1
|
Jiang K, Zhao Z, Yuan M, Ji H, Zhao Y, Ding H, Feng J, Zhou Y, Dai R. Examining the dietary contributions of lipids to pancreatic cancer burden (1990-2021): incidence trends and future projections. Lipids Health Dis 2025; 24:62. [PMID: 39984954 PMCID: PMC11844042 DOI: 10.1186/s12944-025-02468-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/04/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND Pancreatic cancer (PC) ranks sixth globally among cancer deaths, imposing a significant burden on healthcare systems worldwide. Although diet is known to be a major risk factor, Although diet is a well-established risk factor for PC, the precise dietary components linked to the disease remain inconclusive, with studies showing varying results across different populations and regions. This study addresses this gap through a comprehensive analysis of PC incidence trends from 1990 to 2021, with a specific focus on associations with age, dietary patterns, and socio-demographic determinants. METHODS The data utilized in this study were obtained from the 2021 Global Burden of Disease (GBD) results database, updated on May 16, 2024. Unlike traditional single-variable correlation analyses, a Bayesian generalized linear model was applied to assess the association between food intake and disease incidence during the period 1990-2021. To account for variations related to year and region, these variables were incorporated as covariates in the model, allowing for a more nuanced and comprehensive analysis of the background factors. Finally, the "BAPC" package was employed to project age-standardized incidence rates of PC through the year 2051. RESULTS The global incidence of PC increased from 3.90 per 100,000 people (95% CI: 3.69, 4.08) in 1990 to 6.44 per 100,000 (95% CI: 5.86, 6.93) in 2021. The analysis revealed significant associations between PC incidence and the intake of nuts, omega-3 fatty acids, polyunsaturated fatty acids (PUFA), trans fats, dietary sodium, and calcium. In typical countries, higher intake of nuts and PUFA was associated with a reduced incidence of PC, while trans fats were positively correlated with increased incidence. The age-standardized Bayesian Age-Period-Cohort (BAPC) prediction indicates that the incidence rates of PC will show a downward trend after 2021. CONCLUSIONS From 1990 to 2021, the global incidence of PC exhibited a rapid upward trend, suggesting an increasing global healthcare burden. The findings of this study suggest that dietary lipid intake is significantly associated with PC incidence at a global level. This finding underscores the importance of dietary fat composition, particularly in the context of pancreatic cancer prevention, suggesting that individuals should pay attention to the types and sources of fats in their diets to mitigate disease risk.
Collapse
Affiliation(s)
- Kexin Jiang
- Department of General Surgery Center, College of Medicine, The General Hospital of Western Theater Command, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Zhirong Zhao
- Department of General Surgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Mu Yuan
- The General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, China
| | - Hua Ji
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Yiwen Zhao
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Hanyu Ding
- Department of General Surgery Center, College of Medicine, The General Hospital of Western Theater Command, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Jiajie Feng
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Yongjiang Zhou
- Department of General Surgery, Affiliated Hospital of Southwest Medical University, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China
| | - Ruiwu Dai
- Department of General Surgery Center, College of Medicine, The General Hospital of Western Theater Command, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
- General Surgery Center, The General Hospital of Western Theater Command, Chengdu, 610083, Sichuan, China.
| |
Collapse
|
2
|
Machuca J, Wirkus J, Ead AS, Vahmani P, Matsukuma KE, Mackenzie GG, Oteiza PI. Dietary ω-3 Fatty Acids Mitigate Intestinal Barrier Integrity Alterations in Mice Fed a High-Fat Diet: Implications for Pancreatic Carcinogenesis. J Nutr 2025; 155:197-210. [PMID: 39510504 DOI: 10.1016/j.tjnut.2024.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/24/2024] [Accepted: 10/31/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Although body fatness is a recognized risk factor for pancreatic ductal adenocarcinoma (PDAC), the underlying mechanisms of how fat composition affects pancreatic carcinogenesis are poorly understood. High-fat diets (HFDs) can disrupt intestinal barrier function, potentially accelerating carcinogenesis. Omega-3 (ω-3) polyunsaturated fatty acids (FAs) have anti-inflammatory properties and help preserve intestinal integrity. OBJECTIVE The objective of this study was to evaluate how ω-3 FAs affect the colonic barrier in the context of HFD-induced changes, in a mouse model of PDAC [p48-Cre; LSL-KrasG12D (KC)]. METHODS Male and female KC mice were randomly assigned into 1 of the following 4 groups: 1) a control diet containing ∼11% total calories from fat with an ω-6:ω-3 FA ratio of 10:1 (C), 2) the control diet with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (Cω3), 3) an HFD containing 60% total calories from fat with an ω-6:ω-3 FA ratio of approximately 10:1 (HF), and 4) an HFD with high concentrations of ω-3 FA with an ω-6:ω-3 FA ratio of 1:1 (HFω3). RESULTS Consumption of an HFD for 8 wk caused: 1) disruption of tight junction structure and function; 2) decreased goblet cell number; 3) higher colonic Toll-like receptor 4 (TLR4) and NADPH oxidase 1 expression; 4) activation of TLR4-triggered pathways, that is, NF-κB, c-Jun N-terminal kinase; 5) elevated plasma lipopolysaccharide concentrations; and 6) higher pancreatic TLR4 expression, and 7) accelerated acinar-to-ductal metaplasia. All of these events were mitigated in mice fed the HFω3. CONCLUSIONS Our findings support the concept that, in the context of obesity, ω-3 FAs have protective effects during early-stage pancreatic carcinogenesis through the regulation of intestinal permeability and endotoxemia.
Collapse
Affiliation(s)
- Jazmin Machuca
- Department of Nutrition, University of California, Davis, CA, United States
| | - Joanna Wirkus
- Department of Nutrition, University of California, Davis, CA, United States
| | - Aya S Ead
- Department of Nutrition, University of California, Davis, CA, United States
| | - Payam Vahmani
- Department of Animal Science, University of California, Davis, CA, United States
| | - Karen E Matsukuma
- Department of Pathology and Laboratory Medicine, University of California, Davis Medical Center, Sacramento, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis, CA, United States; University of California Davis Comprehensive Cancer Center, University of California, Sacramento, CA, United States.
| | - Patricia I Oteiza
- Department of Nutrition, University of California, Davis, CA, United States; Department of Environmental Toxicology, University of California, Davis, CA, United States.
| |
Collapse
|
3
|
Li D, Zheng J, Hatia R, Hassan M, Daniel CR. Dietary Intake of Fatty Acids and Risk of Pancreatic Cancer: A Case-Control Study. J Nutr 2021; 152:439-447. [PMID: 34665254 PMCID: PMC8826846 DOI: 10.1093/jn/nxab372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/08/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Epidemiological findings on dietary fat intake and risk of pancreatic cancer (PanC) are inconsistent. OBJECTIVES This study aimed to determine the association between types of dietary fat intake and PanC. METHODS We conducted a hospital-based case-control study in 957 pathologically confirmed PanC cases and 938 cancer-free controls. Cases and controls were frequency matched by age, sex, and race. Dietary information was collected using a self-administered validated FFQ. Unconditional logistic regression models were used to estimate the ORs and 95% CIs of PanC risk by quintiles of fat intake with the lowest quintile as referent and with adjustment for other risk factors and dietary factors. RESULTS We observed no difference in (median) intake of total fat standardized for energy among cases versus controls. The multivariable-adjusted OR (95% CI) of the highest versus the lowest quintile of intake (ORQ5 compared with Q1) was 2.51 (1.68-3.72) for fat from animal sources and 0.41 (0.29-0.58) for fat from plant sources. Intakes of total MUFA, total PUFA, and linoleic (n-6) and long chain n-3 fatty acids were inversely associated with PanC (ORQ5 compared with Q1 and 95% CI: 0.55 [0.36-0.82], 0.59 [0.42-0.82], 0.64 [0.43-0.84], and 0.60 [0.42-0.84], respectively). Arachidonic acid (n-6) and several SFAs were positively associated with PanC. CONCLUSION Although some observed associations with pancreatic cancer risk could be explained by reverse causation, the potential protective associations with intakes of largely plant-derived PUFAs and MUFAs and fish-derived long chain n-3 PUFAs warrant further prospective investigation.
Collapse
Affiliation(s)
| | - Jiali Zheng
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rikita Hatia
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Manal Hassan
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Carrie R Daniel
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
4
|
Moussa I, Day RS, Li R, Kaseb A, Jalal PK, Daniel‐MacDougall C, Hatia RI, Abdelhakeem A, Rashid A, Chun YS, Li D, Hassan MM. Association of dietary fat intake and hepatocellular carcinoma among US adults. Cancer Med 2021; 10:7308-7319. [PMID: 34535983 PMCID: PMC8525131 DOI: 10.1002/cam4.4256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/05/2021] [Accepted: 08/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND AIMS The role of dietary fat consumption in the etiology of hepatocellular carcinoma (HCC) remains unclear. We investigated the associations of total fat and fatty acids with risk of HCC among US adults in a hospital-based case-control study. METHODS We analyzed data from 641 cases and 1034 controls recruited at MD Anderson Cancer Center during 2001-2018. Cases were new patients with a pathologically or radiologically confirmed diagnosis of HCC; controls were cancer-free spouses of patients with cancers other than gastrointestinal, lung, liver, or head and neck. Cases and controls were frequency-matched by age and sex. Dietary intake was assessed using a validated food frequency questionnaire. Odds ratios (ORs) and corresponding confidence intervals (CIs) were computed using unconditional logistic regression with adjustment for major HCC risk factors, including hepatitis B virus and hepatitis C virus infection. RESULTS Monounsaturated fatty acid (MUFA) intake was inversely associated with HCC risk (highest vs. lowest tertile: OR, 0.49; 95% CI, 0.33-0.72). Total polyunsaturated fatty acid (PUFA) intake was directly associated with HCC risk (highest vs. lowest tertile: OR, 1.82; 95% CI, 1.23-2.70). Omega-6 PUFA was directly associated with HCC risk (highest vs. lowest tertile: OR 2.29; 95% CI, 1.52-3.44). Long-chain omega-3 PUFA (eicosapentaenoic acid and docosahexaenoic acid) intake was also inversely associated with HCC risk (highest vs. lowest tertile: OR, 0.50; 95% CI, 0.33-0.70). No association was observed for saturated fat and HCC risk. CONCLUSION Our findings support a direct association of omega-6 PUFA intake with HCC and an inverse association of MUFA and long-chain omega-3 PUFA intake with HCC.
Collapse
Affiliation(s)
- Iman Moussa
- Department of Epidemiology, Human Genetics, and Environmental ScienceSchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Rena S. Day
- Division of Epidemiology, Human Genetics, & Environmental SciencesSouthwest Center for Occupational and Environmental HealthMichael & Susan Dell Center for Healthy LivingSchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ruosha Li
- Department of Biostatistics and Data ScienceSchool of Public HealthThe University of Texas Health Science Center at HoustonHoustonTexasUSA
| | - Ahmed Kaseb
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Prasun K. Jalal
- Division of Gastroenterology and HepatologyDepartment of MedicineBaylor College of MedicineHoustonTexasUSA
| | | | - Rikita I. Hatia
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Ahmed Abdelhakeem
- Department of Internal MedicineBaptist Hospitals of Southeast TexasBeaumontTexasUSA
| | - Asif Rashid
- Department of PathologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Yun Shin Chun
- Division of SurgeryDepartment of Surgical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Donghui Li
- Department of Gastrointestinal Medical OncologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Manal M. Hassan
- Department of EpidemiologyThe University of Texas MD Anderson Cancer CenterHoustonTexasUSA
| |
Collapse
|
5
|
Cui J, Shan K, Yang Q, Qi Y, Qu H, Li J, Wang R, Jia L, Chen W, Feng N, Chen YQ. Prostaglandin E 3 attenuates macrophage-associated inflammation and prostate tumour growth by modulating polarization. J Cell Mol Med 2021; 25:5586-5601. [PMID: 33982835 PMCID: PMC8184682 DOI: 10.1111/jcmm.16570] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/05/2021] [Accepted: 04/10/2021] [Indexed: 12/29/2022] Open
Abstract
Alternative polarization of macrophages regulates multiple biological processes. While M1‐polarized macrophages generally mediate rapid immune responses, M2‐polarized macrophages induce chronic and mild immune responses. In either case, polyunsaturated fatty acid (PUFA)‐derived lipid mediators act as both products and regulators of macrophages. Prostaglandin E3 (PGE3) is an eicosanoid derived from eicosapentaenoic acid, which is converted by cyclooxygenase, followed by prostaglandin E synthase successively. We found that PGE3 played an anti‐inflammatory role by inhibiting LPS and interferon‐γ‐induced M1 polarization and promoting interleukin‐4‐mediated M2 polarization (M2a). Further, we found that although PGE3 had no direct effect on the growth of prostate cancer cells in vitro, PGE3 could inhibit prostate cancer in vivo in a nude mouse model of neoplasia. Notably, we found that PGE3 significantly inhibited prostate cancer cell growth in a cancer cell‐macrophage co‐culture system. Experimental results showed that PGE3 inhibited the polarization of tumour‐associated M2 macrophages (TAM), consequently producing indirect anti‐tumour activity. Mechanistically, we identified that PGE3 regulated the expression and activation of protein kinase A, which is critical for macrophage polarization. In summary, this study indicates that PGE3 can selectively promote M2a polarization, while inhibiting M1 and TAM polarization, thus exerting an anti‐inflammatory effect and anti‐tumour effect in prostate cancer.
