1
|
De Battistis F, Djordjevic AB, Saso L, Mantovani A. Constitutive androstane receptor, liver pathophysiology and chemical contaminants: current evidence and perspectives. Front Endocrinol (Lausanne) 2025; 16:1472563. [PMID: 40255499 PMCID: PMC12005993 DOI: 10.3389/fendo.2025.1472563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/11/2025] [Indexed: 04/22/2025] Open
Abstract
Introduction The Constitutive Androstane Receptor (CAR) (NR1I3), a pivotal member of the xenosensor family, plays a key role in the hepatic detoxification of xenobiotic and endobiotic chemicals through the induction of the expression of drug-metabolizing enzymes and transporters. CAR's involvement extends beyond detoxification, influencing gluconeogenesis, lipogenesis, bile acid regulation, and cellular processes such as proliferation, tissue regeneration, and carcinogenesis. This review explores CAR regulation by various factors, highlighting its role in mediating metabolic changes induced by environmental contaminants. Methods A literature search was conducted to identify all articles on the PubMed website in which the CAR-contaminant and CAR-hepatic steatosis relationship is analyzed in both in vitro and in vivo models. Results Numerous contaminants, such as perfluorooctanoic acid (PFOA), Zearalenone mycotoxin, PCB, triazole fungicide propiconazole can activate hepatic nuclear receptors contributing to the development of steatosis through increased de novo lipogenesis, decreased fatty acid oxidation, increased hepatic lipid uptake, and decreased gluconeogenesis. Indirect CAR activation pathways, particularly involving PFOA, are discussed in the context of PPARα-independent mechanisms leading to hepatotoxicity, including hepatocellular hypertrophy and necrosis, and their implications in nonalcoholic steatohepatitis (NASH) and nonalcoholic fatty liver disease (NAFLD). The prevalence of NAFLD, a significant component of metabolic syndrome, underscores the importance of understanding CAR's role in its pathogenesis. Conclusions Experimental and epidemiological data suggest that endocrine disruptors, especially pesticides, play a significant role in NAFLD's development and progression via CAR-regulated pathways. This review advocates for the inclusion of modern toxicological risk assessment tools, such as New Approach Methodologies (NAMs), Adverse Outcome Pathways (AOPs), and Integrated Approaches to Testing and Assessment (IATA), to elucidate CAR-mediated effects and enhance regulatory frameworks.
Collapse
Affiliation(s)
- Francesca De Battistis
- Department of Food Safety, Nutrition, and Veterinary Public Health, Italian National Institute of Health, Rome, Italy
| | - Aleksandra Buha Djordjevic
- Department of Toxicology “Akademik Danilo Soldatović”, University of Belgrade-Faculty of Pharmacy, Belgrade, Serbia
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome, Italy
| | - Alberto Mantovani
- Italian National Food Safety Committee, Rome, Italy
- Study Centre KOS - Science, Art, Society, Rome, Italy
| |
Collapse
|
2
|
Sinha RA. Targeting nuclear receptors for NASH/MASH: From bench to bedside. LIVER RESEARCH (BEIJING, CHINA) 2024; 8:34-45. [PMID: 38544909 PMCID: PMC7615772 DOI: 10.1016/j.livres.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/27/2023] [Accepted: 03/07/2024] [Indexed: 04/17/2024]
Abstract
The onset of metabolic dysfunction-associated steatohepatitis (MASH) or non-alcoholic steatohepatitis (NASH) represents a tipping point leading to liver injury and subsequent hepatic complications in the natural progression of what is now termed metabolic dysfunction-associated steatotic liver diseases (MASLD), formerly known as non-alcoholic fatty liver disease (NAFLD). With no pharmacological treatment currently available for MASH/NASH, the race is on to develop drugs targeting multiple facets of hepatic metabolism, inflammation, and pro-fibrotic events, which are major drivers of MASH. Nuclear receptors (NRs) regulate genomic transcription upon binding to lipophilic ligands and govern multiple aspects of liver metabolism and inflammation. Ligands of NRs may include hormones, lipids, bile acids, and synthetic ligands, which upon binding to NRs regulate the transcriptional activities of target genes. NR ligands are presently the most promising drug candidates expected to receive approval from the United States Food and Drug Administration as a pharmacological treatment for MASH. This review aims to cover the current understanding of NRs, including nuclear hormone receptors, non-steroid hormone receptors, circadian NRs, and orphan NRs, which are currently undergoing clinical trials for MASH treatment, along with NRs that have shown promising results in preclinical studies.
Collapse
Affiliation(s)
- Rohit A. Sinha
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
3
|
Liang Y, Gong Y, Jiang Q, Yu Y, Zhang J. Environmental endocrine disruptors and pregnane X receptor action: A review. Food Chem Toxicol 2023; 179:113976. [PMID: 37532173 DOI: 10.1016/j.fct.2023.113976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/11/2023] [Accepted: 07/28/2023] [Indexed: 08/04/2023]
Abstract
The pregnane X receptor (PXR) is a kind of orphan nuclear receptor activated by a series of ligands. Environmental endocrine disruptors (EEDs) are a wide class of molecules present in the environment that are suspected to have adverse effects on the endocrine system by interfering with the synthesis, transport, degradation, or action of endogenous hormones. Since EEDs may modulate human/rodent PXR, this review aims to summarize EEDs as PXR modulators, including agonists and antagonists. The modular structure of PXR is also described, interestingly, the pharmacology of PXR have been confirmed to vary among different species. Furthermore, PXR play a key role in the regulation of endocrine function. Endocrine disruption of EEDs via PXR and its related pathways are systematically summarized. In brief, this review may provide a way to understand the roles of EEDs in interaction with the nuclear receptors (such as PXR) and the related pathways.
Collapse
Affiliation(s)
- Yuan Liang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yiyao Gong
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Qiuyan Jiang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Yifan Yu
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| |
Collapse
|
4
|
Liu J, Shi Y, Peng D, Wang L, Yu N, Wang G, Chen W. Salvia miltiorrhiza Bge. (Danshen) in the Treating Non-alcoholic Fatty Liver Disease Based on the Regulator of Metabolic Targets. Front Cardiovasc Med 2022; 9:842980. [PMID: 35528835 PMCID: PMC9072665 DOI: 10.3389/fcvm.2022.842980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is rapidly prevalent due to its strong association with increased metabolic syndrome such as cardio- and cerebrovascular disorders and diabetes. Few drugs can meet the growing disease burden of NAFLD. Salvia miltiorrhiza Bge. (Danshen) have been used for over 2,000 years in clinical trials to treat NAFLD and metabolic syndrome disease without clarified defined mechanisms. Metabolic targets restored metabolic homeostasis in patients with NAFLD and improved steatosis by reducing the delivery of metabolic substrates to liver as a promising way. Here we systematic review evidence showing that Danshen against NAFLD through diverse and crossing mechanisms based on metabolic targets. A synopsis of the phytochemistry and pharmacokinetic of Danshen and the mechanisms of metabolic targets regulating the progression of NAFLD is initially provided, followed by the pharmacological activity of Danshen in the management NAFLD. And then, the possible mechanisms of Danshen in the management of NAFLD based on metabolic targets are elucidated. Specifically, the metabolic targets c-Jun N-terminal kinases (JNK), sterol regulatory element-binding protein-1c (SREBP-1c), nuclear translocation carbohydrate response element–binding protein (ChREBP) related with lipid metabolism pathway, and peroxisome proliferator-activated receptors (PPARs), cytochrome P450 (CYP) and the others associated with pleiotropic metabolism will be discussed. Finally, providing a critical assessment of the preclinic and clinic model and the molecular mechanism in NAFLD.
Collapse
Affiliation(s)
- Jie Liu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
| | - Yun Shi
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- *Correspondence: Lei Wang,
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Guokai Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei, China
- Institute of Traditional Chinese Medicine Resources Protection and Development, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Province Key Laboratory of Traditional Chinese Medicine Decoction Pieces of New Manufacturing Technology, Hefei, China
- Weidong Chen,
| |
Collapse
|
5
|
Sayaf K, Zanotto I, Russo FP, Gabbia D, De Martin S. The Nuclear Receptor PXR in Chronic Liver Disease. Cells 2021; 11:61. [PMID: 35011625 PMCID: PMC8750019 DOI: 10.3390/cells11010061] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/21/2021] [Accepted: 12/24/2021] [Indexed: 02/06/2023] Open
Abstract
Pregnane X receptor (PXR), a nuclear receptor known for modulating the transcription of drug metabolizing enzymes and transporters (DMETs), such as cytochrome P450 3A4 and P-glycoprotein, is functionally involved in chronic liver diseases of different etiologies. Furthermore, PXR activity relates to that of other NRs, such as constitutive androstane receptor (CAR), through a crosstalk that in turn orchestrates a complex network of responses. Thus, besides regulating DMETs, PXR signaling is involved in both liver damage progression and repair and in the neoplastic transition to hepatocellular carcinoma. We here summarize the present knowledge about PXR expression and function in chronic liver diseases characterized by different etiologies and clinical outcome, focusing on the molecular pathways involved in PXR activity. Although many molecular details of these finely tuned networks still need to be fully understood, we conclude that PXR and its modulation could represent a promising pharmacological target for the identification of novel therapeutical approaches to chronic liver diseases.
Collapse
Affiliation(s)
- Katia Sayaf
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padova, Italy; (K.S.); (F.P.R.)
| | - Ilaria Zanotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy; (I.Z.); (S.D.M.)
| | - Francesco Paolo Russo
- Department of Surgery, Oncology and Gastroenterology, University of Padova, 35121 Padova, Italy; (K.S.); (F.P.R.)
| | - Daniela Gabbia
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy; (I.Z.); (S.D.M.)
| | - Sara De Martin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35121 Padova, Italy; (I.Z.); (S.D.M.)
| |
Collapse
|
6
|
Rigalli JP, Theile D, Nilles J, Weiss J. Regulation of PXR Function by Coactivator and Corepressor Proteins: Ligand Binding Is Just the Beginning. Cells 2021; 10:cells10113137. [PMID: 34831358 PMCID: PMC8625645 DOI: 10.3390/cells10113137] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) is a nuclear receptor which exerts its regulatory function by heterodimerization with the retinoid-X-receptor α (RXRα, NR2B1) and binding to the promoter and enhancer regions of diverse target genes. PXR is involved in the regulation of drug metabolism and excretion, metabolic and immunological functions and cancer pathogenesis. PXR activity is strongly regulated by the association with coactivator and corepressor proteins. Coactivator proteins exhibit histone acetyltransferase or histone methyltransferase activity or associate with proteins having one of these activities, thus promoting chromatin decondensation and activation of the gene expression. On the contrary, corepressor proteins promote histone deacetylation and therefore favor chromatin condensation and repression of the gene expression. Several studies pointed to clear cell- and ligand-specific differences in the activation of PXR. In this article, we will review the critical role of coactivator and corepressor proteins as molecular determinants of the specificity of PXR-mediated effects. As already known for other nuclear receptors, understanding the complex mechanism of PXR activation in each cell type and under particular physiological and pathophysiological conditions may lead to the development of selective modulators with therapeutic potential.
