1
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Unleashing the pharmacological potential of taste receptors in reproductive processes beyond their gustatory role. Steroids 2025; 217:109603. [PMID: 40154931 DOI: 10.1016/j.steroids.2025.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025]
Abstract
Traditionally, taste receptors (TRs) have been understood to reside within the taste buds on the tongue, serving as initiators for different taste perceptions. However, recent research has expanded our understanding, revealing that TRs are found throughout the body and perform a wide range of functions beyond taste perception as non-tasting functions. These receptors, along with their genetic variations, have been linked to various human health conditions. They are activated by an array of substances, including hormones, nutrients, and toxins, indicating their involvement in numerous biological processes. Specifically, in males, TRs are notably present in the testes and epididymis, where they contribute to the hormonal production, spermatogenesis, and sperm maturation. In females, these receptors are found in the ovaries, uterus, and myometrium, playing crucial roles in ovulation, menstrual cycle regulation, and embryo implantation. There are a lot of missed areas regarding TRs research that imposes to fulfill the gaps in the current understanding of their role in reproduction. This review aims to provide a comprehensive overview of the emerging roles of extraoral TRs in reproductive health, highlighting their physiological and pathophysiological significance in various reproductive processes. As well, grabbing the attention towards the release of new pharmacological interventions to manage conception and contraception in male and female was considered.
Collapse
Affiliation(s)
- Nourhan Magdy
- Central Administration of Pharmaceutical Products, Egyptian Drug Authority, El-Manial, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt; Pharmacology and Toxicology Department, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt.
| |
Collapse
|
2
|
Miller ZA, Carey RM, Lee RJ. A deadly taste: linking bitter taste receptors and apoptosis. Apoptosis 2025; 30:674-692. [PMID: 39979526 PMCID: PMC11946974 DOI: 10.1007/s10495-025-02091-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 02/22/2025]
Abstract
Humans can perceive five canonical tastes: salty, sour, umami, sweet, and bitter. These tastes are transmitted through the activation of ion channels and receptors. Bitter taste receptors (Taste Family 2 Receptors; T2Rs) are a sub-family of 25 G-protein coupled receptor (GPCR) isoforms that were first identified in type II taste bud cells. T2Rs are activated by a broad array of bitter agonists, which cause an increase in intracellular calcium (Ca2+) and a decrease in cyclic adenosine 3',5'-monophosphate (cAMP). Interestingly, T2Rs are expressed beyond the oral cavity, where they play diverse non-taste roles in cell physiology and disease. Here, we summarize the literature that explores the role of T2Rs in apoptosis. Activation of T2Rs with bitter agonists induces apoptosis in several cancers, the airway epithelia, smooth muscle, and more. In many of these tissues, T2R activation causes mitochondrial Ca2+ overload, a main driver of apoptosis. This response may be a result of T2R cellular localization, nuclear Ca2+ mobilization and/or a remnant of the established immunological roles of T2Rs in other cell types. T2R-induced apoptosis could be pharmacologically leveraged to treat diseases of altered cellular proliferation. Future work must explore additional extra-oral T2R-expressing tissues for apoptotic responses, develop methods for in-vivo studies, and discover high affinity bitter agonists for clinical application.
Collapse
Affiliation(s)
- Zoey A Miller
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Pharmacology Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Ryan M Carey
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
- Department of Physiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
3
|
Belloir C, Gautier A, Karolkowski A, Delompré T, Jeannin M, Moitrier L, Neiers F, Briand L. Optimized vector for functional expression of the human bitter taste receptor TAS2R14 in HEK293 cells. Protein Expr Purif 2025; 227:106643. [PMID: 39667443 DOI: 10.1016/j.pep.2024.106643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/06/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
Bitter is one of the five basic taste qualities, along with salty, sour, sweet and umami, used by mammals to access the quality of their food and orient their eating behaviour. Bitter taste detection prevents the ingestion of food potentially contaminated by bitter-tasting toxins. Bitter taste perception is mediated by a family of G protein-coupled receptors (GPCRs) called TAS2Rs. Humans possess 25 TAS2Rs (human type II taste receptors), enabling the detection of thousands of chemically diverse bitter compounds. The identification of agonists/antagonists and molecular mechanisms that govern receptor-ligand interaction has been primarily achieved through functional expression of TAS2Rs in heterologous cells. However, TAS2R receptors, like many other GPCRs, suffer from marginal cell surface expression. In this study, we compared the functionality of 9 engineered chimeric receptors, focusing our experiments on TAS2R14, a broadly tuned receptor that recognizes over 151 identified compounds. Among the different tested signal peptides, rat somatostatin receptor subtype 3 results in higher potency of aristolochic acid-induced calcium signalling than other tested export tags, such as bovine rhodopsin, murine Igκ-chain or human mGluR5. The addition of a MAX sequence enhances both TAS2R14 potency and efficacy. We also confirm that the FLAG epitope, when located at the C-terminal, interferes less with the TAS2R14 functionality, enabling reliable evaluation of this receptor at the cell surface using immunohistochemistry. Finally, these observations are also confirmed for TAS2R14 and TAS1R2/TAS1R3 (the sweet taste receptor) stimulated by 12 bitter compounds and by sucralose and neotame, respectively.
Collapse
Affiliation(s)
- Christine Belloir
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Adèle Gautier
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Adeline Karolkowski
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Thomas Delompré
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Mathilde Jeannin
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Lucie Moitrier
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Fabrice Neiers
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| | - Loïc Briand
- Centre des Sciences Du Goût et de l'Alimentation, CNRS, INRAE, Institut Agro, Université de Bourgogne, F-21000, France.
| |
Collapse
|
4
|
Wang X, Wang JD, Li X, Wang T, Yao J, Deng R, Ma W, Liu S, Zhu Z. Tas2R143 regulates the expression of the Blood-Testis Barrier tight junction protein in TM4 cells through the NF-κB signaling pathway. Theriogenology 2024; 227:120-127. [PMID: 39059123 DOI: 10.1016/j.theriogenology.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/02/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024]
Abstract
Although bitter receptors, known as Tas2Rs, have been identified in the testes and mature sperm, their expression in testicular Sertoli cells (SCs) and their role in recognizing harmful substances to maintain the immune microenvironment remain unknown. To explore their potential function in spermatogenesis, this study utilized TM4 cells and discovered the high expression of the bitter receptor Tas2R143 in the cells. Interestingly, when the Tas2R143 gene was knocked down for 24 and 48 h, there was a significant downregulation (P < 0.05) in the expression of tight junction proteins (occludin and ZO-1) and NF-κB. Additionally, Western blot results demonstrated that the siRNA-133+NF-κB co-treatment group displayed a significant downregulation (P < 0.05) in the expression of occludin and ZO-1 compared to both the siRNA-133 transfection group and the NF-κB inhibitors treatment group. These findings suggest that Tas2R143 likely regulates the expression of occludin and ZO-1 through the NF-κB signaling pathway and provides a theoretical basis for studying the regulatory mechanism of bitter receptors in the reproductive system, aiming to attract attention to the chemical perception mechanism of spermatogenesis.
Collapse
Affiliation(s)
- Xue Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Jin Dan Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Tianrun Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Jiaqi Yao
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Ruxue Deng
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Wenchang Ma
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China
| | - Shengjun Liu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China; Key Laboratory of Exploration and Innovative Utilization of White Goose Germplasm Resources in the Cold Region of Hei Long Jiang Province, China.
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, China.
| |
Collapse
|
5
|
Ortiz-Solà J, Almeida D, López-Mas L, Kallas Z, Abadias M, Barros L, Martín-Gómez H, Aguiló-Aguayo I. Sensory optimization of gluten-free hazelnut omelette and sugar-modified chestnut pudding: A free choice profiling approach for enhanced traditional recipe formulations. J Food Sci 2024; 89:5302-5318. [PMID: 39086065 DOI: 10.1111/1750-3841.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 08/02/2024]
Abstract
The Mediterranean region is distinguished by its gastronomic diversity and a wide variety of indigenous nut crops. In line with changing global food consumers' preferences, a noteworthy aspect is the increasing demand to the use of local varieties in recipe formulation. The aim of the present study was to incorporate the Terra Fria chestnut (Portugal) and Negreta hazelnut from Reus (Spain) in traditional Mediterranean recipes. The sensory, technofunctional, nutritional, and shelf-life characterization were investigated in hazelnut omelette (gluten and gluten-free) and chestnut pudding (sugar and sugar-free) formulations. Results conducted by trained assessors using the free choice profiling (FCP) showed that hazelnut omelette samples were described as "creamy," "smooth," and "handmade." In addition, the texture obtained with the hazelnut omelette gluten-free version showed the softest textural profile analysis attributes, with lower values for hardness (2.43 ± 0.36 N), adhesiveness (-0.38 ± 0.00 g s) and gumminess (2.12 ± 0.14). Furthermore, the shelf-life studies revealed a more golden color (>14.43 of a* CIELAB coordinate) and a lower moisture content (25.36%-43.59%) in the hazelnut flour formulation, in addition to the enrichment in terms of protein (8.36 g/100 g), fiber, and healthy fats. In the case of chestnut pudding, it was observed that the study parameters did not differ significantly from its sweetened analogue with positive attributes in FCP ("toasted," "fluffy," and "sweet"), positioning it as a viable alternative to sugar in this application. Therefore, both hazelnut flour in hazelnut omelette and oligofructose in chestnut pudding proved to be promising ingredients in the formulation of gluten-free and sugar-free developed products, offering attractive organoleptic and textural characteristics.
Collapse
Affiliation(s)
- J Ortiz-Solà
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - D Almeida
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - L López-Mas
- Centre de Recerca en Economia i Desenvolupament Agroalimentaris (CREDA), UPC, IRTA, Parc Mediterrani de la Tecnologia, Barcelona, Spain
- Fundació Miquel Agustí (FMA), Carrer d'Esteve Terradas, Castelldefels, Spain
| | - Z Kallas
- Centre de Recerca en Economia i Desenvolupament Agroalimentaris (CREDA), UPC, IRTA, Parc Mediterrani de la Tecnologia, Barcelona, Spain
| | - M Abadias
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| | - L Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Bragança, Portugal
| | - H Martín-Gómez
- CETT Barcelona School of Tourism, Hospitality and Gastronomy, University of Barcelona, Barcelona, Spain
| | - I Aguiló-Aguayo
- Institute of Agrifood Research and Technology (IRTA), Postharvest Programme, Edifici Fruitcentre, Parc Agrobiotech Lleida, Lleida, Catalonia, Spain
| |
Collapse
|
6
|
Magdy N, Abdelkader NF, Zaki HF, Kamel AS. Potential exacerbation of polycystic ovary syndrome by saccharin sodium Via taste receptors in a letrozole rat model. Food Chem Toxicol 2024; 191:114874. [PMID: 39032681 DOI: 10.1016/j.fct.2024.114874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
The most common cause of anovulatory infertility is polycystic ovarian syndrome (PCOS), which is closely associated with obesity and metabolic syndrome. Artificial sweetener, notably saccharin sodium (SS), has been utilized in management of obesity in PCOS. However, accumulating evidence points towards SS deleterious effects on ovarian physiology, potentially through activation of ovarian sweet and bitter taste receptors, culminating in a phenotype reminiscent of PCOS. This research embarked on exploration of SS influence on ovarian functions within a PCOS paradigm. Rats were categorized into six groups: Control, Letrozole-model, two SS groups at 2 dose levels, and two groups receiving 2 doses of SS with Letrozole. The study underscored SS capability to potentiate PCOS-related anomalies. Elevated cystic profile with outer thin granulosa cells, were discernible. This owed to increased apoptotic markers as cleaved CASP-3, mirrored by high BAX and low BCL-2, with enhanced p38-MAPK/ERK1/2 pathway. This manifestation was accompanied by activation of taste receptors and disruption of steroidogenic factors; StAR, CYP11A1, and 17β-HSD. Thus, SS showed an escalation in testosterone, progesterone, estrogen, and LH/FSH ratio, insinuating a perturbation in endocrine regulation. It is found that there is an impact of taste receptor downstream signaling on ovarian steroidogenesis and apoptosis instigating pathophysiological milieu of PCOS.