Collapse
Affiliation(s)
- Jing Cui
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Kai Shan
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Yang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yumin Qi
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hongyan Qu
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jiaqi Li
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Rong Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Lingling Jia
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ninghan Feng
- Department of Urology, Wuxi No. 2 People's Hospital, Wuxi, China
| | - Yong Q Chen
- Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Wirkus J, Ead AS, Mackenzie GG. Impact of dietary fat composition and quantity in pancreatic carcinogenesis: Recent advances and controversies. Nutr Res 2020; 88:1-18. [PMID: 33607535 DOI: 10.1016/j.nutres.2020.12.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/11/2020] [Accepted: 12/20/2020] [Indexed: 12/11/2022]
Abstract
A significant number of pancreatic cancer cases are due to modifiable risk factors, with many being attributed to increased body fatness. This has sparked investigators to examine the role played by high dietary fat intake in pancreatic cancer development and the mechanisms driving this connection. However, there is currently no consensus on how dietary fat quantity and composition specifically affect pancreatic carcinogenesis. The objective of this narrative review is to discuss the link between high total fat consumption and fatty acid composition (saturated, mono-, or poly-unsaturated fats) with pancreatic cancer incidence and progression. Following our detailed analysis of the strengths and weaknesses of recent preclinical and human studies, we discuss existing research gaps and opportunities, and provide recommendations for future studies. Numerous studies suggest that diets high in omega-3 polyunsaturated fatty acids are associated with reduced pancreatic cancer risk. However, the current evidence appears insufficient for a general conclusion regarding the impact of other types of fat in pancreatic carcinogenesis, with many studies providing inconclusive findings due to study limitations. Thus, we recommend future studies to include detailed methodology of the animal experiments, not limited to the diet composition, type of ingredients, formulations, and administration of the diets. Moreover, human studies should include a diverse population and well-characterized biomarkers for accurate determination of dietary fat intake. Ultimately, this will aid the study rigor, and improve our understanding of the impact of fat quantity and composition in pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Joanna Wirkus
- Department of Nutrition, University of California, Davis. One Shields Ave, Davis, CA 95616, USA
| | - Aya S Ead
- Department of Nutrition, University of California, Davis. One Shields Ave, Davis, CA 95616, USA
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California, Davis. One Shields Ave, Davis, CA 95616, USA.
| |
Collapse
|
7
|
Story MJ. Zinc, ω-3 polyunsaturated fatty acids and vitamin D: An essential combination for prevention and treatment of cancers. Biochimie 2020; 181:100-122. [PMID: 33307154 DOI: 10.1016/j.biochi.2020.11.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/14/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023]
Abstract
Zinc, ω-3 polyunsaturated fatty acids (PUFAs) and vitamin D are essential nutrients for health, maturation and general wellbeing. Extensive literature searches have revealed the widespread similarity in molecular biological properties of zinc, ω-3 PUFAs and vitamin D, and their similar anti-cancer properties, even though they have different modes of action. These three nutrients are separately essential for good health, especially in the aged. Zinc, ω-3 PUFAs and vitamin D are inexpensive and safe as they are fundamentally natural and have the properties of correcting and inhibiting undesirable actions without disturbing the normal functions of cells or their extracellular environment. This review of the anticancer properties of zinc, ω-3 PUFAs and vitamin D is made in the context of the hallmarks of cancer. The anticancer properties of zinc, ω-3 PUFAs and vitamin D can therefore be used beneficially through combined treatment or supplementation. It is proposed that sufficiency of zinc, ω-3 PUFAs and vitamin D is a necessary requirement during chemotherapy treatment and that clinical trials can have questionable integrity if this sufficiency is not checked and maintained during efficacy trials.
Collapse
Affiliation(s)
- Michael J Story
- Story Pharmaceutics Pty Ltd, PO Box 6086, Linden Park, South Australia, 5065, Australia.
| |
Collapse
|
8
|
Ghoneim DH, Zhu J, Zheng W, Long J, Murff HJ, Ye F, Setiawan VW, Wilkens LR, Khankari NK, Haycock P, Antwi SO, Yang Y, Arslan AA, Beane Freeman LE, Bracci PM, Canzian F, Du M, Gallinger S, Giles GG, Goodman PJ, Kooperberg C, Le Marchand L, Neale RE, Scelo G, Visvanathan K, White E, Albanes D, Amiano P, Andreotti G, Babic A, Bamlet WR, Berndt SI, Brais LK, Brennan P, Bueno-de-Mesquita B, Buring JE, Campbell PT, Rabe KG, Chanock SJ, Duggal P, Fuchs CS, Gaziano JM, Goggins MG, Hackert T, Hassan MM, Helzlsouer KJ, Holly EA, Hoover RN, Katske V, Kurtz RC, Lee IM, Malats N, Milne RL, Murphy N, Oberg AL, Porta M, Rothman N, Sesso HD, Silverman DT, Thompson IM, Wactawski-Wende J, Wang X, Wentzensen N, Yu H, Zeleniuch-Jacquotte A, Yu K, Wolpin BM, Jacobs EJ, Duell EJ, Risch HA, Petersen GM, Amundadottir LT, Kraft P, Klein AP, Stolzenberg-Solomon RZ, Shu XO, Wu L. Mendelian Randomization Analysis of n-6 Polyunsaturated Fatty Acid Levels and Pancreatic Cancer Risk. Cancer Epidemiol Biomarkers Prev 2020; 29:2735-2739. [PMID: 32967863 PMCID: PMC7710600 DOI: 10.1158/1055-9965.epi-20-0651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/21/2020] [Accepted: 09/18/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Whether circulating polyunsaturated fatty acid (PUFA) levels are associated with pancreatic cancer risk is uncertain. Mendelian randomization (MR) represents a study design using genetic instruments to better characterize the relationship between exposure and outcome. METHODS We utilized data from genome-wide association studies within the Pancreatic Cancer Cohort Consortium and Pancreatic Cancer Case-Control Consortium, involving approximately 9,269 cases and 12,530 controls of European descent, to evaluate associations between pancreatic cancer risk and genetically predicted plasma n-6 PUFA levels. Conventional MR analyses were performed using individual-level and summary-level data. RESULTS Using genetic instruments, we did not find evidence of associations between genetically predicted plasma n-6 PUFA levels and pancreatic cancer risk [estimates per one SD increase in each PUFA-specific weighted genetic score using summary statistics: linoleic acid odds ratio (OR) = 1.00, 95% confidence interval (CI) = 0.98-1.02; arachidonic acid OR = 1.00, 95% CI = 0.99-1.01; and dihomo-gamma-linolenic acid OR = 0.95, 95% CI = 0.87-1.02]. The OR estimates remained virtually unchanged after adjustment for covariates, using individual-level data or summary statistics, or stratification by age and sex. CONCLUSIONS Our results suggest that variations of genetically determined plasma n-6 PUFA levels are not associated with pancreatic cancer risk. IMPACT These results suggest that modifying n-6 PUFA levels through food sources or supplementation may not influence risk of pancreatic cancer.
Collapse
Affiliation(s)
- Dalia H Ghoneim
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Jingjing Zhu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Harvey J Murff
- Division of General Internal Medicine, Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Fei Ye
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Veronica Wendy Setiawan
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Lynne R Wilkens
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Nikhil K Khankari
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Philip Haycock
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, England, United Kingdom
| | - Samuel O Antwi
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, Florida
| | - Yaohua Yang
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alan A Arslan
- Departments of Obstetrics and Gynecology, Population Health and Environmental Medicine, NYU Perlmutter Comprehensive Cancer Center, New York, New York
| | - Laura E Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System and University of Toronto, Toronto, Ontario, Canada
| | - Graham G Giles
- Division of Cancer Epidemiology, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Loïc Le Marchand
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Rachel E Neale
- Department of Population Health, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Emily White
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Pilar Amiano
- Ministry of Health of the Basque Government, Public Health Division of Gipuzkoa, Biodonostia Health Research Institute, Donostia-San Sebastian; CIBER Epidemiología y Salud Pública, Madrid, Spain
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lauren K Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases (DCD), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands
- Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Julie E Buring
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Peter T Campbell
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, Georgia
| | - Kari G Rabe
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Priya Duggal
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland
| | - Charles S Fuchs
- Yale Cancer Center, New Haven, Connecticut
- Department of Medicine, Yale School of Medicine, New Haven, Connecticut
- Smilow Cancer Hospital, New Haven, Connecticut
| | - J Michael Gaziano
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
- Boston Veteran Affairs Healthcare System, Boston, Massachusetts
| | - Michael G Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Thilo Hackert
- Department of General, Visceral and Transplantation Surgery, University of Heidelberg, Heidelberg, Germany
| | - Manal M Hassan
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kathy J Helzlsouer
- Epidemiology and Genomics Research Program, Division of Cancer Control and Population Science, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Verena Katske
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Robert C Kurtz
- Gastroenterology, Hepatology, and Nutrition Service, Memorial Sloan Kettering Cancer Center, New York, New York
| | - I-Min Lee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Roger L Milne
- Division of Cancer Epidemiology, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Neil Murphy
- Section of Nutrition and Metabolism, International Agency for Research on Cancer, Lyon, France
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Miquel Porta
- Hospital del Mar Institute of Medical Research (IMIM), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Howard D Sesso
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ian M Thompson
- CHRISTUS Santa Rosa Hospital - Medical Center, San Antonio, Texas
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University of Buffalo, Buffalo, New York
| | - Xiaoliang Wang
- Cancer Prevention Program, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Herbert Yu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Anne Zeleniuch-Jacquotte
- Departments of Population Health and Environmental Medicine, NYU Perlmutter Comprehensive Cancer Center, New York, New York
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), Barcelona, Spain
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, Connecticut
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, Minnesota
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Alison P Klein
- Department of Epidemiology, Johns Hopkins School of Public Health, Baltimore, Maryland
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, Maryland
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Rachel Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee.
| | - Lang Wu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii.
| |
Collapse
|
9
|
Cortés Fuentes IA, Burotto M, Retamal MA, Frelinghuysen M, Caglevic C, Gormaz JG. Potential use of n-3 PUFAs to prevent oxidative stress-derived ototoxicity caused by platinum-based chemotherapy. Free Radic Biol Med 2020; 160:263-276. [PMID: 32827639 DOI: 10.1016/j.freeradbiomed.2020.07.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Platinum-based compounds are widely used for the treatment of different malignancies due to their high effectiveness. Unfortunately, platinum-based treatment may lead to ototoxicity, an often-irreversible side effect without a known effective treatment and prevention plan. Platinum-based compound-related ototoxicity results mainly from the production of toxic levels of reactive oxygen species (ROS) rather than DNA-adduct formation, which has led to test strategies based on direct ROS scavengers to ameliorate hearing loss. However, favorable clinical results have been associated with several complications, including potential interactions with chemotherapy efficacy. To understand the contribution of the different cytotoxic mechanisms of platinum analogues on malignant cells and auditory cells, the particular susceptibility and response of both kinds of cells to molecules that potentially interfere with these mechanisms, is fundamental to develop innovative strategies to prevent ototoxicity without affecting antineoplastic effects. The n-3 long-chain polyunsaturated fatty acids (n-3 PUFAs) have been tried in different clinical settings, including with cancer patients. Nevertheless, their use to decrease cisplatin-induced ototoxicity has not been explored to date. In this hypothesis paper, we address the mechanisms of platinum compounds-derived ototoxicity, focusing on the differences between the effects of these compounds in neoplastic versus auditory cells. We discuss the basis for a strategic use of n-3 PUFAs to potentially protect auditory cells from platinum-derived injury without affecting neoplastic cells and chemotherapy efficacy.
