1
|
Jandova V, Altman J, Sehadova H, Macek M, Fibich P, Ruka AT, Dolezal J. Climate warming promotes growth in Himalayan alpine cushion plants but threatens survival through increased extreme snowfall. THE NEW PHYTOLOGIST 2025. [PMID: 40356206 DOI: 10.1111/nph.70206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025]
Abstract
Climate warming stimulates growth and reproduction in cold-adapted plants but also leads to extreme weather events that may hinder their performance. We examined these predictions in the cold-arid Himalayan subnival zone at 5900 m, where unprecedented warming and extreme snowfalls occurred over the past three decades. We collected 205 individuals of Ladakiella klimesii, analyzing climate influences on their growth and recruitment through annual growth rings. Radial growth was highly sensitive to summer temperatures, with warmer conditions significantly enhancing growth. However, increased winter precipitation negatively impacted growth and recruitment by shortening the growing season. Warmer winters and springs, combined with autumn snow cover, favored recruitment, while extreme late winter and summer snowfall disrupted growth and recruitment through intensified soil disturbances. We also found a trade-off between growth rate and longevity: Plants established during warmer periods grow rapidly but have shorter lifespans, whereas those emerging in colder conditions grow more slowly yet persist longer, with implications for long-term population stability. These findings highlight the complex relationship between growth, longevity, and survival in a shifting climate. Although warming promotes growth, it may also decrease longevity and population persistence. The rising frequency of extreme snowfall presents new survival challenges for the world's highest-occurring plants.
Collapse
Affiliation(s)
- Veronika Jandova
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| | - Jan Altman
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
| | - Hana Sehadova
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
- Laboratory of Microscopy and Histology, Biology Centre, Institute of Entomology of the Czech Academy of Sciences, Branišovská 1160, CZ 370 05, České Budějovice, Czech Republic
| | - Martin Macek
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| | - Adam Taylor Ruka
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| | - Jiri Dolezal
- Institute of Botany of the Czech Academy of Science, Zámek 1, CZ 252 43, Průhonice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 1760, CZ 370 05, České Budějovice, Czech Republic
| |
Collapse
|
2
|
Jin H, Yin X, Qi Y, de Vos JM, Sun H, Körner C, Yang Y. How phenology interacts with frost tolerance in Southeastern Himalayan Rhododendron species. TREE PHYSIOLOGY 2025; 45:tpaf036. [PMID: 40143420 DOI: 10.1093/treephys/tpaf036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/24/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025]
Abstract
The frost resistance of new foliage and flowers and their relationship with the phenology of leaf-out and flowering are essential for explaining plant species distribution in seasonally cold climates. In this study, we performed a congeneric, elevational comparison of phenology with frost resistance in evergreen Rhododendron species in the Southeastern Himalayas. A comparison of the microclimate with long-term meteorological records of low temperature extremes permitted the calculation of a realistic, long-term margin of safety for 12 Rhododendron species. Surprisingly, frost resistance and phenological events were matching for leaf-out time (not flowering) in higher elevation species only. Flower-leaf sequence (FLS) and frost resistance were linked for species at higher elevation and the earliest flowering species at lower elevation only. Despite a selection of FLS by elevation, flowers (including petals, filaments and ovaries) were still prone to frost damage during the early growing season at both lower and higher elevations, while new leaves were generally safe on long-term scales, regardless of phenology and elevation. In contrast to lower montane elevation, where severe frost is rare in spring, treeline elevation species maintain safety margins over centennial time-scales by adjusting leaf-out phenology. Our data show an evolutionary priority of leaf survival over flower survival. Both, physiological acclimation and phylogenetic components contribute to these adjustments. Rare extreme frost events restrict the upper range limit of the examined Rhododendron species by affecting new foliage. It is essential to know the actual temperature extremes at organ level rather than relying on weather station records.
Collapse
Affiliation(s)
- Hongyan Jin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, Yunnan 650201, PR China
- University of Chinese Academy of Sciences, Yanqihu East Road 1, Huairou District, Beijing 101408, PR China
| | - Xiaoqing Yin
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, Yunnan 650201, PR China
- University of Chinese Academy of Sciences, Yanqihu East Road 1, Huairou District, Beijing 101408, PR China
- School of Life Sciences, Yunnan University, Huannan Road, East of University Town, Chenggong New Area, Kunming 650500, PR China
| | - Yue Qi
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, Yunnan 650201, PR China
- University of Chinese Academy of Sciences, Yanqihu East Road 1, Huairou District, Beijing 101408, PR China
| | - Jurriaan M de Vos
- Department of Environmental Sciences (Botany), University of Basel, Schönbeinstrasse 6, Basel 4056, Switzerland
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, Yunnan 650201, PR China
| | - Christian Körner
- Department of Environmental Sciences (Botany), University of Basel, Schönbeinstrasse 6, Basel 4056, Switzerland
| | - Yang Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Lanhei Road 132, Kunming, Yunnan 650201, PR China
| |
Collapse
|
3
|
Różańska MA, Harenda KM, Józefczyk D, Wojciechowski T, Chojnicki BH. Digital Repeat Photography Application for Flowering Stage Classification of Selected Woody Plants. SENSORS (BASEL, SWITZERLAND) 2025; 25:2106. [PMID: 40218618 PMCID: PMC11990982 DOI: 10.3390/s25072106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/14/2025]
Abstract
Digital repeat photography is currently applied mainly in geophysical studies of ecosystems. However, its role as a tool that can be utilized in conventional phenology, tracking a plant's seasonal developmental cycle, is growing. This study's main goal was to develop an easy-to-reproduce, single-camera-based novel approach to determine the flowering phases of 12 woody plants of various deciduous species. Field observations served as binary class calibration datasets (flowering and non-flowering stages). All the image RGB parameters, designated for each plant separately, were used as plant features for the models' parametrization. The training data were subjected to various transformations to achieve the best classifications using the weighted k-nearest neighbors algorithm. The developed models enabled the flowering classifications at the 0, 1, 2, 3, and 5 onset day shift (absolute values) for 2, 3, 3, 2, and 2 plants, respectively. For 9 plants, the presented method enabled the flowering duration estimation, which is a valuable yet rarely used parameter in conventional phenological studies. We found the presented method suitable for various plants, despite their petal color and flower size, until there is a considerable change in the crown color during the flowering stage.
Collapse
Affiliation(s)
- Monika A. Różańska
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, ul. Piątkowska 94, 60-649 Poznań, Poland; (K.M.H.); (D.J.); (B.H.C.)
| | - Kamila M. Harenda
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, ul. Piątkowska 94, 60-649 Poznań, Poland; (K.M.H.); (D.J.); (B.H.C.)
| | - Damian Józefczyk
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, ul. Piątkowska 94, 60-649 Poznań, Poland; (K.M.H.); (D.J.); (B.H.C.)
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, ul. Piątkowska 94, 60-649 Poznań, Poland;
| | - Bogdan H. Chojnicki
- Laboratory of Bioclimatology, Department of Ecology and Environmental Protection, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, ul. Piątkowska 94, 60-649 Poznań, Poland; (K.M.H.); (D.J.); (B.H.C.)
| |
Collapse
|
4
|
Marchand LJ, Gričar J, Zuccarini P, Dox I, Mariën B, Verlinden M, Heinecke T, Prislan P, Marie G, Lange H, Van den Bulcke J, Penuelas J, Fonti P, Campioli M. No winter halt in below-ground wood growth of four angiosperm deciduous tree species. Nat Ecol Evol 2025; 9:386-394. [PMID: 39789168 DOI: 10.1038/s41559-024-02602-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe. Coarse-roots wood growth continued throughout the winter whereas stem wood growth halted in autumn, regardless of the tree species, experimental setting or location. Our results do not indicate a clear temperature constraint on below-ground wood growth, even during prolonged periods with soil temperatures lower than 3 °C. The continuous differentiation of xylem root cells in autumn and winter suggests that the non-growing season does not exist sensu stricto for all woody organs of angiosperm deciduous tree species of the temperate zone. Our findings hold implications for understanding tree functioning, in particular the seasonal wood formation, the environmental controls of tree growth and the carbon reserves dynamics.
Collapse
Affiliation(s)
- Lorène J Marchand
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
| | - Jožica Gričar
- Department of Forest Physiology and Genetics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Paolo Zuccarini
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Inge Dox
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Bertold Mariën
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Integrated Science Lab (IceLab), Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Melanie Verlinden
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Thilo Heinecke
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Peter Prislan
- Department for Forest Technique and Economics, Slovenian Forestry Institute, Ljubljana, Slovenia
| | - Guillaume Marie
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Holger Lange
- Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Jan Van den Bulcke
- UGent-Woodlab, Laboratory of Wood Technology, Department of Environment, Faculty of Bioscience Engineering, University of Ghent, Ghent, Belgium
| | - Josep Penuelas
- CREAF, Cerdanyola del Vallès, Spain
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, Bellaterra, Spain
| | - Patrick Fonti
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Matteo Campioli
- PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
5
|
Van Deurs S, Reutimann O, Luqman H, Lifshitz D, Mayzlish-Gati E, Alexander J, Fior S. Genomic Signatures of Adaptation Across a Precipitation Gradient From Niche Centre to Niche Edge. Mol Ecol 2025; 34:e17696. [PMID: 39960029 DOI: 10.1111/mec.17696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/17/2024] [Accepted: 02/04/2025] [Indexed: 03/04/2025]
Abstract
Evaluating the potential for species to adapt to changing climates relies on understanding current patterns of adaptive variation and selection, which might vary in intensity across a species' niche, hence affecting our inference of where adaptation might be most important in the future. Here, we investigate the genetic basis of adaptation in Lactuca serriola along a steep precipitation gradient in Israel approaching the species' arid niche limit and use candidate loci to inform predictions of its past and future adaptive evolution. Environmental association analyses combined with generalised dissimilarity models revealed 108 candidate genes showing nonlinear shifts in allele frequencies across the gradient, with 66% of these genes under strong selection near the dry niche edge. We detected selection acting on genes with separate suites of biological functions, specifically related to phenology and responses to environmental stressors, including osmotic stress, at the dry niche edge, and related to biotic interactions and defence closer to the niche centre. The adaptive genetic composition of populations, as inferred through polygenic risk scores, point to intensified selection operating towards the dry niche edge. However, inference of past and future evolutionary change predicts larger adaptive shifts occurring in the mesic part of the range, which is most affected by climate change. Our study reveals that adaptive shifts in response to climate change can be heterogeneous across a species' range and not necessarily strongest near its niche edge.
Collapse
Affiliation(s)
| | - Oliver Reutimann
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Hirzi Luqman
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
- McDonald Institute for Archaeological Research, University of Cambridge, Cambridge, UK
| | - Dikla Lifshitz
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Einav Mayzlish-Gati
- Israel Gene Bank, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Jake Alexander
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| | - Simone Fior
- ETH Zürich, Institute of Integrative Biology, Zürich, Switzerland
| |
Collapse
|
6
|
Pareja-Bonilla D, Arista M, Morellato LPC, Ortiz PL. Better soon than never: climate change induces strong phenological reassembly in the flowering of a Mediterranean shrub community. ANNALS OF BOTANY 2025; 135:239-254. [PMID: 38099507 PMCID: PMC11805945 DOI: 10.1093/aob/mcad193] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/13/2023] [Indexed: 02/09/2025]
Abstract
BACKGROUND AND AIMS Flowering is a key process in the life cycle of a plant. Climate change is shifting flowering phenologies in the Northern Hemisphere, but studies with long data series at the community level are scarce, especially those considering the consequences of phenological changes for emerging ecological interactions. In the Mediterranean region, the effects of climate change are stronger than the global average and there is an urgent need to understand how biodiversity will be affected in this area. METHODS In this study, we investigated how the entire flowering phenology of a community comprising 51 perennial species from the south of the Iberian Peninsula changed from the decade of the 1980s to the 2020s. Furthermore, we have analysed the consequences of these changes for flowering order and co-flowering patterns. KEY RESULTS We have found that the flowering phenology of the community has advanced by ~20 days, which is coherent with the increasing temperatures related to climate change. Individual species have generally advanced their entire flowering phenology (start and end) and increased their flowering duration. The early flowering has resulted in a re-organization of the flowering order of the community and generated new co-flowering assemblages of species, with a slight trend towards an increase of shared flowering time among species. CONCLUSIONS The advanced flowering phenology and changes in flowering duration reported here were of unprecedented magnitude, showcasing the extreme effects of climate change on Mediterranean ecosystems. Furthermore, the effects were not similar among species, which could be attributed to differences in sensitivities of environmental cues for flowering. One consequence of these changes in flowering times is ecological mismatches, indicated by changes in the flowering order and co-flowering between decades. This new scenario might lead to new competitive or facilitative interactions and to the loss or gain of pollinators.
