1
|
Boucher DM, Rochon V, Laval T, Lorant V, Carter A, Emerton C, Joyce N, Vinayak N, Scaffidi M, Auer RC, Gordon SM, Ouimet MI. Postoperative Stress Accelerates Atherosclerosis through Inflammatory Remodeling of the HDL Proteome and Impaired Reverse Cholesterol Transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.02.651357. [PMID: 40342966 PMCID: PMC12060993 DOI: 10.1101/2025.05.02.651357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
BACKGROUND Over 10 million patients undergoing non-cardiac surgery annually experience major cardiovascular complications within 30 days, many due to destabilized atherosclerotic plaques. Reverse cholesterol transport (RCT), a key pathway for cholesterol removal by HDL and apoA-I, is critical in preventing plaque progression. While surgery-induced inflammation is known to impair HDL function, its effects on RCT and plaque stability remain unclear. METHODS To isolate the impact of surgical inflammation, independent of blood loss, we developed an abdominal laparotomy model in apoE -/- mice on a Western diet, minimizing blood loss and avoiding perioperative blood sampling. We assessed plasma cholesterol efflux capacity, performed proteomic analysis of HDL, and analyzed atherosclerotic plaques for lipid content, perilipin-2 (PLIN2), cleaved-caspase-3 (c-Casp-3), and necrotic core expansion. A novel dual-label, dual-cell-type in vivo RCT model was developed to compare RCT from macrophage-derived (BMDMs) and vascular smooth muscle cells (VSMCs)-derived foam cells. Recombinant apoA-I (rApoA-I) was tested for therapeutic rescue of impaired RCT. RESULTS Surgery significantly reduced RCT for at least 48 hours, paralleled by a drop in cholesterol efflux capacity and inflammatory remodeling of HDL, marked by elevated serum amyloid A (SAA1/2) and reduced apoA-I. Plaques showed a 1.6-fold increase in intracellular lipids and PLIN2 expression at 24 hours post-surgery, with elevated c-Casp-3 indicating lipid-driven apoptosis. Foam cell analysis revealed increased PLIN2 in both CD45 + (leukocyte) and CD45 - (non-leukocyte) subtypes, with leukocyte foam cells expressing higher PLIN2. c-Casp-3 + apoptotic cells were predominantly PLIN2 high and of both leukocytic and non-leukocytic origin. By day 15, the necrotic core area increased by 1.5-fold with sustained loss of plaque cellularity. Using our dual-cell-type RCT model, we found that surgery significantly impaired BMDM RCT in vivo , while VSMC RCT remained largely unaffected, highlighting foam cell subtype-specific vulnerability to surgical inflammation. These findings were mirrored in general surgery patients, whose postoperative plasma exhibited markedly reduced cholesterol efflux capacity. In mice, rApoA-I treatment partially restored RCT and reduced plaque lipid accumulation. CONCLUSIONS Surgical inflammation acutely impairs HDL function and RCT, triggering lipid accumulation, foam cell apoptosis, and accelerated plaque destabilization independent of blood loss. Immediate restoration of apoA-I at the time of surgery, aiming to counteract the acute phase response, may offer a targeted strategy to reduce postoperative cardiovascular risk.
Collapse
|
2
|
Schonfeld M, Nataraj K, Weinman S, Tikhanovich I. C/EBPβ transcription factor promotes alcohol-induced liver fibrosis in males via HDL remodeling. Hepatol Commun 2025; 9:e0645. [PMID: 39969482 PMCID: PMC11841851 DOI: 10.1097/hc9.0000000000000645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/16/2024] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Alcohol-associated liver disease (ALD) is the main cause of alcohol-associated mortality. However, the mechanism of ALD development is poorly understood. Epigenetic changes are thought to play an important role in ALD. We aimed to define the epigenetic changes induced by alcohol and predict drivers of these changes. METHODS Mice were fed high-fat diet with or without 20% of alcohol in the drinking water for 20 weeks (WDA model). scATAC-seq data set was analyzed using Signac R package. To test the role of C/EBPβ, Cebpb-floxed mice were treated with AAV8-TBG-Cre or AAV8-control. RESULTS We analyzed differentially accessible regions in livers from control and alcohol-fed mice and found that activity of C/EBPβ transcription factor was associated with alcohol-induced epigenetic changes in hepatocytes. C/EBPβ protein levels were significantly upregulated in multiple models of ALD and human ALD samples. Using hepatocyte-specific Cebpb knockout mice we found that Cebpb loss protected male mice from alcohol-induced fibrosis development. We found no protection in female mice, suggesting that this mechanism is specific to male ALD. In vitro studies suggested that the protective effect of Cebpb loss was mediated by altered hepatocyte-macrophage cross talk. Cebpb knockout in hepatocytes reduced a profibrotic and promoted a pro-resolving phenotype in macrophages, thus modulating ALD development. We further identified the mediators of the cross talk. Cebpb knockout altered the expression of several HDL protein components, increasing APOA1 and apolipoprotein M and reducing apolipoprotein E and SAA levels in male mice. HDL secreted by Cebpb knockout hepatocytes was sufficient to confer anti-inflammatory and antifibrotic changes to macrophages. CONCLUSIONS Taken together, alcohol-induced C/EBPβ activation is a key driver of ALD fibrosis in males via C/EBPβ-dependent HDL remodeling.
Collapse
Affiliation(s)
- Michael Schonfeld
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kruti Nataraj
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Steven Weinman
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
- Kansas City VA Medical Center, Kansas City, Missouri, USA
| | - Irina Tikhanovich
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, USA
| |
Collapse
|
3
|
Giannattasio A, Castaldo A, Grieco M, Gelzo M, Cernera G, Castaldo G, Tipo V. Serum HDL and their subfractions are impaired in multisystem inflammatory syndrome in children (MIS-C). J Transl Med 2025; 23:99. [PMID: 39838487 PMCID: PMC11752960 DOI: 10.1186/s12967-025-06123-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/08/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Multisystem inflammatory syndrome in children (MIS-C) is a severe post-COVID condition due to a delayed hyperimmune response to SARS-CoV-2. High-density lipoproteins (HDL) are pivotal players in inflammatory and immune modulation through the remodeling of their subfractions. METHODS This study aimed to evaluate serum levels of cholesterol, HDL, and HDL subfractions (HDL-SUB) to define their role in the pathogenesis of MIS-C and their potential use as biomarkers of this condition. We analyzed serum cholesterol, HDL and HDL-SUB (by capillary electrophoresis) in relation to serum values of biomarkers of inflammation and endothelial damage (by microfluidic immunoassays) in 48 patients with MIS-C at hospital admission and in 48 age- and sex-matched healthy controls. RESULTS Serum cholesterol, as well as HDL, were significantly lower in MIS-C patients than controls. Serum cholesterol was inversely correlated with all biomarkers of inflammation, confirming the impact of cytokines on reverse cholesterol transport, whereas HDL values were inversely correlated with serum biomarkers of endothelial damage, suggesting a role of HDL in endothelial damage in MIS-C patients. Furthermore, we found a remodeling of HDL-SUB with a more pronounced decrease in small HDL that have anti-inflammatory activity. CONCLUSIONS These data confirm the severe impairment of reverse cholesterol transport in MIS-C and indicate serum HDL and HDL-SUB as potential useful diagnostic biomarkers of MIS-C.
Collapse
Affiliation(s)
| | - Alice Castaldo
- SC di Pneumologia e UTSIR, AORN Santobono-Pausilipon, Naples, Italy
- Dipartimento di Scienze Mediche Traslazionali, Sezione di Pediatria, Università di Napoli Federico II, Naples, Italy
| | - Michela Grieco
- Dipartimento di Pediatria Generale e d'Urgenza, AORN Santobono-Pausilipon, Naples, Italy
| | - Monica Gelzo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131, Naples, Italy.
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy.
| | - Gustavo Cernera
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Giuseppe Castaldo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Via Pansini 5, 80131, Naples, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Naples, Italy
| | - Vincenzo Tipo
- Dipartimento di Pediatria Generale e d'Urgenza, AORN Santobono-Pausilipon, Naples, Italy
| |
Collapse
|
4
|
Elgizawy EI, Amer GS, Ali EA, Alqalashy FS, Ibrahim MM, Latif AAA, Shaban AM. Comparing the efficacy of concomitant treatment of resistance exercise and creatine monohydrate versus multiple individual therapies in age related sarcopenia. Sci Rep 2024; 14:9798. [PMID: 38684784 PMCID: PMC11058861 DOI: 10.1038/s41598-024-59884-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/16/2024] [Indexed: 05/02/2024] Open
Abstract
Aging-related sarcopenia is a degenerative loss of strength and skeletal muscle mass that impairs quality of life. Evaluating NUDT3 gene and myogenin expression as new diagnostic tools in sarcopenia. Also, comparing the concomitant treatment of resistance exercise (EX) and creatine monohydrate (CrM) versus single therapy by EX, coenzyme Q10 (CoQ10), and CrM using aged rats. Sixty male rats were equally divided into groups. The control group, aging group, EX-treated group, the CoQ10 group were administered (500 mg/kg) of CoQ10, the CrM group supplied (0.3 mg/kg of CrM), and a group of CrM concomitant with resistance exercise. Serum lipid profiles, certain antioxidant markers, electromyography (EMG), nudix hydrolase 3 (NUDT3) expression, creatine kinase (CK), and sarcopenic index markers were measured after 12 weeks. The gastrocnemius muscle was stained with hematoxylin-eosin (H&E) and myogenin. The EX-CrM combination showed significant improvement in serum lipid profile, antioxidant markers, EMG, NUDT3 gene, myogenin expression, CK, and sarcopenic index markers from other groups. The NUDT3 gene and myogenin expression have proven efficient as diagnostic tools for sarcopenia. Concomitant treatment of CrM and EX is preferable to individual therapy because it reduces inflammation, improves the lipid serum profile, promotes muscle regeneration, and thus has the potential to improve sarcopenia.
Collapse
Affiliation(s)
- Eman I Elgizawy
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Yassin Abd El Ghafar St., Shebin El Kom, Menoufia, 32511, Egypt.
| | - Ghada S Amer
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Yassin Abd El Ghafar St., Shebin El Kom, Menoufia, 32511, Egypt
| | - Eman A Ali
- Clinical Pharmacology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Fatma S Alqalashy
- Pathology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Marwa M Ibrahim
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Asmaa A Abdel Latif
- Public Health and Community Medicine Department, Faculty of Medicine, Menoufia University, Shebin El Kom, Menoufia, Egypt
| | - Anwar M Shaban
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Yassin Abd El Ghafar St., Shebin El Kom, Menoufia, 32511, Egypt
| |
Collapse
|
5
|
Dimitrov I, Stankova T, Angelova P, Boyadjiev N, Georgieva K, Dimov I, Bivolarska A, Draganova M, Gerginska F, Daskalova E, Gramatikov V, Delchev S. Diet-Induced Early Inflammatory Response of Visceral Adipose Tissue in Healthy Male Wistar Rats. Nutrients 2024; 16:1184. [PMID: 38674875 PMCID: PMC11053711 DOI: 10.3390/nu16081184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
The prolonged consumption of a high-fat diet (HFD) leads to abnormal growth of the visceral adipose tissue (VAT), increased macrophage infiltration, and altered secretion of biologically active molecules. This is considered as a precondition for the development of obesity, inflammation, and obesity-related disorders. Therefore, we studied HFD-induced changes in the tissue levels of the inflammatory markers C-reactive protein, serum amyloid-A, and interleukin-4 in healthy male Wistar rats. The animals were first divided at random into two groups subjected to either a standard or a high-fat diet. The initial effect of the diet was evaluated after fourteen weeks. In order to study the diet duration effect, the standard diet was given to twelve animals from the HFD group, while the remaining continued with the HFD for an additional four weeks. Our results showed that the HFD barely affected body mass index, conicity, relative fat mass, and Lee indices, whereas it provoked adipocyte hypertrophy and gradually increased the levels of both the pro- and anti-inflammatory markers. The switch from the high-fat to the standard diet resulted in the comparatively fast restoration of the baseline levels of the studied molecules. Although, the prolonged consumption of an HFD causes adipocyte hypertrophy in healthy male animals, the inflammatory process in VAT is well-coordinated, time-dependent, and reversible.