Collapse
Affiliation(s)
- Nourhan Magdy
- Quality Assurance, National Food Safety Authority, Bab El-Louq, Cairo, Egypt
| | - Noha F Abdelkader
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Hala F Zaki
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt
| | - Ahmed S Kamel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
7
|
Niu B, Liu L, Gao Q, Zhu M, Chen L, Peng X, Qin B, Zhou X, Li F. Genetic mutation of Tas2r104/Tas2r105/Tas2r114 cluster leads to a loss of taste perception to denatonium benzoate and cucurbitacin B. Animal Model Exp Med 2024; 7:324-336. [PMID: 38155461 PMCID: PMC11228091 DOI: 10.1002/ame2.12357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 09/18/2023] [Indexed: 12/30/2023] Open
Abstract
BACKGROUND Bitter taste receptors (Tas2rs) are generally considered to sense various bitter compounds to escape the intake of toxic substances. Bitter taste receptors have been found to widely express in extraoral tissues and have important physiological functions outside the gustatory system in vivo. METHODS To investigate the physiological functions of the bitter taste receptor cluster Tas2r106/Tas2r104/Tas2r105/Tas2r114 in lingual and extraoral tissues, multiple Tas2rs mutant mice and Gnat3 were produced using CRISPR/Cas9 gene-editing technique. A mixture containing Cas9 and sgRNA mRNAs for Tas2rs and Gnat3 gene was microinjected into the cytoplasm of the zygotes. Then, T7EN1 assays and sequencing were used to screen genetic mutation at the target sites in founder mice. Quantitative real-time polymerase chain reaction (qRT-PCR) and immunostaining were used to study the expression level of taste signaling cascade and bitter taste receptor in taste buds. Perception to taste substance was also studied using two-bottle preference tests. RESULTS We successfully produced several Tas2rs and Gnat3 mutant mice using the CRISPR/Cas9 technique. Immunostaining results showed that the expression of GNAT3 and PLCB2 was not altered in Tas2rs mutant mice. But qRT-PCR results revealed the changed expression profile of mTas2rs gene in taste buds of these mutant mice. With two-bottle preference tests, these mutant mice eliminate responses to cycloheximide due to genetic mutation of Tas2r105. In addition, these mutant mice showed a loss of taste perception to quinine dihydrochloride, denatonium benzoate, and cucurbitacin B (CuB). Gnat3-mediated taste receptor and its signal pathway contribute to CuB perception. CONCLUSIONS These findings implied that these mutant mice would be a valuable means to understand the biological functions of TAS2Rs in extraoral tissues and investigate bitter compound-induced responses mediated by these TAS2Rs in many extraoral tissues.
Collapse
Affiliation(s)
- Bowen Niu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Lingling Liu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Qian Gao
- Department of Biology, College of Life SciencesShanghai Normal UniversityShanghaiPeople's Republic of China
| | - Meng‐Min Zhu
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Lixiang Chen
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Xiu‐Hua Peng
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Boying Qin
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Xiaohui Zhou
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| | - Feng Li
- Department of Laboratory Animal Science, Shanghai Public Health Clinical CenterFudan UniversityShanghaiChina
| |
Collapse
|
8
|
Seong H, Song JW, Lee KH, Jang G, Shin DM, Shon WJ. Taste receptor type 1 member 3 regulates Western diet-induced male infertility. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159433. [PMID: 38007088 DOI: 10.1016/j.bbalip.2023.159433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/05/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023]
Abstract
Western diet (WD), characterized by a high intake of fats and sugary drinks, is a risk factor for male reproductive impairment. However, the molecular mechanisms underlying this remain unclear. Taste receptor type 1 member 3 (TAS1R3), activated by ligands of WD, is highly expressed in extra-oral tissues, particularly in the testes. Here, we investigated to determine the effects of WD intake on male reproduction and whether TAS1R3 mediates WD-induced impairment in male reproduction. Male C57BL/6 J wild-type (WT) and Tas1r3 knockout (KO) mice were fed either a normal diet and plain water (ND) or a 60 % high-fat-diet and 30 % (w/v) sucrose water (WD) for 18 weeks (n = 7-9/group). Long-term WD consumption significantly impaired sperm count, motility and testicular morphology in WT mice with marked Tas1r3 overexpression, whereas Tas1r3 KO mice were protected from WD-induced reproductive impairment. Testicular transcriptome analysis revealed downregulated AMP-activated protein kinase (AMPK) signaling and significantly elevated AMPK-targeted nuclear receptor 4A1 (Nr4a1) expression in WD-fed Tas1r3 KO mice. In vitro studies further validated that Tas1r3 knockdown in Leydig cells prevented the suppression of Nr4a1 and downstream steroidogenic genes (Star, Cyp11a1, Cyp17a1, and Hsd3b1) caused by high glucose, fructose, and palmitic acid levels, and maintained the levels of testosterone. Additionally, we analyzed the public human dataset to assess the clinical implications of our findings and confirmed a significant association between TAS1R3 and male-infertility-related diseases. Our findings suggest that TAS1R3 regulates WD-induced male reproductive impairment via the AMPK/NR4A1 signaling and can be a novel therapeutic target for male infertility.
Collapse
Affiliation(s)
- Hobin Seong
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Jae Won Song
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Keon-Hee Lee
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea
| | - Goo Jang
- Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea; Comparative Medicine Disease Research Center, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Mi Shin
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woo-Jeong Shon
- Department of Food and Nutrition, College of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Human Ecology, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
9
|
Osakabe N, Shimizu T, Fujii Y, Fushimi T, Calabrese V. Sensory Nutrition and Bitterness and Astringency of Polyphenols. Biomolecules 2024; 14:234. [PMID: 38397471 PMCID: PMC10887135 DOI: 10.3390/biom14020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Recent studies have demonstrated that the interaction of dietary constituents with taste and olfactory receptors and nociceptors expressed in the oral cavity, nasal cavity and gastrointestinal tract regulate homeostasis through activation of the neuroendocrine system. Polyphenols, of which 8000 have been identified to date, represent the greatest diversity of secondary metabolites in plants, most of which are bitter and some of them astringent. Epidemiological studies have shown that polyphenol intake contributes to maintaining and improving cardiovascular, cognitive and sensory health. However, because polyphenols have very low bioavailability, the mechanisms of their beneficial effects are unknown. In this review, we focused on the taste of polyphenols from the perspective of sensory nutrition, summarized the results of previous studies on their relationship with bioregulation and discussed their future potential.
Collapse
Affiliation(s)
- Naomi Osakabe
- Functional Control Systems, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Takafumi Shimizu
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Yasuyuki Fujii
- Department of Bio-Science and Engineering, Faculty of System Science and Engineering, Shibaura Institute of Technology, Tokyo 135-8548, Japan; (T.S.); (Y.F.)
| | - Taiki Fushimi
- Systems Engineering and Science, Graduate School of Engineering and Science, Shibaura Institute of Technology, Tokyo 135-8548, Japan;
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy;
| |
Collapse
|
10
|
Lu P, Simas TAM, Delpapa E, ZhuGe R. Bitter taste receptors in the reproductive system: Function and therapeutic implications. J Cell Physiol 2024; 239:e31179. [PMID: 38219077 PMCID: PMC10922893 DOI: 10.1002/jcp.31179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/11/2023] [Indexed: 01/15/2024]
Abstract
Type 2 taste receptors (TAS2Rs), traditionally known for their role in bitter taste perception, are present in diverse reproductive tissues of both sexes. This review explores our current understanding of TAS2R functions with a particular focus on reproductive health. In males, TAS2Rs are believed to play potential roles in processes such as sperm chemotaxis and male fertility. Genetic insights from mouse models and human polymorphism studies provide some evidence for their contribution to male infertility. In female reproduction, it is speculated that TAS2Rs influence the ovarian milieu, shaping the functions of granulosa and cumulus cells and their interactions with oocytes. In the uterus, TAS2Rs contribute to uterine relaxation and hold potential as therapeutic targets for preventing preterm birth. In the placenta, they are proposed to function as vigilant sentinels, responding to infection and potentially modulating mechanisms of fetal protection. In the cervix and vagina, their analogous functions to those in other extraoral tissues suggest a potential role in infection defense. In addition, TAS2Rs exhibit altered expression patterns that profoundly affect cancer cell proliferation and apoptosis in reproductive cancers. Notably, TAS2R agonists show promise in inducing apoptosis and overcoming chemoresistance in these malignancies. Despite these advances, challenges remain, including a lack of genetic and functional studies. The application of techniques such as single-cell RNA sequencing and clustered regularly interspaced palindromic repeats (CRISPR)/CRISPR-associated endonuclease 9 gene editing could provide deeper insights into TAS2Rs in reproduction, paving the way for novel therapeutic strategies for reproductive disorders.
Collapse
Affiliation(s)
- Ping Lu
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| | - Tiffany A. Moore Simas
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ellen Delpapa
- Department of Obstetrics and Gynecology, UMass Chan Medical School/UMass Memorial Health, Memorial Campus 119 Belmont St., Worcester, MA, USA
| | - Ronghua ZhuGe
- Department of Microbiology and Physiological System, UMass Chan Medical School, 363 Plantation St., Worcester, MA, USA
| |
Collapse
|
11
|
Shon WJ, Seong H, Song JW, Shin DM. Taste receptor type 1 member 3 is required for the fertility of male mice. Heliyon 2024; 10:e24577. [PMID: 38312691 PMCID: PMC10835302 DOI: 10.1016/j.heliyon.2024.e24577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/06/2024] Open
Abstract
Male infertility is a global health concern. However, its underlying pathophysiology remains unclear. Taste receptor type 1 member 3 (TAS1R3) is highly expressed in the testes, indicating its potential involvement in male fertility. Using wild-type and Tas1r3 knockout (KO) mice, we investigated whether TAS1R3 modulates male reproductive function. Tas1r3 KO mice exhibited reduced male fertility compared to WT mice, with fewer live pups per litter and a delayed first litter. Testicular transcriptome analysis indicated suppressed PKA/CREB/StAR signaling-mediated testosterone synthesis in Tas1r3 KO mice. In silico single-cell RNA sequencing revealed considerably higher Tas1r3 expression in Leydig cells than in other testicular cell subtypes. An in vitro study validated that Tas1r3 knockdown downregulated the expression of Creb1 and steroidogenic genes in Leydig cells. Our results suggest that testicular TAS1R3 is intricately involved in male reproduction via the PKA/CREB/StAR signaling pathway, highlighting its potential as a promising target for addressing male infertility.
