XN, U.K
| |
Collapse
|
10
|
Mai G, Zhang C, Lan C, Zhang J, Wang Y, Tang K, Tang J, Zeng J, Chen Y, Cheng P, Liu S, Long H, Wen Q, Li A, Liu X, Zhang R, Xu S, Liu L, Niu Y, Yang L, Wang Y, Yin D, Sun C, Chen YQ, Shen W, Zhang Z, Du X. Characterizing the dynamics of BCR repertoire from repeated influenza vaccination. Emerg Microbes Infect 2023; 12:2245931. [PMID: 37542407 PMCID: PMC10438862 DOI: 10.1080/22221751.2023.2245931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/12/2023] [Accepted: 08/03/2023] [Indexed: 08/06/2023]
Abstract
Yearly epidemics of seasonal influenza cause an enormous disease burden around the globe. An understanding of the rules behind the immune response with repeated vaccination still presents a significant challenge, which would be helpful for optimizing the vaccination strategy. In this study, 34 healthy volunteers with 16 vaccinated were recruited, and the dynamics of the BCR repertoire for consecutive vaccinations in two seasons were tracked. In terms of diversity, length, network, V and J gene segments usage, somatic hypermutation (SHM) rate and isotype, it was found that the overall changes were stronger in the acute phase of the first vaccination than the second vaccination. However, the V gene segments of IGHV4-39, IGHV3-9, IGHV3-7 and IGHV1-69 were amplified in the acute phase of the first vaccination, with IGHV3-7 dominant. On the other hand, for the second vaccination, the changes were dominated by IGHV1-69, with potential for coding broad neutralizing antibody. Additional analysis indicates that the application of V gene segment for IGHV3-7 in the acute phase of the first vaccination was due to the elevated usage of isotypes IgM and IgG3. While for IGHV1-69 in the second vaccination, it was contributed by isotypes IgG1 and IgG2. Finally, 41 public BCR clusters were identified in the vaccine group, with both IGHV3-7 and IGHV1-69 were involved and representative complementarity determining region 3 (CDR3) motifs were characterized. This study provides insights into the immune response dynamics following repeated influenza vaccination in humans and can inform universal vaccine design and vaccine strategies in the future.
Collapse
Affiliation(s)
- Guoqin Mai
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chi Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Chunhong Lan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Center for Precision Medicine, Guangdong Academy of Medical Sciences, Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
| | - Jie Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yuanyuan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Kang Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jing Tang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Jinfeng Zeng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yilin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peiwen Cheng
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuning Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Haoyu Long
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Qilan Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Aqin Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xuan Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Ruitong Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shuyang Xu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lin Liu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yanlan Niu
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Lan Yang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yihan Wang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Di Yin
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Caijun Sun
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Yao-Qing Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Wei Shen
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhenhai Zhang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Center for Precision Medicine, Guangdong Academy of Medical Sciences, Medical Research Institute, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, People’s Republic of China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, People’s Republic of China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, People’s Republic of China
| | - Xiangjun Du
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, People’s Republic of China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, People’s Republic of China
- Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Andreu-Sánchez S, Bourgonje AR, Vogl T, Kurilshikov A, Leviatan S, Ruiz-Moreno AJ, Hu S, Sinha T, Vich Vila A, Klompus S, Kalka IN, de Leeuw K, Arends S, Jonkers I, Withoff S, Brouwer E, Weinberger A, Wijmenga C, Segal E, Weersma RK, Fu J, Zhernakova A. Phage display sequencing reveals that genetic, environmental, and intrinsic factors influence variation of human antibody epitope repertoire. Immunity 2023; 56:1376-1392.e8. [PMID: 37164013 DOI: 10.1016/j.immuni.2023.04.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/13/2022] [Accepted: 04/06/2023] [Indexed: 05/12/2023]
Abstract
Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.
Collapse
Affiliation(s)
- Sergio Andreu-Sánchez
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arno R Bourgonje
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria; Center for Cancer Research, Medical University of Vienna, Wien, Austria.
| | - Alexander Kurilshikov
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sigal Leviatan
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Angel J Ruiz-Moreno
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shixian Hu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Trishla Sinha
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Arnau Vich Vila
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Shelley Klompus
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Iris N Kalka
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Karina de Leeuw
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suzanne Arends
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Iris Jonkers
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sebo Withoff
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Elisabeth Brouwer
- Department of Rheumatology and Clinical Immunology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Cisca Wijmenga
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Eran Segal
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel; Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Rinse K Weersma
- Department of Gastroenterology and Hepatology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Jingyuan Fu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alexandra Zhernakova
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands.
| |
Collapse
|
12
|
Jeusset L, Abdollahi N, Verny T, Armand M, De Septenville A, Davi F, Bernardes JS. ViCloD, an interactive web tool for visualizing B cell repertoires and analyzing intraclonal diversities: application to human B-cell tumors. NAR Genom Bioinform 2023; 5:lqad064. [PMID: 37388820 PMCID: PMC10304752 DOI: 10.1093/nargab/lqad064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/25/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023] Open
Abstract
High throughput sequencing of adaptive immune receptor repertoire (AIRR-seq) has provided numerous human immunoglobulin (IG) sequences allowing specific B cell receptor (BCR) studies such as the antigen-driven evolution of antibodies (soluble forms of the membrane-bound IG part of the BCR). AIRR-seq data allows researchers to examine intraclonal differences caused primarily by somatic hypermutations in IG genes and affinity maturation. Exploring this essential adaptive immunity process could help elucidate the generation of antibodies with high affinity or broadly neutralizing activities. Retracing their evolutionary history could also clarify how vaccines or pathogen exposition drive the humoral immune response, and unravel the clonal architecture of B cell tumors. Computational methods are necessary for large-scale analysis of AIRR-seq properties. However, there is no efficient and interactive tool for analyzing intraclonal diversity, permitting users to explore adaptive immune receptor repertoires in biological and clinical applications. Here we present ViCloD, a web server for large-scale visual analysis of repertoire clonality and intraclonal diversity. ViCloD uses preprocessed data in the format defined by the Adaptive Immune Receptor Repertoire (AIRR) Community. Then, it performs clonal grouping and evolutionary analyses, producing a collection of useful plots for clonal lineage inspection. The web server presents diverse functionalities, including repertoire navigation, clonal abundance analysis, and intraclonal evolutionary tree reconstruction. Users can download the analyzed data in different table formats and save the generated plots as images. ViCloD is a simple, versatile, and user-friendly tool that can help researchers and clinicians to analyze B cell intraclonal diversity. Moreover, its pipeline is optimized to process hundreds of thousands of sequences within a few minutes, allowing an efficient investigation of large and complex repertoires.
Collapse
Affiliation(s)
- Lucile Jeusset
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Paris, France
| | - Nika Abdollahi
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- IMGT, the international ImMunoGeneTics Information System, CNRS, Institute of Human Genetics, Montpellier University, France
| | - Thibaud Verny
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Ecole des Mines ParisTech, Paris, France
| | - Marine Armand
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Paris, France
| | | | - Frédéric Davi
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Paris, France
| | - Juliana Silva Bernardes
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| |
Collapse
|
13
|
Neuman H, Arrouasse J, Benjamini O, Mehr R, Kedmi M. B cell M-CLL clones retain selection against replacement mutations in their immunoglobulin gene framework regions. Front Oncol 2023; 13:1115361. [PMID: 37007112 PMCID: PMC10060519 DOI: 10.3389/fonc.2023.1115361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
IntroductionChronic lymphocytic leukemia (CLL) is the most common adult leukemia, accounting for 30–40% of all adult leukemias. The dynamics of B-lymphocyte CLL clones with mutated immunoglobulin heavy chain variable region (IgHV) genes in their tumor (M-CLL) can be studied using mutational lineage trees.MethodsHere, we used lineage tree-based analyses of somatic hypermutation (SHM) and selection in M-CLL clones, comparing the dominant (presumably malignant) clones of 15 CLL patients to their non-dominant (presumably normal) B cell clones, and to those of healthy control repertoires. This type of analysis, which was never previously published in CLL, yielded the following novel insights. ResultsCLL dominant clones undergo – or retain – more replacement mutations that alter amino acid properties such as charge or hydropathy. Although, as expected, CLL dominant clones undergo weaker selection for replacement mutations in the complementarity determining regions (CDRs) and against replacement mutations in the framework regions (FWRs) than non-dominant clones in the same patients or normal B cell clones in healthy controls, they surprisingly retain some of the latter selection in their FWRs. Finally, using machine learning, we show that even the non-dominant clones in CLL patients differ from healthy control clones in various features, most notably their expression of higher fractions of transition mutations. DiscussionOverall, CLL seems to be characterized by significant loosening – but not a complete loss – of the selection forces operating on B cell clones, and possibly also by changes in SHM mechanisms.