Collapse
Affiliation(s)
- Iliyan Dimitrov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Teodora Stankova
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Penka Angelova
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Nikolay Boyadjiev
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Katerina Georgieva
- Department of Physiology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria (K.G.)
| | - Ivica Dimov
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Anelia Bivolarska
- Department of Medical Biochemistry, Faculty of Pharmacy, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (T.S.); (I.D.); (A.B.)
| | - Milena Draganova
- Department of Medical Biology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria;
- Research Institute, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria
| | - Fanka Gerginska
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| | - Elena Daskalova
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| | | | - Slavi Delchev
- Department of Human Anatomy, Histology and Embryology, Faculty of Medicine, Medical University of Plovdiv, 4002 Plovdiv, Bulgaria; (F.G.); (E.D.); (S.D.)
| |
Collapse
|
6
|
Palizzotto C, Ferri F, Callegari C, Rossi F, Manfredi M, Carcangiu L, Gerardi G, Ferro S, Cavicchioli L, Müller E, Weiss M, Vogt A, Lavatelli F, Ricagno S, Hurley K, Zini E. Renal amyloid-A amyloidosis in cats: Characterization of proteinuria and biomarker discovery, and associations with kidney histology. J Vet Intern Med 2024; 38:205-215. [PMID: 37991136 PMCID: PMC10800178 DOI: 10.1111/jvim.16920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Amyloid A (AA) amyloidosis is a protein misfolding disease arising from serum amyloid A (SAA). Systemic AA amyloidosis recently was shown to have a high prevalence in shelter cats in Italy and was associated with azotemia and proteinuria. OBJECTIVES Investigate urine protein profiles and diagnostic biomarkers in cats with renal AA amyloidosis. ANIMALS Twenty-nine shelter cats. METHODS Case-control study. Cats with renal proteinuria that died or were euthanized between 2018 and 2021 with available necropsy kidney, liver and spleen samples, and with surplus urine collected within 30 days before death, were included. Histology was used to characterize renal damage and amyloid amount and distribution; immunohistochemistry was used to confirm AA amyloidosis. Urine protein-to-creatinine (UPC) and urine amyloid A-to-creatinine (UAAC) ratios were calculated, and sodium dodecyl sulfate-agarose gel electrophoresis (SDS-AGE) and liquid chromatography-mass spectrometry (LC-MS) of proteins were performed. RESULTS Twenty-nine cats were included. Nineteen had AA amyloidosis with renal involvement. Cats with AA amyloidosis had a higher UPC (median, 3.9; range, 0.6-12.7 vs 1.5; 0.6-3.1; P = .03) and UAAC ratios (median, 7.18 × 10-3 ; range, 23 × 10-3 -21.29 × 10-3 vs 1.26 × 10-3 ; 0.21 × 10-3 -6.33 × 10-3 ; P = .04) than unaffected cats. The SDS-AGE identified mixed-type proteinuria in 89.4% of cats with AA amyloidosis and in 55.6% without AA amyloidosis (P = .57). The LC-MS identified 63 potential biomarkers associated with AA amyloidosis (P < .05). Among these, urine apolipoprotein C-III was higher in cats with AA amyloidosis (median, 1.38 × 107 ; range, 1.85 × 105 -5.29 × 107 vs 1.76 × 106 ; 0.0 × 100 -1.38 × 107 ; P = .01). In the kidney, AA-amyloidosis was associated with glomerulosclerosis (P = .02) and interstitial fibrosis (P = .05). CONCLUSIONS AND CLINICAL IMPORTANCE Renal AA amyloidosis is associated with kidney lesions, increased proteinuria and increased urine excretion of SAA in shelter cats. Additional studies are needed to characterize the role of lipid transport proteins in the urine of affected cats.
Collapse
Affiliation(s)
- Carlo Palizzotto
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Felippo Ferri
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Studio Veterinario Associato Vet2Vet di Ferri e PorporatoOrbassanoTOItaly
| | | | - Francesco Rossi
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
| | - Marcello Manfredi
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Laura Carcangiu
- Department of Translational MedicineUniversity of Piemonte OrientaleNovaraItaly
| | - Gabriele Gerardi
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
| | - Silvia Ferro
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Laura Cavicchioli
- Department of Comparative Biomedicine and Food ScienceUniversity of PadovaLegnaroPDItaly
| | - Elizabeth Müller
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Marco Weiss
- Laboklin, Laboratory for Clinical DiagnosticsBad KissingenGermany
| | - Anne‐Catherine Vogt
- Department of Rheumatology and ImmunologyUniversity Hospital BernBernSwitzerland
- Department of BioMedical ResearchUniversity of BernBernSwitzerland
- Graduate School for Cellular and Biomedical Sciences (GCB)University of BernBernSwitzerland
| | | | - Stefano Ricagno
- Institute of Molecular and Translational CardiologyIRCCS Policlinico San DonatoMilanItaly
- Department of BiosciencesUniversità degli Studi di MilanoMilanItaly
| | | | - Eric Zini
- AniCura Istituto Veterinario NovaraGranozzo con MonticelloNOItaly
- Department of Animal Medicine, Production and HealthUniversity of PadovaLegnaroPDItaly
- Clinic for Small Animal Internal Medicine, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
| |
Collapse
|
7
|
Sergi D, Zauli E, Tisato V, Secchiero P, Zauli G, Cervellati C. Lipids at the Nexus between Cerebrovascular Disease and Vascular Dementia: The Impact of HDL-Cholesterol and Ceramides. Int J Mol Sci 2023; 24:ijms24054403. [PMID: 36901834 PMCID: PMC10002119 DOI: 10.3390/ijms24054403] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Cerebrovascular diseases and the subsequent brain hypoperfusion are at the basis of vascular dementia. Dyslipidemia, marked by an increase in circulating levels of triglycerides and LDL-cholesterol and a parallel decrease in HDL-cholesterol, in turn, is pivotal in promoting atherosclerosis which represents a common feature of cardiovascular and cerebrovascular diseases. In this regard, HDL-cholesterol has traditionally been considered as being protective from a cardiovascular and a cerebrovascular prospective. However, emerging evidence suggests that their quality and functionality play a more prominent role than their circulating levels in shaping cardiovascular health and possibly cognitive function. Furthermore, the quality of lipids embedded in circulating lipoproteins represents another key discriminant in modulating cardiovascular disease, with ceramides being proposed as a novel risk factor for atherosclerosis. This review highlights the role of HDL lipoprotein and ceramides in cerebrovascular diseases and the repercussion on vascular dementia. Additionally, the manuscript provides an up-to-date picture of the impact of saturated and omega-3 fatty acids on HDL circulating levels, functionality and ceramide metabolism.
Collapse
Affiliation(s)
- Domenico Sergi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
- Correspondence:
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| | - Veronica Tisato
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Paola Secchiero
- Department of Translational Medicine and LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
| | - Giorgio Zauli
- King Khaled Eye Specialistic Hospital, Riyadh 11462, Saudi Arabia
| | - Carlo Cervellati
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
8
|
Bordeianu G, Mitu I, Stanescu RS, Ciobanu CP, Petrescu-Danila E, Marculescu AD, Dimitriu DC. Circulating Biomarkers for Laboratory Diagnostics of Atherosclerosis-Literature Review. Diagnostics (Basel) 2022; 12:diagnostics12123141. [PMID: 36553147 PMCID: PMC9777004 DOI: 10.3390/diagnostics12123141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is still considered a disease burden with long-term damaging processes towards the cardiovascular system. Evaluation of atherosclerotic stages requires the use of independent markers such as those already considered traditional, that remain the main therapeutic target for patients with atherosclerosis, together with emerging biomarkers. The challenge is finding models of predictive markers that are particularly tailored to detect and evaluate the evolution of incipient vascular lesions. Important advances have been made in this field, resulting in a more comprehensible and stronger linkage between the lipidic profile and the continuous inflammatory process. In this paper, we analysed the most recent data from the literature studying the molecular mechanisms of biomarkers and their involvement in the cascade of events that occur in the pathophysiology of atherosclerosis.
Collapse
Affiliation(s)
| | - Ivona Mitu
- Correspondence: (I.M.); (R.S.S.); Tel.: +40-75206-1747 (I.M.)
| | | | | | | | | | | |
Collapse
|
9
|
Ishimitsu A, Tojo A, Hirao J, Yokoyama S, Ohira T, Murayama Y, Ishimitsu T, Kang D, Honda K, Ehara T, Ishida K, Ueda Y. AL-Kappa Primary Amyloidosis with Apolipoprotein A-IV Deposition. Intern Med 2022; 61:871-876. [PMID: 35296622 PMCID: PMC8987257 DOI: 10.2169/internalmedicine.7955-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
A 70-year-old woman with complaints of edema, general malaise, and hypotension was diagnosed with renal amyloidosis, and laser microdissection mass spectrometry revealed her amyloidosis to predominantly comprise the apolipoprotein A-IV type. The M-protein turned from negative to positive during the course, and a bone marrow biopsy showed smoldering myeloma. Treatment with bortezomib and dexamethasone failed to save her from heart failure six months after the onset. Western blotting of urine samples at the time of the renal biopsy showed that amyloid light-chain κ amyloidosis had been present since the onset. Unlike the myeloma, Congo red staining was positive in the plasma cells of the bone marrow.
Collapse
Affiliation(s)
- Akira Ishimitsu
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Akihiro Tojo
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Jun Hirao
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Shohei Yokoyama
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Takehiro Ohira
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | - Yoshiki Murayama
- Department of Nephrology & Hypertension, Dokkyo Medical University, Japan
| | | | - Dedong Kang
- Department of Anatomy, Showa University School of Medicine, Japan
| | - Kazuho Honda
- Department of Anatomy, Showa University School of Medicine, Japan
| | - Takashi Ehara
- Department of Pathology, Shinshu University School of Medicine, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University, Japan
| | - Yoshihiko Ueda
- Department of Pathology, Dokkyo Medical University Saitama Medical Center, Japan
| |
Collapse
|
10
|
Karlsson MJ, Costa Svedman F, Tebani A, Kotol D, Höiom V, Fagerberg L, Edfors F, Uhlén M, Egyhazi Brage S, Maddalo G. Inflammation and Apolipoproteins Are Potential Biomarkers for Stratification of Cutaneous Melanoma Patients for Immunotherapy and Targeted Therapy. Cancer Res 2021; 81:2545-2555. [PMID: 33574091 DOI: 10.1158/0008-5472.can-20-2000] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/22/2020] [Accepted: 02/09/2021] [Indexed: 11/16/2022]
Abstract
Malignant cutaneous melanoma is one of the most common cancers in young adults. During the last decade, targeted and immunotherapies have significantly increased the overall survival of patients with malignant cutaneous melanoma. Nevertheless, disease progression is common, and a lack of predictive biomarkers of patient response to therapy hinders individualized treatment strategies. To address this issue, we performed a longitudinal study using an unbiased proteomics approach to identify and quantify proteins in plasma both before and during treatment from 109 patients treated with either targeted or immunotherapy. Linear modeling and machine learning approaches identified 43 potential prognostic and predictive biomarkers. A reverse correlation between apolipoproteins and proteins related to inflammation was observed. In the immunotherapy group, patients with low pretreatment expression of apolipoproteins and high expression of inflammation markers had shorter progression-free survival. Similarly, increased expression of LDHB during treatment elicited a significant impact on response to immunotherapy. Overall, we identified potential common and treatment-specific biomarkers in malignant cutaneous melanoma, paving the way for clinical use of these biomarkers following validation on a larger cohort. SIGNIFICANCE: This study identifies a potential biomarker panel that could improve the selection of therapy for patients with cutaneous melanoma.