Collapse
Affiliation(s)
- Woo-Jeong Shon
- Research Institute of Human Ecology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hobin Seong
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Won Song
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Mi Shin
- Research Institute of Human Ecology, Seoul National University, Gwanak-gu, Seoul 08826, Republic of Korea
- Department of Food and Nutrition, Seoul National University College of Human Ecology, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
12
|
Wang W, Mu Q, Feng X, Liu W, Xu H, Chen X, Shi F, Gong T. Sweet Taste Receptor T1R3 Expressed in Leydig Cells Is Closely Related to Homeostasis of the Steroid Hormone Metabolism Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7791-7802. [PMID: 37186581 DOI: 10.1021/acs.jafc.3c01110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Taste receptor type 1 subunit 3 (T1R3) is initially expressed in mammal tongue for recognition and response of sweet/umami tastants and is critical to nutrient absorption, even endocrine. In this study, down-regulation of related steroidogenic enzymes such as StAR, 3β-HSD, CYP17A1, and 17β-HSD with the decrease of T1R3 expression was found in Leydig cells treated by a T1R3 inhibitor (lactisole). The abundances of progesterone, 17a-hydroxyprogesterone, androstenedione, testosterone, and deoxycorticosterone were down-regulated by 2.3, 3.5, 1.4, 1.6, and 2.2 times, respectively, after T1R3 inhibition. In addition, opposite results were found in saccharin sodium treatment. T1R3 activation contributed to intracellular cyclic adenosine monophosphate (cAMP) accumulation (14.41 ± 0.58 vs 20.21 ± 0.65) and increased testosterone (20.31 ± 3.49 vs 50.01 ± 7.44) and steroidogenic metabolite levels. Coadministration of human chorionic gonadotropin and saccharin sodium resulted in elevating the testosterone and cAMP levels and enhancing the expression levels of steroidogenic-related factors. Similarly, intratesticular injection of lactisole and saccharin sodium further confirmed that T1R3 inhibition/activation affected the expression of related steroidogenic enzymes and the testosterone levels in mice. The above findings suggest that T1R3 plays a role in testicular steroidogenesis.
Collapse
Affiliation(s)
- Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Qi Mu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xianzhou Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China
- Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, Guizhou Province, China
- College of Animal Science, Guizhou University, Guiyang 550025, Guizhou Province, China
| |
Collapse
|
13
|
Li Y, Langley N, Zhang J. Recent Advances in Bitterness-Sensing Systems. BIOSENSORS 2023; 13:bios13040414. [PMID: 37185489 PMCID: PMC10136117 DOI: 10.3390/bios13040414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Bitterness is one of the basic tastes, and sensing bitterness plays a significant role in mammals recognizing toxic substances. The bitter taste of food and oral medicines may decrease consumer compliance. As a result, many efforts have been made to mask or decrease the bitterness in food and oral pharmaceutical products. The detection of bitterness is critical to evaluate how successful the taste-masking technology is, and many novel taste-sensing systems have been developed on the basis of various interaction mechanisms. In this review, we summarize the progress of bitterness response mechanisms and the development of novel sensors in detecting bitterness ranging from commercial electronic devices based on modified electrodes to micro-type sensors functionalized with taste cells, polymeric membranes, and other materials in the last two decades. The challenges and potential solutions to improve the taste sensor quality are also discussed.
Collapse
Affiliation(s)
- Yanqi Li
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Nigel Langley
- Gaylord Chemical Company LLC, 1404 Greengate Dr, Ste 100, Covington, LA 70433, USA
| | - Jiantao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
14
|
Liu W, Gong T, Xu Y. The co-expression of steroidogenic enzymes with T1R3 during testicular development in the Congjiang Xiang pig. Anim Reprod Sci 2023; 251:107216. [PMID: 37011421 DOI: 10.1016/j.anireprosci.2023.107216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/07/2022] [Accepted: 03/15/2023] [Indexed: 03/19/2023]
Abstract
Testosterone is a key crucial hormone synthesized by steroidogenic enzymes that initiate and maintain spermatogenesis and secondary sexual characteristics in adult males. The taste receptor family 1 subunit 3 (T1R3) is reported to be associated with male reproduction. T1R3 can regulate the expressions of steroidogenic enzymes and affect testosterone synthesis. In this study, we addressed the question of whether the expression of steroid synthase was associated with T1R3 and its downstream-tasting molecules during testicular development. The results showed an overall upward trend in testosterone and morphological development in testes from Congjiang Xiang pigs from pre-puberty to sexual maturity. Gene expression levels of testicular steroidogenic acute regulatory protein (StAR), 3β-hydroxysteroid dehydrogenase (3β-HSD), cytochrome P450c17 (CYP17A1) and 17β-hydroxysteroid dehydrogenase (17β-HSD) were increased from pre-puberty to sexual maturity. Protein expression changes of CYP17A1 and 3β-HSD were consistent with mRNA. The relative abundance of tasting molecules (TAS1R3, phospholipase Cβ2, PLCβ2) was increased from pre-puberty to puberty (P < 0.05), with no further significant changes in expression from puberty to sexual maturity. Steroidogenic enzymes (3β-HSD and CYP17A1) were strongly detected in Leydig cells from pre-puberty to sexual maturity, while tasting molecules were localized in Leydig cells and spermatogenic cells. Correlation analysis showed that the genes mentioned above (except for PLCβ2) were positively correlated with testosterone levels and morphological characteristics of the testes at different developmental stages of Congjiang Xiang pigs. These results suggest that steroidogenic enzymes regulate testosterone synthesis and testicular development, and that taste receptor T1R3, but not PLCβ2, may associate with this process.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China.
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, PR China; Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang 550025, Guizhou, PR China; College of Animal Science, Guizhou University, Guiyang 550025, Guizhou, PR China
| |
Collapse
|
15
|
Liu W, Gong T, Shi F, Xu H, Chen X. Taste receptors affect male reproduction by influencing steroid synthesis. Front Cell Dev Biol 2022; 10:956981. [PMID: 36035992 PMCID: PMC9407969 DOI: 10.3389/fcell.2022.956981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/13/2022] [Indexed: 01/09/2023] Open
Abstract
For the male genetic materials to reach and fertilize the egg, spermatozoa must contend with numerous environmental changes in a complex and highly sophisticated process from generation in the testis, and maturation in the epididymis to capacitation and fertilization. Taste is an ancient chemical sense that has an essential role in the animal's response to carbohydrates in the external environment and is involved in the body's energy perception. In recent years, numerous studies have confirmed that taste signaling factors (taste receptor families 1, 2 and their downstream molecules, Gα and PLCβ2) are distributed in testes and epididymis tissues outside the oral cavity. Their functions are directly linked to spermatogenesis, maturation, and fertilization, which are potential targets for regulating male reproduction. However, the specific signaling mechanisms of the taste receptors during these processes remain unknown. Herein, we review published literature and experimental results from our group to establish the underlying signaling mechanism in which the taste receptor factors influence testosterone synthesis in the male reproduction.
Collapse
Affiliation(s)
- Wenjiao Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China
| | - Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China,*Correspondence: Ting Gong,
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang, China,Guizhou Provincial Key Laboratory of Animal Genetics, Breeding and Reproduction, Guizhou University, Guiyang, China,College of Animal Science, Guizhou University, Guiyang, China
| |
Collapse
|
16
|
Wu M, Tao W, Xia X, Gei G, Guo N, Zhang T, Zhang S, Wang Y, Wang Y, Wu F, Lin X, Feng Y. A novel quantified palatability evaluation method (saliva evaluation combined with electronic tongue evaluation) for Traditional Chinese Medicine oral formulations based on oral stimulation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
17
|
Nanjo Y, Okuma T, Kuroda Y, Hayakawa E, Shibayama K, Akimoto T, Murashima R, Kanamori K, Tsutsumi T, Suzuki Y, Namba Y, Makino F, Nagashima O, Sasaki S, Takahashi K. Multiple Types of Taste Disorders among Patients with COVID-19. Intern Med 2022; 61:2127-2134. [PMID: 35527025 PMCID: PMC9381347 DOI: 10.2169/internalmedicine.9065-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Objective Based on the increasing incidence of smell and taste dysfunction among coronavirus disease 2019 (COVID-19) patients, such issues have been considered an early symptom of infection. However, few studies have investigated the type of taste components that are most frequently affected in COVID-19 patients. This study investigated the difference in frequencies of the types of taste component disorders among hospitalized COVID-19 patients. Methods In this retrospective, single-center, observational study, patients' background characteristics, clinical course, laboratory and radiological findings, and details on taste and/or smell disorders were collected and analyzed from medical records. Patients A total of 227 COVID-19 patients were enrolled, among whom 92 (40.5%) complained of taste disorders. Results Multiple types of taste disorders (hypogeusia/ageusia and hypersensitivity, or hypersensitivity and changing tastes) were reported in 10 patients. In particular, 23 patients reported hypersensitivity to at least 1 type of taste, and 2 patients complained of a bitter taste on consuming sweet foods. Impairment of all taste components was found in 48 patients (52.2%). The most frequent taste disorder was salty taste disorder (81 patients, 89.0%). Hypersensitivity to salty taste was most frequently observed (19 patients, 20.9%). Conclusion Patients with COVID-19 develop multiple types of taste disorders, among which salty taste disorder was the most frequent, with many patients developing hypersensitivity to salty taste. As smell and taste are subjective senses, further studies with the combined use of objective examinations will be required to confirm the findings.
Collapse
Affiliation(s)
- Yuta Nanjo
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Tomoko Okuma
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Yumi Kuroda
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Eri Hayakawa
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
| | - Kohei Shibayama
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Takashi Akimoto
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Ryoko Murashima
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Koichiro Kanamori
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Takeo Tsutsumi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Yohei Suzuki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Yukiko Namba
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Fumihiko Makino
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Osamu Nagashima
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Shinichi Sasaki
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
- Department of Respiratory Medicine, Juntendo University Urayasu Hospital, Japan
| | - Kazuhisa Takahashi
- Department of Respiratory Medicine, Juntendo University Graduate School of Medicine, Japan
| |
Collapse
|
18
|
Carey RM, Hariri BM, Adappa ND, Palmer JN, Lee RJ. HSP90 Modulates T2R Bitter Taste Receptor Nitric Oxide Production and Innate Immune Responses in Human Airway Epithelial Cells and Macrophages. Cells 2022; 11:1478. [PMID: 35563784 PMCID: PMC9101439 DOI: 10.3390/cells11091478] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 02/04/2023] Open
Abstract
Bitter taste receptors (T2Rs) are G protein-coupled receptors (GPCRs) expressed in various cell types including ciliated airway epithelial cells and macrophages. T2Rs in these two innate immune cell types are activated by bitter products, including those secreted by Pseudomonas aeruginosa, leading to Ca2+-dependent activation of endothelial nitric oxide (NO) synthase (eNOS). NO enhances mucociliary clearance and has direct antibacterial effects in ciliated epithelial cells. NO also increases phagocytosis by macrophages. Using biochemistry and live-cell imaging, we explored the role of heat shock protein 90 (HSP90) in regulating T2R-dependent NO pathways in primary sinonasal epithelial cells, primary monocyte-derived macrophages, and a human bronchiolar cell line (H441). Immunofluorescence showed that H441 cells express eNOS and T2Rs and that the bitter agonist denatonium benzoate activates NO production in a Ca2+- and HSP90-dependent manner in cells grown either as submerged cultures or at the air-liquid interface. In primary sinonasal epithelial cells, we determined that HSP90 inhibition reduces T2R-stimulated NO production and ciliary beating, which likely limits pathogen clearance. In primary monocyte-derived macrophages, we found that HSP-90 is integral to T2R-stimulated NO production and phagocytosis of FITC-labeled Escherichia coli and pHrodo-Staphylococcus aureus. Our study demonstrates that HSP90 serves as an innate immune modulator by regulating NO production downstream of T2R signaling by augmenting eNOS activation without impairing upstream Ca2+ signaling. These findings suggest that HSP90 plays an important role in airway antibacterial innate immunity and may be an important target in airway diseases such as chronic rhinosinusitis, asthma, or cystic fibrosis.
Collapse
Affiliation(s)
- Ryan M. Carey
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Benjamin M. Hariri
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Nithin D. Adappa
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - James N. Palmer
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
| | - Robert J. Lee
- Department of Otorhinolaryngology—Head and Neck Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (B.M.H.); (N.D.A.); (J.N.P.)