Collapse
Affiliation(s)
- Ignacio A Cortés Fuentes
- Otorhinolaryngology Service, Hospital Barros Luco-Trudeau, San Miguel, Santiago, Chile; Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Mauricio Burotto
- Oncology Department, Clínica Universidad de Los Andes, Santiago, Chile; Bradford Hill, Clinical Research Center, Santiago, Chile
| | - Mauricio A Retamal
- Universidad Del Desarrollo, Centro de Fisiología Celular e Integrativa, Facultad de Medicina Clínica Alemana, Santiago, Chile.
| | | | - Christian Caglevic
- Cancer Research Department, Fundación Arturo López Pérez, Santiago, Chile
| | - Juan G Gormaz
- Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
10
|
Qiu S, Wang F, Hu J, Yang Y, Li D, Tian W, Yuan X, Lv Y, Yu M. Increased dietary fatty acids determine the fatty-acid profiles of human pancreatic cancer cells and their carrier's plasma, pancreas and liver. Endocr J 2020; 67:387-395. [PMID: 31827053 DOI: 10.1507/endocrj.ej19-0429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Primary contents of dietary fat are three or four types of fatty acids, namely saturated fatty acid (SFA), monounsaturated fatty acid (MUFA), n6-polyunsaturated fatty acid (n6PUFA) and, to less extent, n3-polyunsaturated fatty acid (n3PUFA). Previous studies suggest that increased SFA, MUFA, and n6PUFA in high fat diets (HFDs) stimulate the origination, growth, and liver metastasis of pancreatic cancer cells, whereas increased n3PUFA has the opposite effects. It is unclear whether the fatty acid-induced effects are based on changed fatty-acid composition of involved cells. Here, we investigated whether increased SFA, MUFA, n6PUFA, and n3PUFA in different HFDs determine the FA profiles of pancreatic cancer cells and their carrier's plasma, pancreas, and liver. We transplanted MiaPaCa2 human pancreatic cancer cells in athymic mice and fed them normal diet or four HFDs enriched with SFA, MUFA, n6PUFA, and n3PUFA, respectively. After 7 weeks, fatty acids were profiled in tumor, plasma, pancreas, and liver, using gas chromatography. When tumor carriers were fed four HFDs, the fatty acids that were increased dietarily were also increased in the plasma. When tumor carriers were fed MUFA-, n6PUFA-, and n3PUFA-enriched HFDs, the dietarily increased fatty acids were also increased in tumor, pancreas, and liver. When tumor-carriers were fed the SFA-enriched HFD featuring lauric and myristic acids (C12:0 and C14:0), tumor, pancreas, and liver showed an increase not in the same SFAs but palmitic acid (C16:0) and/or stearic acid (C18:0). In conclusion, predominant fatty acids in HFDs determine the fatty-acid profiles of pancreatic cancer cells and their murine carriers.
Collapse
Affiliation(s)
- Shuai Qiu
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Feng Wang
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Jiacai Hu
- The Graduate School, Tianjin Medical University, Tianjin 300070, China
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Yong Yang
- Centre of Disease Control, Jinnan, Tianjin 300350, China
| | - Dihua Li
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Wencong Tian
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Xiangfei Yuan
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Yuanshan Lv
- The Laboratory of Acute Abdomen Disease Associated Organ Injury and Repair, Tianjin Hospital of Integrated Traditional Chinese and Western Medicine, Tianjin 300100, China
| | - Ming Yu
- Department of Nutrition and Food Hygiene, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
11
|
FADS1 promotes the progression of laryngeal squamous cell carcinoma through activating AKT/mTOR signaling. Cell Death Dis 2020; 11:272. [PMID: 32332698 PMCID: PMC7181692 DOI: 10.1038/s41419-020-2457-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 12/12/2022]
Abstract
Metabolic abnormality is the major feature of laryngeal squamous cell carcinoma (LSCC), however, the underlying mechanism remain largely elusive. Fatty acid desaturase 1 (FADS1), as the key rate-limiting enzyme of polyunsaturated fatty acids (PUFAs), catalyzes dihomo-gamma-linolenic acid (DGLA) to arachidonic acid (AA). In this study, we reported that the expression of FADS1 was upregulated in LSCC, high FADS1 expression was closely associated with the advanced clinical features and poor prognosis of the recurrent LSCC patients after chemotherapy. Liquid chromatograph-mass spectrometry (LC-MS) analysis revealed that FADS1 overexpression induced greater conversion of DGLA to AA, suggesting an increased activity of FADS1. Similarly, the level of prostaglandin E2 (PGE2), a downstream metabolite of AA, was also elevated in cancerous laryngeal tissues. Functional assays showed that FADS1 knockdown suppressed the proliferation, migration and invasion of LSCC cells, while FADS1 overexpression had the opposite effects. Bioinformatic analysis based on microarray data found that FADS1 could activate AKT/mTOR signaling. This hypothesis was further validated by both in vivo and in vitro assays. Hence, our data has supported the viewpoint that FADS1 is a potential promoter in LSCC progression, and has laid the foundation for further functional research on the PUFA dietary supplementation interventions targeting FADS1/AKT/mTOR pathway for LSCC prevention and treatment.
Collapse
|
12
|
Cnidoscolus aconitifolius leaf extract exhibits comparable ameliorative potentials with ascorbate in dimethylnitrosamine-induced bone marrow clastogenicity and hepatotoxicity. CLINICAL NUTRITION EXPERIMENTAL 2020. [DOI: 10.1016/j.yclnex.2019.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
13
|
Omega-3 fatty acids as adjunctive therapeutics: prospective of nanoparticles in its formulation development. Ther Deliv 2020; 11:851-868. [DOI: 10.4155/tde-2019-0072] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3-PUFAs) are dietary components that have been extensively recognized for their therapeutic value and have shown diverse therapeutic effects including anti-inflammatory, antiarrhythmic, antithrombotic, immunomodulatory and antineoplastic activities. Most of the ω-3-PUFAs are obtained through diet or supplements because the body does not synthesize them. The high instability of ω-3-PUFAs to oxidative deterioration, lower bioavailability at the target tissues and reduced bioactivity of ω-3-PUFAs is an impediment for achieving their therapeutic potential. The present review provides an overview of potential therapeutic activities of ω-3-PUFAs and different novel technical approaches based on nanotechnology, which have been emphasized to overcome instability problems as well as enhance the bioactivity of ω-3-PUFAs. Future prospects related to this area of research are also provided.
Collapse
|
14
|
Ma X, Weng X, Hu X, Wang Q, Tian Y, Ding Y, Zhang C. Roles of different n-3/n-6 PUFA ratios in ovarian cell development and steroidogenesis in PCOS rats. Food Funct 2019; 10:7397-7406. [PMID: 31657414 DOI: 10.1039/c9fo01730e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex and common endocrine disorder characterized by hyperandrogenism, which is accompanied by follicle growth arrest at the small antral stage, minimal granulosa cell proliferation, and chronic anovulation. Polyunsaturated fatty acids (PUFAs) are necessary for the body's metabolism, growth and development. Although PUFAs play an important role in the regulation of female reproduction, their role in ovarian development in PCOS is still unclear. The present study was conducted to investigate the effects of different ratios of n-3/n-6 PUFAs (omega-3/omega-6) on ovary development in PCOS rats. Serum levels of reproductive hormones and enzymes related to steroidogenesis were assessed. The results indicated that PUFAs (n-3/n-6: 1/15) significantly increased ovarian weight and improved the ovarian structure although they had no significant effect on body weight in PCOS rats. Meanwhile, apoptosis was attenuated accompanied by increased cell proliferation by PUFAs (n-3/n-6: 1/15). Moreover, serum levels of hormones (FSH and E2) were also significantly increased by PUFAs (n-3/n-6: 1/15) accompanied by decreased T levels. To investigate whether PUFAs regulate the expression of enzymes related to hormone synthesis, western blotting was used to determine the protein levels of CYP51, CYP19, StAR and 3β-HSD. The results showed that PUFAs significantly increased the protein levels of all of these enzymes. These results indicate that PUFAs enhance the reproductive performance of PCOS by increasing the expression of steroidogenesis enzymes, which are related to hormone secretion and ovarian functions. These findings provide evidence that a balanced n-3/n-6 PUFA ratio is beneficial for PCOS reproduction.
Collapse
Affiliation(s)
- Xiaoshu Ma
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| | - Xuechun Weng
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| | - Xusong Hu
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| | - Qiaozhi Wang
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| | - Ye Tian
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| | - Yu Ding
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| | - Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, Peoples' Republic of China.
| |
Collapse
|
15
|
Xia R, Sun L, Liao J, Li H, You X, Xu D, Yang J, Hwang SH, Jones RD, Hammock B, Yang GY. Inhibition of Pancreatic Carcinoma Growth Through Enhancing ω-3 Epoxy Polyunsaturated Fatty Acid Profile by Inhibition of Soluble Epoxide Hydrolase. Anticancer Res 2019; 39:3651-3660. [PMID: 31262891 DOI: 10.21873/anticanres.13513] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/30/2019] [Accepted: 06/10/2019] [Indexed: 01/29/2023]
Abstract
BACKGROUND/AIM Cytochrome P450 epoxygenase is a major enzyme involved in the metabolism of ω-3 polyunsaturated fatty acids (PUFAs) to produce biologically active ω-3 epoxy fatty acids (ω-3 epoxides). In general, all epoxy PUFAs including ω-3 epoxides are quickly metabolized/inactivated by soluble epoxide hydrolase (sEH) to form diol products. The aims of this study were to determine the effect and mechanism of fat-1 transgene, and ω-3 PUFA combined with sEH gene knockout or inhibitor on inhibiting pancreatic cancer and the related mechanisms involved. MATERIALS AND METHODS PK03-mutant KrasG12D murine pancreatic carcinoma cells were inoculated into mouse models including fat-1, sEH-/- and C57BL/6J mice. The mice were fed with AIN-76A diet with or without ω-3 PUFA supplementation or treated with sEH inhibitor. In addition to tumor growth (tumor size and weight), cell proliferation, mutant Kras-mediated signaling, inflammatory reaction and angiogenesis were analyzed immunohisto-chemically and by western blot assay. ω-3 PUFA metabolism, particularly focusing on ω-3 epoxy fatty acids (ω-3 epoxides), was measured using a liquid chromatography with tandem mass spectrometry (LC-MS/MS) approach. RESULTS Significant decreases of weight and size of the PK03 pancreatic carcinoma were observed in the fat-1 transgenic mice treated with sEH inhibitor compared to those of C57BL/6J control mice fed with AIN-76A diet (weight: 0.28±0.04 g vs. 0.58±0.06 g; size: 187.0±17.5 mm3 vs. 519.3±60.6 mm3). In a separate experiment, sEH-/- mice fed ω-3 PUFA supplement and C57BL/6J mice treated with sEH inhibitor and fed ω-3 PUFA supplement exhibited a significant reduction in the weight and size of the pancreatic carcinoma compared to C57BL/6J control mice (weight: 0.26±.26 g and 0.39±.39 g vs. 0.69±0.11 g, respectively; size: 274.2±36.2 mm3 and 296.4±99.8 mm3 vs. 612.6±117.8 mm3, respectively). Moreover, compared to the pancreatic tumors in C57BL/6J control mice, the tumors in fat-1 transgenic mice treated with sEH inhibitor showed a significant less inflammatory cell infiltrate (62.6±9.2/HPF (high power field) vs. 8.0±1.2/HPF), tumor cell proliferation (48.5±1.7% vs. 16.5±1.6%), and angiogenesis (micro-vessel density (MVD): 35.0±1.0 vs. 11.1±0.5) immunohistochemically, as well as significantly increased caspase-3 labeled apoptosis (0.44±0.06% vs. 0.69±0.06%, respectively). Using western blot approach, significant inhibition of mutant Kras-activated signals including phosphorylated Serine/threonine kinases (cRAF), Mitogen-activated protein kinase kinase (MEK), and extracellular signal-regulated kinase (ERK) were identified in pancreatic carcinoma of fat-1 transgenic mice treated with sEH inhibitor. Eicosanoic acid metabolic profiling of the serum specimens detected a significant increase of the ratios of epoxides to dihydroxy fatty acid (DiHDPE) for docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and epoxides/dihydroxy octadecenoic acid (DiHOME) for arachidonic acid (ARA) and linoleic acid (LA), as well as a significant increase of epoxy metabolites of DHA, EPA, ARA and LA in fat-1 transgenic mice treated with a sEH inhibitor. CONCLUSION ω-3 epoxy products from ω-3 PUFA metabolism play a crucial role in inhibiting pancreatic cancer growth, and use of ω-3 PUFAs combined with sEH inhibition is a strategy with high potential for pancreatic cancer treatment and prevention.