Collapse
Affiliation(s)
- Max J Karlsson
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | - Abdellah Tebani
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - David Kotol
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Veronica Höiom
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Linn Fagerberg
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Fredrik Edfors
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Gianluca Maddalo
- Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
11
|
Sha J, Qie G, Yao Q, Sun W, Wang C, Zhang Z, Wang X, Wang P, Jiang J, Bai X, Chu Y, Meng M. Sex Differences on Clinical Characteristics, Severity, and Mortality in Adult Patients With COVID-19: A Multicentre Retrospective Study. Front Med (Lausanne) 2021; 8:607059. [PMID: 33644092 PMCID: PMC7906985 DOI: 10.3389/fmed.2021.607059] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/25/2021] [Indexed: 01/08/2023] Open
Abstract
Background: Coronavirus disease-2019 (COVID-19) epidemic is spreading globally. Sex differences in the severity and mortality of COVID-19 emerged. This study aims to describe the impact of sex on outcomes in COVOD-19 with a special focus on the effect of estrogen. Methods: We performed a retrospective cohort study which included 413 patients (230 males and 183 females) with COVID-19 from three designated hospitals in China with a follow up time from January 31, 2020, to April 17, 2020. Women over 55 were considered as postmenopausal patients according to the previous epidemiological data from China. The interaction between age and sex on in-hospital mortality was determined through Cox regression analysis. In addition, multivariate Cox regression models were performed to explore risk factors associated with in-hospital mortality of COVID-19. Results: Age and sex had significant interaction for the in-hospital mortality (P < 0.001). Multivariate Cox regression showed that age (HR 1.041, 95% CI 1.009–1.073, P = 0.012), male sex (HR 2.033, 95% CI 1.007–2.098, P = 0.010), the interaction between age and sex (HR 1.118, 95% CI 1.003–1.232, P = 0.018), and comorbidities (HR 9.845, 95% CI 2.280–42.520, P = 0.002) were independently associated with in-hospital mortality of COVID-19 patients. In this multicentre study, female experienced a lower fatality for COVID-19 than male (4.4 vs. 10.0%, P = 0.031). Interestingly, stratification by age group revealed no difference in-hospital mortality was noted in women under 55 compared with women over 55 (3.8 vs. 5.2%, P = 0.144), as well as in women under 55 compared with the same age men (3.8 vs. 4.0%, P = 0.918). However, there was significantly difference in women over 55 with men of the same age group (5.2 vs. 21.0%, P = 0.007). Compared with male patients, female patients had higher lymphocyte (P < 0.001) and high-density lipoprotein (P < 0.001), lower high sensitive c reaction protein level (P < 0.001), and lower incidence rate of acute cardiac injury (6.6 vs. 13.5%, P = 0.022). Conclusion: Male sex is an independent risk factor for COVID-19 in-hospital mortality. Although female mortality in COVID-19 is lower than male, it might not be directly related to the effect of estrogen. Further study is warranted to identify the sex difference in COVID-19 and mechanisms involved.
Collapse
Affiliation(s)
- Jing Sha
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Guoqiang Qie
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Qingchun Yao
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Wenqing Sun
- Department of Intensive Care Unit, Shandong Provincial Chest Hospital, Jinan, China
| | - Cuiyan Wang
- Shandong Medical Imaging Research Institute Affiliated to Shandong University, Jinan, China
| | - Zhongfa Zhang
- Jinan Infectious Diseases Hospital, Shandong University, Jinan, China
| | - Xingguang Wang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Peng Wang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Jinjiao Jiang
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Xue Bai
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Yufeng Chu
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong Provincial Hospital Affiliated to Shandong University, Shandong University, Jinan, China
| | - Mei Meng
- Department of Critical Care Medicine, Ruijin Hospital, Ruijin Hospital North, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Marked Changes in Serum Amyloid A Distribution and High-Density Lipoprotein Structure during Acute Inflammation. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9241259. [PMID: 33575357 PMCID: PMC7861920 DOI: 10.1155/2021/9241259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
High-density lipoprotein- (HDL-) cholesterol measurements are generally used in the diagnosis of cardiovascular diseases. However, HDL is a complicated heterogeneous lipoprotein, and furthermore, it can be converted into dysfunctional forms during pathological conditions including inflammation. Therefore, qualitative analysis of pathophysiologically diversified HDL forms is important. A recent study demonstrated that serum amyloid A (SAA) can remodel HDL and induce atherosclerosis not only over long periods of time, such as during chronic inflammation, but also over shorter periods. However, few studies have investigated rapid HDL remodeling. In this study, we analyzed HDL samples from patients undergoing orthopedic surgery inducing acute inflammation. We enrolled 13 otherwise healthy patients who underwent orthopedic surgery. Plasma samples were obtained on preoperative day and postoperative days (POD) 1-7. SAA, apolipoprotein A-I (apoA-I), and apolipoprotein A-II (apoA-II) levels in the isolated HDL were determined. HDL particle size, surface charge, and SAA and apoA-I distributions were also analyzed. In every patient, plasma SAA levels peaked on POD3. Consistently, the HDL apoA-I : apoA-II ratio markedly decreased at this timepoint. Native-polyacrylamide gel electrophoresis and high-performance liquid chromatography revealed the loss of small HDL particles during acute inflammation. Furthermore, HDL had a decreased negative surface charge on POD3 compared to the other timepoints. All changes observed were SAA-dependent. SAA-dependent rapid changes in HDL size and surface charge were observed after orthopedic surgery. These changes might affect the atheroprotective functions of HDL, and its analysis can be available for the qualitative HDL assessment.
Collapse
|
13
|
Du X, Zhang S, Xu J, Xiang Q, Tian F, Li X, Guo L, Zhu L, Qu P, Fu Y, Tan Y, Gui Y, Wen T, Godinez B, Liu L. Diagnostic value of monocyte to high-density lipoprotein ratio in acute aortic dissection in a Chinese han population. Expert Rev Mol Diagn 2020; 20:1243-1252. [PMID: 33176510 DOI: 10.1080/14737159.2020.1847647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Background: Recently, considerable evidence pointed out monocyte to high-density lipoprotein ratio (MHR) is highly related to inflammatory related diseases. We aim to explore the level of MHR in acute aortic dissection (AAD) patients and determine whether MHR can be a novel diagnostic marker of AAD. Research design and methods: A total of 228 subjects including 128 AAD patients and 110 healthy control were enrolled. MHR levels and other serum samples were obtained at admission. Results: The baseline MHR levels were significantly higher in patients with AAD (p < 0.0001). A cutoff value of MHR >0.37 was associated with a sensitivity of 86.70% and a specificity of 93.60% for AAD. MHR levels were positively correlated with the time from symptom onset (R2 = 0.0318, p = 0.0003). Additionally, the area under the curve (AUC) was increased to 0.979 in patients whose time from onset of symptoms >24 h, with a sensitivity of 98.04% and a specificity of 93.64%. Multivariate logistic regression demonstrated that MHR levels, history of hypertension, and coronary artery disease (CHD) emerged as independent predictors of AAD. Expert Opinion: MHR has a high diagnostic value in AAD patients, especially in those whose time from onset of symptoms >24 h.
Collapse
Affiliation(s)
- Xiao Du
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Shilan Zhang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Jin Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Qunyan Xiang
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Feng Tian
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Xin Li
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Liling Guo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Liyuan Zhu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Peiliu Qu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Yan Fu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Yangrong Tan
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Yajun Gui
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| | - Tie Wen
- Department of Emergency, The Second Xiangya Hospital, Central South University , PR China
| | - Brianna Godinez
- Center for Genomic and Precision Medicine, Texas A&M University College of Medicine, Institute of Biosciences and Technology , Houston, TX, USA
| | - Ling Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University , PR China.,Research Institute of Blood Lipid and Atherosclerosis, Central South University , PR China
| |
Collapse
|
14
|
Oikonomou E, Leopoulou M, Theofilis P, Antonopoulos AS, Siasos G, Latsios G, Mystakidi VC, Antoniades C, Tousoulis D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis 2020; 309:16-26. [PMID: 32858395 DOI: 10.1016/j.atherosclerosis.2020.07.027] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/22/2020] [Accepted: 07/29/2020] [Indexed: 12/22/2022]
Abstract
The association between thrombosis and acute coronary syndromes is well established. Inflammation and activation of innate and adaptive immunity are another important factor implicated in atherosclerosis. However, the exact interactions between thrombosis and inflammation in atherosclerosis are less well understood. Accumulating data suggest a firm interaction between these two key pathophysiologic processes. Pro-inflammatory cytokines, such as tumor necrosis factor α, interleukin-6 and interleukin-1, have been implicated in the thrombotic cascade following plaque rupture and myocardial infarction. Furthermore, cell adhesion molecules accelerate not only atheromatosis but also thrombosis formation while activated platelets are able to trigger leukocyte adhesion and accumulation. Additionally, tissue factor, thrombin, and activated coagulation factors induce the release of pro-inflammatory cytokines such as prostaglandin and C reactive protein, which may further induce von Willebrand factor secretion. Treatments targeting immune activation (i.e. interleukin-1 inhibitors, colchicine, statins, etc.) may also beneficially modulate platelet activation while common anti-thrombotic therapies appear to attenuate the inflammatory process. Taken together in the context of cardiovascular diseases, thrombosis and inflammation should be studied and managed as a common entity under the concept of thrombo-inflammation.
Collapse
Affiliation(s)
- Evangelos Oikonomou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece.
| | - Marianna Leopoulou
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Panagiotis Theofilis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Alexios S Antonopoulos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Gerasimos Siasos
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - George Latsios
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Vasiliki Chara Mystakidi
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| | - Charalambos Antoniades
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Dimitris Tousoulis
- 1st Department of Cardiology, Hippokration Hospital, National and Kapodistrian University of Athens Medical School, Athens, Greece
| |
Collapse
|
15
|
Takase H, Tanaka M, Nakamura Y, Morita SY, Yamada T, Mukai T. Effects of lipid composition on the structural properties of human serum amyloid A in reconstituted high-density lipoprotein particles. Chem Phys Lipids 2019; 221:8-14. [DOI: 10.1016/j.chemphyslip.2019.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 02/27/2019] [Accepted: 03/01/2019] [Indexed: 12/13/2022]
|
16
|
Abstract
PURPOSE OF REVIEW Recent studies demonstrate an important role of the secreted apolipoprotein A-I binding protein (AIBP) in regulation of cholesterol efflux and lipid rafts. The article discusses these findings in the context of angiogenesis and inflammation. RECENT FINDINGS Lipid rafts are cholesterol-rich and sphingomyelin-rich membrane domains in which many receptor complexes assemble upon activation. AIBP mediates selective cholesterol efflux, in part via binding to toll-like receptor-4 (TLR4) in activated macrophages and microglia, and thus reverses lipid raft increases in activated cells. Recent articles report AIBP regulation of vascular endothelial growth factor receptor-2, Notch1 and TLR4 function. In zebrafish and mouse animal models, AIBP deficiency results in accelerated angiogenesis, increased inflammation and exacerbated atherosclerosis. Spinal delivery of recombinant AIBP reduces neuraxial inflammation and reverses persistent pain state in a mouse model of chemotherapy-induced polyneuropathy. Inhalation of recombinant AIBP reduces lipopolysaccharide-induced acute lung injury in mice. These findings are discussed in the perspective of AIBP's proposed other function, as an NAD(P)H hydrate epimerase, evolving into a regulator of cholesterol trafficking and lipid rafts. SUMMARY Novel findings of AIBP regulatory circuitry affecting lipid rafts and related cellular processes may provide new therapeutic avenues for angiogenic and inflammatory diseases.
Collapse
Affiliation(s)
- Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist, 6550 Fannin St, TX77030
- Department of Cell and Developmental Biology, Weill Cornell Medical College, 407 E 61st St, New York, NY 10065
| | - Yury I. Miller
- Department of Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
17
|
Salah DB, Charfi N, Elleuch M, Kacem FH, Rekik N, Mnif M, Mnif F, Abid M. [Cardiovascular and metabolic impact of glucocorticoid substitution therapy in patients with Addison's disease]. Pan Afr Med J 2019; 30:251. [PMID: 30627312 PMCID: PMC6307925 DOI: 10.11604/pamj.2018.30.251.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 07/11/2018] [Indexed: 12/01/2022] Open
Abstract
Les études récentes menées chez des patients atteints de maladie d'Addison (MA) ont permis de révéler que cette pathologie, même traitée, reste grevée d'une morbi-mortalité non négligeable. L'objectif de notre étude était de déterminer les effets délétères de la substitution glucocorticoïde au long cours principalement sur le plan métabolique et cardiovasculaire. Il s'agit d'une étude rétrospective qui a inclu 28 patients ayant une MA traitée, évoluant depuis plus que 15 ans. L'âge moyen était de 58,53 ans avec une prédominance féminine à 65%. La durée moyenne de suivi était de 17,87 ans. La dose d'hydrocortisone était initialement à 32,5mg/j (20,52 mg/m2) et à 27,9mg/j (16,41mg/m2) au moment de l'étude. La prévalence du syndrome métabolique (SM) au cours de la MA était de 35,71% après une durée de traitement supérieur à 15 ans. On note au terme du suivi que 28,57% des patients étaient obèses. Vingt-cinq (25)% des patients avaient développé une HTA et un diabète de type 2. La prévalence de la dyslipidémie était passé de 3,57% à 42,85%. Un seul patient avait présenté un infarctus de myocarde à 25 ans de suivi. Les facteurs favorisant la survenue du SM dans notre étude étaient l'ancienneté de la maladie et la perte du poids à la découverte de la maladie. L'ajustement du traitement substitutif au cours de la maladie d'Addison reste un enjeu au vu de la morbi-mortalité liée au surdosage. Un suivi régulier, et une approche thérapeutique personnalisée sont nécessaires pour améliorer le pronostic de ses patients.
