1
|
Müller TD, Adriaenssens A, Ahrén B, Blüher M, Birkenfeld AL, Campbell JE, Coghlan MP, D'Alessio D, Deacon CF, DelPrato S, Douros JD, Drucker DJ, Figueredo Burgos NS, Flatt PR, Finan B, Gimeno RE, Gribble FM, Hayes MR, Hölscher C, Holst JJ, Knerr PJ, Knop FK, Kusminski CM, Liskiewicz A, Mabilleau G, Mowery SA, Nauck MA, Novikoff A, Reimann F, Roberts AG, Rosenkilde MM, Samms RJ, Scherer PE, Seeley RJ, Sloop KW, Wolfrum C, Wootten D, DiMarchi RD, Tschöp MH. Glucose-dependent insulinotropic polypeptide (GIP). Mol Metab 2025; 95:102118. [PMID: 40024571 PMCID: PMC11931254 DOI: 10.1016/j.molmet.2025.102118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glucose-dependent insulinotropic polypeptide (GIP) was the first incretin identified and plays an essential role in the maintenance of glucose tolerance in healthy humans. Until recently GIP had not been developed as a therapeutic and thus has been overshadowed by the other incretin, glucagon-like peptide 1 (GLP-1), which is the basis for several successful drugs to treat diabetes and obesity. However, there has been a rekindling of interest in GIP biology in recent years, in great part due to pharmacology demonstrating that both GIPR agonism and antagonism may be beneficial in treating obesity and diabetes. This apparent paradox has reinvigorated the field, led to new lines of investigation, and deeper understanding of GIP. SCOPE OF REVIEW In this review, we provide a detailed overview on the multifaceted nature of GIP biology and discuss the therapeutic implications of GIPR signal modification on various diseases. MAJOR CONCLUSIONS Following its classification as an incretin hormone, GIP has emerged as a pleiotropic hormone with a variety of metabolic effects outside the endocrine pancreas. The numerous beneficial effects of GIPR signal modification render the peptide an interesting candidate for the development of pharmacotherapies to treat obesity, diabetes, drug-induced nausea and both bone and neurodegenerative disorders.
Collapse
Affiliation(s)
- Timo D Müller
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Walther-Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University Munich (LMU), Germany.
| | - Alice Adriaenssens
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Bo Ahrén
- Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Matthias Blüher
- Medical Department III-Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany; Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Andreas L Birkenfeld
- Department of Internal Medicine IV, University Hospital Tübingen, Tübingen 72076, Germany; Institute of Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich, Tübingen, Germany; German Center for Diabetes Research, Neuherberg, Germany
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Matthew P Coghlan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - David D'Alessio
- Department of Medicine, Division of Endocrinology, Duke University, Durham, NC, USA; Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Carolyn F Deacon
- School of Biomedical Sciences, Ulster University, Coleraine, UK; Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stefano DelPrato
- Interdisciplinary Research Center "Health Science", Sant'Anna School of Advanced Studies, Pisa, Italy
| | | | - Daniel J Drucker
- The Lunenfeld-Tanenbaum Research Institute, Mt. Sinai Hospital, and the Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Natalie S Figueredo Burgos
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland BT52 1SA, UK
| | - Brian Finan
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Ruth E Gimeno
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Fiona M Gribble
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Matthew R Hayes
- Department of Biobehavioral Health Sciences, School of Nursing, University of Pennsylvania, Philadelphia, PA, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christian Hölscher
- Neurodegeneration Research Group, Henan Academy of Innovations in Medical Science, Xinzheng, China
| | - Jens J Holst
- Department of Biomedical Sciences and the Novo Nordisk Foundation Centre for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Patrick J Knerr
- Indianapolis Biosciences Research Institute, Indianapolis, IN, USA
| | - Filip K Knop
- Center for Clinical Metabolic Research, Herlev and Gentofte Hospital, University of Copenhagen, Hellerup, Denmark; Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christine M Kusminski
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Arkadiusz Liskiewicz
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany; Department of Physiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Guillaume Mabilleau
- Univ Angers, Nantes Université, ONIRIS, Inserm, RMeS UMR 1229, Angers, France; CHU Angers, Departement de Pathologie Cellulaire et Tissulaire, Angers, France
| | | | - Michael A Nauck
- Diabetes, Endocrinology and Metabolism Section, Department of Internal Medicine I, St. Josef-Hospital, Ruhr-University Bochum, Bochum, Germany
| | - Aaron Novikoff
- Institute for Diabetes and Obesity, Helmholtz Munich, Germany; German Center for Diabetes Research, DZD, Germany
| | - Frank Reimann
- Institute of Metabolic Science-Metabolic Research Laboratories & MRC-Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Anna G Roberts
- Centre for Cardiovascular and Metabolic Neuroscience, Department of Neuroscience, Physiology, and Pharmacology, University College London, London, UK
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences University of Copenhagen, Copenhagen, Denmark
| | - Ricardo J Samms
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Philip E Scherer
- Touchstone Diabetes Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Kyle W Sloop
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8092, Schwerzenbach, Switzerland
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia; ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | | | - Matthias H Tschöp
- Helmholtz Munich, Neuherberg, Germany; Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Ng CL, Lim TS, Choong YS. The Role of Calcium Ions in Restoring Lipase Activity of Recombinant Human Lipoprotein Lipase Expressed in Bacteria. Mol Biotechnol 2025:10.1007/s12033-025-01440-6. [PMID: 40274713 DOI: 10.1007/s12033-025-01440-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/08/2025] [Indexed: 04/26/2025]
Abstract
Lipoprotein lipase (LPL) is a blood vessel lipase that regulates and removes plasma lipoprotein triglycerides from blood circulation. It is important in the control of hypertriglyceridemia. LPL dysregulation can lead to hypertriglyceridemia and increase the risk of atherosclerosis cardiovascular disease. Therefore, the biochemical characterization of LPL could help understand the LPL dysregulation mechanism. However, active LPL enzyme acquisition via bacterial expression is challenging, as studies have reported that LPL could only be co-expressed in the presence of a chaperone. Therefore, this work intends to investigate the possibility of bacterial expression of human LPL (hLPL) with active lipase activity. The hLPL protein has been produced in SHuffle® T7 cells, and the optimal refolding conditions of the hLPL protein have been described here. The addition of 4% glycerol, 0.5-M NaCl, and 0.5-mM CaCl2 in the refolding buffer has improved the hLPL lipase activity in the p-nitrophenol butyrate assay. The hLPL protein showed improved lipase activity with Vmax and Km of 14.84 nmol/min/mg and 0.77 mM at 37 °C, respectively. These results indicate that the bacteria expression system could be an alternative approach to produce recombinant hLPL.
Collapse
Affiliation(s)
- Chong Lee Ng
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Theam Soon Lim
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Yee Siew Choong
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, 11800, Penang, Malaysia.
| |
Collapse
|
3
|
McTavish PV, Mutch DM. Omega-3 fatty acid regulation of lipoprotein lipase and FAT/CD36 and its impact on white adipose tissue lipid uptake. Lipids Health Dis 2024; 23:386. [PMID: 39567971 PMCID: PMC11580630 DOI: 10.1186/s12944-024-02376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
Lipid uptake by white adipose tissue (WAT) is critically important for storage of excess energy and to protect peripheral tissues from ectopic lipid deposition. When WAT becomes dysfunctional (i.e., with obesity), it is characterized by impaired lipid uptake and increased lipolysis which, together, promote whole-body dyslipidemia. Omega-3 polyunsaturated fatty acids (N-3 PUFA) are widely studied for their triacylglycerol (TAG)-lowering properties and cardiometabolic health benefits. One potential mechanism underlying these benefits is the modification of WAT lipid uptake; however, there are gaps in our understanding regarding the specific mechanisms by which N-3 PUFA function. Evidence to date suggests that N-3 PUFA promote TAG clearance by increasing lipoprotein lipase (LPL) activity and the abundance of fatty acid transporters. Specifically, N-3 PUFA have been shown to increase LPL activity through increased gene transcription and modifications of endogenously produced LPL regulators such as apolipoprotein C-II/III and angiopoietin-like proteins. This review presents and discusses the available in vitro and in vivo research to provide a comprehensive overview of N-3 PUFA regulation of WAT lipid uptake in healthy and obese contexts. Additionally, we highlight areas where more research is necessary to better understand the contribution of increased WAT lipid uptake in relation to the TAG-lowering properties associated with N-3 PUFA.
Collapse
Affiliation(s)
- Patrick V McTavish
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - David M Mutch
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
4
|
Luo Y, Meng X, Cui L, Wang S. Circadian Regulation of Lipid Metabolism during Pregnancy. Int J Mol Sci 2024; 25:11491. [PMID: 39519044 PMCID: PMC11545986 DOI: 10.3390/ijms252111491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
A cluster of metabolic changes occur to provide energy for fetal growth and development during pregnancy. There is a burgeoning body of research highlighting the pivotal role of circadian rhythms in the pathogenesis of metabolic disorders and lipid homeostasis in mammals. Perturbations of the circadian system and lipid metabolism during gestation might be responsible for a variety of adverse reproductive outcomes comprising miscarriage, gestational diabetes mellitus, and preeclampsia. Growing studies have confirmed that resynchronizing circadian rhythms might alleviate metabolic disturbance. However, there is no clear evidence regarding the specific mechanisms by which the diurnal rhythm regulates lipid metabolism during pregnancy. In this review, we summarize previous knowledge on the strong interaction among the circadian clock, lipid metabolism, and pregnancy. Analyzing the circadian clock genes will improve our understanding of how circadian rhythms are implicated in complex lipid metabolic disorders during pregnancy. Exploring the potential of resynchronizing these circadian rhythms to disrupt abnormal lipid metabolism could also result in a breakthrough in reducing adverse pregnancy outcomes.
Collapse
Affiliation(s)
| | | | - Liyuan Cui
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China; (Y.L.); (X.M.)
| | - Songcun Wang
- Laboratory for Reproductive Immunology, Hospital of Obstetrics and Gynecology, Fudan University Shanghai Medical College, Shanghai 200011, China; (Y.L.); (X.M.)
| |
Collapse
|
5
|
Chen CC, Lin CY, Lu HY, Liou CH, Ho YN, Huang CW, Zhang ZF, Kao CH, Yang WC, Gong HY. Transcriptomics and gut microbiome analysis of the edible herb Bidens pilosa as a functional feed additive to promote growth and metabolism in tilapia (Oreochromis spp.). BMC Genomics 2024; 25:785. [PMID: 39138417 PMCID: PMC11323441 DOI: 10.1186/s12864-024-10674-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024] Open
Abstract
To reduce the use of antibiotics and chemicals in aquaculture, an edible herb, Bidens pilosa, has been selected as a multifunctional feed additive. Although there has been considerable research into the effects of B. pilosa on poultry, the wider effects of B. pilosa, particularly on the growth and gut microbiota of fish, remain largely unexplored. We aimed to investigate the interactive effects between the host on growth and the gut microbiota using transcriptomics and the gut microbiota in B. pilosa-fed tilapia. In this study, we added 0.5% and 1% B. pilosa to the diet and observed that the growth performance of tilapia significantly increased over 8 weeks of feeding. Comparative transcriptome analysis was performed on RNA sequence profiles obtained from liver and muscle tissues. Functional enrichment analysis revealed that B. pilosa regulates several pathways and genes involved in amino acid metabolism, lipid metabolism, carbohydrate metabolism, endocrine system, signal transduction, and metabolism of other amino acids. The expression of the selected growth-associated genes was validated by qRT-PCR. The qRT-PCR results indicated that B. pilosa may enhance growth performance by activating the expression of the liver igf1 and muscle igf1rb genes and inhibiting the expression of the muscle negative regulator mstnb. Both the enhancement of liver endocrine IGF1/IGF1Rb signaling and the suppression of muscle autocrine/paracrine MSTN signaling induced the expression of myogenic regulatory factors (MRFs), myod1, myog and mrf4 in muscle to promote muscle growth in tilapia. The predicted function of the gut microbiota showed several significantly different pathways that overlapped with the KEGG enrichment results of differentially expressed genes in the liver transcriptomes. This finding suggested that the gut microbiota may influence liver metabolism through the gut-liver axis in B. pilosa-fed tilapia. In conclusion, dietary B. pilosa can regulate endocrine IGF1 signaling and autocrine/paracrine MSTN signaling to activate the expression of MRFs to promote muscle growth and alter the composition of gut bacteria, which can then affect liver amino acid metabolism, carbohydrate metabolism, endocrine system, lipid metabolism, metabolism of other amino acids, and signal transduction in the host, ultimately enhancing growth performance. Our results suggest that B. pilosa has the potential to be a functional additive that can be used as an alternative to reduce antibiotic use as a growth promoter in aquaculture.
Collapse
Affiliation(s)
- Che-Chun Chen
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chung-Yen Lin
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Hsin-Yun Lu
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chyng-Hwa Liou
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Chang-Wen Huang
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Zhong-Fu Zhang
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
| | - Chih-Hsin Kao
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Wen-Chin Yang
- Doctoral Degree Program in Marine Biotechnology, Academia Sinica, Taipei, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Agriculture Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hong-Yi Gong
- Doctoral Degree Program in Marine Biotechnology, National Taiwan Ocean University, Keelung, Taiwan.
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
6
|
Huang Y, Chen L, Li L, Qi Y, Tong H, Wu H, Xu J, Leng L, Cheema S, Sun G, Xia Z, McGuire J, Rodrigues B, Young LH, Bucala R, Qi D. Downregulation of adipose LPL by PAR2 contributes to the development of hypertriglyceridemia. JCI Insight 2024; 9:e173240. [PMID: 38973609 PMCID: PMC11383372 DOI: 10.1172/jci.insight.173240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/22/2024] [Indexed: 07/09/2024] Open
Abstract
Lipoprotein lipase (LPL) hydrolyzes circulating triglycerides (TGs), releasing fatty acids (FA) and promoting lipid storage in white adipose tissue (WAT). However, the mechanisms regulating adipose LPL and its relationship with the development of hypertriglyceridemia are largely unknown. WAT from obese humans exhibited high PAR2 expression, which was inversely correlated with the LPL gene. Decreased LPL expression was also inversely correlated with elevated plasma TG levels, suggesting that adipose PAR2 might regulate hypertriglyceridemia by downregulating LPL. In mice, aging and high palmitic acid diet (PD) increased PAR2 expression in WAT, which was associated with a high level of macrophage migration inhibitory factor (MIF). MIF downregulated LPL expression and activity in adipocytes by binding with CXCR2/4 receptors and inhibiting Akt phosphorylation. In a MIF overexpression model, high-circulating MIF levels suppressed adipose LPL, and this suppression was associated with increased plasma TGs but not FA. Following PD feeding, adipose LPL expression and activity were significantly reduced, and this reduction was reversed in Par2-/- mice. Recombinant MIF infusion restored high plasma MIF levels in Par2-/- mice, and the levels decreased LPL and attenuated adipocyte lipid storage, leading to hypertriglyceridemia. These data collectively suggest that downregulation of adipose LPL by PAR2/MIF may contribute to the development of hypertriglyceridemia.
