1
|
Wang Z, Yu S, Yang B, Wang P, Yang Y, Bo Y, Wang W. The mediating and moderating effect of BMI in the relationship between air pollution and nonalcoholic fatty liver disease: A prospective cohort study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025:126570. [PMID: 40449713 DOI: 10.1016/j.envpol.2025.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 05/26/2025] [Accepted: 05/28/2025] [Indexed: 06/03/2025]
Abstract
The associations between air pollution exposure and non-alcoholic fatty liver disease (NAFLD) remain unclear. The present study included 313,102 individuals from the UK Biobank. Data on air pollution included PM2.5, PMcoarse, PM10, PM2.5absorbance, nitrogen dioxide (NO2), and nitrogen oxides (NOx). A weighted air pollution score (WAPS) was created using PM10 and NOx to evaluate the comprehensive exposure to the five air contaminants. Using Cox proportional hazard models and restricted cubic spline (RCS) models, the relationship between air pollution exposure and the developing NAFLD risk was examined. We also examined the mediating role of BMI. We found that the increased risk of NAFLD was positively correlated with PM2.5, PMcoarse, PM10, PM2.5absorbance, NO2, NOx, and WAPS (all P-trend < 0.05). In comparison to individuals who were in the lowest quartile for air contaminants exposure, the HRs of NAFLD for those exposed to the highest quartile were: PM2.5: 1.33 (95% CI: 1.22 to 1.45), PMcoarse: 1.12 (95% CI: 1.03 to 1.22), PM10: 1.15 (95% CI: 1.05 to 1.25), PM2.5 absorbance: 1.27 (95% CI: 1.17 to 1.39), NO2: 1.38 (95% CI:1.26 to 1.50), NOx: 1.33 (95% CI:1.22 to 1.45), and WAPS: 1.32 (95% CI:1.21 to 1.44). No correlation was found between WAPS and NAFLD risk in those who were normal weight, but it was strong in overweight and obese people. BMI (mediated proportion: 8.18% for PM2.5; 2.89% for PM2.5absorbance; 18.8% for PMcoarse; 12.32% for PM10; 4.09% for NO2; 7.72% for NOX; 8.44% for WAPS) significantly mediated a portion of the link between air pollution exposure and NAFLD (all PIE < 0.05). Overall, air pollution exposure can increase the developing NAFLD risk, and BMI significantly modifies and mediates the connection. These findings served as mechanical evidence that air pollution contributes to NAFLD in epidemiological investigations.
Collapse
Affiliation(s)
- Zhuowen Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Shaofei Yu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Bin Yang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Pengpeng Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yongli Yang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yacong Bo
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
2
|
Beier JI, Luo J, Vanderpuye CM, Brizendine P, Muddasani P, Bolatimi O, Heinig SA, Ekuban FA, Siddiqui H, Ekuban A, Gripshover TC, Wahlang B, Watson WH, Cave MC. Environmental Pollutants, Occupational Exposures, and Liver Disease. Semin Liver Dis 2025. [PMID: 40118102 DOI: 10.1055/a-2540-2861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Environmental pollutants significantly impact liver disease development, progression, and outcomes. This review examines the complex relationship between environmental exposures and liver pathology, from malignant conditions like hepatocellular carcinoma to steatotic and cholestatic liver diseases. Key environmental factors include air pollutants, volatile organic compounds, persistent organic pollutants, heavy metals, and per- and polyfluoroalkyl substances. These compounds can act through multiple mechanisms, including endocrine disruption, metabolic perturbation, oxidative stress, and direct hepatotoxicity. The impact of these exposures is often modified by factors such as sex, diet, and genetic predisposition. Recent research has revealed that even low-level exposures to certain chemicals can significantly affect liver health, particularly when combined with other risk factors. The emergence of exposomics as a research tool promises to enhance our understanding of how environmental factors influence liver disease. Importantly, exposure effects can vary by demographic and socioeconomic factors, highlighting environmental justice concerns. Implementation of this knowledge in clinical practice requires new diagnostic approaches, healthcare system adaptations, and increased awareness among medical professionals. In conclusion, this review provides a comprehensive examination of current evidence linking environmental exposures to liver disease and discusses implications for clinical practice and public health policy.
Collapse
Affiliation(s)
- Juliane I Beier
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jianzhu Luo
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | | | - Paxton Brizendine
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Pooja Muddasani
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oluwanifemiesther Bolatimi
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Shannon A Heinig
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Frederick A Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Hamda Siddiqui
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Abigail Ekuban
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Tyler C Gripshover
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
| | - Banrida Wahlang
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Walter H Watson
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| | - Matthew C Cave
- Department of Medicine, University of Louisville School of Medicine, Louisville, Kentucky
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky
| |
Collapse
|
3
|
Thongsak N, Chitapanarux T, Chotirosniramit A, Chakrabandhu S, Traisathit P, Nakharutai N, Srikummoon P, Thumronglaohapun S, Supasri T, Hemwan P, Chitapanarux I. Air pollutants and primary liver cancer mortality: a cohort study in crop-burning activities and forest fires area. Front Public Health 2024; 12:1389760. [PMID: 39381772 PMCID: PMC11459313 DOI: 10.3389/fpubh.2024.1389760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
Introduction Northern Thailand experiences high levels of air pollution in the dry season due to agricultural waste burning and forest fires. Some air pollutants can enter the bloodstream, and the liver has the role of detoxifying these along with other harmful substances. In this study, we assessed the effects of long-term exposure to air pollutants on liver cancer mortality in this area. Methods A cohort of 10,859 primary liver cancer patients diagnosed between 2003 and 2018 and followed up to the end of 2020 were included in the study. Extended time-varying covariates of the annually averaged pollutant concentrations updated each year were utilized. The associations between air pollutants and mortality risk were examined by using a Cox proportional hazard model. Results Metastatic cancer stage had the highest adjusted hazard ratio (aHR) of 3.57 (95% confidence interval (CI):3.23-3.95). Being male (aHR = 1.10; 95% CI: 1.04-1.15), over 60 years old (aHR = 1.16; 95% CI: 1.11-1.21), having a history of smoking (aHR = 1.16; 95%CI: 1.11-1.22), and being exposed to a time-updated local concentration of PM2.5 of 40 μg/m3 (aHR = 1.10; 95% CI: 1.05-1.15) increased the mortality risk. Conclusion We found that air pollution is one of several detrimental factors on the mortality risk of liver cancer.
Collapse
Affiliation(s)
- Natthapat Thongsak
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Taned Chitapanarux
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anon Chotirosniramit
- Division of Hepatobiliary-Pancreatic Surgery, Department of Surgery, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Somvilai Chakrabandhu
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Patrinee Traisathit
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Nawapon Nakharutai
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Pimwarat Srikummoon
- Department of Statistics, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Titaporn Supasri
- Atmospheric Research Unit of National Astronomical Research Institute of Thailand, Chiang Mai, Thailand
| | - Phonpat Hemwan
- Geo-Informatics and Space Technology Centre (Northern Region), Department of Geography, Faculty of Social Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Imjai Chitapanarux
- Division of Radiation Oncology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Xiao Y, Hu J, Chen R, Xu Y, Pan B, Gao Y, Deng Y, Li W, Kan H, Chen S. Impact of fine particulate matter on liver injury: evidence from human, mice and cells. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133958. [PMID: 38479138 DOI: 10.1016/j.jhazmat.2024.133958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND A recently discovered risk factor for chronic liver disease is ambient fine particulate matter (PM2.5). Our research aims to elucidate the effects of PM2.5 on liver injury and the potential molecular mechanisms. METHODS AND RESULTS A population-based longitudinal study involving 102,918 participants from 15 Chinese cities, using linear mixed-effect models, found that abnormal alterations in liver function were significantly associated with long-term exposure to PM2.5. The serum levels of alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, direct bilirubin, and triglyceride increased by 2.05%, 2.04%, 0.58%, 2.99%, and 1.46% with each 10 µg/m3 increase in PM2.5. In contrast, the serum levels of total protein, albumin, and prealbumin decreased by 0.27%, 0.48%, and 2.42%, respectively. Mice underwent chronic inhalation exposure to PM2.5 experienced hepatic inflammation, steatosis and fibrosis. In vitro experiments found that hepatocytes experienced an inflammatory response and lipid metabolic dysregulation due to PM2.5, which also activated hepatic stellate cells. The down-regulation and mis-localization of polarity protein Par3 mediated PM2.5-induced liver injury. CONCLUSIONS PM2.5 exposure induced liver injury, mainly characterized by steatosis and fibrosis. The down-regulation and mis-localization of Par3 were important mechanisms of liver injury induced by PM2.5.
Collapse
Affiliation(s)
- Yalan Xiao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jialu Hu
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yanyi Xu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Bin Pan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yiran Deng
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Wenshu Li
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; National Center for Children's Health, Children's Hospital of Fudan University, Shanghai 201102, China.
| | - She Chen
- NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
5
|
Bo Y, Lin C, Guo C, Wong M, Huang B, Lau A, Huang Y, Lao XQ. Chronic exposure to ambient air pollution and the risk of non-alcoholic fatty liver disease: A cross-sectional study in Taiwan and Hong Kong. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116245. [PMID: 38520807 DOI: 10.1016/j.ecoenv.2024.116245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 03/17/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Information on the relation of air pollution with non-alcoholic fatty liver disease (NAFLD) is scarce. We thus conducted a large cross-sectional study in Asia to investigate the role of air pollution in NAFLD. METHODS We recruited 329,048 adults (mean age: 41.0 years) without other liver disease (hepatitis and cirrhosis) or excessive alcohol consumption in Taiwan and Hong Kong from 2001 to 2018. The concentrations of nitrogen dioxide (NO2) and ozone (O3) were estimated using a space-time regression model, and the concentrations of fine particulate matter (PM2.5) was evaluated using a satellite-based spatio-temporal model. NAFLD was determined using either the fatty liver index (FLI) or the hepatic steatosis index (HSI). The NAFLD-related advanced fibrosis was defined according to BARD score or the fibrosis-4 (FIB-4). A logistic regression model was adopted to explore the relationships of ambient air pollution with the odds of NAFLD and NAFLD-related advanced fibrosis. RESULTS We found positive relationships between PM2.5 and the odds of NAFLD and advanced fibrosis, with every standard deviation (SD, 7.5 µg/m3) increases in PM2.5 exposure being associated with a 10% (95% confidence interval [CI]: 9%-11%) increment in the prevalence of NAFLD and an 8% (95% CI: 7%-9%) increment in the prevalence of advanced fibrosis. Similarly, the prevalence of NAFLD and advanced fibrosis increased by 8% (95% CI: 7%-9%) and 7% (95% CI: 6%-8%) with per SD (18.9 µg/m3) increasement in NO2 concentration, respectively. Additionally, for every SD (9.9 µg/m3) increasement in O3 concentration, the prevalence of NAFLD and advanced fibrosis decreased by 12% (95% CI: 11%-13%) and 11% (95% CI: 9%-12%), respectively. CONCLUSION Higher ambient PM2.5 and NO2 are linked with higher odds of NAFLD and advanced fibrosis. Our findings indicate that reducing PM2.5 and NO2 concentrations may be an effective way for preventing NAFLD. Further studies on O3 are warranted.
