1
|
Dias I, da Cunha RS, Masaki R, Todo Bom MA, Ramos EAS, dos Santos GJV, Furman G, Lucena JT, Jiacomini IG, Lo SM, Schemczssen-Graeff Z, Beirão BCB, Zanata SM, Faria LMDL, Gerhardt EM, de Souza EM, Müller-Santos M, Picheth GF. Controlling Protein Immobilization over Poly(3-hydroxybutyrate) Microparticles Using Substrate Binding Domain from PHA Depolymerase. Biomacromolecules 2025; 26:2529-2539. [PMID: 40059311 PMCID: PMC12004514 DOI: 10.1021/acs.biomac.5c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/20/2025] [Accepted: 02/21/2025] [Indexed: 04/15/2025]
Abstract
Biointerface decoration with ligands is a crucial requirement to modulate biodistribution, increase half-life, and provide navigation control for targeted micro- or nanostructured systems. To better control the process of ligand functionalization over three-dimensional (3D) polyester surfaces, we report the characterization of hybrid proteins developed to enhance the anchoring efficiency over polymeric surfaces and preserve optimal spatial orientation: sfGFP, mRFP1, and the RBD proteins were attached to a polyester substrate binding domain (SBD) formed by the C-terminus region of PHA depolymerase. The binding ability was evaluated over poly(3-hydroxybutyrate) (PHB) microparticles (MP) and two-dimensional (2D) surfaces. The PHB interfaces revealed a high affinity toward the proteins linked with SBD, displaying higher protein contents compared to untagged proteins. The MP decorated with RBD-SBD exhibited limited MRC5 internalization and cytotoxicity without a significant impact caused by the RBD protein, suggesting that the system might be adapted for targeted drug delivery and vaccine applications.
Collapse
Affiliation(s)
- Isabela
P. Dias
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | | | - Ryu Masaki
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Maritza A. Todo Bom
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Edneia A. S. Ramos
- Department
of Basic Pathology, Federal University of
Paraná, Curitiba 80060-000, PR, Brazil
| | - Giovanna J. V.
P. dos Santos
- Department
of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas 13083-970, SP, Brazil
| | - Giovanna Furman
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Julia T. Lucena
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Isabella G. Jiacomini
- Department
of Basic Pathology, Federal University of
Paraná, Curitiba 80060-000, PR, Brazil
| | - Sze M. Lo
- Department
of Basic Pathology, Federal University of
Paraná, Curitiba 80060-000, PR, Brazil
| | | | - Breno C. B. Beirão
- Department
of Basic Pathology, Federal University of
Paraná, Curitiba 80060-000, PR, Brazil
| | - Silvio M. Zanata
- Department
of Basic Pathology, Federal University of
Paraná, Curitiba 80060-000, PR, Brazil
| | - Luiz M. de L. Faria
- Department
of Chemistry and Biology, Federal Technological
University of Paraná, Curitiba 81531-980, PR, Brazil
| | - Edileusa M. Gerhardt
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | | | - Marcelo Müller-Santos
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| | - Guilherme F. Picheth
- Department
of Biochemistry, Federal University of Paraná, Curitiba 80060-000, PR, Brazil
| |
Collapse
|
2
|
Latte Bovio C, Campione P, Wu H, Li Q, De La Fuente Durán A, Salleo A, Fabiano S, Messina GML, Santoro F. Evaluation of the Biocompatibility of Poly(benzimidazobenzophenanthroline)(BBL) Polymer Films with Living Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2404451. [PMID: 39711257 PMCID: PMC11798344 DOI: 10.1002/smll.202404451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 10/13/2024] [Indexed: 12/24/2024]
Abstract
The integration of organic electronic materials with biological systems to monitor, interface with, and regulate physiological processes is a key area in the field of bioelectronics. Central to this advancement is the development of cell-chip coupling, where materials engineering plays a critical role in enhancing biointerfacing capabilities. Conductive polymers have proven particularly useful in cell interfacing applications due to their favorable biophysical and chemical properties. However, n-type conductive polymers remain underexplored, primarily due to their limited long-term stability. In this study, it is demonstrated that the conductive polymer poly(benzimidazobenzophenanthroline) (BBL), commonly used in organic electronic devices, can effectively support neuronal cell viability and spreading, both as a bare cell culture material and when coated with exracellular matrix proteins. This work provides a preliminary validation of BBL's potential for future integration into bioelectronic devices and in biointerfacing.
Collapse
Affiliation(s)
- Claudia Latte Bovio
- Tissue ElectronicsIstituto Italiano di TecnologiaNaples80125Italy
- Dipartimento di ChimicaMateriali e Produzione IndustrialeUniversità di Napoli Federico IINaples80125Italy
| | - Paola Campione
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN)Department of Chemical SciencesUniversity of Catania. and CSGIViale A. Doria, 6Catania95125Italy
| | - Han‐Yan Wu
- Laboratory of Organic Electronics Department of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | - Qifan Li
- Laboratory of Organic Electronics Department of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | | | - Alberto Salleo
- Department of Materials Science and EngineeringStanford UniversityStanfordCA94305USA
| | - Simone Fabiano
- Laboratory of Organic Electronics Department of Science and TechnologyLinköping UniversityNorrköpingSE‐60174Sweden
| | - Grazia Maria Lucia Messina
- Laboratory for Molecular Surface and Nanotechnology (LAMSUN)Department of Chemical SciencesUniversity of Catania. and CSGIViale A. Doria, 6Catania95125Italy
| | - Francesca Santoro
- Tissue ElectronicsIstituto Italiano di TecnologiaNaples80125Italy
- Faculty of Electrical Engineering and ITRWTH52074AachenGermany
- Institute for Biological Information Processing‐BioelectronicsForschungszentrum Juelich52428JulichGermany
| |
Collapse
|
3
|
Özkabadayı Y, Türk M, Kumandaş A, Karahan S. Amino acid surface modified bioglass: A candidate biomaterial for bone tissue engineering 1. Microsc Res Tech 2025; 88:26-41. [PMID: 39154380 PMCID: PMC11652810 DOI: 10.1002/jemt.24659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 08/20/2024]
Abstract
Bioglasses are solid materials consisted of sodium oxide, calcium oxide, silicon dioxide and phosphorus in various proportions and have used in bone tissue engineering. There have been ongoing efforts to improve the surface properties of bioglasses to increase biocompatibility and performance. The aim of the present study is to modify the bioglass surface with an amino acid mixture consisting of arginine, aspartic acid, phenylalanine, cysteine, histidine and lysine, to characterize the surface, and to evaluate the performance and biocompatibility in vitro and in vivo. The untreated bioglass, bioglass kept in simulated body fluid (SBF), and modified bioglass were used in further evaluation. After confirmation of the surface modification with FT-IR analyses and SEM analyses, MC3T3-E1 preosteoblasts adhesion on the surface was also revealed by SEM. The modified bioglass had significantly higher ALP activity in colorimetric measurement, rate of calcium accumulations in Alizarin red s staining, lower rate of cell death in Annexin-V/PI staining to determine apoptosis and necrosis. Having higher cell viability rate in MTT test and absence of genotoxicity in micronucleus test (OECD 487), the modified bioglass was further confirmed for biocompatibility in vitro. The results of the rat tibial defect model revealed that the all bioglass treatments had a significantly better bone healing score compared to the untreated negative control. However, the modified bioglass exhibited significantly better bone healing efforts especially during the first and the second months compared to the other bioglass treatment treatments. As a result, the amino acid surface modification of bioglasses improves the surface biocompatibility and osteogenic performance that makes the amino acid modified bioglass a better candidate for bone tissue engineering. RESEARCH HIGHLIGHTS: Bioglass surface modification with amino acids contributes to bioglass-tissue interaction with an improved cell attachment. Modified bioglass increases in vitro Alp activity and calcium accumulation, and also positively affects cell behavior by supporting cell adaptation. Bioglass exerts osteogenic potential in vivo especially during early bone healing.
Collapse
Affiliation(s)
- Yasin Özkabadayı
- Faculty of Veterinary Medicine, Department of Histology and EmbryologyKirikkale UniversityKirikkaleTurkey
| | - Mustafa Türk
- Faculty of Engineering and Natural Sciences, Department of BioengineeringKirikkale UniversityKirikkaleTurkey
| | - Ali Kumandaş
- Faculty of Veterinary Medicine, Department of SurgeryKirikkale UniversityKirikkaleTurkey
- Faculty of Veterinary MedicineKyrgyz‐Turkish Manas UniversityBishkekKyrgyzstan
| | - Siyami Karahan
- Faculty of Veterinary Medicine, Department of Histology and EmbryologyKirikkale UniversityKirikkaleTurkey
| |
Collapse
|
4
|
Urciuolo F, Imparato G, Netti PA. Engineering Cell Instructive Microenvironments for In Vitro Replication of Functional Barrier Organs. Adv Healthc Mater 2024; 13:e2400357. [PMID: 38695274 DOI: 10.1002/adhm.202400357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Indexed: 05/14/2024]
Abstract
Multicellular organisms exhibit synergistic effects among their components, giving rise to emergent properties crucial for their genesis and overall functionality and survival. Morphogenesis involves and relies upon intricate and biunivocal interactions among cells and their environment, that is, the extracellular matrix (ECM). Cells secrete their own ECM, which in turn, regulates their morphogenetic program by controlling time and space presentation of matricellular signals. The ECM, once considered passive, is now recognized as an informative space where both biochemical and biophysical signals are tightly orchestrated. Replicating this sophisticated and highly interconnected informative media in a synthetic scaffold for tissue engineering is unattainable with current technology and this limits the capability to engineer functional human organs in vitro and in vivo. This review explores current limitations to in vitro organ morphogenesis, emphasizing the interplay of gene regulatory networks, mechanical factors, and tissue microenvironment cues. In vitro efforts to replicate biological processes for barrier organs such as the lung and intestine, are examined. The importance of maintaining cells within their native microenvironmental context is highlighted to accurately replicate organ-specific properties. The review underscores the necessity for microphysiological systems that faithfully reproduce cell-native interactions, for advancing the understanding of developmental disorders and disease progression.
Collapse
Affiliation(s)
- Francesco Urciuolo
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
| | - Giorgia Imparato
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering (DICMAPI) and Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Piazzale Tecchio 80, Napoli, 80125, Italy
- Centre for Advanced Biomaterials for Health Care (IIT@CRIB), Istituto Italiano di Tecnologia, L.go Barsanti e Matteucci, Napoli, 80125, Italy
| |
Collapse
|
5
|
Peussa H, Fedele C, Tran H, Marttinen M, Fadjukov J, Mäntylä E, Priimägi A, Nymark S, Ihalainen TO. Light-Induced Nanoscale Deformation in Azobenzene Thin Film Triggers Rapid Intracellular Ca 2+ Increase via Mechanosensitive Cation Channels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206190. [PMID: 37946608 PMCID: PMC10724422 DOI: 10.1002/advs.202206190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 09/15/2023] [Indexed: 11/12/2023]
Abstract
Epithelial cells are in continuous dynamic biochemical and physical interaction with their extracellular environment. Ultimately, this interplay guides fundamental physiological processes. In these interactions, cells generate fast local and global transients of Ca2+ ions, which act as key intracellular messengers. However, the mechanical triggers initiating these responses have remained unclear. Light-responsive materials offer intriguing possibilities to dynamically modify the physical niche of the cells. Here, a light-sensitive azobenzene-based glassy material that can be micropatterned with visible light to undergo spatiotemporally controlled deformations is used. Real-time monitoring of consequential rapid intracellular Ca2+ signals reveals that the mechanosensitive cation channel Piezo1 has a major role in generating the Ca2+ transients after nanoscale mechanical deformation of the cell culture substrate. Furthermore, the studies indicate that Piezo1 preferably responds to shear deformation at the cell-material interphase rather than to absolute topographical change of the substrate. Finally, the experimentally verified computational model suggests that Na+ entering alongside Ca2+ through the mechanosensitive cation channels modulates the duration of Ca2+ transients, influencing differently the directly stimulated cells and their neighbors. This highlights the complexity of mechanical signaling in multicellular systems. These results give mechanistic understanding on how cells respond to rapid nanoscale material dynamics and deformations.