Collapse
|
7
|
Cuko L, Duniec-Dmuchowski Z, Rondini EA, Pant A, Fallon JK, Wilson EM, Peraino NJ, Westrick JA, Smith PC, Kocarek TA. Negative Regulation of Human Hepatic Constitutive Androstane Receptor by Cholesterol Synthesis Inhibition: Role of Sterol Regulatory Element Binding Proteins. Drug Metab Dispos 2021; 49:706-717. [PMID: 34011532 PMCID: PMC11025015 DOI: 10.1124/dmd.120.000341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022] Open
Abstract
The squalene synthase inhibitor squalestatin 1 (Squal1) is a potent and efficacious inducer of CYP2B expression in primary cultured rat hepatocytes and rat liver. To determine whether Squal1 is also an inducer of human CYP2B, the effects of Squal1 treatment were evaluated in primary cultured human hepatocytes, differentiated HepaRG cells, and humanized mouse livers. Squal1 treatment did not increase CYP2B6 mRNA levels in human hepatocytes or HepaRG cells and only slightly and inconsistently increased CYP2B6 mRNA content in humanized mouse liver. However, treatment with farnesol, which mediates Squal1's effect on rat CYP2B expression, increased CYP2B6 mRNA levels in HepaRG cells expressing the constitutive androstane receptor (CAR), but not in cells with knocked-down CAR. To determine the impact of cholesterol biosynthesis inhibition on CAR activation, the effects of pravastatin (Prava) were determined on CITCO-mediated gene expression in primary cultured human hepatocytes. Prava treatment abolished CITCO-inducible CYP2B6 expression, but had less effect on rifampicin-mediated CYP3A4 induction, and CITCO treatment did not affect Prava-inducible HMG-CoA reductase (HMGCR) expression. Treatment with inhibitors of different steps of cholesterol biosynthesis attenuated CITCO-mediated CYP2B6 induction in HepaRG cells, and Prava treatment increased HMGCR expression and inhibited CYP2B6 induction with comparable potency. Transfection of HepG2 cells with transcriptionally active sterol regulatory element binding proteins (SREBPs) reduced CAR-mediated transactivation, and inducible expression of transcriptionally active SREBP2 attenuated CITCO-inducible CYP2B6 expression in HepaRG cells. These findings suggest that Squal1 does not induce CYP2B6 in human hepatocytes because Squal1's inhibitory effect on cholesterol biosynthesis interferes with CAR activation. SIGNIFICANCE STATEMENT: The cholesterol biosynthesis inhibitor squalestatin 1 induces rat hepatic CYP2B expression indirectly by causing accumulation of an endogenous isoprenoid that activates the constitutive androstane receptor (CAR). This study demonstrates that squalestatin 1 does not similarly induce CYP2B6 expression in human hepatocytes. Rather, inhibition of cholesterol biosynthesis interferes with CAR activity, likely by activating sterol regulatory element binding proteins. These findings increase our understanding of the endogenous processes that modulate human drug-metabolizing gene expression.
Collapse
Affiliation(s)
- Liberta Cuko
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Zofia Duniec-Dmuchowski
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Elizabeth A Rondini
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Asmita Pant
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - John K Fallon
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Elizabeth M Wilson
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Nicholas J Peraino
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Judy A Westrick
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Philip C Smith
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences (L.C., Z.D.-D., E.A.R., A.P., T.A.K.) and Department of Chemistry (N.J.P., J.A.W.), Wayne State University, Detroit, Michigan; Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina, Chapel Hill, North Carolina (J.K.F., P.C.S.); and Yecuris Corporation, Tualatin, Oregon (E.M.W.)
| |
Collapse
|
8
|
Associations among perfluorooctanesulfonic/perfluorooctanoic acid levels, nuclear receptor gene polymorphisms, and lipid levels in pregnant women in the Hokkaido study. Sci Rep 2021; 11:9994. [PMID: 33976266 PMCID: PMC8113244 DOI: 10.1038/s41598-021-89285-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
The effect of interactions between perfluorooctanesulfonic (PFOS)/perfluorooctanoic acid (PFOA) levels and nuclear receptor genotypes on fatty acid (FA) levels, including those of triglycerides, is not clear understood. Therefore, in the present study, we aimed to analyse the association of PFOS/PFOA levels and single-nucleotide polymorphisms (SNPs) in nuclear receptors with FA levels in pregnant women. We analysed 504 mothers in a birth cohort between 2002 and 2005 in Japan. Serum PFOS/PFOA and FA levels were measured using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry. Maternal genotypes in PPARA (rs1800234; rs135561), PPARG (rs3856806), PPARGC1A (rs2970847; rs8192678), PPARD (rs1053049; rs2267668), CAR (rs2307424; rs2501873), LXRA (rs2279238) and LXRB (rs1405655; rs2303044; rs4802703) were analysed. When gene-environment interaction was considered, PFOS exposure (log10 scale) decreased palmitic, palmitoleic, and oleic acid levels (log10 scale), with the observed β in the range of - 0.452 to - 0.244; PPARGC1A (rs8192678) and PPARD (rs1053049; rs2267668) genotypes decreased triglyceride, palmitic, palmitoleic, and oleic acid levels, with the observed β in the range of - 0.266 to - 0.176. Interactions between PFOS exposure and SNPs were significant for palmitic acid (Pint = 0.004 to 0.017). In conclusion, the interactions between maternal PFOS levels and PPARGC1A or PPARD may modify maternal FA levels.
Collapse
|
9
|
Bae SDW, Nguyen R, Qiao L, George J. Role of the constitutive androstane receptor (CAR) in human liver cancer. Biochim Biophys Acta Rev Cancer 2021; 1875:188516. [PMID: 33529650 DOI: 10.1016/j.bbcan.2021.188516] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 01/01/2023]
Abstract
The constitutive androstane receptor (CAR) is a member of the nuclear receptor superfamily (subfamily 1, group I, member 3, also known as NR1I3) that is almost exclusively expressed in the liver. CAR interacts with key signalling pathways such as those involved in drug, energy and bilirubin metabolism. In mouse models, activation of CAR leads to tumorigenesis by inducing pro-proliferative and anti-apoptotic signalling. However, many previous reports have shown species differences between CAR activity in animal models and humans. Recent studies have demonstrated that the mode of action of CAR in rodent liver tumorigenesis is not applicable to humans. Despite this, many studies still continue to study the role of CAR in animal models, hence, there is a need to further explore the role of CAR in human diseases particularly cancers. While there is limited evidence for a role of CAR in human cancers, some studies have proposed a tumour-suppressive role of CAR in liver cancer. In addition, recent studies exploring CAR in human livers demonstrated a hepato-protective role for CAR in and more specifically, its ability to drive differentiation and liver regeneration. This review will discuss the role of CAR in liver cancer, with a focus on species differences and its emerging, tumour-suppressive role in liver cancer and its role in the regulation of liver cancer stem cells.
Collapse
Affiliation(s)
- Sarah Da Won Bae
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Romario Nguyen
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia
| | - Liang Qiao
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| | - Jacob George
- Storr Liver Centre, Westmead Institute for Medical Research, The University of Sydney and Westmead Hospital, Westmead, NSW 2145, Australia.
| |
Collapse
|
10
|
Cai X, Young GM, Xie W. The xenobiotic receptors PXR and CAR in liver physiology, an update. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166101. [PMID: 33600998 DOI: 10.1016/j.bbadis.2021.166101] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022]
Abstract
Pregnane X receptor (PXR) and constitutive androstane receptor (CAR) are two nuclear receptors that are well-known for their roles in xenobiotic detoxification by regulating the expression of drug-metabolizing enzymes and transporters. In addition to metabolizing drugs and other xenobiotics, the same enzymes and transporters are also responsible for the production and elimination of numerous endogenous chemicals, or endobiotics. Moreover, both PXR and CAR are highly expressed in the liver. As such, it is conceivable that PXR and CAR have major potentials to affect the pathophysiology of the liver by regulating the homeostasis of endobiotics. In recent years, the physiological functions of PXR and CAR in the liver have been extensively studied. Emerging evidence has suggested the roles of PXR and CAR in energy metabolism, bile acid homeostasis, cell proliferation, to name a few. This review summarizes the recent progress in our understanding of the roles of PXR and CAR in liver physiology.
Collapse
Affiliation(s)
- Xinran Cai
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Gregory M Young
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wen Xie
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
11
|
Küblbeck J, Niskanen J, Honkakoski P. Metabolism-Disrupting Chemicals and the Constitutive Androstane Receptor CAR. Cells 2020; 9:E2306. [PMID: 33076503 PMCID: PMC7602645 DOI: 10.3390/cells9102306] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
During the last two decades, the constitutive androstane receptor (CAR; NR1I3) has emerged as a master activator of drug- and xenobiotic-metabolizing enzymes and transporters that govern the clearance of both exogenous and endogenous small molecules. Recent studies indicate that CAR participates, together with other nuclear receptors (NRs) and transcription factors, in regulation of hepatic glucose and lipid metabolism, hepatocyte communication, proliferation and toxicity, and liver tumor development in rodents. Endocrine-disrupting chemicals (EDCs) constitute a wide range of persistent organic compounds that have been associated with aberrations of hormone-dependent physiological processes. Their adverse health effects include metabolic alterations such as diabetes, obesity, and fatty liver disease in animal models and humans exposed to EDCs. As numerous xenobiotics can activate CAR, its role in EDC-elicited adverse metabolic effects has gained much interest. Here, we review the key features and mechanisms of CAR as a xenobiotic-sensing receptor, species differences and selectivity of CAR ligands, contribution of CAR to regulation hepatic metabolism, and evidence for CAR-dependent EDC action therein.
Collapse
Affiliation(s)
- Jenni Küblbeck
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Jonna Niskanen
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
| | - Paavo Honkakoski
- School of Pharmacy, University of Eastern Finland, P.O. Box 1627, FI-70210 Kuopio, Finland;
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Campus Box 7569, Chapel Hill, NC 27599-7569, USA
| |
Collapse
|
12
|
Hassani-Nezhad-Gashti F, Kummu O, Karpale M, Rysä J, Hakkola J. Nutritional status modifies pregnane X receptor regulated transcriptome. Sci Rep 2019; 9:16728. [PMID: 31723190 PMCID: PMC6853963 DOI: 10.1038/s41598-019-53101-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 10/24/2019] [Indexed: 12/25/2022] Open
Abstract
Pregnane X receptor (PXR) regulates glucose and lipid metabolism, but little is known of the nutritional regulation of PXR function. We investigated the genome wide effects of the nutritional status on the PXR mediated gene regulation in the liver. Mice were treated with a PXR ligand pregnenolone 16α-carbonitrile (PCN) for 4 days and subsequently either fasted for 5 hours or after 4-hour fast treated with intragastric glucose 1 hour before sample collection. Gene expression microarray study indicated that PCN both induced and repressed much higher number of genes in the glucose fed mice and the induction of multiple well-established PXR target genes was potentiated by glucose. A subset of genes, including bile acid synthesis gene Cyp8b1, responded in an opposite direction during fasting and after glucose feeding. PXR knockout abolished these effects. In agreement with the Cyp8b1 regulation, PCN also modified the bile acid composition in the glucose fed mice. Contribution of glucose, insulin and glucagon on the observed nutritional effects was investigated in primary hepatocytes. However, only mild impact on PXR function was observed. These results show that nutritional status modifies the PXR regulated transcriptome both qualitatively and quantitatively and reveal a complex crosstalk between PXR and energy homeostasis.