Collapse
Affiliation(s)
- Yacong Bo
- School of Public Health, Zhengzhou University, China
| | - Changqing Lin
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Cui Guo
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China
| | - Martin Wong
- Jockey Club School of Public Health and Primary Care, the Chinese University of Hong Kong, Hong Kong, China
| | - Bo Huang
- Department of Geography and Resource Management, the Chinese University of Hong Kong, Hong Kong, China
| | - Alexis Lau
- Division of Environment and Sustainability, the Hong Kong University of Science and Technology, Hong Kong, China; Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Science, City University of Hong KongHong Kong, China
| | - Xiang Qian Lao
- Department of Biomedical Science, City University of Hong KongHong Kong, China.
| |
Collapse
|
6
|
Lu TY, Wu CD, Huang YT, Chen YC, Chen CJ, Yang HI, Pan WC. Exposure to PM 2.5 Metal Constituents and Liver Cancer Risk in REVEAL-HBV. J Epidemiol 2024; 34:87-93. [PMID: 36908115 PMCID: PMC10751193 DOI: 10.2188/jea.je20220262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 02/05/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Ambient particulate matter is classified as a human Class 1 carcinogen, and recent studies found a positive relationship between fine particulate matter (PM2.5) and liver cancer. Nevertheless, little is known about which specific metal constituent contributes to the development of liver cancer. OBJECTIVE To evaluate the association of long-term exposure to metal constituents in PM2.5 with the risk of liver cancer using a Taiwanese cohort study. METHODS A total of 13,511 Taiwanese participants were recruited from the REVEAL-HBV in 1991-1992. Participants' long-term exposure to eight metal constituents (Ba, Cu, Mn, Sb, Zn, Pb, Ni, and Cd) in PM2.5 was based on ambient measurement in 2002-2006 followed by a land-use regression model for spatial interpolation. We ascertained newly developed liver cancer (ie, hepatocellular carcinoma [HCC]) through data linkage with the Taiwan Cancer Registry and national health death certification in 1991-2014. A Cox proportional hazards model was utilized to assess the association between exposure to PM2.5 metal component and HCC. RESULTS We identified 322 newly developed HCC with a median follow-up of 23.1 years. Long-term exposure to PM2.5 Cu was positively associated with a risk of liver cancer. The adjusted hazard ratio (HR) was 1.13 (95% confidence interval [CI], 1.02-1.25; P = 0.023) with one unit increment on Cu normalized by PM2.5 mass concentration in the logarithmic scale. The PM2.5 Cu-HCC association remained statistically significant with adjustment for co-exposures to other metal constituents in PM2.5. CONCLUSION Our findings suggest PM2.5 containing Cu may attribute to the association of PM2.5 exposure with liver cancer.
Collapse
Affiliation(s)
- Tzu-Yi Lu
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chih-Da Wu
- Department of Geomatics, National Cheng Kung University, Chiayi, Taiwan
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Yen-Tsung Huang
- Institue of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yu-Cheng Chen
- National Institution of Environmental Health Sciences, National Health Research Institute, Mioli, Taiwan
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wen-Chi Pan
- Institute of Environmental and Occupational Health Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
7
|
Dales R, Mitchell K, Lukina A, Brook J, Karthikeyan S, Cakmak S. Does ambient air pollution influence biochemical markers of liver injury? Findings of a cross-sectional population-based survey. CHEMOSPHERE 2023; 340:139859. [PMID: 37619749 DOI: 10.1016/j.chemosphere.2023.139859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND There is limited evidence supporting an adverse effect of ambient air pollution on the liver. OBJECTIVES To test the association between exposure to residential air pollution and serum biochemical indicators of liver injury. METHODS We used a nationally representative sample of 32,989 participants aged 3-79 years old who participated in the Canadian Health Measures Survey between 2007 and 2019. Cross-sectional associations were assessed by generalized linear mixed models incorporating survey-specific sampling weights. RESULTS The joint effect of an interquartile range (IQR) increase in nitrogen dioxide (NO2), ozone (O3) and fine particulate matter (PM2.5) was positively and significantly associated with all measures of liver injury adjusting for age, sex, education, income, smoking, alcohol consumption, body mass index (BMI), total cholesterol, diabetes, hypertension, and physical activity. The ranking of effect sizes from largest to smallest percent increases were 8.72% (95% confidence interval [CI] 7.56, 9.88) for alanine aminotransferase (ALT), 5.54% (95%CI 3.31, 7.77) for gamma-glutamyl transferase (GGT), 4.81% (95%CI 3.87, 5.74) for aspartate aminotransferase (AST), 2.46% (95%CI 0.26, 4.65) for total bilirubin (TBIL) and 1.18% (95%CI 0.62, 1.75) for alkaline phosphatase (ALP). Findings were not significantly different when stratified by age (≤16, >16 yr), sex, smoking (current, other), cholesterol (≤6.18, >6.18 mmol/l) and BMI (<30, ≥30 kg/m2). DISCUSSION These findings suggest that ambient air pollution may have a relatively small impact on the liver, but these changes may have significant impact from a population health perspective, considering the ubiquitous nature of air pollution, or for individuals exposed to very high levels of air pollution.
Collapse
Affiliation(s)
- Robert Dales
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada; University of Ottawa and Ottawa Hospital Research Institute, Canada
| | - Kimberly Mitchell
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Anna Lukina
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Subramanian Karthikeyan
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Sabit Cakmak
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada.
| |
Collapse
|
8
|
Ma H, Zhang Q, Liang W, Han A, Xie N, Xiang H, Wang X. Short-Term Exposure to PM 2.5 and O 3 Impairs Liver Function in HIV/AIDS Patients: Evidence from a Repeated Measurements Study. TOXICS 2023; 11:729. [PMID: 37755740 PMCID: PMC10537338 DOI: 10.3390/toxics11090729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Studies investigating the relationship between ambient air pollutants and liver function are scarce. Our objective was to examine the associations of acute exposure to PM2.5 and O3 with levels of hepatic enzymes in people living with HIV/AIDS (PWHA). Our study involved 163 PWHA, who were evaluated for serum hepatic enzymes up to four times within a year. We extracted daily average concentrations of PM2.5, PM2.5 components, and O3 for each participant, based on their residential address, using the Tracking of Air Pollution in China database. Linear mixed-effect models were utilized to assess the associations of acute exposure to PM2.5 and O3 with hepatic enzymes. Weighted quantile sum regression models were employed to identify the major constituents of PM2.5 that affect hepatic enzymes. The percent change of aspartate aminotransferase (AST) concentration was positively correlated with a 10 µg/m3 increase in PM2.5, ranging from 1.92 (95% CI: 3.13 to 4.38) to 6.09 (95% CI: 9.25 to 12.38), with the largest effect observed at lag06. Additionally, acute O3 exposure was related to increased levels of alanine aminotransferase (ALT), AST, and alkaline phosphatase (ALP) concentrations. Co-exposure to high levels of PM2.5 and O3 had an antagonistic effect on the elevation of AST. Further analysis revealed that SO42- and BC were major contributors to elevated AST concentration due to PM2.5 constituents. A stronger association was found between O3 exposure and ALT concentration in female PWHA. Our study found that short-term exposure to PM2.5 and O3 was associated with increased levels of hepatic enzymes, indicating that PM2.5 and O3 exposure may contribute to hepatocellular injury in PWHA. Our study also found that PWHA may be more vulnerable to air pollution than the general population. These findings highlight the relationship between air pollutants and liver function in PWHA, providing a scientific basis for the implementation of measures to protect susceptible populations from the adverse effects of air pollution. A reduction in the burning of fossil fuels and reduced exposure to air pollutants may be effective hazard reduction approaches.
Collapse
Affiliation(s)
- Hongfei Ma
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Qian Zhang
- Qingshan District Center for Disease Control and Prevention, 4# Yangang Road, Wuhan 430070, China
| | - Wei Liang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Aojing Han
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Nianhua Xie
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| | - Hao Xiang
- Department of Global Health, School of Public Health, Wuhan University, 115# Donghu Road, Wuhan 430071, China
| | - Xia Wang
- Wuhan Center for Disease Control and Prevention, 288# Machang Road, Wuhan 430024, China
| |
Collapse
|
9
|
Liu R, Li D, Xie J, Wang L, Hu Y, Tian Y. Air pollution, alcohol consumption, and the risk of elevated liver enzyme levels: a cross-sectional study in the UK Biobank. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87527-87534. [PMID: 37428318 DOI: 10.1007/s11356-023-28659-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Evidences on the association between exposure to air pollution and liver enzymes was scarce in low pollution area. We aimed to investigate the association between air pollution and liver enzyme levels and further explore whether alcohol intake influence this association. This cross-sectional study included 425,773 participants aged 37 to 73 years from the UK Biobank. Land Use Regression was applied to assess levels of PM2.5, PM10, NO2, and NOx. Levels of liver enzymes including AST, ALT, GGT, and ALP were determined by enzymatic rate method. Long-term low-level exposure to PM2.5 (per 5-μg/m3 increase) was significantly associated with AST (0.596% increase, 95% CI, 0.414 to 0.778%), ALT (0.311% increase, 0.031 to 0.593%), and GGT (1.552% increase, 1.172 to 1.933%); The results were similar for PM10; NOX and NO2 were only significantly correlated with AST and GGT Significant modification effects by alcohol consumption were found (P-interaction < 0.05). The effects of pollutants on AST, ALT, and GGT levels gradually increased along with the weekly alcohol drinking frequency. In conclusion, long-term low-level air pollutants exposure was associated with elevated liver enzyme levels. And alcohol intake may exacerbate the effect of air pollution on liver enzymes.