Collapse
Affiliation(s)
- Dhoha Ben Salah
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Nadia Charfi
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Mouna Elleuch
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Faten Hadj Kacem
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Nabila Rekik
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Mouna Mnif
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Fatma Mnif
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| | - Mohamed Abid
- Service d'Endocrinologie et Diabétologie du CHU Hédi Chaker Sfax, Tunisie
| |
Collapse
|
18
|
Graham SM, Chen J, Le J, Ling M, Chung DW, Liles WC, López JA. Von Willebrand Factor Adhesive Activity and ADAMTS13 Protease Activity in HIV-1-Infected Men. Int J Med Sci 2019; 16:276-284. [PMID: 30745808 PMCID: PMC6367531 DOI: 10.7150/ijms.28110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 10/18/2018] [Indexed: 12/11/2022] Open
Abstract
Background: Endothelial activation caused by HIV-1 infection leads to release of von Willebrand factor (VWF), which enters the circulation or attaches to vessel walls and self-assembles into strings and fibers, enabling platelet adhesion; this adhesive activity is regulated by the VWF-cleaving protease ADAMTS13. Our objective was to assess VWF adhesive activity and ADAMTS13 protease activity in HIV-1 infection. Methods: We measured levels of VWF antigen, VWF activation factor (a measure of adhesive activity), ADAMTS13 antigen, ADAMTS13 activity, and apolipoprotein A1 (which interferes with VWF self-association) in serum samples from HIV-1-infected men whose infections were acute (n=10), chronic untreated (n=10), or chronic treated (n=10), compared to uninfected controls (n=10). Means across groups were compared using analysis of variance with contrasts, and Pearson correlations were calculated. Results: Plasma viral load was positively correlated with VWF adhesive activity, which was elevated in acute relative to chronic treated HIV-1 infection. ADAMTS13 antigen and activity were both positively correlated with plasma viral load, and ADAMTS13 activity was significantly higher in men with acute HIV infection than in uninfected controls, and in both acute and chronic untreated HIV infection relative to chronic treated infection. Conclusion: These findings suggest that even in the setting of increased ADAMTS13 protease activity, VWF in HIV-1 infection is hyperadhesive, which may favor development of microvascular and arterial thromboses and thereby contribute to increased cardiovascular risk in HIV-1-infected individuals.
Collapse
Affiliation(s)
- Susan M Graham
- Department of Medicine, University of Washington, Seattle, WA USA.,Department of Global Health, University of Washington, Seattle, WA USA.,Department of Epidemiology, University of Washington, Seattle, WA USA
| | - Junmei Chen
- Bloodworks Research Institute, Seattle, WA, USA
| | - Jennie Le
- Bloodworks Research Institute, Seattle, WA, USA
| | - Minhua Ling
- Bloodworks Research Institute, Seattle, WA, USA
| | | | - W Conrad Liles
- Department of Medicine, University of Washington, Seattle, WA USA.,Department of Global Health, University of Washington, Seattle, WA USA.,Department of Pathology, University of Washington, Seattle, WA USA.,Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - José A López
- Department of Medicine, University of Washington, Seattle, WA USA.,Bloodworks Research Institute, Seattle, WA, USA.,Department of Biochemistry, University of Washington, Seattle, WA USA.,Department of Mechanical Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
19
|
Leclerc D, Christensen KE, Cauvi O, Yang E, Fournelle F, Bahous RH, Malysheva OV, Deng L, Wu Q, Zhou Z, Gao ZH, Chaurand P, Caudill MA, Rozen R. Mild Methylenetetrahydrofolate Reductase Deficiency Alters Inflammatory and Lipid Pathways in Liver. Mol Nutr Food Res 2018; 63:e1801001. [PMID: 30408316 DOI: 10.1002/mnfr.201801001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/29/2018] [Indexed: 12/13/2022]
Abstract
SCOPE Dietary and genetic folate disturbances can lead to nonalcoholic fatty liver disease (NAFLD). A common variant in methylenetetrahydrofolate reductase (MTHFR 677C→T) causes mild MTHFR deficiency with lower 5-methyltetrahydrofolate for methylation reactions. The goal is to determine whether mild murine MTHFR deficiency contributes to NAFLD-related effects. METHODS AND RESULTS Wild-type and Mthfr+/- mice, a model for the human variant, are fed control (CD) or high-fat (HFAT) diets for 8 weeks. On both diets, MTHFR deficiency results in decreased S-adenosylmethionine, increased S-adenosylhomocysteine, and decreased betaine with reduced methylation capacity, and changes in expression of several inflammatory or anti-inflammatory mediators (Saa1, Apoa1, and Pon1). On CD, MTHFR deficiency leads to microvesicular steatosis with expression changes in lipid regulators Xbp1s and Cyp7a1. The combination of MTHFR deficiency and HFAT exacerbates changes in inflammatory mediators and introduces additional effects on inflammation (Saa2) and lipid metabolism (Nr1h4, Srebf1c, Ppara, and Crot). These effects are consistent with increased expression of pro-inflammatory HDL precursors and greater lipid accumulation. MTHFR deficiency may enhance liver injury through alterations in methylation capacity, inflammatory response, and lipid metabolism. CONCLUSION Individuals with the MTHFR variant may be at increased risk for liver disease and related complications, particularly when consuming high-fat diets.
Collapse
Affiliation(s)
- Daniel Leclerc
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olivia Cauvi
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Ethan Yang
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Frédéric Fournelle
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Renata H Bahous
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Olga V Malysheva
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Liyuan Deng
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Qing Wu
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zili Zhou
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| | - Zu-Hua Gao
- Department of Pathology, McGill University, Montreal, H4A 3J1, Canada
| | - Pierre Chaurand
- Department of Chemistry, Université de Montréal, Montreal, H3T 1J4, Canada
| | - Marie A Caudill
- Division of Nutritional Sciences and Genomics, Cornell University, Ithaca, NY, 14853, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University, McGill University Health Center (MUHC), Montreal, H4A 3J1, Canada
| |
Collapse
|
20
|
Sato M, Ohkawa R, Low H, Nishimori M, Okubo S, Yoshimoto A, Yano K, Kameda T, Yatomi Y, Tozuka M. Serum amyloid A does not affect high-density lipoprotein cholesterol measurement by a homogeneous assay. Clin Biochem 2018; 63:97-101. [PMID: 30342019 DOI: 10.1016/j.clinbiochem.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 10/13/2018] [Accepted: 10/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Serum amyloid A (SAA), which is one of the acute phase proteins, alters the structure of HDL by associating with it during circulation. We focused on whether SAA influences the values of HDL-cholesterol (HDL-C) measurements when using a homogeneous assay. METHODS HDLs were isolated by ultracentrifugation from serum samples of 248 patients that were stratified into three groups based on their serum SAA concentrations (low: SAA ≤ 8 μg/mL; middle: 8 < SAA ≤ 100 μg/mL; and high: SAA > 100 μg/mL). HDL-C concentrations of the serum samples measured by the homogeneous assay were compared with the total cholesterol concentrations of HDL fractions isolated by ultracentrifugation. RESULTS HDLs obtained from patients with low SAA concentrations were separated into their general particle sizes and classified as HDL2 and HDL3 by native-gel electrophoresis. On the other hand, HDLs obtained from patients with high SAA concentrations occasionally showed distributions different from the typical sizes of HDL2 and HDL3, such as extremely small or large particles. Nevertheless, HDL-C concentrations measured using the homogeneous assay were strongly correlated with those measured using the ultracentrifugation method, regardless of the SAA concentrations. However, the ratios of HDL-C concentrations obtained by the homogeneous assay to those obtained by the ultracentrifugation method for patients with high SAA concentrations were significantly lower than those of patients with low SAA concentrations. CONCLUSIONS A large amount of SAA attached to HDL altered the HDL particle size but did not essentially affect HDL-C measurement by homogeneous assay.
Collapse
Affiliation(s)
- Megumi Sato
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Ryunosuke Ohkawa
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan.
| | - Hann Low
- Department of Lipoproteins and Atherosclerosis, Baker Heart and Diabetes Institute, 75 Commercial Rd, Melbourne, VIC 3004, Australia
| | - Madoka Nishimori
- Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Shigeo Okubo
- Faculty of Health Science Technology, Bunkyo Gakuin University, 1-19-1 Mukogaoka, Bunkyo-ku, Tokyo 113-8668, Japan
| | - Akira Yoshimoto
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan; Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Kouji Yano
- Center for Genomic and Regenerative Medicine, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Takahiro Kameda
- Department of Medical Technology, School of Health Sciences, Tokyo University of Technology, 5-23-22 Nishikamata, Ota-ku, Tokyo 144-8535, Japan
| | - Yutaka Yatomi
- Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | - Minoru Tozuka
- Department of Analytical Laboratory Chemistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| |
Collapse
|
21
|
Srivastava N, Cefalu AB, Averna M, Srivastava RAK. Lack of Correlation of Plasma HDL With Fecal Cholesterol and Plasma Cholesterol Efflux Capacity Suggests Importance of HDL Functionality in Attenuation of Atherosclerosis. Front Physiol 2018; 9:1222. [PMID: 30271349 PMCID: PMC6142045 DOI: 10.3389/fphys.2018.01222] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/14/2018] [Indexed: 11/13/2022] Open
Abstract
A number of clinical findings suggested HDL-raising as a plausible approach to treat residual risk of CVD. However, lack of CVD risk reduction by elevated HDL cholesterol (HDL-C) through cholesterol ester transfer protein (CETP) inhibition and enhanced risk reduction in apolipoprotein A-I Milano (apoAI-M) individuals with low HDL-C shifted the focus from HDL-C level to HDL function. In the present study, we investigated correlations between HDL-C, HDL function, fecal cholesterol excretion, and ex vivo plasma cholesterol efflux capacity (CEC) in animal models using two HDL modulators, LXR and PPAR-α agonists. In C57Bl mice, LXR agonist, T1317, raised HDL-C by 30%, while PPAR-α agonist, fenofibrate, reduced HDL-C by 30%, but fecal cholesterol showed twofold increase in both cases. CEC showed a 30–40% increase. Combination of LXR and PPAR-α agonists showed no changes in HDL-C, but, interestingly, fecal cholesterol increased by 4.5-fold, and CEC by 40%, suggesting existence of additional pathway for fecal cholesterol excretion. Regression analysis showed a lack of correlation between HDL-C and fecal cholesterol and CEC, while fecal cholesterol showed significant correlation with CEC, a measure of HDL function. ABCA1 and G1, the two important players in RCT showed greater induction with LXR agonist than PPAR-α agonist. HDL-C increased by 40 and 80% in LXR and PPAR-α treated apoA-I transgenic mice, respectively, with 80% increase in fecal cholesterol. A fivefold increase in fecal cholesterol with no correlation with either plasma HDL-C or CEC following co-treatment with LXR and PPAR-α agonists suggested existence of an HDL-independent pathway for body cholesterol elimination. In hyperlipidemic diabetic ob/ob mice also combination of LXR and PPAR-α agonists showed marked increases in fecal cholesterol content (10–20-fold), while HDL-C rise was only 40%, further suggesting HDL-independent elimination of body cholesterol in mice treated with combination of LXR and PPAR-α agonists. Atherosclerosis attenuation by LXR and PPAR-α agonists in LDLr-deficient mice was associated with increased fecal cholesterol, but not HDL-C. However, fecal cholesterol counts showed inverse correlation with aortic cholesteryl ester content. These data suggest: (a) lack of correlation between HDL-C and fecal or aortic cholesterol content; (b) HDL function (CEC) correlated with fecal cholesterol content; (c) association of reduced aortic lipids in LDLr−/− mice with increased fecal cholesterol, but not with HDL-C, and (d) existence of an HDL-independent pathway for fecal cholesterol excretion following co-treatment with LXR and PPAR-α agonists.