Collapse
Affiliation(s)
- Daniel Pareja-Bonilla
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Montserrat Arista
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| | - Leonor Patrícia Cerdeira Morellato
- Center for Research on Biodiversity Dynamics and Climate Change and Department of Biodiversity, Phenology Lab, UNESP - São Paulo State University, Biosciences Institute, São Paulo, Rio Claro, Brazil
| | - Pedro Luis Ortiz
- Departamento de Biología Vegetal y Ecología, Facultad de Biología, Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
7
|
Jones CV, Regan CE, Cole EF, Firth JA, Sheldon BC. Shared environmental similarity between relatives influences heritability of reproductive timing in wild great tits. Evolution 2025; 79:220-231. [PMID: 39497526 DOI: 10.1093/evolut/qpae155] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 10/14/2024] [Accepted: 11/04/2024] [Indexed: 02/05/2025]
Abstract
Intraspecific variation is necessary for evolutionary change and population resilience, but the extent to which it contributes to either depends on the causes of this variation. Understanding the causes of individual variation in traits involved with reproductive timing is important in the face of environmental change, especially in systems where reproduction must coincide with seasonal resource availability. However, separating the genetic and environmental causes of variation is not straightforward, and there has been limited consideration of how small-scale environmental effects might lead to similarity between individuals that occupy similar environments, potentially biasing estimates of genetic heritability. In ecological systems, environments are often complex in spatial structure, and it may therefore be important to account for similarities in the environments experienced by individuals within a population beyond considering spatial distances alone. Here, we construct multi-matrix quantitative genetic animal models using over 11,000 breeding records (spanning 35 generations) of individually-marked great tits (Parus major) and information about breeding proximity and habitat characteristics to quantify the drivers of variability in two key seasonal reproductive timing traits. We show that the environment experienced by related individuals explains around a fifth of the variation seen in reproductive timing, and accounting for this leads to decreased estimates of heritability. Our results thus demonstrate that environmental sharing between relatives can strongly affect estimates of heritability and therefore alter our expectations of the evolutionary response to selection.
Collapse
Affiliation(s)
- Carys V Jones
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, United Kingdom
| | | | - Ella F Cole
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, United Kingdom
| | - Josh A Firth
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, United Kingdom
- Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ben C Sheldon
- Department of Biology, Edward Grey Institute of Field Ornithology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Jeong SW, Lee IH, Kim Y, Kang K, Shim D, Hurry V, Ivanov AG, Park Y. Spectral unmixing of hyperspectral images revealed pine wilt disease sensitive endmembers. PHYSIOLOGIA PLANTARUM 2025; 177:e70090. [PMID: 39894933 PMCID: PMC11911716 DOI: 10.1111/ppl.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 12/26/2024] [Accepted: 01/08/2025] [Indexed: 02/04/2025]
Abstract
Throughout the entire cycle of leaf phenological events, leaf colour undergoes changes that are influenced by either abiotic stress or biotic infection. These changes in colouration are closely linked to the quantity and quality of photosynthetic pigments, which directly impact the primary productivity of plants. Therefore, monitoring and quantifying leaf colouration changes are crucial for distinguishing damage caused by pine wilt nematodes from natural tree senescence. In this study, a hyperspectral camera sensor was employed for the non-invasive and non-destructive evaluation of needle colour changes in coniferous trees grown in field tests. Three distinct needle colour variations of six coniferous tree species were selected and monitored using a hyperspectral sensor: those displaying seasonal autumn colours, undergoing nematode-infected necrosis processes, and experiencing natural death. To mitigate the inherently mixed spectral properties of hyperspectral data, endmembers were extracted from individual images using the Purity Pixel Index algorithm under the assumption of linear mixing of endmembers. From a total of 1,321 endmembers extracted from 378 hyperspectral images of six pine species, eight endmembers were ultimately chosen to reconstruct hyperspectral images and generate abundance maps. Among these eight endmembers, four represent varying levels of photosynthetic pigment contents-ranging from very low to high. Consequently, these coniferous endmembers hold promise for assessing seasonal leaf phenology and the extent of damage in pine trees infected by pine wilt nematodes. This comprehensive approach underscores the effectiveness of spectral unmixing of hyperspectral images in advancing precision forestry through meticulous coniferous needle trait analysis.
Collapse
Affiliation(s)
- Seok Won Jeong
- Department of Biological SciencesChungnam National UniversityKorea
| | - Il Hwan Lee
- Department of Forest Bio‐ResourcesNational Institute of Forest ScienceSuwonKorea
| | - Yang‐Gil Kim
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulKorea
| | - Kyu‐Suk Kang
- Department of Agriculture, Forestry and BioresourcesSeoul National UniversitySeoulKorea
| | - Donghwan Shim
- Department of Biological SciencesChungnam National UniversityKorea
| | - Vaughan Hurry
- Umeå Plant Science Centre, Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - Alexander G. Ivanov
- Institute of Biophysics and Biomedical EngineeringBulgarian Science Academy of SciencesSofiaBulgaria
- Department of BiologyUniversity of Western OntarioLondonCanada
| | - Youn‐Il Park
- Department of Biological SciencesChungnam National UniversityKorea
| |
Collapse
|
9
|
Lu C, van Groenigen KJ, Gillespie MAK, Hollister RD, Post E, Cooper EJ, Welker JM, Huang Y, Min X, Chen J, Jónsdóttir IS, Mauritz M, Cannone N, Natali SM, Schuur E, Molau U, Yan T, Wang H, He JS, Liu H. Diminishing warming effects on plant phenology over time. THE NEW PHYTOLOGIST 2025; 245:523-533. [PMID: 39103987 DOI: 10.1111/nph.20019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 07/06/2024] [Indexed: 08/07/2024]
Abstract
Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long-term warming. Here, we conducted a meta-analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases - leaf-out, first flowering, last flowering, and leaf coloring. We showed that warming advanced leaf-out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf-out and leaf coloring for woody species, decreased as the experimental duration extended. Together, these results suggest that the real-world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.
Collapse
Affiliation(s)
- Chunyan Lu
- Tiantong National Station for Forest Ecosystem Research, The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), Shanghai, 202162, China
| | - Kees Jan van Groenigen
- Department of Geography, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4RJ, UK
| | - Mark A K Gillespie
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, N-9037, Norway
- Department of Civil Engineering and Environmental Sciences, Western Norway University of Applied Sciences, Sogndal, 6856, Norway
| | - Robert D Hollister
- Biology Department, Grand Valley State University, Allendale, MI, 49401-9403, USA
| | - Eric Post
- Department of Wildlife, Fish and Conservation Biology, University of California, Davis, CA, 95616, USA
| | - Elisabeth J Cooper
- Department of Arctic and Marine Biology, UiT - The Arctic University of Norway, Tromsø, N-9037, Norway
| | - Jeffrey M Welker
- Ecology and Genetics Research Group, University of Oulu, Oulu, 90014, Finland
- The University of the Arctic (UArctic), Rovaniemi, 96300, Finland
- Department of Biological Sciences, University of Alaska, Anchorage, AK, 99508, USA
| | - Yixuan Huang
- Tiantong National Station for Forest Ecosystem Research, The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Xueting Min
- Tiantong National Station for Forest Ecosystem Research, The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Jianghui Chen
- Tiantong National Station for Forest Ecosystem Research, The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
| | - Ingibjörg Svala Jónsdóttir
- Institute of Life and Environmental Sciences, University of Iceland, Reykjavík, 102, Iceland
- University Centre in Svalbard, Longyearbyen, N-9171, Norway
| | - Marguerite Mauritz
- Biological Sciences, University of Texas at El Paso, El Paso, TX, 79968, USA
| | - Nicoletta Cannone
- Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant, 3, Varese, 21100, Italy
- Climate Change Research Centre, Via Valleggio 11, Como, 22100, Italy
| | - Susan M Natali
- Woods Hole Research Center, Falmouth, MA, 02540-1644, USA
| | - Edward Schuur
- Center for Ecosystem Science and Society, Northern Arizona University, Flagstaff, AZ, 86011, USA
| | - Ulf Molau
- Department of Biology and Environmental Sciences, University of Gothenburg, Gothenburg, 405 30, Sweden
| | - Tao Yan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Hao Wang
- State Key Laboratory of Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Sheng He
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Huiying Liu
- Tiantong National Station for Forest Ecosystem Research, The Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, 200241, China
- Institute of Eco-Chongming (IEC), Shanghai, 202162, China
| |
Collapse
|
10
|
Belitz MW, Sawyer A, Hendrick L, Guralnick RP. Temperature niche and body size condition phenological responses of moths to urbanization in a subtropical city. Ecology 2025; 106:e4489. [PMID: 39618262 DOI: 10.1002/ecy.4489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 10/07/2024] [Indexed: 01/18/2025]
Abstract
Urbanization in temperate climates often advances the beginning and peak of biological events due to multiple factors, especially urban heat islands. However, the effect of urbanization on insect phenology remains understudied in more tropical areas, where temperature may be a weaker phenological cue. We surveyed moths across an urban gradient in a subtropical city weekly for a year to test how impervious surface and canopy cover impact phenology at the caterpillar and adult life stages. For macro-moths, we also examine how these effects vary with life history traits. When pooling all individuals, we found no effect of urbanization proxy variables on timing of caterpillar or adult phenology. At the species-specific level, we found timing of peak adult macro-moths is influenced by canopy cover, which also interacts with two traits: temperature niche and body size. Cold-adapted species delay timing of peak abundance in more shaded sites, while warm-adapted species were not affected. Smaller species, associated with lower dispersal ability, were more phenologically sensitive to canopy cover than larger bodied species. These results highlight the importance of canopy cover within cities and its interaction with species' traits in mediating impact of urbanization on moth phenology in subtropical systems.
Collapse
Affiliation(s)
- Michael W Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
- Biodiversity Institute, University of Florida, Gainesville, Florida, USA
- Ecology, Evolution, and Behavior Program, Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
| | - Asia Sawyer
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Lillian Hendrick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
11
|
Stewart JE, Maclean IMD, Botham M, Dennis EB, Bridle J, Wilson RJ. Phenological variation in biotic interactions shapes population dynamics and distribution in a range-shifting insect herbivore. Proc Biol Sci 2024; 291:20240529. [PMID: 39626755 PMCID: PMC11614537 DOI: 10.1098/rspb.2024.0529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/31/2024] [Accepted: 10/18/2024] [Indexed: 12/08/2024] Open
Abstract
Phenological responses to climate change vary across trophic levels. However, how trophic phenological synchrony determines species' distributions through its effects on population dynamics has rarely been addressed. Here, we show that phenological variation underlies population and geographical range dynamics in a range-shifting herbivore, and demonstrate its interplay with changing trophic interactions. Using a novel modelling approach, we identify drivers of variation in phenology and population growth (productivity) for populations of the brown argus butterfly (Aricia agestis) feeding on ancestral and novel host plants in the UK. We demonstrate host plant-specific links between phenology and productivity, highlighting their role in the consumer's range expansion. Critically, later butterfly phenology is associated with higher productivity in the annual second brood, especially on novel annual hosts where later activity improves synchrony with germinating plants. In turn, later phenology and higher second brood productivity are associated with more rapid range expansion, particularly in regions where only the novel hosts occur. Therefore, phenological asynchrony imposes limits on local population growth, influencing consumer resource selection, evolutionary responses and emergent range dynamics. How existing and future trophic phenological synchrony determine population dynamics will be critical for the ecological and evolutionary outcomes of climate change.