Collapse
Affiliation(s)
- Run Liu
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Junqing Xie
- Center for Statistics in Medicine, NDORMS, University of Oxford, The Botnar Research Centre, Oxford, UK
| | - Lulin Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China
| | - Yonghua Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, No.38 Xueyuan Road, Beijing, 100191, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No.13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
10
|
Xu L, Li Y, Ma W, Sun X, Fan R, Jin Y, Chen N, Zhu X, Guo H, Zhao K, Luo J, Li C, Zheng Y, Yu D. Diesel exhaust particles exposure induces liver dysfunction: Exploring predictive potential of human circulating microRNAs signature relevant to liver injury risk. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132060. [PMID: 37454487 DOI: 10.1016/j.jhazmat.2023.132060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Diesel exhaust particles (DEP) pollution should be taken seriously because it is an extensive environmental and occupational health concern. Exploring early effect biomarkers is crucial for monitoring and managing DEP-associated health risk assessment. Here, we found that serum levels of 67 miRNAs were dysregulated in DEP exposure group. Notably, 20 miRNAs were identified as each having a significant dose-response relationship with the internal exposure level of DEP. Further, we revealed that the DEP exposure could affect the liver function of subjects and that 7 miRNAs (including the well-known liver injury indicator, miR-122-5p) could serve as the novel epigenetic-biomarkers (epi-biomarkers) to reflect the liver-specific response to the DEP exposure. Importantly, an unprecedented prediction model using these 7 miRNAs was established for the assessment of DEP-induced liver injury risk. Finally, bioinformatic analysis indicated that the unique set of miRNA panel in serum might also contribute to the molecular mechanism of DEP exposure-induced liver damage. These results broaden our understanding of the adverse health outcomes of DEP exposure. Noteworthy, we believe this study could shed light on roles and functions of epigenetic biomarkers from environmental exposure to health outcomes by revealing the full chain of exposure-miRNAs-molecular pathways-disease evidence.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanting Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Rongrong Fan
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Ningning Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Huan Guo
- School of Public Health, Huazhong University of Science and Technology, Wuhan, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
11
|
Wirsching J, Nagel G, Tsai MY, de Hoogh K, Jaensch A, Anwander B, Sokhi RS, Ulmer H, Zitt E, Concin H, Brunekreef B, Hoek G, Weinmayr G. Exposure to ambient air pollution and elevated blood levels of gamma-glutamyl transferase in a large Austrian cohort. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163658. [PMID: 37100134 DOI: 10.1016/j.scitotenv.2023.163658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/07/2023]
Abstract
Gamma glutamyl transferase (GGT) is related to oxidative stress and an indicator for liver damage. We investigated the association between air pollution and GGT in a large Austrian cohort (N = 116,109) to better understand how air pollution affects human health. Data come from voluntary prevention visits that were routinely collected within the Vorarlberg Health Monitoring and Prevention Program (VHM&PP). Recruitment was ongoing from 1985 to 2005. Blood was drawn and GGT measured centralized in two laboratories. Land use regression models were applied to estimate individuals' exposure at their home address for particulate matter (PM) with a diameter of <2.5 μm (PM2.5), <10 μm (PM10), fraction between 10 μm and 2.5 μm (PMcoarse), as well as PM2.5 absorbance (PM2.5abs), NO2, NOx and eight components of PM. Linear regression models, adjusting for relevant individual and community-level confounders were calculated. The study population was 56 % female with a mean age of 42 years and mean GGT was 19.0 units. Individual PM2.5 and NO2 exposures were essentially below European limit values of 25 and 40 μg/m3, respectively, with means of 13.58 μg/m3 for PM2.5 and 19.93 μg/m3 for NO2. Positive associations were observed for PM2.5, PM10, PM2.5abs, NO2, NOx, and Cu, K, S in PM2.5 and PM10 fractions and Zn mainly in PM2.5 fraction. The strongest association per interquartile range observed was an increase of serum GGT concentration by 1.40 % (95 %-CI: 0.85 %; 1.95 %) per 45.7 ng/m3 S in PM2.5. Associations were robust to adjustments for other biomarkers, in two-pollutant models and the subset with a stable residential history. We found that long-term exposure to air pollution (PM2.5, PM10, PM2.5abs, NO2, NOx) as well as certain elements, were positively associated with baseline GGT levels. The elements associated suggest a role of traffic emissions, long range transport and wood burning.
Collapse
Affiliation(s)
- Jan Wirsching
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine, Bregenz (aks), Austria
| | - Ming-Yi Tsai
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Bernhard Anwander
- Institut für Umwelt und Lebensmittelsicherheit des Landes Vorarlberg, Bregenz, Austria
| | - Ranjeet S Sokhi
- Centre for Atmospheric and Climate Physics Research (CACP), School of Physics, Astronomy and Mathematics, University of Hertfordshire, Hatfield, UK
| | - Hanno Ulmer
- Department of Medical Statistics, Informatics and Health Economics, Medical University of Innsbruck, Innsbruck, Austria
| | - Emanuel Zitt
- Agency for Preventive and Social Medicine, Bregenz (aks), Austria; Department of Internal Medicine 3, LKH Feldkirch, Feldkirch, Austria
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz (aks), Austria
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany.
| |
Collapse
|
12
|
Tsai SS, Hsu CT, Yang C. Risk of death from liver cancer in relation to long-term exposure to fine particulate air pollution in Taiwan. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:135-143. [PMID: 36752360 DOI: 10.1080/15287394.2023.2168225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the International Agency for Research on Cancer (IARC), airborne fine particulate matter (PM2.5), which is categorized as a Group I carcinogen, was found to lead to predominantly lung as well as other cancer types in humans. Hepatocellular carcinoma (HCC) is endemic in Taiwan where it is the second and fourth foremost cause of cancer deaths in men and women, respectively. Taiwan's mortality rates for liver cancer vary considerably from one region to another, suggesting that the environment may exert some influence on deaths attributed to liver cancer. The aim of this investigation was to perform an ecologic study to examine the possible link between ambient PM2.5 levels and risk of liver cancer in 66 in Taiwan municipalities. To undertake this investigation, annual PM2.5 levels and age-standardized liver cancer mortality rates were calculated for male and female residents of these areas from 2010 to 2019. Data were tested using weighted-multiple regression analyses to compute adjusted risk ratio (RR) controlling for urbanization level and physician density. Annual PM2.5 levels of each municipality were divided into tertiles. The adjusted RRs for males residing in those areas with intermediate tertile levels (21.85 to 28.21 ug/m3) and the highest tertiles levels (28.22-31.23 ug/m3) of PM2.5 were 1.29 (95% CI = 1.25-1.46) and 1.41 (95% CI = 1.36-1.46), respectively. Women in these locations shared a similar risk, 1.32 (1.25-1.4) and 1.41 (1.34-1.49), respectively. Evidence indicated that PM2.5 increased risk of mortality rates attributed to liver cancer in both men and women in Taiwan.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University, Kaohsiung, Taiwan
| | - Chun-Ta Hsu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - ChunYuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute, Miaoli, Taiwan
| |
Collapse
|
13
|
Pan L, Sui J, Xu Y, Zhao Q, Cai Y, Sun G, Xia H. Effect of Fine Particulate Matter Exposure on Liver Enzymes: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2803. [PMID: 36833499 PMCID: PMC9956188 DOI: 10.3390/ijerph20042803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/20/2023] [Accepted: 02/02/2023] [Indexed: 05/23/2023]
Abstract
Although previous studies have presented that fine particulate matter (PM2.5) regulates liver enzyme levels in the development of liver diseases, the evidence regarding the relationship between PM2.5 exposure and liver enzyme is not robust. We further aimed to conduct a systematic review and meta-analysis of observational studies to summarize the recent evidence on the effects of PM2.5 on liver enzyme in humans. In the meta-analysis, we retrieved online databases including PubMed and Web of Science database from 1982 up to 2022. A random-effects model was applied to evaluate the correlation between PM2.5 and liver enzyme level. A total of 10 studies fulfilled the inclusion criteria, including five prospective cohort studies, two cross-sectional studies, two longitudinal studies, and one time-series analysis. Each 10 μg/m3 increase in PM2.5 concentration was significantly correlated with a 4.45% increase in alanine aminotransferase (ALT) level (95% CI: 0.51-8.38%, p = 0.03), a 3.99% increase in aspartate transferase (AST) level (95% CI: 0.88-7.10%, p = 0.01), and a 2.91% increase in gamma-glutamyl transferase (GGT) level (95% CI: 1.18-4.64%, p < 0.001), but this significant association was not observed in alkaline phosphatase (ALP). Subgroup analysis revealed that PM2.5 has a significant correlation with ALT (5.07%, 95% CI: 0.81-9.33%), AST (4.11%, 95% CI: 0.74-7.48%), and GGT (2.74%, 95% CI: 1.09-4.38%) in Asia. Our meta-analysis showed that increments in PM2.5 exposure were significantly associated with a higher level of ALT, AST, and GGT. In addition, investigations into liver enzyme subtypes and specific chemical components of PM2.5 are important directions for future research.
Collapse
Affiliation(s)
- Ling Pan
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jing Sui
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Ying Xu
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Qun Zhao
- Research Institute for Environment and Health, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yinyin Cai
- Institute of Atmospheric Environmental Economics, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Guiju Sun
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Hui Xia
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| |
Collapse
|
14
|
Wang X, Guo B, Yang X, Li J, Baima Y, Yin J, Yu J, Xu H, Zeng C, Feng S, Wei J, Hong F, Zhao X. Role of Liver Enzymes in the Relationship Between Particulate Matter Exposure and Diabetes Risk: A Longitudinal Cohort Study. J Clin Endocrinol Metab 2022; 107:e4086-e4097. [PMID: 35861878 DOI: 10.1210/clinem/dgac438] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Indexed: 11/19/2022]
Abstract
CONTEXT Particulate matter (PM) is an important risk factor for diabetes. However, its underlying mechanisms remain poorly understood. Although liver-derived biological intermediates may play irreplaceable roles in the pathophysiology of diabetes, few studies have explored this in the association between PM and diabetes. OBJECTIVE We investigated the role of liver enzymes in mediating the relationship between PM exposure and diabetes. METHODS We included a total of 7963 participants from the China Multi-Ethnic Cohort. Residential exposure to PM was assessed using a validated spatial-temporal assessment method. Diabetes was diagnosed according to the criteria from American Diabetes Association. Associations between PM, liver enzyme [including alanine aminotransferase (ALT), aspartate aminotransferase, alkaline phosphatase, and γ-glutamyl transpeptidase (GGT)], and diabetes were estimated using multivariable regression models. The function of liver enzymes in the relationship between PM and diabetes was assessed using mediation analysis. RESULTS PM exposure was positively associated with the odds of diabetes, with odds ratios of 1.32 (95% CI 0.83, 2.09), 1.33 (95% CI 1.07, 1.65), and 1.18 (95% CI 1.02, 1.36) for every 10-μg/m3 increment in ≤1 μm (PM1), ≤2.5 μm (PM2.5), and ≤10 μm (PM10) PM, respectively. ALT (4.47%) and GGT (4.78%) exhibited statistically significant mediation effects on the association between PM2.5 and diabetes, and the ALT (4.30%) also had a mediating role on PM10. However, none of the liver enzymes had a significant mediating effect on PM1. CONCLUSION The relationship between PM and diabetes is partially mediated by liver enzymes, suggesting that lipid accumulation, oxidative stress, and chronic inflammation in the liver may be involved in its pathogenesis.