Collapse
Affiliation(s)
- Yiheng Huang
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Liujun Chen
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Lisha Li
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yadan Qi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Haibin Tong
- College of Life and Environment Sciences, Wenzhou University, Wenzhou, Zhejiang, China
| | - Hong Wu
- Institute of Cardiovascular Disease, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Jinjie Xu
- Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Lin Leng
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | - Guang Sun
- Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
| | - Zhengyuan Xia
- Guangdong Medical University, Zhanjiang, Guangdong, China
| | - John McGuire
- Department of Medical Biophysics, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada
| | - Brian Rodrigues
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lawrence H. Young
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Richard Bucala
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dake Qi
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
- Faculty of Medicine, Memorial University, St. John’s, Newfoundland, Canada
| |
Collapse
|
7
|
Wang S, Guo Z, Wang X, Wang N, Wang J, Zheng N, Zheng R, Fang W, Chen Y, Wang Q, Zhang D. Dietary L-carnitine supplementation changes lipid metabolism and glucose utilization of Rhynchocypris lagowskii fed diets with different lipid sources. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:77-96. [PMID: 36604356 DOI: 10.1007/s10695-022-01166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The widely available crop oil is an effective alternative to the increasingly scarce marine fish oil. However, simple alternative strategies have led to declining growth and the edible value of farmed fish. It is worthwhile to explore the effects of micro supplements in diets to improve the tolerance of fish to different dietary lipid sources, which finally optimizes the feeding strategies. This study aimed to investigate the regulation of L-carnitine and dietary oil conditions on nutrient composition, lipid metabolism, and glucose regulation of Rhynchocypris lagowskii. Four diets were prepared according to fish oil, fish oil supplemented with L-carnitine, corn oil, and corn oil supplemented with L-carnitine, and FO, LCFO, CO, and LCCO were labeled, respectively. R. lagowskii was fed experimental diets for 8 weeks, and the glucose tolerance test was performed. The CO diet significantly resulted in higher crude lipid content in muscle but a lower level of serum lipid parameters of R. lagowskii than the FO diet. However, dietary L-carnitine supplementation significantly reduced the crude lipid content in the hepatopancreas and muscle of the fish fed with the CO diet yet increased the serum lipid parameters. Additionally, the crude lipid content of muscle was reduced in the fish fed with an FO diet supplemented with L-carnitine. Compared with the FO diet, the CO diet significantly reduced the ratio of n3/n6 polyunsaturated fatty acid in the hepatopancreas and muscle of R.lagowskii. Dietary L-carnitine supplementation significantly reduced the contents of total saturated fatty acids and total monounsaturated fatty acids in hepatopancreas under both dietary lipid sources. The CO diet significantly up-regulated the expression of genes related to lipid uptake and adipogenesis in hepatopancreas, including lipoprotein lipase (lpl), acetyl-coenzyme A carboxylase alpha (accα), and sterol regulatory element binding protein-1 (srebp1), compared with the FO diet. While dietary L-carnitine supplementation significantly down-regulated the expressions of lpl, accα, srebp1, and fatty acid synthase in hepatopancreas and muscle of fish under both dietary lipid sources, along with up-regulated expression of carnitine palmitoyltransferase 1 in hepatopancreas. Moreover, the fish fed with a CO diet significantly increased the expression of glucose uptake and clearance and significantly down-regulated the expressions of glucose regulation-related genes, including glucose transporter 1, glycogen synthase 1, and phosphofructokinase in hepatopancreas and muscle, resulting in slower glucose uptake and clearance than fish fed with FO diet. Nevertheless, dietary L-carnitine supplementation up-regulated the expression of gluconeogenesis-related genes, including glucose-6-phosphatase and phosphoenolpyruvate carboxykinase in the hepatopancreas of R. lagowskii under both dietary lipid sources. In conclusion, a higher dietary n6 PUFA resulted in lipid deposition, decreased serum lipid parameters, and limited serum glucose utilization of R. lagowskii. While the regulatory effect of L-carnitine on lipid metabolism and glucose utilization of R. lagowskii varies with dietary lipid sources and tissues.
Collapse
Affiliation(s)
- Sen Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Zhixin Guo
- College of Life Science, Tonghua Normal University, Jilin, 134001, Tonghua, China
| | - Xin Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Ning Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Jiajing Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Nan Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Rongxin Zheng
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Wenhao Fang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Yuke Chen
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China
| | - Qiuju Wang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China.
| | - Dongming Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Jilin Changchun, 130118, China.
| |
Collapse
|
8
|
Carulla P, Badia-Villanueva M, Civit S, Carrascal M, Abian J, Ricart-Jané D, Llobera M, Casanovas A, López-Tejero MD. The response to fasting and refeeding reveals functional regulation of lipoprotein lipase proteoforms. Front Physiol 2023; 14:1271149. [PMID: 37916217 PMCID: PMC10617031 DOI: 10.3389/fphys.2023.1271149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/04/2023] [Indexed: 11/03/2023] Open
Abstract
Lipoprotein lipase (LPL) is responsible for the intravascular catabolism of triglyceride-rich lipoproteins and plays a central role in whole-body energy balance and lipid homeostasis. As such, LPL is subject to tissue-specific regulation in different physiological conditions, but the mechanisms of this regulation remain incompletely characterized. Previous work revealed that LPL comprises a set of proteoforms with different isoelectric points, but their regulation and functional significance have not been studied thus far. Here we studied the distribution of LPL proteoforms in different rat tissues and their regulation under physiological conditions. First, analysis by two-dimensional electrophoresis and Western blot showed different patterns of LPL proteoforms (i.e., different pI or relative abundance of LPL proteoforms) in different rat tissues under basal conditions, which could be related to the tissue-specific regulation of the enzyme. Next, the comparison of LPL proteoforms from heart and brown adipose tissue between adults and 15-day-old rat pups, two conditions with minimal regulation of LPL in these tissues, yielded virtually the same tissue-specific patterns of LPL proteoforms. In contrast, the pronounced downregulation of LPL activity observed in white adipose tissue during fasting is accompanied by a prominent reconfiguration of the LPL proteoform pattern. Furthermore, refeeding reverts this downregulation of LPL activity and restores the pattern of LPL proteoforms in this tissue. Importantly, this reversible proteoform-specific regulation during fasting and refeeding indicates that LPL proteoforms are functionally diverse. Further investigation of potential differences in the functional properties of LPL proteoforms showed that all proteoforms exhibit lipolytic activity and have similar heparin-binding affinity, although other functional aspects remain to be investigated. Overall, this study demonstrates the ubiquity, differential distribution and specific regulation of LPL proteoforms in rat tissues and underscores the need to consider the existence of LPL proteoforms for a complete understanding of LPL regulation under physiological conditions.
Collapse
Affiliation(s)
- Pere Carulla
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Míriam Badia-Villanueva
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Sergi Civit
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Montserrat Carrascal
- Biological and Environmental Proteomics, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - Joaquin Abian
- Biological and Environmental Proteomics, Institute of Biomedical Research of Barcelona, Spanish National Research Council, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IIBB-CSIC/IDIBAPS), Barcelona, Spain
| | - David Ricart-Jané
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Miquel Llobera
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Albert Casanovas
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - M. Dolores López-Tejero
- Departament de Bioquímica i Biomedicina Molecular, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
9
|
Liu B, Yu L, Zhai Q, Li M, Li L, Tian F, Chen W. Effect of water-soluble polysaccharides from Morchella esculenta on high-fat diet-induced obese mice: changes in gut microbiota and metabolic functions. Food Funct 2023. [PMID: 37191147 DOI: 10.1039/d3fo00574g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Morchella esculenta polysaccharides exhibit numerous probiotic activities, but their regulatory effects on the gut microbiota are unclear. This study was conducted to explore whether M. esculenta polysaccharides can regulate dysbacteriosis caused by a high-fat diet and relieve obesity. We extracted a water-soluble polysaccharide from M. esculenta (MPF, purity: 96.19%, consisting of 55.97% glucose, 9.63% xylose, and 22% mannose) that reduces mouse fat accumulation, alleviates obesity, and relieves liver injury, after 90 days of high-fat diet intake. This polysaccharide reversed dysbiosis and regulated the abundance of gut microbiota caused by a high-fat diet (restoring the ratio of Firmicutes/Bacteroidetes and changing the abundances of Lactobacillus, Dubosiella, and Faecalibaculum), increasing short-chain fatty acids and decreasing gene expression in the liver (glucose 6-phosphatase, glucose transporter 1, peroxisome proliferator-activated receptor gamma (PPAR) receptor-1α, PPARα, PPARγ, and CCAAT enhancer binding protein α). We identified a regulatory relationship between polysaccharides, gut microbiota, and the liver as a potential mechanism by which polysaccharides can alleviate obesity.
Collapse
Affiliation(s)
- Bingshu Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Miaoyu Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liuruolan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
10
|
Apolipoprotein A-V is a potential target for treating coronary artery disease: evidence from genetic and metabolomic analyses. J Lipid Res 2022; 63:100193. [PMID: 35278410 PMCID: PMC9062431 DOI: 10.1016/j.jlr.2022.100193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022] Open
Abstract
Triglyceride (TG)-lowering LPL variants in combination with genetic LDL-C-lowering variants are associated with reduced risk of coronary artery disease (CAD). Genetic variation in the APOA5 gene encoding apolipoprotein A-V also strongly affects TG levels, but the potential clinical impact and underlying mechanisms are yet to be resolved. Here, we aimed to study the effects of APOA5 genetic variation on CAD risk and plasma lipoproteins through factorial genetic association analyses. Using data from 309,780 European-ancestry participants from the UK Biobank, we evaluated the effects of lower TG levels as a result of genetic variation in APOA5 and/or LPL on CAD risk with or without a background of reduced LDL-C. Next, we compared lower TG levels via APOA5 and LPL variation with over 100 lipoprotein measurements in a combined sample from the Netherlands Epidemiology of Obesity study (N = 4,838) and the Oxford Biobank (N = 6,999). We found that lower TG levels due to combined APOA5 and LPL variation and genetically-influenced lower LDL-C levels afforded the largest reduction in CAD risk (odds ratio: 0.78 (0.73-0.82)). Compared to patients with genetically-influenced lower TG via LPL, genetically-influenced lower TG via APOA5 had similar and independent, but notably larger, effects on the lipoprotein profile. Our results suggest that lower TG levels as a result of APOA5 variation have strong beneficial effects on CAD risk and the lipoprotein profile, which suggest apo A-V may be a potential novel therapeutic target for CAD prevention.
Collapse
|
11
|
Li H, Liu G, Wan X, Zhou L, Qin ZB, Ma XH, Su K, Liu YJ, Yuan J, Wei CC, Ren AJ, Chen YX, Young SG, Zhang H, Xie Z, Zhang WJ. The zinc finger and BTB domain containing protein ZBTB20 regulates plasma triglyceride metabolism by repressing lipoprotein lipase gene transcription in hepatocytes. Hepatology 2022; 75:1169-1180. [PMID: 34580885 PMCID: PMC9118135 DOI: 10.1002/hep.32176] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Lipoprotein lipase (LPL) is responsible for the lipolytic processing of triglyceride-rich lipoproteins, the deficiency of which causes severe hypertriglyceridemia. Liver LPL expression is high in suckling rodents but relatively low at adulthood. However, the regulatory mechanism and functional significance of liver LPL expression are incompletely understood. We have established the zinc finger protein ZBTB20 as a critical factor for hepatic lipogenesis. Here, we evaluated the role of ZBTB20 in regulating liver Lpl gene transcription and plasma triglyceride metabolism. APPROACH AND RESULTS Hepatocyte-specific inactivation of ZBTB20 in mice led to a remarkable increase in LPL expression at the mRNA and protein levels in adult liver, in which LPL protein was mainly localized onto sinusoidal epithelial cells and Kupffer cells. As a result, the LPL activity in postheparin plasma was substantially increased, and postprandial plasma triglyceride clearance was significantly enhanced, whereas plasma triglyceride levels were decreased. The dysregulated liver LPL expression and low plasma triglyceride levels in ZBTB20-deficient mice were normalized by inactivating hepatic LPL expression. ZBTB20 deficiency protected the mice against high-fat diet-induced hyperlipidemia without causing excessive triglyceride accumulation in the liver. Chromatin immunoprecipitation and gel-shift assay studies revealed that ZBTB20 binds to the LPL promoter in the liver. A luciferase reporter assay revealed that ZBTB20 inhibits the transcriptional activity of LPL promoter. The regulation of LPL expression by ZBTB20 is liver-specific under physiological conditions. CONCLUSIONS Liver ZBTB20 serves as a key regulator of LPL expression and plasma triglyceride metabolism and could be a therapeutic target for hypertriglyceridemia.