Collapse
Affiliation(s)
- Rong Xia
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Leyu Sun
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Jie Liao
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Haonan Li
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Xiaoming You
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Dandan Xu
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Jun Yang
- Department of Entomology, University of California, Davis, CA, U.S.A
| | - Sung Hee Hwang
- Department of Entomology, University of California, Davis, CA, U.S.A
| | - Ryan D Jones
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A
| | - Bruce Hammock
- Department of Entomology, University of California, Davis, CA, U.S.A
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, U.S.A.
| |
Collapse
|
16
|
Matejcic M, Lesueur F, Biessy C, Renault AL, Mebirouk N, Yammine S, Keski-Rahkonen P, Li K, Hémon B, Weiderpass E, Rebours V, Boutron-Ruault MC, Carbonnel F, Kaaks R, Katzke V, Kuhn T, Boeing H, Trichopoulou A, Palli D, Agnoli C, Panico S, Tumino R, Sacerdote C, Quirós JR, Duell EJ, Porta M, Sánchez MJ, Chirlaque MD, Barricarte A, Amiano P, Ye W, Peeters PH, Khaw KT, Perez-Cornago A, Key TJ, Bueno-de-Mesquita HB, Riboli E, Vineis P, Romieu I, Gunter MJ, Chajès V. Circulating plasma phospholipid fatty acids and risk of pancreatic cancer in a large European cohort. Int J Cancer 2018; 143:2437-2448. [PMID: 30110135 DOI: 10.1002/ijc.31797] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 02/11/2024]
Abstract
There are both limited and conflicting data on the role of dietary fat and specific fatty acids in the development of pancreatic cancer. In this study, we investigated the association between plasma phospholipid fatty acids and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. The fatty acid composition was measured by gas chromatography in plasma samples collected at recruitment from375 incident pancreatic cancer cases and375 matched controls. Associations of specific fatty acids with pancreatic cancer risk were evaluated using multivariable conditional logistic regression models with adjustment for established pancreatic cancer risk factors. Statistically significant inverse associations were found between pancreatic cancer incidence and levels of heptadecanoic acid (ORT3-T1 [odds ratio for highest versus lowest tertile] =0.63; 95%CI[confidence interval] = 0.41-0.98; ptrend = 0.036), n-3 polyunsaturated α-linolenic acid (ORT3-T1 = 0.60; 95%CI = 0.39-0.92; ptrend = 0.02) and docosapentaenoic acid (ORT3-T1 = 0.52; 95%CI = 0.32-0.85; ptrend = 0.008). Industrial trans-fatty acids were positively associated with pancreatic cancer risk among men (ORT3-T1 = 3.00; 95%CI = 1.13-7.99; ptrend = 0.029), while conjugated linoleic acids were inversely related to pancreatic cancer among women only (ORT3-T1 = 0.37; 95%CI = 0.17-0.81; ptrend = 0.008). Among current smokers, the long-chain n-6/n-3 polyunsaturated fatty acids ratio was positively associated with pancreatic cancer risk (ORT3-T1 = 3.40; 95%CI = 1.39-8.34; ptrend = 0.007). Results were robust to a range of sensitivity analyses. Our findings suggest that higher circulating levels of saturated fatty acids with an odd number of carbon atoms and n-3 polyunsaturated fatty acids may be related to lower risk of pancreatic cancer. The influence of some fatty acids on the development of pancreatic cancer may be sex-specific and modulated by smoking.
Collapse
Affiliation(s)
- M Matejcic
- International Agency for Research on Cancer, Lyon, France
| | - F Lesueur
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - C Biessy
- International Agency for Research on Cancer, Lyon, France
| | - A L Renault
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - N Mebirouk
- Genetic Epidemiology of Cancer team, Inserm, U900, Paris, France
- Institut Curie, Paris, France
- PSL University, Paris, France
- Mines ParisTech, Fontainebleau, France
| | - S Yammine
- International Agency for Research on Cancer, Lyon, France
| | | | - K Li
- International Agency for Research on Cancer, Lyon, France
| | - B Hémon
- International Agency for Research on Cancer, Lyon, France
| | - E Weiderpass
- Genetic Epidemiology Group, Folkhälsan Research Center, Helsinki, Finland
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø - The Arctic University of Norway, Tromsø, Norway
- Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway
- Public Health Division of Gipuzkoa, BioDonostia Research institute, San Sebastian, Spain
| | - V Rebours
- Department of Gastroenterology and Pancreatology, Beaujon Hospital, University Paris 7, Clichy, France
| | - M C Boutron-Ruault
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, Health across Generations Team, Institut Gustave Roussy, Villejuif, France
- Université Paris Sud, UMRS, Villejuif, France
| | - F Carbonnel
- INSERM, Centre for Research in Epidemiology and Population Health, U1018, Health across Generations Team, Institut Gustave Roussy, Villejuif, France
- Université Paris Sud, UMRS, Villejuif, France
- Department of Gastroenterology, Bicêtre University Hospital, Assistance Publique des Hôpitaux de Paris, Le Kremlin Bicêtre, France
| | - R Kaaks
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - V Katzke
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - T Kuhn
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - H Boeing
- Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Nuthetal, Germany
| | - A Trichopoulou
- Hellenic Health Foundation, Athens, Greece
- WHO Collaborating Center for Nutrition and Health, Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, University of Athens Medical School, Athens, Greece
| | - D Palli
- Molecular and Nutritional Epidemiology Unit, Cancer Research and Prevention Institute - ISPO, Florence, Italy
| | - C Agnoli
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - S Panico
- Clinical Medicine and Surgery Department, Università degli Studi di Napoli Federico II, Naples, Italy
| | - R Tumino
- Cancer Registry and Histopathology Department, ASP, "Civic - M.P. Arezzo" Hospital, Ragusa, Italy
| | - C Sacerdote
- Unit of Cancer Epidemiology, Citta' della Salute e della Scienza Hospital, University of Turin and Centre for Cancer Prevention (CPO), Turin, Italy
| | - J R Quirós
- EPIC Asturias, Public Health Directorate, Asturias, Spain
| | - E J Duell
- Unit of Nutrition and Cancer, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
| | - M Porta
- Hospital del Mar Research Institute - IMIM, CIBER Epidemiología y Salud Pública (CIBERESP) and Universitat Autònoma de Barcelona, Barcelona, Spain
| | - M J Sánchez
- Escuela Andaluza de Salud Pública. Instituto de Investigación Biosanitaria ibs.GRANADA. Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M D Chirlaque
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Epidemiology, Regional Health Council, IMIB-Arrixaca, Murcia, Spain
- Department of Health and Social Sciences, Universidad de Murcia, Murcia, Spain
| | - A Barricarte
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- Navarra Public Health Institute, Pamplona, Spain
| | - P Amiano
- Public Health Division of Gipuzkoa, BioDonostia Research institute, San Sebastian, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - W Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
- The Medical Biobank at Umeå University, Umeå, Sweden
| | - P H Peeters
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - K T Khaw
- University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom
| | - A Perez-Cornago
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - T J Key
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - H B Bueno-de-Mesquita
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
- Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - E Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London, United Kingdom
| | - P Vineis
- MRC-PHE Center for Environment and Health, School of Public Health, Imperial College, London, United Kingdom
| | - I Romieu
- International Agency for Research on Cancer, Lyon, France
| | - M J Gunter
- International Agency for Research on Cancer, Lyon, France
| | - V Chajès
- International Agency for Research on Cancer, Lyon, France
| |
Collapse
|
17
|
McCarty MF, DiNicolantonio JJ. Minimizing Membrane Arachidonic Acid Content as a Strategy for Controlling Cancer: A Review. Nutr Cancer 2018; 70:840-850. [DOI: 10.1080/01635581.2018.1470657] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - James J. DiNicolantonio
- Preventive Cardiology Department, St. Luke’s Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
18
|
Pazderka CW, Oliver B, Murray M, Rawling T. Omega-3 Polyunsaturated Fatty Acid Derived Lipid Mediators and their Application in Drug Discovery. Curr Med Chem 2018; 27:1670-1689. [PMID: 30259807 DOI: 10.2174/0929867325666180927100120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/08/2018] [Accepted: 08/27/2018] [Indexed: 12/31/2022]
Abstract
Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play crucial and often opposing regulatory roles in health and in pathological conditions. n-3 and n-6 PUFA undergo biotransformation to parallel series of lipid mediators that are potent modulators of many cellular processes. A wide range of biological actions have been attributed to lipid mediators derived from n-6 PUFA, and these mediators have served as lead compounds in the development of numerous clinically approved drugs, including latanoprost (Xalatan: Pfizer), which is listed on the WHO Model List of Essential Medicines. n-3 PUFA-derived mediators have received less attention, in part because early studies suggested that n-3 PUFA act simply as competitive substrates for biotransformation enzymes and decrease the formation of n-6 PUFA-derived lipid mediators. However, more recent studies suggest that n-3 PUFA-derived mediators are biologically important in their own right. It is now emerging that many n-3 PUFA-derived lipid mediators have potent and diverse activities that are distinct from their n-6 counterparts. These findings provide new opportunities for drug discovery. Herein, we review the biosynthesis of n-3 PUFA-derived lipid mediators and highlight their biological actions that may be exploited for drug development. Lastly, we provide examples of medicinal chemistry research that has utilized n-3 PUFA-derived lipid mediators as novel lead compounds in drug design.
Collapse
Affiliation(s)
- Curtis W Pazderka
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Brian Oliver
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| | - Michael Murray
- Discipline of Pharmacology, School of Medical Sciences, Sydney Medical School, The University of Sydney, Sydney NSW 2006, Australia
| | - Tristan Rawling
- School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, Ultimo NSW 2007, Australia
| |
Collapse
|
19
|
Ding Y, Mullapudi B, Torres C, Mascariñas E, Mancinelli G, Diaz AM, McKinney R, Barron M, Schultz M, Heiferman M, Wojtanek M, Adrian K, DeCant B, Rao S, Ouellette M, Tsao MS, Bentrem DJ, Grippo PJ. Omega-3 Fatty Acids Prevent Early Pancreatic Carcinogenesis via Repression of the AKT Pathway. Nutrients 2018; 10:nu10091289. [PMID: 30213082 PMCID: PMC6163264 DOI: 10.3390/nu10091289] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/12/2022] Open
Abstract
Pancreatic cancer remains a daunting foe despite a vast number of accumulating molecular analyses regarding the mutation and expression status of a variety of genes. Indeed, most pancreatic cancer cases uniformly present with a mutation in the KRAS allele leading to enhanced RAS activation. Yet our understanding of the many epigenetic/environmental factors contributing to disease incidence and progression is waning. Epidemiologic data suggest that diet may be a key factor in pancreatic cancer development and potentially a means of chemoprevention at earlier stages. While diets high in ω3 fatty acids are typically associated with tumor suppression, diets high in ω6 fatty acids have been linked to increased tumor development. Thus, to better understand the contribution of these polyunsaturated fatty acids to pancreatic carcinogenesis, we modeled early stage disease by targeting mutant KRAS to the exocrine pancreas and administered diets rich in these fatty acids to assess tumor formation and altered cell-signaling pathways. We discovered that, consistent with previous reports, the ω3-enriched diet led to reduced lesion penetrance via repression of proliferation associated with reduced phosphorylated AKT (pAKT), whereas the ω6-enriched diet accelerated tumor formation. These data provide a plausible mechanism underlying previously observed effects of fatty acids and suggest that administration of ω3 fatty acids can reduce the pro-survival, pro-growth functions of pAKT. Indeed, counseling subjects at risk to increase their intake of foods containing higher amounts of ω3 fatty acids could aid in the prevention of pancreatic cancer.
Collapse
Affiliation(s)
- Yongzeng Ding
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Bhargava Mullapudi
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Carolina Torres
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Emman Mascariñas
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Georgina Mancinelli
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Andrew M Diaz
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Ronald McKinney
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Morgan Barron
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Michelle Schultz
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Michael Heiferman
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Mireille Wojtanek
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Kevin Adrian
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Brian DeCant
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Sambasiva Rao
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Michel Ouellette
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Ming-Sound Tsao
- Toronto General Hospital, 200 Elizabeth St., Toronto, ON M5G 2C4, Canada.
| | - David J Bentrem
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | - Paul J Grippo
- Department of Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
- Division of Gastroenterology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA.
| |
Collapse
|
20
|
Eibl G, Cruz-Monserrate Z, Korc M, Petrov MS, Goodarzi MO, Fisher WE, Habtezion A, Lugea A, Pandol SJ, Hart PA, Andersen DK. Diabetes Mellitus and Obesity as Risk Factors for Pancreatic Cancer. J Acad Nutr Diet 2018; 118:555-567. [PMID: 28919082 PMCID: PMC5845842 DOI: 10.1016/j.jand.2017.07.005] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/10/2017] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest types of cancer. The worldwide estimates of its incidence and mortality in the general population are eight cases per 100,000 person-years and seven deaths per 100,000 person-years, and they are significantly higher in the United States than in the rest of the world. The incidence of this disease in the United States is more than 50,000 new cases in 2017. Indeed, total deaths due to PDAC are projected to increase dramatically to become the second leading cause of cancer-related deaths before 2030. Considering the failure to date to efficiently treat existing PDAC, increased effort should be undertaken to prevent this disease. A better understanding of the risk factors leading to PDAC development is of utmost importance to identify and formulate preventive strategies. Large epidemiologic and cohort studies have identified risk factors for the development of PDAC, including obesity and type 2 diabetes mellitus. This review highlights the current knowledge of obesity and type 2 diabetes as risk factors for PDAC development and progression, their interplay and underlying mechanisms, and the relation to diet. Research gaps and opportunities to address this deadly disease are also outlined.