Collapse
Affiliation(s)
- Xing Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Bing Guo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Xianxian Yang
- Chongqing Municipal Center for Disease Control and Prevention, Chongqing, China
| | - Jingzhong Li
- Tibet Center for disease control and prevention, Lhasa, Tibet, China
| | - Yangji Baima
- School of Medicine, Tibet University, Lhasa, Tibet, China
| | - Jianzhong Yin
- School of Public Health, Kunming Medical University, Kunming, China
- Baoshan College of Traditional Chinese Medicine, Baoshan, China
| | - Jianhong Yu
- Pidu District Center for Disease Control and Prevention, Chengdu, Sichuan, China
| | - Huan Xu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunmei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Shiyu Feng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Feng Hong
- School of Public Health, the Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China
| | - Xing Zhao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
15
|
Mehrabadi S, Miri M, Najafi ML, Ghalenovi M, Adli A, Pajohanfar NS, Ambrós A, Dovlatabadi A, Estiri EH, Abroudi M, Alonso L, Bazghandi MS, Dadvand P. Green space exposure during pregnancy and umbilical cord blood levels of liver enzymes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68432-68440. [PMID: 35545744 DOI: 10.1007/s11356-022-20568-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Evidence has suggested better pregnancy outcomes due to exposure to greenspace; however, the studies on such an association with the level of liver enzymes in the cord blood are still nonexistent. Hence, this study investigated the relationship between exposure to greenspace during the entire pregnancy and gamma-glutamyl transferase (GGT), alkaline phosphatase (ALP), alanine aminotransferase (ALT), and aspartate aminotransferase (AST) levels in cord blood samples. We selected 150 pregnant women from our pregnancy cohort in Sabzevar, Iran (2018). Greenspace exposure was characterized based on (i) residential distance to green space, (ii) time spent in public/private green spaces, (iii) residential surrounding greenspace, (iv) visual access to greenspace, and (v) number of indoor natural pot plants at home. We developed linear regression models to investigate the adjusted associations of greenspace exposure with enzyme levels. Each one interquartile range (IQR) increase in the residential surrounding greenspace (100 m buffer) was related to a reduction of -12.58 (U/L) (95% CI -22.86, -2.29), -3.35 (U/L) (95% CI -5.50, -1.20), and -0.57 (U/L) (95% CI -1.12, -0.02) in the levels of GGT, AST, and ALT, respectively. Moreover, a similar association was observed for the time the participants spent in green spaces. A decrease in the residential distance to large green spaces was related with lower cord blood levels of AST, ALT, and GGT. Having a window with greenspace view at home was significantly related to lower AST level. The results for the indoor plant pots were not conclusive. Our findings suggested an inverse relationship between greenspace exposure during pregnancy and cord blood levels of liver enzymes. Further studies in other settings and populations are needed to confirm our findings.
Collapse
Affiliation(s)
- Saide Mehrabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| | - Moslem Lari Najafi
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Ghalenovi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Adli
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Albert Ambrós
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Afishin Dovlatabadi
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Elahe Hasannejad Estiri
- Non-Communicable Diseases Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mina Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Lucia Alonso
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Malihe Sadat Bazghandi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| |
Collapse
|
16
|
Li Y, Yuan X, Wei J, Sun Y, Ni W, Zhang H, Zhang Y, Wang R, Xu R, Liu T, Yang C, Chen G, Xu J, Liu Y. Long-term exposure to ambient air pollution and serum liver enzymes in older adults: a population-based longitudinal study. Ann Epidemiol 2022; 74:1-7. [PMID: 35680103 DOI: 10.1016/j.annepidem.2022.05.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 05/29/2022] [Accepted: 05/31/2022] [Indexed: 11/01/2022]
Abstract
PURPOSE To investigate the association of long-term exposure to ambient air pollution with serum liver enzymes in older adults. METHODS In this longitudinal study, we investigated 318,911 adults aged ≥65 years and assessed their long-term residential exposure to particulate matter with an aerodynamic diameter ≤2.5 µm (PM2.5), particulate matter with an aerodynamic diameter ≤10 µm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), carbon monoxide (CO), and ozone (O3). Linear mixed models and generalized linear mixed models were implemented for exposure-response analyses. RESULTS Each interquartile range (IQR) increase of PM2.5, PM10, SO2, NO2, CO, and O3 exposures was significantly associated with a 4.6%, 4.6%, 5.6%, 4.6%, 6.2%, and 3.6% increase in alanine aminotransferase (ALT), and a 4.6%, 5.2%, 3.6%, 3.3%, 6.1%, and 4.0% increase in aspartate aminotransferase (AST), respectively. Each IQR increase of PM2.5, PM10, SO2, NO2, CO, and O3 exposures was significantly associated with a 23%, 24%, 28%, 17%, 31%, and 19% increase in odds of elevated ALT (>40 U/L), and a 32%, 39%, 40%, 32%, 57%, and 25% increase in odds of elevated AST (>40 U/L), respectively. CONCLUSIONS Long-term exposure to ambient air pollution was significantly associated with increased serum liver enzyme levels in older adults, suggesting that air pollution exposures may induce hepatocellular injury.
Collapse
Key Words
- AST, aspartate aminotransferase
- Alanine aminotransferase
- Ambient air pollution
- Aspartate aminotransferase
- BMI, body mass index
- CHAP, ChinaHighAirPollutants
- CI, confidence interval
- CO, carbon monoxide
- FBG, fasting blood glucose
- HDL-C, high-density lipoprotein cholesterol
- IQR, interquartile range
- LDL-C, low-density lipoprotein cholesterol
- Liver enzymes
- NO(2), nitrogen dioxide
- O(3), ozone
- OR, odds ratio
- Older adults Abbreviations: ALT, alanine aminotransferase
- PM(10), particulate matter with an aerodynamic diameter ≤10 µm
- PM(2.5), particulate matter with an aerodynamic diameter ≤2.5 µm
- SD, standardized deviation
- SO(2), sulfur dioxide
- TC, total cholesterol
- TG, triglyceride
- WC, waist circumference
Collapse
Affiliation(s)
- Yingxin Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.
| | - Xueli Yuan
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Jing Wei
- Department of Chemical and Biochemical Engineering, Iowa Technology Institute, and Center for Global and Regional Environmental Research, The University of Iowa, Iowa City, IA 52242, USA
| | - Yuanying Sun
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Wenqing Ni
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Hongmin Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Yan Zhang
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China
| | - Rui Wang
- Luohu Center for Chronic Disease Control, Shenzhen, Guangdong 518000, China
| | - Ruijun Xu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tingting Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chunyu Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jian Xu
- Shenzhen Center for Chronic Disease Control, Shenzhen, Guangdong 518020, China.
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|
17
|
Hou J, Liu X, Zuo T, Tu R, Dong X, Li R, Pan M, Chen R, Yin S, Hu K, Mao Z, Huo W, Guo Y, Li S, Chen G, Wang C. Residential greenness attenuated associations of long-term exposure to air pollution with biomarkers of advanced fibrosis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:977-988. [PMID: 34342826 DOI: 10.1007/s11356-021-15676-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Long-term exposure to air pollutants and residential greenness related to advanced fibrosis have been sparsely studied in low- and middle-income countries. A total of 29883 participants were selected from a cross-sectional survey of the Henan Rural Cohort. Concentrations of air pollutants (particulate matter with an aerodynamic diameter ≤ 1.0 μm (PM1), ≤ 2.5 μm (PM2.5), ≤ 10 μm (PM10) and nitrogen dioxide (NO2)) for participants were predicted by using a spatiotemporal model. Residential greenness of each participant was indicated by Enhanced Vegetation Index (EVI) and Normalized Difference Vegetation Index (NDVI). Independent and joint associations of air pollutants and residential greenness indices with prevalent advanced fibrosis reflected by fibrosis-4 score (FIB4), aspartate-to-platelet-ratio index (APRI) and ALT/AST ratio were analyzed by generalized linear mixed models and their interactive effect on prevalent advanced fibrosis were visualized by using the interplot method. Long-term exposure to PM1, PM2.5, PM10 and NO2 were positively related to FIB4 or APRI as well as prevalent intermediate-high advanced fibrosis; EVI was negatively related to FIB4 or APRI as well as prevalent intermediate-high advanced fibrosis. Negative associations of residential greenness indices (EVI or NDVI) with prevalent advanced fibrosis were decreased as increased air pollutants (PM1, PM2.5, PM10 or NO2) (P < 0.05 for all). This study indicated that residential greenness may partially attenuate negative effect of long-term exposure to air pollutants related to increased prevalent intermediate-high advanced fibrosis, implying that residential greenness may be an effective strategy to reduce the burden of prevalent hepatic fibrosis and its related disease in association with exposure high levels of air pollutants. The Henan Rural Cohort study has been registered at Chinese Clinical Trial Register (Registration number: ChiCTR-OOC-15006699, http://www.chictr.org.cn/showproj.aspx?proj=11375 ).