Collapse
Affiliation(s)
- Hadas Neuman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Jessica Arrouasse
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
| | - Ohad Benjamini
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ramit Mehr
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- *Correspondence: Ramit Mehr,
| | - Meirav Kedmi
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat Gan, Israel
- Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Ramat-Gan, Israel
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| |
Collapse
|
14
|
Shin J, Ham B, Seo JH, Lee SB, Park IA, Gong G, Kim SB, Lee HJ. Immune repertoire and responses to neoadjuvant TCHP therapy in HER2-positive breast cancer. Ther Adv Med Oncol 2023; 15:17588359231157654. [PMID: 36865681 PMCID: PMC9972050 DOI: 10.1177/17588359231157654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/30/2023] [Indexed: 03/02/2023] Open
Abstract
Background Despite the introduction of trastuzumab, pathologic complete response (pCR) is not attained in approximately 30-40% of Human epithelial growth factor receptor-2-positive breast cancer. Tumor-infiltrating lymphocytes (TIL) have been suggested as a predictive marker of treatment response, albeit not always effective. We investigated the relationship between trastuzumab, docetaxel, carboplatin, and pertuzumab (TCHP) treatment and immune repertoire as a treatment response predictor. Design In all, 35 cases were divided into two experimental groups: 10 and 25 cases in the preliminary and main experiments, respectively. In the preliminary experiment, the biopsy tissues before TCHP treatment and the surgical tissues after TCHP treatment were compared. In the main experiment, the biopsy tissues before TCHP treatment were compared according to the TCHP treatment response. Methods The T-cell repertoire for TRA, TRB, TRG, and TRD, and B-cell repertoire for immunoglobulin heavy, immunoglobulin kappa, and immunoglobulin lambda were evaluated. Whole transcriptome sequencing was also performed. Results In the preliminary experiment, the density and richness of the T-cell receptor (TCR) and B-cell receptor (BCR) repertoires decreased after treatment, regardless of TCHP response. In the main experiment, the Shannon's entropy index, density, and length of CDR3 of the TCR and BCR repertoires did not differ significantly in patients who did and did not achieve pCR. The pCR and non-pCR subgroups according to the level of TILs revealed that the non-pCR/lowTIL group had a higher proportion of low-frequency clones than the pCR/lowTIL group in TRA (non-pCR/lowTIL versus pCR/lowTIL, 0.01-0.1%, 63% versus 45.3%; <0.01%, 32.9% versus 51.8%, p < 0.001) and TRB (non-pCR/lowTIL versus pCR/lowTIL, 0.01-0.1%, 26.5% versus 14.7%; <0.01%, 72.0% versus 84.1%, p < 0.001). Conclusions The role of the diversity, richness, and density of the TCR and BCR repertoires as predictive markers for TCHP response was not identified. Compositions of low-frequency clones could be candidates for predictive factors of TCHP response; however, validation studies and further research are necessary.
Collapse
Affiliation(s)
- Junyoung Shin
- Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
| | | | | | - Sae Byul Lee
- Department of Breast Surgery, Asan Medical
Center, University of Ulsan College of Medicine, Seoul, Korea
| | - In Ah Park
- Department of Pathology, Kangbuk Samsung
Hospital, Seoul, Republic of Korea
| | - Gyungyub Gong
- Department of Pathology, Asan Medical Center,
University of Ulsan College of Medicine, Seoul, Korea
| | | | | |
Collapse
|
15
|
Abdollahi N, Jeusset L, de Septenville A, Davi F, Bernardes JS. Reconstructing B cell lineage trees with minimum spanning tree and genotype abundances. BMC Bioinformatics 2023; 24:70. [PMID: 36849917 PMCID: PMC9972711 DOI: 10.1186/s12859-022-05112-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 12/13/2022] [Indexed: 03/01/2023] Open
Abstract
B cell receptor (BCR) genes exposed to an antigen undergo somatic hypermutations and Darwinian antigen selection, generating a large BCR-antibody diversity. This process, known as B cell affinity maturation, increases antibody affinity, forming a specific B cell lineage that includes the unmutated ancestor and mutated variants. In a B cell lineage, cells with a higher antigen affinity will undergo clonal expansion, while those with a lower affinity will not proliferate and probably be eliminated. Therefore, cellular (genotype) abundance provides a valuable perspective on the ongoing evolutionary process. Phylogenetic tree inference is often used to reconstruct B cell lineage trees and represents the evolutionary dynamic of BCR affinity maturation. However, such methods should process B-cell population data derived from experimental sampling that might contain different cellular abundances. There are a few phylogenetic methods for tracing the evolutionary events occurring in B cell lineages; best-performing solutions are time-demanding and restricted to analysing a reduced number of sequences, while time-efficient methods do not consider cellular abundances. We propose ClonalTree, a low-complexity and accurate approach to construct B-cell lineage trees that incorporates genotype abundances into minimum spanning tree (MST) algorithms. Using both simulated and experimental data, we demonstrate that ClonalTree outperforms MST-based algorithms and achieves a comparable performance to a method that explores tree-generating space exhaustively. Furthermore, ClonalTree has a lower running time, being more convenient for building B-cell lineage trees from high-throughput BCR sequencing data, mainly in biomedical applications, where a lower computational time is appreciable. It is hundreds to thousands of times faster than exhaustive approaches, enabling the analysis of a large set of sequences within minutes or seconds and without loss of accuracy. The source code is freely available at github.com/julibinho/ClonalTree.
Collapse
Affiliation(s)
- Nika Abdollahi
- grid.462844.80000 0001 2308 1657UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne University, Paris, France ,grid.121334.60000 0001 2097 0141IMGT®, The International ImMunoGeneTics Information System, CNRS, Institute of Human Genetics, Montpellier University, Montpellier, France
| | - Lucile Jeusset
- grid.462844.80000 0001 2308 1657UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne University, Paris, France ,grid.462844.80000 0001 2308 1657AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Sorbonne University, Paris, France
| | - Anne de Septenville
- grid.462844.80000 0001 2308 1657AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Sorbonne University, Paris, France
| | - Frederic Davi
- grid.462844.80000 0001 2308 1657AP-HP, Hôpital Pitié-Salpêtrière, Department of Biological Hematology, Sorbonne University, Paris, France
| | - Juliana Silva Bernardes
- UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Sorbonne University, Paris, France.
| |
Collapse
|
16
|
Qu M, Liang Z, Chen Y, Wang Y, Wang H, Liu Z, Liu Y, Dong Y, Ge X, Li H, Zhou X. Antibodies Targeting the Cell Wall Induce Protection against Virulent Mycobacterium bovis Infection. Microbiol Spectr 2023; 11:e0343122. [PMID: 36847491 PMCID: PMC10100962 DOI: 10.1128/spectrum.03431-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 12/11/2022] [Indexed: 03/01/2023] Open
Abstract
Accumulating evidence indicates that antibodies can protect against some intracellular pathogens. Mycobacterium bovis is an intracellular bacterium, and its cell wall (CW) is essential for its virulence and survival. However, the questions of whether antibodies play a protective role in immunity against M. bovis infection and what effects antibodies specific to the CW of M. bovis have still remain unclear. Here, we report that antibodies targeting the CW of an isolated pathogenic M. bovis strain and that of an attenuated bacillus Calmette-Guérin (BCG) strain could induce protection against virulent M. bovis infection in vitro and in vivo. Further research found that the antibody-induced protection was mainly achieved by promoting Fc gamma receptor (FcγR)-mediated phagocytosis, inhibiting bacterial intracellular growth, and enhancing the fusion of phagosomes and lysosomes, and it also depended on T cells for its efficacy. Additionally, we analyzed and characterized the B-cell receptor (BCR) repertoires of CW-immunized mice via next-generation sequencing. CW immunization stimulated BCR changes in the complementarity determining region 3 (CDR3) isotype distribution, gene usage, and somatic hypermutation. Overall, our study validates the idea that antibodies targeting the CW induce protection against virulent M. bovis infection. This study highlights the importance of antibodies targeting the CW in the defense against tuberculosis. IMPORTANCE M. bovis is the causative agent of animal tuberculosis (TB) and human TB. Research on M. bovis is of great public health significance. Currently, TB vaccines are mainly aimed at eliciting protection by enhancement of cell-mediated immunity, and there are few studies on protective antibodies. This is the first report of protective antibodies against M. bovis infection, and the antibodies had both preventive and even therapeutic effects in an M. bovis infection mouse model. Additionally, we reveal the relationship between CDR3 gene diversity and the immune characteristics of the antibodies. These results will provide valuable advice for the rational development of TB vaccines.
Collapse
Affiliation(s)
- Mengjin Qu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zhengmin Liang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yulan Chen
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuanzhi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Haoran Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ziyi Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yiduo Liu
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuhui Dong
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xin Ge
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hao Li
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiangmei Zhou
- College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
17
|
Pennell M, Rodriguez OL, Watson CT, Greiff V. The evolutionary and functional significance of germline immunoglobulin gene variation. Trends Immunol 2023; 44:7-21. [PMID: 36470826 DOI: 10.1016/j.it.2022.11.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/07/2022] [Indexed: 12/04/2022]
Abstract
The recombination between immunoglobulin (IG) gene segments determines an individual's naïve antibody repertoire and, consequently, (auto)antigen recognition. Emerging evidence suggests that mammalian IG germline variation impacts humoral immune responses associated with vaccination, infection, and autoimmunity - from the molecular level of epitope specificity, up to profound changes in the architecture of antibody repertoires. These links between IG germline variants and immunophenotype raise the question on the evolutionary causes and consequences of diversity within IG loci. We discuss why the extreme diversity in IG loci remains a mystery, why resolving this is important for the design of more effective vaccines and therapeutics, and how recent evidence from multiple lines of inquiry may help us do so.