Collapse
Affiliation(s)
- Neelam Srivastava
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Angelo B Cefalu
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | - Maurizio Averna
- Department of Internal Medicine, University of Palermo, Palermo, Italy
| | | |
Collapse
|
22
|
Choi SH, Wallace AM, Schneider DA, Burg E, Kim J, Alekseeva E, Ubags ND, Cool CD, Fang L, Suratt BT, Miller YI. AIBP augments cholesterol efflux from alveolar macrophages to surfactant and reduces acute lung inflammation. JCI Insight 2018; 3:120519. [PMID: 30135304 DOI: 10.1172/jci.insight.120519] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 07/03/2018] [Indexed: 12/18/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by an excessive pulmonary inflammatory response. Removal of excess cholesterol from the plasma membrane of inflammatory cells helps reduce their activation. The secreted apolipoprotein A-I binding protein (AIBP) has been shown to augment cholesterol efflux from endothelial cells to the plasma lipoprotein HDL. Here, we find that AIBP was expressed in inflammatory cells in the human lung and was secreted into the bronchoalveolar space in mice subjected to inhalation of LPS. AIBP bound surfactant protein B and increased cholesterol efflux from alveolar macrophages to calfactant, a therapeutic surfactant formulation. In vitro, AIBP in the presence of surfactant reduced LPS-induced p65, ERK1/2 and p38 phosphorylation, and IL-6 secretion by alveolar macrophages. In vivo, inhalation of AIBP significantly reduced LPS-induced airspace neutrophilia, alveolar capillary leak, and secretion of IL-6. These results suggest that, similar to HDL in plasma, surfactant serves as a cholesterol acceptor in the lung. Furthermore, lung injury increases pulmonary AIBP expression, which likely serves to promote cholesterol efflux to surfactant and reduce inflammation.
Collapse
Affiliation(s)
- Soo-Ho Choi
- Department of Medicine, UCSD, La Jolla, California, USA
| | - Aaron M Wallace
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | - Elianne Burg
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Jungsu Kim
- Department of Medicine, UCSD, La Jolla, California, USA
| | | | - Niki Dj Ubags
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Carlyne D Cool
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, and.,Houston Methodist DeBakey Heart and Vascular Center, Houston Methodist, Houston, Texas, USA
| | - Benjamin T Suratt
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Yury I Miller
- Department of Medicine, UCSD, La Jolla, California, USA
| |
Collapse
|
23
|
Cholesterol Efflux Capacity: Choke Point of Reverse Cholesterol Traffic? J Am Coll Cardiol 2018; 67:2488-91. [PMID: 27230044 DOI: 10.1016/j.jacc.2016.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 04/08/2016] [Accepted: 04/12/2016] [Indexed: 11/22/2022]
|
24
|
Chen J, Chung DW. Inflammation, von Willebrand factor, and ADAMTS13. Blood 2018; 132:141-147. [PMID: 29866815 PMCID: PMC6043979 DOI: 10.1182/blood-2018-02-769000] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/08/2018] [Indexed: 12/16/2022] Open
Abstract
Increasing evidence indicates that inflammation can cause thrombosis by a von Willebrand factor (VWF)-mediated mechanism that includes endothelial activation, secretion of VWF, assembly of hyperadhesive VWF strings and fibers, cleavage by ADAMTS13, and adhesion and deposition of VWF-platelet thrombi in the vasculature. This mechanism appears to contribute to thrombosis not only in small vessels, but also in large vessels. Inflammation and VWF contribute to atherogenesis and may contribute to arterial and venous thrombosis as well as stroke. Elucidation of the mechanism will hopefully identify new targets and suggest new approaches for prevention and intervention.
Collapse
Affiliation(s)
- Junmei Chen
- Bloodworks Research Institute, Seattle, WA; and
| | - Dominic W Chung
- Bloodworks Research Institute, Seattle, WA; and
- Department of Biochemistry, University of Washington, Seattle, WA
| |
Collapse
|
25
|
Herbert KE, Erridge C. Regulation of low-density lipoprotein cholesterol by intestinal inflammation and the acute phase response. Cardiovasc Res 2017; 114:226-232. [DOI: 10.1093/cvr/cvx237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 11/29/2017] [Indexed: 02/07/2023] Open
Abstract
AbstractSystemic inflammation, induced by disease or experimental intervention, is well established to result in elevated levels of circulating triglycerides, and reduced levels of high-density lipoprotein-cholesterol (HDL-C), in most mammalian species. However, the relationship between inflammation and low-density lipoprotein-cholesterol (LDL-C) concentrations is less clear. Most reports indicate that systemic inflammation, as observed during sepsis or following high dose experimental endotoxaemia, lowers total, and LDL-C in man. However, isolated reports have suggested that certain inflammatory conditions are associated with increased LDL-C. In this review, we summarize the emerging evidence that low-grade inflammation specifically of intestinal origin may be associated with increased serum LDL-C levels. Preliminary insights into potential mechanisms that may mediate these effects, including those connecting inflammation to trans-intestinal cholesterol efflux (TICE), are considered. We conclude that this evidence supports the potential downregulation of major mediators of TICE by inflammatory mediators in vitro and during intestinal inflammation in vivo. The TICE-inflammation axis therefore merits further study in terms of its potential to regulate serum LDL-C, and as a readily druggable target for hypercholesterolaemia.
Collapse
Affiliation(s)
- Karl E Herbert
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Groby Road, Leicester, Leicestershire, LE3 9QP, UK
| | - Clett Erridge
- Department of Cardiovascular Sciences, Glenfield Hospital, University of Leicester, Groby Road, Leicester, Leicestershire, LE3 9QP, UK
- Department of Biomedical and Forensic Sciences, Anglia Ruskin University, East Road, Cambridge, Cambridgeshire, CB1 1PT, UK
| |
Collapse
|
26
|
Serum amyloid A forms stable oligomers that disrupt vesicles at lysosomal pH and contribute to the pathogenesis of reactive amyloidosis. Proc Natl Acad Sci U S A 2017; 114:E6507-E6515. [PMID: 28743750 DOI: 10.1073/pnas.1707120114] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase plasma protein that functions in innate immunity and lipid homeostasis. SAA is a protein precursor of reactive AA amyloidosis, the major complication of chronic inflammation and one of the most common human systemic amyloid diseases worldwide. Most circulating SAA is protected from proteolysis and misfolding by binding to plasma high-density lipoproteins. However, unbound soluble SAA is intrinsically disordered and is either rapidly degraded or forms amyloid in a lysosome-initiated process. Although acidic pH promotes amyloid fibril formation by this and many other proteins, the molecular underpinnings are unclear. We used an array of spectroscopic, biochemical, and structural methods to uncover that at pH 3.5-4.5, murine SAA1 forms stable soluble oligomers that are maximally folded at pH 4.3 with ∼35% α-helix and are unusually resistant to proteolysis. In solution, these oligomers neither readily convert into mature fibrils nor bind lipid surfaces via their amphipathic α-helices in a manner typical of apolipoproteins. Rather, these oligomers undergo an α-helix to β-sheet conversion catalyzed by lipid vesicles and disrupt these vesicles, suggesting a membranolytic potential. Our results provide an explanation for the lysosomal origin of AA amyloidosis. They suggest that high structural stability and resistance to proteolysis of SAA oligomers at pH 3.5-4.5 help them escape lysosomal degradation, promote SAA accumulation in lysosomes, and ultimately damage cellular membranes and liberate intracellular amyloid. We posit that these soluble prefibrillar oligomers provide a missing link in our understanding of the development of AA amyloidosis.
Collapse
|
27
|
Frame NM, Jayaraman S, Gantz DL, Gursky O. Serum amyloid A self-assembles with phospholipids to form stable protein-rich nanoparticles with a distinct structure: A hypothetical function of SAA as a "molecular mop" in immune response. J Struct Biol 2017. [PMID: 28645735 DOI: 10.1016/j.jsb.2017.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Serum amyloid A (SAA) is an acute-phase protein whose action in innate immunity and lipid homeostasis is unclear. Most circulating SAA binds plasma high-density lipoproteins (HDL) and reroutes lipid transport. In vivo SAA binds existing lipoproteins or generates them de novo upon lipid uptake from cells. We explored the products of SAA-lipid interactions and lipoprotein remodeling in vitro. SAA complexes with palmitoyl-oleoyl phosphocholine (POPC) were analyzed for structure and stability using circular dichroism and fluorescence spectroscopy, electron microscopy, gel electrophoresis and gel filtration. The results revealed the formation of 8-11nm lipoproteins that were∼50% α-helical and stable at near-physiological conditions but were irreversibly remodeled at Tm∼52°C. Similar HDL-size nanoparticles formed spontaneously at ambient conditions or upon thermal remodeling of parent lipoproteins containing various amounts of proteins and lipids, including POPC and cholesterol. Therefore, such HDL-size particles formed stable kinetically accessible structures in a wide range of conditions. Based on their size and stoichiometry, each particle contained about 12 SAA and 72 POPC molecules, with a protein:lipid weight ratio circa 2.5:1, suggesting a structure distinct from HDL. High stability of these nanoparticles and their HDL-like size suggest that similar lipoproteins may form in vivo during inflammation or injury when SAA concentration is high and membranes from dead cells require rapid removal. We speculate that solubilization of membranes by SAA to generate lipoproteins in a spontaneous energy-independent process constitutes the primordial function of this ancient protein, providing the first line of defense in clearing cell debris from the injured sites.
Collapse
Affiliation(s)
- Nicholas M Frame
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| | - Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| | - Donald L Gantz
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, 700 Albany St., Boston, MA 02118, USA.
| |
Collapse
|
28
|
MESH Headings
- Animals
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aorta, Abdominal/physiopathology
- Aorta, Thoracic/metabolism
- Aorta, Thoracic/pathology
- Aorta, Thoracic/physiopathology
- Aortic Aneurysm, Abdominal/epidemiology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/physiopathology
- Aortic Aneurysm, Thoracic/epidemiology
- Aortic Aneurysm, Thoracic/metabolism
- Aortic Aneurysm, Thoracic/pathology
- Aortic Aneurysm, Thoracic/physiopathology
- Disease Models, Animal
- Humans
- Risk Factors
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Hong Lu
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington.
| | - Alan Daugherty
- From the Department of Physiology, Saha Cardiovascular Research Center, University of Kentucky, Lexington
| |
Collapse
|
29
|
Abstract
PURPOSE OF REVIEW The ability of HDL to promote cholesterol efflux from macrophages is a predictor of cardiovascular risk independent of HDL cholesterol levels. However, the molecular determinants of HDL cholesterol efflux capacity (CEC) are largely unknown. RECENT FINDINGS The term HDL defines a heterogeneous population of particles with distinct size, shape, protein, and lipid composition. Cholesterol efflux is mediated by multiple pathways that may be differentially modulated by HDL composition. Furthermore, different subpopulations of HDL particles mediate CEC via specific pathways, but the molecular determinants of CEC, either proteins or lipids, are unclear. Inflammation promotes a profound remodeling of HDL and impairs overall HDL CEC while improving ATP-binding cassette transporter G1-mediated efflux. This review discusses recent findings that connect HDL composition and CEC. SUMMARY Data from recent animal and human studies clearly show that multiple factors associate with CEC including individual proteins, lipid composition, as well as specific particle subpopulations. Although acute inflammation remodels HDL and impairs CEC, chronic inflammation has more subtle effects. Standardization of assays measuring HDL composition and CEC is a necessary prerequisite for understanding the factors controlling HDL CEC. Unraveling these factors may help the development of new therapeutic interventions improving HDL function.