Collapse
Affiliation(s)
- Jian Hou
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiaotian Liu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Tantan Zuo
- Department of Orthopedics, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, People's Republic of China
| | - Runqi Tu
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Xiaokang Dong
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ruiying Li
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Mingming Pan
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Ruoling Chen
- Faculty of Education, Health and Wellbeing, University of Wolverhampton, Wolverhampton, UK
| | - Shanshan Yin
- Department of Health Policy Research, Henan Academy of Medical Sciences, Zhengzhou, Henan, People's Republic of China
| | - Kai Hu
- Department of Health Policy Research, Henan Academy of Medical Sciences, Zhengzhou, Henan, People's Republic of China
| | - Zhenxing Mao
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Wenqian Huo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
| | - Yuming Guo
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment; Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, People's Republic of China.
| | - Chongjian Wang
- Department of Epidemiology and Biostatistics, College of Public Health, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
18
|
Nourouzi Z, Chamani A. Characterization of ambient carbon monoxide and PM 2.5 effects on fetus development, liver enzymes and TSH in Isfahan City, central Iran. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118238. [PMID: 34600063 DOI: 10.1016/j.envpol.2021.118238] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/21/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Ambient carbon monoxide (CO) and particulate matters (PMs) are two important air pollutants in urban areas with known impacts on fetuses. Hence, this study measured some biochemistry factors of 200 neonates with birth dates from January 19 to October 12, 2020, including the birth weight and height and the serum levels of ALT, AST, ALP, GGT, and TSH. The Support Vector Machine-fitted land-use regression approach was used to predict the spatio-temporal variability of intra-urban PM 2.5 and CO concentrations by month during the pregnancy period of the cases employing 5 variables of Digital Elevation Model (DEM), slope, and distance from Compressed Natural Gas (CNG) stations, Bus Rapid Transit (BRT) stations, and mines and industries. Spearman correlation analysis (p < 0.05) was performed between the neonate indices and mean monthly PM 2.5 and CO concentrations at the exact residential address of maternal cases and their nearby areas in 250, 500, 1000, 1500, and 2000 m-radius buffer rings. All modeling efforts succeeded in predicting CO and PM 2.5 levels with acceptable adjusted r2 values. Northern Isfahan had relatively higher CO and PM 2.5 concentrations due to its adjacency to low-vegetated open lands and its high traffic load as compared to southern areas. The correlation results between the neonate biochemistry indices and mean PM 2.5 and CO concentrations were mostly positive in most buffer rings, especially in the >500 m-radius buffer rings for PM 2.5 and in the 2000 m-radius rings for CO. Although the correlation results of PM 2.5 followed a detectable trend in the buffer rings, the associations between CO and the neonate biochemistry indices differed significantly between the buffer rings. Results showed that increasing mean monthly concentration of CO and PM 2.5 may stimulate further production of liver enzymes while decreasing the birth weight and height.
Collapse
Affiliation(s)
- Zohreh Nourouzi
- Environmental Science Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
| | - Atefeh Chamani
- Environmental Science Department, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
19
|
Wu ZH, Zhao M, Yu H, Li HD. The impact of particulate matter 2.5 on the risk of hepatocellular carcinoma: a meta-analysis. Int Arch Occup Environ Health 2021; 95:677-683. [PMID: 34654946 DOI: 10.1007/s00420-021-01773-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The convoluted element of PM2.5 may cause various biological reactions. Nowadays, few studies have indicated the long-term health effects of PM2.5 on HCC. Therefore, this meta-analysis first aims to obtain more precise estimates of the effects of PM2.5 exposure on HCC to assess the strength of the evidence. METHODS A combination of computer and manual retrieval was used to search in Medline through PubMed, EMBASE and Web of Science. Review Manager 5.3 software was used to examine the heterogeneity among the studies. RESULTS Finally, 8 qualified articles meet the inclusion criteria. The results were I2 = 0%, P > 0.1 indicating that there was no heterogeneity. The results showed that the concentration of PM2.5 increased by 10 μg/m3 was significantly correlated with liver cancer, and HR was 1.22 (95% CI 1.14-1.30, P < 0.05), indicating that maternal exposure to PM2.5 was positively correlated with liver cancer. CONCLUSIONS Our meta-analysis showed that the patients with HCC significance related to PM2.5 exposure. However, more studies investigating the combined effects of different air pollutants on HCC incidence are warranted to provide more comprehensive evidence for assessing the different levels impacts of PM2.5 exposure on HCC incidence.
Collapse
Affiliation(s)
- Zeng-Hong Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.,Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meng Zhao
- School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China.,Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Hong Yu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Hua-Dong Li
- Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
20
|
So R, Chen J, Mehta AJ, Liu S, Strak M, Wolf K, Hvidtfeldt UA, Rodopoulou S, Stafoggia M, Klompmaker JO, Samoli E, Raaschou-Nielsen O, Atkinson R, Bauwelinck M, Bellander T, Boutron-Ruault MC, Brandt J, Brunekreef B, Cesaroni G, Concin H, Forastiere F, van Gils CH, Gulliver J, Hertel O, Hoffmann B, de Hoogh K, Janssen N, Lim YH, Westendorp R, Jørgensen JT, Katsouyanni K, Ketzel M, Lager A, Lang A, Ljungman PL, Magnusson PKE, Nagel G, Simonsen MK, Pershagen G, Peter RS, Peters A, Renzi M, Rizzuto D, Sigsgaard T, Vienneau D, Weinmayr G, Severi G, Fecht D, Tjønneland A, Leander K, Hoek G, Andersen ZJ. Long-term exposure to air pollution and liver cancer incidence in six European cohorts. Int J Cancer 2021; 149:1887-1897. [PMID: 34278567 DOI: 10.1002/ijc.33743] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/24/2022]
Abstract
Particulate matter air pollution and diesel engine exhaust have been classified as carcinogenic for lung cancer, yet few studies have explored associations with liver cancer. We used six European adult cohorts which were recruited between 1985 and 2005, pooled within the "Effects of low-level air pollution: A study in Europe" (ELAPSE) project, and followed for the incidence of liver cancer until 2011 to 2015. The annual average exposure to nitrogen dioxide (NO2 ), particulate matter with diameter <2.5 μm (PM2.5 ), black carbon (BC), warm-season ozone (O3 ), and eight elemental components of PM2.5 (copper, iron, zinc, sulfur, nickel, vanadium, silicon, and potassium) were estimated by European-wide hybrid land-use regression models at participants' residential addresses. We analyzed the association between air pollution and liver cancer incidence by Cox proportional hazards models adjusting for potential confounders. Of 330 064 cancer-free adults at baseline, 512 developed liver cancer during a mean follow-up of 18.1 years. We observed positive linear associations between NO2 (hazard ratio, 95% confidence interval: 1.17, 1.02-1.35 per 10 μg/m3 ), PM2.5 (1.12, 0.92-1.36 per 5 μg/m3 ), and BC (1.15, 1.00-1.33 per 0.5 10-5 /m) and liver cancer incidence. Associations with NO2 and BC persisted in two-pollutant models with PM2.5 . Most components of PM2.5 were associated with the risk of liver cancer, with the strongest associations for sulfur and vanadium, which were robust to adjustment for PM2.5 or NO2 . Our study suggests that ambient air pollution may increase the risk of liver cancer, even at concentrations below current EU standards.
Collapse
Affiliation(s)
- Rina So
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jie Chen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Amar J Mehta
- Statistics Denmark, Copenhagen, Denmark.,Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shuo Liu
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Maciej Strak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Kathrin Wolf
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany
| | | | - Sophia Rodopoulou
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Massimo Stafoggia
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy
| | - Jochem O Klompmaker
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Evangelia Samoli
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Ole Raaschou-Nielsen
- Danish Cancer Society Research Centre, Copenhagen, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Richard Atkinson
- Population Health Research Institute and MRC-PHE Centre for Environment and Health, St George's, University of London, London, UK
| | - Mariska Bauwelinck
- Interface Demography, Department of Sociology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tom Bellander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,iClimate, Aarhus University interdisciplinary Centre for Climate Change, Roskilde, Denmark
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Giulia Cesaroni
- Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Francesco Forastiere
- Environmental Research Group, School of Public Health, Imperial College, London, UK.,Institute for Biomedical Research and Innovation (IRIB), National Research Council, Palermo, Italy
| | - Carla H van Gils
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - John Gulliver
- Centre for Environmental Health and Sustainability & School of Geography, Geology and the Environment, University of Leicester, Leicester, UK
| | - Ole Hertel
- Department of Bioscience, Aarhus University, Roskilde, Denmark
| | - Barbara Hoffmann
- Institute of Occupational, Social and Environmental Medicine, Centre for Health and Society, Medical Faculty, Heinrich-Heine-University, Dusseldorf, Germany
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Nicole Janssen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Youn-Hee Lim
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rudi Westendorp
- Section of Epidemiology, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark
| | - Jeanette T Jørgensen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Klea Katsouyanni
- Department of Hygiene, Epidemiology and Medical Statistics, National and Kapodistrian University of Athens, Medical School, Athens, Greece.,Environmental Research Group, School of Public Health, Imperial College London, London, UK
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Global Centre for Clean Air Research (GCARE), University of Surrey, Guildford, UK
| | - Anton Lager
- Department of Global Public Health, Karolinksa Institutet, Stockholm, Sweden
| | - Alois Lang
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Petter L Ljungman
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Gabriele Nagel
- Agency for Preventive and Social Medicine, Bregenz, Austria.,Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Mette K Simonsen
- Department of Neurology and Parker Institute, Bispebjerg and Frederiksberg Hospital, Frederiksberg, Denmark
| | - Göran Pershagen
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Centre for Occupational and Environmental Medicine, Region Stockholm, Stockholm, Sweden
| | - Raphael S Peter
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Annette Peters
- Institute of Epidemiology, Helmholtz Zentrum München, Neuherberg, Germany.,Ludwig-Maximilians University, Munich, Germany
| | - Matteo Renzi
- Department of Epidemiology, Lazio Region Health Service / ASL Roma 1, Rome, Italy
| | - Debora Rizzuto
- Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet and Stockholm University and The Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Torben Sigsgaard
- Department of Public Health, Environment Occupation and Health, Danish Ramazzini Centre, Aarhus University, Aarhus, Denmark
| | - Danielle Vienneau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gianluca Severi
- CESP, UMR 1018, Universit´e Paris-Saclay, Inserm, Gustave Roussy, Villejuif, France.,Department of Statistics, Computer Science and Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Daniela Fecht
- UK Small Area Health Statistics Unit, MRC Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Anne Tjønneland
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Danish Cancer Society Research Centre, Copenhagen, Denmark
| | - Karin Leander
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Department of Cardiology, Danderyd University Hospital, Stockholm, Sweden
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Zorana J Andersen
- Section of Environmental Health, Department of Public Health, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
21
|
Garcia E, Stratakis N, Valvi D, Maitre L, Varo N, Aasvang GM, Andrusaityte S, Basagana X, Casas M, de Castro M, Fossati S, Grazuleviciene R, Heude B, Hoek G, Krog NH, McEachan R, Nieuwenhuijsen M, Roumeliotaki T, Slama R, Urquiza J, Vafeiadi M, Vos MB, Wright J, Conti DV, Berhane K, Vrijheid M, McConnell R, Chatzi L. Prenatal and childhood exposure to air pollution and traffic and the risk of liver injury in European children. Environ Epidemiol 2021; 5:e153. [PMID: 34131614 PMCID: PMC8196121 DOI: 10.1097/ee9.0000000000000153] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 11/26/2022] Open
Abstract
Nonalcoholic fatty liver disease is the most prevalent pediatric chronic liver disease. Experimental studies suggest effects of air pollution and traffic exposure on liver injury. We present the first large-scale human study to evaluate associations of prenatal and childhood air pollution and traffic exposure with liver injury. METHODS Study population included 1,102 children from the Human Early Life Exposome project. Established liver injury biomarkers, including alanine aminotransferase, aspartate aminotransferase, gamma-glutamyl transferase, and cytokeratin-18, were measured in serum between ages 6-10 years. Air pollutant exposures included nitrogen dioxide, particulate matter <10 μm (PM10), and <2.5 μm. Traffic measures included traffic density on nearest road, traffic load in 100-m buffer, and inverse distance to nearest road. Exposure assignments were made to residential address during pregnancy (prenatal) and residential and school addresses in year preceding follow-up (childhood). Childhood indoor air pollutant exposures were also examined. Generalized additive models were fitted adjusting for confounders. Interactions by sex and overweight/obese status were examined. RESULTS Prenatal and childhood exposures to air pollution and traffic were not associated with child liver injury biomarkers. There was a significant interaction between prenatal ambient PM10 and overweight/obese status for alanine aminotransferase, with stronger associations among children who were overweight/obese. There was no evidence of interaction with sex. CONCLUSION This study found no evidence for associations between prenatal or childhood air pollution or traffic exposure with liver injury biomarkers in children. Findings suggest PM10 associations maybe higher in children who are overweight/obese, consistent with the multiple-hits hypothesis for nonalcoholic fatty liver disease pathogenesis.