Collapse
Affiliation(s)
- Hao Li
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Gan Liu
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Xiaoqing Wan
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Luting Zhou
- Department of Pathophysiology, Naval Medical University, Shanghai, China
- Department of Pathology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhen-Bang Qin
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Xian-Hua Ma
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Kai Su
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Ya-Jin Liu
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| | - Jinghao Yuan
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Chun-Chun Wei
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - An-Jing Ren
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Yu-Xia Chen
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Stephen G. Young
- Departments of Medicine and Human Genetics, University of California, Los Angeles, USA
| | - Hai Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
| | - Zhifang Xie
- Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Weiping J. Zhang
- Department of Pathophysiology, Naval Medical University, Shanghai, China
- NHC Key Laboratory of Hormones and Development, Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin, China
| |
Collapse
|
12
|
Araujo N, Sledziona J, Noothi SK, Burikhanov R, Hebbar N, Ganguly S, Shrestha-Bhattarai T, Zhu B, Katz WS, Zhang Y, Taylor BS, Liu J, Chen L, Weiss HL, He D, Wang C, Morris AJ, Cassis LA, Nikolova-Karakashian M, Nagareddy PR, Melander O, Evers BM, Kern PA, Rangnekar VM. Tumor Suppressor Par-4 Regulates Complement Factor C3 and Obesity. Front Oncol 2022; 12:860446. [PMID: 35425699 PMCID: PMC9004617 DOI: 10.3389/fonc.2022.860446] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Prostate apoptosis response-4 (Par-4) is a tumor suppressor that induces apoptosis in cancer cells. However, the physiological function of Par-4 remains unknown. Here we show that conventional Par-4 knockout (Par-4-/-) mice and adipocyte-specific Par-4 knockout (AKO) mice, but not hepatocyte-specific Par-4 knockout mice, are obese with standard chow diet. Par-4-/- and AKO mice exhibit increased absorption and storage of fat in adipocytes. Mechanistically, Par-4 loss is associated with mdm2 downregulation and activation of p53. We identified complement factor c3 as a p53-regulated gene linked to fat storage in adipocytes. Par-4 re-expression in adipocytes or c3 deletion reversed the obese mouse phenotype. Moreover, obese human subjects showed lower expression of Par-4 relative to lean subjects, and in longitudinal studies, low baseline Par-4 levels denoted an increased risk of developing obesity later in life. These findings indicate that Par-4 suppresses p53 and its target c3 to regulate obesity.
Collapse
Affiliation(s)
- Nathalia Araujo
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - James Sledziona
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Sunil K. Noothi
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Ravshan Burikhanov
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
| | - Nikhil Hebbar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Saptadwipa Ganguly
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Tripti Shrestha-Bhattarai
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Beibei Zhu
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Wendy S. Katz
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Yi Zhang
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Barry S. Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Jinze Liu
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
| | - Li Chen
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Heidi L. Weiss
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Daheng He
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Chi Wang
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Biostatistics, University of Kentucky, Lexington, KY, United States
| | - Andrew J. Morris
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Lisa A. Cassis
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Mariana Nikolova-Karakashian
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
| | | | - Olle Melander
- Department of Clinical Sciences, Lund University, Malmö, Sweden
- Department of Internal Medicine, Skåne University Hospital, Malmö, Sweden
| | - B. Mark Evers
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Philip A. Kern
- Division of Internal Medicine, University of Kentucky, Lexington, KY, United States
- Barnstable Brown Diabetes and Obesity Center, University of Kentucky, Lexington, KY, United States
| | - Vivek M. Rangnekar
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, KY, United States
- Department of Radiation Medicine, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
13
|
Lan Y, Sun Q, Ma Z, Peng J, Zhang M, Wang C, Zhang X, Yan X, Chang L, Hou X, Qiao R, Mulati A, Zhou Y, Zhang Q, Liu Z, Liu X. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis. Food Funct 2022; 13:2925-2937. [PMID: 35191457 DOI: 10.1039/d1fo03147c] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Obesity has been reported to be associated with gut microbiome dysbiosis. seabuckthorn fruits have traditionally been used in Tibetan foods and medicines for thousands of years. Seabuckthorn polysaccharide (SP) is one of the main functional components in seabuckthorn fruits. However, the effects of SP on a high-fat diet (HFD)-induced obesity have not yet been elucidated. The purpose of this study is to explore the amelioration effect of SP on obesity induced by HFD and to reveal its mechanism of gut microbiota and its metabolites. Results showed that 12-week SP (0.1%, w/w) dietary supplementation could significantly reduce body weight gain, serum lipid level and liver triglycerides level in obese mice. Notably, the SP treatment elevated p-AMPKα and PPARα proteins expression stimulated the phosphorylation of ACC1 and inhibited the protein expression of FAS, PPARγ, and CD36 in the mice liver. Further, SP also reorganized the gut microbiome by up-regulating the proportion of Muribaculaceae_unclassified, Bifidobacterium, Rikenellaceae_RC9_gut_group, Alistipes, and Bacteroides, and down-regulating the abundance of Lactobacillus, Firmicutes_unclassified, Dubosiella Bilophila, and Streptococcus in HFD-induced obese mice. Moreover, the production of microbial metabolites short-chain fatty acids (SCFAs) in feces has also increased. In addition, correlation analysis results showed that obesity-ameliorating effects of SP were highly associated with levels of SCFAs in feces. Therefore, the regulation of SP on liver lipid metabolism may be due to the variation of the gut microbiome and raised production of SCFAs. These results indicate that SP could play the part of a potential nutraceutical for ameliorating obesity through regulation of the gut-liver axis.
Collapse
Affiliation(s)
- Ying Lan
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Qingyang Sun
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhiyuan Ma
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Jing Peng
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Mengqi Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Chi Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaotian Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianfang Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Lili Chang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xinglin Hou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Ruixue Qiao
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Aiziguli Mulati
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Yuan Zhou
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Qiang Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, China.
| |
Collapse
|
14
|
Manupati K, Yeeravalli R, Kaushik K, Singh D, Mehra B, Gangane N, Gupta A, Goswami K, Das A. Activation of CD44-Lipoprotein lipase axis in breast cancer stem cells promotes tumorigenesis. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166228. [PMID: 34311079 DOI: 10.1016/j.bbadis.2021.166228] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/25/2021] [Accepted: 07/20/2021] [Indexed: 01/16/2023]
Abstract
Breast cancer stem cells (CSCs) are distinct CD44+-subpopulations that are involved in metastasis and chemoresistance. However, the underlying molecular mechanism of CD44 in breast CSCs-mediated tumorigenesis remains elusive. We observed high CD44 expression in advanced-stage clinical breast tumor samples. CD44 activation in breast CSCs sorted from various triple negative breast cancer (TNBC) cell lines induced proliferation, migration, invasion, mammosphere formation that were reversed in presence of inhibitor, 4-methyl umbelliferone or CD44 silencing. CD44 activation in breast CSCs induced Src, Akt, and nuclear translocation of pSTAT3. PCR arrays revealed differential expression of a metabolic gene, Lipoprotein lipase (LPL), and transcription factor, SNAI3. Differential transcriptional regulation of LPL by pSTAT3 and SNAI3 was confirmed by promoter-reporter and chromatin immunoprecipitation analysis. Orthotopic xenograft murine breast tumor model revealed high tumorigenicity of CD24-/CD44+-breast CSCs as compared with CD24+-breast cancer cells. Furthermore, stable breast CSCs-CD44 shRNA and/or intratumoral administration of Tetrahydrolipstatin (LPL inhibitor) abrogated tumor progression and neoangiogenesis. Thus, LPL serves as a potential target for an efficacious therapeutics against aggressive breast cancer.
Collapse
Affiliation(s)
- Kanakaraju Manupati
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Ragini Yeeravalli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Komal Kaushik
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Digvijay Singh
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India
| | - Bhupendra Mehra
- Department of Surgery, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Nitin Gangane
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Anupama Gupta
- Department of Pathology, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Kalyan Goswami
- Department of Biochemistry, Mahatma Gandhi Institute of Medical Sciences, Sewagram, Wardha, Maharashtra 442 102, India
| | - Amitava Das
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad, TS 500 007, India; Academy of Science and Innovative Research (AcSIR), Ghaziabad, UP 201 002, India.
| |
Collapse
|
15
|
Gago-Dominguez M, Redondo CM, Calaza M, Matabuena M, Bermudez MA, Perez-Fernandez R, Torres-Español M, Carracedo Á, Castelao JE. LIPG endothelial lipase and breast cancer risk by subtypes. Sci Rep 2021; 11:10436. [PMID: 34001944 PMCID: PMC8129130 DOI: 10.1038/s41598-021-89669-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 04/21/2021] [Indexed: 11/09/2022] Open
Abstract
Experimental data showed that endothelial lipase (LIPG) is a crucial player in breast cancer. However, very limited data exists on the role of LIPG on the risk of breast cancer in humans. We examined the LIPG-breast cancer association within our population-based case-control study from Galicia, Spain, BREOGAN (BREast Oncology GAlicia Network). Plasma LIPG and/or OxLDL were measured on 114 breast cancer cases and 82 controls from our case-control study, and were included in the present study. The risk of breast cancer increased with increasing levels of LIPG (multivariable OR for the highest category (95% CI) 2.52 (1.11-5.81), P-trend = 0.037). The LIPG-breast cancer association was restricted to Pre-menopausal breast cancer (Multivariable OR for the highest LIPG category (95% CI) 4.76 (0.94-28.77), P-trend = 0.06, and 1.79 (0.61-5.29), P-trend = 0.372, for Pre-menopausal and Post-menopausal breast cancer, respectively). The LIPG-breast cancer association was restricted to Luminal A breast cancers (Multivariable OR for the highest LIPG category (95% CI) 3.70 (1.42-10.16), P-trend = 0.015, and 2.05 (0.63-7.22), P-trend = 0.311, for Luminal A and non-Luminal A breast cancers, respectively). Subset analysis only based on HER2 receptor indicated that the LIPG-breast cancer relationship was restricted to HER2-negative breast cancers (Multivariable OR for the highest LIPG category (95% CI) 4.39 (1.70-12.03), P-trend = 0.012, and 1.10 (0.28-4.32), P-trend = 0.745, for HER2-negative and HER2-positive tumors, respectively). The LIPG-breast cancer association was restricted to women with high total cholesterol levels (Multivariable OR for the highest LIPG category (95% CI) 6.30 (2.13-20.05), P-trend = 0.018, and 0.65 (0.11-3.28), P-trend = 0.786, among women with high and low cholesterol levels, respectively). The LIPG-breast cancer association was also restricted to non-postpartum breast cancer (Multivariable OR for the highest LIPG category (95% CI) 3.83 (1.37-11.39), P-trend = 0.003, and 2.35 (0.16-63.65), P-trend = 0.396, for non-postpartum and postpartum breast cancer, respectively), although we lacked precision. The LIPG-breast cancer association was more pronounced among grades II and III than grade I breast cancers (Multivariable ORs for the highest category of LIPG (95% CI) 2.73 (1.02-7.69), P-trend = 0.057, and 1.90 (0.61-6.21), P-trend = 0.170, for grades II and III, and grade I breast cancers, respectively). No association was detected for OxLDL levels and breast cancer (Multivariable OR for the highest versus the lowest category (95% CI) 1.56 (0.56-4.32), P-trend = 0.457).
Collapse
Affiliation(s)
- Manuela Gago-Dominguez
- Galician Public Foundation of Genomic Medicine (FPGMX), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain.
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Centro en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain.
- Galician Public Foundation of Genomic Medicine (FPGMX), Genomic Medicine Group, International Cancer Genetics and Epidemiology Group, Health Research Institute of Santiago (IDIS), Santiago de Compostela, Spain.
| | - Carmen M Redondo
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| | - Manuel Calaza
- Conselleria de Educación, Xunta de Galicia, Santiago de Compostela, Spain
| | - Marcos Matabuena
- Centro de Investigación en Tecnoloxías da Información (CiTIUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria A Bermudez
- Department of Biology, Faculty of Science, University of A Coruña, A Coruña, Spain
| | - Roman Perez-Fernandez
- Department of Physiology and Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - María Torres-Español
- Galician Public Foundation of Genomic Medicine (FPGMX), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Centro en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ángel Carracedo
- Galician Public Foundation of Genomic Medicine (FPGMX), Servicio Galego de Saúde (SERGAS), Santiago de Compostela, Spain
- Genomic Medicine Group, Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Centro en Red de Enfermedades Raras (CIBERER), University of Santiago de Compostela, Santiago de Compostela, Spain
| | - J Esteban Castelao
- Oncology and Genetics Unit, Instituto de Investigación Sanitaria Galicia Sur, Vigo, Spain
| |
Collapse
|
16
|
Triglyceride-lowering LPL alleles combined with LDL-C-lowering alleles are associated with an additively improved lipoprotein profile. Atherosclerosis 2021; 328:144-152. [PMID: 34053745 DOI: 10.1016/j.atherosclerosis.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/13/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Mendelian randomization studies have shown that triglyceride (TG)- lowering lipoprotein lipase (LPL) alleles and low-density lipoprotein-cholesterol (LDL-C)-lowering alleles have independent beneficial associations on cardiovascular disease (CVD) risk. We aimed to provide further insight into this observation by applying Mendelian randomization analyses of genetically-influenced TG and LDL-C levels on plasma metabolomic profiles. METHODS We quantified over 100 lipoprotein metabolomic measures in the Netherlands Epidemiology of Obesity (NEO) study (N = 4838) and Oxford Biobank (OBB) (N = 6999) by nuclear magnetic resonance (NMR) spectroscopy. Weighted genetic scores for TG via five LPL alleles and LDL-C via 19 alleles were calculated and dichotomized by the median, resulting in four genotype combinations of high/low TG and high/low LDL-C. We performed linear regression analyses using a two × two design with the group with genetically-influenced high TG and LDL-C as a reference. RESULTS Compared to the individual groups with genetically-influenced lower TG or lower LDL-C only, the group with combined genetically-influenced lower TG and LDL-C showed an overall independent and additive pattern of changes in metabolomic measures. Over 100 measures were different (p < 1.35 × 10-3) compared to the reference, with effect sizes and directionality being similar in NEO and OBB. Most notably, levels of all very-low density lipoprotein (VLDL) and LDL sub-particles were lower. CONCLUSIONS Our findings provide evidence that TG-lowering on top of LDL-C-lowering has additive beneficial effects on the lipoprotein profile compared to TG-lowering or LDL-C-lowering only, which is in accordance with reported additive genetic effects on CVD risk reduction.