Collapse
Affiliation(s)
- James E. Stewart
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Ilya M. D. Maclean
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK
| | - Marc Botham
- Centre for Ecology and Hydrology, Wallingford, OxfordshireOX10 8BB, UK
| | - Emily B. Dennis
- Butterfly Conservation, Manor Yard, East Lulworth, Wareham, Dorset, UK
| | - Jon Bridle
- School of Biological Sciences, University of Bristol, Bristol, UK
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| | - Robert J. Wilson
- College of Life and Environmental Sciences, University of Exeter, Exeter, UK
- Environment and Sustainability Institute, University of Exeter, Penryn Campus, Exeter, UK
- Departmento de Biogeografía y Cambio Global, Museo Nacional de Ciencias Naturales, MadridE28006, Spain
| |
Collapse
|
12
|
Pili A, Schumaker N, Camacho‐Cervantes M, Tingley R, Chapple D. Landscape Heterogeneity and Environmental Dynamics Improve Predictions of Establishment Success of Colonising Small Founding Populations. Evol Appl 2024; 17:e70027. [PMID: 39439435 PMCID: PMC11493551 DOI: 10.1111/eva.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
In long-distance dispersal events, colonising species typically begin with a small number of founding individuals. A growing body of research suggests that establishment success of small founding populations can be determined by the context of the colonisation event and the new environment. Here, we illuminate the importance of these sources of context dependence. Using a spatially explicit, temporally dynamic, mechanistic, individual-based simulator of a model amphibian species, the cane toad (Rhinella marina), we simulated colonisation scenarios to investigate how (1) the number of founding individuals, (2) the number of dispersal events, (3) landscape's spatial composition and configuration of habitats ('spatially heterogeneous landscapes') and (4) the timing of arrival with regards to dynamic environmental conditions ('dynamic environmental conditions') influence the establishment success of small founding populations. We analysed the dynamic effects of these predictors on establishment success using running-window logistic regression models. We showed establishment success increases with the number of founding individuals, whereas the number of dispersal events had a weak effect. At ≥ 20 founding individuals, propagule size swamps the effects of other factors, to whereby establishment success is near-certain (≥ 90%). But below this level, confidence in establishment success dramatically decreases as number of founding individuals decreases. At low numbers of founding individuals, the prominent predictors are landscape spatial heterogeneity and dynamic environmental conditions. For instance, compared to the annual mean, founding populations with ≤ 5 individuals have up to 18% higher establishment success when they arrive in 'packed' landscapes with relatively limited and clustered essential habitats and right before the breeding season. Accounting for landscape spatial heterogeneity and dynamic environmental conditions is integral in understanding and predicting population establishment and species colonisation. This additional complexity is necessary for advancing biogeographical theory and its application, such as in guiding species reintroduction efforts and invasive alien species management.
Collapse
Affiliation(s)
- Arman N. Pili
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
- Macroecology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdam14469BrandenburgGermany
| | - Nathan H. Schumaker
- US Environmental Protection AgencyPacific Ecological Systems DivisionCorvallisOregonUSA
| | | | - Reid Tingley
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
| | - David G. Chapple
- School of Biological Sciences, Faculty of ScienceMonash UniversityClayton3800VictoriaAustralia
| |
Collapse
|
13
|
Buonaiuto DM. How Climate Change May Impact Plant Reproduction and Fitness by Altering the Temporal Separation of Male and Female Flowering. GLOBAL CHANGE BIOLOGY 2024; 30:e17533. [PMID: 39400973 DOI: 10.1111/gcb.17533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/19/2024] [Accepted: 09/16/2024] [Indexed: 10/15/2024]
Abstract
The temporal separation of male and female flowering-known as dichogamy-is a widespread adaptation across the plant kingdom that increases reproductive success and enhances plant fitness. Differences in timing between male and female flowering can be highly sensitive to environmental variation-and with widespread evidence of shifts in seasonal timing of flowering (i.e., phenology) due to anthropogenic warming-climate change may alter the sequences of male and female flowering for a diversity of taxa around the globe. However, we currently lack a broad understanding of both the extent to which climate change may alter patterns of dichogamy and the potential implications of these shifts for plant reproduction. Here I present evidence that links variation in dichogamy to variation in temperature for a variety of plant taxa. I synthesize the limited number of studies that have investigated shifts in dichogamy specifically in the context of climate change, and detail the physiological, genetic, and developmental factors that control the relative timing of male and female flowering. The literature indicates that dichogamy is highly plastic and sensitive to temperature variation. Plasticity in dichogamy is observed across species with different sexual systems and growth habits, and in both female-first and male-first flowering taxa, but at present, no clear patterns of dichogamy shifts related to these associated traits are discernible. Together, these lines of evidence suggest that sequences of male and female flowering are likely to shift with climate change. However, more research is needed to better understand and predict the ecological consequences of shifting patterns of dichogamy in the context of global change.
Collapse
Affiliation(s)
- D M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
- Northeast Climate Adaptation Science Center, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
14
|
Shahzad K, Alatalo JM, Zhu M, Cao L, Hao Y, Dai J. Geographic conditions impact the relationship between plant phenology and phylogeny. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174083. [PMID: 38906301 DOI: 10.1016/j.scitotenv.2024.174083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/23/2024]
Abstract
Plant phenology is influenced by a combined effect of phylogeny and climate, although it is yet unclear how these two variables work together to change phenology. We synthesized 107 previously published studies to examine whether phenological changes were impacted by both phylogeny and climate changes in various geographical settings globally. Phenological observation data from 52,463 plant species at 71 sites worldwide revealed that 90 % of phenological records showed phylogenetic conservation. i.e., closely related species exhibited similar phenology. To explore the significant and non-significant phylogenetic conservation between plant phenophases, our dataset comprises 5,47,000 observation records from the four main phenophases (leaf bud, leaf, flower, and fruit). Three-dimensional geographical distribution (altitude, latitude, and longitude) data analysis revealed that plant phenology may exhibit phylogenetic signals at finer special scales (optimal environmental conditions) that vanish in high altitude and latitude regions. Additionally, climatic sensitivity analysis suggested that phylogenetic signals were associated with plant phenophases and were stronger in the regions of ideal temperature (7-18 °C) and photoperiod (10-14 h) and weaker in harsh climatic conditions. These results show that phylogenetic conservation in plant phenological traits is frequently influenced by the interaction of harsh climatic conditions and geographical ranges. This meta-analysis enhances our knowledge of predicting species responses over geographic gradients under varied climatic conditions.
Collapse
Affiliation(s)
- Khurram Shahzad
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; Nebraska Food for Health Center, Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE, USA.
| | | | - Mengyao Zhu
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Lijuan Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Yulong Hao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China
| | - Junhu Dai
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, CAS, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Lindestad O, Nylin S, Wheat CW, Gotthard K. Testing for variation in photoperiodic plasticity in a butterfly: Inconsistent effects of circadian genes between geographic scales. Ecol Evol 2024; 14:e11713. [PMID: 38975264 PMCID: PMC11227937 DOI: 10.1002/ece3.11713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024] Open
Abstract
The genetic components of the circadian clock have been implicated as involved in photoperiodic regulation of winter diapause across various insect groups, thereby contributing to adaptation to adverse seasonal conditions. So far, the effects of within-population variation in these genes have not been well explored. Here, we present an experimental test of the effects of within-population variation at two circadian genes, timeless and period, on photoperiodic responses in the butterfly Pararge aegeria. While nonsynonymous candidate SNPs in both of these genes have previously shown to be associated with diapause induction on a between-population level, in the present experiment no such effect was found on a within-population level. In trying to reconcile these results, we examine sequence data, revealing considerable, previously unknown protein-level variation at both timeless and period across Scandinavian populations, including variants unique to the population studied here. Hence, we hypothesize that these variants may counteract the previously observed diapause-averting effect of the candidate SNPs, possibly explaining the difference in results between the experiments. Whatever the cause, these results highlight how the effects of candidate SNPs may sometimes vary across genetic backgrounds, which complicates evolutionary interpretations of geographic patterns of genetic variation.
Collapse
Affiliation(s)
- Olle Lindestad
- Department of Ecology, Environment and Plant SciencesStockholm UniversityStockholmSweden
- Department of ZoologyStockholm UniversityStockholmSweden
| | - Sören Nylin
- Department of ZoologyStockholm UniversityStockholmSweden
| | | | - Karl Gotthard
- Department of ZoologyStockholm UniversityStockholmSweden
- Bolin Centre for Climate ResearchStockholmSweden
| |
Collapse
|
16
|
Delmas CEL, Bancal MO, Leyronas C, Robin MH, Vidal T, Launay M. Monitoring the phenology of plant pathogenic fungi: why and how? Biol Rev Camb Philos Soc 2024; 99:1075-1084. [PMID: 38287495 DOI: 10.1111/brv.13058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/31/2024]
Abstract
Phenology is a key adaptive trait of organisms, shaping biotic interactions in response to the environment. It has emerged as a critical topic with implications for societal and economic concerns due to the effects of climate change on species' phenological patterns. Fungi play essential roles in ecosystems, and plant pathogenic fungi have significant impacts on global food security. However, the phenology of plant pathogenic fungi, which form a huge and diverse clade of organisms, has received limited attention in the literature. This diversity may have limited the use of a common language for comparisons and the integration of phenological data for these taxonomic groups. Here, we delve into the concept of 'phenology' as applied to plant pathogenic fungi and explore the potential drivers of their phenology, including environmental factors and the host plant. We present the PhenoFun scale, a phenological scoring system suitable for use with all fungi and fungus-like plant pathogens. It offers a standardised and common tool for scientists studying the presence, absence, or predominance of a particular phase, the speed of phenological phase succession, and the synchronism shift between pathogenic fungi and their host plants, across a wide range of environments and ecosystems. The application of the concept of 'phenology' to plant pathogenic fungi and the use of a phenological scoring system involves focusing on the interacting processes between the pathogenic fungi, their hosts, and their biological, physical, and chemical environment, occurring during the life cycle of the pathogen. The goal is to deconstruct the processes involved according to a pattern orchestrated by the fungus's phenology. Such an approach will improve our understanding of the ecology and evolution of such organisms, help to understand and anticipate plant disease epidemics and their future evolution, and make it possible to optimise management models, and to encourage the adoption of cropping practices designed from this phenological perspective.
Collapse
Affiliation(s)
| | - Marie-Odile Bancal
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Ecosys, Palaiseau, 91120, France
| | | | - Marie-Hélène Robin
- INRAE, INPT, ENSAT, EI Purpan, University of Toulouse, UMR AGIR, Castanet Tolosan, F-31326, France
| | - Tiphaine Vidal
- Université Paris-Saclay, INRAE, UR Bioger, Palaiseau, 91120, France
| | | |
Collapse
|
17
|
Plos C, Hensen I, Korell L, Auge H, Römermann C. Plant species phenology differs between climate and land-use scenarios and relates to plant functional traits. Ecol Evol 2024; 14:e11441. [PMID: 38799400 PMCID: PMC11116844 DOI: 10.1002/ece3.11441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024] Open
Abstract
Phenological shifts due to changing climate are often highly species and context specific. Land-use practices such as mowing or grazing directly affect the phenology of grassland species, but it is unclear if plants are similarly affected by climate change in differently managed grassland systems such as meadows and pastures. Functional traits have a high potential to explain phenological shifts and might help to understand species-specific and land-use-specific phenological responses to changes in climate. In the large-scale field experiment Global Change Experimental Facility (GCEF), we monitored the first flowering day, last flowering day, flowering duration, and day of peak flowering, of 17 herbaceous grassland species under ambient and future climate conditions, comparing meadows and pastures. Both climate and land use impacted the flowering phenology of plant species in species-specific ways. We did not find evidence for interacting effects of climate and land-use type on plant phenology. However, the data indicate that microclimatic and microsite conditions on meadows and pastures were differently affected by future climate, making differential effects on meadows and pastures likely. Functional traits, including the phenological niche and grassland utilization indicator values, explained species-specific phenological climate responses. Late flowering species and species with a low mowing tolerance advanced their flowering more strongly under future climate. Long flowering species and species following an acquisitive strategy (high specific leaf area, high mowing tolerance, and high forage value) advanced their flowering end more strongly and thus more strongly shortened their flowering under future climate. We associated these trait-response relationships primarily with a phenological drought escape during summer. Our results provide novel insights on how climate and land use impact the flowering phenology of grassland species and we highlight the role of functional traits in mediating phenological responses to climate.
Collapse
Affiliation(s)
- Carolin Plos
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Isabell Hensen
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle‐WittenbergHalle (Saale)Germany
| | - Lotte Korell
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community Ecology, Helmholtz‐Centre for Environmental Research (UFZ)Halle (Saale)Germany
| | - Harald Auge
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Department of Community Ecology, Helmholtz‐Centre for Environmental Research (UFZ)Halle (Saale)Germany
| | - Christine Römermann
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Friedrich Schiller University JenaJenaGermany
| |
Collapse
|
18
|
Davies WJ, Saccheri IJ. Evolutionary trajectory of phenological escape in a flowering plant: Mechanistic insights from bidirectional avoidance of butterfly egg-laying pressure. Ecol Evol 2024; 14:e11330. [PMID: 38694753 PMCID: PMC11056787 DOI: 10.1002/ece3.11330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 04/10/2024] [Indexed: 05/04/2024] Open
Abstract
Phenological escape, whereby species alter the timing of life-history events to avoid seasonal antagonists, is usually analyzed either as a potential evolutionary outcome given current selection coefficients, or as a realized outcome in response to known enemies. We here gain mechanistic insights into the evolutionary trajectory of phenological escape in the brassicaceous herb Cardamine pratensis, by comparing the flowering schedules of two sympatric ecotypes in different stages of a disruptive response to egg-laying pressure imposed by the pierid butterfly Anthocharis cardamines, whose larvae are pre-dispersal seed predators (reducing realized fecundity by ~70%). When the focal point of highest intensity selection (peak egg-laying) occurs early in the flowering schedule, selection for late flowering dependent on reduced egg-laying combined with selection for early flowering dependent on reduced predator survival results in a symmetrical bimodal flowering curve; when the focal point occurs late, an asymmetrical flowering curve results with a large early flowering mode due to selection for reduced egg-laying augmented by selection for infested plants to outrun larval development and dehisce prior to seed-pod consumption. Unequal selection pressures on high and low fecundity ramets, due to asynchronous flowering and morphologically targeted (size-dependent) egg-laying, constrain phenological escape, with bimodal flowering evolving primarily in response to disruptive selection on high fecundity phenotypes. These results emphasize the importance of analyzing variation in selection coefficients among morphological phenotypes over the entire flowering schedule to predict how populations will evolve in response to altered phenologies resulting from climate change.