Collapse
Affiliation(s)
- Erika Garcia
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Nikos Stratakis
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Léa Maitre
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Nerea Varo
- Clinical Biochemistry Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Gunn Marit Aasvang
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Sandra Andrusaityte
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Xavier Basagana
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Maribel Casas
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Montserrat de Castro
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Serena Fossati
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | | | - Barbara Heude
- NA, Université de Paris, Centre for Research in Epidemiology and Statistics (CRESS), INSERM, INRAE, Paris, France
| | - Gerard Hoek
- Department Population Health Sciences, Utrecht University, Utrecht, Netherlands
| | - Norun Hjertager Krog
- Department of Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Rosemary McEachan
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - Mark Nieuwenhuijsen
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Theano Roumeliotaki
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Rémy Slama
- Department of Prevention and Treatment of Chronic Diseases, Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, Grenoble, France
| | - Jose Urquiza
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Marina Vafeiadi
- Department of Social Medicine, University of Crete, Heraklion, Crete, Greece
| | - Miriam B. Vos
- Department of Pediatrics, Emory University, Atlanta, GA
| | - John Wright
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, United Kingdom
| | - David V. Conti
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Kiros Berhane
- Department of Biostatistics, Columbia University, New York, NY
| | - Martine Vrijheid
- NA, ISGlobal, Universitat Pompeu Fabra (UPF), CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Rob McConnell
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| | - Lida Chatzi
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
22
|
Kim H, Byun G, Choi Y, Kim S, Kim SY, Lee JT. Effects of long-term exposure to air pollution on all-cause mortality and cause-specific mortality in seven major cities of South Korea: Korean national health and nutritional examination surveys with mortality follow-up. ENVIRONMENTAL RESEARCH 2021; 192:110290. [PMID: 33027629 DOI: 10.1016/j.envres.2020.110290] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/09/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
Evidence from cohort studies on the effects of long-term exposure to air pollution on mortality is limited in South Korea, which has high concentration of particles compared to North America, Western Europe, and Japan, and low exposure compared to China. To reduce knowledge gaps between other countries and South Korea, we investigated the association between all-cause, cardiovascular, and respiratory mortality and long-term exposure to PM10 and, as a surrogate for fine particles from local emission sources, SO2 and NO2. Participants comprised 18,220 subjects (97,114.4 person-years) residing in 73 districts of seven major cities of South Korea who were assigned to measurements of fixed-site monitoring stations and followed up. We applied Cox proportional hazard models with time-varying exposure up to three years average of air pollutants. We adjusted for individual and district-level covariates measured at baseline such as age, sex, socioeconomic positions, and health behaviors. We found that hazard ratios of PM10 and SO2 for all-cause mortality leveled off over approximately 5 ppb of SO2 and 35-50 μg/m3 of PM10. Interquartile range increases of PM10 (5.05 μg/m3), SO2 (2.09 ppb), and NO2 (11.41 ppb) were associated with 14.4% (95% CI: -0.4, 31.4), 18.1% (-4.5, 46.0), and 18.9% (-8.7, 54.7) increases in cardiovascular mortality, respectively. We did not find positive associations for respiratory mortality. The increase in cardiovascular mortality varied by sex (for PM10, in females, 27.4% (5.8, 53.5) increase), smoking (in non-smokers, 35.9% (12.7, 64.0) increase), drinking (in drinkers, 24.5% (2.1, 51.8) increase), marital status (in those not married, 23.1% (1.1, 49.9)), employment status (for SO2, in those employed, 79.4% (16.1, 177.3) increase), body mass index (in those ≥23, 47.6% (10.4, 97.3) increase), and community deprivation (for PM10, in less deprived communities, 21.0% (1.3, 44.4) increase). In summary, long-term exposure to air pollution is associated with mortality risk in South Korea. Our results suggest that the health effect of long-term exposure to air pollution may not be equal by sex, health behaviors and socioeconomic positions.
Collapse
Affiliation(s)
- Honghyok Kim
- BK21PLUS Program in "Embodiment: Health-Society Interaction," Department of Public Health Science, Graduate School, Korea University, Seoul, South Korea
| | - Garam Byun
- BK21PLUS Program in "Embodiment: Health-Society Interaction," Department of Public Health Science, Graduate School, Korea University, Seoul, South Korea
| | - Yongsoo Choi
- BK21PLUS Program in "Embodiment: Health-Society Interaction," Department of Public Health Science, Graduate School, Korea University, Seoul, South Korea
| | - Sera Kim
- BK21PLUS Program in "Embodiment: Health-Society Interaction," Department of Public Health Science, Graduate School, Korea University, Seoul, South Korea
| | - Soo-Yeon Kim
- BK21PLUS Program in "Embodiment: Health-Society Interaction," Department of Public Health Science, Graduate School, Korea University, Seoul, South Korea
| | - Jong-Tae Lee
- BK21PLUS Program in "Embodiment: Health-Society Interaction," Department of Public Health Science, Graduate School, Korea University, Seoul, South Korea; School of Health Policy and Management, College of Health Science, Korea University, Seoul, South Korea.
| |
Collapse
|
23
|
Maglione GA, Kurtz ML, Orona NS, Astort F, Brites F, Morales C, Berra A, Tasat DR. Changes in extrapulmonary organs and serum enzyme biomarkers after chronic exposure to Buenos Aires air pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:14529-14542. [PMID: 32048188 DOI: 10.1007/s11356-020-07996-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Urban air pollution is a serious environmental problem in developing countries worldwide, and health is a pressing issue in the megacities in Latin America. Buenos Aires is a megacity with an estimated moderate Air Quality Index ranging from 42 to 74 μg/m3. Exposure to Urban Air Particles from Buenos Aires (UAP-BA) induces morphological and physiological respiratory alterations; nevertheless, no studies on extrapulmonary organs have been performed. The aim of the present study was to explore the health effects of chronic exposure to UAP-BA (1, 6, 9, and 12 months) on the liver, heart, and serum risk biomarkers. BALB/c mice were exposed to UAP-BA or filtered air (FA) in inhalation chambers, and liver and heart histopathology, oxidative metabolism (superoxide dismutase, SOD; catalase, CAT; lipoperoxidation, TBARS), amino transaminases (AST, ALT) as serum risk biomarkers, alkaline phosphatase (ALP), paraxonase-1 (PON-1), and lipoprotein-associated phospholipase A2 (Lp-PLA2) were evaluated. Chronic exposure to real levels of UAP in Buenos Aires led to alterations in extrapulmonary organs associated with inflammation and oxidative imbalance and to changes in liver and heart risk biomarkers. Our results may reflect the impact of the persistent air pollution in Buenos Aires on individuals living in this Latin American megacity.
Collapse
Affiliation(s)
- Guillermo Alberto Maglione
- Center for the Studies in Health and Environment, School of Science and Technology, National University of San Martin, Buenos Aires, Argentina.
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina.
| | - Melisa Lidia Kurtz
- Center for the Studies in Health and Environment, School of Science and Technology, National University of San Martin, Buenos Aires, Argentina
- National Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Nadia Soledad Orona
- Center for the Studies in Health and Environment, School of Science and Technology, National University of San Martin, Buenos Aires, Argentina
- National Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Francisco Astort
- Center for the Studies in Health and Environment, School of Science and Technology, National University of San Martin, Buenos Aires, Argentina
- National Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
| | - Fernando Brites
- Laboratory of Lipids and Lipoproteins, Department of Clinical Biochemistry, School of Pharmacy and Biochemistry, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| | - Celina Morales
- Institute of Cardiovascular Physiopathology, Department of Pathology, School of Medicine, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| | - Alejandro Berra
- National Research Council (CONICET), Autonomous City of Buenos Aires, Argentina
- Ocular Investigation Laboratory, Department of Pathology, School of Medicine, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Center for the Studies in Health and Environment, School of Science and Technology, National University of San Martin, Buenos Aires, Argentina
- Department of Histology and Embryology, School of Dentistry, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| |
Collapse
|
24
|
Pejhan A, Agah J, Adli A, Mehrabadi S, Raoufinia R, Mokamel A, Abroudi M, Ghalenovi M, Sadeghi Z, Bolghanabadi Z, Bazghandi MS, Hamidnia M, Salimi F, Pajohanfar NS, Dadvand P, Rad A, Miri M. Exposure to air pollution during pregnancy and newborn liver function. CHEMOSPHERE 2019; 226:447-453. [PMID: 30951939 DOI: 10.1016/j.chemosphere.2019.03.185] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/28/2019] [Accepted: 03/29/2019] [Indexed: 05/25/2023]
Abstract
Exposure to air pollution has been associated with a wide range of adverse health outcomes. However, the available evidence on the impact of air pollution exposures on liver enzymes is still scarce. The aim of the present study was to assess the relationship between exposure to ambient PM1, PM2.5 and PM10 during pregnancy and serum level of aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT) in cord blood samples of newborns. Moreover, the association between total street length in different buffers and distance to major roads at the maternal residential address and liver enzymes were investigated. This cross-sectional study was based on data from a sample of 150 newborns, from Sabzevar, Iran. Land use regression models were used to estimate concentrations of air pollutants at home during pregnancy. Multiple linear regression was developed to estimate association of AST, ALT, ALP and GGT with air pollution controlled for relevant covariates. In fully adjusted models, increase in PM1 and PM2.5 as well as PM10 were associated with higher levels of AST, ALT and GGT. Moreover, there was a significant association between total street length in a 100 m buffer at residential address with AST, ALT and GGT. Each meter increase in distance to major roads was associated with -0.017 (95% confidence interval (CI): -0.028, -0.006) decrease in AST. Overall, our findings were supportive for association between PMs exposure during pregnancy and increase in liver enzymes in newborns. Further studies are needed to confirm these findings in other settings and populations.