Collapse
Affiliation(s)
- Fatemeh Hassani-Nezhad-Gashti
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Outi Kummu
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Mikko Karpale
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland. .,Medical Research Center Oulu, Oulu University Hospital and University of Oulu, Oulu, Finland.
| |
Collapse
|
13
|
Bhushan B, Stoops JW, Mars WM, Orr A, Bowen WC, Paranjpe S, Michalopoulos GK. TCPOBOP-Induced Hepatomegaly and Hepatocyte Proliferation are Attenuated by Combined Disruption of MET and EGFR Signaling. Hepatology 2019; 69:1702-1718. [PMID: 29888801 PMCID: PMC6289897 DOI: 10.1002/hep.30109] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 08/10/2018] [Indexed: 12/13/2022]
Abstract
TCPOBOP (1,4-Bis [2-(3,5-Dichloropyridyloxy)] benzene) is a constitutive androstane receptor (CAR) agonist that induces robust hepatocyte proliferation and hepatomegaly without any liver injury or tissue loss. TCPOBOP-induced direct hyperplasia has been considered to be CAR-dependent with no evidence of involvement of cytokines or growth factor signaling. Receptor tyrosine kinases (RTKs), MET and epidermal growth factor receptor (EGFR), are known to play a critical role in liver regeneration after partial hepatectomy, but their role in TCPOBOP-induced direct hyperplasia, not yet explored, is investigated in the current study. Disruption of the RTK-mediated signaling was achieved using MET knockout (KO) mice along with Canertinib treatment for EGFR inhibition. Combined elimination of MET and EGFR signaling [MET KO + EGFR inhibitor (EGFRi)], but not individual disruption, dramatically reduced TCPOBOP-induced hepatomegaly and hepatocyte proliferation. TCPOBOP-driven CAR activation was not altered in [MET KO + EGFRi] mice, as measured by nuclear CAR translocation and analysis of typical CAR target genes. However, TCPOBOP-induced cell cycle activation was impaired in [MET KO + EGFRi] mice due to defective induction of cyclins, which regulate cell cycle initiation and progression. TCPOBOP-driven induction of FOXM1, a key transcriptional regulator of cell cycle progression during TCPOBOP-mediated hepatocyte proliferation, was greatly attenuated in [MET KO + EGFRi] mice. Interestingly, TCPOBOP treatment caused transient decline in hepatocyte nuclear factor 4 alpha expression concomitant to proliferative response; this was not seen in [MET KO + EGFRi] mice. Transcriptomic profiling revealed the vast majority (~40%) of TCPOBOP-dependent genes primarily related to proliferative response, but not to drug metabolism, were differentially expressed in [MET KO + EGFRi] mice. Conclusion: Taken together, combined disruption of EGFR and MET signaling lead to dramatic impairment of TCPOBOP-induced proliferative response without altering CAR activation.
Collapse
Affiliation(s)
- Bharat Bhushan
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John W Stoops
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Wendy M Mars
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Anne Orr
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - William C Bowen
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Shirish Paranjpe
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - George K Michalopoulos
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
14
|
Chen K, Zhong J, Hu L, Li R, Du Q, Cai J, Li Y, Gao Y, Cui X, Yang X, Wu X, Yao L, Dai J, Wang Y, Jin H. The Role of Xenobiotic Receptors on Hepatic Glycolipid Metabolism. Curr Drug Metab 2019; 20:29-35. [PMID: 30227815 DOI: 10.2174/1389200219666180918152241] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 03/13/2018] [Accepted: 08/20/2018] [Indexed: 01/14/2023]
Abstract
Background:
PXR (Pregnane X Receptor) and CAR (Constitutive Androstane Receptor) are termed as
xenobiotic receptors, which are known as core factors in regulation of the transcription of metabolic enzymes and
drug transporters. However, accumulating evidence has shown that PXR and CAR exert their effects on energy metabolism
through the regulation of gluconeogenesis, lipogenesis and β-oxidation. Therefore, in this review, we are
trying to summary recent advances to show how xenobiotic receptors regulate energy metabolism.
Methods:
A structured search of databases has been performed by using focused review topics. According to conceptual
framework, the main idea of research literature was summarized and presented.
Results:
For introduction of each receptor, the general introduction and the critical functions in hepatic glucose and
lipid metabolism have been included. Recent important studies have shown that CAR acts as a negative regulator of
lipogenesis, gluconeogenesis and β -oxidation. PXR activation induces lipogenesis, inhibits gluconeogenesis and
inhabits β-oxidation.
Conclusion:
In this review, the importance of xenobiotic receptors in hepatic glucose and lipid metabolism has been
confirmed. Therefore, PXR and CAR may become new therapeutic targets for metabolic syndrome, including obesity
and diabetes. However, further research is required to promote the clinical application of this new energy metabolism
function of xenobiotic receptors.
Collapse
Affiliation(s)
- Ke Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jinwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Lin Hu
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruliu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qun Du
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiazhong Cai
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanwu Li
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gao
- Pi-wei Institute, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaona Cui
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaoying Yang
- Department of Pathogenic Biology and Immunology, Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojie Wu
- Department of Immunology, Binzhou Medical University, Yantai, Shangdong, China
| | - Lu Yao
- Jilin Medical University, Jilin, China
| | - Juji Dai
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Wang
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haiyong Jin
- Department of Otolaryngology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
15
|
Huang G, Yang L, Zhang Z, Ren S, Tang X, Zhou W, Wang Y, Ma Z, Gao S, Gao Y. Human PXR-mediated transcriptional activation of CYP3A4 by 'Fuzi' extracts. Toxicol Mech Methods 2019; 29:155-164. [PMID: 30303438 DOI: 10.1080/15376516.2018.1534296] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE This study focused on determining whether the 'Fuzi' (FZ) extracts from different extraction methods are related to pregnane X receptor (PXR) and cytochrome P450 3A4 (CYP3A4), and explore the mechanism. METHODS FZ was extracted under various conditions, and the components were identified by Ultra Performance Liquid Chromatography/Quad Time of Flight Mass Spectrometry (UPLC/Q-TOF-MS). Annexin V-FITC and propidium iodide staining assays were used to measure the cell cytotoxicity of these extracts. Real-time PCR, western blot analysis and reporter gene assay were used to detect the expression changes of PXR and CYP3A4. RESULTS FZ extracts were found to contain high levels of monoester-diterpene alkaloids (MDAs) and diester-diterpene alkaloids (DDAs). FZ extracts were cytotoxic. Interestingly, we found that FZ extracts and DDAs can induce the expressions of PXR and CYP3A4. And the MDAs can inhibit the expressions of PXR and CYP3A4. CONCLUSION Different extracts of FZ can induce the expressions of PXR and CYP3A4 in different degrees. This may be related to the drug-drug interactions.
Collapse
Affiliation(s)
- Guangyao Huang
- a Department of Pharmacology , Basic Medical College, Anhui Medical University , Hefei , China
| | - Liang Yang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Zhaoyan Zhang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Sijia Ren
- a Department of Pharmacology , Basic Medical College, Anhui Medical University , Hefei , China
| | - Xianglin Tang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Wei Zhou
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Yuguang Wang
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Zengchun Ma
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| | - Shan Gao
- a Department of Pharmacology , Basic Medical College, Anhui Medical University , Hefei , China
| | - Yue Gao
- b Department of Pharmacology and Toxicology , Beijing Institute of Radiation Medicine , Beijing , China
| |
Collapse
|
16
|
Bessone F, Dirchwolf M, Rodil MA, Razori MV, Roma MG. Review article: drug-induced liver injury in the context of nonalcoholic fatty liver disease - a physiopathological and clinical integrated view. Aliment Pharmacol Ther 2018; 48:892-913. [PMID: 30194708 DOI: 10.1111/apt.14952] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 03/25/2018] [Accepted: 07/30/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Nonalcoholic fatty disease (NAFLD) is the most common liver disease, since it is strongly associated with obesity and metabolic syndrome pandemics. NAFLD may affect drug disposal and has common pathophysiological mechanisms with drug-induced liver injury (DILI); this may predispose to hepatoxicity induced by certain drugs that share these pathophysiological mechanisms. In addition, drugs may trigger fatty liver and inflammation per se by mimicking NAFLD pathophysiological mechanisms. AIMS To provide a comprehensive update on (a) potential mechanisms whereby certain drugs can be more hepatotoxic in NAFLD patients, (b) the steatogenic effects of drugs, and (c) the mechanism involved in drug-induced steatohepatitis (DISH). METHODS A language- and date-unrestricted Medline literature search was conducted to identify pertinent basic and clinical studies on the topic. RESULTS Drugs can induce macrovesicular steatosis by mimicking NAFLD pathogenic factors, including insulin resistance and imbalance between fat gain and loss. Other forms of hepatic fat accumulation exist, such as microvesicular steatosis and phospholipidosis, and are mostly associated with acute mitochondrial dysfunction and defective lipophagy, respectively. Drug-induced mitochondrial dysfunction is also commonly involved in DISH. Patients with pre-existing NAFLD may be at higher risk of DILI induced by certain drugs, and polypharmacy in obese individuals to treat their comorbidities may be a contributing factor. CONCLUSIONS The relationship between DILI and NAFLD may be reciprocal: drugs can cause NAFLD by acting as steatogenic factors, and pre-existing NAFLD could be a predisposing condition for certain drugs to cause DILI. Polypharmacy associated with obesity might potentiate the association between this condition and DILI.
Collapse
Affiliation(s)
- Fernando Bessone
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - Melisa Dirchwolf
- Unidad de Transplante Hepático, Servicio de Hepatología, Hospital Privado de Rosario, Rosario, Argentina
| | - María Agustina Rodil
- Hospital Provincial del Centenario, Facultad de Ciencias Médicas, Servicio de Gastroenterología y Hepatología, Universidad Nacional de Rosario, Rosario, Argentina
| | - María Valeria Razori
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Marcelo G Roma
- Instituto de Fisiología Experimental (IFISE-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
| |
Collapse
|
17
|
Chen F, Coslo DM, Chen T, Zhang L, Tian Y, Smith PB, Patterson AD, Omiecinski CJ. Metabolomic Approaches Reveal the Role of CAR in Energy Metabolism. J Proteome Res 2018; 18:239-251. [PMID: 30336042 PMCID: PMC6805043 DOI: 10.1021/acs.jproteome.8b00566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
![]()
The constitutive androstane receptor
(CAR; NR1I3) contributes important
regulatory roles in biotransformation, xenobiotic transport function,
energy metabolism and lipid homeostasis. In this investigation, global
serum and liver tissue metabolomes were assessed analytically in wild
type and CAR-null transgenic mice using NMR, GC–MS and UPLC–MS/MS-based
metabolomics. Significantly, CAR activation increased serum levels
of fatty acids, lactate, ketone bodies and tricarboxylic acid cycle
products, whereas levels of phosphatidylcholine, sphingomyelin, amino
acids and liver glucose were decreased following short-term activation
of CAR. Mechanistically, quantitative mRNA analysis demonstrated significantly
decreased expression of key gluconeogenic pathways, and increased
expression of glucose utilization pathways, changes likely resulting
from down-regulation of the hepatic glucose sensor and bidirectional
transporter, Glut2. Short-term CAR activation also
resulted in enhanced fatty acid synthesis and impaired β-oxidation.
In summary, CAR contributes an expansive role regulating energy metabolism,
significantly impacting glucose and monocarboxylic acid utilization,
fatty acid metabolism and lipid homeostasis, through receptor-mediated
regulation of several genes in multiple associated pathways.