Collapse
Affiliation(s)
- W. James Davies
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| | - Ilik J. Saccheri
- Institute of Infection, Veterinary and Ecological Sciences, Department of Evolution, Ecology and BehaviourUniversity of LiverpoolLiverpoolUK
| |
Collapse
|
19
|
Zhao Y, Wang Z, Yan Z, Moon M, Yang D, Meng L, Bucher SF, Wang J, Song G, Guo Z, Su Y, Wu J. Exploring the role of biotic factors in regulating the spatial variability in land surface phenology across four temperate forest sites. THE NEW PHYTOLOGIST 2024. [PMID: 38572888 DOI: 10.1111/nph.19684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Land surface phenology (LSP), the characterization of plant phenology with satellite data, is essential for understanding the effects of climate change on ecosystem functions. Considerable LSP variation is observed within local landscapes, and the role of biotic factors in regulating such variation remains underexplored. In this study, we selected four National Ecological Observatory Network terrestrial sites with minor topographic relief to investigate how biotic factors regulate intra-site LSP variability. We utilized plant functional type (PFT) maps, functional traits, and LSP data to assess the explanatory power of biotic factors for the start and end of season (SOS and EOS) variability. Our results indicate that PFTs alone explain only 0.8-23.4% of intra-site SOS and EOS variation, whereas including functional traits significantly improves explanatory power, with cross-validation correlations ranging from 0.50 to 0.85. While functional traits exhibited diverse effects on SOS and EOS across different sites, traits related to competitive ability and productivity were important for explaining both SOS and EOS variation at these sites. These findings reveal that plants exhibit diverse phenological responses to comparable environmental conditions, and functional traits significantly contribute to intra-site LSP variability, highlighting the importance of intrinsic biotic properties in regulating plant phenology.
Collapse
Affiliation(s)
- Yingyi Zhao
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhihui Wang
- Guangdong Provincial Key Laboratory of Remote Sensing and Geographical Information System, Guangdong Open Laboratory of Geospatial Information Technology and Application, Guangzhou Institute of Geography, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Zhengbing Yan
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Minkyu Moon
- Department of Earth and Environment, Boston University, Boston, MA, 02215, USA
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon, 24341, Korea
| | - Dedi Yang
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Lin Meng
- Department of Earth and Environmental Sciences, Vanderbilt University, Nashville, TN, 37240, USA
| | - Solveig Franziska Bucher
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich Schiller University Jena, Jena, D-07743, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, D-04103, Germany
| | - Jing Wang
- School of Ecology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, 510006, Guangdong, China
| | - Guangqin Song
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Zhengfei Guo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yanjun Su
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093, China
| | - Jin Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
20
|
Peng S, Ramirez-Parada TH, Mazer SJ, Record S, Park I, Ellison AM, Davis CC. Incorporating plant phenological responses into species distribution models reduces estimates of future species loss and turnover. THE NEW PHYTOLOGIST 2024. [PMID: 38531810 DOI: 10.1111/nph.19698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/04/2024] [Indexed: 03/28/2024]
Abstract
Anthropogenetic climate change has caused range shifts among many species. Species distribution models (SDMs) are used to predict how species ranges may change in the future. However, most SDMs rarely consider how climate-sensitive traits, such as phenology, which affect individuals' demography and fitness, may influence species' ranges. Using > 120 000 herbarium specimens representing 360 plant species distributed across the eastern United States, we developed a novel 'phenology-informed' SDM that integrates phenological responses to changing climates. We compared the ranges of each species forecast by the phenology-informed SDM with those from conventional SDMs. We further validated the modeling approach using hindcasting. When examining the range changes of all species, our phenology-informed SDMs forecast less species loss and turnover under climate change than conventional SDMs. These results suggest that dynamic phenological responses of species may help them adjust their ecological niches and persist in their habitats as the climate changes. Plant phenology can modulate species' responses to climate change, mitigating its negative effects on species persistence. Further application of our framework will contribute to a generalized understanding of how traits affect species distributions along environmental gradients and facilitate the use of trait-based SDMs across spatial and taxonomic scales.
Collapse
Affiliation(s)
- Shijia Peng
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| | - Tadeo H Ramirez-Parada
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93105, USA
| | - Susan J Mazer
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93105, USA
| | - Sydne Record
- Department of Wildlife, Fisheries, and Conservation Biology, University of Maine, Orono, ME, 04469, USA
| | - Isaac Park
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93105, USA
| | - Aaron M Ellison
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
- Sound Solutions for Sustainable Science, Boston, MA, 02135, USA
| | - Charles C Davis
- Department of Organismic and Evolutionary Biology, Harvard University Herbaria, Harvard University, Cambridge, MA, 02138, USA
| |
Collapse
|
21
|
MacDonald H, Brisson D. Evolution of intermediate latency strategies in seasonal parasites. J Evol Biol 2024; 37:314-324. [PMID: 38330160 PMCID: PMC11275977 DOI: 10.1093/jeb/voae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/08/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024]
Abstract
Traditional mechanistic trade-offs between transmission and parasite latency period length are foundational for nearly all theories on the evolution of parasite life-history strategies. Prior theoretical studies demonstrate that seasonal host activity can generate a trade-off for obligate-host killer parasites that selects for intermediate latency periods in the absence of a mechanistic trade-off between transmission and latency period lengths. Extensions of these studies predict that host seasonal patterns can lead to evolutionary bistability for obligate-host killer parasites in which two evolutionarily stable strategies, a shorter and longer latency period, are possible. Here we demonstrate that these conclusions from previously published studies hold for non-obligate host killer parasites. That is, seasonal host activity can select for intermediate parasite latency periods for non-obligate killer parasites in the absence of a trade-off between transmission and latency period length and can maintain multiple evolutionarily stable parasite life-history strategies. These results reinforce the hypothesis that host seasonal activity can act as a major selective force on parasite life-history evolution by extending the narrower prior theory to encompass a greater range of disease systems.
Collapse
Affiliation(s)
- Hannelore MacDonald
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
- Institute for Integrative Biology, ETH Zürich, Zürich, Switzerland
| | - Dustin Brisson
- Department of Biology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
22
|
Rondinel-Mendoza KV, Lorite J, Marín-Rodulfo M, Cañadas EM. Tracking Phenological Changes over 183 Years in Endemic Species of a Mediterranean Mountain (Sierra Nevada, SE Spain) Using Herbarium Specimens. PLANTS (BASEL, SWITZERLAND) 2024; 13:522. [PMID: 38498521 PMCID: PMC10892450 DOI: 10.3390/plants13040522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 03/20/2024]
Abstract
Phenological studies have a crucial role in the global change context. The Mediterranean basin constitutes a key study site since strong climate change impacts are expected, particularly in mountain areas such as Sierra Nevada, where we focus. Specifically, we delve into phenological changes in endemic vascular plants over time by analysing data at three scales: entire massif, altitudinal ranges, and particular species, seeking to contribute to stopping biodiversity loss. For this, we analysed 5262 samples of 2129 herbarium sheets from Sierra Nevada, dated from 1837 to 2019, including reproductive structure, complete collection date, and precise location. We found a generalized advancement in phenology at all scales, and particularly in flowering onset and flowering peak. Thus, plants flower on average 11 days earlier now than before the 1970s. Although similar trends have been confirmed for many territories and species, we address plants that have been studied little in the past regarding biotypes and distribution, and which are relevant for conservation. Thus, we analysed phenological changes in endemic plants, mostly threatened, from a crucial hotspot within the Mediterranean hotspot, which is particularly vulnerable to global warming. Our results highlight the urgency of phenological studies by species and of including ecological interactions and effects on their life cycles.
Collapse
Affiliation(s)
- Katy V. Rondinel-Mendoza
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Juan Lorite
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
- Interuniversity Institute for Earth System Research, University of Granada, 18071 Granada, Spain
| | - Macarena Marín-Rodulfo
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| | - Eva M. Cañadas
- Departamento de Botánica, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain; (J.L.); (M.M.-R.); (E.M.C.)
| |
Collapse
|
23
|
Szemán K, Végvári Z, Gőri S, Kapocsi I, Székely T, Manning JA. Harem size should be measured by more than the sum of its parts: Phenology-based measurements reveal joint effects of intrinsic and extrinsic factors on a polygamous herbivore under non-stationary climatic conditions. Ecol Evol 2024; 14:e10865. [PMID: 38322007 PMCID: PMC10844713 DOI: 10.1002/ece3.10865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 09/02/2023] [Accepted: 01/16/2024] [Indexed: 02/08/2024] Open
Abstract
Social behaviour is thought to be a major component of survival, reproduction, and resilience of populations. Thus, it is a key component in management and conservation of wild populations. In polygynous breeding species, group size influences the reproductive success of males and females, and hence it is essential to understand the environmental and demographic factors that shape the phenology of group size within populations. Here, we investigate harem size and its determinants using a 15-year dataset of annual harem size phenology-based metrics from a reintroduced population of wild Przewalski horses in Hortobágy National Park, Hungary. From the initial reintroduction of 21 animals in 1997, the population grew to 174 animals in 2012. During that same period, the number of harems increased from three to 23. Despite the 8-fold increase in population size, harem sizes remained stable, and variability among harems within years decreased. The annual phenological cycle of harem size was not consistent over the 15-year period, and the associated annual phenology-based metrics varied differently over the years. The best predictors of our phenology-based harem size metrics were adult sex ratio, annual adult mortality and annual mean number of harems, with some evidence that mean age of harem stallions and drought severity were contributing factors. Our findings reveal that complex interactions between demography, climate, and harem size can emerge in social animals. Taken together, our results demonstrate that intrinsic population processes can regulate group size even in the presence of non-stationary climatic conditions during periods of growth in human-introduced, semi-free ranging animal populations.
Collapse
Affiliation(s)
- Karola Szemán
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
| | - Zsolt Végvári
- Centre for Ecological ResearchInstitute of Aquatic EcologyBudapestHungary
- Senckenberg Deutsches Entomologisches InstitutMunchebergGermany
| | - Szilvia Gőri
- Hortobágy National Park DirectorateDebrecenHungary
| | | | - Tamás Székely
- Department of Evolutionary Zoology and Human BiologyUniversity of DebrecenDebrecenHungary
- Milner Centre of EvolutionUniversity of BathBathUK
| | - Jeffrey A. Manning
- School of the Environment, Washington State UniversityPullmanWashingtonUSA
| |
Collapse
|
24
|
Paterson RA, Poulin R, Selbach C. Global analysis of seasonal changes in trematode infection levels reveals weak and variable link to temperature. Oecologia 2024; 204:377-387. [PMID: 37358648 PMCID: PMC10907458 DOI: 10.1007/s00442-023-05408-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/12/2023] [Indexed: 06/27/2023]
Abstract
Seasonal changes in environmental conditions drive phenology, i.e., the annual timing of biological events ranging from the individual to the ecosystem. Phenological patterns and successional abundance cycles have been particularly well studied in temperate freshwater systems, showing strong and predictable synchrony with seasonal changes. However, seasonal successional changes in the abundance of parasites or their infection levels in aquatic hosts have not yet been shown to follow universal patterns. Here, using a compilation of several hundred estimates of spring-to-summer changes in infection by trematodes in their intermediate and definitive hosts, spanning multiple species and habitats, we test for general patterns of seasonal (temperature) driven changes in infection levels. The data include almost as many decreases in infection levels from spring to summer as there are increases, across different host types. Our results reveal that the magnitude of the spring-to-summer change in temperature had a weak positive effect on the concurrent change in prevalence of infection in first intermediate hosts, but no effect on the change in prevalence or abundance of infection in second intermediate or definitive hosts. This was true across habitat types and host taxa, indicating no universal effect of seasonal temperature increase on trematode infections. This surprising variation across systems suggests a predominance of idiosyncratic and species-specific responses in trematode infection levels, at odds with any clear phenological or successional pattern. We discuss possible reasons for the minimal and variable effect of seasonal temperature regimes, and emphasise the challenges this poses for predicting ecosystem responses to future climate change.