Collapse
Affiliation(s)
- Akbar Pejhan
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Jila Agah
- Department of Obstetrics & Gynecology, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Abolfazl Adli
- Department of Genetic, Sabzevar Branch, Izlami Azad University, Sabzevar, Iran
| | - Saide Mehrabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Ramin Raoufinia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Adel Mokamel
- Department of Environmental Health, School of Health, Khalkhal University of Medical Sciences, KhalKhal, Iran
| | - Mina Abroudi
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mina Ghalenovi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Sadeghi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Zahra Bolghanabadi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Malihe Sadat Bazghandi
- Department of Midwifery, School of Nursing, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Masoud Hamidnia
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Fatemeh Salimi
- Department of Occupational Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Nasim Sadat Pajohanfar
- Department of Midwifery, School of Nursing, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Payam Dadvand
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Abolfazl Rad
- Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Mohammad Miri
- Cellular and Molecular Research Center, Department of Environmental Health, School of Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
| |
Collapse
|
25
|
Zhang Z, Guo C, Chang LY, Bo Y, Lin C, Tam T, Hoek G, Wong MCS, Chan TC, Lau AKH, Lao XQ. Long-term exposure to ambient fine particulate matter and liver enzymes in adults: a cross-sectional study in Taiwan. Occup Environ Med 2019; 76:488-494. [DOI: 10.1136/oemed-2019-105695] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/07/2019] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
Abstract
ObjectivesAnimal experiments indicate that exposure to particulate matter (PM) can induce hepatotoxic effects but epidemiological evidence is scarce. We aimed to investigate the associations between long-term exposure to PM air pollution and liver enzymes, which are biomarkers widely used for liver function assessment.MethodsA cross-sectional analysis was performed among 351 852 adult participants (mean age: 40.1 years) who participated in a standard medical screening programme in Taiwan. Aspartate aminotransferase (AST), alanine aminotransferase (ALT) and γ-glutamyl transferase (GGT) levels were measured. A satellite-based spatio-temporal model was used to estimate the concentrations of ambient fine particles (PM with an aerodynamic diameter ≤2.5 µm, PM2.5) at each participant’s address. Linear and logistic regression models were used to investigate the associations between PM2.5 and the liver enzymes with adjustment for a wide range of potential confounders.ResultsAfter adjustment for confounders, every 10 µg/m3 increment in 2-year average PM2.5 concentration was associated with 0.02%(95% CI: −0.04% to 0.08%), 0.61% (95% CI: 0.51% to 0.70%) and 1.60% (95% CI: 1.50% to 1.70%) increases in AST, ALT and GGT levels, respectively. Consistently, the odds ratios of having elevated liver enzymes (>40 IU/L) per 10 µg/m3 PM2.5 increment were 1.06 (95% CI: 1.04 to 1.09), 1.09 (95% CI: 1.07 to 1.10) and 1.09 (95% CI: 1.07 to 1.11) for AST, ALT and GGT, respectively.ConclusionsLong-term exposure to PM2.5 was associated with increased levels of liver enzymes, especially ALT and GGT. More studies are needed to confirm our findings and to elucidate the underlying mechanisms.
Collapse
|
26
|
Association of Ambient Air Pollution with Increased Liver Enzymes in Korean Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16071213. [PMID: 30987355 PMCID: PMC6479611 DOI: 10.3390/ijerph16071213] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/22/2019] [Accepted: 03/28/2019] [Indexed: 12/14/2022]
Abstract
An association between exposure to air pollution and liver enzymes in certain areas or older people has been reported in the literature; however, it cannot be generalized to the general population. We investigated the association between air pollution, liver enzyme levels, and alcohol consumption using nationwide data of South Korean adults. Air pollutants included particulate matter with an aerodynamic diameter ≤10 µm (PM10), nitrogen dioxide (NO₂), sulfur dioxide (SO₂), and carbon monoxide (CO). Liver enzymes included alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Exposure to air pollutants were significantly associated with elevation of log ALT and log AST, especially increases from 0.0073 IU/L (95% confidence interval (CI) = 0.0042, 0.0104) to 0.0251 IU/L (95% CI = 0.0132, 0.0371) per interquartile range (IQR) increase of each pollutant (all pollutants: p < 0.001). Association of the liver enzymes with PM10 (β (95% CI) = 0.0285 IU/L (0.0201, 0.0368) for log ALT; β (95% CI) = 0.0139 IU/L (0.0079, 0.0198) for log AST) and CO (β (95% CI) = 0.0247 IU/L (0.0182, 0.0311) for log ALT; β (95% CI) = 0.0164 IU/L (0.0118, 0.0210) for log AST) were only significant among drinkers. Our findings suggest that chronic exposure to PM10 and CO is a risk factor for liver enzymes increases among the general adult population who admitted to drinking alcohol.
Collapse
|
27
|
Gene-by-environment interactions in urban populations modulate risk phenotypes. Nat Commun 2018; 9:827. [PMID: 29511166 PMCID: PMC5840419 DOI: 10.1038/s41467-018-03202-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 01/26/2018] [Indexed: 01/21/2023] Open
Abstract
Uncovering the interaction between genomes and the environment is a principal challenge of modern genomics and preventive medicine. While theoretical models are well defined, little is known of the G × E interactions in humans. We used an integrative approach to comprehensively assess the interactions between 1.6 million data points, encompassing a range of environmental exposures, health, and gene expression levels, coupled with whole-genome genetic variation. From ∼1000 individuals of a founder population in Quebec, we reveal a substantial impact of the environment on the transcriptome and clinical endophenotypes, overpowering that of genetic ancestry. Air pollution impacts gene expression and pathways affecting cardio-metabolic and respiratory traits, when controlling for genetic ancestry. Finally, we capture four expression quantitative trait loci that interact with the environment (air pollution). Our findings demonstrate how the local environment directly affects disease risk phenotypes and that genetic variation, including less common variants, can modulate individual’s response to environmental challenges. Individuals with different genotypes may respond differently to environmental variation. Here, Favé et al. find substantial impacts of different environment exposures on the transcriptome and clinical endophenotypes when controlling for genetic ancestry by analyzing data from ∼1000 individuals from a founder population in Quebec.
Collapse
|
28
|
Li W, Dorans KS, Wilker EH, Rice MB, Long MT, Schwartz J, Coull BA, Koutrakis P, Gold DR, Fox CS, Mittleman MA. Residential Proximity to Major Roadways, Fine Particulate Matter, and Hepatic Steatosis: The Framingham Heart Study. Am J Epidemiol 2017; 186:857-865. [PMID: 28605427 DOI: 10.1093/aje/kwx127] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 11/21/2016] [Indexed: 01/18/2023] Open
Abstract
We examined associations between ambient air pollution and hepatic steatosis among 2,513 participants from the Framingham (Massachusetts) Offspring Study and Third Generation Cohort who underwent a computed tomography scan (2002-2005), after excluding men who reported >21 drinks/week and women who reported >14 drinks/week. We calculated each participant's residential-based distance to a major roadway and used a spatiotemporal model to estimate the annual mean concentrations of fine particulate matter. Liver attenuation was measured by computed tomography, and liver-to-phantom ratio (LPR) was calculated. Lower values of LPR represent more liver fat. We estimated differences in continuous LPR using linear regression models and prevalence ratios for presence of hepatic steatosis (LPR ≤ 0.33) using generalized linear models, adjusting for demographics, individual and area-level measures of socioeconomic position, and clinical and lifestyle factors. Participants who lived 58 m (25th percentile) from major roadways had lower LPR (β = -0.003, 95% confidence interval: -0.006, -0.001) and higher prevalence of hepatic steatosis (prevalence ratio = 1.16, 95% confidence interval: 1.05, 1.28) than those who lived 416 m (75th percentile) away. The 2003 annual average fine particulate matter concentration was not associated with liver-fat measurements. Our findings suggest that living closer to major roadways was associated with more liver fat.
Collapse
|
29
|
Pedersen M, Andersen ZJ, Stafoggia M, Weinmayr G, Galassi C, Sørensen M, Eriksen KT, Tjønneland A, Loft S, Jaensch A, Nagel G, Concin H, Tsai MY, Grioni S, Marcon A, Krogh V, Ricceri F, Sacerdote C, Ranzi A, Sokhi R, Vermeulen R, Hoogh KD, Wang M, Beelen R, Vineis P, Brunekreef B, Hoek G, Raaschou-Nielsen O. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project. ENVIRONMENTAL RESEARCH 2017; 154:226-233. [PMID: 28107740 DOI: 10.1016/j.envres.2017.01.006] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/19/2016] [Accepted: 01/05/2017] [Indexed: 05/21/2023]
Abstract
BACKGROUND Tobacco smoke exposure increases the risk of cancer in the liver, but little is known about the possible risk associated with exposure to ambient air pollution. OBJECTIVES We evaluated the association between residential exposure to air pollution and primary liver cancer incidence. METHODS We obtained data from four cohorts with enrolment during 1985-2005 in Denmark, Austria and Italy. Exposure to nitrogen oxides (NO2 and NOX), particulate matter (PM) with diameter of less than 10µm (PM10), less than 2.5µm (PM2.5), between 2.5 and 10µm (PM2.5-10) and PM2.5 absorbance (soot) at baseline home addresses were estimated using land-use regression models from the ESCAPE project. We also investigated traffic density on the nearest road. We used Cox proportional-hazards models with adjustment for potential confounders for cohort-specific analyses and random-effects meta-analyses to estimate summary hazard ratios (HRs) and 95% confidence intervals (CIs). RESULTS Out of 174,770 included participants, 279 liver cancer cases were diagnosed during a mean follow-up of 17 years. In each cohort, HRs above one were observed for all exposures with exception of PM2.5 absorbance and traffic density. In the meta-analysis, all exposures were associated with elevated HRs, but none of the associations reached statistical significance. The summary HR associated with a 10-μg/m3 increase in NO2 was 1.10 (95% confidence interval (CI): 0.93, 1.30) and 1.34 (95% CI: 0.76, 2.35) for a 5-μg/m3 increase in PM2.5. CONCLUSIONS The results provide suggestive evidence that ambient air pollution may increase the risk of liver cancer. Confidence intervals for associations with NO2 and NOX were narrower than for the other exposures.