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
19
|
Beppu K, Tsutsumi R, Ansai S, Ochiai N, Terakawa M, Mori M, Kuroda M, Horikawa K, Tomoi T, Sakamoto J, Kamei Y, Naruse K, Sakaue H. Development of a screening system for agents that modulate taste receptor expression with the CRISPR-Cas9 system in medaka. Biochem Biophys Res Commun 2022; 601:65-72. [DOI: 10.1016/j.bbrc.2022.02.082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 02/21/2022] [Indexed: 11/02/2022]
|
20
|
Spence C. The tongue map and the spatial modulation of taste perception. Curr Res Food Sci 2022; 5:598-610. [PMID: 35345819 PMCID: PMC8956797 DOI: 10.1016/j.crfs.2022.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
There is undoubtedly a spatial component to our experience of gustatory stimulus qualities such as sweet, bitter, salty, sour, and umami, however its importance is currently unknown. Taste thresholds have been shown to differ at different locations within the oral cavity where gustatory receptors are found. However, the relationship between the stimulation of particular taste receptors and the subjective spatially-localized experience of taste qualities is uncertain. Although the existence of the so-called ‘tongue map’ has long been discredited, the psychophysical evidence clearly demonstrates significant (albeit small) differences in taste sensitivity across the tongue, soft palate, and pharynx (all sites where taste buds have been documented). Biases in the perceived localization of gustatory stimuli have also been reported, often resulting from tactile capture (i.e., a form of crossmodal, or multisensory, interaction). At the same time, varying responses to supratheshold tastants along the tongue's anterior-posterior axis have putatively been linked to the ingestion-ejection response. This narrative review highlights what is currently known concerning the spatial aspects of gustatory perception, considers how such findings might be explained, given the suggested balanced distribution of taste receptors for each basic taste quality where taste papillae are present, and suggests why knowing about such differences may be important. The existence of the tongue map has long been discredited. Taste receptors in the oral cavity respond to all tastes regardless of their location. Human psychophysical data highlights a significant spatial modulation of taste perception in the oral cavity. Highly-controlled studies of taste psychophysics rarely capture the full multisensory experience associated with eating and drinking.
Collapse
|
21
|
Fan Y, Huang Y, Zhang N, Chen G, Jiang S, Zhang Y, Pang G, Wang W, Liu Y. Study on the distribution of umami receptors on the tongue and its signal coding logic based on taste bud biosensor. Biosens Bioelectron 2022; 197:113780. [PMID: 34801794 DOI: 10.1016/j.bios.2021.113780] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/30/2021] [Accepted: 11/08/2021] [Indexed: 02/08/2023]
Abstract
Taste signals are uniformly encoded and transmitted to the brain's taste center by taste buds, and the process has not been systematically studied for several decades. The aim of this work was to investigate the distribution of umami receptors on the tongue and its signal coding logic based on the taste bud biosensors. Taste bud biosensors were constructed by immobilizing the taste bud tissues from different tongue regions of the rabbit to the glassy carbon electrode surface; The Shennong information equations were used to analysis the pattern of umami receptors to encode ligands information; The signal amplification capabilities of two types umami receptors (T1R1/T1R3 and mGluRs) were analyzed for the two ligands (L-monosodium glutamate (MSG) and disodium 5'-inosinate (IMP)). The results showed that each taste bud biosensor could sense MSG and IMP with different response currents based on enzyme-substrate kinetics. There was only a small fraction of a great quantity of metabotropic glutamate receptors (mGluRs) could be activated to encode MSG signal. Importantly, T1R1 was more expressed in the rostral tongue cells whose sensitivity to MSG was nearly 100 times stronger than that of caudal tongue cells. The method we proposed made it possible to reveal the distribution and signals coding logic of umami receptors for ligands, which showed great potential to explain the interaction mechanism of umami substances with their receptors more accurately and to develop of artificial intelligent taste sensory.
Collapse
Affiliation(s)
- Yuxia Fan
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yulin Huang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; College of Food Science & Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Ninglong Zhang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Gaole Chen
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shui Jiang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu, 610106, China
| | - Guangchang Pang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China
| | - Wenli Wang
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yuan Liu
- Department of Food Science & Technology, School of Agriculture & Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
22
|
Jalševac F, Terra X, Rodríguez-Gallego E, Beltran-Debón R, Blay MT, Pinent M, Ardévol A. The Hidden One: What We Know About Bitter Taste Receptor 39. Front Endocrinol (Lausanne) 2022; 13:854718. [PMID: 35345470 PMCID: PMC8957101 DOI: 10.3389/fendo.2022.854718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/21/2022] Open
Abstract
Over thousands of years of evolution, animals have developed many ways to protect themselves. One of the most protective ways to avoid disease is to prevent the absorption of harmful components. This protective function is a basic role of bitter taste receptors (TAS2Rs), a G protein-coupled receptor family, whose presence in extraoral tissues has intrigued many researchers. In humans, there are 25 TAS2Rs, and although we know a great deal about some of them, others are still shrouded in mystery. One in this latter category is bitter taste receptor 39 (TAS2R39). Besides the oral cavity, it has also been found in the gastrointestinal tract and the respiratory, nervous and reproductive systems. TAS2R39 is a relatively non-selective receptor, which means that it can be activated by a range of mostly plant-derived compounds such as theaflavins, catechins and isoflavones. On the other hand, few antagonists for this receptor are available, since only some flavones have antagonistic properties (all of them detailed in the document). The primary role of TAS2R39 is to sense the bitter components of food and protect the organism from harmful compounds. There is also some indication that this bitter taste receptor regulates enterohormones and in turn, regulates food intake. In the respiratory system, it may be involved in the congestion process of allergic rhinitis and may stimulate inflammatory cytokines. However, more thorough research is needed to determine the precise role of TAS2R39 in these and other tissues.
Collapse
|
23
|
Beppu K, Shono H, Kawakami A, Takashi T, Watanabe S, Yoshida A, Kuroda M, Fujimoto C, Kanamura R, Ohnishi H, Kondo E, Azuma T, Sato G, Kitamura Y, Tsutsumi R, Sakaue H, Takeda N. Dietary supplementation with monosodium glutamate with dietary balance such as protein, salt and sugar intake with increasing T1R3 taste receptor gene expression in healthy females. THE JOURNAL OF MEDICAL INVESTIGATION 2021; 68:315-320. [PMID: 34759151 DOI: 10.2152/jmi.68.315] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We previously showed that chemotherapy-induced dysgeusia was associated with lingual taste receptor gene expression, and monosodium glutamate (MSG) improved dysgeusia by upregulating taste 1 receptor 3(T1R3) gene expression. In recent years, decreased taste sensitivity has also been reported in some young people, and these are partly due to their disordered eating habits. From these background, we investigated the effects of MSG supplementation on taste receptor expression and dietary intake in healthy females. Fifteen young healthy volunteers were enrolled for the present crossover study and divided in two groups (dietary supplementation with MSG at 2.7 g / day or 0.27 g / day). The relative expression of T1R3, a subunit of both umami and sweet taste receptors, in the tongue was assessed by quantitative PCR analysis. Food intake was assessed by food frequency questionnaire (FFQg), and body composition was measured using Omron HBF-701. T1R3 expression levels in the tongue and taste sensitivity increased significantly in participants who consumed <10 g of MSG daily, whereas no alteration was observed in participants who consumed >10 g of MSG daily. Furthermore, protein, fat, and carbohydrate (PFC) balance and salt and sugar intake improved by MSG supplementation. In conclusion, MSG supplementation increased T1R3 expression in the tongue and improved dietary balance. J. Med. Invest. 68 : 315-320, August, 2021.
Collapse
Affiliation(s)
- Kana Beppu
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.,These authors contributed equally to this work
| | - Hitoshi Shono
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan.,These authors contributed equally to this work
| | - Ayuka Kawakami
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Tomoe Takashi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Suzuno Watanabe
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Akari Yoshida
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Masashi Kuroda
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Chisa Fujimoto
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Ryo Kanamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroki Ohnishi
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Eiji Kondo
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Takahito Azuma
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Go Sato
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima, Japan
| |
Collapse
|
24
|
D'Urso O, Drago F. Pharmacological significance of extra-oral taste receptors. Eur J Pharmacol 2021; 910:174480. [PMID: 34496302 DOI: 10.1016/j.ejphar.2021.174480] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/01/2021] [Indexed: 01/17/2023]
Abstract
It has recently been shown that taste receptors, in addition to being present in the oral cavity, exist in various extra-oral organs and tissues such as the thyroid, lungs, skin, stomach, intestines, and pancreas. Although their physiological function is not yet fully understood, it appears that they can help regulate the body's homeostasis and provide an additional defense function against pathogens. Since the vast majority of drugs are bitter, the greatest pharmacological interest is in the bitter taste receptors. In this review, we describe how bitter taste 2 receptors (TAS2Rs) induce bronchodilation and mucociliary clearance in the airways, muscle relaxation in various tissues, inhibition of thyroid stimulating hormone (TSH) in thyrocytes, and release of glucagon-like peptide-1 (GLP-1) and ghrelin in the digestive system. In fact, substances such as dextromethorphan, chloroquine, methimazole and probably glimepiride, being agonists of TAS2Rs, lead to these effects. TAS2Rs and taste 1 receptors (TAS1R2/3) are G protein-coupled receptors (GPCR). TAS1R2/3 are responsible for sweet taste perception and may induce GLP-1 release and insulin secretion. Umami taste receptors, belonging to the same superfamily of receptors, perform a similar function with regard to insulin. The sour and salty taste receptors work in a similar way, both being channel receptors sensitive to amiloride. Finally, gene-protein coupled receptor 40 (GPR40) and GPR120 for fatty taste perception are also protein-coupled receptors and may induce GLP-1 secretion and insulin release, similar to those of other receptors belonging to the same superfamily.
Collapse
Affiliation(s)
- Ottavio D'Urso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95125 Catania, Italy
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia, 97, 95125 Catania, Italy.
| |
Collapse
|
25
|
Shono H, Tsutsumi R, Beppu K, Matsushima R, Watanabe S, Fujimoto C, Kanamura R, Ohnishi H, Kondo E, Azuma T, Sato G, Kawai M, Matsumoto H, Kitamura Y, Sakaue H, Takeda N. Dietary Supplementation with Monosodium Glutamate Suppresses Chemotherapy-Induced Downregulation of the T1R3 Taste Receptor Subunit in Head and Neck Cancer Patients. Nutrients 2021; 13:2921. [PMID: 34578798 PMCID: PMC8469378 DOI: 10.3390/nu13092921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 08/04/2021] [Accepted: 08/17/2021] [Indexed: 01/17/2023] Open
Abstract
(Background) We investigated the effect of dietary supplementation with monosodium glutamate (MSG) on chemotherapy-induced downregulation of the T1R3 taste receptor subunit expression in the tongue of patients with advanced head and neck cancer. (Methods) Patients undergoing two rounds of chemoradiotherapy were randomly allocated to a control or intervention group (dietary supplementation with MSG at 2.7 g/day during the second round of chemotherapy). The relative expression of T1R3, a subunit of both umami and sweet taste receptors, in the tongue was assessed by quantitative polymerase chain reaction analysis. Dysgeusia was assessed with a visual analog scale and daily energy intake was evaluated. (Results) T1R3 expression levels in the tongue, taste sensitivity, and daily energy intake were significantly reduced after the first round of chemotherapy compared with before treatment. Furthermore, these parameters significantly decreased after the second round of chemotherapy, but the extent of decrease was significantly attenuated in the MSG group compared with the control group. (Conclusions) MSG supplementation suppresses chemotherapy-induced dysgeusia, possibly due to the inhibition of the T1R3-containing taste receptor downregulation in the tongue, thereby increasing energy intake in patients with advanced head and neck cancer.