Collapse
Affiliation(s)
| | - Tomas Vaisar
- Diabetes Institute, Department of Medicine, University of Washington, Seattle, WA
- Corresponding author: Tomas Vaisar, Diabetes Institute, Department of Medicine, University of Washington, 850 Republican St, Seattle, WA 98109, Ph: (206) 616-4972,
| |
Collapse
|
30
|
Tanaka M, Nishimura A, Takeshita H, Takase H, Yamada T, Mukai T. Effect of lipid environment on amyloid fibril formation of human serum amyloid A. Chem Phys Lipids 2017; 202:6-12. [DOI: 10.1016/j.chemphyslip.2016.11.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
|
31
|
Watanabe K, Uchida K, Chambers JK, Ushio N, Nakayama H. Deposition, Clearance, and Reinduction of Amyloid A Amyloid in Interleukin 1 Receptor Antagonist Knockout Mice. Vet Pathol 2016; 54:99-110. [PMID: 27565681 DOI: 10.1177/0300985816658772] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Amyloid A (AA) amyloidosis is characterized by the extracellular deposition of AA amyloid and results in the irreversible dysfunction of parenchymal organs. In experimental models, AA amyloid deposits are cleared following a decrease in circulating serum amyloid A (SAA) concentrations. Additional inflammatory stimuli during this recovery process may induce more severe amyloid redeposition. In the present study, we confirmed the deposition, clearance, and reinduction of AA amyloid deposits in interleukin 1 receptor antagonist knockout mice (IL-1raKO) and studied the SAA levels and amyloid-enhancing factor activity based on the time-dependent changes of amyloid deposition. Histopathologically, following initial (day 0) injection of amyloid-enhancing factor in combination with an inflammatory stimulus (silver nitrate [AgNO3]), amyloid deposition peaked by day 20, and its deposition gradually decreased after day 35. SAA concentrations in serum were precipitously elevated on day 1 but returned to normal levels by day 10, whereas the SAA dimer was detected in serum after day 45. An additional AgNO3 injection was administered to mice with amyloidosis on day 5, 10, 35, or 50, and all mice developed large amyloid deposits. Amyloid deposition was most severe in mice treated with AgNO3 on day 35. The inoculation of sera from mice with AA amyloidosis, combined with AgNO3, induced AA amyloidosis. Serum samples collected on days 35 and 50, which contained high concentrations of the SAA dimer, induced amyloidosis in a high proportion (83%) of mice. Therefore, increased SAA and/or its dimer in serum during the recovery process may markedly exacerbate the development of AA amyloidosis.
Collapse
Affiliation(s)
- K Watanabe
- 1 Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - K Uchida
- 1 Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - J K Chambers
- 1 Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - N Ushio
- 1 Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - H Nakayama
- 1 Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Effects of serum amyloid A on the structure and antioxidant ability of high-density lipoprotein. Biosci Rep 2016; 36:BSR20160075. [PMID: 27422844 PMCID: PMC4986410 DOI: 10.1042/bsr20160075] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/14/2016] [Indexed: 12/31/2022] Open
Abstract
Serum amyloid A (SAA) levels increase during acute and chronic inflammation and are mainly associated with high-density lipoprotein (HDL). In the present study, we investigated the effect of SAA on the composition, surface charge, particle size and antioxidant ability of HDL using recombinant human SAA (rhSAA) and HDL samples from patients with inflammation. We confirmed that rhSAA bound to HDL3 and released apolipoprotein A-I (apoA-I) from HDL without an apparent change in particle size. Forty-one patients were stratified into three groups based on serum SAA concentrations: Low (SAA ≤ 8 μg/ml), Middle (8 < SAA ≤ 100 μg/ml) and High (SAA > 100 μg/ml). The ratios of apoA-I to total protein mass, relative cholesterol content and negative charge of HDL samples obtained from patients with high SAA levels were lower than that for samples from patients with low SAA levels. Various particle sizes of HDL were observed in three groups regardless of serum SAA levels. Antioxidant ability of rhSAA, evaluated as the effect on the formation of conjugated diene in low-density lipoprotein (LDL) induced by oxidation using copper sulfate, was higher than that of apoA-I. Consistent with this result, reconstituted SAA-containing HDL (SAA-HDL) indicated higher antioxidant ability compared with normal HDL. Furthermore, HDL samples obtained from High SAA group patients also showed the highest antioxidant ability among the three groups. Consequently, SAA affects the composition and surface charge of HDL by displacement of apoA-I and enhances its antioxidant ability.
Collapse
|
33
|
Jang WY, Jeong J, Kim S, Kang MC, Sung YH, Choi M, Park SJ, Kim MO, Kim SH, Ryoo ZY. Serum amyloid A1 levels and amyloid deposition following a high-fat diet challenge in transgenic mice overexpressing hepatic serum amyloid A1. Appl Physiol Nutr Metab 2016; 41:640-648. [PMID: 27218680 DOI: 10.1139/apnm-2015-0369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2023]
Abstract
Serum amyloid A (SAA) is an acute-phase response protein in the liver, and SAA1 is the major precursor protein involved in amyloid A amyloidosis. This amyloidosis has been reported as a complication in chronic inflammatory conditions such as arthritis, lupus, and Crohn's disease. Obesity is also associated with chronic, low-grade inflammation and sustained, elevated levels of SAA1. However, the contribution of elevated circulating SAA1 to metabolic disturbances and their complications is unclear. Furthermore, in several recent studies of transgenic (TG) mice overexpressing SAA1 that were fed a high-fat diet (HFD) for a relatively short period, no relationship was found between SAA1 up-regulation and metabolic disturbances. Therefore, we generated TG mice overexpressing SAA1 in the liver, challenged these mice with an HFD, and investigated the influence of elevated SAA1 levels. Sustained, elevated levels of SAA1 were correlated with metabolic parameters and local cytokine expression in the liver following 16 weeks on the HFD. Moreover, prolonged consumption (52 weeks) of the HFD was associated with impaired glucose tolerance and elevated SAA1 levels and resulted in systemic SAA1-derived amyloid deposition in the kidney, liver, and spleen of TG mice. Thus, we concluded that elevated SAA1 levels under long-term HFD exposure result in extensive SAA1-derived amyloid deposits, which may contribute to the complications associated with HFD-induced obesity and metabolic disorders.
Collapse
Affiliation(s)
- Woo Young Jang
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Jain Jeong
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Seonggon Kim
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
- b Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, Dong-gu, Daegu, 701-310 Republic of Korea
| | - Min-Cheol Kang
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Yong Hun Sung
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Minjee Choi
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Si Jun Park
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Myoung Ok Kim
- c Department of Animal Science, Kyungpook National University, 386 Gajangdong, Sangju, 742-711, Republic of Korea
| | - Sung Hyun Kim
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| | - Zae Young Ryoo
- a School of Life Sciences, KNU Creative BioResearch Group (BK21 Plus Project), Kyungpook National University, 1370 Sankyuk-dong, Daegu, 702-701, Republic of Korea
| |
Collapse
|
34
|
Dave JA, Levitt NS, Ross IL, Lacerda M, Maartens G, Blom D. Anti-Retroviral Therapy Increases the Prevalence of Dyslipidemia in South African HIV-Infected Patients. PLoS One 2016; 11:e0151911. [PMID: 26986065 PMCID: PMC4795704 DOI: 10.1371/journal.pone.0151911] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 03/07/2016] [Indexed: 11/19/2022] Open
Abstract
PURPOSE Data on the prevalence of dyslipidaemia and associated risk factors in HIV-infected patients from sub-Saharan Africa is sparse. We performed a cross-sectional analysis in a cohort of HIV-infected South African adults. METHODS We studied HIV-infected patients who were either antiretroviral therapy (ART)-naive or receiving non-nucleoside reverse transcriptase inhibitor (NNRTI)-based or protease inhibitor (PI)-based ART. Evaluation included fasting lipograms, oral glucose tolerance tests and clinical anthropometry. Dyslipidemia was defined using the NCEP ATPIII guidelines. RESULTS The median age of the participants was 34 years (range 19-68 years) and 78% were women. The prevalence of dyslipidemia in 406 ART-naive and 551 participants on ART was 90.0% and 85%, respectively. Low HDL-cholesterol (HDLC) was the most common abnormality [290/406 (71%) ART-naïve and 237/551 (43%) ART- participants]. Participants on ART had higher triglycerides (TG), total cholesterol (TC), LDL-cholesterol (LDLC) and HDLC than the ART-naïve group. Severe dyslipidaemia, (LDLC> 4.9 mmol/L or TG >5.0 mmol/L) was present in <5% of participants. In multivariate analyses there were complex associations between age, gender, type and duration of ART and body composition and LDLC, HDLC and TG, which differed between ART-naïve and ART-participants. CONCLUSION Participants on ART had higher TG, TC, LDLC and HDLC than those who were ART-naïve but severe lipid abnormalities requiring evaluation and treatment were uncommon.
Collapse
Affiliation(s)
- Joel A. Dave
- Divisions of Diabetic Medicine and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- * E-mail:
| | - Naomi S. Levitt
- Divisions of Diabetic Medicine and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Ian L. Ross
- Divisions of Diabetic Medicine and Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Miguel Lacerda
- Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Dirk Blom
- Division of Lipidology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
35
|
Han CY, Tang C, Guevara ME, Wei H, Wietecha T, Shao B, Subramanian S, Omer M, Wang S, O'Brien KD, Marcovina SM, Wight TN, Vaisar T, de Beer MC, de Beer FC, Osborne WR, Elkon KB, Chait A. Serum amyloid A impairs the antiinflammatory properties of HDL. J Clin Invest 2015; 126:266-81. [PMID: 26642365 DOI: 10.1172/jci83475] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 10/29/2015] [Indexed: 01/25/2023] Open
Abstract
HDL from healthy humans and lean mice inhibits palmitate-induced adipocyte inflammation; however, the effect of the inflammatory state on the functional properties of HDL on adipocytes is unknown. Here, we found that HDL from mice injected with AgNO3 fails to inhibit palmitate-induced inflammation and reduces cholesterol efflux from 3T3-L1 adipocytes. Moreover, HDL isolated from obese mice with moderate inflammation and humans with systemic lupus erythematosus had similar effects. Since serum amyloid A (SAA) concentrations in HDL increase with inflammation, we investigated whether elevated SAA is a causal factor in HDL dysfunction. HDL from AgNO3-injected mice lacking Saa1.1 and Saa2.1 exhibited a partial restoration of antiinflammatory and cholesterol efflux properties in adipocytes. Conversely, incorporation of SAA into HDL preparations reduced antiinflammatory properties but not to the same extent as HDL from AgNO3-injected mice. SAA-enriched HDL colocalized with cell surface-associated extracellular matrix (ECM) of adipocytes, suggesting impaired access to the plasma membrane. Enzymatic digestion of proteoglycans in the ECM restored the ability of SAA-containing HDL to inhibit palmitate-induced inflammation and cholesterol efflux. Collectively, these findings indicate that inflammation results in a loss of the antiinflammatory properties of HDL on adipocytes, which appears to partially result from the SAA component of HDL binding to cell-surface proteoglycans, thereby preventing access of HDL to the plasma membrane.
Collapse
|
36
|
Jayaraman S, Haupt C, Gursky O. Thermal transitions in serum amyloid A in solution and on the lipid: implications for structure and stability of acute-phase HDL. J Lipid Res 2015; 56:1531-42. [PMID: 26022803 DOI: 10.1194/jlr.m059162] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
Serum amyloid A (SAA) is an acute-phase protein that circulates mainly on plasma HDL. SAA interactions with its functional ligands and its pathogenic deposition in reactive amyloidosis depend, in part, on the structural disorder of this protein and its propensity to oligomerize. In vivo, SAA can displace a substantial fraction of the major HDL protein, apoA-I, and thereby influence the structural remodeling and functions of acute-phase HDL in ways that are incompletely understood. We use murine SAA1.1 to report the first structural stability study of human plasma HDL that has been enriched with SAA. Calorimetric and spectroscopic analyses of these and other SAA-lipid systems reveal two surprising findings. First, progressive displacement of the exchangeable fraction of apoA-I by SAA has little effect on the structural stability of HDL and its fusion and release of core lipids. Consequently, the major determinant for HDL stability is the nonexchangeable apoA-I. A structural model explaining this observation is proposed, which is consistent with functional studies in acute-phase HDL. Second, we report an α-helix folding/unfolding transition in SAA in the presence of lipid at near-physiological temperatures. This new transition may have potentially important implications for normal functions of SAA and its pathogenic misfolding.
Collapse
Affiliation(s)
- Shobini Jayaraman
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| | - Christian Haupt
- Institute for Pharmaceutical Biotechnology, University of Ulm, 89081, Ulm, Germany
| | - Olga Gursky
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston MA 02118
| |
Collapse
|
37
|
Vaisar T, Tang C, Babenko I, Hutchins P, Wimberger J, Suffredini AF, Heinecke JW. Inflammatory remodeling of the HDL proteome impairs cholesterol efflux capacity. J Lipid Res 2015; 56:1519-30. [PMID: 25995210 DOI: 10.1194/jlr.m059089] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Indexed: 12/17/2022] Open
Abstract
Recent studies demonstrate that HDL's ability to promote cholesterol efflux from macrophages associates strongly with cardioprotection in humans independently of HDL-cholesterol (HDL-C) and apoA-I, HDL's major protein. However, the mechanisms that impair cholesterol efflux capacity during vascular disease are unclear. Inflammation, a well-established risk factor for cardiovascular disease, has been shown to impair HDL's cholesterol efflux capacity. We therefore tested the hypothesis that HDL's impaired efflux capacity is mediated by specific changes of its protein cargo. Humans with acute inflammation induced by low-level endotoxin had unchanged HDL-C levels, but their HDL-C efflux capacity was significantly impaired. Proteomic analyses demonstrated that HDL's cholesterol efflux capacity correlated inversely with HDL content of serum amyloid A (SAA)1 and SAA2. In mice, acute inflammation caused a marked impairment of HDL-C efflux capacity that correlated with a large increase in HDL SAA. In striking contrast, the efflux capacity of mouse inflammatory HDL was preserved with genetic ablation of SAA1 and SAA2. Our observations indicate that the inflammatory impairment of HDL-C efflux capacity is due in part to SAA-mediated remodeling of HDL's protein cargo.