Collapse
Affiliation(s)
- Matt Pennell
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA; Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Oscar L Rodriguez
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
18
|
Abdollahi N, Jeusset L, De Septenville AL, Ripoche H, Davi F, Bernardes JS. A multi-objective based clustering for inferring BCR clonal lineages from high-throughput B cell repertoire data. PLoS Comput Biol 2022; 18:e1010411. [PMID: 36037250 PMCID: PMC9462827 DOI: 10.1371/journal.pcbi.1010411] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 09/09/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
The adaptive B cell response is driven by the expansion, somatic hypermutation, and selection of B cell clonal lineages. A high number of clonal lineages in a B cell population indicates a highly diverse repertoire, while clonal size distribution and sequence diversity reflect antigen selective pressure. Identifying clonal lineages is fundamental to many repertoire studies, including repertoire comparisons, clonal tracking, and statistical analysis. Several methods have been developed to group sequences from high-throughput B cell repertoire data. Current methods use clustering algorithms to group clonally-related sequences based on their similarities or distances. Such approaches create groups by optimizing a single objective that typically minimizes intra-clonal distances. However, optimizing several objective functions can be advantageous and boost the algorithm convergence rate. Here we propose MobiLLe, a new method based on multi-objective clustering. Our approach requires V(D)J annotations to obtain the initial groups and iteratively applies two objective functions that optimize cohesion and separation within clonal lineages simultaneously. We show that our method greatly improves clonal lineage grouping on simulated benchmarks with varied mutation rates compared to other tools. When applied to experimental repertoires generated from high-throughput sequencing, its clustering results are comparable to the most performing tools and can reproduce the results of previous publications. The method based on multi-objective clustering can accurately identify clonally-related antibody sequences and presents the lowest running time among state-of-art tools. All these features constitute an attractive option for repertoire analysis, particularly in the clinical context. MobiLLe can potentially help unravel the mechanisms involved in developing and evolving B cell malignancies. High-throughput sequencing can produce a large set of sequences and has profoundly changed our ability to study immune repertoires, particularly B cell receptor sequences. An important application is the analysis of the clonal lineage composition of B cell populations; it is the starting point of many immune repertoire studies, for instance, to differentiate between healthy individuals and those with lymphoid malignancies or other diseases. Several computational methods have been developed to identify clonal lineages from a set of B cell receptor sequences. Most of them apply clustering algorithms and optimize a single objective function that typically minimizes intra-clonal distances. However, optimizing several objective functions in parallel can benefit and increase the clustering performance and efficiency. We propose MobiLLe, the first multi-objective clonal lineage grouping method, which simultaneously optimizes two objective functions for minimizing intra-clonal diversity and maximizing inter-clonal differences. Our approach greatly improved clonal grouping on simulated benchmarks and performed comparably to the most powerful and recent methods on experimental samples. MobiLLe is computationally more efficient than existing tools and does not require any training process or hyper-parameter optimization. It can easily manage large-scale experimental repertoires, providing useful plots to help researchers detect clonally-related sequences in high-throughput B cell repertoire data.
Collapse
Affiliation(s)
- Nika Abdollahi
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Lucile Jeusset
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, UMR_S 1138 Department of Hematology, Paris, France
| | | | - Hugues Ripoche
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
| | - Frédéric Davi
- Sorbonne Université, AP-HP, Hôpital Pitié-Salpêtrière, UMR_S 1138 Department of Hematology, Paris, France
| | - Juliana Silva Bernardes
- Sorbonne Université, CNRS, UMR 7238, Laboratoire de Biologie Computationnelle et Quantitative, Paris, France
- * E-mail:
| |
Collapse
|
19
|
Weber CR, Rubio T, Wang L, Zhang W, Robert PA, Akbar R, Snapkov I, Wu J, Kuijjer ML, Tarazona S, Conesa A, Sandve GK, Liu X, Reddy ST, Greiff V. Reference-based comparison of adaptive immune receptor repertoires. CELL REPORTS METHODS 2022; 2:100269. [PMID: 36046619 PMCID: PMC9421535 DOI: 10.1016/j.crmeth.2022.100269] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 04/01/2022] [Accepted: 07/19/2022] [Indexed: 11/26/2022]
Abstract
B and T cell receptor (immune) repertoires can represent an individual's immune history. While current repertoire analysis methods aim to discriminate between health and disease states, they are typically based on only a limited number of parameters. Here, we introduce immuneREF: a quantitative multidimensional measure of adaptive immune repertoire (and transcriptome) similarity that allows interpretation of immune repertoire variation by relying on both repertoire features and cross-referencing of simulated and experimental datasets. To quantify immune repertoire similarity landscapes across health and disease, we applied immuneREF to >2,400 datasets from individuals with varying immune states (healthy, [autoimmune] disease, and infection). We discovered, in contrast to the current paradigm, that blood-derived immune repertoires of healthy and diseased individuals are highly similar for certain immune states, suggesting that repertoire changes to immune perturbations are less pronounced than previously thought. In conclusion, immuneREF enables the population-wide study of adaptive immune response similarity across immune states.
Collapse
Affiliation(s)
- Cédric R. Weber
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Teresa Rubio
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Longlong Wang
- BGI-Shenzhen, Shenzhen, China
- BGI-Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | - Wei Zhang
- BGI-Shenzhen, Shenzhen, China
- Department of Computer Science, City University of Hong Kong, Hong Kong, China
| | - Philippe A. Robert
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Igor Snapkov
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| | | | - Marieke L. Kuijjer
- Centre for Molecular Medicine Norway, University of Oslo, Oslo, Norway
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
- Leiden Center for Computational Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sonia Tarazona
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Ana Conesa
- Institute for Integrative Systems Biology, Spanish National Research Council, Valencia, Spain
| | - Geir K. Sandve
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Xiao Liu
- BGI-Shenzhen, Shenzhen, China
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department of Immunology and Oslo University Hospital, University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-Cell Receptor Repertoire Sequencing: Deeper Digging into the Mechanisms and Clinical Aspects of Immune-mediated Diseases. iScience 2022; 25:105002. [PMID: 36157582 PMCID: PMC9494237 DOI: 10.1016/j.isci.2022.105002] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
B cells play an essential role in adaptive immunity and are intimately correlated with pleiotropic immune-mediated diseases. Each B cell occupies a unique B cell receptor (BCR), and all BCRs throughout our body form “BCR repertoire.” With the development of sequencing technology and coupled bioinformatics, accumulating evidence indicates that BCR repertoire largely varies under physiological and pathological conditions. Therefore, comprehensive grasp of BCR repertoire will provide new insights into the pathogenesis of immune-mediated diseases and help exploit efficient diagnostic and treatment strategies. In this review, we start with an overview of BCR repertoire and related sequencing technologies and summarize their current applications in immune-mediated diseases. We also underscore the challenges of this emerging field and propose promising future directions in advancing BCR repertoire exploration.
Collapse
Affiliation(s)
- Bohao Zheng
- Wuxi School of Medicine, Jiangnan University, Wuxi, P. R. China
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yuqing Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Lin Chen
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Mengrui Wu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE and State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Corresponding author
| |
Collapse
|
21
|
Zhang L, Liu Y, Chen H, Cai W. Transcriptome analysis reveals sex-specific alterations in gonads of green mussel exposed to organophosphorus insecticide triazophos. Comp Biochem Physiol C Toxicol Pharmacol 2022; 257:109333. [PMID: 35351620 DOI: 10.1016/j.cbpc.2022.109333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/23/2022] [Indexed: 12/20/2022]
Abstract
Triazophos (TP) is a widespread pollutant in aquatic environments. A sex-specific metabolic response in green-lipped mussel Perna viridis to TP exposure was observed in our previous study, and this led us to investigate the mechanisms associated with its toxicity. P. viridis were subjected to chronic exposure (15 days) to TP at 35 μg/L to compare the sex-biased transcriptomic profiles in the gonads of male and female mussels. We identified 632 differentially expressed genes (DEGs) (348 up-regulated and 284 down-regulated) in TP-exposed males, and only 61 DEGs (9 up-regulated and 52 down-regulated) in TP-exposed females. Many DEGs were found to be involved in the nervous, reproductive endocrine, oxidative stress, and immune systems of P. viridis. Additionally, enzymatic activity analysis indicated TP induced neurotoxic effects and oxidative damage to the mussels. Our results demonstrate that the stress response and molecular mechanisms of TP toxicology are different between female and male mussels.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China.
| | - Yong Liu
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangzhou 510300, PR China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
22
|
Deng L, Yang F, Xu Z, Li F, Zhao J, Deng H, Jian Z, Lai S, Sun X, Zhu L. Characterization of B cell receptor H-CDR3 repertoire of spleen in PRV-infected mice. BMC Vet Res 2022; 18:228. [PMID: 35715782 PMCID: PMC9204683 DOI: 10.1186/s12917-022-03340-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/06/2022] [Indexed: 11/23/2022] Open
Abstract
Pseudorabies virus (PRV), also known as suid Alphaherpesvirus 1 (SuHV-1), which is one of the most devastating infectious pathogen of swine industry worldwide. Vaccination is the safest and most effective PRV prevention and control strategy. B cell receptor (BCR) is membrane-bound immunoglobulin located on the surface of B cells capable of specifically binding foreign antigens, which is one of the most important molecules regulating the proliferation and function of B cells. Here, to assess the molecular diversity of BCR H-CDR3 repertoire after different PRV strains infection, we detected the IGHV, IGHD, IGHJ genes usage and CDR3 sequence changes of mice spleen with PRV vaccine strain (Bartha-K61), variant strain (XJ) and mock infection by high-throughput sequencing. We found that PRV-infected groups shared partial BCR sequences, which are most likely to be PRV-specific BCR candidates. However, there were still differences in the IGHV genes usage as well as the combined usage of IGHV and IGHJ genes between the Bartha-K61 strain and XJ strain infection groups. In addition, the CDR3 sequences exhibited large differences in the types and lengths in PRV infection groups. Our study contributes to a better understanding of the host adaptive immune response to PRV infection and provides a theoretical basis for further research on novel and efficient PRV vaccines in the future.