Collapse
|
17
|
Selber-Hnatiw S, Sultana T, Tse W, Abdollahi N, Abdullah S, Al Rahbani J, Alazar D, Alrumhein NJ, Aprikian S, Arshad R, Azuelos JD, Bernadotte D, Beswick N, Chazbey H, Church K, Ciubotaru E, D'Amato L, Del Corpo T, Deng J, Di Giulio BL, Diveeva D, Elahie E, Frank JGM, Furze E, Garner R, Gibbs V, Goldberg-Hall R, Goldman CJ, Goltsios FF, Gorjipour K, Grant T, Greco B, Guliyev N, Habrich A, Hyland H, Ibrahim N, Iozzo T, Jawaheer-Fenaoui A, Jaworski JJ, Jhajj MK, Jones J, Joyette R, Kaudeer S, Kelley S, Kiani S, Koayes M, Kpata AJAAL, Maingot S, Martin S, Mathers K, McCullogh S, McNamara K, Mendonca J, Mohammad K, Momtaz SA, Navaratnarajah T, Nguyen-Duong K, Omran M, Ortiz A, Patel A, Paul-Cole K, Plaisir PA, Porras Marroquin JA, Prevost A, Quach A, Rafal AJ, Ramsarun R, Rhnima S, Rili L, Safir N, Samson E, Sandiford RR, Secondi S, Shahid S, Shahroozi M, Sidibé F, Smith M, Sreng Flores AM, Suarez Ybarra A, Sénéchal R, Taifour T, Tang L, Trapid A, Tremblay Potvin M, Wainberg J, Wang DN, Weissenberg M, White A, Wilkinson G, Williams B, Wilson JR, Zoppi J, Zouboulakis K, Gamberi C. Metabolic networks of the human gut microbiota. MICROBIOLOGY-SGM 2020; 166:96-119. [PMID: 31799915 DOI: 10.1099/mic.0.000853] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The human gut microbiota controls factors that relate to human metabolism with a reach far greater than originally expected. Microbial communities and human (or animal) hosts entertain reciprocal exchanges between various inputs that are largely controlled by the host via its genetic make-up, nutrition and lifestyle. The composition of these microbial communities is fundamental to supply metabolic capabilities beyond those encoded in the host genome, and contributes to hormone and cellular signalling that support the dynamic adaptation to changes in food availability, environment and organismal development. Poor functional exchange between the microbial communities and their human host is associated with dysbiosis, metabolic dysfunction and disease. This review examines the biology of the dynamic relationship between the reciprocal metabolic state of the microbiota-host entity in balance with its environment (i.e. in healthy states), the enzymatic and metabolic changes associated with its imbalance in three well-studied diseases states such as obesity, diabetes and atherosclerosis, and the effects of bariatric surgery and exercise.
Collapse
Affiliation(s)
- Susannah Selber-Hnatiw
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tarin Sultana
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - W Tse
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Niki Abdollahi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sheyar Abdullah
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jalal Al Rahbani
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Diala Alazar
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Nekoula Jean Alrumhein
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Saro Aprikian
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rimsha Arshad
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jean-Daniel Azuelos
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Daphney Bernadotte
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Natalie Beswick
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Hana Chazbey
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kelsey Church
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Emaly Ciubotaru
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Lora D'Amato
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tavia Del Corpo
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jasmine Deng
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Briana Laura Di Giulio
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Diana Diveeva
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Elias Elahie
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - James Gordon Marcel Frank
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Emma Furze
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rebecca Garner
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Vanessa Gibbs
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rachel Goldberg-Hall
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Chaim Jacob Goldman
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Fani-Fay Goltsios
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kevin Gorjipour
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Taylor Grant
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Brittany Greco
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Nadir Guliyev
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Andrew Habrich
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Hillary Hyland
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Nabila Ibrahim
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tania Iozzo
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Anastasia Jawaheer-Fenaoui
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Julia Jane Jaworski
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Maneet Kaur Jhajj
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Jermaine Jones
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rodney Joyette
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Samad Kaudeer
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Shawn Kelley
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Shayesteh Kiani
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Marylin Koayes
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | | | - Shannon Maingot
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sara Martin
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kelly Mathers
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sean McCullogh
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kelly McNamara
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - James Mendonca
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Karamat Mohammad
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sharara Arezo Momtaz
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Thiban Navaratnarajah
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kathy Nguyen-Duong
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Mustafa Omran
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Angela Ortiz
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Anjali Patel
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Kahlila Paul-Cole
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Paul-Arthur Plaisir
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | | | - Ashlee Prevost
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Angela Quach
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Aries John Rafal
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rewaparsad Ramsarun
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Sami Rhnima
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Lydia Rili
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Naomi Safir
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Eugenie Samson
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rebecca Rose Sandiford
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Stefano Secondi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Stephanie Shahid
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Mojdeh Shahroozi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Fily Sidibé
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Megan Smith
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Alina Maria Sreng Flores
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Anabel Suarez Ybarra
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Rebecca Sénéchal
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Tarek Taifour
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Lawrence Tang
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Adam Trapid
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Maxim Tremblay Potvin
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Justin Wainberg
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Dani Ni Wang
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Mischa Weissenberg
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Allison White
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Gabrielle Wilkinson
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Brittany Williams
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Joshua Roth Wilson
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Johanna Zoppi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Katerina Zouboulakis
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| | - Chiara Gamberi
- Biology Department, Concordia University, 7141 Sherbrooke St W, SP-375-09 Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
18
|
Shyni GL, Sajin KF, Mangalam SN, Raghu KG. An in vitro study reveals the anti-obesity effects of 7- methoxy-3-methyl-5-((E)-prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran from Myristica fragrans. Eur J Pharmacol 2020; 891:173686. [PMID: 33121949 DOI: 10.1016/j.ejphar.2020.173686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/22/2020] [Accepted: 10/26/2020] [Indexed: 11/29/2022]
Abstract
Adipogenesis, the maturation process of preadipocytes, is closely associated with the development of obesity and other complex metabolic syndromes. Herein, we investigated the effect of 7- methoxy-3-methyl-5-((E)- prop-1-enyl)-2-(3,4,5-trimethoxyphenyl)-2,3-dihydrobenzofuran (TM), a benzofuran, isolated from the mace of Myristica fragrans Houtt on adipogenesis in 3T3-L1 preadipocytes to extrapolate whether this compound has any anti-obesity potential. For this, 3T3-L1 preadipocytes were induced to differentiate in the presence of various concentrations of TM (1, 5, 10 μM) and analyzed for triglyceride (TG) accumulation and the expression of proteins and genes involved in lipogenesis and lipolysis associated with adipogenesis. Results showed that TM significantly reduced TG accumulation and expression of marker proteins of adipocyte differentiation (peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, and fatty acid-binding protein 4) and increased the secretion of glycerol in a dose-dependent manner. There was a significant dose-dependent decrease in the expression of fatty acid synthase, stearoyl-CoA desaturase-1, sterol regulatory element-binding transcription factor 1c, and acetyl-CoA carboxylase 1 and an increase in carnitine palmitoyltransferase 1, acyl-CoA oxidase, and peroxisome proliferator-activated receptor α in TM treated cells. The phosphorylation of cAMP-activated protein kinase was also increased, which in turn activated the phosphorylation of acetyl-CoA carboxylase in mature adipocytes. Also, there was an increase in glucose uptake by TM, suggesting its insulin-sensitizing potential. This is the first report on the anti-obesity effects of TM from Myristica fragrans on adipogenesis and lipid metabolism in 3T3-L1 adipocytes and demands detailed in vivo study for developing TM as anti-obesity therapeutics.
Collapse
Affiliation(s)
- Gangadharan Leela Shyni
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Kaithathara Francis Sajin
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Sivasankaran Nair Mangalam
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India
| | - Kozhiparambil Gopalan Raghu
- Biochemistry and Molecular Mechanism Laboratory, Agroprocessing and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram, Kerala, 695019, India.
| |
Collapse
|
19
|
Bastías-Pérez M, Serra D, Herrero L. Dietary Options for Rodents in the Study of Obesity. Nutrients 2020; 12:nu12113234. [PMID: 33105762 PMCID: PMC7690621 DOI: 10.3390/nu12113234] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/05/2020] [Accepted: 10/16/2020] [Indexed: 12/14/2022] Open
Abstract
Obesity and its associated metabolic diseases are currently a priority research area. The increase in global prevalence at different ages is having an enormous economic and health impact. Genetic and environmental factors play a crucial role in the development of obesity, and diet is one of the main factors that contributes directly to the obesogenic phenotype. Scientific evidence has shown that increased fat intake is associated with the increase in body weight that triggers obesity. Rodent animal models have been extremely useful in the study of obesity since weight gain can easily be induced with a high-fat diet. Here, we review the dietary patterns and physiological mechanisms involved in the dynamics of energy balance. We report the main dietary options for the study of obesity and the variables to consider in the use of a high-fat diet, and assess the progression of obesity and diet-induced thermogenesis.
Collapse
Affiliation(s)
- Marianela Bastías-Pérez
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; (M.B.-P.); (D.S.)
| | - Dolors Serra
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; (M.B.-P.); (D.S.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
| | - Laura Herrero
- Department of Biochemistry and Physiology, School of Pharmacy and Food Sciences, Institut de Biomedicina de la Universitat de Barcelona (IBUB), Universitat de Barcelona, E-08028 Barcelona, Spain; (M.B.-P.); (D.S.)
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, E-28029 Madrid, Spain
- Correspondence:
| |
Collapse
|
20
|
The structure of helical lipoprotein lipase reveals an unexpected twist in lipase storage. Proc Natl Acad Sci U S A 2020; 117:10254-10264. [PMID: 32332168 DOI: 10.1073/pnas.1916555117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Lipases are enzymes necessary for the proper distribution and utilization of lipids in the human body. Lipoprotein lipase (LPL) is active in capillaries, where it plays a crucial role in preventing dyslipidemia by hydrolyzing triglycerides from packaged lipoproteins. Thirty years ago, the existence of a condensed and inactive LPL oligomer was proposed. Although recent work has shed light on the structure of the LPL monomer, the inactive oligomer remained opaque. Here we present a cryo-EM reconstruction of a helical LPL oligomer at 3.8-Å resolution. Helix formation is concentration-dependent, and helices are composed of inactive dihedral LPL dimers. Heparin binding stabilizes LPL helices, and the presence of substrate triggers helix disassembly. Superresolution fluorescent microscopy of endogenous LPL revealed that LPL adopts a filament-like distribution in vesicles. Mutation of one of the helical LPL interaction interfaces causes loss of the filament-like distribution. Taken together, this suggests that LPL is condensed into its inactive helical form for storage in intracellular vesicles.
Collapse
|
21
|
Papah MB, Abasht B. Dysregulation of lipid metabolism and appearance of slow myofiber-specific isoforms accompany the development of Wooden Breast myopathy in modern broiler chickens. Sci Rep 2019; 9:17170. [PMID: 31748687 PMCID: PMC6868161 DOI: 10.1038/s41598-019-53728-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/05/2019] [Indexed: 01/05/2023] Open
Abstract
Previous transcriptomic studies have hypothesized the occurrence of slow myofiber-phenotype, and dysregulation of lipid metabolism as being associated with the development of Wooden Breast (WB), a meat quality defect in commercial broiler chickens. To gain a deep understanding of the manifestation and implication of these two biological processes in health and disease states in chickens, cellular and global expression of specific genes related to the respective processes were examined in pectoralis major muscles of modern fast-growing and unselected slow-growing chickens. Using RNA in situ hybridization, lipoprotein lipase (LPL) was found to be expressed in endothelial cells of capillaries and small-caliber veins in chickens. RNA-seq analysis revealed upregulation of lipid-related genes in WB-affected chickens at week 3 and downregulation at week 7 of age. On the other hand, cellular localization of slow myofiber-type genes revealed their increased expression in mature myofibers of WB-affected chickens. Similarly, global expression of slow myofiber-type genes showed upregulation in affected chickens at both timepoints. To our knowledge, this is the first study to show the expression of LPL from the vascular endothelium in chickens. This study also confirms the existence of slow myofiber-phenotype and provides mechanistic insights into increased lipid uptake and metabolism in WB disease process.
Collapse
Affiliation(s)
- Michael B Papah
- Department of Animal and Food Sciences, University of Delaware, Delaware, DE, USA
| | - Behnam Abasht
- Department of Animal and Food Sciences, University of Delaware, Delaware, DE, USA.
| |
Collapse
|
22
|
Jin C, Zeng Z, Wang C, Luo T, Wang S, Zhou J, Ni Y, Fu Z, Jin Y. Insights into a Possible Mechanism Underlying the Connection of Carbendazim-Induced Lipid Metabolism Disorder and Gut Microbiota Dysbiosis in Mice. Toxicol Sci 2019; 166:382-393. [PMID: 30496565 DOI: 10.1093/toxsci/kfy205] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Carbendazim (CBZ), a systemic, broad-spectrum benzimidazole fungicide, is widely used to control fungal diseases and has been regarded as an endocrine disruptor that causes mammalian toxicity in different target organs. Here, we discovered that chronic administrations of CBZ at 0.2, 1, and 5 mg/kg body weight for 14 weeks not only changed the composition of gut microbiota but also induced significant increases in body, liver, and epididymal fat weight in mice. At the biochemical level, the serum triglyceride (TG) and glucose levels also increased after CBZ exposure. Moreover, the level of serum lipoprotein lipase (LPL), which plays an important role in fatty acid release from TG, was decreased significantly. For gut microbiota, 16S rRNA gene sequencing and real-time qPCR revealed that CBZ exposure significantly perturbed the mice gut microbiome, and gas chromatography found that the production of short-chain fatty acids were altered. Moreover, CBZ exposure increased the absorption of exogenous TG in the mice intestine and inhibited the TG consumption, eventually leading the serum triglyceride to maintain higher levels. The increase of lipid absorption in the intestine direct caused hyperlipidemia and the multi-tissue inflammatory response. In response to the rise of lipid in blood, the body maintains the balance of lipid metabolism in mice by reducing lipid synthesis in the liver and increasing lipid storage in the fat. Chronic CBZ exposure induced the gut microbiota dysbiosis and disturbed lipid metabolism, which promoted the intestinal absorption of excess triglyceride and caused multiple tissue inflammatory responses in mice.