Collapse
|
21
|
Lipid Metabolism and Lipid Droplets in Pancreatic Cancer and Stellate Cells. Cancers (Basel) 2017; 10:cancers10010003. [PMID: 29295482 PMCID: PMC5789353 DOI: 10.3390/cancers10010003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is projected to become the second deadliest cancer by 2030, and the overall 5-year survival rate is currently less than 7%. Cancer cells frequently exhibit reprogramming of their metabolic activity. It is increasingly recognized that aberrant de novo lipid synthesis and reprogrammed lipid metabolism are both associated with the development and progression of various cancers, including pancreatic cancer. In this review, the current knowledge about lipid metabolism and lipid droplets in pancreatic cancer is discussed. In the first part, molecular mechanisms of lipid metabolism and roles of enzymes involved in lipid metabolism which are relevant for pancreatic cancer research are presented. Further, preclinical studies and clinical trials with drugs/inhibitors targeting cancer metabolic systems in cancer are summarized. An increase of our knowledge in lipid metabolism in pancreatic cancer cells and in tumor stroma is important for developing novel strategies of future individualized therapies of pancreatic cancer.
Collapse
|
22
|
Yang X, Xu Y, Wang T, Shu D, Guo P, Miskimins K, Qian SY. Inhibition of cancer migration and invasion by knocking down delta-5-desaturase in COX-2 overexpressed cancer cells. Redox Biol 2017; 11:653-662. [PMID: 28157665 PMCID: PMC5288391 DOI: 10.1016/j.redox.2017.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/18/2017] [Accepted: 01/23/2017] [Indexed: 12/23/2022] Open
Abstract
We recently reported that knockdown of delta-5-desaturase (a key enzyme that converts dihomo-γ-linolenic acid, DGLA, to the downstream ω-6 arachidonic acid) promotes formation of an anti-cancer byproduct 8-hydroxyoctanoic acid from cyclooxygenase (COX)-catalyzed DGLA peroxidation. 8-hydroxyoctanoic acid can exert its growth inhibitory effect on cancer cells (e.g. colon and pancreatic cancer) by serving as a histone deacetylase inhibitor. Since histone deacetylase inhibitors have been well-known to suppress cancer cell migration and invasion, we thus tested whether knockdown of delta-5-desaturase and DGLA treatment could also be used to inhibit cancer migration and invasion of colon cancer and pancreatic cancer cells. Wound healing assay, transwell assay and western blot were used to assess cell migration and invasion as well as the associated molecular mechanisms. Formation of threshold level of 8-hydroxyoctanoic acid was quantified from COX-catalyzed DGLA peroxidation in the cancer cells that overexpress COX-2 and their delta-5-desaturases were knocked down by shRNA transfection. Our results showed that knockdown of delta-5-desaturase along with DGLA supplement not only significantly inhibited cell migration, but also improved the efficacies of 5-flurouracil and gemcitabine, two frontline chemotherapy drugs currently used in the treatment of colon and pancreatic cancer, respectively. The molecular mechanism behind these observations is that 8-hydroxyoctanoic acid inhibits histone deacetylase, resulting in downregulation of cancer metastasis promotors, e.g., MMP-2 and MMP-9 as well as upregulation of cancer metastasis suppressor, e.g. E-cadherin. For the first time, we demonstrated that we could take the advantage of the common phenomenon of COX-2 overexpression in cancers to inhibit cancer cell migration and invasion. With the shifting paradigm of COX-2 cancer biology, our research outcome may provide us a novel cancer treatment strategy. High level of COX-2 could be used to inhibit cancer cell migration and invasion. 8-hydroxyoctanoic acid suppresses cancer migration and invasion via inhibiting HDAC. D5D knockdown and DGLA improves efficacy of chemotherapy to inhibit cancer metastasis.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Yi Xu
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Tao Wang
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Dan Shu
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, and College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Peixuan Guo
- Division of Pharmaceutics & Pharmaceutical Chemistry, College of Pharmacy, and College of Medicine, Ohio State University, Columbus, OH 43210, USA
| | - Keith Miskimins
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, USA
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
23
|
Zhu P, Zhang YM, Yin X, Zhang XH, Wang F, Zhang JJ, Yan W, Xi Y, Wan JB, Kang JX, Zou ZQ, Bu SZ. Endogenously synthesized n-3 polyunsaturated fatty acids in fat-1 transgenic mice suppress B16F10 melanoma lung metastasis by impairing mesenchymal to epithelial transition. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
24
|
COX-2, aspirin and metabolism of arachidonic, eicosapentaenoic and docosahexaenoic acids and their physiological and clinical significance. Eur J Pharmacol 2016; 785:116-132. [DOI: 10.1016/j.ejphar.2015.08.049] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/19/2015] [Accepted: 08/26/2015] [Indexed: 01/22/2023]
|
25
|
Yang X, Xu Y, Brooks A, Guo B, Miskimins KW, Qian SY. Knockdown delta-5-desaturase promotes the formation of a novel free radical byproduct from COX-catalyzed ω-6 peroxidation to induce apoptosis and sensitize pancreatic cancer cells to chemotherapy drugs. Free Radic Biol Med 2016; 97:342-350. [PMID: 27368132 PMCID: PMC5807006 DOI: 10.1016/j.freeradbiomed.2016.06.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Revised: 06/24/2016] [Accepted: 06/27/2016] [Indexed: 11/26/2022]
Abstract
Recent research has demonstrated that colon cancer cell proliferation can be suppressed in the cells that overexpress COX-2 via generating 8-hydroxyoctanoic acid (a free radical byproduct) during dihomo-γ-linolenic acid (DGLA, an ω-6 fatty acid) peroxidation from knocking down cellular delta-5-desaturase (D5D, the key enzyme for converting DGLA to the downstream ω-6, arachidonic acid). Here, this novel research finding is extended to pancreatic cancer growth, as COX-2 is also commonly overexpressed in pancreatic cancer. The pancreatic cancer cell line, BxPC-3 (with high COX-2 expression and mutated p53), was used to assess not only the inhibitory effects of the enhanced formation of 8-hydroxyoctanoic acid from cellular COX-2-catalyzed DGLA peroxidation but also its potential synergistic and/or additive effect on current chemotherapy drugs. This work demonstrated that, by inducing DNA damage through inhibition of histone deacetylase, a threshold level of 8-hydroxyoctanoic acid achieved in DGLA-treated and D5D-knockdown BxPC-3 cells subsequently induce cancer cell apoptosis. Furthermore, it was shown that a combination of D5D knockdown along with DGLA treatment could also significantly sensitize BxPC-3 cells to various chemotherapy drugs, likely via a p53-independent pathway through downregulating of anti-apoptotic proteins (e.g., Bcl-2) and activating pro-apoptotic proteins (e.g., caspase 3, -9). This study reinforces the supposition that using commonly overexpressed COX-2 for molecular targeting, a strategy conceptually distinct from the prevailing COX-2 inhibition strategy used in cancer treatment, is an important as well as viable alternative to inhibit cancer cell growth. Based on the COX-2 metabolic cascade, the outcomes presented here could guide the development of a novel ω-6-based dietary care strategy in combination with chemotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Yi Xu
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Amanda Brooks
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Bin Guo
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States
| | - Keith W Miskimins
- Cancer Biology Research Center, Sanford Research, Sioux Falls, SD 57104, United States
| | - Steven Y Qian
- Department of Pharmaceutical Sciences, College of Health Professions, North Dakota State University, Fargo, ND 58108, United States.
| |
Collapse
|
26
|
Wang D, Lin Y, Gao B, Yan S, Wu H, Li Y, Wu Q, Wei Y. Reduced Expression of FADS1 Predicts Worse Prognosis in Non-Small-Cell Lung Cancer. J Cancer 2016; 7:1226-32. [PMID: 27390597 PMCID: PMC4934030 DOI: 10.7150/jca.15403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/26/2016] [Indexed: 12/19/2022] Open
Abstract
Objective: Fatty acid desaturase 1 is a member of the fatty acid desaturase, which is related to a number of diseases. However, its role in cancers remains unclear. This study was to explore the clinical importance of FADS1 expression in non-small-cell lung cancer (NSCLC). Materials and Methods: Immunochemistry was used to evaluate FADS1 expressions in 216 paraffin-embedded specimens. The expression of FADS1 was divided into high and low groups. The clinical and prognostic significance of FADS1 expression was analyzed statistically by Kaplan-Meier estimate and Cox regression model. Results: FADS1 overexpressed in normal bronchial mucosa compared with non-small-cell lung cancer. Reduced FADS1 expression was associated with tumor size (P=0.023) and histological grade (P<0.0001). Patients with lower expression of FADS1 had shorter overall survival and disease free survival (P=0.001 and P=0.002). Multivariate analysis showed FADS1 expression was an independent prognostic factor in NSCLC (P=0.011). Conclusion: Reduced expression of FADS1 suggests pessimistic prognosis for NSCLC patients. Further studies are warranted.
Collapse
Affiliation(s)
- Dong Wang
- 1. Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| | - Yan Lin
- 2. Department of First Chemotherapy, Affiliated Cancer Hospital of Guangxi Medical University, 71 Hedi Road, Nanning 530021, P. R. China
| | - Bei Gao
- 3. State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Shumei Yan
- 4. State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Huini Wu
- 5. University of Illinois at Chicago, Biological Science, Chicago, Illinois 60607, USA
| | - Yong Li
- 4. State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Qiuliang Wu
- 4. State Key Laboratory of Oncology in South China; Department of Pathology, Sun Yat-Sen University Cancer Center; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, P.R. China
| | - Yucheng Wei
- 1. Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266000, P.R. China
| |
Collapse
|
27
|
Omega-3 Fatty Acids and Cancer Cell Cytotoxicity: Implications for Multi-Targeted Cancer Therapy. J Clin Med 2016; 5:jcm5020015. [PMID: 26821053 PMCID: PMC4773771 DOI: 10.3390/jcm5020015] [Citation(s) in RCA: 187] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 01/15/2016] [Accepted: 01/19/2016] [Indexed: 12/24/2022] Open
Abstract
Cancer is a major disease worldwide. Despite progress in cancer therapy, conventional cytotoxic therapies lead to unsatisfactory long-term survival, mainly related to development of drug resistance by tumor cells and toxicity towards normal cells. n-3 polyunsaturated fatty acids (PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), can exert anti-neoplastic activity by inducing apoptotic cell death in human cancer cells either alone or in combination with conventional therapies. Indeed, n-3 PUFAs potentially increase the sensitivity of tumor cells to conventional therapies, possibly improving their efficacy especially against cancers resistant to treatment. Moreover, in contrast to traditional therapies, n-3 PUFAs appear to cause selective cytotoxicity towards cancer cells with little or no toxicity on normal cells. This review focuses on studies investigating the cytotoxic activity of n-3 PUFAs against cancer cells via apoptosis, analyzing the molecular mechanisms underlying this effective and selective activity. Here, we highlight the multiple molecules potentially targeted by n-3 PUFAs to trigger cancer cell apoptosis. This analysis can allow a better comprehension of the potential cytotoxic therapeutic role of n-3 PUFAs against cancer, providing specific information and support to design future pre-clinical and clinical studies for a better use of n-3 PUFAs in cancer therapy, mainly combinational therapy.
Collapse
|
28
|
Resnik N, Repnik U, Kreft ME, Sepčić K, Maček P, Turk B, Veranič P. Highly Selective Anti-Cancer Activity of Cholesterol-Interacting Agents Methyl-β-Cyclodextrin and Ostreolysin A/Pleurotolysin B Protein Complex on Urothelial Cancer Cells. PLoS One 2015; 10:e0137878. [PMID: 26361392 PMCID: PMC4567298 DOI: 10.1371/journal.pone.0137878] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 08/24/2015] [Indexed: 11/21/2022] Open
Abstract
Cholesterol content can vary distinctly between normal and cancer cells, with elevated levels in cancer cells. Here, we investigated cholesterol sequestration with methyl-β-cyclodextrin (MCD), and pore-formation with the ostreolysin A/pleurotolysin B (OlyA/PlyB) protein complex that binds to cholesterol/sphingomyelin-rich membrane domains. We evaluated the effects on viability of T24 invasive and RT4 noninvasive human urothelial cancer cells and normal porcine urothelial (NPU) cells. Cholesterol content strongly correlated with cancerous transformation, as highest in the T24 high-grade invasive urothelial cancer cells, and lowest in NPU cells. MCD treatment induced prominent cell death of T24 cells, whereas OlyA/PlyB treatment resulted in greatly decreased viability of the RT4 low-grade noninvasive carcinoma cells. Biochemical and transmission electron microscopy analyses revealed that MCD and OlyA/PlyB induce necrotic cell death in these cancer cells, while viability of NPU cells was not significantly affected by either treatment. We conclude that MCD is more toxic for T24 high-grade invasive urothelial cancer cells, and OlyA/PlyB for RT4 low-grade noninvasive urothelial cancer cells, and neither is toxic for NPU cells. The cholesterol and cholesterol/sphingomyelin-rich membrane domains in urothelial cancer cells thus constitute a selective therapeutic target for elimination of urothelial cancer cells.