Collapse
Affiliation(s)
- Heidi Peussa
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Chiara Fedele
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 3Tampere33720Finland
| | - Huy Tran
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Mikael Marttinen
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Julia Fadjukov
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Elina Mäntylä
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Arri Priimägi
- Faculty of Engineering and Natural SciencesTampere UniversityKorkeakoulunkatu 3Tampere33720Finland
| | - Soile Nymark
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| | - Teemu O. Ihalainen
- BioMediTechFaculty of Medicine and Health TechnologyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
- Tampere Institute for Advanced StudyTampere UniversityArvo Ylpön katu 34Tampere33520Finland
| |
Collapse
|
6
|
Wu P, Yanagi K, Yokota K, Hakamada M, Mabuchi M. Unusual effects of a nanoporous gold substrate on cell adhesion and differentiation because of independent multi-branch signaling of focal adhesions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2023; 34:54. [PMID: 37884819 PMCID: PMC10602965 DOI: 10.1007/s10856-023-06760-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023]
Abstract
A variety of cell behaviors, such as cell adhesion, motility, and fate, can be controlled by substrate characteristics such as surface topology and chemistry. In particular, the surface topology of substrates strongly affects cell behaviors, and the topological spacing is a critical factor in inducing cell responses. Various works have demonstrated that cell adhesion was enhanced with decreasing topological spacing although differentiation progressed slowly. However, there are exceptions, and thus, correlations between topological spacing and cell responses are still debated. We show that a nanoporous gold substrate affected cell adhesion while it neither affected osteogenic nor adipogenic differentiation. In addition, the cell adhesion was reduced with decreasing pore size. These do not agree with previous findings. A focal adhesion (FA) is an aggregate of modules comprising specific proteins such as FA kinase, talin, and vinculin. Therefore, it is suggested that because various extracellular signals can be independently branched off from the FA modules, the unusual effects of nanoporous gold substrates are related to the multi-branching of FAs.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan.
| | - Kazuya Yanagi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto, 606-8501, Japan
| |
Collapse
|
7
|
Benko A, Webster TJ. How to fix a broken heart-designing biofunctional cues for effective, environmentally-friendly cardiac tissue engineering. Front Chem 2023; 11:1267018. [PMID: 37901157 PMCID: PMC10602933 DOI: 10.3389/fchem.2023.1267018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/04/2023] [Indexed: 10/31/2023] Open
Abstract
Cardiovascular diseases bear strong socioeconomic and ecological impact on the worldwide healthcare system. A large consumption of goods, use of polymer-based cardiovascular biomaterials, and long hospitalization times add up to an extensive carbon footprint on the environment often turning out to be ineffective at healing such cardiovascular diseases. On the other hand, cardiac cell toxicity is among the most severe but common side effect of drugs used to treat numerous diseases from COVID-19 to diabetes, often resulting in the withdrawal of such pharmaceuticals from the market. Currently, most patients that have suffered from cardiovascular disease will never fully recover. All of these factors further contribute to the extensive negative toll pharmaceutical, biotechnological, and biomedical companies have on the environment. Hence, there is a dire need to develop new environmentally-friendly strategies that on the one hand would promise cardiac tissue regeneration after damage and on the other hand would offer solutions for the fast screening of drugs to ensure that they do not cause cardiovascular toxicity. Importantly, both require one thing-a mature, functioning cardiac tissue that can be fabricated in a fast, reliable, and repeatable manner from environmentally friendly biomaterials in the lab. This is not an easy task to complete as numerous approaches have been undertaken, separately and combined, to achieve it. This review gathers such strategies and provides insights into which succeed or fail and what is needed for the field of environmentally-friendly cardiac tissue engineering to prosper.
Collapse
Affiliation(s)
| | - Thomas J. Webster
- Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China
- School of Engineering, Saveetha University, Chennai, India
- Program in Materials Science, UFPI, Teresina, Brazil
| |
Collapse
|
8
|
Zhu YD, Ma XY, Li LP, Yang QJ, Jin F, Chen ZN, Wu CP, Shi HB, Feng ZQ, Yin SK, Li CY. Surface Functional Modification by Ti 3 C 2 T x MXene on PLLA Nanofibers for Optimizing Neural Stem Cell Engineering. Adv Healthc Mater 2023; 12:e2300731. [PMID: 37341969 DOI: 10.1002/adhm.202300731] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/18/2023] [Indexed: 06/22/2023]
Abstract
Optimizing cell substrates by surface modification of neural stem cells (NSCs), for efficient and oriented neurogenesis, represents a promising strategy for treating neurological diseases. However, developing substrates with the advanced surface functionality, conductivity, and biocompatibility required for practical application is still challenging. Here, Ti3 C2 Tx MXene is introduced as a coating nanomaterial for aligned poly(l-lactide) (PLLA) nanofibers (M-ANF) to enhance NSC neurogenesis and simultaneously tailor the cell growth direction. Ti3 C2 Tx MXene treatment provides a superior conductivity substrate with a surface rich in functional groups, hydrophilicity, and roughness, which can provide biochemical and physical cues to support NSC adhesion and proliferation. Moreover, Ti3 C2 Tx MXene coating significantly promotes NSC differentiation into both neurons and astrocytes. Interestingly, Ti3 C2 Tx MXene acts synergistically with the alignment of nanofibers to promote the growth of neurites, indicating enhanced maturation of these neurons. RNA sequencing analysis further reveals the molecular mechanism by which Ti3 C2 Tx MXene modulates the fate of NSCs. Notably, surface modification by Ti3 C2 Tx MXene mitigates the in vivo foreign body response to implanted PLLA nanofibers. This study confirms that Ti3 C2 Tx MXene provides multiple advantages for decorating the aligned PLLA nanofibers to cooperatively improve neural regeneration.
Collapse
Affiliation(s)
- Yi-Dan Zhu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xi-Ying Ma
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lin-Peng Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Quan-Jun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zheng-Nong Chen
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Cui-Ping Wu
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Hai-Bo Shi
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shan-Kai Yin
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chun-Yan Li
- Shanghai Key Laboratory of Sleep Disordered Breathing, Department of Otolaryngology-Head and Neck Surgery, Otolaryngology Institute of Shanghai JiaoTong University, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
9
|
Barbosa F, Garrudo FFF, Marques AC, Cabral JMS, Morgado J, Ferreira FC, Silva JC. Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications. Int J Mol Sci 2023; 24:13203. [PMID: 37686010 PMCID: PMC10488027 DOI: 10.3390/ijms241713203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue's fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies.
Collapse
Affiliation(s)
- Frederico Barbosa
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio F. F. Garrudo
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Ana C. Marques
- Departament of Chemical Engineering and CERENA—Center for Natural Resources and the Environment, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
10
|
Urciuolo F, Imparato G, Netti PA. In vitro strategies for mimicking dynamic cell-ECM reciprocity in 3D culture models. Front Bioeng Biotechnol 2023; 11:1197075. [PMID: 37434756 PMCID: PMC10330728 DOI: 10.3389/fbioe.2023.1197075] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/01/2023] [Indexed: 07/13/2023] Open
Abstract
The extracellular microenvironment regulates cell decisions through the accurate presentation at the cell surface of a complex array of biochemical and biophysical signals that are mediated by the structure and composition of the extracellular matrix (ECM). On the one hand, the cells actively remodel the ECM, which on the other hand affects cell functions. This cell-ECM dynamic reciprocity is central in regulating and controlling morphogenetic and histogenetic processes. Misregulation within the extracellular space can cause aberrant bidirectional interactions between cells and ECM, resulting in dysfunctional tissues and pathological states. Therefore, tissue engineering approaches, aiming at reproducing organs and tissues in vitro, should realistically recapitulate the native cell-microenvironment crosstalk that is central for the correct functionality of tissue-engineered constructs. In this review, we will describe the most updated bioengineering approaches to recapitulate the native cell microenvironment and reproduce functional tissues and organs in vitro. We have highlighted the limitations of the use of exogenous scaffolds in recapitulating the regulatory/instructive and signal repository role of the native cell microenvironment. By contrast, strategies to reproduce human tissues and organs by inducing cells to synthetize their own ECM acting as a provisional scaffold to control and guide further tissue development and maturation hold the potential to allow the engineering of fully functional histologically competent three-dimensional (3D) tissues.
Collapse
Affiliation(s)
- F. Urciuolo
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - G. Imparato
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| | - P. A. Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
- Department of Chemical Materials and Industrial Production (DICMAPI), University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for HealthCare@CRIB, Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
11
|
D'Amico E, Pierfelice TV, Lepore S, Iezzi G, D'Arcangelo C, Piattelli A, Covani U, Petrini M. Hemostatic Collagen Sponge with High Porosity Promotes the Proliferation and Adhesion of Fibroblasts and Osteoblasts. Int J Mol Sci 2023; 24:ijms24097749. [PMID: 37175457 PMCID: PMC10177784 DOI: 10.3390/ijms24097749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
The use of biomaterial for tissue repair involves the interaction between materials and cells, and the coagulum formation represents the first step of tissue healing. This process is particularly critical in the oral cavity, where the wounds are immediately subjected to the masticatory mechanical stress, saliva invasion, and bacterial attack. Therefore, the present study aimed to explore the structural features and the biological activities of a hemostatic collagen sponge on human gingival fibroblasts (HGFs) and human oral osteoblasts (HOBs). The microstructure of the collagen sponge was characterized by a scanning electron microscope (SEM) and histological analysis. The porosity was also calculated. To investigate biological activities, HGFs and HOBs were cultured on the collagen sponges, and their adhesion was observed at SEM on the third day, while cell viability was investigated at the third and seventh days by Tetrazolium (MTT) assay. For osteoblasts seeded on collagen sponge the mineralization ability was also evaluated by alkaline phosphatase (ALP) assay at the seventh day, and by Alizarin red staining on the 14th. Furthermore, the gene expression of ALP and osteocalcin (OCN) was investigated after 3, 7 and 14 days. SEM images of the sponge without cells showed a highly porous 3D structure, confirmed by the measurement of porosity that was more than 90%. The samples cultured were characterized by cells uniformly distributed and adhered to the sponge surface. Proliferation ended up being promoted, as well as the mineralization ability of the osteoblasts, mainly at the mature stage. In conclusion, this collagen sponge could have a potential use for tissue healing.