Collapse
Affiliation(s)
- Marie Pedersen
- The Danish Cancer Society Research Center, Copenhagen, Denmark; Centre for Epidemiology and Screening, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| | - Zorana J Andersen
- Centre for Epidemiology and Screening, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Massimo Stafoggia
- Department of Epidemiology, Lazio Regional Health Service, Local Health Unit ASL RM1, Rome, Italy; Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Gudrun Weinmayr
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Claudia Galassi
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Mette Sørensen
- The Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Anne Tjønneland
- The Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Steffen Loft
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Andrea Jaensch
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, Ulm University, Ulm, Germany; Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Hans Concin
- Agency for Preventive and Social Medicine, Bregenz, Austria
| | - Ming-Yi Tsai
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Sara Grioni
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Alessandro Marcon
- Unit of Epidemiology & Medical Statistics, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Vittorio Krogh
- Epidemiology and Prevention Unit, Department of Preventive and Predictive Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Fulvio Ricceri
- Unit of Epidemiology, Regional Health Service ASL TO3, Grugliasco, Italy; Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Carlotta Sacerdote
- Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy
| | - Andrea Ranzi
- Environmental Health Reference Centre, Regional Agency for Prevention, Environment and Energy of Emilia-Romagna, Modena, Italy
| | - Ranjeet Sokhi
- Centre for Atmospheric and Instrumentation Research, University of Hertfordshire, College Lane, Hatfield, United Kingdom
| | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands; School of Public Health, Imperial College, London, United Kingdom
| | - Kees de Hoogh
- Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Meng Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Rob Beelen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; National Institute for Public Health (RIVM), Bilthoven, The Netherlands
| | - Paolo Vineis
- School of Public Health, Imperial College, London, United Kingdom; Molecular end Epidemiology Unit, HuGeF, Human Genetics Foundation, Torino, Italy
| | - Bert Brunekreef
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands; Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gerard Hoek
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ole Raaschou-Nielsen
- The Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|
30
|
Thurston GD, Kipen H, Annesi-Maesano I, Balmes J, Brook RD, Cromar K, De Matteis S, Forastiere F, Forsberg B, Frampton MW, Grigg J, Heederik D, Kelly FJ, Kuenzli N, Laumbach R, Peters A, Rajagopalan ST, Rich D, Ritz B, Samet JM, Sandstrom T, Sigsgaard T, Sunyer J, Brunekreef B. A joint ERS/ATS policy statement: what constitutes an adverse health effect of air pollution? An analytical framework. Eur Respir J 2017; 49:13993003.00419-2016. [PMID: 28077473 DOI: 10.1183/13993003.00419-2016] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 09/05/2016] [Indexed: 12/11/2022]
Abstract
The American Thoracic Society has previously published statements on what constitutes an adverse effect on health of air pollution in 1985 and 2000. We set out to update and broaden these past statements that focused primarily on effects on the respiratory system. Since then, many studies have documented effects of air pollution on other organ systems, such as on the cardiovascular and central nervous systems. In addition, many new biomarkers of effects have been developed and applied in air pollution studies.This current report seeks to integrate the latest science into a general framework for interpreting the adversity of the human health effects of air pollution. Rather than trying to provide a catalogue of what is and what is not an adverse effect of air pollution, we propose a set of considerations that can be applied in forming judgments of the adversity of not only currently documented, but also emerging and future effects of air pollution on human health. These considerations are illustrated by the inclusion of examples for different types of health effects of air pollution.
Collapse
Affiliation(s)
- George D Thurston
- Depts of Environmental Medicine and Population Health, New York University School of Medicine, New York, NY, USA
| | - Howard Kipen
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Isabella Annesi-Maesano
- Epidemiology of Allergic and Respiratory Diseases Dept (EPAR), Sorbonne Universités, UPMC Université Paris 06, INSERM, Pierre Louis Institute of Epidemiology and Public Health (IPLESP UMRS 1136), Saint-Antoine Medical School, Paris, France
| | - John Balmes
- Dept of Medicine, University of California, San Francisco, CA, USA.,School of Public Health, University of California, Berkeley, CA, USA
| | - Robert D Brook
- Dept of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - Kevin Cromar
- Marron Institute of Urban Management, New York University, New York, NY, USA
| | - Sara De Matteis
- Respiratory Epidemiology, Occupational Medicine and Public Health, National Heart and Lung Institute, Imperial College London, London, UK
| | | | - Bertil Forsberg
- Dept of Public Health and Clinical Medicine/Environmental Medicine, Umeå University, Umeå, Sweden
| | - Mark W Frampton
- Pulmonary and Critical Care, Depts of Medicine and Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jonathan Grigg
- Centre for Genomics and Child Health, Queen Mary University of London, London, UK
| | - Dick Heederik
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands
| | - Frank J Kelly
- National Institute for Health Research Health Protection Unit: Health Impact of Environmental Hazards, King's College London, London, UK
| | - Nino Kuenzli
- Swiss Tropical and Public Health Institute (Swiss TPH), Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Robert Laumbach
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Annette Peters
- Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt Institute of Epidemiology II, Neuherberg, Germany
| | | | - David Rich
- Depts of Public Health Sciences and Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Beate Ritz
- Center for Occupational and Environmental Health, Fielding School of Public Health, UCLA, Los Angeles, CA, USA
| | - Jonathan M Samet
- Dept of Preventive Medicine, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Thomas Sandstrom
- Pulmonary and Critical Care, Depts of Medicine and Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Torben Sigsgaard
- University of Aarhus, Institute of Public Health, Aarhus, Denmark
| | - Jordi Sunyer
- CREAL (Center for Research on Environmental Epidemiology, Barcelona), Pompeu Fabra University, Barcelona, Spain
| | - Bert Brunekreef
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands .,Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
31
|
Pan WC, Wu CD, Chen MJ, Huang YT, Chen CJ, Su HJ, Yang HI. Fine Particle Pollution, Alanine Transaminase, and Liver Cancer: A Taiwanese Prospective Cohort Study (REVEAL-HBV). ACTA ACUST UNITED AC 2015; 108:djv341. [PMID: 26561636 DOI: 10.1093/jnci/djv341] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/15/2015] [Indexed: 12/11/2022]
Affiliation(s)
- Wen-Chi Pan
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| | - Chih-Da Wu
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| | - Mu-Jean Chen
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| | - Yen-Tsung Huang
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| | - Chien-Jen Chen
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| | - Huey-Jen Su
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| | - Hwai-I Yang
- Affiliations of authors: Department of Environmental and Occupational Health, National Cheng Kung University , Tainan , Taiwan (WCP, MJC, HJS); Department of Epidemiology (WCP, YTH) and Department of Biostatistics (YTH), Brown University , Providence, RI ; Institute of Environmental and Occupational Health Sciences (WCP) and Institute of Clinical Medicine (HIY), National Yang-Ming University , Taipei , Taiwan ; Department of Forestry and Natural Resources, National Chiayi University , Chiayi , Taiwan (CDW); Department of Environmental Health, Harvard School of Public Health , Boston, MA (CDW); National Environmental Health Research Center, National Health Research Institutes , Miaoli , Taiwan (MJC); Genomics Research Center, Academia Sinica , Taipei , Taiwan (CJC, HIY); Graduate Institute of Epidemiology and Preventive Medicine, National Taiwan University , Taipei , Taiwan (CJC)
| |
Collapse
|
32
|
Kim KN, Lee H, Kim JH, Jung K, Lim YH, Hong YC. Physical Activity- and Alcohol-dependent Association Between Air Pollution Exposure and Elevated Liver Enzyme Levels: An Elderly Panel Study. J Prev Med Public Health 2015; 48:151-69. [PMID: 26081652 PMCID: PMC4484281 DOI: 10.3961/jpmph.15.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/30/2015] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES The deleterious effects of air pollution on various health outcomes have been demonstrated. However, few studies have examined the effects of air pollution on liver enzyme levels. METHODS Blood samples were drawn up to three times between 2008 and 2010 from 545 elderly individuals who regularly visited a community welfare center in Seoul, Korea. Data regarding ambient air pollutants (particulate matter ≤2.5 μm [PM2.5], nitrogen dioxide [NO2], ozone [O3], carbon monoxide, and sulfur dioxide) from monitoring stations were used to estimate air pollution exposure. The effects of the air pollutants on the concentrations of three liver enzymes (aspartate aminotransferase [AST], alanine aminotransferase [ALT], and γ-glutamyltranspeptidase [γ-GTP)]) were evaluated using generalized additive and linear mixed models. RESULTS Interquartile range increases in the concentrations of the pollutants showed significant associations of PM2.5 with AST (3.0% increase, p=0.0052), ALT (3.2% increase, p=0.0313), and γ-GTP (5.0% increase, p=0.0051) levels; NO2 with AST (3.5% increase, p=0.0060) and ALT (3.8% increase, p=0.0179) levels; and O3 with γ-GTP (5.3% increase, p=0.0324) levels. Significant modification of these effects by exercise and alcohol consumption was found (p for interaction <0.05). The effects of air pollutants were greater in non-exercisers and heavy drinkers. CONCLUSIONS Short-term exposure to air pollutants such as PM2.5, NO2, and O3 is associated with increased liver enzyme levels in the elderly. These adverse effects can be reduced by exercising regularly and abstinence from alcohol.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Hyemi Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Jin Hee Kim
- Department of Environmental Health, Graduate School of Public Health, Seoul National University, Seoul, Korea
| | - Kweon Jung
- Seoul Metropolitan Institute of Public Health and Environment, Seoul, Korea
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea ; Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea ; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, Korea ; Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|