Collapse
Affiliation(s)
- Lishuang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Fan Yang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhiwen Xu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China
| | - Fengqin Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- College of Animal Science, Xichang University, Xichang, China
| | - Jun Zhao
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijie Jian
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Siyuan Lai
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiangang Sun
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ling Zhu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, Chengdu, China.
| |
Collapse
|
23
|
Chen L, Pang P, Qi H, Yan K, Ren Y, Ma M, Cao R, Li H, Hu C, Li Y, Xia J, Lai D, Dong Y, Jiang H, Zhang H, Shan H, Tao S, Liu S. Evaluation of Spike Protein Epitopes by Assessing the Dynamics of Humoral Immune Responses in Moderate COVID-19. Front Immunol 2022; 13:770982. [PMID: 35371042 PMCID: PMC8971992 DOI: 10.3389/fimmu.2022.770982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 02/15/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The spike protein (S) of SARS-CoV-2 is a major target for diagnosis and vaccine development because of its essential role in viral infection and host immunity. Currently, time-dependent responses of humoral immune system against various S protein epitopes are poorly understood. In this study, enzyme-linked immunosorbent assay (ELISA), peptide microarray, and antibody binding epitope mapping (AbMap) techniques were used to systematically analyze the dynamic changes of humoral immune responses against the S protein in a small cohort of moderate COVID-19 patients who were hospitalized for approximately two months after symptom onset. Recombinant truncated S proteins, target S peptides, and random peptides were used as antigens in the analyses. The assays demonstrated the dynamic IgM- and IgG recognition and reactivity against various S protein epitopes with patient-dependent patterns. Comprehensive analysis of epitope distribution along the spike gene sequence and spatial structure of the homotrimer S protein demonstrated that most IgM- and IgG-reactive peptides were clustered into similar genomic regions and were located at accessible domains. Seven S peptides were generally recognized by IgG antibodies derived from serum samples of all COVID-19 patients. The dynamic immune recognition signals from these seven S peptides were comparable to those of the entire S protein or truncated S1 protein. This suggested that the humoral immune system recognized few conserved S protein epitopes in most COVID-19 patients during the entire duration of humoral immune response after symptom onset. Furthermore, in this cohort, individual patients demonstrated stable immune recognition to certain S protein epitopes throughout their hospitalization period. Therefore, the dynamic characteristics of humoral immune responses to S protein have provided valuable information for accurate diagnosis and immunotherapy of COVID-19 patients.
Collapse
Affiliation(s)
- Lingyun Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Pengfei Pang
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Huan Qi
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Keqiang Yan
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Yan Ren
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Mingliang Ma
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruyin Cao
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Hua Li
- State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Chuansheng Hu
- State Key laboratory for Oncogenes and Bio-ID Center, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Li
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Jun Xia
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Danyun Lai
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Yuliang Dong
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
| | - Hewei Jiang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hainan Zhang
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
| | - Hong Shan
- Center for Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| | - Shengce Tao
- Shanghai Center for Systems Biomedicine, Shanghai Jiaotong University, Shanghai, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| | - Siqi Liu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Department of Proteomics, Beijing Genomics Institution, Shenzhen, China
- *Correspondence: Siqi Liu, ; Shengce Tao, ; Hong Shan,
| |
Collapse
|
24
|
Wang P, Luo M, Zhou W, Jin X, Xu Z, Yan S, Li Y, Xu C, Cheng R, Huang Y, Lin X, Yao L, Nie H, Jiang Q. Global Characterization of Peripheral B Cells in Parkinson's Disease by Single-Cell RNA and BCR Sequencing. Front Immunol 2022; 13:814239. [PMID: 35250991 PMCID: PMC8888848 DOI: 10.3389/fimmu.2022.814239] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Immune system plays important roles in the pathogenesis of Parkinson’s disease (PD). However, the role of B cells in this complex disease are still not fully understood. B cells produce antibodies but can also regulate immune responses. In order to decode the relative contribution of peripheral B cell subtypes to the etiology of PD, we performed single cell RNA and BCR sequencing for 10,466 B cells from 8 PD patients and 6 age-matched healthy controls. We observed significant increased memory B cells and significant decreased naïve B cells in PD patients compared to healthy controls. Notably, we also discovered increased IgG and IgA isotypes and more frequent class switch recombination events in PD patients. Moreover, we identified preferential V and J gene segments of B cell receptors in PD patients as the evidence of convergent selection in PD. Finally, we found a marked clonal expanded memory B cell population in PD patients, up-regulating both MHC II genes (HLA-DRB5, HLA-DQA2 and HLA-DPB1) and transcription factor activator protein 1 (AP-1), suggesting that the antigen presentation capacity of B cells was enhanced and B cells were activated in PD patients. Overall, this study conducted a comprehensive analysis of peripheral B cell characteristics of PD patients, which provided novel insights into the humoral immune response in the pathogenesis of PD.
Collapse
Affiliation(s)
- Pingping Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhaochun Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Shi Yan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiqun Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yan Huang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiaoyu Lin
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Lifen Yao
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China.,Key Laboratory of Biological Big Data (Harbin Institute of Technology), Ministry of Education, Harbin, China
| |
Collapse
|
25
|
Li Y, Quan C, Xing W, Wang P, Gao J, Zhang Z, Jiang X, Ma C, Carr MJ, He Q, Gao L, Bi Y, Tang H, Shi W. Rapid humoral immune responses are required for recovery from haemorrhagic fever with renal syndrome patients. Emerg Microbes Infect 2021; 9:2303-2314. [PMID: 32990499 PMCID: PMC8284976 DOI: 10.1080/22221751.2020.1830717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Haemorrhagic fever with renal syndrome (HFRS) following Hantaan virus (HTNV) infection displays variable clinical signs. Humoral responses elicited during HTNV infections are considered important, however, this process remains poorly understood. Herein, we have investigated the phenotype, temporal dynamics, and characteristics of B-cell receptor (BCR) repertoire in an HFRS cohort. The serological profiles were characterized by a lowered expression level of nucleoprotein (NP)-specific antibody in severe cases. Importantly, B-cell subsets were activated and proliferated within the first two weeks of symptom onset and moderate cases reacted more rapidly. BCR analysis in the recovery phase revealed a dramatic increase in the immunoglobulin gene diversity which was more significantly progressed in moderate infections. In severe cases, B-cell-related transcription was lower with inflammatory sets overactivated. Taken together, these data suggest the clinical signs and disease recovery in HFRS patients were positively impacted by rapid and efficacious humoral responses.
Collapse
Affiliation(s)
- Yaoni Li
- Baoji Center Hospital, Baoji, People's Republic of China
| | - Chuansong Quan
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Weijia Xing
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Peihan Wang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Jiming Gao
- Institute of Immunology, Shandong First Medical University& Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Xiaolin Jiang
- Shandong Center for Disease Control and Prevention, Jinan, People's Republic of China
| | - Chuanmin Ma
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Michael J Carr
- National Virus Reference Laboratory, School of Medicine, University College Dublin, Dublin, Ireland.,Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Kita-ku, Japan
| | - Qian He
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Lei Gao
- School of Life Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Yuhai Bi
- Key Laboratory of Pathogenic Microbiology and Immunology, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Disease, Institute of Microbiology, Center for Influenza Research and Early Warning, Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Hua Tang
- Institute of Immunology, Shandong First Medical University& Shandong Academy of Medical Sciences, Taian, People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, People's Republic of China
| |
Collapse
|
26
|
Jin X, Zhou W, Luo M, Wang P, Xu Z, Ma K, Cao H, Xu C, Huang Y, Cheng R, Xiao L, Lin X, Pang F, Li Y, Nie H, Jiang Q. Global characterization of B cell receptor repertoire in COVID-19 patients by single-cell V(D)J sequencing. Brief Bioinform 2021; 22:6278607. [PMID: 34015809 PMCID: PMC8194558 DOI: 10.1093/bib/bbab192] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 04/14/2021] [Accepted: 04/26/2021] [Indexed: 12/18/2022] Open
Abstract
The world is facing a pandemic of Corona Virus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Adaptive immune responses are essential for SARS-CoV-2 virus clearance. Although a large body of studies have been conducted to investigate the immune mechanism in COVID-19 patients, we still lack a comprehensive understanding of the BCR repertoire in patients. In this study, we used the single-cell V(D)J sequencing to characterize the BCR repertoire across convalescent COVID-19 patients. We observed that the BCR diversity was significantly reduced in disease compared with healthy controls. And BCRs tend to skew toward different V gene segments in COVID-19 and healthy controls. The CDR3 sequences of heavy chain in clonal BCRs in patients were more convergent than that in healthy controls. In addition, we discovered increased IgG and IgA isotypes in the disease, including IgG1, IgG3 and IgA1. In all clonal BCRs, IgG isotypes had the most frequent class switch recombination events and the highest somatic hypermutation rate, especially IgG3. Moreover, we found that an IgG3 cluster from different clonal groups had the same IGHV, IGHJ and CDR3 sequences (IGHV4-4-CARLANTNQFYDSSSYLNAMDVW-IGHJ6). Overall, our study provides a comprehensive characterization of the BCR repertoire in COVID-19 patients, which contributes to the understanding of the mechanism for the immune response to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xiyun Jin
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Wenyang Zhou
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Meng Luo
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Pingping Wang
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Zhaochun Xu
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Kexin Ma
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Huimin Cao
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Chang Xu
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Yan Huang
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Rui Cheng
- Harbin Institute of Technology, China
| | - Lixing Xiao
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | | | | | - Yiqun Li
- Harbin Institute of Technology, China
| | - Huan Nie
- School of Life Science and Technology at the Harbin Institute of Technology, China
| | - Qinghua Jiang
- School of Life Science and Technology at the Harbin Institute of Technology, China
| |
Collapse
|
27
|
Wu M, Zhao M, Wu H, Lu Q. Immune repertoire: Revealing the "real-time" adaptive immune response in autoimmune diseases. Autoimmunity 2021; 54:61-75. [PMID: 33650440 DOI: 10.1080/08916934.2021.1887149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The diversity of the immune repertoire (IR) enables the human immune system to distinguish multifarious antigens (Ags) that humans may encounter throughout life. At the same time, bias or abnormalities in the IR also pay a contribution to the pathogenesis of autoimmune diseases. Rapid advancements in high-throughput sequencing (HTS) technology have ushered in a new era of immune studies, revealing novel molecules and pathways that might result in autoimmunity. In the field of IR, HTS can monitor the immune response status and identify disease-specific immune repertoires. In this review, we summarize updated progress on the mechanisms of the IR and current related studies on four autoimmune diseases, particularly focusing on systemic lupus erythematosus (SLE). These autoimmune diseases can exhibit slightly or significantly skewed IRs and provide novel insights that inform our comprehending of disease pathogenesis and provide potential targets for diagnosis and treatment.