Collapse
Affiliation(s)
- Emira D'Amico
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Tania Vanessa Pierfelice
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Stefania Lepore
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Giovanna Iezzi
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Camillo D'Arcangelo
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International University of Health and Medical Sciences, Via di, Sant'Alessandro 8, 00131 Rome, Italy
- Facultad de Medicina, UCAM Universidad Catolica San Antonio de Murcia, 30107 Murcia, Spain
| | - Ugo Covani
- Istituto Stomatologico Toscano, Via Aurelia 335, 55041 Lido di Camaiore, Italy
| | - Morena Petrini
- Department of Medical, Oral and Biotechnological Sciences, University G. d'Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
12
|
Wang YR, Yang NY, Sun H, Dong W, Deng JP, Zheng TX, Qi MC. The effect of strontium content on physicochemical and osteogenic property of Sr/Ag-containing TiO 2 microporous coatings. J Biomed Mater Res B Appl Biomater 2023; 111:846-857. [PMID: 36455234 DOI: 10.1002/jbm.b.35195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 10/17/2022] [Accepted: 11/06/2022] [Indexed: 12/05/2022]
Abstract
Strontium (Sr) is the most common element introduced into TiO2 coatings to strengthen the osteogenic property of titanium implants. However, the optimal Sr content and its effect on osteogenic and physicochemical properties of the coatings need to be clarified. In the current study, TiO2 microporous coatings with different contents of Sr (9.64-21.25 wt %) and silver (Ag) (0.38-0.75 wt %) were prepared via micro-arc oxidation technique. Sr contents did not change physicochemical properties of the coatings, including surface microstructure, micropore size and distribution, phase composition, roughness and hydrophilicity. Meanwhile, higher Sr contents (18.23-21.25 wt %) improved cytocompatibility, proliferation and alkaline phosphatase (ALP) activity of preosteoblasts, even the coatings underwent 30 days' PBS immersion. Furthermore, higher Sr contents facilitated preosteoblast growth and spreading, which are essential for their proliferation and osteogenic differentiation. Therefore, it is promising to incorporate higher Sr content (18.23-21.25 wt %) within TiO2 microporous coatings to improve their osteogenic capability.
Collapse
Affiliation(s)
- Yi-Rui Wang
- Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, People's Republic of China
| | - Nuo-Ya Yang
- Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, People's Republic of China
| | - Hong Sun
- Department of Pathology, college of basic medicine, North China University of Science and Technology, Tangshan, China
| | - Wei Dong
- Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, People's Republic of China
| | - Jiu-Peng Deng
- Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, People's Republic of China
| | - Tian-Xia Zheng
- Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, People's Republic of China
| | - Meng-Chun Qi
- Department of Oral & Maxillofacial Surgery, College of stomatology, North China University of Science and Technology, Tangshan City, People's Republic of China
| |
Collapse
|
13
|
Citro V, Clerici M, Boccaccini AR, Della Porta G, Maffulli N, Forsyth NR. Tendon tissue engineering: An overview of biologics to promote tendon healing and repair. J Tissue Eng 2023; 14:20417314231196275. [PMID: 37719308 PMCID: PMC10501083 DOI: 10.1177/20417314231196275] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 08/06/2023] [Indexed: 09/19/2023] Open
Abstract
Tendons are dense connective tissues with a hierarchical polarized structure that respond to and adapt to the transmission of muscle contraction forces to the skeleton, enabling motion and maintaining posture. Tendon injuries, also known as tendinopathies, are becoming more common as populations age and participation in sports/leisure activities increases. The tendon has a poor ability to self-heal and regenerate given its intrinsic, constrained vascular supply and exposure to frequent, severe loading. There is a lack of understanding of the underlying pathophysiology, and it is not surprising that disorder-targeted medicines have only been partially effective at best. Recent tissue engineering approaches have emerged as a potential tool to drive tendon regeneration and healing. In this review, we investigated the physiochemical factors involved in tendon ontogeny and discussed their potential application in vitro to reproduce functional and self-renewing tendon tissue. We sought to understand whether stem cells are capable of forming tendons, how they can be directed towards the tenogenic lineage, and how their growth is regulated and monitored during the entire differentiation path. Finally, we showed recent developments in tendon tissue engineering, specifically the use of mesenchymal stem cells (MSCs), which can differentiate into tendon cells, as well as the potential role of extracellular vesicles (EVs) in tendon regeneration and their potential for use in accelerating the healing response after injury.
Collapse
Affiliation(s)
- Vera Citro
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Marta Clerici
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
| | - Aldo R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials University of Erlangen-Nuremberg, Cauerstrasse 6, Erlangen, Germany
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Interdepartmental Centre BIONAM, University of Salerno, via Giovanni Paolo I, Fisciano, Salerno, Italy
| | - Nicola Maffulli
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Department of Medicine, Surgery and Dentistry, University of Salerno, via S. Allende, Baronissi, Salerno, Italy
- Department of Trauma and Orthopaedic Surgery, University Hospital ‘San Giovanni di Dio e Ruggi D’Aragona’, Salerno, Italy
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University, Stoke-on-Trent, Staffordshire, UK
- Vice Principals’ Office, University of Aberdeen, Kings College, Aberdeen, UK
| |
Collapse
|
14
|
Li L, Wu C, Ling Y, Hou C, Zhang Q, Li Y, Shi H, Wang H, Li C, Yin S. A nanobrush-shearing strategy enabling the alignment of 1D nanomaterials for synchronous electrochromic actuators and controlled growth of neural stem cells. MATERIALS TODAY NANO 2022; 20:100256. [DOI: 10.1016/j.mtnano.2022.100256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2024]
|
15
|
Cai J, Wang J, Sun C, Dai J, Zhang C. Biomaterials with Stiffness Gradient for Interface Tissue Engineering. Biomed Mater 2022; 17. [PMID: 35985317 DOI: 10.1088/1748-605x/ac8b4a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/19/2022] [Indexed: 11/11/2022]
Abstract
Interface tissue engineering is a rapidly growing field that aims to develop engineered tissue alternates with the goal of promoting integration between multiple tissue types. Engineering interface tissues is a complex process, which requires a specialized biomaterials with organized material composition, stiffness, cell types, and signaling molecules. Among these, stiffness-controllable substrates have been developed to investigate the effect of stiffness on cell behavior. Especially these substrates with graded stiffness are advantageous since they allow the differentiation of multiple cell phenotypes and subsequent tissue development. In this review, we highlight the various types of manufacturing techniques that can be leveraged to fabricate scaffolds with stiffness gradient, discuss methods to characterize them, and gradient biomaterials for controlling cellular behavior including attachment, migration, proliferation, and differentiation. We also address fundamentals of interface tissue organization, and stiffness gradient biomaterials for interface tissue regeneration. Potential challenges and future directions in this emerging field are also discussed.
Collapse
Affiliation(s)
- Jialun Cai
- Hunan University, #27 Tianma Road, Changsha, Hunan, 410082, CHINA
| | - Junjuan Wang
- Hangzhou Medical College, Binwen Road, Hangzhou, Zhejiang, 310053, CHINA
| | - Chenxuan Sun
- Hunan University, 27# Tianma Road, ChangSha, Hunan, 410000, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Can Zhang
- Biomedical Engineering, Hunan University, #27 Tianma Road, Changsha, 410000, CHINA
| |
Collapse
|
16
|
Cimmino C, Netti PA, Ventre M. A switchable light-responsive azopolymer conjugating protein micropatterns with topography for mechanobiological studies. Front Bioeng Biotechnol 2022; 10:933410. [PMID: 35935479 PMCID: PMC9355574 DOI: 10.3389/fbioe.2022.933410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stem cell shape and mechanical properties in vitro can be directed by geometrically defined micropatterned adhesion substrates. However, conventional methods are limited by the fixed micropattern design, which cannot recapitulate the dynamic changes of the natural cell microenvironment. Current methods to fabricate dynamic platforms usually rely on complex chemical strategies or require specialized apparatuses. Also, with these methods, the integration of dynamic signals acting on different length scales is not straightforward, whereas, in some applications, it might be beneficial to act on both a microscale level, that is, cell shape, and a nanoscale level, that is, cell adhesions. Here, we exploited a confocal laser-based technique on a light-responsive azopolymer displaying micropatterns of adhesive islands. The laser light promotes a directed mass migration and the formation of submicrometric topographic relieves. Also, by changing the surface chemistry, the surfacing topography affects cell spreading and shape. This method enabled us to monitor in a non-invasive manner the dynamic changes in focal adhesions, cytoskeleton structures, and nucleus conformation that followed the changes in the adhesive characteristic of the substrate. Focal adhesions reconfigured after the surfacing of the topography, and the actin filaments reoriented to coalign with the newly formed adhesive island. Changes in cell morphology also affected nucleus shape, chromatin conformation, and cell mechanics with different timescales. The reported strategy can be used to investigate mechanotransduction-related events dynamically by controlling cell adhesion at cell shape and focal adhesion levels. The integrated technique enables achieving a submicrometric resolution in a facile and cost-effective manner.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
- Interdisciplinary Research Centre on Biomaterials, University of Naples Federico II, Naples, Italy
- *Correspondence: Maurizio Ventre,
| |
Collapse
|
17
|
Nakamoto ML, Forró C, Zhang W, Tsai CT, Cui B. Expansion Microscopy for Imaging the Cell-Material Interface. ACS NANO 2022; 16:7559-7571. [PMID: 35533401 PMCID: PMC9879138 DOI: 10.1021/acsnano.1c11015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Surface topography on the scale of tens of nanometers to several micrometers substantially affects cell adhesion, migration, and differentiation. Recent studies using electron microscopy and super-resolution microscopy provide insight into how cells interact with surface nanotopography; however, the complex sample preparation and expensive imaging equipment required for these methods makes them not easily accessible. Expansion microscopy (ExM) is an affordable approach to image beyond the diffraction limit, but ExM cannot be readily applied to image the cell-material interface as most materials do not expand. Here, we develop a protocol that allows the use of ExM to resolve the cell-material interface with high resolution. We apply the technique to image the interface between U2OS cells and nanostructured substrates as well as the interface between primary osteoblasts with titanium dental implants. The high spatial resolution enabled by ExM reveals that although AP2 and F-actin both accumulate at curved membranes induced by vertical nanostructures, they are spatially segregated. Using ExM, we also reliably image how osteoblasts interact with roughened titanium implant surfaces below the diffraction limit; this is of great interest to understand osseointegration of the implants but has up to now been a significant technical challenge due to the irregular shape, the large volume, and the opacity of the titanium implants that have rendered them incompatible with other super-resolution techniques. We believe that our protocol will enable the use of ExM as a powerful tool for cell-material interface studies.
Collapse
Affiliation(s)
- Melissa L Nakamoto
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Csaba Forró
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Wei Zhang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Ching-Ting Tsai
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
18
|
Zhang Z, Chen W, Tiemessen DM, Oosterwijk E, Kouwer PHJ. A Temperature-Based Easy-Separable (TempEasy) 3D Hydrogel Coculture System. Adv Healthc Mater 2022; 11:e2102389. [PMID: 35029325 PMCID: PMC11469334 DOI: 10.1002/adhm.202102389] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Indexed: 12/13/2022]
Abstract
Interactions between different cell types are crucial for their behavior in tissues, but are rarely considered in 3D in vitro cell culture experiments. One reason is that such coculture experiments are sometimes difficult to perform in 3D or require specialized equipment or know-how. Here, a new 3D cell coculture system is introduced, TempEasy, which is readily applied in any cell culture lab. The matrix material is based on polyisocyanide hydrogels, which closely resemble the mechanical characteristics of the natural extracellular matrix. Gels with different gelation temperatures, seeded with different cells, are placed on top of each other to form an indirect coculture. Cooling reverses gelation, allowing cell harvesting from each layer separately, which benefits downstream analysis. To demonstrate the potential of TempEasy , human adipose stem cells (hADSCs) with vaginal epithelial fibroblasts are cocultured. The analysis of a 7-day coculture shows that hADSCs promote cell-cell interaction of fibroblasts, while fibroblasts promote proliferation and differentiation of hADSCs. TempEasy provides a straightforward operational platform for indirect cocultures of cells of different lineages in well-defined microenvironments.