Collapse
Affiliation(s)
- Fengming Chen
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,Department of Pathology , Penn State Milton S. Hershey Medical Center , Hershey , Pennsylvania 17033 , United States
| | - Denise M Coslo
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Tao Chen
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Limin Zhang
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States.,CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics , Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences (CAS) , Wuhan 430070 , China
| | - Yuan Tian
- The Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Philip B Smith
- The Huck Institutes of the Life Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Andrew D Patterson
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Curtis J Omiecinski
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
18
|
Cobbina E, Akhlaghi F. Non-alcoholic fatty liver disease (NAFLD) - pathogenesis, classification, and effect on drug metabolizing enzymes and transporters. Drug Metab Rev 2017; 49:197-211. [PMID: 28303724 DOI: 10.1080/03602532.2017.1293683] [Citation(s) in RCA: 438] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a spectrum of liver disorders. It is defined by the presence of steatosis in more than 5% of hepatocytes with little or no alcohol consumption. Insulin resistance, the metabolic syndrome or type 2 diabetes and genetic variants of PNPLA3 or TM6SF2 seem to play a role in the pathogenesis of NAFLD. The pathological progression of NAFLD follows tentatively a "three-hit" process namely steatosis, lipotoxicity and inflammation. The presence of steatosis, oxidative stress and inflammatory mediators like TNF-α and IL-6 has been implicated in the alterations of nuclear factors such as CAR, PXR, PPAR-α in NAFLD. These factors may result in altered expression and activity of drug metabolizing enzymes (DMEs) or transporters. Existing evidence suggests that the effect of NAFLD on CYP3A4, CYP2E1 and MRP3 is more consistent across rodent and human studies. CYP3A4 activity is down-regulated in NASH whereas the activity of CYP2E1 and the efflux transporter MRP3 is up-regulated. However, it is not clear how the majority of CYPs, UGTs, SULTs and transporters are influenced by NAFLD either in vivo or in vitro. The alterations associated with NAFLD could be a potential source of drug variability in patients and could have serious implications for the safety and efficacy of xenobiotics. In this review, we summarize the effects of NAFLD on the regulation, expression and activity of major DMEs and transporters. We also discuss the potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Enoch Cobbina
- a Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences , University of Rhode Island , Kingston , RI , USA
| | - Fatemeh Akhlaghi
- a Clinical Pharmacokinetics Research Laboratory, Department of Biomedical and Pharmaceutical Sciences , University of Rhode Island , Kingston , RI , USA
| |
Collapse
|
19
|
Pavek P. Pregnane X Receptor (PXR)-Mediated Gene Repression and Cross-Talk of PXR with Other Nuclear Receptors via Coactivator Interactions. Front Pharmacol 2016; 7:456. [PMID: 27932985 PMCID: PMC5122737 DOI: 10.3389/fphar.2016.00456] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/14/2016] [Indexed: 12/13/2022] Open
Abstract
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
Collapse
Affiliation(s)
- Petr Pavek
- Department of Pharmacology and Toxicology and Centre for Drug Development, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague Hradec Kralove, Czechia
| |
Collapse
|
20
|
Park SH, Kim J, Yu M, Park JH, Kim YS, Moon Y. Epithelial Cholesterol Deficiency Attenuates Human Antigen R-linked Pro-inflammatory Stimulation via an SREBP2-linked Circuit. J Biol Chem 2016; 291:24641-24656. [PMID: 27703009 DOI: 10.1074/jbc.m116.723973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 09/16/2016] [Indexed: 01/03/2023] Open
Abstract
Patients with chronic intestinal ulcerative diseases, such as inflammatory bowel disease, tend to exhibit abnormal lipid profiles, which may affect the gut epithelial integrity. We hypothesized that epithelial cholesterol depletion may trigger inflammation-checking machinery via cholesterol sentinel signaling molecules whose disruption in patients may aggravate inflammation and disease progression. In the present study, sterol regulatory element-binding protein 2 (SREBP2) as the cholesterol sentinel was assessed for its involvement in the epithelial inflammatory responses in cholesterol-depleted enterocytes. Patients and experimental animals with intestinal ulcerative injuries showed suppression in epithelial SREBP2. Moreover, SREBP2-deficient enterocytes showed enhanced pro-inflammatory signals in response to inflammatory insults, indicating regulatory roles of SREBP2 in gut epithelial inflammation. However, epithelial cholesterol depletion transiently induced pro-inflammatory chemokine expression regardless of the well known pro-inflammatory nuclear factor-κB signals. In contrast, cholesterol depletion also exerts regulatory actions to maintain epithelial homeostasis against excessive inflammation via SREBP2-associated signals in a negative feedback loop. Mechanistically, SREBP2 and its induced target EGR-1 were positively involved in induction of peroxisome proliferator-activated receptor γ (PPARγ), a representative anti-inflammatory transcription factor. As a crucial target of the SREBP2-EGR-1-PPARγ-associated signaling pathways, the mRNA stabilizer, human antigen R (HuR) was retained in nuclei, leading to reduced stability of pro-inflammatory chemokine transcripts. This mechanistic investigation provides clinical insights into protective roles of the epithelial cholesterol deficiency against excessive inflammatory responses via the SREBP2-HuR circuit, although the deficiency triggers transient pro-inflammatory signals.
Collapse
Affiliation(s)
- Seong-Hwan Park
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Juil Kim
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Mira Yu
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612
| | - Jae-Hong Park
- the Department of Pediatrics, Pusan National University, Yangsan 50612
| | - Yong Sik Kim
- the Department of Pharmacology, College of Medicine, Seoul National University, Seoul 03080, and
| | - Yuseok Moon
- From the Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan 50612,; the Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Busan 46241, Korea.
| |
Collapse
|
21
|
Dimethylesculetin ameliorates maternal glucose intolerance and fetal overgrowth in high-fat diet-fed pregnant mice via constitutive androstane receptor. Mol Cell Biochem 2016; 419:185-92. [PMID: 27426490 DOI: 10.1007/s11010-016-2772-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 07/09/2016] [Indexed: 10/21/2022]
Abstract
The constitutive androstane receptor (CAR) has been reported to decrease insulin resistance along with obesity. 6,7-dimethylesculetin (DE) is an active component of Yin Zhi Huang which is a traditional Asian medicine used to treat neonatal jaundice via CAR. In this study, we examined whether DE could affect the expression of gluconeogenic and lipogenic genes via human CAR pathway using human HepG2 cells in vitro. We also studied whether DE treatment during pregnancy could prevent maternal hypertension, glucose intolerance and hyperlipidemia, and fetal overgrowth in high-fat diet (HFD)-induced obese pregnant mice. Dimethylesculetin suppressed the mRNA expression of gluconeogenic genes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase, and lipogenic genes, sterol regulatory element-binding protein 1 and stearoyl-CoA desaturase 1, and enhanced CAR-mediated transcription. Blocking the CAR-mediated pathway abolished the effect of DE in vitro. DE treatment during pregnancy could prevent maternal hypertension, glucose intolerance and hyperlipidemia, and fetal overgrowth in HFD-induced obese pregnant mice in vivo. Our data indicate that DE might be a potential therapeutic agent for obese pregnant patients with insulin resistance through CAR to prevent the perinatal outcomes such as preeclampsia, gestational diabetes, and macrosomia. Further analysis of possible complications and side effects using animal models is required.
Collapse
|
22
|
Gomez-Quiroz LE, Seo D, Lee YH, Kitade M, Gaiser T, Gillen M, Lee SB, Gutierrez-Ruiz MC, Conner EA, Factor VM, Thorgeirsson SS, Marquardt JU. Loss of c-Met signaling sensitizes hepatocytes to lipotoxicity and induces cholestatic liver damage by aggravating oxidative stress. Toxicology 2016; 361-362:39-48. [PMID: 27394961 DOI: 10.1016/j.tox.2016.07.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 06/18/2016] [Accepted: 07/05/2016] [Indexed: 02/08/2023]
Abstract
Recent studies confirmed a critical importance of c-Met signaling for liver regeneration by modulating redox balance. Here we used liver-specific conditional knockout mice (MetKO) and a nutritional model of hepatic steatosis to address the role of c-Met in cholesterol-mediated liver toxicity. Liver injury was assessed by histopathology and plasma enzymes levels. Global transcriptomic changes were examined by gene expression microarray, and key molecules involved in liver damage and lipid homeostasis were evaluated by Western blotting. Loss of c-Met signaling amplified the extent of liver injury in MetKO mice fed with high-cholesterol diet for 30days as evidenced by upregulation of liver enzymes and increased synthesis of total bile acids, aggravated inflammatory response and enhanced intrahepatic lipid deposition. Global transcriptomic changes confirmed the enrichment of networks involved in steatosis and cholestasis. In addition, signaling pathways related to glutathione and lipid metabolism, oxidative stress and mitochondria dysfunction were significantly affected by the loss of c-Met function. Mechanistically, exacerbation of oxidative stress in MetKO livers was corroborated by increased lipid and protein oxidation. Western blot analysis further revealed suppression of Erk, NF-kB and Nrf2 survival pathways and downstream target genes (e.g. cyclin D1, SOD1, gamma-GCS), as well as up-regulation of proapoptotic signaling (e.g. p53, caspase 3). Consistent with the observed steatotic and cholestatic phenotype, nuclear receptors RAR, RXR showed increased activation while expression levels of CAR, FXR and PPAR-alpha were decreased in MetKO. Collectively, our data provide evidence for the critical involvement of c-Met signaling in cholesterol and bile acids toxicity.
Collapse
Affiliation(s)
- Luis E Gomez-Quiroz
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA; Departamento de Ciencias de la Salud, Universidad Autonoma Metropolitana Iztapalapa, Mexico, DF, Mexico
| | - Daekwan Seo
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yun-Han Lee
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA; Department of Radiation Oncology, Yonsei University College of Medicine, Seoul, South Korea
| | - Mitsuteru Kitade
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Timo Gaiser
- Institute of Pathology, University Medical Center Mannheim, Mannheim, Germany
| | - Matthew Gillen
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Seung-Bum Lee
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | | | - Elizabeth A Conner
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Valentina M Factor
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Snorri S Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Jens U Marquardt
- 1st Department of Medicine, University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstrasse 1, 55131 Mainz, Germany.
| |
Collapse
|
23
|
Oladimeji P, Cui H, Zhang C, Chen T. Regulation of PXR and CAR by protein-protein interaction and signaling crosstalk. Expert Opin Drug Metab Toxicol 2016; 12:997-1010. [PMID: 27295009 DOI: 10.1080/17425255.2016.1201069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Protein-protein interaction and signaling crosstalk contribute to the regulation of pregnane X receptor (PXR) and constitutive androstane receptor (CAR) and broaden their cellular function. AREA COVERED This review covers key historic discoveries and recent advances in our understanding of the broad function of PXR and CAR and their regulation by protein-protein interaction and signaling crosstalk. EXPERT OPINION PXR and CAR were first discovered as xenobiotic receptors; however, it is clear that PXR and CAR perform a much broader range of cellular functions through protein-protein interaction and signaling crosstalk, which typically mutually affect the function of all the partners involved. Future research on PXR and CAR should, therefore, look beyond their xenobiotic function.