Collapse
Affiliation(s)
- Meiyu Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Ming Zhao
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Haijing Wu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China.,Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| |
Collapse
|
28
|
Stadler T, Pybus OG, Stumpf MPH. Phylodynamics for cell biologists. Science 2021; 371:371/6526/eaah6266. [PMID: 33446527 DOI: 10.1126/science.aah6266] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 08/13/2020] [Indexed: 12/12/2022]
Abstract
Multicellular organisms are composed of cells connected by ancestry and descent from progenitor cells. The dynamics of cell birth, death, and inheritance within an organism give rise to the fundamental processes of development, differentiation, and cancer. Technical advances in molecular biology now allow us to study cellular composition, ancestry, and evolution at the resolution of individual cells within an organism or tissue. Here, we take a phylogenetic and phylodynamic approach to single-cell biology. We explain how "tree thinking" is important to the interpretation of the growing body of cell-level data and how ecological null models can benefit statistical hypothesis testing. Experimental progress in cell biology should be accompanied by theoretical developments if we are to exploit fully the dynamical information in single-cell data.
Collapse
Affiliation(s)
- T Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - O G Pybus
- Department of Zoology, University of Oxford, Oxford, UK.
| | - M P H Stumpf
- Melbourne Integrative Genomics, School of BioSciences and School of Mathematics and Statistics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
29
|
Krantsevich A, Tang C, MacCarthy T. Correlations in Somatic Hypermutation Between Sites in IGHV Genes Can Be Explained by Interactions Between AID and/or Polη Hotspots. Front Immunol 2021; 11:618409. [PMID: 33603748 PMCID: PMC7884765 DOI: 10.3389/fimmu.2020.618409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/18/2020] [Indexed: 12/27/2022] Open
Abstract
The somatic hypermutation (SHM) of Immunoglobulin (Ig) genes is a key process during antibody affinity maturation in B cells. The mutagenic enzyme activation induced deaminase (AID) is required for SHM and has a preference for WRC hotspots in DNA. Error-prone repair mechanisms acting downstream of AID introduce further mutations, including DNA polymerase eta (Polη), part of the non-canonical mismatch repair pathway (ncMMR), which preferentially generates mutations at WA hotspots. Previously proposed mechanistic models lead to a variety of predictions concerning interactions between hotspots, for example, how mutations in one hotspot will affect another hotspot. Using a large, high-quality, Ig repertoire sequencing dataset, we evaluated pairwise correlations between mutations site-by-site using an unbiased measure similar to mutual information which we termed “mutational association” (MA). Interactions are dominated by relatively strong correlations between nearby sites (short-range MAs), which can be almost entirely explained by interactions between overlapping hotspots for AID and/or Polη. We also found relatively weak dependencies between almost all sites throughout each gene (longer-range MAs), although these arise mostly as a statistical consequence of high pairwise mutation frequencies. The dominant short-range interactions are also highest within the most highly mutating IGHV sub-regions, such as the complementarity determining regions (CDRs), where there is a high hotspot density. Our results suggest that the hotspot preferences for AID and Polη have themselves evolved to allow for greater interactions between AID and/or Polη induced mutations.
Collapse
Affiliation(s)
- Artem Krantsevich
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Catherine Tang
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, United States.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
30
|
Hong B, Wang L, Huang C, Hong X, Liu A, Li Q, Liu Q, Su L, Wang L, Wang C, Ying T. Decrease of Clone Diversity in IgM Repertoires of HBV Chronically Infected Individuals With High Level of Viral Replication. Front Microbiol 2021; 11:615669. [PMID: 33519772 PMCID: PMC7843509 DOI: 10.3389/fmicb.2020.615669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 01/05/2023] Open
Abstract
High-throughput antibody sequencing allows in-depth insights into human antibody repertoires. To investigate the characteristics of antibody repertoires in patients with chronic HBV infection, we performed Illumina sequencing and IMGT/HighV-QUEST analysis of B lymphocytes from healthy adults and the HBV carriers with high or low level of viral replication. The comparative study revealed high levels of similarity between the IgM and IgG repertoires of the HBV carriers and the healthy adults, including the somatic mutations in V regions, the average CDR3 length, and the occurrence of junctional modifications. Nevertheless, the diversity of the unique clones decreased and some clusters of unique clones expanded in the IgM repertoire of chronic HBV carriers (CHB) compared with healthy adults (HH) and inactive HBV carriers (IHB). Such difference in clone diversity and expansion was not observed in the IgG repertoires of the three populations. More shared antibody clones were found between the IgM repertoires of IHB and HH than that found between CHB and HH (7079 clones vs. 2304 clones). Besides, the biased used IGHD genes were IGHD2-2 and IGHD3-3 in CHB library but were IGHD3-10 and IGHD3-22 in IHB and HH library. In contrast, for IgG repertories, the preferred used VDJ genes were similar in all the three populations. These results indicated that low level of serum HBV might not induce significant changes in BCR repertoires, and high level of HBV replication could have more impacts on IgM repertories than IgG repertoires. Taken together, our findings provide a better understanding of the antibody repertoires of HBV chronically infected individuals.
Collapse
Affiliation(s)
- Binbin Hong
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lizhi Wang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Chunlan Huang
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Xiaoju Hong
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Alan Liu
- Traditional Chinese Medicine Department, Rehabilitation Hospital, Quanzhou, China
| | - Qiulan Li
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Qiaoling Liu
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lili Su
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Lixing Wang
- Central Laboratory, Second Affiliated Hospital, Fujian Medical University, Quanzhou, China
| | - Chunyu Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianlei Ying
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
31
|
Rahumatullah A, Ahmad A, Noordin R, Lai JY, Baharudeen Z, Lim TS. Applicability of Brugia malayi immune antibody library for the isolation of a human recombinant monoclonal antibody to Echinococcus granulosus antigen B. Exp Parasitol 2020; 219:108029. [DOI: 10.1016/j.exppara.2020.108029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/03/2020] [Accepted: 10/16/2020] [Indexed: 12/18/2022]
|
32
|
Lai JY, Lim TS. Infectious disease antibodies for biomedical applications: A mini review of immune antibody phage library repertoire. Int J Biol Macromol 2020; 163:640-648. [PMID: 32650013 PMCID: PMC7340592 DOI: 10.1016/j.ijbiomac.2020.06.268] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/21/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022]
Abstract
Antibody phage display is regarded as a critical tool for the development of monoclonal antibodies for infectious diseases. The different classes of antibody libraries are classified based on the source of repertoire used to generate the libraries. Immune antibody libraries are generated from disease infected host or immunization against an infectious agent. Antibodies derived from immune libraries are distinct from those derived from naïve libraries as the host's in vivo immune mechanisms shape the antibody repertoire to yield high affinity antibodies. As the immune system is constantly evolving in accordance to the health state of an individual, immune libraries can offer more than just infection-specific antibodies but also antibodies derived from the memory B-cells much like naïve libraries. The combinatorial nature of the gene cloning process would give rise to a combination of natural and un-natural antibody gene pairings in the immune library. These factors have a profound impact on the coverage of immune antibody libraries to target both disease-specific and non-disease specific antigens. This review looks at the diverse nature of antibody responses for immune library generation and discusses the extended potential of a disease-specified immune library in the context of phage display.
Collapse
Affiliation(s)
- Jing Yi Lai
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, 11800 Penang, Malaysia; Analytical Biochemistry Research Centre, Universiti Sains Malaysia, 11800 Penang, Malaysia.
| |
Collapse
|
33
|
Abstract
Recent advancements in paired B-cell receptor sequencing technologies have accelerated the development of simpler, high-throughput pipelines for generating native antibody heavy and light chain pairs used to elucidate novel antibodies and provide insights into antibody response against pathogenic targets. These technologies involve single-cell isolation, using either single wells or emulsified droplets to maintain physical separation of individual cells, followed by sequencing. The development of novel single wells and emulsion-based workflows addresses key challenges by improving throughput of single-cell analyses, reducing method complexity, and integrating functional assays into existing workflows. Enabled by paired B-cell receptor sequencing, functional characterization of pathogen-specific antibodies reveals immunological insights beyond bulk sequencing.