Collapse
Affiliation(s)
- Zhaobao Zhang
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Wen Chen
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| | - Dorien M. Tiemessen
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Egbert Oosterwijk
- Department of UrologyRadboud Institute for Molecular Life SciencesRadboud University Medical CenterGeert Grooteplein Zuid 28Nijmegen6525 GAThe Netherlands
| | - Paul H. J. Kouwer
- Institute for Molecules and MaterialsRadboud University NijmegenHeyendaalseweg 135Nijmegen6525 AJThe Netherlands
| |
Collapse
|
19
|
Oirschot BV, zhang Y, Alghamdi HS, cordeiro JM, nagay B, barão VA, de avila ED, van den Beucken J. Surface engineering for dental implantology: favoring tissue responses along the implant
. Tissue Eng Part A 2022; 28:555-572. [DOI: 10.1089/ten.tea.2021.0230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Bart van Oirschot
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
| | - yang zhang
- Shenzhen University, 47890, School of Stomatology, Health Science Center, Shenzhen, Guangdong, China,
| | - Hamdan S Alghamdi
- King Saud University College of Dentistry, 204573, Department of Periodontics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia,
| | - jairo m cordeiro
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - bruna nagay
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - valentim ar barão
- UNICAMP, 28132, Department of Prosthodontics and Periodontology, Piracicaba Dental School, Campinas, SP, Brazil,
| | - erica dorigatti de avila
- UNESP, 28108, Department of Dental Materials and Prosthodontics, School of Dentistry at Araraquara, São Paulo State University (UNESP), Sao Paulo, SP, Brazil,
| | - Jeroen van den Beucken
- Radboudumc Department of Dentistry, 370502, Regenerative Biomaterials, Nijmegen, Gelderland, Netherlands,
- RU RIMLS, 59912, Nijmegen, Gelderland, Netherlands,
| |
Collapse
|
20
|
Panzetta V, Musella I, Fusco S, Netti PA. ECM Mechanoregulation in Malignant Pleural Mesothelioma. Front Bioeng Biotechnol 2022; 10:797900. [PMID: 35237573 PMCID: PMC8883334 DOI: 10.3389/fbioe.2022.797900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 01/05/2022] [Indexed: 01/16/2023] Open
Abstract
Malignant pleural mesothelioma is a relatively rare, but devastating tumor, because of the difficulties in providing early diagnosis and effective treatments with conventional chemo- and radiotherapies. Patients usually present pleural effusions that can be used for diagnostic purposes by cytological analysis. This effusion cytology may take weeks or months to establish and has a limited sensitivity (30%-60%). Then, it is becoming increasingly urgent to develop alternative investigative methods to support the diagnosis of mesothelioma at an early stage when this cancer can be treated successfully. To this purpose, mechanobiology provides novel perspectives into the study of tumor onset and progression and new diagnostic tools for the mechanical characterization of tumor tissues. Here, we report a mechanical and biophysical characterization of malignant pleural mesothelioma cells as additional support to the diagnosis of pleural effusions. In particular, we examined a normal mesothelial cell line (Met5A) and two epithelioid mesothelioma cell lines (REN and MPP89), investigating how malignant transformation can influence cellular function like proliferation, cell migration, and cell spreading area with respect to the normal ones. These alterations also correlated with variations in cytoskeletal mechanical properties that, in turn, were measured on substrates mimicking the stiffness of patho-physiological ECM.
Collapse
Affiliation(s)
- Valeria Panzetta
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Ida Musella
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| | - Sabato Fusco
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Paolo A. Netti
- Department of Chemical, Materials and Production Engineering, University of Naples Federico II, Naples, Italy
- Centro di Ricerca Interdipartimentale sui Biomateriali CRIB, University of Naples Federico II, Naples, Italy
- Istituto Italiano di Tecnologia, IIT@CRIB, Naples, Italy
| |
Collapse
|
21
|
He W, Wang Q, Tian X, Pan G. Recapitulating dynamic ECM ligand presentation at biomaterial interfaces: Molecular strategies and biomedical prospects. EXPLORATION (BEIJING, CHINA) 2022; 2:20210093. [PMID: 37324582 PMCID: PMC10191035 DOI: 10.1002/exp.20210093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/29/2021] [Indexed: 06/14/2023]
Abstract
The extracellular matrix (ECM) provides not only physical support for the tissue structural integrity, but also dynamic biochemical cues capable of regulating diverse cell behaviors and functions. Biomaterial surfaces with dynamic ligand presentation are capable of mimicking the dynamic biochemical cues of ECM, showing ECM-like functions to modulate cell behaviors. This review paper described an overview of present dynamic biomaterial interfaces by focusing on currently developed molecular strategies for dynamic ligand presentation. The paradigmatic examples for each strategy were separately discussed. In addition, the regulation of some typical cell behaviors on these dynamic biointerfaces including cell adhesion, macrophage polarization, and stem cell differentiation, and their potential applications in pathogenic cell isolation, single cell analysis, and tissue engineering are highlighted. We hope it would not only clarify a clear background of this field, but also inspire to exploit novel molecular strategies and more applications to match the increasing demand of manipulating complex cellular processes in biomedicine.
Collapse
Affiliation(s)
- Wenbo He
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Qinghe Wang
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Xiaohua Tian
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
- School of Chemistry and Chemical EngineeringJiangsu UniversityZhenjiangP. R. China
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangP. R. China
| |
Collapse
|
22
|
C/EBPβ isoform-specific regulation of migration and invasion in triple-negative breast cancer cells. NPJ Breast Cancer 2022; 8:11. [PMID: 35042889 PMCID: PMC8766495 DOI: 10.1038/s41523-021-00372-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
The transcription factor C/EBPβ is a master regulator of mammary gland development and tissue remodelling during lactation. The CEBPB-mRNA is translated into three distinct protein isoforms named C/EBPβ-LAP1, -LAP2 and -LIP that are functionally different. The smaller isoform LIP lacks the N-terminal transactivation domains and is considered to act as an inhibitor of the transactivating LAP1/2 isoforms by competitive binding for the same DNA recognition sequences. Aberrantly high expression of LIP is associated with mammary epithelial proliferation and is found in grade III, estrogen receptor (ER) and progesterone (PR) receptor-negative human breast cancer. Here, we show that reverting the high LIP/LAP ratios in triple-negative breast cancer (TNBC) cell lines into low LIP/LAP ratios by overexpression of LAP reduces migration and matrix invasion of these TNBC cells. In addition, in untransformed MCF10A human mammary epithelial cells overexpression of LIP stimulates migration. Knockout of CEBPB in TNBC cells where LIP expression prevails, resulted in strongly reduced migration that was accompanied by a downregulation of genes involved in cell migration, extracellular matrix production and cytoskeletal remodelling, many of which are epithelial to mesenchymal transition (EMT) marker genes. Together, this study suggests that the LIP/LAP ratio is involved in regulating breast cancer cell migration and invasion. This study together with studies from others shows that understanding the functions the C/EBPβ-isoforms in breast cancer development may reveal new avenues of treatment.
Collapse
|
23
|
Graphene-Oxide Porous Biopolymer Hybrids Enhance In Vitro Osteogenic Differentiation and Promote Ectopic Osteogenesis In Vivo. Int J Mol Sci 2022; 23:ijms23010491. [PMID: 35008918 PMCID: PMC8745160 DOI: 10.3390/ijms23010491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
Over the years, natural-based scaffolds have presented impressive results for bone tissue engineering (BTE) application. Further, outstanding interactions have been observed during the interaction of graphene oxide (GO)-reinforced biomaterials with both specific cell cultures and injured bone during in vivo experimental conditions. This research hereby addresses the potential of fish gelatin/chitosan (GCs) hybrids reinforced with GO to support in vitro osteogenic differentiation and, further, to investigate its behavior when implanted ectopically. Standard GCs formulation was referenced against genipin (Gp) crosslinked blend and 0.5 wt.% additivated GO composite (GCsGp/GO 0.5 wt.%). Pre-osteoblasts were put in contact with these composites and induced to differentiate in vitro towards mature osteoblasts for 28 days. Specific bone makers were investigated by qPCR and immunolabeling. Next, CD1 mice models were used to assess de novo osteogenic potential by ectopic implantation in the subcutaneous dorsum pocket of the animals. After 4 weeks, alkaline phosphate (ALP) and calcium deposits together with collagen synthesis were investigated by biochemical analysis and histology, respectively. Further, ex vivo materials were studied after surgery regarding biomineralization and morphological changes by means of qualitative and quantitative methods. Furthermore, X-ray diffraction and Fourier-transform infrared spectroscopy underlined the newly fashioned material structuration by virtue of mineralized extracellular matrix. Specific bone markers determination stressed the osteogenic phenotype of the cells populating the material in vitro and successfully differentiated towards mature bone cells. In vivo results of specific histological staining assays highlighted collagen formation and calcium deposits, which were further validated by micro-CT. It was observed that the addition of 0.5 wt.% GO had an overall significant positive effect on both in vitro differentiation and in vivo bone cell recruitment in the subcutaneous region. These data support the GO bioactivity in osteogenesis mechanisms as being self-sufficient to elevate osteoblast differentiation and bone formation in ectopic sites while lacking the most common osteoinductive agents.
Collapse
|
24
|
Mackay BS, Marshall K, Grant-Jacob JA, Kanczler J, Eason RW, Oreffo ROC, Mills B. The future of bone regeneration: integrating AI into tissue engineering. Biomed Phys Eng Express 2021; 7. [PMID: 34271556 DOI: 10.1088/2057-1976/ac154f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/16/2021] [Indexed: 01/16/2023]
Abstract
Tissue engineering is a branch of regenerative medicine that harnesses biomaterial and stem cell research to utilise the body's natural healing responses to regenerate tissue and organs. There remain many unanswered questions in tissue engineering, with optimal biomaterial designs still to be developed and a lack of adequate stem cell knowledge limiting successful application. Advances in artificial intelligence (AI), and deep learning specifically, offer the potential to improve both scientific understanding and clinical outcomes in regenerative medicine. With enhanced perception of how to integrate artificial intelligence into current research and clinical practice, AI offers an invaluable tool to improve patient outcome.
Collapse
Affiliation(s)
- Benita S Mackay
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Karen Marshall
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - James A Grant-Jacob
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Janos Kanczler
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom
| | - Robert W Eason
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom.,Institute of Developmental Sciences, Faculty of Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Richard O C Oreffo
- Bone and Joint Research Group, Centre for Human Development, Stem Cells and Regeneration, Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6HW, United Kingdom.,Institute of Developmental Sciences, Faculty of Life Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Ben Mills
- Optoelectronics Research Centre, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
25
|
Carleton MM, Locke M, Sefton MV. Methacrylic acid-based hydrogels enhance skeletal muscle regeneration after volumetric muscle loss in mice. Biomaterials 2021; 275:120909. [PMID: 34087582 DOI: 10.1016/j.biomaterials.2021.120909] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/29/2022]
Abstract
Volumetric muscle loss (VML) impairs the regenerative ability of skeletal muscle resulting in scar tissue formation and loss of function. Current treatments are of limited efficacy as they do not fully restore function, i.e., force generation. Regenerative biomaterials, such as those containing methacrylic-acid (MAA), are proposed as a novel approach to enhancing muscle regeneration without added cells, growth factors or drugs. Here, the regenerative effects of two hydrogels were investigated: MAA-poly(ethylene glycol) (MAA-PEG) and MAA-collagen. These hydrogels were used to treat VML injuries in murine tibialis anterior muscles. The MAA-collagen hydrogel significantly increased regenerating muscle fiber size and muscle force production. While both hydrogels increased vascularization, only the MAA-collagen hydrogel increased apparent muscle innervation. The MAA-collagen hydrogel also significantly reduced a pro-inflammatory macrophage (MHCII+CD206-) population. Furthermore, the hydrogels had distinct gene expression profiles indicating that their regenerative abilities were carrier dependent. Overall, this study suggests MAA-collagen as a cell-free and drug-free approach to enhancing skeletal muscle regeneration after traumatic injury.