Collapse
Affiliation(s)
- Peter Oladimeji
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Hongmei Cui
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Chen Zhang
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| | - Taosheng Chen
- a Department of Chemical Biology and Therapeutics , St. Jude Children's Research Hospital , Memphis , TN , USA
| |
Collapse
|
24
|
Marmugi A, Lukowicz C, Lasserre F, Montagner A, Polizzi A, Ducheix S, Goron A, Gamet-Payrastre L, Gerbal-Chaloin S, Pascussi JM, Moldes M, Pineau T, Guillou H, Mselli-Lakhal L. Activation of the Constitutive Androstane Receptor induces hepatic lipogenesis and regulates Pnpla3 gene expression in a LXR-independent way. Toxicol Appl Pharmacol 2016; 303:90-100. [PMID: 27180240 DOI: 10.1016/j.taap.2016.05.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 05/02/2016] [Accepted: 05/09/2016] [Indexed: 12/20/2022]
Abstract
The Constitutive Androstane Receptor (CAR, NR1I3) has been newly described as a regulator of energy metabolism. A relevant number of studies using animal models of obesity suggest that CAR activation could be beneficial on the metabolic balance. However, this remains controversial and the underlying mechanisms are still unknown. This work aimed to investigate the effect of CAR activation on hepatic energy metabolism during physiological conditions, i.e. in mouse models not subjected to metabolic/nutritional stress. Gene expression profiling in the liver of CAR knockout and control mice on chow diet and treated with a CAR agonist highlighted CAR-mediated up-regulations of lipogenic genes, concomitant with neutral lipid accumulation. A strong CAR-mediated up-regulation of the patatin-like phospholipase domain-containing protein 3 (Pnpla3) was demonstrated. Pnpla3 is a gene whose polymorphism is associated with the pathogenesis of nonalcoholic fatty liver disease (NAFLD) development. This observation was confirmed in human hepatocytes treated with the antiepileptic drug and CAR activator, phenobarbital and in immortalized human hepatocytes treated with CITCO. Studying the molecular mechanisms controlling Pnpla3 gene expression, we demonstrated that CAR does not act by a direct regulation of Pnpla3 transcription or via the Liver X Receptor but may rather involve the transcription factor Carbohydrate Responsive Element-binding protein. These data provide new insights into the regulation by CAR of glycolytic and lipogenic genes and on pathogenesis of steatosis. This also raises the question concerning the impact of drugs and environmental contaminants in lipid-associated metabolic diseases.
Collapse
Affiliation(s)
- Alice Marmugi
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Céline Lukowicz
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Frederic Lasserre
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Alexandra Montagner
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Arnaud Polizzi
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Simon Ducheix
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Adeline Goron
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Laurence Gamet-Payrastre
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Sabine Gerbal-Chaloin
- Institute of Regenerative Medicine and Biotherapy, INSERM, U1183 Montpellier, France
| | - Jean Marc Pascussi
- Centre National de la Recherche Scientifique, UMR5203, Institut de Génomique Fonctionnelle, Montpellier, France
| | - Marthe Moldes
- Centre de Recherche Saint-Antoine, INSERM, UMR 938, Sorbonne Universités, Université Paris 6, Paris, France; Institut Hospitalo-Universitaire ICAN, Paris, France
| | - Thierry Pineau
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Hervé Guillou
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France
| | - Laila Mselli-Lakhal
- INRA, TOXALIM (Research Centre in Food Toxicology), Toulouse, France; Université de Toulouse, INP, UPS, TOXALIM, Toulouse, France.
| |
Collapse
|
25
|
Hakkola J, Rysä J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1072-1082. [PMID: 27041449 DOI: 10.1016/j.bbagrm.2016.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/30/2022]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Internal Medicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| |
Collapse
|
26
|
Prakash C, Zuniga B, Song CS, Jiang S, Cropper J, Park S, Chatterjee B. Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. NUCLEAR RECEPTOR RESEARCH 2015; 2:101178. [PMID: 27478824 PMCID: PMC4963026 DOI: 10.11131/2015/101178] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Orally delivered small-molecule therapeutics are metabolized in the liver and intestine by phase I and phase II drug-metabolizing enzymes (DMEs), and transport proteins coordinate drug influx (phase 0) and drug/drug-metabolite efflux (phase III). Genes involved in drug metabolism and disposition are induced by xenobiotic-activated nuclear receptors (NRs), i.e. PXR (pregnane X receptor) and CAR (constitutive androstane receptor), and by the 1α, 25-dihydroxy vitamin D3-activated vitamin D receptor (VDR), due to transactivation of xenobiotic-response elements (XREs) present in phase 0-III genes. Additional NRs, like HNF4-α, FXR, LXR-α play important roles in drug metabolism in certain settings, such as in relation to cholesterol and bile acid metabolism. The phase I enzymes CYP3A4/A5, CYP2D6, CYP2B6, CYP2C9, CYP2C19, CYP1A2, CYP2C8, CYP2A6, CYP2J2, and CYP2E1 metabolize >90% of all prescription drugs, and phase II conjugation of hydrophilic functional groups (with/without phase I modification) facilitates drug clearance. The conjugation step is mediated by broad-specificity transferases like UGTs, SULTs, GSTs. This review delves into our current understanding of PXR/CAR/VDR-mediated regulation of DME and transporter expression, as well as effects of single nucleotide polymorphism (SNP) and epigenome (specified by promoter methylation, histone modification, microRNAs, long non coding RNAs) on the expression of PXR/CAR/VDR and phase 0-III mediators, and their impacts on variable drug response. Therapeutic agents that target epigenetic regulation and the molecular basis and consequences (overdosing, underdosing, or beneficial outcome) of drug-drug/drug-food/drug-herb interactions are also discussed. Precision medicine requires understanding of a drug's impact on DME and transporter activity and their NR-regulated expression in order to achieve optimal drug efficacy without adverse drug reactions. In future drug screening, new tools such as humanized mouse models and microfluidic organs-on-chips, which mimic the physiology of a multicellular environment, will likely replace the current cell-based workflow.
Collapse
Affiliation(s)
- Chandra Prakash
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- William Carey University College of Osteopathic Medicine, 498 Tucsan Ave, Hattiesburg, Mississipi 39401
| | - Baltazar Zuniga
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- University of Texas at Austin, 2100 Comal Street, Austin, Texas 78712
| | - Chung Seog Song
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Shoulei Jiang
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Jodie Cropper
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Sulgi Park
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
| | - Bandana Chatterjee
- Department of Molecular Medicine/Institute of Biotechnology, The University of Texas Health Science Center at San Antonio, Texas Research Park, 15355 Lambda Drive, San Antonio, Texas 78245
- South Texas Veterans Health Care System, Audie L Murphy VA Hospital, 7400 Merton Minter Boulevard, San Antonio, Texas 78229
| |
Collapse
|
27
|
Deciphering the roles of the constitutive androstane receptor in energy metabolism. Acta Pharmacol Sin 2015; 36:62-70. [PMID: 25500869 DOI: 10.1038/aps.2014.102] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 08/20/2014] [Indexed: 12/21/2022]
Abstract
The constitutive androstane receptor (CAR) is initially defined as a xenobiotic nuclear receptor that protects the liver from injury. Detoxification of damaging chemicals is achieved by CAR-mediated induction of drug-metabolizing enzymes and transporters. More recent research has implicated CAR in energy metabolism, suggesting a therapeutic potential for CAR in metabolic diseases, such as type 2 diabetes and obesity. A better understanding of the mechanisms by which CAR regulates energy metabolism will allow us to take advantage of its effectiveness while avoiding its side effects. This review summarizes the current progress on the regulation of CAR nuclear translocation, upstream modulators of CAR activity, and the crosstalk between CAR and other transcriptional factors, with the aim of elucidating how CAR regulates glucose and lipid metabolism.
Collapse
|
28
|
Xiong J, Yang H, Wu L, Shang W, Shan E, Liu W, Hu G, Xi T, Yang J. Fluoxetine suppresses AMP-activated protein kinase signaling pathway to promote hepatic lipid accumulation in primary mouse hepatocytes. Int J Biochem Cell Biol 2014; 54:236-44. [PMID: 25102273 DOI: 10.1016/j.biocel.2014.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 07/07/2014] [Accepted: 07/25/2014] [Indexed: 12/11/2022]
Abstract
In the previous study, we demonstrated that fluoxetine (FLX) regulated lipogenic and lipolytic genes to promote hepatic lipid accumulation. On this basis, underlying mechanisms were investigated by focusing on the intracellular signaling transduction in the present study using primary mouse hepatocytes. The expression of lipogenesis- and lipolysis-related genes was evaluated with the application of specific activators and inhibitors. Activation status of respective signaling pathway and the lipid accumulation in hepatocytes were analyzed. We provided evidence that AMP-activated protein kinase (AMPK) activator AICAR (5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside) significantly suppressed the increased expression of representative lipogenesis-related genes, acetyl-CoA carboxylase (ACC) and fatty acid synthase (FAS) by FLX, while increased the repressed expression of lipolysis-related genes, carboxylesterases. In the meanwhile, FLX regulated the above genes in the same way as AMPK inhibitor Compound C did. Furthermore, AICAR inhibited the proteolytic activation of SREBP1c induced by FLX, resulting in the decreased level of nuclear SREBP1c. Further studies demonstrated that FLX significantly suppressed the phosphorylation of AMPK and subsequent phosphorylation of ACC, following the inhibited phosphorylation and nuclear export of liver kinase B1 (LKB1). As a functional analysis, FLX-induced lipid accumulation in hepatocytes was repeatedly abolished by AICAR. In conclusion, FLX-induced hepatic lipid accumulation is mediated by the suppression of AMPK signaling pathway. The findings not only provide new insight into the understanding of the mechanisms for selective serotonin reuptake inhibitors-mediated dyslipidemia effects, but also suggest a novel therapeutic target to interfere.
Collapse
Affiliation(s)
- Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Huan Yang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Lili Wu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Shang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Enfang Shan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Gang Hu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, Jiangsu 210009, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
29
|
Karagianni P, Talianidis I. Transcription factor networks regulating hepatic fatty acid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2014; 1851:2-8. [PMID: 24814048 DOI: 10.1016/j.bbalip.2014.05.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/29/2014] [Accepted: 05/01/2014] [Indexed: 02/06/2023]
Abstract
Tight regulation of lipid levels is critical for cellular and organismal homeostasis, not only in terms of energy utilization and storage, but also to prevent potential toxicity. The liver utilizes a set of hepatic transcription factors to regulate the expression of genes implicated in all aspects of lipid metabolism including catabolism, transport, and synthesis. In this article, we will review the main transcriptional mechanisms regulating the expression of genes involved in hepatic lipid metabolism. The principal regulatory pathways are composed of simple modules of transcription factor crosstalks, which correspond to building blocks of more complex regulatory networks. These transcriptional networks contribute to the regulation of proper lipid homeostasis in parallel to posttranslational mechanisms and end product-mediated modulation of lipid metabolizing enzymes. This article is part of a Special Issue entitled Linking transcription to physiology in lipodomics.
Collapse
Affiliation(s)
| | - Iannis Talianidis
- Biomedical Sciences Research Center Alexander Fleming, 16672 Vari, Greece.
| |
Collapse
|
30
|
Kanno Y, Tanuma N, Yatsu T, Li W, Koike K, Inouye Y. Nigramide J is a novel potent inverse agonist of the human constitutive androstane receptor. Pharmacol Res Perspect 2014; 2:2. [PMID: 25505573 PMCID: PMC4186399 DOI: 10.1002/prp2.18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/10/2022] Open
Abstract
The constitutive androstane receptor (CAR, NR1I3) is very important for drug development and for understanding pharmacokinetic drug-drug interactions. We screened by mammalian one hybrid assay among natural compounds to discover novel ligands of human constitutive androstane receptor (hCAR). hCAR transcriptional activity was measured by luciferase assay and mRNA levels of CYP2B6 and CYP3A4 in HepTR-hCAR cells and human primary hepatocytes were measured by real-time RT-PCR. Nigramide J (NJ) whose efficacy is comparable to those of hitherto known inverse agonists such as clotrimazole, PK11195, and ethinylestradiol. NJ is a naturally occurring cyclohexane-type amide alkaloid that was isolated from the roots of Piper nigrum. The suppressive effect of NJ on the CAR-dependent transcriptional activity was found to be species specific, in the descending order of hCAR, rat CAR, and mouse CAR. The unliganded hCAR-dependent transactivation of reporter and endogenous genes was suppressed by NJ at concentrations higher than 5 μmol/L. The ligand-binding cavity of hCAR was shared by NJ and CITCO, because they were competitive in the binding to hCAR. NJ interfered with the interaction of hCAR with coactivator SRC-1, but not with its interaction with the corepressor NCoR1. Furthermore, NJ is agonist of human pregnane X receptor (hPXR). NJ is a dual ligand of hCAR and hPXR, being an agonist of hPXR and an inverse agonist of hCAR.