Collapse
Affiliation(s)
- Nataša Resnik
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Urška Repnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Mateja Erdani Kreft
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
| | - Kristina Sepčić
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Peter Maček
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, Ljubljana, Slovenia
| | - Boris Turk
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
| | - Peter Veranič
- Institute of Cell Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
29
|
Chang HH, Young SH, Sinnett-Smith J, Chou CEN, Moro A, Hertzer KM, Hines OJ, Rozengurt E, Eibl G. Prostaglandin E2 activates the mTORC1 pathway through an EP4/cAMP/PKA- and EP1/Ca2+-mediated mechanism in the human pancreatic carcinoma cell line PANC-1. Am J Physiol Cell Physiol 2015; 309:C639-49. [PMID: 26310818 DOI: 10.1152/ajpcell.00417.2014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 08/14/2015] [Indexed: 02/07/2023]
Abstract
Obesity, a known risk factor for pancreatic cancer, is associated with inflammation and insulin resistance. Proinflammatory prostaglandin E2 (PGE2) and elevated insulin-like growth factor type 1 (IGF-1), related to insulin resistance, are shown to play critical roles in pancreatic cancer progression. We aimed to explore a potential cross talk between PGE2 signaling and the IGF-1/Akt/mammalian target of rapamycin complex 1 (mTORC1) pathway in pancreatic cancer, which may be a key to unraveling the obesity-cancer link. In PANC-1 human pancreatic cancer cells, we showed that PGE2 stimulated mTORC1 activity independently of Akt, as evaluated by downstream signaling events. Subsequently, using pharmacological and genetic approaches, we demonstrated that PGE2-induced mTORC1 activation is mediated by the EP4/cAMP/PKA pathway, as well as an EP1/Ca(2+)-dependent pathway. The cooperative roles of the two pathways were supported by the maximal inhibition achieved with the combined pharmacological blockade, and the coexistence of highly expressed EP1 (mediating the Ca(2+) response) and EP2 or EP4 (mediating the cAMP/PKA pathway) in PANC-1 cells and in the prostate cancer line PC-3, which also robustly exhibited PGE2-induced mTORC1 activation, as identified from a screen in various cancer cell lines. Importantly, we showed a reinforcing interaction between PGE2 and IGF-1 on mTORC1 signaling, with an increase in IL-23 production as a cellular outcome. Our data reveal a previously unrecognized mechanism of PGE2-stimulated mTORC1 activation mediated by EP4/cAMP/PKA and EP1/Ca(2+) signaling, which may be of great importance in elucidating the promoting effects of obesity in pancreatic cancer. Ultimately, a precise understanding of these molecular links may provide novel targets for efficacious interventions devoid of adverse effects.
Collapse
Affiliation(s)
- Hui-Hua Chang
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Steven H Young
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - James Sinnett-Smith
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Caroline Ei Ne Chou
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Aune Moro
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Kathleen M Hertzer
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Oscar Joe Hines
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| | - Enrique Rozengurt
- Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | - Guido Eibl
- Department of Surgery, David Geffen School of Medicine at UCLA, Los Angeles, California; and
| |
Collapse
|
30
|
Four types of fatty acids exert differential impact on pancreatic cancer growth. Cancer Lett 2015; 360:187-94. [PMID: 25676690 DOI: 10.1016/j.canlet.2015.02.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 01/23/2015] [Accepted: 02/03/2015] [Indexed: 11/23/2022]
Abstract
Increased fatty acids (FAs) regulate pancreatic cancer progression, however, the detailed mechanism is not clear, and different forms of FAs may play diversified roles in pancreatic cancer. To elucidate the underlying mechanism, we compared the effects of four major types of FAs on pancreatic cancer growth both in cell culture and in a mouse model. HPAF pancreatic cancer cells were implanted in nude mice for 14 weeks, and the mice were fed with four different high-fat/high-energy diets (15% fat, 4 kcal/g), an iso-caloric diet (5% fat, 4 kcal/g) and a normal diet (4% fat, 3 kcal/g). The high fat diets were rich in saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs), and n-6 and n-3 polyunsaturated fatty acids (n6- and n3PUFAs), respectively. While n3PUFA diet decreased tumor viability, the other high fat diets stimulated tumor viability by apparently different mechanisms. For instance, xenografts whose carriers were fed with SFA diet had marked expression of cancer-related proteins and lipid droplets. Although mice that were fed with MUFA- and n6PUFA diets had pancreatic tumors of similar size, liver metastasis occurred more frequently in those with the n6PUFA diet. In experiments in vitro, the HPAF-cell population was increased by SFAs and MUFAs, decreased by n3PUFAs and not changed by n6PUFAs. In conclusion, different fatty acids have different impact on pancreatic cancer cells. The effects of fatty acids on pancreatic cancer cells were consistent in vivo and in vitro except that n6PUFAs only had regulatory effects in vivo.
Collapse
|
31
|
Fish consumption and n-3 polyunsaturated fatty acids, and risk of hepatocellular carcinoma: systematic review and meta-analysis. Cancer Causes Control 2014; 26:367-76. [DOI: 10.1007/s10552-014-0512-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 12/12/2014] [Indexed: 01/15/2023]
|
32
|
DiNicolantonio JJ, McCarty MF, Chatterjee S, Lavie CJ, O'Keefe JH. A higher dietary ratio of long-chain omega-3 to total omega-6 fatty acids for prevention of COX-2-dependent adenocarcinomas. Nutr Cancer 2014; 66:1279-84. [PMID: 25356937 DOI: 10.1080/01635581.2014.956262] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Compelling evidence that daily low-dose aspirin decreases risk for a number of adenocarcinomas likely reflects the fact that a modest but consistent inhibition of cyclooxygenase-2 (COX-2) activity can have a meaningful protective impact on risk for such cancers. The cancer-promoting effects of COX-2 are thought to be mediated primarily by prostaglandin E2 (PGE2), synthesized from arachidonic acid. The long-chain omega-3s eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), abundant in many fatty fish, can interfere with the availability of arachidonate to COX-2 by multiple complementary mechanisms; moreover, the PGE3 produced by COX-2 from EPA is a competitive inhibitor of the receptors activated by PGE2. These considerations have given rise to the hypothesis that a high dietary intake of EPA/DHA, relative to omega-6 (from which arachidonate is generated), should lessen risk for a number of adenocarcinomas by impeding PGE2 production and activity-while not posing the risk to vascular health associated with COX-2-specific nonsteroidal antiinflammatory agents. Analyses that focus on studies in which the upper category of fish consumption (not fried or salt-preserved) is 2 or more servings weekly, and on studies that evaluate the association of long-term fish oil supplementation with cancer risk yields a number of findings that are consistent with the hypothesis. Further studies of this nature may help to clarify the impact of adequate regular intakes of long-chain omega-3 on cancer risk, and perhaps provide insight into the dose-dependency of this effect.
Collapse
|
33
|
Tanaka N, Yamaguchi H, Furugen A, Ogura J, Kobayashi M, Yamada T, Mano N, Iseki K. Quantification of intracellular and extracellular eicosapentaenoic acid-derived 3-series prostanoids by liquid chromatography/electrospray ionization tandem mass spectrometry. Prostaglandins Leukot Essent Fatty Acids 2014; 91:61-71. [PMID: 24996760 DOI: 10.1016/j.plefa.2014.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 03/18/2014] [Accepted: 04/19/2014] [Indexed: 01/31/2023]
Abstract
3-Series prostanoids are bioactive lipid mediators synthesized from eicosapentaenoic acid (EPA). Determination of intracellular and extracellular levels of prostanoids is needed to elucidate the mechanism of action, and we therefore developed a method for quantification of intracellular and extracellular levels of 3-series prostanoids (including prostaglandin E3 (PGE3), PGD3, PGF3α, thromboxane B3 (TXB3), and Δ(17)-6-keto PGF1α) by using liquid chromatography/electrospray ionization tandem mass spectrometry. The separation of prostanoids was performed with a CAPCELL PAK C18 MG II column (2.0mm×150mm, 3µm) with an isocratic flow of acetonitrile/water/acetic acid (40:60:0.1, v/v/v). This method was validated for measurement of both extracellular and intracellular samples with high levels of precision and accuracy. We applied this method to human lung epithelial A549 cells stimulated with calcium ionophore A23187 under the condition of arachidonic acid or EPA treatment and we could measure PGE3 in both intracellular and extracellular samples.
Collapse
Affiliation(s)
- Nobuaki Tanaka
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hiroaki Yamaguchi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Ayako Furugen
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Jiro Ogura
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Masaki Kobayashi
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Takehiro Yamada
- Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan
| | - Nariyasu Mano
- Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai 980-8574, Japan
| | - Ken Iseki
- Laboratory of Clinical Pharmaceutics & Therapeutics, Division of Pharmasciences, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Department of Pharmacy, Hokkaido University Hospital, Sapporo 060-8648, Japan.
| |
Collapse
|
34
|
Patterson WL, Georgel PT. Breaking the cycle: the role of omega-3 polyunsaturated fatty acids in inflammation-driven cancers. Biochem Cell Biol 2014; 92:321-8. [PMID: 25098909 DOI: 10.1139/bcb-2013-0127] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chronic inflammation is a cyclical, self-stimulating process. Immune cells called to sites of inflammation release pro-inflammatory signaling molecules that stimulate activation of inducible enzymes and transcription factors. These enzymes and transcription factors then stimulate production of signaling molecules that attract more immune cells and induce more enzymatic and transcriptional activity, creating a perpetual loop of inflammation. This self-renewing pool of inflammatory stimuli makes for an ideal tumor microenvironment, and chronic inflammation has been linked to oncogenesis, tumor growth, tumor cell survival, and metastasis. Three protein pathways in particular, nuclear factor kappa B (NF-kB), cyclooxygenase (COX), and lipoxygenase (LOX), provide excellent examples of the cyclical, self-renewing nature of chronic inflammation-driven cancers. NF-kB is an inducible transcription factor responsible for the expression of a vast number of inflammation and cancer related genes. COX and LOX convert omega-6 (n-6) and omga-3 (n-3) polyunsaturated fatty acids (PUFA) into pro- and anti-inflammatory signaling molecules. These signaling molecules stimulate or repress activity of all three of these pathways. In this review, we will discuss the pro- and anti-inflammatory functions of these fatty acids and their role in chronic inflammation and cancer progression.
Collapse
Affiliation(s)
- William L Patterson
- a Byrd Biotechnology Science Center, Department of Biochemistry and Microbiology, Marshall University School of Medicine, 1700 3rd Avenue. Huntington, WV 25755, USA
| | | |
Collapse
|
35
|
Jansen RJ, Robinson DP, Frank RD, Anderson KE, Bamlet WR, Oberg AL, Rabe KG, Olson JE, Sinha R, Petersen GM, Stolzenberg-Solomon RZ. Fatty acids found in dairy, protein and unsaturated fatty acids are associated with risk of pancreatic cancer in a case-control study. Int J Cancer 2014; 134:1935-46. [PMID: 24590454 PMCID: PMC3942799 DOI: 10.1002/ijc.28525] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 09/20/2013] [Indexed: 01/02/2023]
Abstract
Although many studies have investigated meat and total fat in relation to pancreatic cancer risk, few have investigated dairy, fish and specific fatty acids (FAs). We evaluated the association between intake of meat, fish, dairy, specific FAs and related nutrients and pancreatic cancer. In our American-based Mayo Clinic case-control study 384 cases and 983 controls frequency matched on recruitment age, race, sex and residence area (Minnesota, Wisconsin or Iowa, USA) between 2004 and 2009. All subjects provided demographic information and completed 144-item food frequency questionnaire. Logistic regression-calculated odds ratios (ORs) and 95% confidence intervals (95% CIs) were adjusted for age, sex, cigarette smoking, body mass index and diabetes mellitus. Significant inverse association (trend p-value < 0.05) between pancreatic cancer and the groupings (highest vs. lowest consumption quintile OR [95% CI]) was as follows: meat replacement (0.67 [0.43-1.02]), total protein (0.58 [0.39-0.86]), vitamin B12 (0.67 [0.44, 1.01]), zinc (0.48 [0.32, 0.71]), phosphorus (0.62 [0.41, 0.93]), vitamin E (0.51 [0.33, 0.78]), polyunsaturated FAs (0.64 [0.42, 0.98]) and linoleic acid (FA 18:2) (0.62 [0.40-0.95]). Increased risk associations were observed for saturated FAs (1.48 [0.97-2.23]), butyric acid (FA 4:0) (1.77 [1.19-2.64]), caproic acid (FA 6:0) (2.15 [1.42-3.27]), caprylic acid (FA 8:0) (1.87 [1.27-2.76]) and capric acid (FA 10:0) (1.83 [1.23-2.74]). Our study suggests that eating a diet high in total protein and certain unsaturated FAs is associated with decreased risk of developing pancreatic cancer in a dose-dependent manner, whereas fats found in dairy increase risk.