Collapse
Affiliation(s)
- Cuiyuan Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhaoyang Zeng
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Caiyun Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ting Luo
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Siyu Wang
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jicong Zhou
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yingchun Ni
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhengwei Fu
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yuanxiang Jin
- Department of Biotechnology, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
23
|
Niu JL, Zhang J, Wei LQ, Zhang WJ, Nie CX. Effect of Fermented Cottonseed Meal on the Lipid-Related Indices and Serum Metabolic Profiles in Broiler Chickens. Animals (Basel) 2019; 9:E930. [PMID: 31703286 PMCID: PMC6912724 DOI: 10.3390/ani9110930] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/01/2019] [Accepted: 11/05/2019] [Indexed: 01/27/2023] Open
Abstract
This study aimed to investigate the changes of lipid-related gene and serum metabolites in broiler chickens fed with fermented cottonseed meal (FCSM) diet, through quantitative real-time PCR and metabolomics analysis. Totally, 180 1-day-old Cobb broilers were randomly assigned to two groups with six replicates of 15 birds in each. The two diets consisted of a control diet supplemented with 0% FCSM (CON group) and an experimental diet with 6% FCSM (fermented by Candida tropicalis) replacing the soybean meal (FCSM group). The results showed that both abdominal fat content and subcutaneous fat thickness significantly reduced (p < 0.05) in response to dietary FCSM supplementation at the age of 21 d. Serum concentrations of glucose, triglyceride, and low-density lipoprotein cholesterol decreased (p < 0.05) in FCSM fed broilers compared with CON fed broilers, while the levels of epinephrine and growth hormone in serum, liver and abdominal fat tissue were higher (p < 0.05) in FCSM than in CON fed broilers. The activity of hormone-sensitive esterase and lipoprotein lipase (LPL) in the liver and abdominal fat were higher (p < 0.05) in FCSM than CON group. Additionally, compared with the CON group (p < 0.05), the expression of peroxisome proliferator-activated receptor alpha and LPL genes were upregulated in the livers of FCSM group broilers. Gene expressions of hormone-sensitive lipase and LPL in the abdominal fat tissue were also upregulated (p < 0.05) with the broilers fed with FCSM diets. A total of 20 significantly different metabolites were obtained in the serum of different dietary FCSM supplemented fed broilers. The mainly altered pathways were clustered into organic acid metabolism, fatty acid metabolism, and amino acid metabolism. These results not only provide a better understanding of broilers' lipid metabolism with FCSM but also can be helpful in further improvement of the broilers' healthy production and utilization of FCSM.
Collapse
Affiliation(s)
- Jun-Li Niu
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
| | - Jun Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Lian-Qing Wei
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
| | - Wen-Ju Zhang
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
| | - Cun-Xi Nie
- College of Animal Science & Technology, Shihezi University, Shihezi 832003, China; (J.-L.N.); (L.-Q.W.)
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
24
|
Kang Y, Li Y, Du Y, Guo L, Chen M, Huang X, Yang F, Hong J, Kong X. Konjaku flour reduces obesity in mice by modulating the composition of the gut microbiota. Int J Obes (Lond) 2019; 43:1631-1643. [PMID: 30242233 DOI: 10.1038/s41366-018-0187-x] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 07/02/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Changes in the intestinal flora composition is referred to as dysbiosis, which is related to obesity development, thus supporting the potential roles of nutrients acting on intestinal flora to exert salutary effects on energetic metabolism of host. Dietary fiber has been known to affect the composition of intestinal flora. The aim of the present study was to investigate the functional effects of konjac flour (KF) on obesity control in respect to improving inflammation, metabolism, and intestinal barrier function, and the possible association of the effects with intestinal flora composition changes. METHODS Mice (n = 30) were randomly divided into control group (n = 10), high-fat-diet (HFD) group (n = 10), and KF intervention group (n = 10), followed by feeding for 12 weeks and with adding a KF daily supplementation for the treatment group. Body weight, fat accumulation, inflammation, and energetic metabolism markers in multiple tissues and the gut microbiota of the mice were examined at the end of the experiment. RESULTS The KF supplementation significantly reduced the gains in weight, fat mass, as well as adipocyte size of HFD mice and lowered the serum TC, leptin (LEP), thiobarbituric acid-reacting substance (TBARS), IL-6, and lipopolysaccharide (LPS) levels in HFD mice. KF also upregulated the expression of intestinal mucosa protein gene Intection and tight junction ZO-1 in HFD mice, as well as upregulate the expression of energy metabolism genes PPARα and CPT-1 as well as the fat metabolism gene HLS in livers and fat tissues, and downregulate that of fat synthesis gene PPARγ (p < 0.05). The KF treatment increases the α-diversity and change the β-diversity of the intestinal microflora in HFD mice and boosted the abundances of some obesity-related beneficial microorganisms (such as Megasphaera elsdenii) in the intestinal microflora of HFD mice, while reduced those of harmful microorganisms (such as Alistipes, Alloprevotella, Bacteroides acidifaciens, and Parabacteroides goldsteinii). The abundance of Alistipes was positively correlated with weight, fat mass, serum TC, TG, LEP, IL-6, and LPS contents as well as PPARγ gene expression; while notably and negatively related to the expression of CPT-1 and HLS genes (p < 0.01). KF remarkably increased the abundance of Aerococcaceae, while reduced that of Alistipes finegoldii (p < 0.01). CONCLUSIONS Supplementation with KF achieves favorable effects on treating obesity, improving inflammatory response, metabolism, and intestinal barrier function, by regulating intestinal microfloral structure in HFD-fed mice.
Collapse
Affiliation(s)
- Yongbo Kang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Li
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yuhui Du
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Liqiong Guo
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Minghui Chen
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xinwei Huang
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fang Yang
- Nutrition Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Jingan Hong
- Nutrition Department, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Xiangyang Kong
- Medical Faculty, Kunming University of Science and Technology, Kunming, Yunnan, China.
- Genetics and Pharmacogenomics Laboratory, Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
25
|
Can Inflammatory and Nutritional Serum Markers Predict Chemotherapy Outcomes and Survival in Advanced Stage Nonsmall Cell Lung Cancer Patients? BIOMED RESEARCH INTERNATIONAL 2019; 2019:1648072. [PMID: 30941358 PMCID: PMC6421052 DOI: 10.1155/2019/1648072] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/27/2019] [Accepted: 02/13/2019] [Indexed: 12/11/2022]
Abstract
Purpose. To determine the values of prognostic nutritional and inflammatory markers in chemotherapy outcomes and survival in the patients with advanced nonsmall cell lung cancer (NSCLC) and also in the secondary malnutrition and cachexia. Methods. Twenty-five patients with diagnosis of aNSCLC were registered for the prospective study. Malnutrition was determined by the Subjective Global Assessment (SGA) and performance status by criteria of the Eastern Cooperative Oncology Group (ECOG). Before treatment, serum levels of albumin, prealbumin, vitamin D, zinc (Zn), C-reactive protein (CRP), IL-6, IL-1 β, TNF-α, lipoprotein lipase (LPL), and the Glasgow Prognostic Score (GPS) were recorded. Patients were followed prospectively for treatment outcomes and survival. Results. Due to the deaths of 18 patients during the 4-month follow-up period, no adequate measurements of inflammatory and nutritional markers could be performed. However, seven patients completed the treatment period and evaluations of these markers could be performed during the three periods. Eighty-four percent of patients were male with a mean age of 63.3 ± 8.7 years. Evaluation of the malnutrition by SGA showed that 5 (20%) patients were well nourished (A), 12(48%) were moderately malnourished (B), and 8(32%) were severely malnourished (C). Low levels of serum albumin (<3.5g/dl), prealbumin (<20 mg/ml), 25-hydroxycholecalciferol (<30 ng/ml), and Zn (<70mg/ml) were detected in 15(60%), 17(68%), 24 (96%), and 22 (88%) patients, respectively. Elevated levels of CRP (≥10 mg/L), IL6 (≥18pg/ml), TNF-α (≥24pg/ml), IL-1β (≥10pg/ml), and LPL (<12pg/ml) were found in 24 (96%), 11(44%), 9(36), 13(52%), and 11(44%) patients, respectively. Moderate and severe malnutrition, acute phase response, and reduced survival were determined in patients with NCSLC. In 7 patients that completed the treatment period, there was an association between elevated serum levels of IL-6, IL-1β, TNF-α, CRP, and LPL and also the reduced serum levels of albumin, prealbumin, Zn, vitamin D, and GPS, respectively. Similarly, Friedman analysis indicated that prealbumin significantly increased (p=0.007) in the follow-up period. But the serum levels of CRP (mean 37.3±22.3; Wilcoxon test P=0.368) in the seven patients were lower than those of the 18 patients that expired (mean 75.82±56.2). Conclusion. Malnutrition and cachexia negatively influence oncological outcomes in patients with NSCLC. These nutritional/inflammatory markers may be useful for selection of high risk and reduced survival in patients with aNSCLC undergoing adjuvant chemotherapy.
Collapse
|
26
|
Yu H, Li R, Huang H, Yao R, Shen S. Short-Chain Fatty Acids Enhance the Lipid Accumulation of 3T3-L1 Cells by Modulating the Expression of Enzymes of Fatty Acid Metabolism. Lipids 2019; 53:77-84. [PMID: 29488641 DOI: 10.1002/lipd.12005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/10/2022]
Abstract
Short-chain fatty acids (SCFA) such as acetic acid, propionic acid, and butyric acid are produced by fermentation by gut microbiota. In this paper, we investigate the effects of SCFA on 3T3-L1 cells and the underlying molecular mechanisms. The cells were treated with acetic acid, propionic acid, or butyric acid when cells were induced to differentiate into adipocytes. MTT assay was employed to detect the viability of 3T3-L1 cells. Oil Red O staining was used to visualize the lipid content in 3T3-L1 cells. A triglyceride assay kit was used to detect the triacylglycerol content in 3T3-L1 cells. qRT-PCR and Western blot were used to evaluate the expression of metabolic enzymes. MTT results showed that safe concentrations of acetic acid, propionic acid, and butyric acid were less than 6.4, 3.2, and 0.8 mM, respectively. Oil Red O staining and triacylglycerols detection results showed that treatment with acetic acid, propionic acid, and butyric acid accelerated the 3T3-L1 adipocyte differentiation. qRT-PCR and Western blot results showed that the expressions of lipoprotein lipase (LPL), adipocyte fatty acid binding protein 4 (FABP4), fatty acid transporter protein 4 (FATP4), and fatty acid synthase (FAS) were significantly increased by acetic acid, propionic acid, and butyric acid treatment during adipose differentiation (p < 0.05). In conclusion, SCFA promoted lipid accumulation by modulating the expression of enzymes of fatty acid metabolism.
Collapse
Affiliation(s)
- Haining Yu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ran Li
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Haiyong Huang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Ru Yao
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shengrong Shen
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
27
|
Yang H, Xiang Y, Robinson K, Wang J, Zhang G, Zhao J, Xiao Y. Gut Microbiota Is a Major Contributor to Adiposity in Pigs. Front Microbiol 2018; 9:3045. [PMID: 30619136 PMCID: PMC6296290 DOI: 10.3389/fmicb.2018.03045] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/26/2018] [Indexed: 12/19/2022] Open
Abstract
Different breeds of pigs vary greatly in their propensity for adiposity. Gut microbiota is known to play an important role in modulating host physiology including fat metabolism. However, the relative contribution of gut microbiota to lipogenic characteristics of pigs remains elusive. In this study, we transplanted fecal microbiota of adult Jinhua and Landrace pigs, two breeds of pigs with distinct lipogenic phenotypes, to antibiotic-treated mice. Our results indicated that, 4 weeks after fecal transplantation, the mice receiving Jinhua pigs' "obese" microbiota (JM) exhibited a different intestinal bacterial community structure from those receiving Landrace pigs' "lean" microbiota (LM). Notably, an elevated ratio of Firmicutes to Bacteroidetes and a significant diminishment of Akkermansia were observed in JM mice relative to LM mice. Importantly, mouse recipients resembled their respective porcine donors in many of the lipogenic characteristics. Similar to Jinhua pig donors, JM mice had elevated lipid and triglyceride levels and the lipoprotein lipase activity in the liver. Enhanced expression of multiple key lipogenic genes and reduced angiopoietin-like 4 (Angptl4) mRNA expression were also observed in JM mice, relative to those in LM mice. These results collectively suggested that gut microbiota of Jinhua pigs is more capable of enhancing lipogenesis than that of Landrace pigs. Transferability of the lipogenic phenotype across species further indicated that gut microbiota plays a major role in contributing to adiposity in pigs. Manipulation of intestinal microbiota will, therefore, have a profound impact on altering host metabolism and adipogenesis, with an important implication in the treatment of human overweight and obesity.
Collapse
Affiliation(s)
- Hua Yang
- Institute of Quality and Standards for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yun Xiang
- Institute of Animal Husbandry and Veterinary Medicine, Jinhua Academy of Agricultural Sciences, Jinhua, China
| | - Kelsy Robinson
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Junjun Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health and State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, United States
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, United States
| | - Yingping Xiao
- Institute of Quality and Standards for Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
28
|
Méndez-Lara KA, Santos D, Farré N, Ruiz-Nogales S, Leánez S, Sánchez-Quesada JL, Zapico E, Lerma E, Escolà-Gil JC, Blanco-Vaca F, Martín-Campos JM, Julve J, Pol O. Administration of CORM-2 inhibits diabetic neuropathy but does not reduce dyslipidemia in diabetic mice. PLoS One 2018; 13:e0204841. [PMID: 30286142 PMCID: PMC6171880 DOI: 10.1371/journal.pone.0204841] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 09/14/2018] [Indexed: 12/30/2022] Open
Abstract
The antinociceptive effects of the carbon monoxide-releasing molecule tricarbonyldichlororuthenium (II) dimer (CORM-2) during chronic pain are well documented, but most of its possible side-effects remain poorly understood. In this work, we examine the impact of CORM-2 treatment on the lipoprotein profile and two main atheroprotective functions attributed to high-density lipoprotein (HDL) in a mouse model of type 1 diabetes while analyzing the effect of this drug on diabetic neuropathy. Streptozotocin (Stz)-induced diabetic mice treated with CORM-2 (Stz-CORM-2) or vehicle (Stz-vehicle) were used to evaluate the effect of this drug on the modulation of painful diabetic neuropathy using nociceptive behavioral tests. Plasma and tissue samples were used for chemical and functional analyses, as appropriate. Two main antiatherogenic properties of HDL, i.e., the ability of HDL to protect low-density lipoprotein (LDL) from oxidation and to promote reverse cholesterol transport from macrophages to the liver and feces in vivo (m-RCT), were also assessed. Stz-induced diabetic mice displayed hyperglycemia, dyslipidemia and pain hypersensitivity. The administration of 10 mg/kg CORM-2 during five consecutive days inhibited allodynia and hyperalgesia and significantly ameliorated spinal cord markers (Cybb and Bdkrb1expression) of neuropathic pain in Stz mice, but it did not reduce the combined dyslipidemia shown in Stz-treated mice. Its administration to Stz-treated mice led to a significant increase in the plasma levels of cholesterol (∼ 1.4-fold vs. Ctrl, ∼ 1.3- fold vs. Stz-vehicle; p < 0.05) and was attributed to significant elevations in both non-HDL (∼ 1.8-fold vs. Ctrl; ∼ 1.6-fold vs. Stz-vehicle; p < 0.05) and HDL cholesterol (∼ 1.3-fold vs. Ctrl, ∼ 1.2-fold vs. Stz-vehicle; p < 0.05). The increased HDL in plasma was not accompanied by a commensurate elevation in m-RCT in Stz-CORM-2 compared to Stz-vehicle mice; instead, it was worsened as revealed by decreased [3H]-tracer trafficking into the feces in vivo. Furthermore, the HDL-mediated protection against LDL oxidation ex vivo shown by the HDL isolated from Stz-CORM-2 mice did not differ from that obtained in Stz-vehicle mice. In conclusion, the antinociceptive effects produced by a high dose of CORM-2 were accompanied by antioxidative effects but were without favorable effects on the dyslipidemia manifested in diabetic mice.