Collapse
Affiliation(s)
- Yuichiro Kanno
- Faculty of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Nobuaki Tanuma
- Faculty of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Tomofumi Yatsu
- Faculty of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Kazuo Koike
- Faculty of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| | - Yoshio Inouye
- Faculty of Pharmaceutical Sciences, Toho University Miyama 2-2-1, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
31
|
Rana R, Coulter S, Kinyamu H, Goldstein JA. RBCK1, an E3 ubiquitin ligase, interacts with and ubiquinates the human pregnane X receptor. Drug Metab Dispos 2013; 41:398-405. [PMID: 23160820 PMCID: PMC3558864 DOI: 10.1124/dmd.112.048728] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 10/13/2012] [Indexed: 12/13/2022] Open
Abstract
The pregnane X receptor (PXR, NR1I2) plays a pivotal role in the disposition and detoxification of numerous foreign and endogenous chemicals by increasing transcription of numerous target genes, including phase I and II drug-metabolizing enzymes and transporters. In the present study, yeast two-hybrid screening identified an E3 ubiquitin ligase, RBCK1 (Ring-B-box-coiled-coil protein interacting with protein kinase C-1), as a human pregnane X receptor (hPXR)-interacting protein. Coimmunoprecipitation studies confirmed the interaction between RBCK1 and hPXR when both were ectopically expressed in AD-293 cells. Domain mapping studies showed that the interaction between RBCK1 and hPXR involves all RBCK1 domains. We further demonstrate that RBCK1 ubiquitinates hPXR, and this may target hPXR for degradation by the ubiquitin-proteasome pathway. Simultaneous ectopic overexpression of RBCK1 and PXR decreased PXR levels in AD-293 cells, and this decrease was inhibited by the proteasomal inhibitor MG-132 (carbobenzoxy-Leu-Leu-leucinal). Furthermore, overexpression of RBCK1 decreased endogenous levels of PXR in HepG2 cells. Of importance, ectopic overexpression and silencing of endogenous RBCK1 in primary human hepatocytes resulted in a decrease and increase, respectively, in endogenous PXR protein levels and in the induction of PXR target genes by rifampicin. These results suggest that RBCK1 is important for the ubiquitination of PXR and may play a role in its proteasomal degradation.
Collapse
Affiliation(s)
- Ritu Rana
- Laboratory of Toxicology & Pharmacology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
32
|
Naik A, Belič A, Zanger UM, Rozman D. Molecular Interactions between NAFLD and Xenobiotic Metabolism. Front Genet 2013; 4:2. [PMID: 23346097 PMCID: PMC3550596 DOI: 10.3389/fgene.2013.00002] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 01/03/2013] [Indexed: 01/01/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), the hepatic manifestation of the metabolic syndrome, is a complex multifactorial disease characterized by metabolic deregulations that include accumulation of lipids in the liver, lipotoxicity, and insulin resistance. The progression of NAFLD to non-alcoholic steatohepatitis and cirrhosis, and ultimately to carcinomas, is governed by interplay of pro-inflammatory pathways, oxidative stress, as well as fibrogenic and apoptotic cues. As the liver is the major organ of biotransformation, deregulations in hepatic signaling pathways have effects on both, xenobiotic and endobiotic metabolism. Several major nuclear receptors involved in the transcription and regulation of phase I and II drug metabolizing enzymes and transporters also have endobiotic ligands including several lipids. Hence, hepatic lipid accumulation in steatosis and NAFLD, which leads to deregulated activation patterns of nuclear receptors, may result in altered drug metabolism capacity in NAFLD patients. On the other hand, genetic and association studies have indicated that a malfunction in drug metabolism can affect the prevalence and severity of NAFLD. This review focuses on the complex interplay between NAFLD pathogenesis and drug metabolism. A better understanding of these relationships is a prerequisite for developing improved drug dosing algorithms for the pharmacotherapy of patients with different stages of NAFLD.
Collapse
Affiliation(s)
- Adviti Naik
- Faculty of Computer Sciences and Informatics, University of Ljubljana Ljubljana, Slovenia
| | | | | | | |
Collapse
|
33
|
Xiao L, Wang J, Jiang M, Xie W, Zhai Y. The emerging role of constitutive androstane receptor and its cross talk with liver X receptors and peroxisome proliferator-activated receptor A in lipid metabolism. VITAMINS AND HORMONES 2013; 91:243-58. [PMID: 23374719 DOI: 10.1016/b978-0-12-407766-9.00010-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The regulation of lipid metabolism is central to energy homeostasis in higher multicellular organisms. Lipid homeostasis depends on factors that are able to transduce metabolic parameters into regulatory events representing the fundamental components of the general control system. Nuclear receptors form a superfamily of ligand-activated transcription factors implicated in various physiological functions including energy metabolism. The constitutive androstane receptor (CAR, NR1I3), initially identified as a xenobiotic-sensing receptor, may also have roles in lipid homeostasis. The nuclear receptors liver X receptors (LXRs, NR1H2/3) and peroxisome proliferator-activated receptors (PPARs, NR1C) have been known for their roles in lipid metabolism. LXR is a sterol sensor that promotes lipogenesis, whereas PPARα controls a variety of genes in several pathways of lipid metabolism. This chapter focuses primarily on the role of CAR in lipid metabolism directly or through its cross talk with LXRs and PPARα.
Collapse
Affiliation(s)
- Lei Xiao
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, Biomedicine Research Institute and College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | |
Collapse
|
34
|
Laurenzana EM, Chen T, Kannuswamy M, Sell BE, Strom SC, Li Y, Omiecinski CJ. The orphan nuclear receptor DAX-1 functions as a potent corepressor of the constitutive androstane receptor (NR1I3). Mol Pharmacol 2012; 82:918-28. [PMID: 22896671 PMCID: PMC3477224 DOI: 10.1124/mol.112.080721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/15/2012] [Indexed: 12/16/2022] Open
Abstract
Regulation of gene transcription is controlled in part by nuclear receptors that function coordinately with coregulator proteins. The human constitutive androstane receptor (CAR; NR1I3) is expressed primarily in liver and regulates the expression of genes involved in xenobiotic metabolism as well as hormone, energy, and lipid homeostasis. In this report, DAX-1, a nuclear receptor family member with corepressor properties, was identified as a potent CAR regulator. Results of transaction and mutational studies demonstrated that both DAX-1's downstream LXXLL and its PCFQVLP motifs were critical contributors to DAX-1's corepression activities, although two other LXXM/LL motifs located nearer the N terminus had no impact on the CAR functional interaction. Deletion of DAX-1's C-terminal transcription silencing domain restored CAR1 transactivation activity in reporter assays to approximately 90% of control, demonstrating its critical function in mediating the CAR repression activities. Furthermore, results obtained from mammalian two-hybrid experiments assessing various domain configurations of the respective receptors showed that full-length DAX-1 inhibited the CAR-SRC1 interaction by approximately 50%, whereas the same interaction was restored to 90% of control when the DAX-1 transcription silencing domain was deleted. Direct interaction between CAR and DAX-1 was demonstrated with both alpha-screen and coimmunoprecipitation experiments, and this interaction was enhanced in the presence of the CAR activator 6-(4-chlorophenyl)imidazo[2,1-b]thiazole-5-carbaldehyde O-(3,4-dichlorobenzyl)oxime (CITCO). Results obtained in primary human hepatocytes further demonstrated DAX-1 inhibition of CAR-mediated CITCO induction of the CYP2B6 target gene. The results of this investigation identify DAX-1 as a novel and potent CAR corepressor and suggest that DAX-1 functions as a coordinate hepatic regulator of CAR's biological function.
Collapse
Affiliation(s)
- Elizabeth M Laurenzana
- Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Tovar-Palacio C, Torres N, Diaz-Villaseñor A, Tovar AR. The role of nuclear receptors in the kidney in obesity and metabolic syndrome. GENES AND NUTRITION 2012; 7:483-98. [PMID: 22532116 DOI: 10.1007/s12263-012-0295-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 04/02/2012] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcriptional regulators of several key aspects of renal physiology and pathophysiology. As such, nuclear receptors control a large variety of metabolic processes, including kidney lipid metabolism, drug clearance, inflammation, fibrosis, cell differentiation, and oxidative stress. Derangement of nuclear receptor regulation, that is, mainly due to obesity may induce metabolic syndrome, may contribute to the pathogenesis and progression of chronic renal disease and may result in end-stage renal disease. This places nuclear receptors at the forefront of novel therapeutic approaches for a broad range of kidney disorders and diseases, including glomerulosclerosis, tubulointerstitial disease, renal lipotoxicity, kidney fibrosis, and hypertension. This review focuses on the importance of the transcription factors peroxisome proliferator-activated receptor alpha, peroxisome proliferator-activated receptor beta, peroxisome proliferator-activated receptor gamma, liver X receptors, farnesoid X receptor, and the pregnane X receptor/steroid and xenobiotic receptor (PXR) on the physiology and pathophysiology of renal diseases associated with obesity and metabolic syndrome.
Collapse
Affiliation(s)
- Claudia Tovar-Palacio
- Department of Nephrology and Mineral Metabolism, National Medical Science and Nutrition Institute, Salvador Zubirán, Vasco de Quiroga No. 15, Tlalpan, 14000, Mexico, D.F., Mexico,
| | | | | | | |
Collapse
|
36
|
Monitoring Cyp2b10 mRNA expression at cessation of 2-year carcinogenesis bioassay in mouse liver provides evidence for a carcinogenic mechanism devoid of human relevance: The dalcetrapib experience. Toxicol Appl Pharmacol 2012; 259:355-65. [DOI: 10.1016/j.taap.2012.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 01/16/2012] [Accepted: 01/19/2012] [Indexed: 11/23/2022]
|
37
|
Masuyama H, Hiramatsu Y. Treatment with a constitutive androstane receptor ligand ameliorates the signs of preeclampsia in high-fat diet-induced obese pregnant mice. Mol Cell Endocrinol 2012; 348:120-7. [PMID: 21839802 DOI: 10.1016/j.mce.2011.07.047] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 07/24/2011] [Accepted: 07/26/2011] [Indexed: 11/24/2022]
Abstract
Constitutive androstane receptor (CAR) has been reported to decrease insulin resistance, while obesity and insulin resistance may also be involved in the pathogenesis of preeclampsia. We examined whether a CAR ligand, 1,4-bis(2-(3,5-dichloropyridyloxy)) benzene (TCPOBOP), can ameliorate the signs of preeclampsia in high-fat diet (HFD)-induced obese pregnant mice to examine a possibility of CAR as a therapeutic target. We employed six groups including non-pregnant, HFD-fed or control diet-fed pregnant mice with or without TCPOBOP treatment (n=6). In HFD pregnant mice, insulin resistance increased with increasing expression of gluconeogenic and lipogenic genes and abnormal adipocytokine levels. TCPOBOP treatment, which was once-weekly intraperitoneal injections (0.5 mg/kg) and started at day 0.5 of pregnancy, improved glucose tolerance with significant changes of gluconeogenic, lipogenic and adipocytokine genes. HFD pregnant mice had hypertension and proteinuria, while TCPOBOP treatment ameliorated these signs. Our data suggested CAR might be a potential therapeutic target for obese preeclampsia patients with insulin resistance.