Collapse
Affiliation(s)
- Rick J Jansen
- Division of Epidemiology Department of Health Sciences Research, Mayo Clinic, Rochester, MN
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang P, Jiang Y, Fischer SM. Prostaglandin E3 metabolism and cancer. Cancer Lett 2014; 348:1-11. [PMID: 24657656 DOI: 10.1016/j.canlet.2014.03.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Revised: 03/03/2014] [Accepted: 03/07/2014] [Indexed: 01/13/2023]
Abstract
The anticancer activity of n-3 fatty acids, especially those derived from fish, such as eicosapentaenoic acid (EPA) and docosahexaenoic acid) (DHA), has been studied for centuries. While there is a growing body of evidence that EPA and DHA may influence cancer initiation and development through targeting multiple events of tumor development, the underlying mechanisms responsible for these activities are still not fully understood. A number of studies have suggested that the anticancer activities of EPA and DHA are associated with their effects on eicosanoid metabolism by which they inhibit prostaglandin E2 (PGE2) production. In contrast to DHA, EPA can function as a substrate for cyclooxygenases (COXs) to synthesize unique 3-series prostaglandin compounds, especially PGE3. With advance technology in mass spectrometry, there is renewed interest in studying the role of PGE3 in EPA elicited anti-proliferative activity in various cancers, with some promising results. Here, we summarize the regulation of PGE3 synthesis in cancer cells and its role in EPA elicited anticancer activity. The development of PGE3 and its metabolites as potential biomarkers for future clinical evaluation of EPA and fish oil in cancer care is discussed.
Collapse
Affiliation(s)
- Peiying Yang
- Department of General Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States.
| | - Yan Jiang
- Department of General Oncology, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| | - Susan M Fischer
- Department of Molecular Carcinogenesis, The University of Texas, MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
37
|
Membrane lipid profile alterations are associated with the metabolic adaptation of the Caco-2 cells to aglycemic nutritional condition. J Bioenerg Biomembr 2013; 46:45-57. [DOI: 10.1007/s10863-013-9531-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/26/2013] [Indexed: 12/17/2022]
|
38
|
Eilati E, Hales K, Zhuge Y, Fricano KA, Yu R, van Breemen RB, Hales DB. Flaxseed enriched diet-mediated reduction in ovarian cancer severity is correlated to the reduction of prostaglandin E(2) in laying hen ovaries. Prostaglandins Leukot Essent Fatty Acids 2013; 89:179-87. [PMID: 23978451 PMCID: PMC3811136 DOI: 10.1016/j.plefa.2013.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 12/31/2022]
Abstract
Prevention of ovarian cancer is the best approach for reducing the impact of this deadly disease. The laying hen is a robust model of spontaneous ovarian cancer that recapitulates the human disease. Dietary intervention with flaxseed, the richest vegetable source of omega-3 fatty acids (OM-3FAs) and phytoestrogen lignans, demonstrate the potential for effective prevention and amelioration of ovarian cancer by targeting inflammatory prostaglandin pathways. Prostaglandin E2 (PGE2) is the most pro-inflammatory ecoisanoid and one of the downstream products of two isoforms of cyclooxygenase (COX) enzymes: COX-1 and COX-2. Our objective was to investigate the effect of flaxseed supplementation for one year on ovarian cancer and correlate its effects to expression of COX enzymes and concentrations of prostaglandins. White Leghorn hens were fed 10% flaxseed-enriched or standard diet for one year. The severity of ovarian cancer was determined by gross pathology and histology. COX-1 and COX-2 localization and protein and mRNA expression and PGE2 and PGE3 concentrations in ovaries were measured by IHC, western blot, quantitative real-time PCR and LC-MS-MS, respectively. The results demonstrated a significant reduction in late stage ovarian tumors in the flaxseed-fed hens compared with the control diet-fed hens. In correlation with decreased ovarian cancer severity, concentrations of PGE2 and expression of COX-2 were diminished in ovaries of flaxseed-fed hens. PGE3 concentrations were below the level of detection. The results demonstrated that in normal ovaries, COX-1 was localized to the granulosa cell layer surrounding the follicles and ovarian surface epithelium (OSE) whereas COX-2 protein was localized to the granulosa cell layer in the follicle. Extensive COX-1 and COX-2 protein expression was found throughout the ovarian carcinoma. Our findings suggest that the flaxseed-mediated reduction in the severity of ovarian cancer in hens is correlated to the reduction in PGE2 in the ovaries of flaxseed-fed hens. These findings may provide the basis for clinical trials of dietary intervention targeting prostaglandin biosynthesis for the prevention and treatment of ovarian cancer.
Collapse
Affiliation(s)
- Erfan Eilati
- Department of Physiology, Southern Illinois University at Carbondale, School of Medicine, Carbondale, IL, USA
| | - Karen Hales
- Department of Physiology, Southern Illinois University at Carbondale, School of Medicine, Carbondale, IL, USA
| | - Yan Zhuge
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Rui Yu
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, USA
| | - Richard B. van Breemen
- Department of Medicinal Chemistry and Pharmacognosy, University of Illinois at Chicago, Chicago, IL, USA
| | - Dale Buchanan Hales
- Department of Physiology, Southern Illinois University at Carbondale, School of Medicine, Carbondale, IL, USA
- Corresponding author. Tel.: +1618 453 1544; fax: +1618 453 1517.
| |
Collapse
|
39
|
Konya V, Marsche G, Schuligoi R, Heinemann A. E-type prostanoid receptor 4 (EP4) in disease and therapy. Pharmacol Ther 2013; 138:485-502. [PMID: 23523686 PMCID: PMC3661976 DOI: 10.1016/j.pharmthera.2013.03.006] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
The large variety of biological functions governed by prostaglandin (PG) E2 is mediated by signaling through four distinct E-type prostanoid (EP) receptors. The availability of mouse strains with genetic ablation of each EP receptor subtype and the development of selective EP agonists and antagonists have tremendously advanced our understanding of PGE2 as a physiologically and clinically relevant mediator. Moreover, studies using disease models revealed numerous conditions in which distinct EP receptors might be exploited therapeutically. In this context, the EP4 receptor is currently emerging as most versatile and promising among PGE2 receptors. Anti-inflammatory, anti-thrombotic and vasoprotective effects have been proposed for the EP4 receptor, along with its recently described unfavorable tumor-promoting and pro-angiogenic roles. A possible explanation for the diverse biological functions of EP4 might be the multiple signaling pathways switched on upon EP4 activation. The present review attempts to summarize the EP4 receptor-triggered signaling modules and the possible therapeutic applications of EP4-selective agonists and antagonists.
Collapse
Key Words
- ampk, amp-activated protein kinase
- camp, cyclic adenylyl monophosphate
- cftr, cystic fibrosis transmembrane conductance regulator
- clc, chloride channel
- cox, cyclooxygenase
- creb, camp-response element-binding protein
- dp, d-type prostanoid receptor
- dss, dextran sodium sulfate
- egfr, epidermal growth factor receptor
- enos, endothelial nitric oxide synthase
- ep, e-type prostanoid receptor
- epac, exchange protein activated by camp
- eprap, ep4 receptor-associated protein
- erk, extracellular signal-regulated kinase
- fem1a, feminization 1 homolog a
- fp, f-type prostanoid receptor
- grk, g protein-coupled receptor kinase
- 5-hete, 5-hydroxyeicosatetraenoic acid
- icer, inducible camp early repressor
- icam-1, intercellular adhesion molecule-1
- ig, immunoglobulin
- il, interleukin
- ifn, interferon
- ip, i-type prostanoid receptor
- lps, lipopolysaccharide
- map, mitogen-activated protein kinase
- mcp, monocyte chemoattractant protein
- mek, map kinase kinase
- nf-κb, nuclear factor kappa-light-chain-enhancer of activated b cells
- nsaid, non-steroidal anti-inflammatory drug
- pg, prostaglandin
- pi3k, phosphatidyl insositol 3-kinase
- pk, protein kinase
- tp, t-type prostanoid receptor
- tx, thromboxane receptor
- prostaglandins
- inflammation
- vascular disease
- cancerogenesis
- renal function
- osteoporosis
Collapse
Affiliation(s)
| | | | | | - Akos Heinemann
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
40
|
Fukui M, Kang KS, Okada K, Zhu BT. EPA, an omega-3 fatty acid, induces apoptosis in human pancreatic cancer cells: role of ROS accumulation, caspase-8 activation, and autophagy induction. J Cell Biochem 2013; 114:192-203. [PMID: 22903547 DOI: 10.1002/jcb.24354] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 08/07/2012] [Indexed: 12/22/2022]
Abstract
In a recent study, we showed that eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), two common omega-3 fatty acids, can cause ROS accumulation and subsequently induce caspase-8-dependent apoptosis in human breast cancer cells (Kang et al. [2010], PLoS ONE 5: e10296). In this study, we showed that the pancreas has a unique ability to accumulate EPA at a level markedly higher than several other tissues analyzed. Based on this finding, we sought to further investigate the anticancer actions of EPA and its analog DHA in human pancreatic cancer cells using both in vitro and in vivo models. EPA and DHA were found to induce ROS accumulation and caspase-8-dependent cell death in human pancreatic cancer cells (MIA-PaCa-2 and Capan-2) in vitro. Feeding animals with a diet supplemented with 5% fish oil, which contains high levels of EPA and DHA, also strongly suppresses the growth of MIA-PaCa-2 human pancreatic cancer xenografts in athymic nude mice, by inducing oxidative stress and cell death. In addition, we showed that EPA can concomitantly induce autophagy in these cancer cells, and the induction of autophagy diminishes its ability to induce apoptotic cell death. It is therefore suggested that combination of EPA with an autophagy inhibitor may be a useful strategy in increasing the therapeutic effectiveness in pancreatic cancer.
Collapse
Affiliation(s)
- Masayuki Fukui
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | | | |
Collapse
|
41
|
Yang J, Wang Q, Zhao R, Sun B, Wang L, Hou Y, Li X, Wu C. Identification of oligomer proanthocyanidins (F2) isolated from grape seeds as a formyl peptide receptor 1 partial agonist. Int Immunopharmacol 2013; 15:756-63. [PMID: 23523627 DOI: 10.1016/j.intimp.2013.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/01/2013] [Accepted: 03/07/2013] [Indexed: 11/27/2022]
Abstract
Formyl peptide receptor 1 (FPR1) plays an important role in the rapid progression of glioblastoma and has been considered as a molecular target for the treatment. Previously, we have shown that oligomer proanthocyanidins (F2, degree of polymerization 2-15), isolated from grape seeds, inhibited FPR1-mediated chemotaxis of U-87 glioblastoma cells. In the present study, we investigated the capacity of F2 to interact with FPR1. The cross attenuation of chemotaxis revealed that F2 shared FPR1 with formyl-methionyl-leucyl-phenylalanine (fMLF), which is a prototype agonist of FPR1. F2 was chemotactic for U-87 cells, and the chemotactic response was abolished when FPR1 gene was silenced or FPR1 was competitively occupied. We further show that F2 specifically blocked the binding of fluorescent agonist to FPR1. Interestingly, F2 exhibited the characteristic of a partial agonist for FPR1, as shown by its capacity to activate FPR1-mediated PI3K-PKC-MAPK pathways. Meanwhile, F2 also attenuated fMLF-triggered MAPK activation, suggesting that F2 could antagonize the effect of an agonist. Furthermore, F2 abolished the invasion of U-87 cells induced by fMLF. Thus, we have identified F2 as a novel, partial agonist for FPR1, which may be useful for glioblastoma therapy.