Collapse
Affiliation(s)
- Karen Alejandra Méndez-Lara
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - David Santos
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Núria Farré
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sheila Ruiz-Nogales
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Luis Sánchez-Quesada
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
- Grup de Bioquímica Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Edgar Zapico
- Departament de Bioquímica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Enrique Lerma
- Departament de Patologia, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Departament de Ciències Morfològiques, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Carles Escolà-Gil
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Francisco Blanco-Vaca
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Jesús María Martín-Campos
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
| | - Josep Julve
- Grup de Bases Metabòliques de Risc Cardiovascular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, CIBERDEM, Barcelona, Spain
- * E-mail: (JJ); (OP)
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut de Recerca de l’Hospital de la Santa Creu i Sant Pau & Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Barcelona, Spain
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
- * E-mail: (JJ); (OP)
| |
Collapse
|
29
|
Uchida D, Takaki A, Adachi T, Okada H. Beneficial and Paradoxical Roles of Anti-Oxidative Nutritional Support for Non-Alcoholic Fatty Liver Disease. Nutrients 2018; 10:E977. [PMID: 30060482 PMCID: PMC6116036 DOI: 10.3390/nu10080977] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/17/2018] [Accepted: 07/24/2018] [Indexed: 02/06/2023] Open
Abstract
Oxidative stress is being recognized as a key factor in the progression of chronic liver disease (CLD), especially non-alcoholic fatty liver disease (NAFLD). Many NAFLD treatment guidelines recommend the use of antioxidants, especially vitamin E. Many prospective studies have described the beneficial effects of such agents for the clinical course of NAFLD. However, as these studies are usually short-term evaluations, lasting only a few years, whether or not antioxidants continue to exert favorable long-term effects, including in cases of concomitant hepatocellular carcinoma, remains unclear. Antioxidants are generally believed to be beneficial for human health and are often commercially available as health-food products. Patients with lifestyle-related diseases often use such products to try to be healthier without practicing lifestyle intervention. However, under some experimental NAFLD conditions, antioxidants have been shown to encourage the progression of hepatocellular carcinoma, as oxidative stress is toxic for cancer cells, just as for normal cells. In this review, we will highlight the paradoxical effects of antioxidants against NAFLD and related hepatocellular carcinoma.
Collapse
Affiliation(s)
- Daisuke Uchida
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Akinobu Takaki
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Takuya Adachi
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan.
| |
Collapse
|
30
|
Di Stefano AB, Grisafi F, Castiglia M, Perez A, Montesano L, Gulino A, Toia F, Fanale D, Russo A, Moschella F, Leto Barone AA, Cordova A. Spheroids from adipose-derived stem cells exhibit an miRNA profile of highly undifferentiated cells. J Cell Physiol 2018; 233:8778-8789. [PMID: 29797571 DOI: 10.1002/jcp.26785] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/30/2018] [Indexed: 12/26/2022]
Abstract
Two-dimensional (2D) cell cultures have been extensively used to investigate stem cell biology, but new insights show that the 2D model may not properly represent the potential of the tissue of origin. Conversely, three-dimensional cultures exhibit protein expression patterns and intercellular junctions that are more representative of their in vivo condition. Multiclonal cells that grow in suspension are defined as "spheroids," and we have previously demonstrated that spheroids from adipose-derived stem cells (S-ASCs) displayed enhanced regenerative capability. With the current study, we further characterized S-ASCs to further understand the molecular mechanisms underlying their stemness properties. Recent studies have shown that microRNAs (miRNAs) are involved in many cellular mechanisms, including stemness maintenance and proliferation, and adipose stem cell differentiation. Most studies have been conducted to identify a specific miRNA profile on adherent adipose stem cells, although little is still known about S-ASCs. In this study, we investigate for the first time the miRNA expression pattern in S-ASCs compared to that of ASCs, demonstrating that cell lines cultured in suspension show a typical miRNA expression profile that is closer to the one reported in induced pluripotent stem cells. Moreover, we have analyzed miRNAs that are specifically involved in two distinct moments of each differentiation, namely early and late stages of osteogenic, adipogenic, and chondrogenic lineages during long-term in vitro culture. The data reported in the current study suggest that S-ASCs have superior stemness features than the ASCs and they represent the true upstream stem cell fraction present in adipose tissue, relegating their adherent counterparts.
Collapse
Affiliation(s)
- A Barbara Di Stefano
- Department of Surgical, Oncological and Oral Sciences, Section of Plastic and Reconstructive Surgery, University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Federica Grisafi
- Department of Surgical, Oncological and Oral Sciences, Section of Plastic and Reconstructive Surgery, University of Palermo, Palermo, Italy
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Marta Castiglia
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Alessandro Perez
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Luigi Montesano
- Department of Surgical, Oncological and Oral Sciences, Section of Plastic and Reconstructive Surgery, University of Palermo, Palermo, Italy
| | - Alessandro Gulino
- Department of Health Science, Human Pathology Section, Tumor Immunology Unit, University of Palermo, Palermo, Italy
| | - Francesca Toia
- Department of Surgical, Oncological and Oral Sciences, Section of Plastic and Reconstructive Surgery, University of Palermo, Palermo, Italy
| | - Daniele Fanale
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Antonio Russo
- Department of Surgical, Oncological and Oral Sciences, Section of Medical Oncology, University of Palermo, Palermo, Italy
| | - Francesco Moschella
- Department of Surgical, Oncological and Oral Sciences, Section of Plastic and Reconstructive Surgery, University of Palermo, Palermo, Italy
| | - Angelo A Leto Barone
- Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD
| | - Adriana Cordova
- Department of Surgical, Oncological and Oral Sciences, Section of Plastic and Reconstructive Surgery, University of Palermo, Palermo, Italy
| |
Collapse
|
31
|
Borrelli A, Bonelli P, Tuccillo FM, Goldfine ID, Evans JL, Buonaguro FM, Mancini A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol 2018; 15:467-479. [PMID: 29413959 PMCID: PMC5975181 DOI: 10.1016/j.redox.2018.01.009] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) represents the most common chronic liver disease in industrialized countries. NAFLD progresses through the inflammatory phase of non-alcoholic steatohepatitis (NASH) to fibrosis and cirrhosis, with some cases developing liver failure or hepatocellular carcinoma (HCC). Liver biopsy remains the gold standard approach to a definitive diagnosis of NAFLD and the distinction between simple steatosis and NASH. The pathogenesis of NASH is still not clear. Several theories have been proposed ranging from the "Two Hit Theory" to the "Multiple Hit Theory". However, the general consensus is that the gut microbiota, oxidative stress, and mitochondrial damage play key roles in the pathogenesis of NASH. The interaction between the gut epithelia and some commensal bacteria induces the rapid generation of reactive oxygen species (ROS). The main goal of any therapy addressing NASH is to reverse or prevent progression to liver fibrosis/cirrhosis. This problem represents the first "Achilles' heel" of the new molecules being evaluated in most ongoing clinical trials. The second is the inability of these molecules to reach the mitochondria, the primary sites of energy production and ROS generation. Recently, a variety of non-pharmacological and pharmacological treatment approaches for NASH have been evaluated including vitamin E, the thiazolidinediones, and novel molecules related to NASH pathogenesis (including obeticholic acid and elafibranor). Recently, a new isoform of human manganese superoxide dismutase (MnSOD) was isolated and obtained in a synthetic recombinant form designated rMnSOD. This protein has been shown to be a powerful antioxidant capable of mediating ROS dismutation, penetrating biological barriers via its uncleaved leader peptide, and reducing portal hypertension and fibrosis in rats affected by liver cirrhosis. Based on these distinctive characteristics, it can be hypothesized that this novel recombinant protein (rMnSOD) potentially represents a new and highly efficient adjuvant therapy to counteract the progression from NASH to HCC.
Collapse
Affiliation(s)
- Antonella Borrelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy.
| | - Patrizia Bonelli
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Franca Maria Tuccillo
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | | | | | - Franco Maria Buonaguro
- Molecular Biology and Viral Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G Pascale", 80131 Napoli, Italy
| | - Aldo Mancini
- Leadhexa Biotechnologies Inc., Belvedere, CA, USA
| |
Collapse
|
32
|
Sun W, Wu Y, Wen Y, Guo M, Zhang H. The association of the S447X mutation in LPL with Coronary artery disease: a meta-analysis. Minerva Cardioangiol 2018; 67:246-253. [PMID: 29687697 DOI: 10.23736/s0026-4725.18.04668-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
INTRODUCTION To investigate the relationships between lipase gene polymorphisms and coronary artery disease (CAD) risk. EVIDENCE ACQUISITION We searched PubMed, Embase and ISI web of science databases for articles estimated the association of S447X polymorphism with CAD. EVIDENCE SYNTESIS Twelve-five articles were included in the meta-analysis. We found the G allele S447X polymorphism could reduce CAD risk by approximately 22% (OR=0.78, 95% CI: 0.71-0.84; fixed effects, I2=35.3%, P=0.07). Compared with non-carriers, individuals with two copies of the G allele had approximately 52% risks of CAD (OR=0.48, 95% CI: 0.29-0.68), and the individuals with GG and GC+GG had approximately 19% and 26% risks of CAD compared with those with CC genotype, respectively (GC versus CC: OR=0.81, 95% CI: 0.74-0.88; [GC+GG] versus CC: OR=0.74, 95% CI: 0.68-0.80). The G allelic significantly decreased risk of myocardial infarction (MI) (OR=0.74, 95% CI: 0.57-0.92). We found significant relationship between the variant and AMD in all the genetic models (GG versus CC: OR=0.48, 95% CI: 0.18-0.79; GC versus CC: OR=0.76, 95% CI: 0.57-0.94; [GG+GC] versus CC: OR=0.73, 95% CI: 0.64-0.83). CONCLUSIONS The results indicated G allelic could significantly decrease CAD and MI risk.
Collapse
Affiliation(s)
- Weiping Sun
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China -
| | - Yongquan Wu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yumei Wen
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ming Guo
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Haibin Zhang
- Department of Cardiology, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Yang TJ, Wu CL, Chiu CH. High-Intensity Intermittent Exercise Increases Fat Oxidation Rate and Reduces Postprandial Triglyceride Concentrations. Nutrients 2018; 10:nu10040492. [PMID: 29659529 PMCID: PMC5946277 DOI: 10.3390/nu10040492] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/10/2018] [Accepted: 04/13/2018] [Indexed: 12/12/2022] Open
Abstract
(1) Background: This study investigated the effect of acute barehanded whole body high-intensity intermittent exercise (HIIE) and moderate intensity and continuous exercise (MICE) at the same quantity of energy expenditure on postprandial triglyceride (TG) concentrations. (2) Methods: Nine healthy males completed three trials (HIIE, MICE and control (CON)) in a random order separated by at least 14 days. After each intervention, the participants rested for 12 h and consumed a high-fat test meal on the next day. The blood samples and respiratory exchange ratio were observed in the fasted state and for 4 h after consuming the test meal. (3) Results: The HIIE had a significantly higher area under the curve of postprandial fat oxidation rate than MICE (p = 0.027) and CON (p = 0.035) and exhibited significantly lower postprandial TG concentration than the MICE and CON at 2 and 4 h after the test meal. Moreover, the HIIE displayed a higher postprandial TG concentration area under the curve than MICE (p = 0.013) and CON (p = 0.048). (4) Conclusions: The present study concluded that acute barehanded whole body HIIE could significantly lower postprandial TG concentrations. It possibly can induce a rise in the postprandial fat oxidation rate.
Collapse
Affiliation(s)
- Tsung-Jen Yang
- Department of Physical Education, National Taiwan Normal University, Taipei 106, Taiwan.
| | - Ching-Lin Wu
- Graduate Institute of Sports and Health Management, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chih-Hui Chiu
- Graduate Program in Department of Exercise Health Science, National Taiwan University of Sport, Taichung 404, Taiwan.
| |
Collapse
|
34
|
Ayisi CL, Yamei C, Zhao JL. Genes, transcription factors and enzymes involved in lipid metabolism in fin fish. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.aggene.2017.09.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Ma WQ, Wang Y, Han XQ, Zhu Y, Liu NF. Associations between LPL gene polymorphisms and coronary artery disease: evidence based on an updated and cumulative meta-analysis. Biosci Rep 2018; 38:BSR20171642. [PMID: 29459423 PMCID: PMC5857905 DOI: 10.1042/bsr20171642] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/03/2018] [Accepted: 02/19/2018] [Indexed: 12/22/2022] Open
Abstract
Lipoprotein lipase (LPL) is widely linked to lipid and lipoprotein metabolism, but its effects on coronary artery disease (CAD) are not clearly elucidated. The aim of this study was to clarify the association between LPL gene polymorphisms and CAD susceptibility. The pooled odds ratio (OR) and 95% confidence interval (CI) were calculated to estimate the strength of the relationship between LPL gene polymorphisms and CAD risk. Comprehensive electronic databases, including PubMed, EMBASE, Web of Science, and the Cochrane Library, were systematically searched. A total of 45 records containing 80 eligible studies were analyzed. The results indicated an increased risk between the LPL D9N polymorphism and susceptibility to CAD in the dominant genetic model (AA + GA vs. GG: OR = 1.46, 95% CI = 1.14-1.87), whereas the LPL HindIII polymorphism showed a protective effect against CAD under all tested models (GG+GT vs. TT: OR = 0.85, 95% CI = 0.75-0.97; GG vs. TT + TG: OR = 0.62, 95% CI = 0.47-0.83; G vs. T: OR = 0.81, 95% CI = 0.71-0.92). No significant association was identified for the LPL N291S and PvuII polymorphisms. Stratification analysis by ethnicity suggested a significant correlation between the LPL S447X polymorphism and CAD susceptibility in Caucasians under the dominant and allele genetic models. In summary, our meta-analysis indicated that the LPL D9N polymorphism was associated with an increased risk of CAD, whereas the S447X and HindIII polymorphisms showed protective effects. There was no association observed between the N291S and PvuII polymorphisms and CAD risk.