Collapse
Affiliation(s)
- Nicholas C Curtis
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, NH 03755, United States
| |
Collapse
|
34
|
Abstract
Advances in reading, writing, and editing DNA are providing unprecedented insights into the complexity of immunological systems. This combination of systems and synthetic biology methods is enabling the quantitative and precise understanding of molecular recognition in adaptive immunity, thus providing a framework for reprogramming immune responses for translational medicine. In this review, we will highlight state-of-the-art methods such as immune repertoire sequencing, immunoinformatics, and immunogenomic engineering and their application toward adaptive immunity. We showcase novel and interdisciplinary approaches that have the promise of transforming the design and breadth of molecular and cellular immunotherapies.
Collapse
Affiliation(s)
- Lucia Csepregi
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Roy A. Ehling
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Bastian Wagner
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| | - Sai T. Reddy
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland
| |
Collapse
|
35
|
Foglierini M, Pappas L, Lanzavecchia A, Corti D, Perez L. AncesTree: An interactive immunoglobulin lineage tree visualizer. PLoS Comput Biol 2020; 16:e1007731. [PMID: 32649725 PMCID: PMC7375605 DOI: 10.1371/journal.pcbi.1007731] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/22/2020] [Accepted: 06/14/2020] [Indexed: 12/22/2022] Open
Abstract
High-throughput sequencing of human immunoglobulin genes allows analysis of antibody repertoires and the reconstruction of clonal lineage evolution. The study of antibodies (Abs) affinity maturation is of specific interest to understand the generation of Abs with high affinity or broadly neutralizing activities. Moreover, phylogenic analysis enables the identification of the key somatic mutations required to achieve optimal antigen binding. The Immcantation framework provides a start-to-finish set of analytical methods for high-throughput adaptive immune receptor repertoire sequencing (AIRR-Seq; Rep-Seq) data. Furthermore, Immcantation's Change-O package has developed IgPhyML, an algorithm designed to build specifically immunoglobulin (Ig) phylogenic trees. Meanwhile Phylip, an algorithm that has been originally developed for applications in ecology and macroevolution, can also be used for the phylogenic reconstruction of antibodies maturation pathway. To complement Ig lineages made by IgPhyML or Dnaml (Phylip), we developed AncesTree, a graphic user interface (GUI) that aims to give researchers the opportunity to interactively explore antibodies clonal evolution. AncesTree displays interactive immunoglobulins phylogenic tree, Ig related mutations and sequence alignments using additional information coming from specialized antibody tools. The GUI is a Java standalone application allowing interaction with Ig tree that can run under Windows, Linux and Mac OS.
Collapse
Affiliation(s)
- Mathilde Foglierini
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Leontios Pappas
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Antonio Lanzavecchia
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Davide Corti
- Humabs Biomed SA, Vir Biotechnology, Bellinzona, Switzerland
| | - Laurent Perez
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
36
|
Pélissier A, Akrout Y, Jahn K, Kuipers J, Klein U, Beerenwinkel N, Rodríguez Martínez M. Computational Model Reveals a Stochastic Mechanism behind Germinal Center Clonal Bursts. Cells 2020; 9:E1448. [PMID: 32532145 PMCID: PMC7349200 DOI: 10.3390/cells9061448] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
Germinal centers (GCs) are specialized compartments within the secondary lymphoid organs where B cells proliferate, differentiate, and mutate their antibody genes in response to the presence of foreign antigens. Through the GC lifespan, interclonal competition between B cells leads to increased affinity of the B cell receptors for antigens accompanied by a loss of clonal diversity, although the mechanisms underlying clonal dynamics are not completely understood. We present here a multi-scale quantitative model of the GC reaction that integrates an intracellular component, accounting for the genetic events that shape B cell differentiation, and an extracellular stochastic component, which accounts for the random cellular interactions within the GC. In addition, B cell receptors are represented as sequences of nucleotides that mature and diversify through somatic hypermutations. We exploit extensive experimental characterizations of the GC dynamics to parameterize our model, and visualize affinity maturation by means of evolutionary phylogenetic trees. Our explicit modeling of B cell maturation enables us to characterise the evolutionary processes and competition at the heart of the GC dynamics, and explains the emergence of clonal dominance as a result of initially small stochastic advantages in the affinity to antigen. Interestingly, a subset of the GC undergoes massive expansion of higher-affinity B cell variants (clonal bursts), leading to a loss of clonal diversity at a significantly faster rate than in GCs that do not exhibit clonal dominance. Our work contributes towards an in silico vaccine design, and has implications for the better understanding of the mechanisms underlying autoimmune disease and GC-derived lymphomas.
Collapse
Affiliation(s)
- Aurélien Pélissier
- IBM Research Zurich, 8803 Rüschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | | | - Katharina Jahn
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | - Jack Kuipers
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | - Ulf Klein
- Leeds Institute of Medical Research at St. James’s, University of Leeds, Leeds LS9 7TF, UK;
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058 Basel, Switzerland; (K.J.); (J.K.); (N.B.)
| | | |
Collapse
|
37
|
Abstract
Diversity indices are useful single-number metrics for characterizing a complex distribution of a set of attributes across a population of interest. The utility of these different metrics or sets of metrics depends on the context and application, and whether a predictive mechanistic model exists. In this topical review, we first summarize the relevant mathematical principles underlying heterogeneity in a large population, before outlining the various definitions of 'diversity' and providing examples of scientific topics in which its quantification plays an important role. We then review how diversity has been a ubiquitous concept across multiple fields, including ecology, immunology, cellular barcoding experiments, and socioeconomic studies. Since many of these applications involve sampling of populations, we also review how diversity in small samples is related to the diversity in the entire population. Features that arise in each of these applications are highlighted.
Collapse
Affiliation(s)
- Song Xu
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, United States of America
| | | | | |
Collapse
|
38
|
Zhang L, Sun W, Chen H, Zhang Z, Cai W. Transcriptomic Changes in Liver of Juvenile Cynoglossus semilaevis following Perfluorooctane Sulfonate Exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:556-564. [PMID: 31726483 DOI: 10.1002/etc.4633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/15/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Perfluorooctane sulfonate (PFOS) is an increasingly important environmental pollutant that is pervasive in the environment. A number of studies have focused on the toxicological effects of PFOS on model fish species (zebrafish and medaka), but little is known about the impact of PFOS on commercially important marine fish. Thus, the present study examined transcriptome responses to PFOS exposure in the liver of juvenile Cynoglossus semilaevis, an important farmed flatfish in China. Then, in response to PFOS challenges, 1695 and 5244 genes were identified as significantly increased and depressed, respectively. Significant expression changes were observed in immune-related genes (cytokine-cytokine receptor interaction, T-helper [Th]17 cell differentiation, and the chemokine nuclear factor-kappa B and T-cell receptor signaling pathways), indicating that immunotoxicity is a key aspect of the effects of PFOS on C. semilaevis. Exposure to PFOS also altered the gene expression levels of hormones (inhibin, insulin, somatostatin, and glucagon), which could lead to severe metabolic and endocrine dysfunction. As expected from previous studies, several phase I and phase II detoxification enzymes were significantly up-regulated, which could facilitate the biotransformation and detoxification of PFOS in C. semilaevis. The present study provides new insights into the molecular toxicology of PFOS in a commercially important fish species. Environ Toxicol Chem 2020;39:556-564. © 2019 SETAC.
Collapse
Affiliation(s)
- Linbao Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Wei Sun
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Haigang Chen
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Zhe Zhang
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| | - Wengui Cai
- Scientific Observing and Experimental Station of South China Sea Fishery Resources & Environments, Ministry of Agriculture, Guangzhou, People's Republic of China
- Key Laboratory of Fishery Ecology and Environment, Guangdong Province, Guangzhou, People's Republic of China
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, People's Republic of China
| |
Collapse
|
39
|
Fowler A, Galson JD, Trück J, Kelly DF, Lunter G. Inferring B cell specificity for vaccines using a Bayesian mixture model. BMC Genomics 2020; 21:176. [PMID: 32087698 PMCID: PMC7036227 DOI: 10.1186/s12864-020-6571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
Background Vaccines have greatly reduced the burden of infectious disease, ranking in their impact on global health second only after clean water. Most vaccines confer protection by the production of antibodies with binding affinity for the antigen, which is the main effector function of B cells. This results in short term changes in the B cell receptor (BCR) repertoire when an immune response is launched, and long term changes when immunity is conferred. Analysis of antibodies in serum is usually used to evaluate vaccine response, however this is limited and therefore the investigation of the BCR repertoire provides far more detail for the analysis of vaccine response. Results Here, we introduce a novel Bayesian model to describe the observed distribution of BCR sequences and the pattern of sharing across time and between individuals, with the goal to identify vaccine-specific BCRs. We use data from two studies to assess the model and estimate that we can identify vaccine-specific BCRs with 69% sensitivity. Conclusion Our results demonstrate that statistical modelling can capture patterns associated with vaccine response and identify vaccine specific B cells in a range of different data sets. Additionally, the B cells we identify as vaccine specific show greater levels of sequence similarity than expected, suggesting that there are additional signals of vaccine response, not currently considered, which could improve the identification of vaccine specific B cells.