Collapse
Affiliation(s)
- Tomáš Vaisar
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Chongren Tang
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Ilona Babenko
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Patrick Hutchins
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Jake Wimberger
- Department of Medicine, University of Washington, Seattle, WA 98105
| | - Anthony F Suffredini
- Critical Care Medicine Department, National Institutes of Health, Bethesda, MD 20892
| | - Jay W Heinecke
- Department of Medicine, University of Washington, Seattle, WA 98105
| |
Collapse
|
38
|
Castle JW, Kent KP, Fan Y, Wallace KD, Davis CEL, Roberts JC, Marino ME, Thomenius KE, Lim HW, Coles E, Davidson MH, Feinstein SB, DeMaria A. Therapeutic ultrasound: Increased HDL-Cholesterol following infusions of acoustic microspheres and apolipoprotein A-I plasmids. Atherosclerosis 2015; 241:92-9. [PMID: 25969892 DOI: 10.1016/j.atherosclerosis.2015.04.817] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/24/2015] [Accepted: 04/29/2015] [Indexed: 12/25/2022]
Abstract
BACKGROUND Low levels of HDL-C are an independent cardiovascular risk factor associated with increased premature cardiovascular death. However, HDL-C therapies historically have been limited by issues relating to immunogenicity, hepatotoxicity and scalability, and have been ineffective in clinical trials. OBJECTIVE We examined the feasibility of using injectable acoustic microspheres to locally deliver human ApoA-I DNA plasmids in a pre-clinical model and quantify increased production of HDL-C in vivo. METHODS Our novel site-specific gene delivery system was examined in naïve rat model and comprised the following steps: (1) intravenous co-administration of a solution containing acoustically active microspheres (Optison™, GE Healthcare, Princeton, New Jersey) and human ApoA-I plasmids; (2) ultrasound verification of the presence of the microspheres within the liver vasculature; (3) External application of locally-directed acoustic energy, (4) induction of microsphere disruption and in situ sonoporation; (4) ApoA-I plasmid hepatic uptake; (5) transcription and expression of human ApoA-I protein; and (6) elevation of serum HDL-C. RESULTS Co-administration of ApoA-I plasmids and acoustic microspheres, activated by external ultrasound energy, resulted in transcription and production of human ApoA-I protein and elevated serum HDL-C in rats (up to 61%; p-value < 0.05). CONCLUSIONS HDL-C was increased in rats following ultrasound directed delivery of human ApoA-I plasmids by microsphere sonoporation. The present method provides a novel approach to promote ApoA-I synthesis and nascent HDL-C elevation, potentially permitting the use of a minimally-invasive ultrasound-based, gene delivery system for treating individuals with low HDL-C.
Collapse
Affiliation(s)
| | | | - Ying Fan
- General Electric Global Research, Niskayuna, NY, USA
| | | | | | | | | | | | - Hae W Lim
- Formerly GE Global Research, Niskayuna, NY, USA
| | | | - Michael H Davidson
- SonoGene LLC, Glen Ellyn, IL, USA; University of Chicago, Pritzker School of Medicine, Chicago, IL, USA
| | - Steven B Feinstein
- SonoGene LLC, Glen Ellyn, IL, USA; Rush University Medical Center, Chicago, IL, USA
| | - Anthony DeMaria
- Sulpizio Cardiovascular Center, University of California, San Diego, CA, USA
| |
Collapse
|
39
|
Charles-Schoeman C, Fleischmann R, Davignon J, Schwartz H, Turner SM, Beysen C, Milad M, Hellerstein MK, Luo Z, Kaplan IV, Riese R, Zuckerman A, McInnes IB. Potential mechanisms leading to the abnormal lipid profile in patients with rheumatoid arthritis versus healthy volunteers and reversal by tofacitinib. Arthritis Rheumatol 2015; 67:616-25. [PMID: 25470338 PMCID: PMC5024065 DOI: 10.1002/art.38974] [Citation(s) in RCA: 151] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 11/20/2014] [Indexed: 12/15/2022]
Abstract
OBJECTIVE Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA). Systemic inflammation is proposed to play a fundamental role in the altered lipid metabolism associated with RA; however, the underlying mechanisms are unknown. We undertook this study to compare cholesterol and lipoprotein kinetics in patients with active RA with those in matched healthy volunteers. METHODS This was a phase I open-label mechanism-of-action study. Cholesterol and lipoprotein kinetics were assessed with (13) C-cholesterol and (13) C-leucine infusions. RA patients were reevaluated after receiving oral tofacitinib 10 mg twice daily for 6 weeks. RESULTS Levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, total cholesterol, and apolipoprotein A-I (Apo A-I) as well as HDL cholesterol particle number were lower in RA patients (n = 36) than in healthy volunteers (n = 33). In contrast, the cholesterol ester fractional catabolic rate was higher in RA patients, but no differences were observed in cholesterol ester transfer protein, cholesterol ester production rate, HDL-associated Apo A-I fractional catabolic rate, or LDL-associated Apo B fractional catabolic rate. Following tofacitinib treatment in RA patients, the cholesterol ester fractional catabolic rate decreased and cholesterol levels increased. The decrease in cholesterol ester fractional catabolic rate correlated significantly with the increase in HDL cholesterol. Additionally, HDL cholesterol particle number increased and markers of HDL cholesterol function improved. CONCLUSION This is the first study to assess cholesterol and lipoprotein kinetics in patients with active RA and matched healthy volunteers. The data suggest that low cholesterol levels in patients with active RA may be driven by increases in cholesterol ester catabolism. Tofacitinib treatment reduced cholesterol ester catabolism, thereby increasing cholesterol levels toward those in healthy volunteers, and markers of antiatherogenic HDL function improved.
Collapse
|
40
|
Patel PN, Shah RY, Ferguson JF, Reilly MP. Human experimental endotoxemia in modeling the pathophysiology, genomics, and therapeutics of innate immunity in complex cardiometabolic diseases. Arterioscler Thromb Vasc Biol 2015; 35:525-34. [PMID: 25550206 PMCID: PMC4344396 DOI: 10.1161/atvbaha.114.304455] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Accepted: 12/18/2014] [Indexed: 01/16/2023]
Abstract
Inflammation is a fundamental feature of several complex cardiometabolic diseases. Indeed, obesity, insulin resistance, metabolic dyslipidemia, and atherosclerosis are all closely linked inflammatory states. Increasing evidence suggests that the infectious, biome-related, or endogenous activation of the innate immune system may contribute to the development of metabolic syndrome and cardiovascular disease. Here, we describe the human experimental endotoxemia model for the specific study of innate immunity in understanding further the pathogenesis of cardiometabolic disease. In a controlled, experimental setting, administration of an intravenous bolus of purified Escherichia coli endotoxin activates innate immunity in healthy human volunteers. During endotoxemia, changes emerge in glucose metabolism, lipoprotein composition, and lipoprotein functions that closely resemble those observed chronically in inflammatory cardiovascular disease risk states. In this review, we describe the transient systemic inflammation and specific metabolic consequences that develop during human endotoxemia. Such a model provides a controlled induction of systemic inflammation, eliminates confounding, undermines reverse causation, and possesses unique potential as a starting point for genomic screening and testing of novel therapeutics for treatment of the inflammatory underpinning of cardiometabolic disease.
Collapse
Affiliation(s)
- Parth N Patel
- From the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (P.N.P., R.Y.S., M.P.R.); and Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (J.F.F.)
| | - Rhia Y Shah
- From the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (P.N.P., R.Y.S., M.P.R.); and Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (J.F.F.)
| | - Jane F Ferguson
- From the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (P.N.P., R.Y.S., M.P.R.); and Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (J.F.F.)
| | - Muredach P Reilly
- From the Cardiovascular Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia (P.N.P., R.Y.S., M.P.R.); and Division of Cardiovascular Medicine, Vanderbilt University School of Medicine, Nashville, TN (J.F.F.).
| |
Collapse
|
41
|
Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:175-211. [PMID: 26149931 DOI: 10.1007/978-3-319-17344-3_8] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer's disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB>apoA-II>apoC-II≥apoA-I, apoC-III, SAA, apoC-I>apoA-IV, apoA-V, apoE) does not correlate with the proteins' involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins' hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.
Collapse
|
42
|
Colón W, Aguilera JJ, Srinivasan S. Intrinsic Stability, Oligomerization, and Amyloidogenicity of HDL-Free Serum Amyloid A. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 855:117-34. [PMID: 26149928 DOI: 10.1007/978-3-319-17344-3_5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Serum amyloid A (SAA) is an acute-phase reactant protein predominantly bound to high-density lipoprotein in serum and presumed to play various biological and pathological roles. Upon tissue trauma or infection, hepatic expression of SAA increases up to 1,000 times the basal levels. Prolonged increased levels of SAA may lead to amyloid A (AA) amyloidosis, a usually fatal systemic disease in which the amyloid deposits are mostly comprised of the N-terminal 1-76 fragment of SAA. SAA isoforms may differ across species in their ability to cause AA amyloidosis, and the mechanism of pathogenicity remains poorly understood. In vitro studies have shown that SAA is a marginally stable protein that folds into various oligomeric species at 4 °C. However, SAA is largely disordered at 37 °C, reminiscent of intrinsically disordered proteins. Non-pathogenic murine (m)SAA2.2 spontaneously forms amyloid fibrils in vitro at 37 °C whereas pathogenic mSAA1.1 has a long lag (nucleation) phase, and eventually forms fibrils of different morphology than mSAA2.2. Remarkably, human SAA1.1 does not form mature fibrils in vitro. Thus, it appears that the intrinsic amyloidogenicity of SAA is not a key determinant of pathogenicity, and that other factors, including fibrillation kinetics, ligand binding effects, fibril stability, nucleation efficiency, and SAA degradation may play key roles. This chapter will focus on the known structural and biophysical properties of SAA and discuss how these properties may help better understand the molecular mechanism of AA amyloidosis.
Collapse
Affiliation(s)
- Wilfredo Colón
- Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,
| | | | | |
Collapse
|
43
|
Djekic K, Ipp E. Loss of sex difference in high-density lipoprotein cholesterol in diabetic women during acute stress. J Clin Endocrinol Metab 2014; 99:E2357-61. [PMID: 25140403 PMCID: PMC5393502 DOI: 10.1210/jc.2014-2466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT The gender gap in high-density lipoprotein cholesterol (HDL-C) is well documented in health and also maintained in diverse chronic conditions, including menopause and diabetes. The mechanism for this difference in HDL-C and its regulation is not well understood. We evaluated whether this gender gap is maintained during acute stress. SETTING AND DESIGN Diabetic patients with metabolic decompensation (n=179) were studied in the fasting state within 24 hours of admission to hospital, and again at outpatient follow-up. Fasting lipids and measures of glycemic control were evaluated on both occasions. The population was predominately minority, 78% Hispanic or African American. RESULTS During admission, fasting lipid concentrations were not different in women (W) (n = 88) and men (M) (n = 91); serum total cholesterol (total-C), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and HDL-C were similar. Glycemic control was also similar; hemoglobin A1c (A1C) and serum glucose at presentation to hospital were not different in men and women. Compared with a subset of patients with pre-admission data (W, 35; M, 24), a decline of HDL-C was observed, greater in women (P = .005). At outpatient follow-up after admission, median duration approximately 4 months in each group (P = .39), changes in TG, LDL-C, and total-C from baseline admission were not different in men and women. In contrast, whereas HDL-C increased in both groups, the increase (median [interquartile range]) was significantly greater in women, 11 (4, 23) vs 6 (-1, 15) mg/dL (P < .003). This larger increase restored the gender gap in fasting HDL-C, 48 (39, 61) and 41 (36, 49) mg/dL in women and men at follow-up (P < .002). A1C improved similarly in each group. CONCLUSIONS The sex difference in HDL-C levels is lost at time of admission to hospital in patients with diabetes, and returns when acute stress has resolved. These results raise the possibility that recurrent episodes of acute stress may lead to cumulative loss of the HDL-C advantage in women.