Collapse
Affiliation(s)
- Miranda M Carleton
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Marius Locke
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, M5S 3G9, Canada
| | - Michael V Sefton
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, M5S 3G9, Canada; Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, M5S 3G9, Canada.
| |
Collapse
|
26
|
Amyloid Aggregates of Smooth-Muscle Titin Impair Cell Adhesion. Int J Mol Sci 2021; 22:ijms22094579. [PMID: 33925514 PMCID: PMC8123791 DOI: 10.3390/ijms22094579] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 04/24/2021] [Indexed: 11/17/2022] Open
Abstract
Various amyloid aggregates, in particular, aggregates of amyloid β-proteins, demonstrate in vitro and in vivo cytotoxic effects associated with impairment of cell adhesion. We investigated the effect of amyloid aggregates of smooth-muscle titin on smooth-muscle-cell cultures. The aggregates were shown to impair cell adhesion, which was accompanied by disorganization of the actin cytoskeleton, formation of filopodia, lamellipodia, and stress fibers. Cells died after a 72-h contact with the amyloid aggregates. To understand the causes of impairment, we studied the effect of the microtopology of a titin-amyloid-aggregate-coated surface on fibroblast adhesion by atomic force microscopy. The calculated surface roughness values varied from 2.7 to 4.9 nm, which can be a cause of highly antiadhesive properties of this surface. As all amyloids have the similar structure and properties, it is quite likely that the antiadhesive effect is also intrinsic to amyloid aggregates of other proteins. These results are important for understanding the mechanisms of the negative effect of amyloids on cell adhesion.
Collapse
|
27
|
Molecular Mechanisms of Topography Sensing by Osteoblasts: An Update. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11041791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bone is a specialized tissue formed by different cell types and a multiscale, complex mineralized matrix. The architecture and the surface chemistry of this microenvironment can be factors of considerable influence on cell biology, and can affect cell proliferation, commitment to differentiation, gene expression, matrix production and/or composition. It has been shown that osteoblasts encounter natural motifs in vivo, with various topographies (shapes, sizes, organization), and that cell cultures on flat surfaces do not reflect the total potential of the tissue. Therefore, studies investigating the role of topographies on cell behavior are important in order to better understand the interaction between cells and surfaces, to improve osseointegration processes in vivo between tissues and biomaterials, and to find a better topographic surface to enhance bone repair. In this review, we evaluate the main available data about surface topographies, techniques for topographies’ production, mechanical signal transduction from surfaces to cells and the impact of cell–surface interactions on osteoblasts or preosteoblasts’ behavior.
Collapse
|
28
|
Humenik M, Winkler A, Scheibel T. Patterning of protein-based materials. Biopolymers 2020; 112:e23412. [PMID: 33283876 DOI: 10.1002/bip.23412] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 01/03/2023]
Abstract
Micro- and nanopatterning of proteins on surfaces allows to develop for example high-throughput biosensors in biomedical diagnostics and in general advances the understanding of cell-material interactions in tissue engineering. Today, many techniques are available to generate protein pattern, ranging from technically simple ones, such as micro-contact printing, to highly tunable optical lithography or even technically sophisticated scanning probe lithography. Here, one focus is on the progress made in the development of protein-based materials as positive or negative photoresists allowing micro- to nanostructured scaffolds for biocompatible photonic, electronic and tissue engineering applications. The second one is on approaches, which allow a controlled spatiotemporal positioning of a single protein on surfaces, enabled by the recent developments in immobilization techniques coherent with the sensitive nature of proteins, defined protein orientation and maintenance of the protein activity at interfaces. The third one is on progress in photolithography-based methods, which allow to control the formation of protein-repellant/adhesive polymer brushes.
Collapse
Affiliation(s)
- Martin Humenik
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Anika Winkler
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany
| | - Thomas Scheibel
- Department of Biomaterials, Faculty of Engineering Science, Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Colloids and Interfaces (BZKG), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Molecular Biosciences (BZMB), Universität Bayreuth, Bayreuth, Germany.,Bayreuth Center for Material Science (BayMAT), Universität Bayreuth, Bayreuth, Germany.,Bavarian Polymer Institute (BPI), Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
29
|
The Bacterial Anti-Adhesive Activity of Double-Etched Titanium (DAE) as a Dental Implant Surface. Int J Mol Sci 2020; 21:ijms21218315. [PMID: 33167597 PMCID: PMC7664185 DOI: 10.3390/ijms21218315] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
This work aimed to compare the capability of Streptococcus oralis to adhere to a novel surface, double-etched titanium (DAE), in respect to machined and single-etched titanium. The secondary outcome was to establish which topographical features could affect the interaction between the implant surface and bacteria. The samples’ superficial features were characterized using scanning electron microscopy (SEM) and energy dispersive x-ray spectrometry (EDS), and the wetting properties were tested through sessile methods. The novel surface, the double-etched titanium (DAE), was also analyzed with atomic force microscopy (AFM). S. oralis was inoculated on discs previously incubated in saliva, and then the colony-forming units (CFUs), biomass, and cellular viability were measured at 24 and 48h. SEM observation showed that DAE was characterized by higher porosity and Oxygen (%) in the superficial layer and the measurement of the wetting properties showed higher hydrophilicity. AFM confirmed the presence of a higher superficial nano-roughness. Microbiological analysis showed that DAE discs, coated by pellicle’s proteins, were characterized by significantly lower CFUs at 24 and 48 h with respect to the other two groups. In particular, a significant inverse relationship was shown between the CFUs at 48 h and the values of the wetted area and a direct correlation with the water contact angle. The biomass at 24 h was slightly lower on DAE, but results were not significant concerning the other groups, both at 24 and 48 h. The DAE treatment not only modifies the superficial topography and increased hydrophilicity, but it also increases the Oxygen percentage in the superficial layer, which could contribute to the inhibition of S. oralis adhesion. DAE can be considered a promising treatment for titanium implants to counteract a colonization pioneer microorganism, such as S. oralis.
Collapse
|
30
|
Kallas P, Kang H, Valen H, Haugen HJ, Andersson M, Hulander M. Effect of silica nano-spheres on adhesion of oral bacteria and human fibroblasts. Biomater Investig Dent 2020; 7:134-145. [PMID: 33063045 PMCID: PMC7534277 DOI: 10.1080/26415275.2020.1816175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 08/19/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study investigated the effect of surface nano-patterning on adhesion of an oral early commensal colonizer, Streptococcus mitis and the opportunistic pathogen Staphylococcus aureus and human fibroblasts (HDFa) in a laminar flow cell. METHODS Nanostructured surfaces were made by functionalizing glass substrates with 40 nm SiO2 nanoparticles. Gradients in nanoparticle surface coverage were fabricated to study the effect of nanoparticle spacing within a single experiment. Bacterial adhesion was investigated after 5 min of contact time by subjecting surfaces to a flow in a laminar flow cell. In addition, to examine the particles effect on human cells, the establishment of focal adhesion and spreading of primary human dermal fibroblasts (HDFa) were investigated after 4 and 24 h. RESULTS Adhesion of both S. aureus and S. mitis decreased on surfaces functionalized with nanoparticles and coincided with higher nanoparticle surface coverage on the surface. Both strains were tested on three separate surfaces. The regression analysis showed that S. mitis was influenced more by surface modification than S. aureus. The establishment of focal adhesions in HDFa cells was delayed on the nanostructured part of the surfaces after both 4 and 24 h of culturing. SIGNIFICANCE In the current manuscript, we have used a flow cell to investigate the effect of nanotopographies on S. aureus and S. mitis adhesion. The present findings are of relevance for design of future implant and prostheses surfaces in order to reduce adhesion of bacteria.
Collapse
Affiliation(s)
- Pawel Kallas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Hua Kang
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Håkon Valen
- Nordic Institute of Dental Materials, Oslo, Norway
| | - Håvard Jostein Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Oslo, Norway
| | - Martin Andersson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Mats Hulander
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
31
|
Cha B, Kim J, Bello A, Lee G, Kim D, Kim BJ, Arai Y, Choi B, Park H, Lee S. Efficient Isolation and Enrichment of Mesenchymal Stem Cells from Human Embryonic Stem Cells by Utilizing the Interaction between Integrin α5 β1 and Fibronectin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001365. [PMID: 32995130 PMCID: PMC7507081 DOI: 10.1002/advs.202001365] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 06/02/2020] [Indexed: 05/09/2023]
Abstract
Human pluripotent stem cells (hPSCs) are a potent source of clinically relevant mesenchymal stem cells (MSCs) that confer functional and structural benefits in cell therapy and tissue regeneration. Obtaining sufficient numbers of MSCs in a short period of time and enhancing the differentiation potential of MSCs can be offered the potential to improve the regenerative activity of MSCs therapy. In addition, the underlying processes in the isolation and derivation of MSCs from hPSCs are still poorly understood and controlled. To overcome these clinical needs, an efficient and simplified technique on the isolation of MSCs from spontaneously differentiated human embryonic stem cells (hESCs) via integrin α5β1 (fibronectin (FN) receptor)-to-FN interactions (hESC-FN-MSCs) is successfully developed. It is demonstrated that hESC-FN-MSCs exhibit a typical MSC surface phenotype, cellular morphology, with the whole transcriptome similar to conventional adult MSCs; but show higher proliferative capacity, more efficient trilineage differentiation, enhanced cytokine secretion, and attenuated cellular senescence. In addition, the therapeutic potential and regenerative capacity of the isolated hESC-FN-MSCs are confirmed by in vitro and in vivo multilineage differentiation. This novel method will be useful in the generation of abundant amounts of clinically relevant MSCs for stem cell therapeutics and regenerative medicine.
Collapse
Affiliation(s)
- Byung‐Hyun Cha
- Division of Cardio‐Thoracic SurgeryDepartment of SurgeryCollege of MedicineUniversity of ArizonaTucsonAZ85724USA
| | - Jin‐Su Kim
- CellenGene R&D CenterOpen Innovation BuildingSeoul02455Republic of Korea
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Alvin Bello
- Department of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Geun‐Hui Lee
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Do‐Hyun Kim
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Byoung Ju Kim
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Yoshie Arai
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| | - Bogyu Choi
- Department of Biomedical ScienceCHA UniversityCHA BiocomplexSeongnam‐siGyeonggi‐do13488Republic of Korea
| | - Hansoo Park
- Department of Integrative EngineeringChung‐Ang UniversitySeoul06974Republic of Korea
| | - Soo‐Hong Lee
- Department of Medical BiotechnologyDongguk University32 Dongguk‐ro, Ilsandong‐guGoyangGyeonggi10326Republic of Korea
| |
Collapse
|
32
|
Controlling osteoblast morphology and proliferation via surface micro-topographies of implant biomaterials. Sci Rep 2020; 10:12810. [PMID: 32732908 PMCID: PMC7393177 DOI: 10.1038/s41598-020-69685-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/15/2020] [Indexed: 12/20/2022] Open
Abstract
Current research on surface modifications has yielded advanced implant biomaterials. Various implant surface modifications have been shown to be promising in improving bone target cell response, but more comprehensive studies whether certain implant surface modifications can directly target cell behavioural features such as morphogenesis and proliferation are needed. Here, we studied the response of primary alveolar bone cells on various implant surface modifications in terms of osteoblast morphology and proliferation in vitro. Analyses of surface modifications led to surface-related test parameters including the topographical parameters micro-roughness, texture aspect and surface enlargement as well as the physicochemical parameter surface wettability. We compared osteoblast morphology and proliferation towards the above-mentioned parameters and found that texture aspect and surface enlargement but not surface roughness or wettability exhibited significant impact on osteoblast morphology and proliferation. Detailed analysis revealed osteoblast proliferation as a function of cell morphology, substantiated by an osteoblast size- and morphology-dependent increase in mitotic activity. These findings show that implant surface topography controls cell behavioural morphology and subsequently cell proliferation, thereby opening the road for cell instructive biomaterials.