Collapse
Affiliation(s)
- Wen-Qi Ma
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jiaqiao, Nanjing, P.R.China, Nanjing, 210009, China
| | - Ying Wang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jiaqiao, Nanjing, P.R.China, Nanjing, 210009, China
| | - Xi-Qiong Han
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jiaqiao, Nanjing, P.R.China, Nanjing, 210009, China
| | - Yi Zhu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jiaqiao, Nanjing, P.R.China, Nanjing, 210009, China
| | - Nai-Feng Liu
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, 87 Ding Jiaqiao, Nanjing, P.R.China, Nanjing, 210009, China
| |
Collapse
|
36
|
Piché ME, Parry SA, Karpe F, Hodson L. Chylomicron-Derived Fatty Acid Spillover in Adipose Tissue: A Signature of Metabolic Health? J Clin Endocrinol Metab 2018; 103:25-34. [PMID: 29099975 PMCID: PMC5761493 DOI: 10.1210/jc.2017-01517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/27/2017] [Indexed: 12/29/2022]
Abstract
Context and Objectives Spillover of fatty acids (FAs) into the plasma nonesterified fatty acid (NEFA) pool, because of an inability of adipose tissue (AT) to accommodate sufficient fat uptake, has been suggested to contribute to obesity-related insulin resistance. Using specific labeling techniques, we compared the proportion of spillover-derived NEFA across a range of adiposity. Participants and Methods Seventy-one healthy men and women were fed a mixed meal (40 g fat) containing [U13C]palmitate to assess the contribution of chylomicron-derived spillover FAs. To investigate subcutaneous abdominal-specific spillover, arteriovenous difference and stable-isotope methodologies were used in substudy (six men, six women). Results Chylomicron-derived FA spillover was higher in individuals with a BMI <25 kg/m2 (n = 18) compared with those with a BMI ≥25 kg/m2 (n = 53) (22.2 ± 1.6% vs 18.6 ± 0.7%, P = 0.02). Women had higher chylomicron-derived FA spillover than age- and BMI-matched men (21.9 ± 1.1% vs 15.0 ± 1.6%, P = 0.001). Assessing spillover across subcutaneous abdominal AT showed higher proportions in women than in men (28.5 ± 6.1% vs 9.9 ± 1.3%, P = 0.01). Conclusion There is a considerable degree of spillover FA into the systemic NEFA pool in the postprandial state; this process is greater and more dynamic in lean individuals and women. Contrary to general perception, spillover of chylomicron-derived FA into systemic circulation is a physiologically normal feature most easily observed in people with a higher capacity for clearance of plasma triglycerides, but does not appear to be a pathway providing excess NEFA in obesity.
Collapse
Affiliation(s)
- Marie-Eve Piché
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, United Kingdom
- Quebec Heart and Lung Institute, Laval University, Quebec G1V 4G5, Canada
| | - Siôn A. Parry
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, United Kingdom
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, United Kingdom
- National Institute for Health Research Oxford Biomedical Research Centre, Oxford University Hospital Trusts, Oxford OX3 9DU, United Kingdom
| | - Leanne Hodson
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, United Kingdom
| |
Collapse
|
37
|
An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes. NUTRITIONAL AND THERAPEUTIC INTERVENTIONS FOR DIABETES AND METABOLIC SYNDROME 2018. [DOI: 10.1016/b978-0-12-812019-4.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
38
|
Andersen IR, Søndergaard E, Sørensen LP, Nellemann B, Gormsen LC, Jensen MD, Nielsen S. Increased VLDL-TG Fatty Acid Storage in Skeletal Muscle in Men With Type 2 Diabetes. J Clin Endocrinol Metab 2017; 102:831-839. [PMID: 27898284 DOI: 10.1210/jc.2016-2979] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 11/28/2016] [Indexed: 12/19/2022]
Abstract
CONTEXT Lipoprotein lipase (LPL) activity is considered the rate-limiting step of very-low-density-lipoprotein triglycerides (VLDL-TG) tissue storage, and has been suggested to relate to the development of obesity as well as insulin resistance and type 2 diabetes. OBJECTIVE The objective of the study was to assess the relationship between the quantitative storage of VLDL-TG fatty acids and LPL activity and other storage factors in muscle and adipose tissue. In addition, we examine whether such relations were influenced by type 2 diabetes. DESIGN We recruited 23 men (12 with type 2 diabetes, 11 nondiabetic) matched for age and body mass index. Postabsorptive VLDL-TG muscle and subcutaneous adipose tissue (abdominal and leg) quantitative storage was measured using tissue biopsies in combination with a primed-constant infusion of ex vivo triolein labeled [1-14C]VLDL-TG and a bolus infusion of ex vivo triolein labeled [9,10-3H]VLDL-TG. Biopsies were analyzed for LPL activity and cellular storage factors. RESULTS VLDL-TG storage rate was significantly greater in men with type 2 diabetes compared with nondiabetic men in muscle tissue (P = 0.02). We found no significant relationship between VLDL-TG storage rate and LPL activity or other storage factors in muscle or adipose tissue. However, LPL activity correlated with fractional VLDL-TG storage in abdominal fat (P = 0.04). CONCLUSIONS Men with type 2 diabetes have increased VLDL-TG storage in muscle tissue, potentially contributing to increased intramyocellular triglyceride and ectopic lipid deposition. Neither muscle nor adipose tissue storage rates were related to LPL activity. This argues against LPL as a rate-limiting step in the postabsorptive quantitative storage of VLDL-TG.
Collapse
Affiliation(s)
| | - Esben Søndergaard
- Departments of Endocrinology and Internal Medicine and
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905; and
- Danish Diabetes Academy, 5000 Odense, Denmark
| | | | | | - Lars C Gormsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Michael D Jensen
- Endocrine Research Unit, Mayo Clinic, Rochester, Minnesota 55905; and
| | - Søren Nielsen
- Departments of Endocrinology and Internal Medicine and
| |
Collapse
|
39
|
Dong W, Gong H, Zhang G, Vuletic S, Albers J, Zhang J, Liang H, Sui Y, Zheng J. Lipoprotein lipase and phospholipid transfer protein overexpression in human glioma cells and their effect on cell growth, apoptosis, and migration. Acta Biochim Biophys Sin (Shanghai) 2017; 49:62-73. [PMID: 27864281 DOI: 10.1093/abbs/gmw117] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/26/2016] [Indexed: 01/01/2023] Open
Abstract
Glioma is one of the common tumors in brain. The expression level of lipoprotein lipase (LPL) or phospholipid transfer protein (PLTP) may influence glioma progression and its relationship with clinical and pathological parameters. The clinical significance of LPL or PLTP expression in glioma has not been established. In the present study, the LPL and PLTP levels in glioma tumors were investigated and the relationship between the LPL and PLTP level and the grade of malignant glioma was analyzed, with the aim to provide new ideas for the diagnosis and treatment of gliomas in clinical and basic research settings. LPL and PLTP mRNA and protein levels were significantly higher in Grade IV glioma than those in the lower grade tumors (P < 0.01). Double immunofluorescent staining showed that the levels of LPL and PLTP were significantly associated with the pathological grade of glioma (P = 0.005). The levels of LPL and PLTP were increased with the shortened survival of glioma patients (P < 0.001). Knockdown of LPL and PLTP led to decreased cell growth and migration but increased apoptosis in vitro Additionally, cell cycle-related cyclins and their partners were found to be down-regulated while cyclin-dependent kinase inhibitors p16, p21, and Rb were up-regulated. Furthermore, knockdown of LPL or PLTP resulted in the up-regulation of pro-apoptotic molecules and the down-regulation of anti-apoptotic molecules. Ablation of LPL or PLTP in U251 cells resulted in the down-regulation of epithelial mesenchymal transition markers and invasion molecules matrix metalloproteinases. LPL and PLTP appear to be novel glioma-associated proteins and play a role in the progression of human glioma.
Collapse
Affiliation(s)
- Weijiang Dong
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, China
| | - Huilin Gong
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Guanjun Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Simona Vuletic
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - John Albers
- Northwest Lipid Metabolism and Diabetes Research Laboratories, Department of Medicine, School of Medicine, University of Washington, Seattle, 98109 WA
| | - Jiaojiao Zhang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Hua Liang
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanxia Sui
- Department of Pathology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jin Zheng
- Hospital of Nephrology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
40
|
Wang M, Xu D, Liu K, Yang J, Xu P. Molecular cloning and expression analysis on LPL of Coilia nasus. Gene 2016; 583:147-159. [DOI: 10.1016/j.gene.2016.02.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/22/2015] [Accepted: 02/10/2016] [Indexed: 11/29/2022]
|
41
|
Elimination of chronic lymphocytic leukemia cells in stromal microenvironment by targeting CPT with an antiangina drug perhexiline. Oncogene 2016; 35:5663-5673. [PMID: 27065330 PMCID: PMC5064824 DOI: 10.1038/onc.2016.103] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/01/2016] [Accepted: 01/22/2016] [Indexed: 12/30/2022]
Abstract
Chronic lymphocytic leukemia (CLL) is the most common adult leukemia in the western countries and is currently incurable due, in part, to difficulty in eliminating the leukemia cells protected by stromal microenvironment. Based on previous observations that CLL cells exhibit mitochondrial dysfunction and altered lipid metabolism and that carnitine palmitoyltransferases (CPT) have a major role in transporting fatty acid into mitochondria to support cancer cell metabolism, we tested several clinically relevant inhibitors of lipid metabolism for their ability to eliminate primary CLL cells. We discovered that perhexiline, an antiangina agent that inhibits CPT, was highly effective in killing CLL cells in stromal microenvironment at clinically achievable concentrations. These effective concentrations caused low toxicity to normal lymphocytes and normal stromal cells. Mechanistic study revealed that CLL cells expressed high levels of CPT1 and CPT2. Suppression of fatty acid transport into mitochondria by inhibiting CPT using perhexiline resulted in a depletion of cardiolipin, a key component of mitochondrial membranes, and compromised mitochondrial integrity, leading to rapid depolarization and massive CLL cell death. The therapeutic activity of perhexiline was further demonstrated in vivo using a CLL transgenic mouse model. Perhexiline significantly prolonged the overall animal survival by only four drug injections. Our study suggests that targeting CPT using an antiangina drug is able to effectively eliminate leukemia cells in vivo, and is a novel therapeutic strategy for potential clinical treatment of CLL.
Collapse
|
42
|
Pardina E, Ferrer R, Rossell J, Baena-Fustegueras JA, Lecube A, Fort JM, Caubet E, González Ó, Vilallonga R, Vargas V, Balibrea JM, Peinado-Onsurbe J. Diabetic and dyslipidaemic morbidly obese exhibit more liver alterations compared with healthy morbidly obese. BBA CLINICAL 2016; 5:54-65. [PMID: 27051590 PMCID: PMC4802404 DOI: 10.1016/j.bbacli.2015.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/14/2022]
Abstract
Background & aims To study the origin of fat excess in the livers of morbidly obese (MO) individuals, we analysed lipids and lipases in both plasma and liver and genes involved in lipid transport, or related with, in that organ. Methods Thirty-two MO patients were grouped according to the absence (healthy: DM − DL −) or presence of comorbidities (dyslipidemic: DM − DL +; or dyslipidemic with type 2 diabetes: DM + DL +) before and one year after gastric bypass. Results The livers of healthy, DL and DM patients contained more lipids (9.8, 9.5 and 13.7 times, respectively) than those of control subjects. The genes implicated in liver lipid uptake, including HL, LPL, VLDLr, and FAT/CD36, showed increased expression compared with the controls. The expression of genes involved in lipid-related processes outside of the liver, such as apoB, PPARα and PGC1α, CYP7a1 and HMGCR, was reduced in these patients compared with the controls. PAI1 and TNFα gene expression in the diabetic livers was increased compared with the other obese groups and control group. Increased steatosis and fibrosis were also noted in the MO individuals. Conclusions Hepatic lipid parameters in MO patients change based on their comorbidities. The gene expression and lipid levels after bariatric surgery were less prominent in the diabetic patients. Lipid receptor overexpression could enable the liver to capture circulating lipids, thus favouring the steatosis typically observed in diabetic and dyslipidaemic MO individuals. The criteria used to define the “metabolically healthy” obese is not applicable to morbidly obese patients. Virtually no studies of how bariatric surgery affects depending on comorbidities and less how affect to the liver. Anthropometrics, fat, lipid profile and inflammation parameters are different depending of comorbidities, not only in plasma but also in liver. The extent of lipases and lipids in the liver biopsies could help not only the diagnosis but also to follow the course of recovery after surgery. The morbidly obese individuals with diabetes and dyslipidemia have more altered metabolic profiles than the other two groups.