Collapse
Affiliation(s)
- Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, Engineering Technology and Research Center for Plant Polyphenols of Liaoning Province, 110016 Shenyang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Yang P, Cartwright C, Chan D, Ding J, Felix E, Pan Y, Pang J, Rhea P, Block K, Fischer SM, Newman RA. Anticancer activity of fish oils against human lung cancer is associated with changes in formation of PGE2 and PGE3 and alteration of Akt phosphorylation. Mol Carcinog 2013; 53:566-77. [PMID: 23371504 DOI: 10.1002/mc.22008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 12/18/2012] [Accepted: 01/04/2013] [Indexed: 11/08/2022]
Abstract
The beneficial effects of omega-3 fatty acids are believed to be due in part to selective alteration of arachidonate metabolism that involves cyclooxygenase (COX) enzymes. Here we investigated the effect of eicosapentaenoic acid (EPA) on the proliferation of human non-small cell lung cancer A549 (COX-2 over-expressing) and H1299 (COX-2 null) cells as well as their xenograft models. While EPA inhibited 50% of proliferation of A549 cells at 6.05 µM, almost 80 µM of EPA was needed to reach similar levels of inhibition of H1299 cells. The formation of prostaglandin (PG)E3 in A549 cells was almost threefold higher than that of H1299 cells when these cells were treated with EPA (25 µM). Intriguingly, when COX-2 expression was reduced by siRNA or shRNA in A549 cells, the antiproliferative activity of EPA was reduced substantially compared to that of control siRNA or shRNA transfected A549 cells. In line with this, dietary menhaden oil significantly inhibited the growth of A549 tumors by reducing tumor weight by 58.8 ± 7.4%. In contrast, a similar diet did not suppress the development of H1299 xenograft. Interestingly, the ratio of PGE3 to PGE2 in A549 was about 0.16 versus only 0.06 in H1299 xenograft tissues. Furthermore, PGE2 up-regulated expression of pAkt, whereas PGE3 downregulated expression of pAkt in A549 cells. Taken together, the results of our study suggest that the ability of EPA to generate PGE3 through the COX-2 enzyme might be critical for EPA-mediated tumor growth inhibition which is at least partly due to down-regulation of Akt phosphorylation by PGE3.
Collapse
Affiliation(s)
- Peiying Yang
- Department of General Oncology, The University of Texas, M.D. Anderson Cancer Center, Houston, Texas
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mascariñas E, Eibl G, Grippo PJ. Evaluating dietary compounds in pancreatic cancer modeling systems. Methods Mol Biol 2013; 980:225-248. [PMID: 23359157 DOI: 10.1007/978-1-62703-287-2_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
With the establishment of outstanding rodent models of pancreatic neoplasia and cancer, there are now systems available for evaluating the role diet, dietary supplements, and/or therapeutic compounds (which can be delivered in the diet) play in disease suppression. Several outstanding reports, which demonstrate clear inhibition or regression of pancreatic tumors following dietary manipulations, represent a noticeable advancement in the field by allowing for the contribution of diet and natural and synthetic compounds to be identified. The real goal is to provide support for translational components that will provide true chemoprevention to individuals at higher risk for developing pancreatic cancer. In addition, administration of molecules with proven efficacy in an in vivo system will screen likely candidates for future clinical trials. Despite this growing enthusiasm, it is important to note that the mere one-to-one translation of findings in rodent models to clinical outcomes is highly unlikely. Thus, careful consideration must be made to correlate findings in rodents with those in human cells with full disclosure of the subtle but often critical differences between animal models and humans. Additional concern should also be placed on the approaches employed to establish dietary components with real potential in the clinic. This chapter is focused on procedures that provide a systematic design for evaluating dietary compounds in cell culture and animal models to highlight which ones might have the greatest potential in people. The general format for this text is a stepwise use of fairly well-known approaches covered briefly but annotated with certain considerations for dietary studies. These methods include administration of a compound or a diet, measuring the cellular and molecular effects (histology, proliferation, apoptosis, RNA and protein expression, and signaling pathways), measuring the level of certain metabolites, and assessing the stability of active compounds. Though this chapter is divided into in vitro and in vivo sections, it is not an implication as to the order of experiments but an endorsement for utilizing human cells to complement work in a rodent modeling system. The notion that cell culture can provide the basis for further in vivo work is an attractive starting point, though the lack of a response in a single cell type should not necessarily prevent diet studies in rodents. The advantage of cell culture over animal models is the human origin of these cells and the ease and directness of manipulating a single cell type (particularly when exploring mechanism of action in that cell). Of course, the full effect of a diet, diet supplement, or therapeutic can only be wholly appreciated in an intact living organism with similar anatomical and physiological relevance. Thus, both approaches are considered in this chapter as each can provide unique strengths to determining the effectiveness of various dietary compounds or supplements on pancreatic neoplasia and cancer.
Collapse
Affiliation(s)
- Emman Mascariñas
- Department of Surgery, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
44
|
Webster CM, Deline ML, Watts JL. Stress response pathways protect germ cells from omega-6 polyunsaturated fatty acid-mediated toxicity in Caenorhabditis elegans. Dev Biol 2012; 373:14-25. [PMID: 23064027 DOI: 10.1016/j.ydbio.2012.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 12/31/2022]
Abstract
Polyunsaturated fatty acids serve both structural and functional roles as membrane components and precursors for a number of different factors involved in inflammation and signaling. These fatty acids are required in the human diet, although excess dietary intake of omega-6 fatty polyunsaturated fatty acids may have a negative influence on human health. In the model nematode, Caenorhabditis elegans, dietary exposure to dihomo-gamma-linolenic acid (DGLA), an omega-6 fatty acid, causes the destruction of germ cells and leads to sterility. In this study we used genetic and microscopic approaches to further characterize this phenomenon. We found that strains carrying mutations in genes involved in lipid homeostasis enhanced sterility phenotypes, while mutations reducing the activity of the conserved insulin/IGF signaling pathway suppressed sterility phenotypes. Exposure to a mild heat stress prior to omega-6 fatty acid treatment led to an adaptive or hormetic response, resulting in less sterility. Mutations in skn-1 and knockdown of genes encoding phase II detoxification enzymes led to increased sterility in the presence of dietary DGLA. Thus, detoxification systems and genetic changes that increase overall stress responses protect the germ cells from destruction. Microscopic analyses revealed that dietary DGLA leads to deterioration of germ cell membranes in the proliferative and transition zones of the developing germ line. Together, these data demonstrate that specific omega-6 polyunsaturated fatty acids, or molecules derived from them, are transported to the germ line where they disrupt the rapidly expanding germ cell membranes, leading to germ cell death.
Collapse
Affiliation(s)
- Christopher M Webster
- School of Molecular Biosciences and Center for Reproductive Biology, Washington State University, Pullman, WA 99614-6340, USA
| | | | | |
Collapse
|
45
|
Novel methodologies for assessing omega-3 fatty acid status - a systematic review. Br J Nutr 2012; 107 Suppl 2:S53-63. [PMID: 22591903 DOI: 10.1017/s0007114512001468] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Over the last few decades n-3 long chain polyunsaturated fatty acid status became of special interest for scientists. Biochemical measures on the n-3 fatty acid status vary depending on body compartment assessed and measures chosen. Plasma phospholipids and red blood cell membrane phospholipids are mainly used as n-3 fatty acid status marker. The conventional analysis of phospholipid fatty acids involves lipid extraction and consecutive chromatographic separation of phospholipids from other lipid fractions, which is time-consuming and costly. In recent years, different investigators have tried to overcome these limitations by using other biological markers or by modifying the analytical procedures used to assess n-3 fatty acid status. The aim of this systematic review was to provide an overview on these novel analytical methods developed for the fatty acid quantification by gas chromatography, highlights the methodological limitations, and discusses advantages or disadvantages of the biological markers used. Seventeen papers were identified that fulfilled the inclusion criteria. New opportunities arise from sensitive and precise high-throughput methodologies for assessment of plasma total lipid and plasma glycerophospholipid fatty acids, as well as cheek cell fatty acid composition.
Collapse
|
46
|
Kremmyda LS, Tvrzicka E, Stankova B, Zak A. Fatty acids as biocompounds: their role in human metabolism, health and disease: a review. part 2: fatty acid physiological roles and applications in human health and disease. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 155:195-218. [PMID: 22286806 DOI: 10.5507/bp.2011.052] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND This is the second of two review parts aiming at describing the major physiological roles of fatty acids, as well as their applications in specific conditions related to human health. RESULTS The review included the current literature published in Pubmed up to March 2011. In humans, fatty acids are a principle energy substrate and structural components of cell membranes (phospholipids) and second messengers. Fatty acids are also ligands of nuclear receptors affecting gene expression. Longer-chain (LC) polyunsaturated fatty acids (PUFA), including eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), and arachidonic acid are precursors of lipid mediators such as eicosanoids (prostaglandins, leukotrienes, thromboxanes), resolvins and neuroprotectins. Lipid mediators produced by EPA and DHA (LC n-3 PUFA; mainly found in oily fish) are considered as inflammation-resolving, and thus, fish oil has been characterised as antiinflammatory. Recommendations for EPA plus DHA intake from oily fish vary between 250-450 mg/day. Dietary reference values for fat vary between nutrition bodies, but mainly agree on a low total and saturated fat intake. The existing literature supports the protective effects of LC n-3 PUFA (as opposed to n-6 PUFA and saturated fat) in maternal and offspring health, cardiovascular health, insulin sensitivity, the metabolic syndrome, cancer, critically ill patients, and immune system disorders. CONCLUSION Fatty acids are involved in multiple pathways and play a major role in health. Further investigation and a nutrigenomics approach to the effects of these biocompounds on health and disease development are imperative and highlight the importance of environmental modifications on disease outcome.
Collapse
|
47
|
Epigenetic deregulation of the COX pathway in cancer. Prog Lipid Res 2012; 51:301-13. [PMID: 22580191 DOI: 10.1016/j.plipres.2012.02.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Revised: 02/08/2012] [Accepted: 02/08/2012] [Indexed: 01/12/2023]
Abstract
Inflammation is a major cause of cancer and may condition its progression. The deregulation of the cyclooxygenase (COX) pathway is implicated in several pathophysiological processes, including inflammation and cancer. Although, its targeting with nonsteroidal antiinflammatory drugs (NSAIDs) and COX-2 selective inhibitors has been investigated for years with promising results at both preventive and therapeutic levels, undesirable side effects and the limited understanding of the regulation and functionalities of the COX pathway compromise a more extensive application of these drugs. Epigenetics is bringing additional levels of complexity to the understanding of basic biological and pathological processes. The deregulation of signaling and biosynthetic pathways by epigenetic mechanisms may account for new molecular targets in cancer therapeutics. Genes of the COX pathway are seldom mutated in neoplastic cells, but a large proportion of them show aberrant expression in different types of cancer. A growing body of evidence indicates that epigenetic alterations play a critical role in the deregulation of the genes of the COX pathway. This review summarizes the current knowledge on the contribution of epigenetic processes to the deregulation of the COX pathway in cancer, getting insights into how these alterations may be relevant for the clinical management of patients.
Collapse
|
48
|
Wang X, Lin H, Gu Y. Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis 2012; 11:25. [PMID: 22333072 PMCID: PMC3295719 DOI: 10.1186/1476-511x-11-25] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/14/2012] [Indexed: 11/10/2022] Open
Abstract
Considerable arguments remain regarding the diverse biological activities of polyunsaturated fatty acids (PUFA). One of the most interesting but controversial dietary approaches focused on the diverse function of dihomo-dietary γ-linolenic acid (DGLA) in anti-inflammation and anti-proliferation diseases, especially for cancers. This strategy is based on the ability of DGLA to interfere in cellular lipid metabolism and eicosanoid (cyclooxygenase and lipoxygenase) biosynthesis. Subsequently, DGLA can be further converted by inflammatory cells to 15-(S)-hydroxy-8,11,13-eicosatrienoic acid and prostaglandin E1 (PGE1). This is noteworthy because these compounds possess both anti-inflammatory and anti-proliferative properties. PGE1 could also induce growth inhibition and differentiation of cancer cells. Although the mechanism of DGLA has not yet been elucidated, it is significant to anticipate the antitumor potential benefits from DGLA.
Collapse
Affiliation(s)
- Xiaoping Wang
- Laboratory of Molecular Pathology, Shaanxi University of Chinese Medicine, Xianyang 712046, Shaanxi, China.
| | | | | |
Collapse
|
49
|
Minimizing the cancer-promotional activity of cox-2 as a central strategy in cancer prevention. Med Hypotheses 2012; 78:45-57. [DOI: 10.1016/j.mehy.2011.09.039] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 09/19/2011] [Indexed: 02/06/2023]
|
50
|
Kuan CY, Walker TH, Luo PG, Chen CF. Long-Chain Polyunsaturated Fatty Acids Promote Paclitaxel Cytotoxicity via Inhibition of the MDR1 Gene in the Human Colon Cancer Caco-2 Cell Line. J Am Coll Nutr 2011; 30:265-73. [DOI: 10.1080/07315724.2011.10719969] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|