Collapse
|
33
|
De Martino S, Cavalli S, Netti PA. Photoactive Interfaces for Spatio-Temporal Guidance of Mesenchymal Stem Cell Fate. Adv Healthc Mater 2020; 9:e2000470. [PMID: 32431096 DOI: 10.1002/adhm.202000470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/19/2020] [Indexed: 01/30/2023]
Abstract
Patterned surfaces have proved effective in guiding stem cells commitment to a specific lineage by presenting highly ordered biophysical/biochemical cues at the cellmaterial interface. Their potency in controlling cell fate can be significantly empowered by encoding logic of space and time control of signal presentation. Here, azopolymeric photoactive interfaces are proposed to present/withdraw morphophysical signals to living cells using a green light trigger in a non-invasive spatio-temporal controlled way. To assess the potency of these dynamic platforms in controlling cell decision and fate, topography changes are actuated by light at specific times to reverse the fate of otherwise committed human mesenchymal stem cells (hMSC) toward osteoblastic lineage. It is first proved by dynamic change from ordered parallel patterning to flat or grid surfaces, that it is possible to induce cyclic cellular and nuclear stretches. Furthermore, by culturing hMSCs on a specific pattern known to prime them toward osteoblast lineage, the possibility to reroute or reverse stem cell fate decision by dynamic modulation of morphophysical signal is proved. To conclude, dynamic topographies can control the spatial conformation of hMSCs, modulate lineage reversal even after several weeks of culture and redirect lineage specification in response to light-induced changes in the microenvironment.
Collapse
Affiliation(s)
- Selene De Martino
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Napoli, 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80, Napoli, 80125, Italy
| | - Silvia Cavalli
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Napoli, 80125, Italy
| | - Paolo Antonio Netti
- Center for Advanced Biomaterials for Healthcare, IIT@CRIB, Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53, Napoli, 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB) and Dipartimento di Ingegneria Chimica dei Materiali e della Produzione Industriale, DICMAPI, Università degli Studi di Napoli Federico II, Piazzale Tecchio, 80, Napoli, 80125, Italy
| |
Collapse
|
34
|
A novel fluorescent hydroxyapatite based on iron quantum cluster template to enhance osteogenic differentiation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110775. [DOI: 10.1016/j.msec.2020.110775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/14/2020] [Accepted: 02/24/2020] [Indexed: 01/06/2023]
|
35
|
Effect of substrate topography on the regulation of human corneal stromal cells. Colloids Surf B Biointerfaces 2020; 190:110971. [PMID: 32197207 DOI: 10.1016/j.colsurfb.2020.110971] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 12/28/2022]
Abstract
Optimal functionality of native corneal stroma depends on a well-ordered arrangement of extracellular matrix (ECM). To develop an in vitro corneal model, replication of the corneal in vivo microenvironment is needed. In this study, the impact of topographic cues on keratocyte phenotype is reported. Photolithography and polymer moulding were used to fabricate microgrooves on polydimethylsiloxane (PDMS) 2-2.5 μm deep and 5 μm, 10 μm, or 20 μm in width. Microgrooves constrained the cells body, compressed nuclei and led to cytoskeletal reorganization. It also influenced the concentration of actin filaments, condensation of chromatin and cell proliferation. Cells became more spread and actin filament concentration decreased as the microgroove width increased. Relationships were also demonstrated between microgroove width and cellular processes such as adhesion, migration and gene expression. Immunocytochemistry and gene expression (RT-PCR) analysis showed that microgroove width upregulated keratocyte specific genes. A microgroove with 5 μm width led to a pronounced alignment of cells along the edges of the microchannels and better supported cell polarization and migration compared with other microgroove widths or planar substrates. These findings provide important fundamental knowledge that could serve as a basis for better-controlled tissue growth and cell-engineering applications for corneal stroma regeneration through topographical patterns.
Collapse
|
36
|
Deo KA, Singh KA, Peak CW, Alge DL, Gaharwar AK. Bioprinting 101: Design, Fabrication, and Evaluation of Cell-Laden 3D Bioprinted Scaffolds. Tissue Eng Part A 2020; 26:318-338. [PMID: 32079490 PMCID: PMC7480731 DOI: 10.1089/ten.tea.2019.0298] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 02/11/2020] [Indexed: 12/19/2022] Open
Abstract
3D bioprinting is an additive manufacturing technique that recapitulates the native architecture of tissues. This is accomplished through the precise deposition of cell-containing bioinks. The spatiotemporal control over bioink deposition permits for improved communication between cells and the extracellular matrix, facilitates fabrication of anatomically and physiologically relevant structures. The physiochemical properties of bioinks, before and after crosslinking, are crucial for bioprinting complex tissue structures. Specifically, the rheological properties of bioinks determines printability, structural fidelity, and cell viability during the printing process, whereas postcrosslinking of bioinks are critical for their mechanical integrity, physiological stability, cell survival, and cell functions. In this review, we critically evaluate bioink design criteria, specifically for extrusion-based 3D bioprinting techniques, to fabricate complex constructs. The effects of various processing parameters on the biophysical and biochemical characteristics of bioinks are discussed. Furthermore, emerging trends and future directions in the area of bioinks and bioprinting are also highlighted. Graphical abstract [Figure: see text] Impact statement Extrusion-based 3D bioprinting is an emerging additive manufacturing approach for fabricating cell-laden tissue engineered constructs. This review critically evaluates bioink design criteria to fabricate complex tissue constructs. Specifically, pre- and post-printing evaluation approaches are described, as well as new research directions in the field of bioink development and functional bioprinting are highlighted.
Collapse
Affiliation(s)
- Kaivalya A. Deo
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Kanwar Abhay Singh
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Charles W. Peak
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Daniel L. Alge
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Akhilesh K. Gaharwar
- Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Center for Remote Health Technologies and Systems, Texas A&M University, College Station, Texas
| |
Collapse
|
37
|
Tonellato M, Piccione M, Gasparotto M, Bellet P, Tibaudo L, Vicentini N, Bergantino E, Menna E, Vitiello L, Di Liddo R, Filippini F. Commitment of Autologous Human Multipotent Stem Cells on Biomimetic Poly-L-lactic Acid-Based Scaffolds Is Strongly Influenced by Structure and Concentration of Carbon Nanomaterial. NANOMATERIALS 2020; 10:nano10030415. [PMID: 32120984 PMCID: PMC7152835 DOI: 10.3390/nano10030415] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Nanocomposite scaffolds combining carbon nanomaterials (CNMs) with a biocompatible matrix are able to favor the neuronal differentiation and growth of a number of cell types, because they mimic neural-tissue nanotopography and/or conductivity. We performed comparative analysis of biomimetic scaffolds with poly-L-lactic acid (PLLA) matrix and three different p-methoxyphenyl functionalized carbon nanofillers, namely, carbon nanotubes (CNTs), carbon nanohorns (CNHs), and reduced graphene oxide (RGO), dispersed at varying concentrations. qRT-PCR analysis of the modulation of neuronal markers in human circulating multipotent cells cultured on nanocomposite scaffolds showed high variability in their expression patterns depending on the scaffolds’ inhomogeneities. Local stimuli variation could result in a multi- to oligopotency shift and commitment towards multiple cell lineages, which was assessed by the qRT-PCR profiling of markers for neural, adipogenic, and myogenic cell lineages. Less conductive scaffolds, i.e., bare poly-L-lactic acid (PLLA)-, CNH-, and RGO-based nanocomposites, appeared to boost the expression of myogenic-lineage marker genes. Moreover, scaffolds are much more effective on early commitment than in subsequent differentiation. This work suggests that biomimetic PLLA carbon-nanomaterial (PLLA-CNM) scaffolds combined with multipotent autologous cells can represent a powerful tool in the regenerative medicine of multiple tissue types, opening the route to next analyses with specific and standardized scaffold features.
Collapse
Affiliation(s)
- Marika Tonellato
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
| | - Monica Piccione
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy;
| | - Matteo Gasparotto
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
- Correspondence: (M.G.); (R.D.L.); (F.F.)
| | - Pietro Bellet
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
| | - Lucia Tibaudo
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy
| | - Nicola Vicentini
- Department of Chemical Sciences, University of Padua, 35131 Padua, Italy; (N.V.); (E.M.)
| | - Elisabetta Bergantino
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
| | - Enzo Menna
- Department of Chemical Sciences, University of Padua, 35131 Padua, Italy; (N.V.); (E.M.)
| | - Libero Vitiello
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
- Interuniversity Institute of Myology (IIM), Italy
- Inter-departmental Research Center for Myology (CIR-Myo), University of Padua, 35131 Padua, Italy
| | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, 35131 Padua, Italy;
- Correspondence: (M.G.); (R.D.L.); (F.F.)
| | - Francesco Filippini
- Department of Biology, University of Padua, 35131 Padua, Italy; (M.T.); (P.B.); (L.T.); (E.B.); (L.V.)
- Correspondence: (M.G.); (R.D.L.); (F.F.)
| |
Collapse
|
38
|
Tonazzini I, Van Woerden GM, Masciullo C, Mientjes EJ, Elgersma Y, Cecchini M. The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons. Mol Autism 2019; 10:41. [PMID: 31798818 PMCID: PMC6884852 DOI: 10.1186/s13229-019-0293-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 10/17/2019] [Indexed: 11/10/2022] Open
Abstract
Background Although neuronal extracellular sensing is emerging as crucial for brain wiring and therefore plasticity, little is known about these processes in neurodevelopmental disorders. Ubiquitin protein ligase E3A (UBE3A) plays a key role in neurodevelopment. Lack of UBE3A leads to Angelman syndrome (AS), while its increase is among the most prevalent genetic causes of autism (e.g., Dup15q syndrome). By using microstructured substrates that can induce specific directional stimuli in cells, we previously found deficient topographical contact guidance in AS neurons, which was linked to a dysregulated activation of the focal adhesion pathway. Methods Here, we study axon and dendrite contact guidance and neuronal morphological features of wild-type, AS, and UBE3A-overexpressing neurons (Dup15q autism model) on micrograting substrates, with the aim to clarify the role of UBE3A in neuronal guidance. Results We found that loss of axonal contact guidance is specific for AS neurons while UBE3A overexpression does not affect neuronal directional polarization along microgratings. Deficits at the level of axonal branching, growth cone orientation and actin fiber content, focal adhesion (FA) effectors, and actin fiber-binding proteins were observed in AS neurons. We tested different rescue strategies for restoring correct topographical guidance in AS neurons on microgratings, by either UBE3A protein re-expression or by pharmacological treatments acting on cytoskeleton contractility. Nocodazole, a drug that depolymerizes microtubules and increases cell contractility, rescued AS axonal alignment to the gratings by partially restoring focal adhesion pathway activation. Surprisingly, UBE3A re-expression only resulted in partial rescue of the phenotype. Conclusions We identified a specific in vitro deficit in axonal topographical guidance due selectively to the loss of UBE3A, and we further demonstrate that this defective guidance can be rescued to a certain extent by pharmacological or genetic treatment strategies. Overall, cytoskeleton dynamics emerge as important partners in UBE3A-mediated contact guidance responses. These results support the view that UBE3A-related deficits in early neuronal morphogenesis may lead to defective neuronal connectivity and plasticity.