Collapse
Affiliation(s)
- Anna Fowler
- Department of Biostatistics, University of Liverpool, Liverpool, UK.
| | - Jacob D Galson
- University Children's Hospital Zurich and the Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Johannes Trück
- University Children's Hospital Zurich and the Children's Research Center, University of Zurich, Zurich, Switzerland
| | - Dominic F Kelly
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford and the NIHR Oxford Biomedical Research Center, Oxford, UK
| | - Gerton Lunter
- MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
40
|
Durham ND, Agrawal A, Waltari E, Croote D, Zanini F, Fouch M, Davidson E, Smith O, Carabajal E, Pak JE, Doranz BJ, Robinson M, Sanz AM, Albornoz LL, Rosso F, Einav S, Quake SR, McCutcheon KM, Goo L. Broadly neutralizing human antibodies against dengue virus identified by single B cell transcriptomics. eLife 2019; 8:e52384. [PMID: 31820734 PMCID: PMC6927745 DOI: 10.7554/elife.52384] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 12/09/2019] [Indexed: 12/23/2022] Open
Abstract
Eliciting broadly neutralizing antibodies (bNAbs) against the four dengue virus serotypes (DENV1-4) that are spreading into new territories is an important goal of vaccine design. To define bNAb targets, we characterized 28 antibodies belonging to expanded and hypermutated clonal families identified by transcriptomic analysis of single plasmablasts from DENV-infected individuals. Among these, we identified J9 and J8, two somatically related bNAbs that potently neutralized DENV1-4. Mutagenesis studies showed that the major recognition determinants of these bNAbs are in E protein domain I, distinct from the only known class of human bNAbs against DENV with a well-defined epitope. B cell repertoire analysis from acute-phase peripheral blood suggested that J9 and J8 followed divergent somatic hypermutation pathways, and that a limited number of mutations was sufficient for neutralizing activity. Our study suggests multiple B cell evolutionary pathways leading to DENV bNAbs targeting a new epitope that can be exploited for vaccine design.
Collapse
Affiliation(s)
| | | | - Eric Waltari
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Derek Croote
- Department of BioengineeringStanford UniversityStanfordUnited States
| | - Fabio Zanini
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | | | - Olivia Smith
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - John E Pak
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | | | - Makeda Robinson
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Ana M Sanz
- Clinical Research CenterFundación Valle del LiliCaliColombia
| | - Ludwig L Albornoz
- Pathology and Laboratory DepartmentFundación Valle del LiliCaliColombia
| | - Fernando Rosso
- Clinical Research CenterFundación Valle del LiliCaliColombia
- Department of Internal Medicine, Division of Infectious DiseasesFundación Valle del LiliCaliColombia
| | - Shirit Einav
- Division of Infectious Diseases and Geographic Medicine, Department of MedicineStanford University School of MedicineStanfordUnited States
- Department of Microbiology and ImmunologyStanford University School of MedicineStanfordUnited States
| | - Stephen R Quake
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Department of BioengineeringStanford UniversityStanfordUnited States
| | | | - Leslie Goo
- Chan Zuckerberg BiohubSan FranciscoUnited States
- Vaccine and Infectious Disease DivisionFred Hutchinson Cancer Research CenterSeattleUnited States
| |
Collapse
|
41
|
Hoehn KB, Vander Heiden JA, Zhou JQ, Lunter G, Pybus OG, Kleinstein SH. Repertoire-wide phylogenetic models of B cell molecular evolution reveal evolutionary signatures of aging and vaccination. Proc Natl Acad Sci U S A 2019; 116:22664-22672. [PMID: 31636219 PMCID: PMC6842591 DOI: 10.1073/pnas.1906020116] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
In order to produce effective antibodies, B cells undergo rapid somatic hypermutation (SHM) and selection for binding affinity to antigen via a process called affinity maturation. The similarities between this process and evolution by natural selection have led many groups to use phylogenetic methods to characterize the development of immunological memory, vaccination, and other processes that depend on affinity maturation. However, these applications are limited by the fact that most phylogenetic models are designed to be applied to individual lineages comprising genetically diverse sequences, while B cell repertoires often consist of hundreds to thousands of separate low-diversity lineages. Further, several features of affinity maturation violate important assumptions in standard phylogenetic models. Here, we introduce a hierarchical phylogenetic framework that integrates information from all lineages in a repertoire to more precisely estimate model parameters while simultaneously incorporating the unique features of SHM. We demonstrate the power of this repertoire-wide approach by characterizing previously undescribed phenomena in affinity maturation. First, we find evidence consistent with age-related changes in SHM hot-spot targeting. Second, we identify a consistent relationship between increased tree length and signs of increased negative selection, apparent in the repertoires of recently vaccinated subjects and those without any known recent infections or vaccinations. This suggests that B cell lineages shift toward negative selection over time as a general feature of affinity maturation. Our study provides a framework for undertaking repertoire-wide phylogenetic testing of SHM hypotheses and provides a means of characterizing dynamics of mutation and selection during affinity maturation.
Collapse
Affiliation(s)
- Kenneth B Hoehn
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520
| | - Jason A Vander Heiden
- Department of Bioinformatics & Computational Biology, Genentech, South San Francisco, CA 94080
| | - Julian Q Zhou
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| | - Gerton Lunter
- Wellcome Centre for Human Genetics, Oxford OX3 7BN, United Kingdom
| | - Oliver G Pybus
- Department of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom
| | - Steven H Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520;
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511
| |
Collapse
|
42
|
Simon JS, Botero S, Simon SM. Sequencing the peripheral blood B and T cell repertoire - Quantifying robustness and limitations. J Immunol Methods 2018; 463:137-147. [PMID: 30312601 DOI: 10.1016/j.jim.2018.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/27/2022]
Abstract
The adaptive immune response generates a large repertoire of T cells with T-cell receptors (TCRalpha and TCRbeta) and B cells with immunoglobulins (Ig). The repertoire changes in response to antigen stimulation both through amplification of specific cells (clonal expansion) as well as somatic hypermutation of immunoglobulins. Alterations of the immune repertoire have been observed in response to acute disease, such as external pathogens, or chronic diseases, such as autoimmunity and cancer. Here we establish experimental and analytical protocols for quantifying the peripheral blood of healthy human individuals by profiling the immune repertoire for the Complementarity determining region 3 (CDR3) of the variable regions of TCRbeta (CDRβ3) and the IgG heavy chain (CDRH1, CDRH2, CDRH3). The results demonstrate that 40 ml of blood are sufficient to reliably capture the 10,000 most common TCRbeta and 1000 most common IgG and determine their relative frequency in the circulation. We conclude that by using an accessible sample size of human PBMC one is able to robustly monitor alterations in the immune repertoire.
Collapse
Affiliation(s)
- Joel S Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Sergio Botero
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States
| | - Sanford M Simon
- Laboratory of Cellular Biophysics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States.
| |
Collapse
|
43
|
Breden F, Watson CT. Using High-Throughput Sequencing to Characterize the Development of the Antibody Repertoire During Infections: A Case Study of HIV-1. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1053:245-263. [PMID: 29549643 DOI: 10.1007/978-3-319-72077-7_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
High throughput sequencing (HTS) approaches have only recently been applied to describing the antibody/B-cell repertoire in fine detail, but these data sets have already become critical to the design of vaccines and therapeutics, and monitoring of cancer immunotherapy. As a case study, we describe the potential and present limitations of HTS studies of the Ab repertoire during infection with HIV-1. Most of the present studies restrict their analyses to lineages of specific bnAbs. We discuss future initiatives to expand this type of analysis to more complete repertoires and to improve comparing and sharing of these Ab repertoire data across studies and institutions.
Collapse
Affiliation(s)
- Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Corey T Watson
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, USA
| |
Collapse
|
44
|
Krawczyk K, Kelm S, Kovaltsuk A, Galson JD, Kelly D, Trück J, Regep C, Leem J, Wong WK, Nowak J, Snowden J, Wright M, Starkie L, Scott-Tucker A, Shi J, Deane CM. Structurally Mapping Antibody Repertoires. Front Immunol 2018; 9:1698. [PMID: 30083160 PMCID: PMC6064724 DOI: 10.3389/fimmu.2018.01698] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/10/2018] [Indexed: 12/15/2022] Open
Abstract
Every human possesses millions of distinct antibodies. It is now possible to analyze this diversity via next-generation sequencing of immunoglobulin genes (Ig-seq). This technique produces large volume sequence snapshots of B-cell receptors that are indicative of the antibody repertoire. In this paper, we enrich these large-scale sequence datasets with structural information. Enriching a sequence with its structural data allows better approximation of many vital features, such as its binding site and specificity. Here, we describe the structural annotation of antibodies pipeline that maps the outputs of large Ig-seq experiments to known antibody structures. We demonstrate the viability of our protocol on five separate Ig-seq datasets covering ca. 35 m unique amino acid sequences from ca. 600 individuals. Despite the great theoretical diversity of antibodies, we find that the majority of sequences coming from such studies can be reliably mapped to an existing structure.