Collapse
Affiliation(s)
- Rachel A Paterson
- Norwegian Institute for Nature Research, Torgarden, PO Box 5685, 7485, Trondheim, Norway
| | - Robert Poulin
- Department of Zoology, University of Otago, PO Box 56, Dunedin, 9054, New Zealand.
| | - Christian Selbach
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Langnes, PO Box 6050, 9037, Tromsø, Norway
| |
Collapse
|
25
|
Kumar A, Singh S, Kumar D, Singh RK, Gupta AK, Premkumar K, Chand HB, Kewat AK. Investigating the phenology and interactions of competitive plant species co-occurring with invasive Lantana camara in Indian Himalayan Region. Sci Rep 2024; 14:400. [PMID: 38172161 PMCID: PMC10764828 DOI: 10.1038/s41598-023-50287-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024] Open
Abstract
Invasive plant species are considered one of the significant drivers of habitat loss, leading to biodiversity loss. They have also been observed to alter the local ecology, resulting in a decline of native flora. The management of invasive species is widely recognised as one of the most severe challenges to biodiversity conservation. The International Union for Conservation of Nature (IUCN) considers Lantana camara, as one of the ten worst weeds. Over time, native and indigenous species may evolve to co-exist or compete with invasive species, reducing invader fitness. It is observed that species competition fluctuates throughout environmental gradients, life phases, and abundances. Hence, competition outcome is very context-dependent. To address this challenge, we conducted a comprehensive study in three phases: we identified native species coexisting with Lantana in their natural habitats in the Doon Valley (Phase I) and documented the phenotypic traits of selected coexisting species using the Landmark BBCH (Biologische Bun-desantalt, Bundessortenamt und Chemische Industrie) scale, revealing the phenological growth patterns of selected co-existing species (Phase II). This was followed by conducting pot (Phase IIIa) and field (Phase IIIb) experiments to study the interactions between them. Notably, Justicia adhatoda, Broussonetia papyrifera, Pongamia pinnata, Urtica dioica and Bauhinia variegata demonstrated promising results in both pot and field conditions. Furthermore, after the mechanical removal of Lantana and prior to the plantation in the field experiments, four native grass species were introduced using the seed ball method. Among these, Pennisetum pedicellatum and Sorghum halpense exhibited prompt regeneration and effectively colonised the field, densely covering the cleared area. The study provides a comprehensive management plan for the restoration of Lantana affected areas through competition using native species. This study utilizes phenological assessment for native plant selection using reclamation from native grasses and proposes a management plan for combating invasive Lantana.
Collapse
Affiliation(s)
- Abhishek Kumar
- Forest Ecology and Climate Change Division, Forest Research Institute, Dehradun, India
| | - Sanjay Singh
- Centre of Excellence for Sustainable Land Management, Indian Council of Forestry Research and Education, Dehradun, India.
| | - Dinesh Kumar
- Silviculture and Forest Management Division, Forest Research Institute, Dehradun, India
| | - Ram Kumar Singh
- Centre of Excellence for Sustainable Land Management, Indian Council of Forestry Research and Education, Dehradun, India
| | - Ajay Kumar Gupta
- G.B Pant National Institute of Himalayan Environment, Ladakh Regional Centre, Leh, India
| | - Kangujam Premkumar
- Forest Ecology and Climate Change Division, Forest Research Institute, Dehradun, India
| | - Harish Bahadur Chand
- Forest Ecology and Climate Change Division, Forest Research Institute, Dehradun, India
| | - Anil Kumar Kewat
- Forest Ecology and Climate Change Division, Forest Research Institute, Dehradun, India
| |
Collapse
|
26
|
Allison AZT, Conway CJ, Morris AE, Goldberg AR, Lohr K, Richards R, Almack JA. Hit Snooze: An Imperiled Hibernator Assesses Spring Snow Conditions to Decide Whether to Terminate Hibernation or Reenter Torpor. ECOLOGICAL AND EVOLUTIONARY PHYSIOLOGY 2024; 97:53-63. [PMID: 38717368 DOI: 10.1086/729775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
AbstractMany animals follow annual cycles wherein physiology and behavior change seasonally. Hibernating mammals undergo one of the most drastic seasonal alterations of physiology and behavior, the timing of which can have significant fitness consequences. The environmental cues regulating these profound phenotypic changes will heavily influence whether hibernators acclimate and ultimately adapt to climate change. Hence, identifying the cues and proximate mechanisms responsible for hibernation termination timing is critical. Northern Idaho ground squirrels (Urocitellus brunneus)-a rare, endemic species threatened with extinction-exhibit substantial variation in hibernation termination phenology, but it is unclear what causes this variation. We attached geolocators to free-ranging squirrels to test the hypothesis that squirrels assess surface conditions in spring before deciding whether to terminate seasonal heterothermy or reenter torpor. Northern Idaho ground squirrels frequently reentered torpor following a brief initial emergence from hibernacula and were more likely to do so earlier in spring or when challenged by residual snowpack. Female squirrels reentered torpor when confronted with relatively shallow snowpack upon emergence, whereas male squirrels reentered torpor in response to deeper spring snowpack. This novel behavior was previously assumed to be physiologically constrained in male ground squirrels by testosterone production required for spermatogenesis and activated by the circannual clock. Assessing surface conditions to decide when to terminate hibernation may help buffer these threatened squirrels against climate change. Documenting the extent to which other hibernators can facultatively alter emergence timing by reentering torpor after emergence will help identify which species are most likely to persist under climate change.
Collapse
|
27
|
Nepal S, Trunschke J, Ren ZX, Burgess KS, Wang H. Flowering phenology differs among wet and dry sub-alpine meadows in southwestern China. AOB PLANTS 2024; 16:plae002. [PMID: 38298756 PMCID: PMC10829081 DOI: 10.1093/aobpla/plae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
The effect of floral traits, floral rewards and plant water availability on plant-pollinator interactions are well-documented; however, empirical evidence of their impact on flowering phenology in high-elevation meadows remains scarce. In this study, we assessed three levels of flowering phenology, i.e. population-, individual- and flower-level (floral longevity), in two nearby but contrasting (wet versus dry) sub-alpine meadows on Yulong Snow Mountain, southwestern China. We also measured a series of floral traits (pollen number, ovule number, and the ratio of pollen to ovule number per flower, i.e. pollen:ovule ratio [P/O]) and floral rewards (nectar availability and pollen presentation) as plausible additional sources of variation for each phenological level. Floral longevity in the wet meadow was significantly longer than that for the dry meadow, whereas population- and individual-flowering duration were significantly shorter. Our results showed a significant positive relationship between flowering phenology with pollen number and P/O per flower; there was no relationship with ovule number per flower. Further, we found a significant effect of flowering phenology on nectar availability and pollen presentation. Our findings suggest that shorter floral longevity in dry habitats compared to wet might be due to water-dependent maintenance costs of flowers, where the population- and individual-level flowering phenology may be less affected by habitats. Our study shows how different levels of flowering phenology underscore the plausible effects of contrasting habitats on reproductive success.
Collapse
Affiliation(s)
- Shristhi Nepal
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Huairou District, Beijing 101408, China
| | - Judith Trunschke
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
- Nature Conservation and Landscape Ecology, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Str., 479106 Freiburg, Germany
| | - Zong-Xin Ren
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| | - Kevin S Burgess
- Department of Biomedical Sciences, Mercer University School of Medicine, Columbus, GA 31901, USA
| | - Hong Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming 650201, China
| |
Collapse
|
28
|
Novella-Fernandez R, Brandl R, Pinkert S, Zeuss D, Hof C. Seasonal variation in dragonfly assemblage colouration suggests a link between thermal melanism and phenology. Nat Commun 2023; 14:8427. [PMID: 38114459 PMCID: PMC10730518 DOI: 10.1038/s41467-023-44106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Abstract
Phenology, the seasonal timing of life events, is an essential component of diversity patterns. However, the mechanisms involved are complex and understudied. Body colour may be an important factor, because dark-bodied species absorb more solar radiation, which is predicted by the Thermal Melanism Hypothesis to enable them to thermoregulate successfully in cooler temperatures. Here we show that colour lightness of dragonfly assemblages varies in response to seasonal changes in solar radiation, with darker early- and late-season assemblages and lighter mid-season assemblages. This finding suggests a link between colour-based thermoregulation and insect phenology. We also show that the phenological pattern of dragonfly colour lightness advanced over the last decades. We suggest that changing seasonal temperature patterns due to global warming together with the static nature of solar radiation may drive dragonfly flight periods to suboptimal seasonal conditions. Our findings open a research avenue for a more mechanistic understanding of phenology and spatio-phenological impacts of climate warming on insects.
Collapse
Affiliation(s)
- Roberto Novella-Fernandez
- Technical University of Munich, Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Freising, Germany.
| | - Roland Brandl
- Department of Ecology-Animal Ecology, Philipps-University Marburg, Marburg, Germany
| | - Stefan Pinkert
- Department of Conservation Ecology, Philipps-Universität Marburg, Marburg, Germany
| | - Dirk Zeuss
- Department of Geography-Environmental Informatics, Philipps-Universität Marburg, Marburg, Germany
| | - Christian Hof
- Technical University of Munich, Terrestrial Ecology Research Group, Department for Life Science Systems, School of Life Sciences, Freising, Germany
- Department of Global Change Ecology, Biocentre, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
29
|
Lankinen P, Kastally C, Hoikkala A. Clinal variation in the temperature and photoperiodic control of reproductive diapause in Drosophila montana females. JOURNAL OF INSECT PHYSIOLOGY 2023; 150:104556. [PMID: 37598869 DOI: 10.1016/j.jinsphys.2023.104556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/22/2023]
Abstract
Insect adaptation to climatic conditions at different latitudes has required changes in life-history traits linked with survival and reproduction. Several species, including Drosophila montana, show robust latitudinal variation in the critical day length (CDL), below which more than half of the emerging females enter reproductive diapause at a given temperature. Here we used a novel approach to find out whether D. montana also shows latitudinal variation in the critical temperature (CTemp), above which the photoperiodic regulation of diapause is disturbed so that the females develop ovaries in daylengths that are far below their CDL. We estimated CTemp for 53 strains from different latitudes on 3 continents after measuring their diapause proportions at a range of temperatures in 12 h daylength (for 29 of the strains also in continuous darkness). In 12 h daylength, CTemp increased towards high latitudes alongside an increase in CDL, and in 3 high-latitude strains diapause proportion exceeded 50% in all temperatures. In continuous darkness, the diapause proportion was above 50% in the lowest temperature(s) in only 9 strains, all of which came from high latitudes. In the second part of the study, we measured changes in CTemp and CDL in a selection experiment favouring reproduction in short daylength (photoperiodic selection) and by exercising selection for females that reproduce in LD12:12 at low temperature (photoperiodic and temperature selection). In both experiments selection induced parallel changes in CDL and CTemp, confirming correlations seen between these traits along latitudinal clines. Overall, our findings suggest that selection towards strong photoperiodic diapause and long CDL at high latitudes has decreased the dependency of D. montana diapause on environmental temperature. Accordingly, the prevalence and timing of the diapause of D. montana is likely to be less vulnerable to climate warming in high- than low-latitude populations.
Collapse
Affiliation(s)
- Pekka Lankinen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| | - Chedly Kastally
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Anneli Hoikkala
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| |
Collapse
|
30
|
Guo L, Liu X, Alatalo JM, Wang C, Xu J, Yu H, Chen J, Yu Q, Peng C, Dai J, Luedeling E. Climatic drivers and ecological implications of variation in the time interval between leaf-out and flowering. Curr Biol 2023; 33:3338-3349.e3. [PMID: 37490919 DOI: 10.1016/j.cub.2023.06.064] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 07/27/2023]
Abstract
Leaf-out and flowering in any given species have evolved to occur in a predetermined sequence, with the inter-stage time interval optimized to maximize plant fitness. Although warming-induced advances of both leaf-out and flowering are well documented, it remains unclear whether shifts in these phenological phases differ in magnitudes and whether changes have occurred in the length of the inter-stage intervals. Here, we present an extensive synthesis of warming effects on flower-leaf time intervals, using long-term (1963-2014) and in situ data consisting of 11,858 leaf-out and flowering records for 183 species across China. We found that the timing of both spring phenological events was generally advanced, indicating a dominant impact of forcing conditions compared with chilling. Stable time intervals between leaf-out and flowering prevailed for most of the time series despite increasing temperatures; however, some of the investigated cases featured significant changes in the time intervals. The latter could be explained by differences in the temperature sensitivity (ST) between leaf and flower phenology. Greater ST for flowering than for leaf-out caused flowering times to advance faster than leaf emergence. This shortened the inter-stage intervals in leaf-first species and lengthened them in flower-first species. Variation in the time intervals between leaf-out and flowering events may have far-reaching ecological and evolutionary consequences, with implications for species fitness, intra/inter-species interactions, and ecosystem structure, function, and stability.