Collapse
Affiliation(s)
- Hitoshi Shono
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Rie Tsutsumi
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (K.B.); (R.M.); (S.W.); (H.S.)
| | - Kana Beppu
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (K.B.); (R.M.); (S.W.); (H.S.)
| | - Rina Matsushima
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (K.B.); (R.M.); (S.W.); (H.S.)
| | - Suzuno Watanabe
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (K.B.); (R.M.); (S.W.); (H.S.)
| | - Chisa Fujimoto
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Ryo Kanamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Hiroki Ohnishi
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Eiji Kondo
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Takahiro Azuma
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Go Sato
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Misako Kawai
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan; (M.K.); (H.M.)
| | - Hideki Matsumoto
- Frontier Research Laboratories, Institute for Innovation, Ajinomoto Co. Inc., Kawasaki 210-8681, Japan; (M.K.); (H.M.)
| | - Yoshiaki Kitamura
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| | - Hiroshi Sakaue
- Department of Nutrition and Metabolism, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (K.B.); (R.M.); (S.W.); (H.S.)
| | - Noriaki Takeda
- Department of Otolaryngology, Institute of Biomedical Sciences, Tokushima University, Tokushima 770-8503, Japan; (H.S.); (C.F.); (R.K.); (H.O.); (E.K.); (T.A.); (G.S.); (Y.K.); (N.T.)
| |
Collapse
|
26
|
Shen T, Li J. Drinking Non-nutritive Sweetness Solution of Sodium Saccharin or Rebaudioside a for Guinea Pigs: Influence on Histologic Change and Expression of Sweet Taste Receptors in Testis and Epididymis. Front Nutr 2021; 8:720889. [PMID: 34422887 PMCID: PMC8375269 DOI: 10.3389/fnut.2021.720889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/05/2021] [Indexed: 12/18/2022] Open
Abstract
Saccharin sodium and rebaudioside A are extensively used as non-nutritive sweeteners (NNSs) in daily life. NNSs elicit a multitude of endocrine influences on animals, differing across species and chemically distinct sweeteners, whose exposure induce activation of sweet taste receptors in oral and extra-oral tissues with consequences of metabolic changes. To evaluate the influence of NNSs on histologic change and expression of sweet taste receptors in testis and epididymis of young male guinea pigs, thirty 4-week-old male guinea pigs with body weight 245.73 ± 6.02 g were randomly divided into five groups (n = 6) and received normal water (control group) and equivalent sweetness low dose or high dose of sodium saccharin (L-SS, 1.5 mM or H-SS, 7.5 mM) or rebaudioside A (L-RA, 0.5 mM or H-RA, 2.5 mM) solution for 28 consecutive days. The results showed that the relative testis weight in male guinea pig with age of 56 days represented no significant difference among all groups; in spite of heavier body weight in L-SS and H-RA, NNS contributes no significant influence on serum testosterone and estradiol level. Low-dose 0.5 mM rebaudioside A enhanced testicular and epididymal functions by elevating the expressions of taste receptor 1 subunit 2 (T1R2) and gustducin α-subunit (GNAT3), and high-dose 7.5 mM sodium saccharin exerted adverse morphologic influences on testis and epididymis with no effect on the expression of T1R2, taste receptor 1 subunit 2 (T1R3), and GNAT3. In conclusion, these findings suggest that a high dose of sodium saccharin has potential adverse biologic effects on the testes and epididymis, while rebaudioside A is a potential steroidogenic sweetener for enhancing reproductive functions.
Collapse
Affiliation(s)
- Ting Shen
- College of Agriculture, Jinhua Polytechnic, Jinhua, China
| | - Junrong Li
- College of Agriculture, Jinhua Polytechnic, Jinhua, China.,College of Animal Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
27
|
Detection of SARS-CoV-2 Derived Small RNAs and Changes in Circulating Small RNAs Associated with COVID-19. Viruses 2021; 13:v13081593. [PMID: 34452458 PMCID: PMC8402885 DOI: 10.3390/v13081593] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 12/17/2022] Open
Abstract
Cleavage of double-stranded RNA is described as an evolutionary conserved host defense mechanism against viral infection. Small RNAs are the product and triggers of post transcriptional gene silencing events. Up until now, the relevance of this mechanism for SARS-CoV-2-directed immune responses remains elusive. Herein, we used high throughput sequencing to profile the plasma of active and convalescent COVID-19 patients for the presence of small circulating RNAs. The existence of SARS-CoV-2 derived small RNAs in plasma samples of mild and severe COVID-19 cases is described. Clusters of high siRNA abundance were discovered, homologous to the nsp2 3′-end and nsp4 virus sequence. Four virus-derived small RNA sequences have the size of human miRNAs, and a target search revealed candidate genes associated with ageusia and long COVID symptoms. These virus-derived small RNAs were detectable also after recovery from the disease. The additional analysis of circulating human miRNAs revealed differentially abundant miRNAs, discriminating mild from severe cases. A total of 29 miRNAs were reduced or absent in severe cases. Several of these are associated with JAK-STAT response and cytokine storm.
Collapse
|
28
|
Rezaie P, Bitarafan V, Horowitz M, Feinle-Bisset C. Effects of Bitter Substances on GI Function, Energy Intake and Glycaemia-Do Preclinical Findings Translate to Outcomes in Humans? Nutrients 2021; 13:1317. [PMID: 33923589 PMCID: PMC8072924 DOI: 10.3390/nu13041317] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/07/2021] [Accepted: 04/15/2021] [Indexed: 12/25/2022] Open
Abstract
Bitter substances are contained in many plants, are often toxic and can be present in spoiled food. Thus, the capacity to detect bitter taste has classically been viewed to have evolved primarily to signal the presence of toxins and thereby avoid their consumption. The recognition, based on preclinical studies (i.e., studies in cell cultures or experimental animals), that bitter substances may have potent effects to stimulate the secretion of gastrointestinal (GI) hormones and modulate gut motility, via activation of bitter taste receptors located in the GI tract, reduce food intake and lower postprandial blood glucose, has sparked considerable interest in their potential use in the management or prevention of obesity and/or type 2 diabetes. However, it remains to be established whether findings from preclinical studies can be translated to health outcomes, including weight loss and improved long-term glycaemic control. This review examines information relating to the effects of bitter substances on the secretion of key gut hormones, gastric motility, food intake and blood glucose in preclinical studies, as well as the evidence from clinical studies, as to whether findings from animal studies translate to humans. Finally, the evidence that bitter substances have the capacity to reduce body weight and/or improve glycaemic control in obesity and/or type 2 diabetes, and potentially represent a novel strategy for the management, or prevention, of obesity and type 2 diabetes, is explored.
Collapse
Affiliation(s)
| | | | | | - Christine Feinle-Bisset
- Adelaide Medical School and Centre of Research Excellence in Translating Nutritional Science to Good Health, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide 5005, Australia; (P.R.); (V.B.); (M.H.)
| |
Collapse
|
29
|
Jiang J, Liu S, Qi L, Wei Q, Shi F. Activation of Ovarian Taste Receptors Inhibits Progesterone Production Potentially via NO/cGMP and Apoptotic Signaling. Endocrinology 2021; 162:6052298. [PMID: 33367902 DOI: 10.1210/endocr/bqaa240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Indexed: 12/25/2022]
Abstract
Taste receptors are not only expressed in the taste buds, but also in other nongustatory tissues, including the reproductive system. Taste receptors can be activated by various tastants, thereby exerting relatively physiologic functions. The aim of this study was to investigate the effects and potential mechanisms underlying ovarian taste receptor activation on progesterone production using saccharin sodium as the receptor agonist in a pseudopregnant rat model. Taste 1 receptor member 2 (TAS1R2) and taste 2 receptor member 31 (TAS2R31) were demonstrated to be abundantly expressed in the corpora lutea of rats, and intraperitoneal injection of saccharin sodium can activate both of them and initiate their downstream signaling cascades. The activation of these ovarian taste receptors promoted nitric oxide (NO) production via endothelial nitric oxide synthase (eNOS). NO production then increased ovarian cyclic guanosine 3',5'-monophosphate (cGMP) levels, which, in turn, decreased ovarian cyclic adenosine 3',5'-monophosphate levels. In addition, the activation of ovarian taste receptors induced apoptosis, possibly through NO and mitogen-activated protein kinase signaling. As a result, the activation of ovarian taste receptors reduced the protein expression of steroidogenesis-related factors, causing the inhibition of ovarian progesterone production. In summary, our data suggest that the activation of ovarian taste receptors inhibits progesterone production in pseudopregnant rats, potentially via NO/cGMP and apoptotic signaling.
Collapse
Affiliation(s)
- Jingle Jiang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Siyi Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Lina Qi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Quanwei Wei
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
30
|
Gong T, Wang W, Xu H, Yang Y, Chen X, Meng L, Xu Y, Li Z, Wan S, Mu Q. Longitudinal Expression of Testicular TAS1R3 from Prepuberty to Sexual Maturity in Congjiang Xiang Pigs. Animals (Basel) 2021; 11:ani11020437. [PMID: 33567555 PMCID: PMC7916009 DOI: 10.3390/ani11020437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/05/2021] [Accepted: 01/29/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, is widely expressed from the tongue to the testis, and testis expression is associated with male sterility. In Congjiang Xiang pigs, T1R3 is expressed in elongating/elongated spermatids and Leydig cells in a stage-dependent manner during postnatal development and the spermatogenic cycle. T1R3 may contribute to regulation of spermatid differentiation and Leydig cell function, and may therefore help limit the incidence of various male reproductive pathologies. Abstract Testicular expression of taste receptor type 1 subunit 3 (T1R3), a sweet/umami taste receptor, has been implicated in spermatogenesis and steroidogenesis in mice. We explored the role of testicular T1R3 in porcine postnatal development using the Congjiang Xiang pig, a rare Chinese miniature pig breed. Based on testicular weights, morphology, and testosterone levels, four key developmental stages were identified in the pig at postnatal days 15–180 (prepuberty: 30 day; early puberty: 60 day; late puberty: 90 day; sexual maturity: 120 day). During development, testicular T1R3 exhibited stage-dependent and cell-specific expression patterns. In particular, T1R3 levels increased significantly from prepuberty to puberty (p < 0.05), and expression remained high until sexual maturity (p < 0.05), similar to results for phospholipase Cβ2 (PLCβ2). The strong expressions of T1R3/PLCβ2 were observed at the cytoplasm of elongating/elongated spermatids and Leydig cells. In the eight-stage cycle of the seminiferous epithelium in pigs, T1R3/PLCβ2 levels were higher in the spermatogenic epithelium at stages II–VI than at the other stages, and the strong expressions were detected in elongating/elongated spermatids and residual bodies. The message RNA (mRNA) levels of taste receptor type 1 subunit 1 (T1R1) in the testis showed a similar trend to levels of T1R3. These data indicate a possible role of T1R3 in the regulation of spermatid differentiation and Leydig cell function.
Collapse
Affiliation(s)
- Ting Gong
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Weiyong Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Houqiang Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
- Correspondence: ; Tel.: +86-0851-88298005
| | - Yi Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Xiang Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Lijie Meng
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Yongjian Xu
- Key Laboratory of Animal Genetics, Breeding and Reproduction in The Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China; (T.G.); (W.W.); (Y.Y.); (X.C.); (L.M.); (Y.X.)