Collapse
Affiliation(s)
- Ilaria Tonazzini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Geeske M. Van Woerden
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Cecilia Masciullo
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Edwin J. Mientjes
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Ype Elgersma
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Wytemaweg 80, 3000 CA Rotterdam, the Netherlands
| | - Marco Cecchini
- Istituto Nanoscienze- Consiglio Nazionale delle Ricerche (CNR) & Scuola Normale Superiore, NEST, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
39
|
Kafi MA, Aktar K, Todo M, Dahiya R. Engineered chitosan for improved 3D tissue growth through Paxillin-FAK-ERK activation. Regen Biomater 2019; 7:141-151. [PMID: 32296533 PMCID: PMC7147363 DOI: 10.1093/rb/rbz034] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/25/2019] [Accepted: 09/07/2019] [Indexed: 01/15/2023] Open
Abstract
Scaffold engineering has attracted significant attention for three-dimensional (3D) growth, proliferation and differentiation of stem cells in vitro. Currently available scaffolds suffer from issues such as poor ability for cell adhesion, migration and proliferation. This paper addresses these issues with 3D porous chitosan scaffold, fabricated and functionalized with cysteine-terminated Arg-Gly-Asp (Cys-RGD) tri-peptide on their walls. The study reveals that the compressive moduli of the scaffold is independent to RGD functionalization but shows dependence on the applied freezing temperature (TM) during the fabrication process. The low freezing TM (-80°C) produces scaffold with high compressive moduli (14.64 ± 1.38 kPa) and high TM (-30°C) produces scaffold with low compressive moduli (5.6 ± 0.38 kPa). The Cys-RGD functionalized scaffolds lead to significant improvements in adhesion (150%) and proliferation (300%) of human mesenchymal stem cell (hMSC). The RGD-integrin coupling activates the focal adhesion signaling (Paxillin-FAK-ERK) pathways, as confirmed by the expression of p-Paxillin, p-FAK and p-ERK protein, and results in the observed improvement of cell adhesion and proliferation. The proliferation of hMSC on RGD functionalized surface was evaluated with scanning electron microscopy imaging and distribution though pore was confirmed by histochemistry of transversely sectioned scaffold. The hMSC adhesion and proliferation in scaffold with high compressive moduli showed a constant enhancement (with a slope value 9.97) of compressive strength throughout the experimental period of 28 days. The improved cell adhesion and proliferation with RGD functionalized chitosan scaffold, together with their mechanical stability, will enable new interesting avenues for 3D cell growth and differentiation in numerous applications including regenerative tissue implants.
Collapse
Affiliation(s)
- Md Abdul Kafi
- BEST Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.,Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh.,Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan
| | - Khudishta Aktar
- BEST Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| | - Mitsugu Todo
- Research Institute for Applied Mechanics, Kyushu University, Kasuga, Fukuoka, Japan
| | - Ravinder Dahiya
- BEST Group, School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK
| |
Collapse
|
40
|
Necula MG, Mazare A, Ion RN, Ozkan S, Park J, Schmuki P, Cimpean A. Lateral Spacing of TiO 2 Nanotubes Modulates Osteoblast Behavior. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2956. [PMID: 31547276 PMCID: PMC6766216 DOI: 10.3390/ma12182956] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/06/2023]
Abstract
Titanium dioxide (TiO2) nanotube coated substrates have revolutionized the concept of implant in a number of ways, being endowed with superior osseointegration properties and local drug delivery capacity. While accumulating reports describe the influence of nanotube diameter on cell behavior, little is known about the effects of nanotube lateral spacing on cells involved in bone regeneration. In this context, in the present study the MC3T3-E1 murine pre-osteoblast cells behavior has been investigated by using TiO2 nanotubes of ~78 nm diameter and lateral spacing of 18 nm and 80 nm, respectively. Both nanostructured surfaces supported cell viability and proliferation in approximately equal extent. However, obvious differences in the cell spreading areas, morphologies, the organization of the actin cytoskeleton and the pattern of the focal adhesions were noticed. Furthermore, investigation of the pre-osteoblast differentiation potential indicated a higher capacity of larger spacing nanostructure to enhance the expression of the alkaline phosphatase, osteopontin and osteocalcin osteoblast specific markers inducing osteogenic differentiation. These findings provide the proof that lateral spacing of the TiO2 nanotube coated titanium (Ti) surfaces has to be considered in designing bone implants with improved biological performance.
Collapse
Affiliation(s)
- Madalina Georgiana Necula
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Anca Mazare
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Raluca Nicoleta Ion
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| | - Selda Ozkan
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Jung Park
- Division of Molecular Pediatrics, Department of Pediatrics, University Hospital Erlangen, 91054 Erlangen, Germany.
| | - Patrik Schmuki
- Department of Materials Science WW4-LKO, Friedrich-Alexander University, 91058 Erlangen, Germany.
| | - Anisoara Cimpean
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania.
| |
Collapse
|
41
|
Natale CF, Lafaurie-Janvore J, Ventre M, Babataheri A, Barakat AI. Focal adhesion clustering drives endothelial cell morphology on patterned surfaces. J R Soc Interface 2019; 16:20190263. [PMID: 31480922 DOI: 10.1098/rsif.2019.0263] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In many cell types, shape and function are intertwined. In vivo, vascular endothelial cells (ECs) are typically elongated and aligned in the direction of blood flow; however, near branches and bifurcations where atherosclerosis develops, ECs are often cuboidal and have no preferred orientation. Thus, understanding the factors that regulate EC shape and alignment is important. In vitro, EC morphology and orientation are exquisitely sensitive to the composition and topography of the substrate on which the cells are cultured; however, the underlying mechanisms remain poorly understood. Different strategies of substrate patterning for regulating EC shape and orientation have been reported including adhesive motifs on planar surfaces and micro- or nano-scale gratings that provide substrate topography. Here, we explore how ECs perceive planar bio-adhesive versus microgrooved topographic surfaces having identical feature dimensions. We show that while the two types of patterned surfaces are equally effective in guiding and directing EC orientation, the cells are considerably more elongated on the planar patterned surfaces than on the microgrooved surfaces. We also demonstrate that the key factor that regulates cellular morphology is focal adhesion clustering which subsequently drives cytoskeletal organization. The present results promise to inform design strategies of novel surfaces for the improved performance of implantable cardiovascular devices.
Collapse
Affiliation(s)
- C F Natale
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France.,Interdisciplinary Research Centre on Biomedical Materials (CRIB), University of Naples Federico II, Naples 80125, Italy
| | - J Lafaurie-Janvore
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France
| | - M Ventre
- Interdisciplinary Research Centre on Biomedical Materials (CRIB), University of Naples Federico II, Naples 80125, Italy.,Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Italy
| | - A Babataheri
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France
| | - A I Barakat
- Hydrodynamics Laboratory, Ecole Polytechnique, CNRS UMR7646, Palaiseau, France.,School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
42
|
Esmaeilzadeh P, Groth T. Switchable and Obedient Interfacial Properties That Grant New Biomedical Applications. ACS APPLIED MATERIALS & INTERFACES 2019; 11:25637-25653. [PMID: 31283160 DOI: 10.1021/acsami.9b06253] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Toward imitating the natural smartness and responsivity of biological systems, surface interfacial properties are considered to be responsive and tunable if they show a reactive behavior to an environmental stimulus. This is still quite different from many contemporary biomaterials that lack responsiveness to interact with blood and different body tissues in a physiological manner. Meanwhile it is possible to even go one step further from responsiveness to dual-mode switchability and explore "switchable" or "reversible" responses of synthetic materials. We understand "switchable biomaterials" as materials undergoing a stepwise, structural transformation coupled with considerable changes of interfacial and other surface properties as a response to a stimulus. Therewith, a survey on stimuli-induced dynamic changes of charge, wettability, stiffness, topography, porosity, and thickness/swelling is presented here, as potentially powerful new technologies especially for future biomaterial development. Since living cells constantly sense their environment through a variety of surface receptors and other mechanisms, these obedient interfacial properties were particularly discussed regarding their advantageous multifunctionality for protein adsorption and cell adhesion signaling, which may alter in time and with environmental conditions.
Collapse
Affiliation(s)
- Pegah Esmaeilzadeh
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
| | - Thomas Groth
- Biomedical Materials Group, Institute of Pharmacy , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Material Science , Martin Luther University Halle-Wittenberg , Heinrich Damerow Strasse 4 , 06120 Halle (Saale), Germany
- Interdisciplinary Center of Applied Sciences , Martin Luther University Halle-Wittenberg , 06099 Halle (Saale), Germany
| |
Collapse
|
43
|
Sousa MP, Arab-Tehrany E, Cleymand F, Mano JF. Surface Micro- and Nanoengineering: Applications of Layer-by-Layer Technology as a Versatile Tool to Control Cellular Behavior. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901228. [PMID: 31172666 DOI: 10.1002/smll.201901228] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Extracellular matrix (ECM) cues have been widely investigated for their impact on cellular behavior. Among mechanics, physics, chemistry, and topography, different ECM properties have been discovered as important parameters to modulate cell functions, activating mechanotransduction pathways that can influence gene expression, proliferation or even differentiation. Particularly, ECM topography has been gaining more and more interest based on the evidence that these physical cues can tailor cell behavior. Here, an overview of bottom-up and top-down approaches reported to produce materials capable of mimicking the ECM topography and being applied for biomedical purposes is provided. Moreover, the increasing motivation of using the layer-by-layer (LbL) technique to reproduce these topographical cues is highlighted. LbL assembly is a versatile methodology used to coat materials with a nanoscale fidelity to the geometry of the template or to produce multilayer thin films composed of polymers, proteins, colloids, or even cells. Different geometries, sizes, or shapes on surface topography can imply different behaviors: effects on the cell adhesion, proliferation, morphology, alignment, migration, gene expression, and even differentiation are considered. Finally, the importance of LbL assembly to produce defined topographical cues on materials is discussed, highlighting the potential of micro- and nanoengineered materials to modulate cell function and fate.
Collapse
Affiliation(s)
- Maria P Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Elmira Arab-Tehrany
- Laboratoire d'Ingénierie des Biomolécules, Nancy-Université, 2, Avenue de la Forêt de Haye, F 54504, Vandœuvre-Lès-Nancy Cedex, France
| | - Franck Cleymand
- Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt CS50840, 54011, Nancy Cedex, France
| | - João F Mano
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
44
|
Fallahi A, Mandla S, Kerr-Phillip T, Seo J, Rodrigues RO, Jodat YA, Samanipour R, Hussain MA, Lee CK, Bae H, Khademhosseini A, Travas-Sejdic J, Shin SR. Flexible and Stretchable PEDOT-Embedded Hybrid Substrates for Bioengineering and Sensory Applications. CHEMNANOMAT : CHEMISTRY OF NANOMATERIALS FOR ENERGY, BIOLOGY AND MORE 2019; 5:729-737. [PMID: 33859923 PMCID: PMC8045745 DOI: 10.1002/cnma.201900146] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 05/27/2023]
Abstract
Herein, we introduce a flexible, biocompatible, robust and conductive electrospun fiber mat as a substrate for flexible and stretchable electronic devices for various biomedical applications. To impart the electrospun fiber mats with electrical conductivity, poly(3,4-ethylenedioxythiophene) (PEDOT), a conductive polymer, was interpenetrated into nitrile butadiene rubber (NBR) and poly(ethylene glycol) dimethacrylate (PEGDM) crosslinked electrospun fiber mats. The mats were fabricated with tunable fiber orientation, random and aligned, and displayed elastomeric mechanical properties and high conductivity. In addition, bending the mats caused a reversible change in their resistance. The cytotoxicity studies confirmed that the elastomeric and conductive electrospun fiber mats support cardiac cell growth, and thus are adaptable to a wide range of applications, including tissue engineering, implantable sensors and wearable bioelectronics.