Collapse
Affiliation(s)
- Liang Guo
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xiaowei Liu
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Juha M Alatalo
- Environmental Science Center, Qatar University, Doha 2713, Qatar
| | - Chuanyao Wang
- College of Forestry (Academy of Forestry), Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jianchu Xu
- Center for Mountain Ecosystem Studies, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China; World Agroforestry Center, Nairobi 00100, Kenya
| | - Haiying Yu
- College of A&F Engineering and Planning, Tongren University, Tongren, Guizhou 554300, China
| | - Ji Chen
- Department of Agroecology, Aarhus University, Tjele, Jutland 8830, Denmark
| | - Qiang Yu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China; Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, Shaanxi 712100, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Changhui Peng
- School of Geographic Sciences, Hunan Normal University, Changsha, Hunan 410081, China; Department of Biology Science, Institute of Environment Sciences, University of Quebec at Montreal, Montreal, QC H3C 3P8, Canada.
| | - Junhu Dai
- University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; China-Pakistan Joint Research Center on Earth Sciences, Chinese Academy of Sciences-Higher Education Commission of Pakistan, Islamabad 45320, Pakistan.
| | - Eike Luedeling
- INRES-Horticultural Sciences, University of Bonn, Bonn, Nordrhein-Westfalen 53121, Germany
| |
Collapse
|
31
|
Buonaiuto DM. Climate change: Shifts in time between flowering and leaf-out are complex and consequential. Curr Biol 2023; 33:R860-R863. [PMID: 37607481 DOI: 10.1016/j.cub.2023.06.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
A new study investigated how time intervals between flowering and leaf-out in woody plants are impacted by climate change. Climate change has shifted the timing of both stages, but its impact on the interval between them is complex and variable.
Collapse
Affiliation(s)
- D M Buonaiuto
- Department of Environmental Conservation, University of Massachusetts at Amherst, Amherst, MA, USA.
| |
Collapse
|
32
|
Frisk CA, Apangu GP, Petch GM, Creer S, Hanson M, Adams-Groom B, Skjøth CA. Microscale pollen release and dispersal patterns in flowering grass populations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163345. [PMID: 37028666 DOI: 10.1016/j.scitotenv.2023.163345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/17/2023] [Accepted: 04/03/2023] [Indexed: 05/27/2023]
Abstract
Characterizing pollen release and dispersion processes is fundamental for knowledge advancement in ecological, agricultural and public health disciplines. Understanding pollen dispersion from grass communities is especially relevant due to their high species-specific allergenicity and heterogeneously distributed source areas. Here, we aimed to address questions concerning fine level heterogeneity in grass pollen release and dispersion processes, with a focus on characterizing the taxonomic composition of airborne grass pollen over the grass flowering season using eDNA and molecular ecology methods. High resolution grass pollen concentrations were compared between three microscale sites (<300 m apart) in a rural area in Worcestershire, UK. The grass pollen was modelled with local meteorology in a MANOVA (Multivariate ANOVA) approach to investigate factors relevant to pollen release and dispersion. Simultaneously, airborne pollen was sequenced using Illumina MySeq for metabarcoding, analysed against a reference database with all UK grasses using the R packages DADA2 and phyloseq to calculate Shannon's Diversity Index (α-diversity). The flowering phenology of a local Festuca rubra population was observed. We found that grass pollen concentrations varied on a microscale level, likely attributed to local topography and the dispersion distance of pollen from flowering grasses in local source areas. Six genera (Agrostis, Alopecurus, Arrhenatherum, Holcus, Lolium and Poa) dominated the pollen season, comprising on average 77 % of the relative abundance of grass species reads. Temperature, solar radiation, relative humidity, turbulence and wind speeds were found to be relevant for grass pollen release and dispersion processes. An isolated flowering Festuca rubra population contributed almost 40 % of the relative pollen abundance adjacent to the nearby sampler, but only contributed 1 % to samplers situated 300 m away. This suggests that most emitted grass pollen has limited dispersion distance and our results show substantial variation in airborne grass species composition over short geographical scales.
Collapse
Affiliation(s)
- Carl A Frisk
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester, UK.
| | - Godfrey P Apangu
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester, UK
| | - Geoffrey M Petch
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester, UK
| | - Simon Creer
- Molecular Ecology and Evolution Group, School of Natural Sciences, Bangor University, LL57 2UW Bangor, UK
| | - Mary Hanson
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester, UK
| | - Beverley Adams-Groom
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester, UK
| | - Carsten A Skjøth
- School of Science and the Environment, University of Worcester, Henwick Grove, WR2 6AJ Worcester, UK
| |
Collapse
|
33
|
Johansson J, Arce AN, Gill RJ. How competition between overlapping generations can influence optimal egg-laying strategies in annual social insects. Oecologia 2023; 202:535-547. [PMID: 37428254 PMCID: PMC10386978 DOI: 10.1007/s00442-023-05411-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 06/15/2023] [Indexed: 07/11/2023]
Abstract
Annual social insects are an integral functional group of organisms, particularly in temperate environments. An emblematic part of their annual cycle is the social phase, during which the colony-founding queen rears workers that later assist her in rearing sexual progeny (gynes and drones). In many annual social insects, such as species of bees, wasps, and other groups, developing larvae are provisioned gradually as they develop (progressive provisioning) leading to multiple larval generations being reared simultaneously. We present a model for how the queen in such cases should optimize her egg-laying rate throughout the social phase depending on number-size trade-offs, colony age-structure, and energy balance. Complementing previous theory on optimal allocation between workers vs. sexuals in annual social insects and on temporal egg-laying patterns in solitary insects, we elucidate how resource competition among overlapping larval generations can influence optimal egg-laying strategies. With model parameters informed by knowledge of a common bumblebee species, the optimal egg-laying schedule consists of two temporally separated early broods followed by a more continuous rearing phase, matching empirical observations. However, eggs should initially be laid continuously at a gradually increasing rate when resources are scarce or mortality risks high and in cases where larvae are fully supplied with resources at the egg-laying stage (mass-provisioning). These factors, alongside sexual:worker body size ratios, further determine the overall trend in egg-laying rates over the colony cycle. Our analysis provides an inroad to study and mechanistically understand variation in colony development strategies within and across species of annual social insects.
Collapse
Affiliation(s)
- Jacob Johansson
- Department of Biology, Lund University, Sölvegatan 37, 22362, Lund, Sweden.
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK.
| | - Andres N Arce
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
- School of Engineering, Arts, Science and Technology, University of Suffolk, 19 Neptune Quay, Ipswich, IP4 1QJ, UK
| | - Richard J Gill
- Department of Life Sciences, Georgina Mace Centre for the Living Planet, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
34
|
MacDonald H, Brisson D. Parasite-mediated selection on host phenology. Ecol Evol 2023; 13:e10107. [PMID: 37214617 PMCID: PMC10199498 DOI: 10.1002/ece3.10107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
The timing of seasonal activity, or phenology, is an adaptive trait that maximizes individual fitness by timing key life events to coincide with favorable abiotic factors and biotic interactions. Studies on the biotic interactions that determine optimal phenology have focused on temporal overlaps among positively-interacting species such as mutualisms. Less well understood is the extent that negative interactions such as parasitism impact the evolution of host phenology. Here, we present a mathematical model demonstrating the evolution of host phenological patterns in response to sterilizing parasites. Environments with parasites favor hosts with shortened activity periods or greater distributions in emergence timing, both of which reduce the temporal overlap between hosts and parasites and thus reduce infection risk. Although host populations with these altered phenological patterns are less likely to mature and reproduce, the fitness advantage of parasite avoidance can be greater than the cost of reduced reproduction. These results illustrate the impact of parasitism on the evolution of host phenology and suggest that shifts in host phenology could serve as a strategy to mitigate the risk of infection.
Collapse
Affiliation(s)
| | - Dustin Brisson
- Department of BiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
35
|
Frisk CA, Adams-Groom B, Smith M. Isolating the species element in grass pollen allergy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163661. [PMID: 37094678 DOI: 10.1016/j.scitotenv.2023.163661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Grass pollen is a leading cause of allergy in many countries, particularly Europe. Although many elements of grass pollen production and dispersal are quite well researched, gaps still remain around the grass species that are predominant in the air and which of those are most likely to trigger allergy. In this comprehensive review we isolate the species aspect in grass pollen allergy by exploring the interdisciplinary interdependencies between plant ecology, public health, aerobiology, reproductive phenology and molecular ecology. We further identify current research gaps and provide open ended questions and recommendations for future research in an effort to focus the research community to develop novel strategies to combat grass pollen allergy. We emphasise the role of separating temperate and subtropical grasses, identified through divergence in evolutionary history, climate adaptations and flowering times. However, allergen cross-reactivity and the degree of IgE connectivity in sufferers between the two groups remains an area of active research. The importance of future research to identify allergen homology through biomolecular similarity and the connection to species taxonomy and practical implications of this to allergenicity is further emphasised. We also discuss the relevance of eDNA and molecular ecological techniques (DNA metabarcoding, qPCR and ELISA) as important tools in quantifying the connection between the biosphere with the atmosphere. By gaining more understanding of the connection between species-specific atmospheric eDNA and flowering phenology we will further elucidate the importance of species in releasing grass pollen and allergens to the atmosphere and their individual role in grass pollen allergy.
Collapse
Affiliation(s)
- Carl A Frisk
- Department of Urban Greening and Vegetation Ecology, Norwegian Institute of Bioeconomy Research, Ås, Norway.
| | - Beverley Adams-Groom
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Matt Smith
- School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
36
|
Schiffer A, Loy X, Morozumi C, Brosi BJ. Differences in individual flowering time change pollen limitation and seed set in three montane wildflowers. AMERICAN JOURNAL OF BOTANY 2023; 110:1-14. [PMID: 36571456 DOI: 10.1002/ajb2.16123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 05/11/2023]
Abstract
PREMISE Changes to flowering time caused by climate change could affects plant fecundity, but studies that compare the individual-level responses of phenologically distinct, co-occurring species are lacking. We assessed how variation in floral phenology affects the fecundity of individuals from three montane species with different seasonal flowering times, including in snowmelt acceleration treatments to increase variability in phenology. METHODS We collected floral phenology and seed set data for individuals of three montane plant species (Mertensia fusiformis, Delphinium nuttallianum, Potentilla pulcherrima). To examine the drivers of seed set, we measured conspecific floral density and conducted pollen limitation experiments to isolate pollination function. We advanced the phenology of plant communities in a controlled large-scale snowmelt acceleration experiment. RESULTS Differences in individual phenology relative to the rest of the population affected fecundity in our focal species, but effects were species-specific. For our early-season species, individuals that bloomed later than the population peak bloom had increased fecundity, while for our midseason species, simply blooming before or after the population peak increased individual fecundity. For our late-season species, blooming earlier than the population peak increased fecundity. The early and midseason species were pollen-limited, and conspecific density affected seed set only for our early-season species. CONCLUSIONS Our study shows that variation in individual phenology affects fecundity in three phenologically distinct montane species, and that pollen limitation may be more influential than conspecific density. Our results suggest that individual-level changes in phenology are important to consider for understanding plant reproductive success.