Collapse
Affiliation(s)
- Kristina Djekic
- Department of Medicine, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Los Angeles, California 90502
| | | |
Collapse
|
44
|
Decreased basal activity of HDL associated enzyme: Paraoxonase (PON) during uncompensated oxidative stress among type 2 diabetes mellitus patients. Int J Diabetes Dev Ctries 2014. [DOI: 10.1007/s13410-014-0218-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
45
|
Chang FJ, Yuan HY, Hu XX, Ou ZJ, Fu L, Lin ZB, Wang ZP, Wang SM, Zhou L, Xu YQ, Wang CP, Xu Z, Zhang X, Zhang CX, Ou JS. High density lipoprotein from patients with valvular heart disease uncouples endothelial nitric oxide synthase. J Mol Cell Cardiol 2014; 74:209-19. [DOI: 10.1016/j.yjmcc.2014.05.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 05/04/2014] [Accepted: 05/21/2014] [Indexed: 11/29/2022]
|
46
|
Aguilera JJ, Zhang F, Beaudet JM, Linhardt RJ, Colón W. Divergent effect of glycosaminoglycans on the in vitro aggregation of serum amyloid A. Biochimie 2014; 104:70-80. [PMID: 24878279 DOI: 10.1016/j.biochi.2014.05.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 05/12/2014] [Indexed: 11/25/2022]
Abstract
Serum amyloid A (SAA) is an apolipoprotein involved in poorly understood roles in inflammation. Upon trauma, hepatic expression of SAA rises 1000 times the basal levels. In the case of inflammatory diseases like rheumatoid arthritis, there is a risk for deposition of SAA fibrils in various organs leading to Amyloid A (AA) amyloidosis. Although the amyloid deposits in AA amyloidosis accumulate with the glycosaminoglycan (GAG) heparan sulfate, the role GAGs play in the function and pathology of SAA is an enigma. It has been shown that GAG sulfation is a contributing factor in protein fibrillation and for co-aggregating with a plethora of amyloidogenic proteins. Herein, the effects of heparin, heparan sulfate, hyaluronic acid, chondroitin sulfate A, and heparosan on the oligomerization and aggregation properties of pathogenic mouse SAA1.1 were investigated. Delipidated SAA was used to better understand the interactions between SAA and GAGs without the complicating involvement of lipids. The results revealed-to varying degrees-that all GAGs accelerated SAA1.1 aggregation, but had variable effects on its fibrillation. Heparan sulfate, hyaluronic acid, and heparosan did not affect much the fibrillation of SAA1.1. In contrast, chondroitin sulfate A blocked SAA fibril formation and facilitated the formation of spherical aggregates of various sizes. Interestingly, heparin caused formation of spherical SAA1.1 aggregates of various sizes, vast amounts of thin protofibrils, and few long fibrils of various heights. These results suggest that GAGs may have an intrinsic and divergent influence on the aggregation and fibrillation of HDL-free SAA1.1 in vivo, with functional and pathological implications.
Collapse
Affiliation(s)
- J Javier Aguilera
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Julie M Beaudet
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Robert J Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Wilfredo Colón
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180, USA; Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA.
| |
Collapse
|
47
|
Das M, Mei X, Jayaraman S, Atkinson D, Gursky O. Amyloidogenic mutations in human apolipoprotein A-I are not necessarily destabilizing - a common mechanism of apolipoprotein A-I misfolding in familial amyloidosis and atherosclerosis. FEBS J 2014; 281:2525-42. [PMID: 24702826 DOI: 10.1111/febs.12809] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 03/19/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022]
Abstract
High-density lipoproteins and their major protein, apolipoprotein A-I (apoA-I), remove excess cellular cholesterol and protect against atherosclerosis. However, in acquired amyloidosis, nonvariant full-length apoA-I deposits as fibrils in atherosclerotic plaques; in familial amyloidosis, N-terminal fragments of variant apoA-I deposit in vital organs, damaging them. Recently, we used the crystal structure of Δ(185-243)apoA-I to show that amyloidogenic mutations destabilize apoA-I and increase solvent exposure of the extended strand 44-55 that initiates β-aggregation. In the present study, we test this hypothesis by exploring naturally occurring human amyloidogenic mutations, W50R and G26R, within or close to this strand. The mutations caused small changes in the protein's α-helical content, stability, proteolytic pattern and protein-lipid interactions. These changes alone were unlikely to account for amyloidosis, suggesting the importance of other factors. Sequence analysis predicted several amyloid-prone segments that can initiate apoA-I misfolding. Aggregation studies using N-terminal fragments verified this prediction experimentally. Three predicted N-terminal amyloid-prone segments, mapped on the crystal structure, formed an α-helical cluster. Structural analysis indicates that amyloidogenic mutations or Met86 oxidation perturb native packing in this cluster. Taken together, the results suggest that structural perturbations in the amyloid-prone segments trigger α-helix to β-sheet conversion in the N-terminal ~ 75 residues forming the amyloid core. Polypeptide outside this core can be proteolysed to form 9-11 kDa N-terminal fragments found in familial amyloidosis. Our results imply that apoA-I misfolding in familial and acquired amyloidosis follows a similar mechanism that does not require significant structural destabilization or proteolysis. This novel mechanism suggests potential therapeutic interventions for apoA-I amyloidosis.
Collapse
Affiliation(s)
- Madhurima Das
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, MA, USA
| | | | | | | | | |
Collapse
|
48
|
Aleksandrova K, Drogan D, Boeing H, Jenab M, Bas Bueno-de-Mesquita H, Jansen E, van Duijnhoven FJB, Rinaldi S, Fedirko V, Romieu I, Kaaks R, Riboli E, Gunter MJ, Romaguera D, Westhpal S, Overvad K, Tjønneland A, Halkjaer J, Boutron-Ruault MC, Clavel-Chapelon F, Lukanova A, Trichopoulou A, Trichopoulos D, Vidalis P, Panico S, Agnoli C, Palli D, Tumino R, Vineis P, Buckland G, Sánchez-Cruz JJ, Dorronsoro M, Díaz MJT, Barricarte A, Ramon Quiros J, Peeters PH, May AM, Hallmans G, Palmqvist R, Crowe FL, Khaw KT, Wareham N, Pischon T. Adiposity, mediating biomarkers and risk of colon cancer in the European prospective investigation into cancer and nutrition study. Int J Cancer 2014; 134:612-21. [PMID: 23824948 DOI: 10.1002/ijc.28368] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/17/2013] [Indexed: 12/19/2022]
Abstract
Adiposity is a risk factor for colon cancer, but underlying mechanisms are not well understood. We evaluated the extent to which 11 biomarkers with inflammatory and metabolic actions mediate the association of adiposity measures, waist circumference (WC) and body mass index (BMI), with colon cancer in men and women. We analyzed data from a prospective nested case-control study among 662 incident colon cancer cases matched within risk sets to 662 controls. Relative risks (RRs) and 95% confidence intervals (CIs) were calculated using conditional logistic regression. The percent effect change and corresponding CIs were estimated after adjusting for biomarkers shown to be associated with colon cancer risk. After multivariable adjustment, WC was associated with colon cancer risk in men (top vs. bottom tertile RR 1.68, 95% CI 1.06-2.65; ptrend = 0.02) and in women (RR 1.67, 95% CI 1.09-2.56; ptrend = 0.03). BMI was associated with risk only in men. The association of WC with colon cancer was accounted mostly for by three biomarkers, high-density lipoprotein cholesterol, non-high-molecular-weight adiponectin and soluble leptin receptor, which in combination explained 46% (95% CI 37-57%) of the association in men and 50% (95% CI 40-65%) of the association in women. Similar results were observed for the associations with BMI in men. These data suggest that alterations in levels of these metabolic biomarkers may represent a primary mechanism of action in the relation of adiposity with colon cancer. Further studies are warranted to determine whether altering their concentrations may reduce colon cancer risk.
Collapse
Affiliation(s)
- Krasimira Aleksandrova
- Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbrücke, Nuthetal, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
9β Polymorphism of the glucocorticoid receptor gene appears to have limited impact in patients with Addison's disease. PLoS One 2014; 9:e86350. [PMID: 24466047 PMCID: PMC3900528 DOI: 10.1371/journal.pone.0086350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
Abstract
Background Addison’s disease (AD) has been associated with an increased risk of cardiovascular disease. Glucocorticoid receptor polymorphisms that alter glucocorticoid sensitivity may influence metabolic and cardiovascular risk factors in patients with AD. The 9β polymorphism of the glucocorticoid receptor gene is associated with relative glucocorticoid resistance and has been reported to increase the risk of myocardial infarction in the elderly. We explored the impact of this polymorphism in patients with AD. Materials and Methods 147 patients with AD and 147 age, gender and ethnicity matched healthy controls were recruited. Blood was taken in a non-fasted state for plasma lipid determination, measurement of cardiovascular risk factors and DNA extraction. Results Genotype data for the 9β polymorphism was available for 139 patients and 146 controls. AD patients had a more atherogenic lipid profile characterized by an increase in the prevalence of small dense LDL (p = 0.003), increased triglycerides (p = 0.002), reduced HDLC (p<0.001) an elevated highly sensitive C-reactive protein (p = 0.01), compared with controls. The 9β polymorphism (at least one G allele) was found in 28% of patients and controls respectively. After adjusting for age, gender, ethnicity, BMI and hydrocortisone dose per metre square of body surface area in patients, there were no significant metabolic associations with this polymorphism and hydrocortisone doses were not higher in patients with the polymorphism. Conclusions This study did not identify any associations between the 9β polymorphism and cardiovascular risk factors or hydrocortisone dose and determination of this polymorphism is therefore unlikely to be of clinical benefit in the management of patients with AD.
Collapse
|
50
|
Rocha M, Bañuls C, Bellod L, Rovira-Llopis S, Morillas C, Solá E, Víctor VM, Hernández-Mijares A. Association of serum retinol binding protein 4 with atherogenic dyslipidemia in morbid obese patients. PLoS One 2013; 8:e78670. [PMID: 24223837 PMCID: PMC3817034 DOI: 10.1371/journal.pone.0078670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/14/2013] [Indexed: 12/30/2022] Open
Abstract
Retinol binding protein 4 (RBP4) is an adipokine that may contribute to the development of insulin resistance. However, how this adipokine is affected and its possible involvement in lipid metabolism in obese patients with varying degrees of insulin resistance is yet to be determined. A total of 299 middle-aged morbid obese patients (BMI>40 kg/m(2)) were divided in euglycemic, metabolic syndrome or type 2 diabetic. Anthropometric measurements, biochemical variables and systemic RBP4 levels were determined. RBP4 levels were significantly higher in patients with metabolic syndrome and type 2 diabetes than in euglycemic subjects (42.9±14.6; 42.3±17.0 and 37.4±11.7 µg/ml, respectively) and correlated with triglycerides but not with those of HOMA-IR in the whole population. The multivariate regression model revealed that triglycerides were the strongest predictor of systemic RBP4 levels. Analysis of lipoprotein subfractions in a subpopulation of 80 subjects showed an altered profile of insulin resistant states characterized by higher VLDL, sdLDL and small HDL percentages and lower large HDL percentage. Although RBP4 levels correlated significantly with LDL particle size and small HDL percentage, the latter parameter was independently associated only with RBP4. Our study reveals that systemic RBP4 levels could play an important role in lipid metabolism in morbid obesity, increasing triglyceride levels and contributing to the formation of small HDL.
Collapse
Affiliation(s)
- Milagros Rocha
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- CIBER CB06/04/0071 Research Group. CIBER Hepatic and Digestive Diseases, Faculty of Medicine, University of Valencia, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Celia Bañuls
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Lorena Bellod
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
| | - Susana Rovira-Llopis
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
| | - Carlos Morillas
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Eva Solá
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Víctor M. Víctor
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- CIBER CB06/04/0071 Research Group. CIBER Hepatic and Digestive Diseases, Faculty of Medicine, University of Valencia, Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Physiology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Antonio Hernández-Mijares
- Service of Endocrinology, University Hospital Dr. Peset, Valencia, Spain
- Foundation for the Promotion of Healthcare and Biomedical Research in the Valencian Community (FISABIO), Valencia, Spain
- Institute of Health Research INCLIVA, Valencia, Spain
- Department of Medicine, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|