Collapse
Affiliation(s)
- Afsoon Fallahi
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Serena Mandla
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- S. Mandla, Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Thomas Kerr-Phillip
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, Polymer Electronics Research Centre (PERC), School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Jungmok Seo
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. J. Seo, Centre for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology, 14 Hwarang-ro, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Raquel O Rodrigues
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- R. O. Rodrigues, Laboratory of Separation and Reaction Engineering, Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Yasamin A Jodat
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Y. A. Jodat, Department of Mechanical Engineering, Stevens Institute of Technology, New Jersey, USA
| | - Roya Samanipour
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Dr. R. Samanipour, School of Engineering, University of British Columbia, Okanagan, BC, Canada
| | - Mohammad Asif Hussain
- Prof. M. A. Hussain, Department of Electrical and Computer Engineering, Faculty of Engineering, King Abdulaziz University, P.O. Box 80204, Jeddah 21589, Saudi Arabia
| | - Chang Kee Lee
- Dr. C. K. Lee, Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon, Republic of Korea
| | - Hojae Bae
- Prof. H. Bae, Prof. A. Khademhosseini, KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
| | - Ali Khademhosseini
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Prof. H. Bae, Prof. A. Khademhosseini, KU Convergence Science and Technology Institute, Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, 05029, Republic of Korea
- Prof. A. Khademhosseini, Department of Bioengineering, Department of Chemical and Biomolecular Engineering, Henry Samueli School of Engineering and Applied Sciences, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, Department of Radiology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, California NanoSystems Institute (CNSI), University of California-Los Angeles, Los Angeles, CA 90095, USA
- Prof. A. Khademhosseini, Centre for Minimally Invasive Therapeutics (C-MIT), California NanoSystems Institute, University of California - Los Angeles, Los Angeles, CA 90095, USA
| | - Jadranka Travas-Sejdic
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, Polymer Electronics Research Centre (PERC), School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland, New Zealand
- Dr. T. Kerr-Phillip, Prof. J. Travas-Sejdic, The MacDiarmid Institute for Advanced Materials and Nanotechnology New Zealand
| | - Su Ryon Shin
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02139, USA, Office: (617) 768-8320,
- Dr. A. Fallahi, S. Mandla, Prof. J. Seo, R. O. Rodrigues, Y. A. Jodat, Dr. R. Samanipour, Prof. A. Khademhosseini, Dr. S. R. Shin, Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
45
|
Park IS, Choi YJ, Kim HS, Park SH, Choi BH, Kim JH, Song BR, Min BH. Development of three-dimensional articular cartilage construct using silica nano-patterned substrate. PLoS One 2019; 14:e0208291. [PMID: 31048887 PMCID: PMC6497223 DOI: 10.1371/journal.pone.0208291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/26/2019] [Indexed: 01/23/2023] Open
Abstract
Current strategies for cartilage cell therapy are mostly based on the use of autologous chondrocytes. However, these cells have limitations of a small number of cells available and of low chondrogenic ability, respectively. Many studies now suggest that fetal stem cells are more plastic than adult stem cells and can therefore more efficiently differentiate into target tissues. This study introduces, efficiency chondrogenic differentiation of fetal cartilage-derived progenitor cells (FCPCs) to adult cells can be achieved using a three-dimensional (3D) spheroid culture method based on silica nanopatterning techniques. In evaluating the issue of silica nano-particle size (Diameter of 300, 750, 1200 nm), each particle size was coated into the well of a 6-well tissue culture plate. FCPCs (2 x 105 cells/well in 6-well plate) were seeded in each well with chondrogenic medium. In this study, the 300 nm substrate that formed multi-spheroids and the 1200 nm substrate that showed spreading were due to the cell-cell adhesion force(via N-cadherin) and cell-substrate(via Integrin) force, the 750 nm substrate that formed the mass-aggregation can be interpreted as the result of cell monolayer formation through cell-substrate force followed by cell-cell contact force contraction. We conclude that our 3D spheroid culture system contributes to an optimization for efficient differentiation of FCPC, offers insight into the mechanism of efficient differentiation of engineered 3D culture system, and has promise for wide applications in regeneration medicine and drug discovery fields.
Collapse
Affiliation(s)
- In-Su Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Ye Ji Choi
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
| | - Hyo-Sop Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan, Korea
| | - Byung Hyune Choi
- Department of Physiology, Inha University College of Medicine, Incheon, Korea
| | - Jae-Ho Kim
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Bo Ram Song
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Korea
- Department of Molecular Science & Technology, Ajou University, Suwon, Korea
- Department of Orthopedic Surgery, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
46
|
Surmenev RA, Shkarina S, Syromotina DS, Melnik EV, Shkarin R, Selezneva II, Ermakov AM, Ivlev SI, Cecilia A, Weinhardt V, Baumbach T, Rijavec T, Lapanje A, Chaikina MV, Surmeneva MA. Characterization of biomimetic silicate- and strontium-containing hydroxyapatite microparticles embedded in biodegradable electrospun polycaprolactone scaffolds for bone regeneration. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
47
|
Tsui TY, Logan M, Moussa HI, Aucoin MG. What's Happening on the Other Side? Revealing Nano-Meter Scale Features of Mammalian Cells on Engineered Textured Tantalum Surfaces. MATERIALS (BASEL, SWITZERLAND) 2018; 12:E114. [PMID: 30602684 PMCID: PMC6337376 DOI: 10.3390/ma12010114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 12/21/2018] [Accepted: 12/21/2018] [Indexed: 12/14/2022]
Abstract
Advanced engineered surfaces can be used to direct cell behavior. These behaviors are typically characterized using either optical, atomic force, confocal, or electron microscopy; however, most microscopic techniques are generally restricted to observing what's happening on the "top" side or even the interior of the cell. Our group has focused on engineered surfaces typically reserved for microelectronics as potential surfaces to control cell behavior. These devices allow the exploration of novel substrates including titanium, tungsten, and tantalum intermixed with silicon oxide. Furthermore, these devices allow the exploration of the intricate patterning of surface materials and surface geometries i.e., trenches. Here we present two important advancements in our research: (1) the ability to split a fixed cell through the nucleus using an inexpensive three-point bend micro-cleaving technique and image 3D nanometer scale cellular components using high-resolution scanning electron microscopy; and (2) the observation of nanometer projections from the underbelly of a cell as it sits on top of patterned trenches on our devices. This application of a 3-point cleaving technique to visualize the underbelly of the cell is allowing a new understanding of how cells descend into surface cavities and is providing a new insight on cell migration mechanisms.
Collapse
Affiliation(s)
- Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Hassan I Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
48
|
Cimmino C, Rossano L, Netti PA, Ventre M. Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Front Bioeng Biotechnol 2018; 6:190. [PMID: 30564573 PMCID: PMC6288377 DOI: 10.3389/fbioe.2018.00190] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Biophysical and biochemical signals of material surfaces potently regulate cell functions and fate. In particular, micro- and nano-scale patterns of adhesion signals can finely elicit and affect a plethora of signaling pathways ultimately affecting gene expression, in a process known as mechanotransduction. Our fundamental understanding of cell-material signals interaction and reaction is based on static culturing platforms, i.e., substrates exhibiting signals whose configuration is time-invariant. However, cells in-vivo are exposed to arrays of biophysical and biochemical signals that change in time and space and the way cells integrate these might eventually dictate their behavior. Advancements in fabrication technologies and materials engineering, have recently enabled the development of culturing platforms able to display patterns of biochemical and biophysical signals whose features change in time and space in response to external stimuli and according to selected programmes. These dynamic devices proved to be particularly helpful in shedding light on how cells adapt to a dynamic microenvironment or integrate spatio-temporal variations of signals. In this work, we present the most relevant findings in the context of dynamic platforms for controlling cell functions and fate in vitro. We place emphasis on the technological aspects concerning the fabrication of platforms displaying micro- and nano-scale dynamic signals and on the physical-chemical stimuli necessary to actuate the spatio-temporal changes of the signal patterns. In particular, we illustrate strategies to encode material surfaces with dynamic ligands and patterns thereof, topographic relieves and mechanical properties. Additionally, we present the most effective, yet cytocompatible methods to actuate the spatio-temporal changes of the signals. We focus on cell reaction and response to dynamic changes of signal presentation. Finally, potential applications of this new generation of culturing systems for in vitro and in vivo applications, including regenerative medicine and cell conditioning are presented.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Lucia Rossano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
49
|
Moussa HI, Logan M, Wong K, Rao Z, Aucoin MG, Tsui TY. Nanoscale-Textured Tantalum Surfaces for Mammalian Cell Alignment. MICROMACHINES 2018; 9:E464. [PMID: 30424397 PMCID: PMC6187670 DOI: 10.3390/mi9090464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/07/2018] [Accepted: 09/10/2018] [Indexed: 02/06/2023]
Abstract
Tantalum is one of the most important biomaterials used for surgical implant devices. However, little knowledge exists about how nanoscale-textured tantalum surfaces affect cell morphology. Mammalian (Vero) cell morphology on tantalum-coated comb structures was studied using high-resolution scanning electron microscopy and fluorescence microscopy. These structures contained parallel lines and trenches with equal widths in the range of 0.18 to 100 μm. Results showed that as much as 77% of adherent cell nuclei oriented within 10° of the line axes when deposited on comb structures with widths smaller than 10 μm. However, less than 20% of cells exhibited the same alignment performance on blanket tantalum films or structures with line widths larger than 50 μm. Two types of line-width-dependent cell morphology were observed. When line widths were smaller than 0.5 μm, nanometer-scale pseudopodia bridged across trench gaps without contacting the bottom surfaces. In contrast, pseudopodia structures covered the entire trench sidewalls and the trench bottom surfaces of comb structures with line-widths larger than 0.5 μm. Furthermore, results showed that when a single cell simultaneously adhered to multiple surface structures, the portion of the cell contacting each surface reflected the type of morphology observed for cells individually contacting the surfaces.
Collapse
Affiliation(s)
- Hassan I Moussa
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Megan Logan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Kingsley Wong
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Zheng Rao
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| | - Ting Y Tsui
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
- Waterloo Institute of Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
50
|
Zhou R, Han Y, Cao J, Li M, Jin G, Du Y, Luo H, Yang Y, Zhang L, Su B. Enhanced Osseointegration of Hierarchically Structured Ti Implant with Electrically Bioactive SnO 2-TiO 2 Bilayered Surface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30191-30200. [PMID: 30130089 DOI: 10.1021/acsami.8b10928] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The poor osseointegration of Ti implant significantly compromise its application in load-bearing bone repair and replacement. Electrically bioactive coating inspirited from heterojunction on Ti implant can benefit osseointegration but cannot avoid the stress shielding effect between bone and implant. To resolve this conflict, hierarchically structured Ti implant with electrically bioactive SnO2-TiO2 bilayered surface has been developed to enhance osseointegration. Benefiting from the electric cue offered by the built-in electrical field of SnO2-TiO2 heterojunction and the topographic cue provided by the hierarchical surface structure to bone regeneration, the osteoblastic function of basic multicellular units around the implant is significantly improved. Because the individual TiO2 or SnO2 coating with uniform surface exhibits no electrical bioactivity, the effects of electric and topographic cues to osseointegration have been decoupled via the analysis of in vivo performance for the placed Ti implant with different surfaces. The developed Ti implant shows significantly improved osseointegration with excellent bone-implant contact, improved mineralization of extracellular matrix, and increased push-out force. These results suggest that the synergistic strategy of combing electrical bioactivity with hierarchical surface structure provides a new platform for developing advanced endosseous implants.
Collapse
Affiliation(s)
- Rui Zhou
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| | | | - Jianyun Cao
- School of Materials , University of Manchester , Manchester M13 9PL , U.K
| | - Ming Li
- Honghui Hospital , Xi'an Jiaotong University College of Medicine , Xi'an 710054 , P. R. China
| | | | - Yuzhou Du
- School of Materials Science and Engineering , Xi'an University of Technology , Xi'an 710048 , P. R. China
| | | | | | | | - Bo Su
- Bristol Dental School , University of Bristol , Bristol BS1 2LY , U.K
| |
Collapse
|