Collapse
Affiliation(s)
- Annie Schiffer
- Department of Wildland Resources, Utah State University, 5230 Old Main Hill, Logan, UT, 84322, USA
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
| | - Xingwen Loy
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
- Southeastern Center for Conservation, Atlanta Botanical Garden, 1345 Piedmont Ave NE, Atlanta, GA, 30309, USA
| | - Connor Morozumi
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
- Department of Biology, University of Louisville, 139 Life Sciences Building, Louisville, KY, 40292, USA
| | - Berry J Brosi
- Rocky Mountain Biological Laboratory, 8000 County Rd. 317, Box 519, Crested Butte, CO, 81224, USA
- Department of Environmental Sciences, Emory University, 400 Dowman Dr., Atlanta, GA, 30322, USA
- Department of Biology, University of Washington, W Stevens Way, Seattle, WA, 98195-1800, USA
| |
Collapse
|
37
|
Recknagel F. Cyberinfrastructure for sourcing and processing ecological data. ECOL INFORM 2023. [DOI: 10.1016/j.ecoinf.2023.102039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
38
|
Ferrara V, Ingemark D. The Entangled Phenology of the Olive Tree: A Compiled Ecological Calendar of Olea Europaea L. Over the Last Three Millennia With Sicily as a Case Study. GEOHEALTH 2023; 7:e2022GH000619. [PMID: 36911576 PMCID: PMC9993138 DOI: 10.1029/2022gh000619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 01/24/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Seasonal cycles in plants and animals drive key timings of human practices in an agrosystem like the best time for harvest, planting, or pruning. Within the framework of historical phenological studies, we attempt a reconstruction of the olive (Olea europaea L.) phenology along millennia. Thanks to its extraordinary longevity, the olive tree is a living proxy from the past and embodies a still uncollected long-term memory of ecological behaviors. A cultural keystone species, olive cultivation has more and more played a crucial role for biodiversity conservation, livelihood of rural communities and their enrooted cultural identity in the whole Mediterranean. By compiling traditional phenological knowledge from historical written sources and oral traditions, and using it as historical bio-indicator of the linkage between human ecological practices and seasonal changes of plant behavior, we compiled a monthly ecological calendar of the olive tree covering the last ∼2800 years. As a case study, we chose a special place: Sicily, unique for its position in the Mediterranean, geomorphology and legacies in the form of cross-temporal accumulated eco-cultures. Such a sui generis ecological calendar provides an additional case study to explore the intertwining of plant behavior and human adaptation strategies and the interplay between cultural diversity, ecological disturbance and phenological stability. All of this, in turn, can inform action for the present and future sustainable management of these millennial trees.
Collapse
Affiliation(s)
- Vincenza Ferrara
- Department of Archaeology and Ancient HistoryUppsala UniversityUppsalaSweden
- Department of Human GeographyStockholm UniversityStockholmSweden
| | - Dominic Ingemark
- Department of Archaeology and Ancient HistoryUppsala UniversityUppsalaSweden
| |
Collapse
|
39
|
Iler AM, CaraDonna PJ, Richardson LK, Wu ET, Fant JB, Pfeiler KC, Freymiller GA, Godfrey KN, Gorman AJ, Wilson N, Whitford MD, Edmonds GA, Stratton C, Jules ES. Genotype accounts for intraspecific variation in the timing and duration of multiple, sequential life-cycle events in a willow species. AMERICAN JOURNAL OF BOTANY 2023; 110:e16112. [PMID: 36478327 DOI: 10.1002/ajb2.16112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
PREMISE Phenological variation among individuals within populations is common and has a variety of ecological and evolutionary consequences, including forming the basis for population-level responses to environmental change. Although the timing of life-cycle events has genetic underpinnings, whether intraspecific variation in the duration of life-cycle events reflects genetic differences among individuals is poorly understood. METHODS We used a common garden experiment with 10 genotypes of Salix hookeriana (coastal willow) from northern California, United States to investigate the extent to which genetic variation explains intraspecific variation in the timing and duration of multiple, sequential life-cycle events: flowering, leaf budbreak, leaf expansion, fruiting, and fall leaf coloration. We used seven clones of each genotype, for a total of 70 individual trees. RESULTS Genotype affected each sequential life-cycle event independently and explained on average 62% of the variation in the timing and duration of vegetative and reproductive life-cycle events. All events were significantly heritable. A single genotype tended to be "early" or "late" across life-cycle events, but for event durations, there was no consistent response within genotypes. CONCLUSIONS This research demonstrates that genetic variation can be a major component underlying intraspecific variation in the timing and duration of life-cycle events. It is often assumed that the environment affects durations, but we show that genetic factors also play a role. Because the timing and duration of events are independent of one another, our results suggest that the effects of environmental change on one event will not necessarily cascade to subsequent events.
Collapse
Affiliation(s)
- Amy M Iler
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science and Action, Glencoe, IL, USA
- Northwestern University, Plant Biology and Conservation, Evanston, IL, USA
- Aarhus University, Aarhus Institute of Advanced Studies, Aarhus, Denmark
| | - Paul J CaraDonna
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science and Action, Glencoe, IL, USA
- Northwestern University, Plant Biology and Conservation, Evanston, IL, USA
| | - Lea K Richardson
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science and Action, Glencoe, IL, USA
- Northwestern University, Plant Biology and Conservation, Evanston, IL, USA
| | - Elizabeth T Wu
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Jeremie B Fant
- Chicago Botanic Garden, Negaunee Institute for Plant Conservation Science and Action, Glencoe, IL, USA
- Northwestern University, Plant Biology and Conservation, Evanston, IL, USA
| | - Kelly C Pfeiler
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, USA
- Biodiversity Institute, University of Kansas, Lawrence, KS, USA
| | - Grace A Freymiller
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Kimber N Godfrey
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Alexander J Gorman
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Nicholas Wilson
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Malachi D Whitford
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Grant A Edmonds
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Conner Stratton
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| | - Erik S Jules
- California State Polytechnic University - Humboldt, Department of Biological Sciences, Arcata, CA, USA
| |
Collapse
|
40
|
Anderson TL, Burkhart JJ, Cianci‐Gaskill JA, Davenport JM. Limited population and community effects of hatching asynchrony in a pond‐breeding salamander. Ecosphere 2023. [DOI: 10.1002/ecs2.4372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Affiliation(s)
- Thomas L. Anderson
- Department of Biology Appalachian State University Boone North Carolina USA
| | - Jacob J. Burkhart
- Department of Biology Appalachian State University Boone North Carolina USA
| | | | - Jon M. Davenport
- Department of Biology Appalachian State University Boone North Carolina USA
| |
Collapse
|
41
|
Prather RM, Dalton RM, barr B, Blumstein DT, Boggs CL, Brody AK, Inouye DW, Irwin RE, Martin JGA, Smith RJ, Van Vuren DH, Wells CP, Whiteman HH, Inouye BD, Underwood N. Current and lagged climate affects phenology across diverse taxonomic groups. Proc Biol Sci 2023; 290:20222181. [PMID: 36629105 PMCID: PMC9832555 DOI: 10.1098/rspb.2022.2181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/01/2022] [Indexed: 01/12/2023] Open
Abstract
The timing of life events (phenology) can be influenced by climate. Studies from around the world tell us that climate cues and species' responses can vary greatly. If variation in climate effects on phenology is strong within a single ecosystem, climate change could lead to ecological disruption, but detailed data from diverse taxa within a single ecosystem are rare. We collated first sighting and median activity within a high-elevation environment for plants, insects, birds, mammals and an amphibian across 45 years (1975-2020). We related 10 812 phenological events to climate data to determine the relative importance of climate effects on species' phenologies. We demonstrate significant variation in climate-phenology linkage across taxa in a single ecosystem. Both current and prior climate predicted changes in phenology. Taxa responded to some cues similarly, such as snowmelt date and spring temperatures; other cues affected phenology differently. For example, prior summer precipitation had no effect on most plants, delayed first activity of some insects, but advanced activity of the amphibian, some mammals, and birds. Comparing phenological responses of taxa at a single location, we find that important cues often differ among taxa, suggesting that changes to climate may disrupt synchrony of timing among taxa.
Collapse
Affiliation(s)
- Rebecca M. Prather
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Rebecca M. Dalton
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - billy barr
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Daniel T. Blumstein
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Ecology and Evolutionary Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Carol L. Boggs
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alison K. Brody
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Vermont, Burlington, VT 05405, USA
| | - David W. Inouye
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Maryland, College Park, MD 20742, USA
| | - Rebecca E. Irwin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Applied Ecology, North Carolina State University, Raleigh, NC 27695, USA
| | - Julien G. A. Martin
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biology, University of Ottawa, Ottawa, ON, Canada K1N 9A7
| | - Rosemary J. Smith
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Idaho State University, Pocatello, ID 83209, USA
| | - Dirk H. Van Vuren
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Wildlife, Fish, and Conservation Biology, University of California Davis, Davis, CA, USA
| | - Caitlin P. Wells
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Fish, Wildlife, and Conservation Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Howard H. Whiteman
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
- Department of Biological Sciences, Murray State University, Murray, KY 42071, USA
| | - Brian D. Inouye
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| | - Nora Underwood
- Department of Biological Science, Florida State University, Tallahassee, FL 32306, USA
- Rocky Mountain Biological Laboratory, Crested Butte, CO 81224, USA
| |
Collapse
|
42
|
Park JS, Post E. Seasonal timing on a cyclical Earth: Towards a theoretical framework for the evolution of phenology. PLoS Biol 2022; 20:e3001952. [PMID: 36574457 PMCID: PMC9829184 DOI: 10.1371/journal.pbio.3001952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 01/09/2023] [Indexed: 12/29/2022] Open
Abstract
Phenology refers to the seasonal timing patterns commonly exhibited by life on Earth, from blooming flowers to breeding birds to human agriculture. Climate change is altering abiotic seasonality (e.g., longer summers) and in turn, phenological patterns contained within. However, how phenology should evolve is still an unsolved problem. This problem lies at the crux of predicting future phenological changes that will likely have substantial ecosystem consequences, and more fundamentally, of understanding an undeniably global phenomenon. Most studies have associated proximate environmental variables with phenological responses in case-specific ways, making it difficult to contextualize observations within a general evolutionary framework. We outline the complex but universal ways in which seasonal timing maps onto evolutionary fitness. We borrow lessons from life history theory and evolutionary demography that have benefited from a first principles-based theoretical scaffold. Lastly, we identify key questions for theorists and empiricists to help advance our general understanding of phenology.
Collapse
Affiliation(s)
- John S. Park
- Department of Biology, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | - Eric Post
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, Davis, California, United States of America
| |
Collapse
|
43
|
Castillioni K, Newman GS, Souza L, Iler AM. Effects of drought on grassland phenology depend on functional types. THE NEW PHYTOLOGIST 2022; 236:1558-1571. [PMID: 36068954 DOI: 10.1111/nph.18462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
Shifts in flowering phenology are important indicators of climate change. However, the role of precipitation in driving phenology is far less understood compared with other environmental cues, such as temperature. We use a precipitation reduction gradient to test the direction and magnitude of effects on reproductive phenology and reproduction across 11 plant species in a temperate grassland, a moisture-limited ecosystem. Our experiment was conducted in a single, relatively wet year. We examine the effects of precipitation for species, functional types, and the community. Our results provide evidence that reduced precipitation shifts phenology, alters flower and fruit production, and that the magnitude and direction of the responses depend on functional type and species. For example, early-blooming species shift toward earlier flowering, whereas later-blooming species shift toward later flowering. Because of opposing species-level shifts, there is no overall shift in community-level phenology. This study provides experimental evidence that changes in rainfall can drive phenological shifts. Our results additionally highlight the importance of understanding how plant functional types govern responses to changing climate conditions, which is relevant for forecasting phenology and community-level changes. Specifically, the implications of divergent phenological shifts between early- and late-flowering species include resource scarcity for pollinators and seed dispersers and new temporal windows for invasion.
Collapse
Affiliation(s)
- Karen Castillioni
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, 73019, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
- Department of Ecology, Evolution and Behavior, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Gregory S Newman
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, 73019, USA
- Department of Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Lara Souza
- Oklahoma Biological Survey, University of Oklahoma, Norman, OK, 73019, USA
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Amy M Iler
- Chicago Botanic Garden, The Negaunee Institute for Plant Science Conservation and Action, Glencoe, IL, 60022, USA
| |
Collapse
|
44
|
Chen WH, Bain A, Wang SY, Ho YC, Tzeng HY. Mediation of a Mutualistic Conflict for Pollination via Fig Phenology and Odor Recognition between Ficus and Fig Wasp. PLANTS (BASEL, SWITZERLAND) 2022; 11:2603. [PMID: 36235469 PMCID: PMC9572538 DOI: 10.3390/plants11192603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
The vegetative and reproductive growth of plants provide the basic tempo for an ecosystem, and when species are interdependent, phenology becomes crucial to regulating the quantity and quality of the interactions. In plant-insect interactions, the plants signal the beginning of their reproductive period with visual and chemical cues; however, in the case of Ficus mutualism, the cues are strictly chemical. The volatile organic compounds emitted by a fig species are a unique, specific blend that provides a signal to mutualistic wasps that the figs are receptive for pollination. In this study, we studied both the phenological pattern of Ficus septica in Central Taiwan and its emissions of volatile compounds at receptivity. This dioecious fig species displays a pattern of continuous vegetative and reproductive production all through the year with a decrease in winter. In parallel, the odor blends emitted by male and female trees are similar but with seasonal variations; these are minimal during winter and increase with the size of the wasp population during the favorable season. In addition, the pollinating females cannot distinguish between the male and female summer odor blends. The link between odor similarity, pollinators and intersexual conflict is discussed.