Collapse
Affiliation(s)
- H Masuyama
- Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Department of Obstetrics and Gynecology, Okayama, Japan.
| | | |
Collapse
|
38
|
Gessner DK, Ringseis R, Möller C, Eder K. Increased plasma thyroid hormone concentrations in LDL receptor deficient mice may be explained by inhibition of aryl hydrocarbon receptor-dependent expression of hepatic UDP-glucuronosyltransferases. Biochim Biophys Acta Gen Subj 2011; 1820:495-502. [PMID: 22185956 DOI: 10.1016/j.bbagen.2011.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 11/25/2011] [Accepted: 12/04/2011] [Indexed: 10/14/2022]
Abstract
BACKGROUND Overexpression of SREBP-1 causes a repression of hepatic genes involved in phase II metabolism. In LDL receptor deficient (LDLR(-/-)) mice, active levels of SREBP-1 in the liver are increased. We investigated the hypothesis that LDLR(-/-) mice have increased concentrations of thyroid hormones in plasma due to a reduced hepatic glucuronidation. METHODS Female LDLR(-/-) and wild-type mice were used to study the effect of the LDLR(-/-) genotype on thyroid hormone metabolism. RESULTS LDLR(-/-) mice had a higher concentration of nuclear SREBP-1, higher concentrations of thyroxine and triiodothyronine in plasma, a lower expression of relevant UGT1A isoforms, reduced activities of pNP-UGT, T(3)-UGT and T(4)-UGT and a lower mRNA and protein concentration of AhR in the liver than wild-type mice (P<0.05). Plasma concentration of TSH, mRNA concentrations of various genes involved in thyroid hormone synthesis in the thyroid, activity of deiodinase and mRNA concentrations of two thyroid hormone responsive genes, CYP7A1 and Na(+)/K(+)-ATPase, in the liver did not differ between both genotypes. CONCLUSIONS This study shows that LDLR(-/-) mice have increased concentrations of thyroid hormones in plasma. This effect is probably due to an inhibition of thyroid hormone glucuronidation, which might be caused by down-regulation of UGT genes due to a reduced expression of AhR. However, with respect to plasma TSH concentration and expression of thyroid hormone responsive genes no overt hyperthyroidism was detected. GENERAL SIGNIFICANCE LDL receptor deficiency leads to a reduced glucuronidation of thyroid hormones in the liver which causes a moderate increase of plasma thyroid hormone concentrations.
Collapse
Affiliation(s)
- Denise K Gessner
- Institute of Animal Nutrition and Nutrition Physiology, Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | | | |
Collapse
|
39
|
Masuyama H, Hiramatsu Y. Potential role of estradiol and progesterone in insulin resistance through constitutive androstane receptor. J Mol Endocrinol 2011; 47:229-39. [PMID: 21768169 DOI: 10.1530/jme-11-0046] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Normal pregnancy is characterized by insulin resistance, which contributes to the development of gestational diabetes mellitus and preeclampsia by incompletely understood mechanisms. The constitutive androstane receptor (CAR) may participate in insulin resistance in pregnancy, and sex steroids, estradiol (E(2)) and progesterone, may also be involved. We applied glucose and insulin tolerance tests and measured the expression of gluconeogenic and lipogenic genes in the livers of oophorectomized mice treated with E(2) and progesterone with or without CAR ligands. We also investigated how E(2) and progesterone affected CAR-mediated signaling and the activity of transcription factors in gluconeogenesis in vitro. Mice with the concentrations of E(2) and progesterone within normal physiological range during pregnancy exhibited increased insulin resistance along with increased expression of gluconeogenic and lipogenic genes, and CAR activation rescued the abnormal glucose metabolism. In HepG2 cells, CAR ligands suppressed the gluconeogenic and lipogenic gene expression in the presence of E(2) and/or progesterone. DNA affinity immunoblotting and chromatin immunoprecipitation assay revealed that CAR ligand enhanced the recruitment of the gluconeogenic transcription factors, forkhead box O1 (FOXO1) and hepatocyte nuclear factor 4α (HNF4α), but sex steroids suppressed these recruitments on the CAR responsive element. Moreover, CAR ligand suppressed the recruitment of FOXO1 and HNF4α on their responsive element in gluconeogenic gene promoters and E(2) and progesterone augmented these recruitments on their responsive element. Taken together, these findings suggest that the activation of CAR-mediated signaling may ameliorate insulin resistance under relatively high concentrations of E(2) and progesterone, which were compatible with pregnancy via decreased activities of transcription factors in gluconeogenesis in combination with CAR.
Collapse
Affiliation(s)
- Hisashi Masuyama
- Department of Obstetrics and Gynecology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata, Kita-ku, Okayama 700-8558, Japan.
| | | |
Collapse
|
40
|
Merrell MD, Cherrington NJ. Drug metabolism alterations in nonalcoholic fatty liver disease. Drug Metab Rev 2011; 43:317-34. [PMID: 21612324 DOI: 10.3109/03602532.2011.577781] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Drug-metabolizing enzymes play a vital role in the elimination of the majority of therapeutic drugs. The major organ involved in drug metabolism is the liver. Chronic liver diseases have been identified as a potential source of significant interindividual variation in metabolism. Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the United States, affecting between 60 and 90 million Americans, yet the vast majority of NAFLD patients are undiagnosed. NAFLD encompasses a spectrum of pathologies, ranging from steatosis to nonalcoholic steatohepatitis and fibrosis. Numerous animal studies have investigated the effects of NAFLD on hepatic gene expression, observing significant alterations in mRNA, protein, and activity levels. Information on the effects of NAFLD in human patients is limited, though several significant investigations have recently been published. Significant alterations in the activity of drug-metabolizing enzymes may affect the clearance of therapeutic drugs, with the potential to result in adverse drug reactions. With the enormous prevalence of NAFLD, it is conceivable that every drug currently on the market is being given to patients with NAFLD. The current review is intended to present the results from both animal models and human patients, summarizing the observed alterations in the expression and activity of the phase I and II drug-metabolizing enzymes.
Collapse
Affiliation(s)
- Matthew D Merrell
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, USA
| | | |
Collapse
|
41
|
Režen T. The impact of cholesterol and its metabolites on drug metabolism. Expert Opin Drug Metab Toxicol 2011; 7:387-98. [PMID: 21320036 DOI: 10.1517/17425255.2011.558083] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Global prevalence of Western-type diet has increased in the last decades resulting in occurrence of certain chronic diseases. This type of diet is also linked to high-cholesterol intake and increase in blood cholesterol. Many of the molecular mechanisms of dealing with increased levels of cholesterol and its metabolites have been elucidated in animal models and humans. It is also evident that cholesterol metabolism is closely connected to drug metabolism. Cholesterol/bile acids and drugs share many transporters, enzymes and regulatory proteins which are key points in the crosstalk. AREAS COVERED This review presents an overview of the effect of cholesterol and its metabolites on drug metabolism with special emphasis on species-specific differences. The article focuses on the role of nuclear receptors farnesoid X receptor, vitamin D receptor and liver X receptor in the regulation of drug metabolism genes and the role of cholesterol biosynthesis intermediates, oxysterols and bile acids in the induction of drug metabolism through pregnane X receptor. EXPERT OPINION Studies show that the regulation of drug metabolism by sterols is multileveled. Many species-dependent differences were observed which hinder the transfer of findings from model animals to humans. As of now, there is little evidence available for cholesterol impact on drug metabolism in vivo in humans. There is also the need to confirm the results obtained in animal models and in vitro analyses in human cells but this is very difficult given the current lack of tools.
Collapse
Affiliation(s)
- Tadeja Režen
- Faculty of Medicine, University of Ljubljana, Institute of Biochemistry, Vrazov Trg 2, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
42
|
Dring AM, Anderson LE, Qamar S, Stoner MA. Rational quantitative structure-activity relationship (RQSAR) screen for PXR and CAR isoform-specific nuclear receptor ligands. Chem Biol Interact 2010; 188:512-25. [PMID: 20869355 PMCID: PMC2997817 DOI: 10.1016/j.cbi.2010.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 09/15/2010] [Accepted: 09/16/2010] [Indexed: 12/11/2022]
Abstract
Constitutive androstane receptor (CAR) and pregnane X receptor (PXR) are closely related orphan nuclear receptor proteins that share several ligands and target overlapping sets of genes involved in homeostasis and all phases of drug metabolism. CAR and PXR are involved in the development of certain diseases, including diabetes, metabolic syndrome and obesity. Ligand screens for these receptors so far have typically focused on steroid hormone analogs with pharmacophore-based approaches, only to find relatively few new hits. Multiple CAR isoforms have been detected in human liver, with the most abundant being the constitutively active reference, CAR1, and the ligand-dependent isoform CAR3. It has been assumed that any compound that binds CAR1 should also activate CAR3, and so CAR3 can be used as a ligand-activated surrogate for CAR1 studies. The possibility of CAR3-specific ligands has not, so far, been addressed. To investigate the differences between CAR1, CAR3 and PXR, and to look for more CAR ligands that may be of use in quantitative structure-activity relationship (QSAR) studies, we performed a luciferase transactivation assay screen of 60 mostly non-steroid compounds. Known active compounds with different core chemistries were chosen as starting points and structural variants were rationally selected for screening. Distinct differences in agonist versus inverse agonist/antagonist effects were seen in 49 compounds that had some ligand effect on at least one receptor and 18 that had effects on all three receptors; eight were CAR1 ligands only, three were CAR3 only ligands and four affected PXR only. This work provides evidence for new CAR ligands, some of which have CAR3-specific effects, and provides observational data on CAR and PXR ligands with which to inform in silico strategies. Compounds that demonstrated unique activity on any one receptor are potentially valuable diagnostic tools for the investigation of in vivo molecular targets.
Collapse
Affiliation(s)
- Ann M. Dring
- Department of Biomedical and Pharmaceutical Sciences, Rhode Island IDeA Network of Biomedical Research Excellence, Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Linnea E. Anderson
- Department of Biomedical and Pharmaceutical Sciences, Rhode Island IDeA Network of Biomedical Research Excellence, Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Saima Qamar
- Department of Biomedical and Pharmaceutical Sciences, Rhode Island IDeA Network of Biomedical Research Excellence, Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881
| | - Matthew A. Stoner
- Department of Biomedical and Pharmaceutical Sciences, Rhode Island IDeA Network of Biomedical Research Excellence, Center for Molecular Toxicology, College of Pharmacy, University of Rhode Island, Kingston, Rhode Island, 02881
| |
Collapse
|
43
|
Gao J, Xie W. Pregnane X receptor and constitutive androstane receptor at the crossroads of drug metabolism and energy metabolism. Drug Metab Dispos 2010; 38:2091-5. [PMID: 20736325 PMCID: PMC2993451 DOI: 10.1124/dmd.110.035568] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Accepted: 08/23/2010] [Indexed: 12/11/2022] Open
Abstract
The pregnane X receptor (PXR) and the constitutive androstane receptor (CAR) are two closely related and liver-enriched nuclear hormone receptors originally defined as xenobiotic receptors. PXR and CAR regulate the transcription of drug-metabolizing enzymes and transporters, which are essential in protecting our bodies from the accumulation of harmful chemicals. An increasing body of evidence suggests that PXR and CAR also have an endobiotic function that impacts energy homeostasis through the regulation of glucose and lipids metabolism. Of note and in contrast, disruptions of energy homeostasis, such as those observed in obesity and diabetes, also have a major impact on drug metabolism. This review will focus on recent progress in our understanding of the integral role of PXR and CAR in drug metabolism and energy homeostasis.