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Guiyang 550025, China
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Ziqing Li
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Sufang Wan
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| | - Qi Mu
- College of Animal Science, Guizhou University, Guiyang 550025, China; (Z.L.); (S.W.); (Q.M.)
| |
Collapse
|
31
|
Caglar O, Aydin MD, Aydin N, Ahiskalioglu A, Kanat A, Aslan R, Onder A. Important interaction between urethral taste bud-like structures and Onuf's nucleus following spinal subarachnoid hemorrhage: A hypothesis for the mechanism of dysorgasmia. Rev Int Androl 2021; 20:1-10. [PMID: 33558170 DOI: 10.1016/j.androl.2020.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/22/2020] [Accepted: 05/26/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND We previously postulated that orgasmic sensation may occur through recently discovered genital taste bud-like structures. The interaction between the pudendal nerve and Onuf's nucleus may be important for developing orgasmic information. The study aims to investigate whether ischemic damage to Onuf's nucleus-pudendal network following spinal subarachnoid hemorrhage (SAH) causes taste bud degeneration or not. METHODS The study was conducted on 22 fertile male rabbits who were divided into three groups: control (GI; n=5), SHAM (GII; n=5) and study (GIII; n=12). Isotonic solution, .7cm3, for the SHAM, and .7cm3 homologous blood was injected into spinal subarachnoid spaces at S2 level of the study group. Two weeks later, Onuf's nucleus, pudendal ganglia and the taste bud-like structures of the penile urethra were examined histopathologically. Degenerated neuron densities of Onuf's nucleus, pudendal ganglia and atrophic taste bud-like structures were estimated per mm3 and the results analyzed statistically. RESULTS The mean degenerated neuron densities of taste bud-like structures, Onuf's nucleus and pudendal ganglia were estimated as 2±1/mm3, 5±1/mm3, 6±2/mm3 in GI; 12±4/mm3, 35±9/mm3, 188±31/mm3, in GII and 41±8/mm3, 215±37/mm3, 1321±78/mm3, in GIII. Spinal SAH induced neurodegeneration in Onuf's nucleus, pudendal ganglia and taste bud atrophy was significantly different between GI/GII (p<.005); GII/GIII (p<.0005) and GI/GIII (p<.0001). CONCLUSION Ischemic neuronal degenerations of Onuf's nucleus and pudendal ganglia following spinal SAH lead to genital taste bud-like structure atrophy. This mechanism may be responsible for sexual anhedonia and sterility in cases with spinal cord injury, which has not been documented so far. More studies are needed.
Collapse
Affiliation(s)
- Ozgur Caglar
- Department of Pediatric Surgery, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Mehmet Dumlu Aydin
- Department of Neurosurgery, Medical Faculty of Ataturk University, Erzurum, Turkey.
| | - Nazan Aydin
- Department of Psychology, Humanities and Social Sciences Faculty, Uskudar University, Istanbul, Turkey
| | - Ali Ahiskalioglu
- Department of Anesthesiology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Ayhan Kanat
- Department of Neurosurgery, Medical Faculty of RTE University, Rize, Turkey
| | - Remzi Aslan
- Department of Pathology, Medical Faculty of Ataturk University, Erzurum, Turkey
| | - Arif Onder
- Department of Neurosurgery, Medical Faculty of Inonu University, Malatya, Turkey
| |
Collapse
|
32
|
Kurtz R, Steinberg LG, Betcher M, Fowler D, Shepard BD. The Sensing Liver: Localization and Ligands for Hepatic Murine Olfactory and Taste Receptors. Front Physiol 2020; 11:574082. [PMID: 33123030 PMCID: PMC7573564 DOI: 10.3389/fphys.2020.574082] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/15/2020] [Indexed: 11/13/2022] Open
Abstract
Sensory receptors, including olfactory receptors (ORs), taste receptors (TRs), and opsins (Opns) have recently been found in a variety of non-sensory tissues where they have distinct physiological functions. As G protein-coupled receptors (GPCRs), these proteins can serve as important chemosensors by sensing and interpreting chemical cues in the environment. We reasoned that the liver, the largest metabolic organ in the body, is primed to take advantage of some of these sensory receptors in order to sense and regulate blood content and metabolism. In this study, we report the expression of novel hepatic sensory receptors - including 7 ORs, 6 bitter TRs, and 1 Opn - identified through a systematic molecular biology screening approach. We further determined that several of these receptors are expressed within hepatocytes, the parenchymal cells of the liver. Finally, we uncovered several agonists of the previously orphaned hepatic ORs. These compounds fall under two classes: methylpyrazines and monoterpenes. In particular, the latter chemicals are plant and fungal-derived compounds with known hepatic protective effects. Collectively, this study sheds light on the chemosensory functions of the liver and unveils potentially important regulators of hepatic homeostasis.
Collapse
Affiliation(s)
- Ryan Kurtz
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Lily G Steinberg
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Madison Betcher
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Dalton Fowler
- Department of Human Science, Georgetown University, Washington, DC, United States
| | - Blythe D Shepard
- Department of Human Science, Georgetown University, Washington, DC, United States
| |
Collapse
|
33
|
Zborowska-Piskadło K, Stachowiak M, Rusetska N, Sarnowska E, Siedlecki J, Dżaman K. The expression of bitter taste receptor TAS2R38 in patients with chronic rhinosinusitis. Arch Immunol Ther Exp (Warsz) 2020; 68:26. [PMID: 32909159 DOI: 10.1007/s00005-020-00593-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
Abstract
Chronic rhinosinusitis (CRS) is a frequent disease with high social impact and multifactorial pathogenesis. Recently, the bitter taste receptor TAS2R38 has been described to play a role in upper airway innate mucosal defense. The aim was to determine the localization and expression of the TAS2R38 in the selected cell lines and tissue collected from patient suffered from CRS as well as to correlate the results with clinical data. Moreover, the purpose was the estimation of the TAS2R38 distribution changes during acute and CRS. Forty-two patients undergoing nasal surgery were enrolled in the study. The TAS2R38 expression was assessed in the collected tissues using immunohistochemistry and immunocytochemistry methods. The western blot analysis was performed on human cell lines HeLa, MCF7, MDA-MB-231 to assess the location of the TAS2R38 protein. Moreover, the HeLa cell line was used as a model of acute inflammation induces by lipopolysaccharide. Immunohistochemistry analysis displayed a statistically significant difference of TAS2R38 level in the patients with CRS compared to healthy control and was different in CRS with and without nasal polyps. The results showed the abundance of TAS2R38 receptor in the cell nucleus in patients with CRS and cell lines. The variance in TAS2R38 receptor expression in two CRS types suggests their different pathogenesis. The first time in literature, we confirmed the presence of plasma membrane TAS2R38 receptor in the cell nuclei in CRS as well as in cell lines, what strongly suggests the different than membrane TAS2R38 function.
Collapse
Affiliation(s)
| | - Małgorzata Stachowiak
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Natalia Rusetska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Elżbieta Sarnowska
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Janusz Siedlecki
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie Institute-Oncology Center, Warsaw, Poland
| | - Karolina Dżaman
- Department of Otolaryngology, Miedzyleski Hospital, Warsaw, Poland.
- Department of Otolaryngology, Centre of Postgraduate Medical Education, Kondratowicza 8, 03-242, Warsaw, Poland.
| |
Collapse
|
34
|
Gutierrez R, Fonseca E, Simon SA. The neuroscience of sugars in taste, gut-reward, feeding circuits, and obesity. Cell Mol Life Sci 2020; 77:3469-3502. [PMID: 32006052 PMCID: PMC11105013 DOI: 10.1007/s00018-020-03458-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/19/2022]
Abstract
Throughout the animal kingdom sucrose is one of the most palatable and preferred tastants. From an evolutionary perspective, this is not surprising as it is a primary source of energy. However, its overconsumption can result in obesity and an associated cornucopia of maladies, including type 2 diabetes and cardiovascular disease. Here we describe three physiological levels of processing sucrose that are involved in the decision to ingest it: the tongue, gut, and brain. The first section describes the peripheral cellular and molecular mechanisms of sweet taste identification that project to higher brain centers. We argue that stimulation of the tongue with sucrose triggers the formation of three distinct pathways that convey sensory attributes about its quality, palatability, and intensity that results in a perception of sweet taste. We also discuss the coding of sucrose throughout the gustatory pathway. The second section reviews how sucrose, and other palatable foods, interact with the gut-brain axis either through the hepatoportal system and/or vagal pathways in a manner that encodes both the rewarding and of nutritional value of foods. The third section reviews the homeostatic, hedonic, and aversive brain circuits involved in the control of food intake. Finally, we discuss evidence that overconsumption of sugars (or high fat diets) blunts taste perception, the post-ingestive nutritional reward value, and the circuits that control feeding in a manner that can lead to the development of obesity.
Collapse
Affiliation(s)
- Ranier Gutierrez
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico.
| | - Esmeralda Fonseca
- Laboratory of Neurobiology of Appetite, Department of Pharmacology, CINVESTAV, 07360, Mexico City, Mexico
| | - Sidney A Simon
- Department of Neurobiology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
35
|
Pekel AY, Mülazımoğlu SB, Acar N. Taste preferences and diet palatability in cats. JOURNAL OF APPLIED ANIMAL RESEARCH 2020. [DOI: 10.1080/09712119.2020.1786391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Ahmet Yavuz Pekel
- Department of Animal Nutrition and Nutritional Diseases, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | | | - Nüket Acar
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
36
|
Papacocea T, Papacocea R, Rădoi M, Pițuru S, Balan DG. Stomach 'tastes' the food and adjusts its emptying: A neurophysiological hypothesis (Review). Exp Ther Med 2020; 20:2392-2395. [PMID: 32765721 DOI: 10.3892/etm.2020.8874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023] Open
Abstract
The presence of taste receptors and their secondary messengers in stomach raised the possibility that the stomach might play a role in food 'tasting' and consequently, it might initiate specific adaptations of its secretory and motor function. Furthermore, activated taste receptors release a variety of chemical mediators able to modulate the activity of the enteric nervous system (ENS), and also to influence both secretory and motor functions of the stomach. Based on the physiological fundamental structure of a reflex arch, the stimulation of the gastric taste receptors activates sensory neurons of the gastric wall, continues with motor neurons which initiate the contraction of the local smooth muscle fibers. Beyond this, compounds which act on different taste receptors initiate different responses, stimulatory or inhibitory. These interactions may be translated in the gastric ability to selectively evacuate different nutritive compounds into the duodenum. Consequently, sugars could be favored to the detriment of other compounds.
Collapse
Affiliation(s)
- Toma Papacocea
- Department of Neurosurgery, 'St. Pantelimon' Emergency Hospital, 021659 Bucharest, Romania
| | - Raluca Papacocea
- Department of Physiology I, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| | - Mugurel Rădoi
- Department of Neurosurgery, National Institute of Neurology and Neurovascular Diseases, 041914 Bucharest, Romania
| | - Silviu Pițuru
- Department of Dental Medicine II, 'Carol Davila' University of Medicine and Pharmacy, 010221 Bucharest, Romania
| | - Daniela Gabriela Balan
- Department of Physiology III, 'Carol Davila' University of Medicine and Pharmacy, 050474 Bucharest, Romania
| |
Collapse
|
37
|
Frolikova M, Otcenaskova T, Valasková E, Postlerova P, Stopkova R, Stopka P, Komrskova K. The Role of Taste Receptor mTAS1R3 in Chemical Communication of Gametes. Int J Mol Sci 2020; 21:ijms21072651. [PMID: 32290318 PMCID: PMC7177404 DOI: 10.3390/ijms21072651] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 01/06/2023] Open
Abstract
Fertilization is a multiple step process leading to the fusion of female and male gametes and the formation of a zygote. Besides direct gamete membrane interaction via binding receptors localized on both oocyte and sperm surface, fertilization also involves gamete communication via chemical molecules triggering various signaling pathways. This work focuses on a mouse taste receptor, mTAS1R3, encoded by the Tas1r3 gene, as a potential receptor mediating chemical communication between gametes using the C57BL/6J lab mouse strain. In order to specify the role of mTAS1R3, we aimed to characterize its precise localization in testis and sperm using super resolution microscopy. The testis cryo-section, acrosome-intact sperm released from cauda epididymis and sperm which underwent the acrosome reaction (AR) were evaluated. The mTAS1R3 receptor was detected in late spermatids where the acrosome was being formed and in the acrosomal cap of acrosome intact sperm. AR is triggered in mice during sperm maturation in the female reproductive tract and by passing through the egg surroundings such as cumulus oophorus cells. This AR onset is independent of the extracellular matrix of the oocyte called zona pellucida. After AR, the relocation of mTAS1R3 to the equatorial segment was observed and the receptor remained exposed to the outer surroundings of the female reproductive tract, where its physiological ligand, the amino acid L-glutamate, naturally occurs. Therefore, we targeted the possible interaction in vitro between the mTAS1R3 and L-glutamate as a part of chemical communication between sperm and egg and used an anti-mTAS1R3-specific antibody to block it. We detected that the acrosome reacted spermatozoa showed a chemotactic response in the presence of L-glutamate during and after the AR, and it is likely that mTAS1R3 acted as its mediator.