Collapse
Affiliation(s)
- Wen-Hsuan Chen
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan
- Chiayi Forest District Office, Forestry Bureau, Council of Agriculture, Executive Yuan, Chiayi City 60000, Taiwan
| | - Anthony Bain
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- International PhD Program for Science, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Sheng-Yang Wang
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan
- Academy of Circular Economy, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Chiao Ho
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan
- Hsinchu Forest District Office, Forestry Bureau, Council of Agriculture, Executive Yuan, Chiayi City 30191, Taiwan
| | - Hsy-Yu Tzeng
- Department of Forestry, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
45
|
Ferreras AE, Ashworth L, Giorgis MA. Uncoupled flowering and fruiting phenology as the strategy of non-native invasive woody species in seasonally dry ecosystems. Biol Invasions 2022. [DOI: 10.1007/s10530-022-02920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
46
|
Xie Y, Thammavong HT, Park DS. The ecological implications of intra- and inter-species variation in phenological sensitivity. THE NEW PHYTOLOGIST 2022; 236:760-773. [PMID: 35801834 PMCID: PMC9796043 DOI: 10.1111/nph.18361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Plant-pollinator mutualisms rely upon the synchrony of interacting taxa. Climate change can disrupt this synchrony as phenological responses to climate vary within and across species. However, intra- and interspecific variation in phenological responses is seldom considered simultaneously, limiting our understanding of climate change impacts on interactions among taxa across their ranges. We investigated how variation in phenological sensitivity to climate can alter ecological interactions simultaneously within and among species using natural history collections and citizen science data. We focus on a unique system, comprising a wide-ranged spring ephemeral with varying color morphs (Claytonia virginica) and its specialist bee pollinator (Andrena erigeniae). We found strongly opposing trends in the phenological sensitivities of plants vs their pollinators. Flowering phenology was more sensitive to temperature in warmer regions, whereas bee phenology was more responsive in colder regions. Phenological sensitivity varied across flower color morphs. Temporal synchrony between flowering and pollinator activity was predicted to change heterogeneously across the species' ranges in the future. Our work demonstrates the complexity and fragility of ecological interactions in time and the necessity of incorporating variation in phenological responses across multiple axes to understand how such interactions will change in the future.
Collapse
Affiliation(s)
- Yingying Xie
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| | | | - Daniel S. Park
- Department of Biological SciencesPurdue UniversityWest LafayetteIN47906USA
- Purdue Center for Plant BiologyPurdue UniversityWest LafayetteIN47906USA
| |
Collapse
|
47
|
Cooke SJ, Bergman JN, Twardek WM, Piczak ML, Casselberry GA, Lutek K, Dahlmo LS, Birnie-Gauvin K, Griffin LP, Brownscombe JW, Raby GD, Standen EM, Horodysky AZ, Johnsen S, Danylchuk AJ, Furey NB, Gallagher AJ, Lédée EJI, Midwood JD, Gutowsky LFG, Jacoby DMP, Matley JK, Lennox RJ. The movement ecology of fishes. JOURNAL OF FISH BIOLOGY 2022; 101:756-779. [PMID: 35788929 DOI: 10.1111/jfb.15153] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Movement of fishes in the aquatic realm is fundamental to their ecology and survival. Movement can be driven by a variety of biological, physiological and environmental factors occurring across all spatial and temporal scales. The intrinsic capacity of movement to impact fish individually (e.g., foraging) with potential knock-on effects throughout the ecosystem (e.g., food web dynamics) has garnered considerable interest in the field of movement ecology. The advancement of technology in recent decades, in combination with ever-growing threats to freshwater and marine systems, has further spurred empirical research and theoretical considerations. Given the rapid expansion within the field of movement ecology and its significant role in informing management and conservation efforts, a contemporary and multidisciplinary review about the various components influencing movement is outstanding. Using an established conceptual framework for movement ecology as a guide (i.e., Nathan et al., 2008: 19052), we synthesized the environmental and individual factors that affect the movement of fishes. Specifically, internal (e.g., energy acquisition, endocrinology, and homeostasis) and external (biotic and abiotic) environmental elements are discussed, as well as the different processes that influence individual-level (or population) decisions, such as navigation cues, motion capacity, propagation characteristics and group behaviours. In addition to environmental drivers and individual movement factors, we also explored how associated strategies help survival by optimizing physiological and other biological states. Next, we identified how movement ecology is increasingly being incorporated into management and conservation by highlighting the inherent benefits that spatio-temporal fish behaviour imbues into policy, regulatory, and remediation planning. Finally, we considered the future of movement ecology by evaluating ongoing technological innovations and both the challenges and opportunities that these advancements create for scientists and managers. As aquatic ecosystems continue to face alarming climate (and other human-driven) issues that impact animal movements, the comprehensive and multidisciplinary assessment of movement ecology will be instrumental in developing plans to guide research and promote sustainability measures for aquatic resources.
Collapse
Affiliation(s)
- Steven J Cooke
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Jordanna N Bergman
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - William M Twardek
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Morgan L Piczak
- Fish Ecology and Conservation Physiology Laboratory, Department of Biology and the Institute of Environmental and Interdisciplinary Science, Carleton University, Ottawa, Ontario, Canada
| | - Grace A Casselberry
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Keegan Lutek
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Lotte S Dahlmo
- Department of Biological Sciences, University of Bergen, Bergen, Norway
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
| | - Kim Birnie-Gauvin
- Section for Freshwater Fisheries and Ecology, National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Lucas P Griffin
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jacob W Brownscombe
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Graham D Raby
- Biology Department, Trent University, Peterborough, Ontario, Canada
| | - Emily M Standen
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Andrij Z Horodysky
- Department of Marine and Environmental Science, Hampton University, Hampton, Virginia, USA
| | - Sönke Johnsen
- Biology Department, Duke University, Durham, North Caroline, USA
| | - Andy J Danylchuk
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, USA
| | - Nathan B Furey
- Department of Biological Sciences, University of New Hampshire, Durham, New Hampshire, USA
| | | | - Elodie J I Lédée
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - Jon D Midwood
- Great Lakes Laboratory for Fisheries and Aquatic Sciences, Fisheries and Oceans Canada, Burlington, Ontario, Canada
| | - Lee F G Gutowsky
- Environmental & Life Sciences Program, Trent University, Peterborough, Ontario, Canada
| | - David M P Jacoby
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Jordan K Matley
- Program in Aquatic Resources, St Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Robert J Lennox
- Laboratory for Freshwater Ecology and Inland Fisheries, NORCE Norwegian Research Centre, Bergen, Norway
- Norwegian Institute for Nature Research, Trondheim, Norway
| |
Collapse
|
48
|
Garcia-Rojas MI, Keatley MR, Roslan N. Citizen science and expert opinion working together to understand the impacts of climate change. PLoS One 2022; 17:e0273822. [PMID: 36040922 PMCID: PMC9426922 DOI: 10.1371/journal.pone.0273822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 08/16/2022] [Indexed: 01/14/2023] Open
Abstract
In the absence of historical information on phenology available in Australia, expert opinion was used for selecting indicator species that would be suitable for monitoring phenology on a continental scale as part of ClimateWatch-a citizen science program. Jacaranda mimosifolia being the most frequently observed species was used in this study to test expert opinion and the adequacy of citizen science records in detecting the influence of climatic conditions on this species' flowering phenology. Generalised Additive Models for Location Scale and Shape were used to explore the occurrence and intensity of flowering of Jacaranda in relation to rainfall, temperature, and sun exposure. Jacaranda flowering onset was influenced by winter cold exposure, while flowering intensity was related to increasing sun exposure as spring progresses, and both were influenced by the conditions for flowering in the former flowering seasons (i.e., sun exposure and highest temperatures reached, respectively). Our models provide the first attempt to describe the climate drivers for Jacaranda mimosifolia flowering in the southern hemisphere and identify where climatic changes will most likely alter this tree's phenology in Australia and benefit or challenge its reproductive ability. They also support the choice of species for citizen science programs based on expert opinion.
Collapse
Affiliation(s)
- Maria Isabel Garcia-Rojas
- Earthwatch Institute, Melbourne, Victoria, Australia
- School of Agricultural, Environmental and Veterinary Sciences, Charles Sturt University, Bathurst, New South Wales, Australia
| | - Marie R. Keatley
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria, Australia
| | - Nadiah Roslan
- Earthwatch Institute, Melbourne, Victoria, Australia
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Larsen EA, Belitz MW, Guralnick RP, Ries L. Consistent trait-temperature interactions drive butterfly phenology in both incidental and survey data. Sci Rep 2022; 12:13370. [PMID: 35927297 PMCID: PMC9352721 DOI: 10.1038/s41598-022-16104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
Data availability limits phenological research at broad temporal and spatial extents. Butterflies are among the few taxa with broad-scale occurrence data, from both incidental reports and formal surveys. Incidental reports have biases that are challenging to address, but structured surveys are often limited seasonally and may not span full flight phenologies. Thus, how these data source compare in phenological analyses is unclear. We modeled butterfly phenology in relation to traits and climate using parallel analyses of incidental and survey data, to explore their shared utility and potential for analytical integration. One workflow aggregated “Pollard” surveys, where sites are visited multiple times per year; the other aggregated incidental data from online portals: iNaturalist and eButterfly. For 40 species, we estimated early (10%) and mid (50%) flight period metrics, and compared the spatiotemporal patterns and drivers of phenology across species and between datasets. For both datasets, inter-annual variability was best explained by temperature, and seasonal emergence was earlier for resident species overwintering at more advanced stages. Other traits related to habitat, feeding, dispersal, and voltinism had mixed or no impacts. Our results suggest that data integration can improve phenological research, and leveraging traits may predict phenology in poorly studied species.
Collapse
Affiliation(s)
- Elise A Larsen
- Department of Biology, Georgetown University, Regents Hall 501, Washington DC, 20057, USA.
| | - Michael W Belitz
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Biodiversity Institute, Gainesville, FL, 32603, USA
| | - Robert P Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Leslie Ries
- Department of Biology, Georgetown University, Regents Hall 501, Washington DC, 20057, USA
| |
Collapse
|
50
|
Hassan T, Ahmad R, Wani SA, Gulzar R, Waza SA, Khuroo AA. Climate warming-driven phenological shifts are species-specific in woody plants: evidence from twig experiment in Kashmir Himalaya. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1771-1785. [PMID: 35759146 DOI: 10.1007/s00484-022-02317-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/10/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Experimental evidences in support of climate warming-driven phenological shifts are still scarce, particularly from the developing world. Here, we investigated the effect of experimental warming on flowering phenology of selected woody plants in Kashmir Himalaya. We selected the twigs of four congeneric pairs of temperate woody species (Prunus, Populus, Ulmus, Viburnum)-typical spring-flowering plants in the region. Using randomised block design, we monitored these winter dormant twigs in controlled growth chambers to study the effect of different temperature regimes (9, 17, 20 and 23 °C) and species identity on the patterns of phenological shifts. We observed a significant phenological shift in all the species showing preponement in the first flower out and senescence phases ranging from 0.56 to 3.0 and 0.77 to 4.04 days per degree increase in temperature, respectively. The duration of flowering phase in all the species showed a corresponding decrease along the gradient of increasing temperature, which was more driven by preponement of the flower senescence than the start of flowering. The patterns of phenological shifts were highly species-specific, and the magnitude of these shifts significantly varied in all the four pairs of congeneric species despite their phylogenetic similarity. Our study provides experimental support to the previous long-term observation and herbarium-based studies showing that the patterns of phenological shifts in response to global climate warming are likely to vary between species, even those belonging to same evolutionary stock. Our findings highlight that a one-size-fits-all strategy to manage the likely impacts of climate warming-induced phenological shifts will seldom succeed, and should instead be designed for the specific phenological responses of species and regions.
Collapse
Affiliation(s)
- Tabasum Hassan
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Rameez Ahmad
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Sajad A Wani
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Ruquia Gulzar
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India
| | - Showkat A Waza
- Mountain Crop Research Station (MCRS) Sagam, SKUAST Kashmir, Anantnag, 192124, J&K, India
| | - Anzar Ahmad Khuroo
- Centre for Biodiversity & Taxonomy, Department of Botany, University of Kashmir, Srinagar, 190006, J&K, India.
| |
Collapse
|