Collapse
Key Words
- ALT, Alanine transaminase
- AST, Aspartate transaminase
- ATGL, Adipose Tissue Glycerol Lipase
- ApoA1, Apolipoprotein A1
- BMI, Body Mass Index
- CPT1a, Carnitine Palmitoyltransferase 1a
- CRP, C-reactive protein
- CYP7a1, Cholesterol 7 Alpha-Hydroxylase
- DL, Dyslipidaemia
- DM, Type 2 diabetes mellitus
- DM + DL +, Obese patients with type 2 diabetes and dyslipidaemia
- DM − DL +, Dyslipidemic obese patients
- DM − DL −, “Healthy” obese patients, or patients without type 2 diabetes or dyslipidaemia
- Diabetes
- FAT/CD36, Fatty Acid Translocase or Cluster of Differentiation 36
- GGT, gamma-glutaryl transferase
- HL, Hepatic lipase
- HMGCR, 3-Hydroxy-3-Methylglutaryl-CoA Reductase
- HOMA-IR, Homeostasis Model Assessment of Insulin Resistance
- HSL, Hormone-sensitive lipase
- HTA, Hypertension
- IL6, Interleukin-6
- IR, Insulin resistance
- KBs, Ketone bodies
- LDLr, Low-Density Lipoprotein receptor
- Lipases
- Lipids
- Liver
- MO, Morbidly obese
- NAFLD
- NAFLD, Non-alcoholic fatty liver disease
- NASH, Non-alcoholic liver steatohepatitis
- NEFA, Non-esterified fatty acid
- PAI1, Plasminogen Activator Inhibitor of Type 1
- PLs, Phospholipids
- PPARα, Peroxisome Proliferator-Activated Receptor alpha
- PPARα, Peroxisome Proliferator-Activated Receptor gamma Coactivator 1-alpha
- QMs, Chylomicrons
- RYGBP, Roux-en-Y gastric bypass
- SAT, Subcutaneous adipose tissue
- SCARB1, Scavenger Receptor Class B, Member 1
- Steatosis
- TAGs, Triacylglycerides
- TC, Total cholesterol
- TNFα, Tumour Necrosis Factor-alpha
- UCP2, Uncoupling Protein 2
- VAT, Visceral adipose tissue
- VLDLr, Very-Low-Density Lipoprotein receptor
- apoB, Apolipoprotein B
- cHDL, High-Density Lipoprotein Cholesterol
- cLDL, Low-Density Lipoprotein Cholesterol
- eNOS3, Endothelial Nitric Oxide Synthase 3
- iNOS2, Inducible Nitric Oxide Synthase 2
Collapse
Affiliation(s)
- Eva Pardina
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | - Roser Ferrer
- Biochemistry Department, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Joana Rossell
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| | | | - Albert Lecube
- Endocrinology and Nutrition Department, Arnau de Vilanova University Hospital (UdL), Diabetes and Metabolism Research Unit (VHIR, UAB), CIBER de Diabetes y Enfermedades Metabólicas (CIBERDEM) del Instituto de Salud Carlos III, Spain
| | - Jose Manuel Fort
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Enric Caubet
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Óscar González
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Ramón Vilallonga
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Víctor Vargas
- CIBER de Enfermedades Hepáticas y Digestivas (CIBEREHD) del Instituto de Salud Carlos III (ISCIII), Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - José María Balibrea
- Endocrinology Surgery Unit, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Spain
| | - Julia Peinado-Onsurbe
- Biochemistry and Molecular Biology Department, Biology Faculty, Barcelona University, Spain
| |
Collapse
|
43
|
Dornellas APS, Watanabe RLH, Pimentel GD, Boldarine VT, Nascimento CMO, Oyama LM, Ghebremeskel K, Wang Y, Bueno AA, Ribeiro EB. Deleterious effects of lard-enriched diet on tissues fatty acids composition and hypothalamic insulin actions. Prostaglandins Leukot Essent Fatty Acids 2015; 102-103:21-9. [PMID: 26525379 DOI: 10.1016/j.plefa.2015.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 08/28/2015] [Accepted: 10/01/2015] [Indexed: 01/14/2023]
Abstract
Altered tissue fatty acid (FA) composition may affect mechanisms involved in the control of energy homeostasis, including central insulin actions. In rats fed either standard chow or a lard-enriched chow (high in saturated/low in polyunsaturated FA, HS-LP) for eight weeks, we examined the FA composition of blood, hypothalamus, liver, and retroperitoneal, epididymal and mesenteric adipose tissues. Insulin-induced hypophagia and hypothalamic signaling were evaluated after intracerebroventricular insulin injection. HS-LP feeding increased saturated FA content in adipose tissues and serum while it decreased polyunsaturated FA content of adipose tissues, serum, and liver. Hypothalamic C20:5n-3 and C20:3n-6 contents increased while monounsaturated FA content decreased. HS-LP rats showed hyperglycemia, impaired insulin-induced hypophagia and hypothalamic insulin signaling. The results showed that, upon HS-LP feeding, peripheral tissues underwent potentially deleterious alterations in their FA composition, whist the hypothalamus was relatively preserved. However, hypothalamic insulin signaling and hypophagia were drastically impaired. These findings suggest that impairment of hypothalamic insulin actions by HS-LP feeding was not related to tissue FA composition.
Collapse
Affiliation(s)
- A P S Dornellas
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - R L H Watanabe
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - G D Pimentel
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - V T Boldarine
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - C M O Nascimento
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - L M Oyama
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil
| | - K Ghebremeskel
- Lipidomics and Nutrition Research Centre, Faculty of Life Sciences and Computing, London Metropolitan University, London, United Kingdom
| | - Y Wang
- Department of Medicine, Division of Infectious Diseases, Section of Paediatrics, Institute of Reproductive and Developmental Biology, Imperial College London, London, United Kingdom
| | - A A Bueno
- Institute of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - E B Ribeiro
- Department of Physiology, Division of Nutrition Physiology, Sao Paulo Federal University, Sao Paulo, Brazil.
| |
Collapse
|
44
|
PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine 2015; 75:127-35. [DOI: 10.1016/j.cyto.2015.05.031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 04/22/2015] [Accepted: 05/26/2015] [Indexed: 12/12/2022]
|
45
|
Uno K, Yamada T, Ishigaki Y, Imai J, Hasegawa Y, Sawada S, Kaneko K, Ono H, Asano T, Oka Y, Katagiri H. A hepatic amino acid/mTOR/S6K-dependent signalling pathway modulates systemic lipid metabolism via neuronal signals. Nat Commun 2015; 6:7940. [PMID: 26268630 PMCID: PMC4557134 DOI: 10.1038/ncomms8940] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/30/2015] [Indexed: 12/15/2022] Open
Abstract
Metabolism is coordinated among tissues and organs via neuronal signals. Levels of circulating amino acids (AAs), which are elevated in obesity, activate the intracellular target of rapamycin complex-1 (mTORC1)/S6kinase (S6K) pathway in the liver. Here we demonstrate that hepatic AA/mTORC1/S6K signalling modulates systemic lipid metabolism via a mechanism involving neuronal inter-tissue communication. Hepatic expression of an AA transporter, SNAT2, activates the mTORC1/S6K pathway, and markedly elevates serum triglycerides (TGs), while downregulating adipose lipoprotein lipase (LPL). Hepatic Rheb or active-S6K expression have similar metabolic effects, whereas hepatic expression of dominant-negative-S6K inhibits TG elevation in SNAT2 mice. Denervation, pharmacological deafferentation and β-blocker administration suppress obesity-related hypertriglyceridemia with adipose LPL upregulation, suggesting that signals are transduced between liver and adipose tissue via a neuronal pathway consisting of afferent vagal and efferent sympathetic nerves. Thus, the neuronal mechanism uncovered here serves to coordinate amino acid and lipid levels and contributes to the development of obesity-related hypertriglyceridemia.
Collapse
Affiliation(s)
- Kenji Uno
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Tetsuya Yamada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yasushi Ishigaki
- Division of Diabetes and Metabolism, Iwate Medical University, Morioka 020-8505, Japan
| | - Junta Imai
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yutaka Hasegawa
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Shojiro Sawada
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Keizo Kaneko
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hiraku Ono
- The Fourth Department of Internal Medicine, Saitama Medical University, Saitama 350-0495, Japan
| | - Tomoichiro Asano
- Department of Medical Science, Graduate School of Medicine, University of Hiroshima, Hiroshima 734-8553, Japan
| | - Yoshitomo Oka
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Hideki Katagiri
- Department of Metabolism and Diabetes, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan.,Japan Science and Technology Agency, CREST, Sendai 980-8575, Japan
| |
Collapse
|
46
|
Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:773-787. [PMID: 25805459 DOI: 10.1007/s10695-015-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, No. 5 Yushan Rd., Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
47
|
Qiao Y, Sun J, Xia S, Li L, Li Y, Wang P, Shi Y, Le G. Effects of different Lactobacillus reuteri on inflammatory and fat storage in high-fat diet-induced obesity mice model. J Funct Foods 2015. [DOI: 10.1016/j.jff.2015.02.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
48
|
Yang H, Zhou T, Wang H, Liu T, Ueda K, Zhan R, Zhao L, Tong Y, Tian X, Zhang T, Jin Y, Han X, Li Z, Zhao Y, Guo X, Xiao W, Fan D, Liu G, Chui D. Lipoprotein lipase deficiency leads to α-synuclein aggregation and ubiquitin C-terminal hydrolase L1 reduction. Neuroscience 2015; 290:1-10. [DOI: 10.1016/j.neuroscience.2014.12.068] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/29/2014] [Accepted: 12/30/2014] [Indexed: 10/24/2022]
|
49
|
Tian J, Wu F, Yang CG, Jiang M, Liu W, Wen H. Dietary lipid levels impact lipoprotein lipase, hormone-sensitive lipase, and fatty acid synthetase gene expression in three tissues of adult GIFT strain of Nile tilapia, Oreochromis niloticus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1-18. [PMID: 25347968 DOI: 10.1007/s10695-014-0001-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 10/11/2014] [Indexed: 06/04/2023]
Abstract
The objective of this study was to assess the effects of dietary lipids on growth performance, body composition, serum parameters, and expression of genes involved in lipid metabolism in adult genetically improved farmed tilapia (GIFT strain) of Nile tilapia, Oreochromis niloticus. We randomly assigned adult male Nile tilapia (average initial body weight = 220.00 ± 9.54 g) into six groups consisting of four replicates (20 fish per replicate). Fish in each group were hand-fed a semi-purified diets containing different lipid levels [3.3 (the control group), 28.4, 51.4, 75.4, 101.9, and 124.1 g kg(-1)] for 8 weeks. The results indicated that there was no obvious effect in feeding rate among all groups (P > 0.05). The highest weight gain, specific growth rate, and protein efficiency ratio in 75.4 g kg(-1) diet group were increased by 23.31, 16.17, and 22.02 % than that of fish in the control group (P < 0.05). Protein retention ratio was highest in 51.4 g kg(-1) diet group. The results revealed that the optimum dietary lipid level for maximum growth performance is 76.6-87.9 g kg(-1). Increasing dietary lipid levels contributed to increased tissue and whole body lipid levels. Saturated and monounsaturated fatty acids (MUFAs) decreased, and polyunsaturated fatty acids increased with increasing dietary lipid levels. With the exception of MUFAs, the fatty acid profiles of liver and muscle were similar. Dietary lipid levels were negatively correlated with low-density lipoprotein- cholesterol content and positively with triacylglycerol and glucose contents. In the lipid-fed groups, there was a significant down-regulation of fatty acid synthase (FAS) mRNA in liver, muscle, and visceral adipose tissues. There was a rapid up-regulation of lipoprotein lipase (LPL) mRNA in muscle and liver with increasing dietary lipid levels. In visceral adipose tissue, LPL mRNA was significantly down-regulated in the lipid-fed groups. Dietary lipids increased hormone-sensitive lipase (HSL) mRNA expression levels in the three tissues. These results strongly suggested that moderate dietary lipid levels were beneficial for adult tilapia growth performance and feed efficiency. However, excessive dietary lipid levels contributed to lipid deposition. Additionally, excessive dietary lipids may induce a competition between lipolysis and lipogenesis. FAS did not have tissue-specific regulation; however, the regulation of dietary lipids on LPL expression is tissue specific. FAS was a negative feedback regulator on fat deposition, and HSL was an indicator of fat content in tilapia.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Freshwater Biodiversity Conservation and Utilization, Ministry of Agriculture, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, No. 8, Wudayuan 1st Road, Donghu Hi-Tech Development Zone, Wuhan, 430223, Hubei, China
| | | | | | | | | | | |
Collapse
|
50
|
Emamian M, Avan A, Pasdar A, Mirhafez SR, Sadeghzadeh M, Moghadam MS, Parizadeh SMR, Ferns GA, Ghayour-Mobarhan M. The lipoprotein lipase S447X and cholesteryl ester transfer protein rs5882 polymorphisms and their relationship with lipid profile in human serum of obese individuals. Gene 2015; 558:195-9. [PMID: 25579610 DOI: 10.1016/j.gene.2014.12.070] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/06/2014] [Accepted: 12/10/2014] [Indexed: 01/09/2023]
Abstract
BACKGROUND Obesity is often associated with an alter lipid profile, e.g., raised serum triglycerides (TG) and low high-density lipoprotein (HDL) cholesterol levels, both important risk factor for cardiovascular-diseases. The aim of current study was to explore the association of a polymorphism of the lipoprotein lipase (LPL) rs328 and cholesteryl-ester-transfer-protein (CETP) rs5882 genes in relation to lipid profile in subjects with/without obesity. SUBJECTS/METHODS Genotyping was carried out in 271 individuals, (151 obese subjects and 120 non-obese). Univariate/multivariate analyses were conducted to evaluate the association of these genetic-polymorphisms with obesity and lipid components. RESULTS Obese subjects had a significantly (P<0.05) higher level of triglyceride (TG), blood pressure, waist-circumference and fasting-blood-glucose, and lower level of HDL-C. LPL and CETP polymorphisms were not associated with obesity in our population. However, the LPL rs328-GG-GC genotype was significantly related to a higher concentration of TG, compared to the CC wild-type; and a higher HDL-C level in the obesity-group with respect to the control group. Moreover, obese-subjects carrying the G allele of CETP had a significantly lower level of HDL-C (P<0.05) compared to those with C allele. CONCLUSION We demonstrate a significant association of LPL and CETP polymorphisms with serum triglycerides and HDL-cholesterol.
Collapse
Affiliation(s)
- Marzieh Emamian
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biochemistry, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Amir Avan
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Oncology, VU University Medical Center, Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
| | - Alireza Pasdar
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Division of Applied Medicine, Medical School, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, UK
| | - Seyed Reza Mirhafez
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahsa Sadeghzadeh
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Saleh Moghadam
- Department of Biochemistry, Faculty of Science, Payame Noor University, Mashhad, Iran
| | - Seyed Mohammad Reza Parizadeh
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Majid Ghayour-Mobarhan
- Department of New Science and Technologies, Cardiovascular Research Center, Biochemistry of Nutrition Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|