Collapse
Affiliation(s)
- Michaela Frolikova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (M.F.); (T.O.); (E.V.); (P.P.)
| | - Tereza Otcenaskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (M.F.); (T.O.); (E.V.); (P.P.)
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vinicna 7, 128 44 Prague 2, Czech Republic; (R.S.); (P.S.)
| | - Eliska Valasková
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (M.F.); (T.O.); (E.V.); (P.P.)
| | - Pavla Postlerova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (M.F.); (T.O.); (E.V.); (P.P.)
- Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural Resources, University of Life Sciences Prague, Kamycka 129, 165 00 Prague 6, Czech Republic
| | - Romana Stopkova
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vinicna 7, 128 44 Prague 2, Czech Republic; (R.S.); (P.S.)
| | - Pavel Stopka
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vinicna 7, 128 44 Prague 2, Czech Republic; (R.S.); (P.S.)
| | - Katerina Komrskova
- Laboratory of Reproductive Biology, Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic; (M.F.); (T.O.); (E.V.); (P.P.)
- Department of Zoology, Faculty of Science, Charles University, BIOCEV, Vinicna 7, 128 44 Prague 2, Czech Republic; (R.S.); (P.S.)
- Correspondence: ; Tel.: +420-325-873-799
| |
Collapse
|
38
|
Welcome MO. The bitterness of genitourinary infections: Properties, ligands of genitourinary bitter taste receptors and mechanisms linking taste sensing to inflammatory processes in the genitourinary tract. Eur J Obstet Gynecol Reprod Biol 2020; 247:101-110. [PMID: 32088528 DOI: 10.1016/j.ejogrb.2020.02.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 02/03/2020] [Accepted: 02/13/2020] [Indexed: 01/04/2023]
Abstract
BACKGROUND Though, first identified in the gastrointestinal tract, bitter taste receptors are now believed to be ubiquitously expressed in several regions of the body, including the respiratory tract, where they play a critical role in sensing and clearance of excess metabolic substrates, toxins, debris, and pathogens. More recently, bitter taste receptor expression has been reported in cells, tissues and organs of the genitourinary (GU) system, suggesting that these receptors may play an integral role in mediating inflammatory responses to microbial aggression in the GU tract. However, the mechanisms, linking bitter taste receptor sensing with inflammatory responses are not exactly clear. Here, I review recent data on the properties and ligands of bitter taste receptors and suggest mechanisms of bitter taste receptor signaling in the GU tract, and the molecular pathways that link taste sensing to inflammatory responses in GU tract. METHOD Computer-aided search was conducted in Scopus, PubMed, Web of Science and Google Scholar for relevant peer-reviewed articles published between 1990 and 2018, investigating the functional implication of bitter taste receptors in GU infections, using the following keywords: extra-oral bitter taste receptors, bitter taste receptors, GU bitter taste receptors, kidney OR renal OR ureteral OR urethral OR bladder OR detrusor smooth muscle OR testes OR spermatozoa OR prostate OR vaginal OR cervix OR ovarian OR endometrial OR myometrial OR placenta OR cutaneous bitter taste receptors. To identify research gaps on etiopathogenesis of GU infections/inflammation, additional search was conducted using the following keywords: GU inflammatory signaling, GU microbes, GU bacteria, GU virus, GU protozoa, GU microbial metabolites, and GU infection. The retrieved articles were filtered and further screened for relevance according to the aim of the study. A narrative review was performed for selected literatures. RESULTS Bitter taste receptors of the GU tract may constitute essential components of the pathogenetic mechanisms of GU infections/inflammation that are activated by microbial components, known as quorum sensing signal molecules. Based on accumulating evidences, indicating that taste receptors may signal downstream to activate inflammatory cascades, in addition to the nitric oxide-induced microbicidal effects produced upon taste receptor activation, it is suggested that the anti-inflammatory activities of bitter taste receptor stimulation are mediated via pathways involving the nuclear factor κB by downstream signaling of the metabolic and stress sensors, adenosine monophosphate-activated protein kinase and nicotinamide adenine dinucleotide-dependent silent mating type information regulation 2 homolog 1 (sirtuin 1), resulting to the synthesis of anti-inflammatory cytokines/chemokines, and antimicrobial factors, which ultimately, under normal conditions, leads to the elimination of microbial aggression. CONCLUSIONS GU bitter taste receptors may represent critical players in GU tract infections/inflammation. Bitter taste receptors may serve as important therapeutic target for treatment of a number of infectious diseases that affect the GU tract.
Collapse
Affiliation(s)
- Menizibeya O Welcome
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Nile University of Nigeria, Abuja, Nigeria.
| |
Collapse
|
39
|
Governini L, Semplici B, Pavone V, Crifasi L, Marrocco C, De Leo V, Arlt E, Gudermann T, Boekhoff I, Luddi A, Piomboni P. Expression of Taste Receptor 2 Subtypes in Human Testis and Sperm. J Clin Med 2020; 9:E264. [PMID: 31963712 PMCID: PMC7019805 DOI: 10.3390/jcm9010264] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/10/2020] [Accepted: 01/14/2020] [Indexed: 12/31/2022] Open
Abstract
Taste receptors (TASRs) are expressed not only in the oral cavity but also throughout the body, thus suggesting that they may play different roles in organ systems beyond the tongue. Recent studies showed the expression of several TASRs in mammalian testis and sperm, indicating an involvement of these receptors in male gametogenesis and fertility. This notion is supported by an impaired reproductive phenotype of mouse carrying targeted deletion of taste receptor genes, as well as by a significant correlation between human semen parameters and specific polymorphisms of taste receptor genes. To better understand the biological and thus clinical significance of these receptors for human reproduction, we analyzed the expression of several members of the TAS2Rs family of bitter receptors in human testis and in ejaculated sperm before and after in vitro selection and capacitation. Our results provide evidence for the expression of TAS2R genes, with TAS2R14 being the most expressed bitter receptor subtype in both testis tissue and sperm cells, respectively. In addition, it was observed that in vitro capacitation significantly affects both the expression and the subcellular localization of these receptors in isolated spermatozoa. Interestingly, α-gustducin and α-transducin, two Gα subunits expressed in taste buds on the tongue, are also expressed in human spermatozoa; moreover, a subcellular redistribution of both G protein α-subunits to different sub-compartments of sperm was registered upon in vitro capacitation. Finally, we shed light on the possible downstream transduction pathway initiated upon taste receptor activation in the male reproductive system. Performing ultrasensitive droplets digital PCR assays to quantify RNA copy numbers of a distinct gene, we found a significant correlation between the expression of TAS2Rs and TRPM5 (r = 0.87), the cation channel involved in bitter but also sweet and umami taste transduction in taste buds on the tongue. Even if further studies are needed to clarify the precise functional role of taste receptors for successful reproduction, the presented findings significantly extend our knowledge of the biological role of TAS2Rs for human male fertility.
Collapse
Affiliation(s)
- Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Bianca Semplici
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Valentina Pavone
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Laura Crifasi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Camilla Marrocco
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Vincenzo De Leo
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Elisabeth Arlt
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Muenchen, Germany; (E.A.); (T.G.); (I.B.)
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Muenchen, Germany; (E.A.); (T.G.); (I.B.)
| | - Ingrid Boekhoff
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, 80336 Muenchen, Germany; (E.A.); (T.G.); (I.B.)
| | - Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy; (L.G.); (B.S.); (V.P.); (L.C.); (C.M.); (V.D.L.); (P.P.)
| |
Collapse
|
40
|
The senses of the choroid plexus. Prog Neurobiol 2019; 182:101680. [DOI: 10.1016/j.pneurobio.2019.101680] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/26/2019] [Accepted: 08/01/2019] [Indexed: 12/12/2022]
|
41
|
Carey RM, Lee RJ. Taste Receptors in Upper Airway Innate Immunity. Nutrients 2019; 11:nu11092017. [PMID: 31466230 PMCID: PMC6770031 DOI: 10.3390/nu11092017] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023] Open
Abstract
Taste receptors, first identified on the tongue, are best known for their role in guiding our dietary preferences. The expression of taste receptors for umami, sweet, and bitter have been demonstrated in tissues outside of the oral cavity, including in the airway, brain, gastrointestinal tract, and reproductive organs. The extra-oral taste receptor chemosensory pathways and the endogenous taste receptor ligands are generally unknown, but there is increasing data suggesting that taste receptors are involved in regulating some aspects of innate immunity, and may potentially control the composition of the nasal microbiome in healthy individuals or patients with upper respiratory diseases like chronic rhinosinusitis (CRS). For this reason, taste receptors may serve as potential therapeutic targets, providing alternatives to conventional antibiotics. This review focuses on the physiology of sweet (T1R) and bitter (T2R) taste receptors in the airway and their activation by secreted bacterial products. There is particular focus on T2R38 in sinonasal ciliated cells, as well as the sweet and bitter receptors found on specialized sinonasal solitary chemosensory cells. Additionally, this review explores the impact of genetic variations in these receptors on the differential susceptibility of patients to upper airway infections, such as CRS.
Collapse
Affiliation(s)
- Ryan M Carey
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert J Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
42
|
Megquier K, Genereux DP, Hekman J, Swofford R, Turner-Maier J, Johnson J, Alonso J, Li X, Morrill K, Anguish LJ, Koltookian M, Logan B, Sharp CR, Ferrer L, Lindblad-Toh K, Meyers-Wallen VN, Hoffman A, Karlsson EK. BarkBase: Epigenomic Annotation of Canine Genomes. Genes (Basel) 2019; 10:E433. [PMID: 31181663 PMCID: PMC6627511 DOI: 10.3390/genes10060433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/29/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022] Open
Abstract
Dogs are an unparalleled natural model for investigating the genetics of health and disease, particularly for complex diseases like cancer. Comprehensive genomic annotation of regulatory elements active in healthy canine tissues is crucial both for identifying candidate causal variants and for designing functional studies needed to translate genetic associations into disease insight. Currently, canine geneticists rely primarily on annotations of the human or mouse genome that have been remapped to dog, an approach that misses dog-specific features. Here, we describe BarkBase, a canine epigenomic resource available at barkbase.org. BarkBase hosts data for 27 adult tissue types, with biological replicates, and for one sample of up to five tissues sampled at each of four carefully staged embryonic time points. RNA sequencing is complemented with whole genome sequencing and with assay for transposase-accessible chromatin using sequencing (ATAC-seq), which identifies open chromatin regions. By including replicates, we can more confidently discern tissue-specific transcripts and assess differential gene expression between tissues and timepoints. By offering data in easy-to-use file formats, through a visual browser modeled on similar genomic resources for human, BarkBase introduces a powerful new resource to support comparative studies in dogs and humans.