Collapse
Affiliation(s)
- Jie Gao
- Center for Pharmacogenetics and Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
44
|
Functional crosstalk of CAR-LXR and ROR-LXR in drug metabolism and lipid metabolism. Adv Drug Deliv Rev 2010; 62:1316-21. [PMID: 20659512 DOI: 10.1016/j.addr.2010.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 07/06/2010] [Accepted: 07/19/2010] [Indexed: 11/23/2022]
Abstract
Nuclear receptor crosstalk represents an important mechanism to expand the functions of individual receptors. The liver X receptors (LXR, NR1H2/3), both the α and β isoforms, are nuclear receptors that can be activated by the endogenous oxysterols and other synthetic agonists. LXRs function as cholesterol sensors, which protect mammals from cholesterol overload. LXRs have been shown to regulate the expression of a battery of metabolic genes, especially those involved in lipid metabolism. LXRs have recently been suggested to play a novel role in the regulation of drug metabolism. The constitutive androstane receptor (CAR, NR1I3) is a xenobiotic receptor that regulates the expression of drug-metabolizing enzymes and transporters. Disruption of CAR alters sensitivity to toxins, increasing or decreasing it depending on the compounds. More recently, additional roles for CAR have been discovered. These include the involvement of CAR in lipid metabolism. Mechanistically, CAR forms an intricate regulatory network with other members of the nuclear receptor superfamily, foremost the LXRs, in exerting its effect on lipid metabolism. Retinoid-related orphan receptors (RORs, NR1F1/2/3) have three isoforms, α, β and γ. Recent reports have shown that loss of RORα and/or RORγ can positively or negatively influence the expression of multiple drug-metabolizing enzymes and transporters in the liver. The effects of RORs on expression of drug-metabolizing enzymes were reasoned to be, at least in part, due to the crosstalk with LXR. This review focuses on the CAR-LXR and ROR-LXR crosstalk, and the implications of this crosstalk in drug metabolism and lipid metabolism.
Collapse
|
45
|
Zhai Y, Wada T, Zhang B, Khadem S, Ren S, Kuruba R, Li S, Xie W. A functional cross-talk between liver X receptor-α and constitutive androstane receptor links lipogenesis and xenobiotic responses. Mol Pharmacol 2010; 78:666-74. [PMID: 20592274 PMCID: PMC2981386 DOI: 10.1124/mol.110.064618] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 06/30/2010] [Indexed: 12/23/2022] Open
Abstract
The liver X receptor (LXR) and constitutive androstane receptor (CAR) are two nuclear receptors postulated to have distinct functions. LXR is a sterol sensor that promotes lipogenesis, whereas CAR is a xenosensor that controls xenobiotic responses. Here, we show that LXRα and CAR are functionally related in vivo. Loss of CAR increased the expression of lipogenic LXR target genes, leading to increased hepatic triglyceride accumulation, whereas activation of CAR inhibited the expression of LXR target genes and LXR ligand-induced lipogenesis. On the other hand, a combined loss of LXR α and β increased the basal expression of xenobiotic CAR target genes, whereas activation of LXR inhibited the expression of CAR target genes and sensitized mice to xenobiotic toxicants. The mutual suppression between LXRα and CAR was also observed in cell culture and reporter gene assays. LXRα, like CAR, exhibited constitutive activity in the absence of an exogenously added ligand by recruiting nuclear receptor coactivators. Interestingly, although CAR competed with LXRα for coactivators, the constitutive activity and recruitment of coactivators was not required for CAR to suppress the activity of LXRα. In vivo chromatin immunoprecipitation assay showed that cotreatment of a CAR agonist compromised the LXR agonist responsive recruitment of LXRα to Srebp-1c, whereas an LXR agonist inhibited the CAR agonist-responsive recruitment of CAR to Cyp2b10. In conclusion, our results have revealed dual functions of LXRα and CAR in lipogenesis and xenobiotic responses, establishing a unique role of these two receptors in integrating xenobiotic and endobiotic homeostasis.
Collapse
Affiliation(s)
- Yonggong Zhai
- Key Laboratory for Cell Proliferation and Regulation Biology, Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Mukherjee S, Mani S. Orphan nuclear receptors as targets for drug development. Pharm Res 2010; 27:1439-68. [PMID: 20372994 PMCID: PMC3518931 DOI: 10.1007/s11095-010-0117-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 03/04/2010] [Indexed: 12/31/2022]
Abstract
Orphan nuclear receptors regulate diverse biological processes. These important molecules are ligand-activated transcription factors that act as natural sensors for a wide range of steroid hormones and xenobiotic ligands. Because of their importance in regulating various novel signaling pathways, recent research has focused on identifying xenobiotics targeting these receptors for the treatment of multiple human diseases. In this review, we will highlight these receptors in several physiologic and pathophysiologic actions and demonstrate how their functions can be exploited for the successful development of newer drugs.
Collapse
Affiliation(s)
- Subhajit Mukherjee
- Departments of Medicine, Genetics and Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 302-D1, Bronx, New York 10461, USA
| | - Sridhar Mani
- Departments of Medicine, Genetics and Cancer Center, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Chanin 302-D1, Bronx, New York 10461, USA
| |
Collapse
|
47
|
Ennulat D, Walker D, Clemo F, Magid-Slav M, Ledieu D, Graham M, Botts S, Boone L. Effects of Hepatic Drug-metabolizing Enzyme Induction on Clinical Pathology Parameters in Animals and Man. Toxicol Pathol 2010; 38:810-28. [DOI: 10.1177/0192623310374332] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic drug-metabolizing enzyme (DME) induction is an adaptive response associated with changes in preclinical species; this response can include increases in liver weight, hepatocellular hyperplasia and hypertrophy, and upregulated tissue expression of DMEs. Effects of DME induction on clinical pathology markers of hepatobiliary injury and function in animals as well as humans are not well established. This component of a multipart review of the comparative pathology of xenobiotically mediated induction of hepatic metabolizing enzymes reviews pertinent data from retrospective and prospective preclinical and clinical studies. Particular attention is given to studies with confirmation of DME induction and concurrent evaluation of liver and/or serum hepatobiliary marker enzyme activities and histopathology. These results collectively indicate that in the rat, when histologic findings are limited to hepatocellular hypertrophy, DME induction is not expected to be associated with consistent or substantive changes in serum or plasma activity of hepatobiliary marker enzymes such as alanine aminotransferase, alkaline phosphatase, and gamma glutamyltransferase. In the dog and the monkey, published studies also do not demonstrate a consistent relationship across DME-inducing agents and changes in these clinical pathology parameters. However, increased liver alkaline phosphatase or gamma glutamyltransferase activity in dogs treated with phenobarbital or corticosteroids suggests that direct or indirect induction of select hepatobiliary injury markers can occur both in the absence of liver injury and independently of induction of DME activity. Although correlations between tissue and serum levels of these hepatobiliary markers are limited and inconsistent, increases in serum/plasma activities that are substantial or involve changes in other markers generally reflect hepatobiliary insult rather than DME induction. Extrahepatic effects, including disruption of the hypothalamic-pituitary-thyroid axis, can also occur as a direct outcome of hepatic DME induction in humans and animals. Importantly, hepatic DME induction and associated changes in preclinical species are not necessarily predictive of the occurrence, magnitude, or enzyme induction profile in humans.
Collapse
Affiliation(s)
| | - Dana Walker
- Bristol-Myers Squibb, East Syracuse, New York, USA
| | | | | | | | - Mark Graham
- AstraZeneca, Loughborough, Leicestershire, UK
| | | | - Laura Boone
- Covance Laboratories, Greenfield, Indiana, USA
| |
Collapse
|
48
|
Gyamfi MA, Wan YJY. Pathogenesis of alcoholic liver disease: the role of nuclear receptors. Exp Biol Med (Maywood) 2010; 235:547-60. [PMID: 20463294 DOI: 10.1258/ebm.2009.009249] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Ethanol consumption causes fatty liver, which can lead to inflammation, fibrosis, cirrhosis and even liver cancer. The molecular mechanisms by which ethanol exerts its damaging effects are extensively studied, but not fully understood. It is now evident that nuclear receptors (NRs), including retinoid x receptor alpha and peroxisome proliferator-activated receptors, play key roles in the regulation of lipid homeostasis and inflammation during the pathogenesis of alcoholic liver disease (ALD). Given their pivotal roles in physiological processes, NRs represent potential therapeutic targets for the treatment and prevention of numerous metabolic and lipid-related diseases including ALD. This review summarizes the factors that contribute to ALD and the molecular mechanisms of ALD with a focus on the role of NRs.
Collapse
Affiliation(s)
- Maxwell Afari Gyamfi
- Department of Pharmacology, Toxicology, and Therapeutics, University of Kansas Medical Center, 3901 Rainbow Blvd, Kansas City, Kansas 66160-7417, USA
| | | |
Collapse
|
49
|
Amacher DE. The effects of cytochrome P450 induction by xenobiotics on endobiotic metabolism in pre-clinical safety studies. Toxicol Mech Methods 2010; 20:159-66. [DOI: 10.3109/15376511003690307] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
50
|
Björkholm B, Bok CM, Lundin A, Rafter J, Hibberd ML, Pettersson S. Intestinal microbiota regulate xenobiotic metabolism in the liver. PLoS One 2009; 4:e6958. [PMID: 19742318 PMCID: PMC2734986 DOI: 10.1371/journal.pone.0006958] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/08/2009] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND The liver is the central organ for xenobiotic metabolism (XM) and is regulated by nuclear receptors such as CAR and PXR, which control the metabolism of drugs. Here we report that gut microbiota influences liver gene expression and alters xenobiotic metabolism in animals exposed to barbiturates. PRINCIPAL FINDINGS By comparing hepatic gene expression on microarrays from germfree (GF) and conventionally-raised mice (SPF), we identified a cluster of 112 differentially expressed target genes predominantly connected to xenobiotic metabolism and pathways inhibiting RXR function. These findings were functionally validated by exposing GF and SPF mice to pentobarbital which confirmed that xenobiotic metabolism in GF mice is significantly more efficient (shorter time of anesthesia) when compared to the SPF group. CONCLUSION Our data demonstrate that gut microbiota modulates hepatic gene expression and function by altering its xenobiotic response to drugs without direct contact with the liver.
Collapse
Affiliation(s)
- Britta Björkholm
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
| | - Chek Mei Bok
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
- Genome Institute of Singapore, Singapore, Singapore
| | - Annelie Lundin
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
- Genome Institute of Singapore, Singapore, Singapore
| | - Joseph Rafter
- Department of Biosciences and Nutrition, Karolinska University Hospital, Huddinge, Novum, Stockholm, Sweden
| | | | - Sven Pettersson
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Stockholm, Sweden
- Genome Institute of Singapore, Singapore, Singapore
- * E-mail:
| |
Collapse
|