Collapse
Affiliation(s)
- Konrad Krawczyk
- Department of Statistics, Oxford University, Oxford, United Kingdom
| | | | | | - Jacob D Galson
- Division of Immunology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Dominic Kelly
- Division of Immunology, Children's Research Center, University Children's Hospital, Zurich, Switzerland
| | - Johannes Trück
- Division of Immunology, Children's Research Center, University Children's Hospital, Zurich, Switzerland.,Oxford Vaccine Group, University of Oxford, NIHR Oxford Biomedical Research Centre, Oxford, United Kingdom
| | - Cristian Regep
- Department of Statistics, Oxford University, Oxford, United Kingdom
| | - Jinwoo Leem
- Department of Statistics, Oxford University, Oxford, United Kingdom
| | - Wing K Wong
- Department of Statistics, Oxford University, Oxford, United Kingdom
| | - Jaroslaw Nowak
- Department of Statistics, Oxford University, Oxford, United Kingdom
| | | | | | | | | | - Jiye Shi
- UCB Pharma, Slough, United Kingdom
| | | |
Collapse
|
45
|
Dekkers G, Rispens T, Vidarsson G. Novel Concepts of Altered Immunoglobulin G Galactosylation in Autoimmune Diseases. Front Immunol 2018; 9:553. [PMID: 29616041 PMCID: PMC5867308 DOI: 10.3389/fimmu.2018.00553] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/05/2018] [Indexed: 12/22/2022] Open
Abstract
The composition of the conserved N297 glycan in immunoglobulin G (IgG) has been shown to affect antibody effector functions via C1q of the complement system and Fc gamma receptors (FcγR) on immune cells. Changes in the general levels of IgG-glycoforms, such as lowered total IgG galactosylation observed in many autoimmune diseases have been associated with elevated disease severity. Agalactosyslated IgG has therefore been regarded and classified by many as pro-inflammatory. However, and somewhat counterintuitively, agalactosylation has been shown by several groups to decrease affinity for FcγRIII and decrease C1q binding and downstream activation, which seems at odds with this proposed pro-inflammatory nature. In this review, we discuss these circumstances where altered IgG galactosylation/glycosylation is found. We propose a novel model based on these observations and current biochemical evidence, where the levels of IgG galactosylation found in the total bulk IgG affect the threshold required to achieve immune activation by autoantibodies through either C1q or FcγR. Although this model needs experimental verification, it is supported by several clinical observations and reconciles apparent discrepancies in the literature, and suggests a general mechanism in IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Gillian Dekkers
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands.,Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Theo Rispens
- Sanquin Research and Landsteiner Laboratory, Department of Immunopathology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Sanquin Research and Landsteiner Laboratory, Department of Experimental Immunohematology, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Abstract
Somatic assembly of T cell receptor and B cell receptor (BCR) genes produces a vast diversity of lymphocyte antigen recognition capacity. The advent of efficient high-throughput sequencing of lymphocyte antigen receptor genes has recently generated unprecedented opportunities for exploration of adaptive immune responses. With these opportunities have come significant challenges in understanding the analysis techniques that most accurately reflect underlying biological phenomena. In this regard, sample preparation and sequence analysis techniques, which have largely been borrowed and adapted from other fields, continue to evolve. Here, we review current methods and challenges of library preparation, sequencing and statistical analysis of lymphocyte receptor repertoire studies. We discuss the general steps in the process of immune repertoire generation including sample preparation, platforms available for sequencing, processing of sequencing data, measurable features of the immune repertoire, and the statistical tools that can be used for analysis and interpretation of the data. Because BCR analysis harbors additional complexities, such as immunoglobulin (Ig) (i.e., antibody) gene somatic hypermutation and class switch recombination, the emphasis of this review is on Ig/BCR sequence analysis.
Collapse
Affiliation(s)
- Neha Chaudhary
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Duane R. Wesemann
- Division of Rheumatology, Department of Medicine, Immunology and Allergy, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
47
|
Miho E, Yermanos A, Weber CR, Berger CT, Reddy ST, Greiff V. Computational Strategies for Dissecting the High-Dimensional Complexity of Adaptive Immune Repertoires. Front Immunol 2018; 9:224. [PMID: 29515569 PMCID: PMC5826328 DOI: 10.3389/fimmu.2018.00224] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 01/26/2018] [Indexed: 12/21/2022] Open
Abstract
The adaptive immune system recognizes antigens via an immense array of antigen-binding antibodies and T-cell receptors, the immune repertoire. The interrogation of immune repertoires is of high relevance for understanding the adaptive immune response in disease and infection (e.g., autoimmunity, cancer, HIV). Adaptive immune receptor repertoire sequencing (AIRR-seq) has driven the quantitative and molecular-level profiling of immune repertoires, thereby revealing the high-dimensional complexity of the immune receptor sequence landscape. Several methods for the computational and statistical analysis of large-scale AIRR-seq data have been developed to resolve immune repertoire complexity and to understand the dynamics of adaptive immunity. Here, we review the current research on (i) diversity, (ii) clustering and network, (iii) phylogenetic, and (iv) machine learning methods applied to dissect, quantify, and compare the architecture, evolution, and specificity of immune repertoires. We summarize outstanding questions in computational immunology and propose future directions for systems immunology toward coupling AIRR-seq with the computational discovery of immunotherapeutics, vaccines, and immunodiagnostics.
Collapse
Affiliation(s)
- Enkelejda Miho
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- aiNET GmbH, ETH Zürich, Basel, Switzerland
| | - Alexander Yermanos
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Cédric R. Weber
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Christoph T. Berger
- Department of Biomedicine, University Hospital Basel, Basel, Switzerland
- Department of Internal Medicine, Clinical Immunology, University Hospital Basel, Basel, Switzerland
| | - Sai T. Reddy
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Victor Greiff
- Department for Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Department of Immunology, University of Oslo, Oslo, Norway
| |
Collapse
|
48
|
Sandoval H, Kodali S, Wang J. Regulation of B cell fate, survival, and function by mitochondria and autophagy. Mitochondrion 2017; 41:58-65. [PMID: 29175010 DOI: 10.1016/j.mito.2017.11.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 11/13/2017] [Accepted: 11/19/2017] [Indexed: 01/31/2023]
Abstract
B cells are responsible for protective antibody production after differentiation into antibody-secreting cells during humoral immune responses. From early B cell development in the bone marrow, to their maturation in the periphery, activation in the germinal center, and differentiation into plasma cells or memory B cells, B cells display ever-changing functions and properties. Autophagy and mitochondria play important roles in B cell development, activation, and differentiation to accommodate the phenotypic and environmental changes encountered over the lifetime of the cell. Among their many functions, mitochondria and autophagy generate energy, mediate cell survival, and produce/eliminate reactive oxygen species that can serve as signal molecules to regulate differentiation. As B cells mature and differentiate into plasma or memory cells, both autophagic and mitochondrial functions undergo significant changes. In this review, we aim to provide an overview of the role of the autophagosome and mitochondria in regulating B cell fate, survival, and function. Moreover, we will discuss the interplay between these two highly metabolic organelles during B cell development, maturation, and differentiation.
Collapse
Affiliation(s)
- Hector Sandoval
- Immunobiology and Transplant Research Section, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Srikanth Kodali
- Immunobiology and Transplant Research Section, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Jin Wang
- Immunobiology and Transplant Research Section, Houston Methodist Research Institute, Houston, TX 77030, USA.
| |
Collapse
|
49
|
VanDuijn MM, Dekker LJ, van IJcken WFJ, Sillevis Smitt PAE, Luider TM. Immune Repertoire after Immunization As Seen by Next-Generation Sequencing and Proteomics. Front Immunol 2017; 8:1286. [PMID: 29085363 PMCID: PMC5650670 DOI: 10.3389/fimmu.2017.01286] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/25/2017] [Indexed: 01/24/2023] Open
Abstract
The immune system produces a diverse repertoire of immunoglobulins in response to foreign antigens. During B-cell development, VDJ recombination and somatic mutations generate diversity, whereas selection processes remove it. Using both proteomic and NGS approaches, we characterized the immune repertoires in groups of rats after immunization with purified antigens. Proteomics and NGS data on the repertoire are in qualitative agreement, but did show quantitative differences that may relate to differences between the biological niches that were sampled for these approaches. Both methods contributed complementary information in the characterization of the immune repertoire. It was found that the immune repertoires resulting from each antigen had many similarities that allowed samples to cluster together, and that mutated immunoglobulin peptides were shared among animals with a response to the same antigen significantly more than for different antigens. However, the number of shared sequences decreased in a log-linear fashion relative to the number of animals that share them, which may affect future applications. A phylogenetic analysis on the NGS reads showed that reads from different individuals immunized with the same antigen populated distinct branches of the phylogram, an indication that the repertoire had converged. Also, similar mutation patterns were found in branches of the phylogenetic tree that were associated with antigen-specific immunoglobulins through proteomics data. Thus, data from different analysis methods and different experimental platforms show that the immunoglobulin repertoires of immunized animals have overlapping and converging features. With additional research, this may enable interesting applications in biotechnology and clinical diagnostics.
Collapse
Affiliation(s)
| | | | | | | | - Theo M Luider
- Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| |
Collapse
|
50
|
Abstract
The past several years have seen an explosion in development of applications for the CRISPR-Cas9 system, from efficient genome editing, to high-throughput screening, to recruitment of a range of DNA and chromatin-modifying enzymes. While homology-directed repair (HDR) coupled with Cas9 nuclease cleavage has been used with great success to repair and re-write genomes, recently developed base-editing systems present a useful orthogonal strategy to engineer nucleotide substitutions. Base editing relies on recruitment of cytidine deaminases to introduce changes (rather than double-stranded breaks and donor templates) and offers potential improvements in efficiency while limiting damage and simplifying the delivery of editing machinery. At the same time, these systems enable novel mutagenesis strategies to introduce sequence diversity for engineering and discovery. Here, we review the different base-editing platforms, including their deaminase recruitment strategies and editing outcomes, and compare them to other CRISPR genome-editing technologies. Additionally, we discuss how these systems have been applied in therapeutic, engineering, and research settings. Lastly, we explore future directions of this emerging technology.
Collapse
|