Collapse
Affiliation(s)
- Kate Megquier
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Diane P Genereux
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jessica Hekman
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Ross Swofford
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jason Turner-Maier
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jeremy Johnson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Jacob Alonso
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Xue Li
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Kathleen Morrill
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Lynne J Anguish
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853, USA.
| | - Michele Koltookian
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Brittney Logan
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| | - Claire R Sharp
- School of Veterinary and Life Sciences, College of Veterinary Medicine, Murdoch University, Perth, Murdoch, WA 6150, Australia.
| | - Lluis Ferrer
- Departament de Medicina i Cirurgia Animals Veterinary School, Universitat Autonoma de Barcelona, 08193 Barcelona, Spain.
| | - Kerstin Lindblad-Toh
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Science for Life Laboratory, Department of Medical Biochemistry & Microbiology, Uppsala University, 751 23 Uppsala, Sweden.
| | - Vicki N Meyers-Wallen
- Baker Institute for Animal Health and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Andrew Hoffman
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
- Cummings School of Veterinary Medicine, Tufts University, Grafton, MA 01536, USA.
| | - Elinor K Karlsson
- Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
- Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA.
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01655, USA.
| |
Collapse
|
43
|
Kanno N, Yoshida S, Kato T, Kato Y. Characteristic Localization of Neuronatin in Rat Testis, Hair Follicle, Tongue, and Pancreas. J Histochem Cytochem 2019; 67:495-509. [PMID: 30869556 DOI: 10.1369/0022155419836433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neuronatin (Nnat) is expressed in the pituitary, pancreas, and other tissues; however, the function of NNAT is still unclear. Recent studies have demonstrated that NNAT is localized in the sex-determining region Y-box 2-positive stem/progenitor cells in the developing rat pituitary primordium and is downregulated during differentiation into mature hormone-producing cells. Moreover, NNAT is widely localized in subcellular organelles, excluding the Golgi. Here, we further evaluated NNAT-positive cells and intracellular localization in embryonic and postnatal rat tissues such as the pancreas, tongue, whisker hair follicle, and testis. Immunohistochemistry revealed that NNAT was localized in undifferentiated cells (i.e., epithelial basal cells and basement cells in the papillae of the tongue and round and elongated spermatids of the testis) as well as in differentiated cells (insulin-positive cells and exocrine cells of the pancreas, taste receptor cells of the fungiform papilla, the inner root sheath of whisker hair follicles, and spermatozoa). In addition, NNAT exhibited novel intracellular localization in acrosomes in the spermatozoa. Because the endoplasmic reticulum (ER) is excluded from spermatozoa and sarco/ER Ca2+-ATPase isoform 2 (SERCA2) is absent from the inner root sheath, these findings suggested that NNAT localization in the ER and its interaction with SERCA2 are cell- or tissue-specific properties.
Collapse
Affiliation(s)
- Naoko Kanno
- Division of Life Science, Meiji University, Kanagawa, Japan
| | - Saishu Yoshida
- Institute of Endocrinology, Meiji University, Kanagawa, Japan
| | - Takako Kato
- Institute of Endocrinology, Meiji University, Kanagawa, Japan
| | - Yukio Kato
- Division of Life Science, Meiji University, Kanagawa, Japan.,Graduate School of Agriculture, Meiji University, Kanagawa, Japan.,Institute of Endocrinology, Meiji University, Kanagawa, Japan
| |
Collapse
|
44
|
Luddi A, Governini L, Wilmskötter D, Gudermann T, Boekhoff I, Piomboni P. Taste Receptors: New Players in Sperm Biology. Int J Mol Sci 2019; 20:E967. [PMID: 30813355 PMCID: PMC6413048 DOI: 10.3390/ijms20040967] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 02/13/2019] [Accepted: 02/18/2019] [Indexed: 12/21/2022] Open
Abstract
Taste receptors were first described as sensory receptors located on the tongue, where they are expressed in small clusters of specialized epithelial cells. However, more studies were published in recent years pointing to an expression of these proteins not only in the oral cavity but throughout the body and thus to a physiological role beyond the tongue. The recent observation that taste receptors and components of the coupled taste transduction cascade are also expressed during the different phases of spermatogenesis as well as in mature spermatozoa from mouse to humans and the overlap between the ligand spectrum of taste receptors with compounds in the male and female reproductive organs makes it reasonable to assume that sperm "taste" these different cues in their natural microenvironments. This assumption is assisted by the recent observations of a reproductive phenotype of different mouse lines carrying a targeted deletion of a taste receptor gene as well as the finding of a significant correlation between human male infertility and some polymorphisms in taste receptors genes. In this review, we depict recent findings on the role of taste receptors in male fertility, especially focusing on their possible involvement in mechanisms underlying spermatogenesis and post testicular sperm maturation. We also highlight the impact of genetic deletions of taste receptors, as well as their polymorphisms on male reproduction.
Collapse
Affiliation(s)
- Alice Luddi
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Laura Governini
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| | - Dorke Wilmskötter
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Ingrid Boekhoff
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-University, 80539 Munich, Germany.
| | - Paola Piomboni
- Department of Molecular and Developmental Medicine, Siena University, 53100 Siena, Italy.
| |
Collapse
|
45
|
Abstract
This chapter summarizes the available data about taste receptor functions and their role in perception of food with emphasis on the human system. In addition we illuminate the widespread presence of these receptors throughout the body and discuss some of their extraoral functions. Finally, we describe clinical aspects where taste receptor signaling could be relevant.
Collapse
Affiliation(s)
- Jonas C Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
46
|
Maßberg D, Hatt H. Human Olfactory Receptors: Novel Cellular Functions Outside of the Nose. Physiol Rev 2018; 98:1739-1763. [PMID: 29897292 DOI: 10.1152/physrev.00013.2017] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Olfactory receptors (ORs) are not exclusively expressed in the olfactory sensory neurons; they are also observed outside of the olfactory system in all other human tissues tested to date, including the testis, lung, intestine, skin, heart, and blood. Within these tissues, certain ORs have been determined to be exclusively expressed in only one tissue, whereas other ORs are more widely distributed in many different tissues throughout the human body. For most of the ectopically expressed ORs, limited data are available for their functional roles. They have been shown to be involved in the modulation of cell-cell recognition, migration, proliferation, the apoptotic cycle, exocytosis, and pathfinding processes. Additionally, there is a growing body of evidence that they have the potential to serve as diagnostic and therapeutic tools, as ORs are highly expressed in different cancer tissues. Interestingly, in addition to the canonical signaling pathways activated by ORs in olfactory sensory neurons, alternative pathways have been demonstrated in nonolfactory tissues. In this review, the existing data concerning the expression, as well as the physiological and pathophysiological functions, of ORs outside of the nose are highlighted to provide insights into future lines of research.
Collapse
Affiliation(s)
- Désirée Maßberg
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| | - Hanns Hatt
- Ruhr-University Bochum, Department of Cell Physiology , Bochum , Germany
| |
Collapse
|
47
|
Effects of sucralose on insulin and glucagon-like peptide-1 secretion in healthy subjects: a randomized, double-blind, placebo-controlled trial. Nutrition 2018; 55-56:125-130. [DOI: 10.1016/j.nut.2018.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 03/31/2018] [Accepted: 04/08/2018] [Indexed: 01/16/2023]
|
48
|
Bitter taste receptors are expressed in human epithelial ovarian and prostate cancers cells and noscapine stimulation impacts cell survival. Mol Cell Biochem 2018; 454:203-214. [PMID: 30350307 DOI: 10.1007/s11010-018-3464-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 10/17/2018] [Indexed: 01/26/2023]
Abstract
Bitter taste receptors (Tas2Rs) are a subfamily of G-protein coupled receptors expressed not only in the oral cavity but also in several extra-oral tissues and disease states. Several natural bitter compounds from plants, such as bitter melon extract and noscapine, have displayed anti-cancer effects against various cancer types. In this study, we examined the prevalence of Tas2R subtype expression in several epithelial ovarian or prostate cancer cell lines, and the functionality of Tas2R14 was determined. qPCR analysis of five TAS2Rs demonstrated that mRNA expression often varies greatly in cancer cells in comparison to normal tissue. Using receptor-specific siRNAs, we also demonstrated that noscapine stimulation of ovarian cancer cells increased apoptosis in ovarian cancer cells in a receptor-dependent, but ROS-independent manner. This study furthers our understanding of the function of Tas2Rs in ovarian cancer by demonstrating that their activation has an impact on cell survival.
Collapse
|
49
|
Rother KI, Conway EM, Sylvetsky AC. How Non-nutritive Sweeteners Influence Hormones and Health. Trends Endocrinol Metab 2018; 29:455-467. [PMID: 29859661 DOI: 10.1016/j.tem.2018.04.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 01/16/2023]
Abstract
Non-nutritive sweeteners (NNSs) elicit a multitude of endocrine effects in vitro, in animal models, and in humans. The best-characterized consequences of NNS exposure are metabolic changes, which may be mediated by activation of sweet taste receptors in oral and extraoral tissues (e.g., intestine, pancreatic β cells, and brain), and alterations of the gut microbiome. These mechanisms are likely synergistic and may differ across species and chemically distinct NNSs. However, the extent to which these hormonal effects are clinically relevant in the context of human consumption is unclear. Further investigation following prolonged exposure is required to better understand the role of NNSs in human health, with careful consideration of genetic, dietary, anthropometric, and other interindividual differences.
Collapse
Affiliation(s)
- Kristina I Rother
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA.
| | - Ellen M Conway
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA
| | - Allison C Sylvetsky
- Section on Pediatric Diabetes and Metabolism, National Institute of Diabetes, Digestive, and Kidney Diseases, 9000 Rockville Pike, Building 10, Room 8C432A, Bethesda, MD 20892, USA; Department of Exercise and Nutrition Sciences, The George Washington University, 950 New Hampshire Avenue NW, 2nd floor, Washington DC 20052, USA; Sumner M. Redstone Global Center for Prevention and Wellness, Milken Institute School of Public Health, The George Washington University, 950 New Hampshire Avenue NW, 3rd floor, Washington DC 20052, USA
| |
Collapse
|
50
|
Dragos D, Gilca M. Taste of phytocompounds: A better predictor for ethnopharmacological activities of medicinal plants than the phytochemical class? JOURNAL OF ETHNOPHARMACOLOGY 2018; 220:129-146. [PMID: 29604378 DOI: 10.1016/j.jep.2018.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 03/26/2018] [Accepted: 03/26/2018] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Understanding the patterns that shape traditional medical knowledge is essential for accelerating ethnopharmacological progress. According to Ayurveda, medicinal plants that belong to different taxa, but which have similar taste, may display similar (ethno)pharmacological activities (EPAs) (Bhishagratna, 1998; Sharma and Dash, 2006). AIM OF THE STUDY To understand the patterns that govern the distribution of herbal EPAs in Ayurveda and to evaluate the potential concordance between chemical class or taste of the constituent phytocompounds and EPAs. MATERIAL AND METHODS A mixed database (PhytoMolecularTasteDB) was constructed for Ayurvedic medicinal plants by integrating modern data (medicinal plant composition, phytochemical taste) with traditional data (ethnopharmacological activities of plant). PhytoMolecularTasteDB contains 431 Ayurvedic medicinal plants, 94 EPAs, 223 chemical classes of phytocompounds and 438 herbal tastants. Potential global or individual associations between chemical classes/taste of the phytoconstituents and EPAs were statistically analyzed. RESULTS There was no global statistical correlation between the various chemical classes of phytocompounds and EPAs, although there were several individual correlations. The results suggest the existence of a global statistical correlation (besides several individual correlations) between the plant "molecular taste" (various taste-based classes of phytocompounds) and EPAs. CONCLUSIONS These results suggest that phytochemical taste may be more relevant than chemical class for EPAs prediction.
Collapse
Affiliation(s)
- Dorin Dragos
- Medical Semiology Dept., Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, B-dul Eroilor Sanitari nr.8, 050471 Bucharest, Romania; Nephrology Clinic, University Emergency Hospital Bucharest, Bucharest, Romania.
| | - Marilena Gilca
- Biochemistry Dept., Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, B-dul Eroilor Sanitari nr.8, 050471 Bucharest, Romania.
| |
Collapse
|