1
|
Su F, Su M, Wei W, Wu J, Chen L, Sun X, Liu M, Sun S, Mao R, Bourgonje AR, Hu S. Integrating multi-omics data to reveal the host-microbiota interactome in inflammatory bowel disease. Gut Microbes 2025; 17:2476570. [PMID: 40063366 PMCID: PMC11901428 DOI: 10.1080/19490976.2025.2476570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/14/2025] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
Numerous studies have accelerated the knowledge expansion on the role of gut microbiota in inflammatory bowel disease (IBD). However, the precise mechanisms behind host-microbe cross-talk remain largely undefined, due to the complexity of the human intestinal ecosystem and multiple external factors. In this review, we introduce the interactome concept to systematically summarize how intestinal dysbiosis is involved in IBD pathogenesis in terms of microbial composition, functionality, genomic structure, transcriptional activity, and downstream proteins and metabolites. Meanwhile, this review also aims to present an updated overview of the relevant mechanisms, high-throughput multi-omics methodologies, different types of multi-omics cohort resources, and computational methods used to understand host-microbiota interactions in the context of IBD. Finally, we discuss the challenges pertaining to the integration of multi-omics data in order to reveal host-microbiota cross-talk and offer insights into relevant future research directions.
Collapse
Affiliation(s)
- Fengyuan Su
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Meng Su
- The First Clinical Medical School, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Wenting Wei
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jiayun Wu
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Leyan Chen
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Xiqiao Sun
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Moyan Liu
- Amsterdam UMC location Academic Medical Center, Department of Experimental Vascular Medicine, Amsterdam, The Netherlands
| | - Shiqiang Sun
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ren Mao
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Arno R. Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
2
|
Ali MS, Lee EB, Quah Y, Sayem SAJ, Abbas MA, Suk K, Lee SJ, Park SC. Modulating effects of heat-killed and live Limosilactobacillus reuteri PSC102 on the immune response and gut microbiota of cyclophosphamide-treated rats. Vet Q 2024; 44:1-18. [PMID: 38682319 PMCID: PMC11060015 DOI: 10.1080/01652176.2024.2344765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
In the present study, we investigated the potential immunomodulatory effects of heat-killed (hLR) and live Limosilactobacillus reuteri PSC102 (LR; formerly Lactobacillus reuteri PSC102) in RAW264.7 macrophage cells and Sprague-Dawley rats. RAW264.7 murine macrophage cells were stimulated with hLR and LR for 24 h. Cyclophosphamide (CTX)-induced immunosuppressed Sprague-Dawley rats were orally administered with three doses of hLR (L-Low, M-Medium, and H-High) and LR for 3 weeks. The phagocytic capacity, production of nitric oxide (NO), and expression of cytokines in RAW264.7 cells were measured, and the different parameters of immunity in rats were determined. hLR and LR treatments promoted phagocytic activity and induced the production of NO and the expression of iNOS, TNF-α, IL-1β, IL-6, and Cox-2 in macrophage cells. In the in vivo experiment, hLR and LR treatments significantly increased the immune organ indices, alleviated the spleen injury, and ameliorated the number of white blood cells, granulocytes, lymphocytes, and mid-range absolute counts in immunosuppressive rats. hLR and LR increased neutrophil migration and phagocytosis, splenocyte proliferation, and T lymphocyte subsets (CD4+, CD8+, CD45RA+, and CD28+). The levels of immune factors (IL-2, IL-4, IL-6, IL-10, IL-12A, TNF-α, and IFN-γ) in the hLR and LR groups were upregulated compared with those in the CTX-treatment group. hLR and LR treatments could also modulate the gut microbiota composition, thereby increasing the relative abundance of Bacteroidetes and Firmicutes but decreasing the level of Proteobacteria. hLR and LR protected against CTX-induced adverse reactions by modulating the immune response and gut microbiota composition. Therefore, they could be used as potential immunomodulatory agents.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Chittagong, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Yixian Quah
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Syed Al Jawad Sayem
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Muhammad Aleem Abbas
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Seung-Jin Lee
- Developmental and Reproductive Toxicology Research Group, Korea Institute of Toxicology, Daejeon, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, Institute for Veterinary Biomedical Science, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
3
|
Gryaznova M, Smirnova Y, Burakova I, Morozova P, Lagutina S, Chizhkov P, Korneeva O, Syromyatnikov M. Fecal Microbiota Characteristics in Constipation-Predominant and Mixed-Type Irritable Bowel Syndrome. Microorganisms 2024; 12:1414. [PMID: 39065182 PMCID: PMC11278693 DOI: 10.3390/microorganisms12071414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Irritable bowel syndrome (IBS) is a common condition that affects the lifestyle of patients. It is associated with significant changes in the composition of the gut microbiome, but the underlying microbial mechanisms remain to be fully understood. We study the fecal microbiome of patients with constipation-predominant IBS (IBS-C) and mixed-type IBS (IBS-M). METHODS We sequenced the V3 region of the 16S rRNA on the Ion Torrent PGM sequencing platform to study the microbiome. RESULTS In the patients with IBS-C and IBS-M, an increase in alpha diversity was found, compared to the healthy group, and differences in beta diversity were also noted. At the phylum level, both IBS subtypes showed an increase in the Firmicutes/Bacteroidetes ratio, as well as an increase in the abundance of Actinobacteria and Verrucomicrobiota. Changes in some types of bacteria were characteristic of only one of the IBS subtypes, while no statistically significant differences in the composition of the microbiome were detected between IBS-C and IBS-M. CONCLUSIONS This study was the first to demonstrate the association of Turicibacter sanguinis, Mitsuokella jalaludinii, Erysipelotrichaceae UCG-003, Senegalimassilia anaerobia, Corynebacterium jeikeium, Bacteroides faecichinchillae, Leuconostoc carnosum, and Parabacteroides merdae with IBS subtypes.
Collapse
Affiliation(s)
- Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| | - Svetlana Lagutina
- Department of Polyclinic Therapy, Voronezh State Medical University Named after N.N. Burdenko, 394036 Voronezh, Russia;
| | - Pavel Chizhkov
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| | - Olga Korneeva
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.G.); (Y.S.); (I.B.); (P.M.); (O.K.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia;
| |
Collapse
|
4
|
Amara J, Itani T, Hajal J, Bakhos JJ, Saliba Y, Aboushanab SA, Kovaleva EG, Fares N, Mondragon AC, Miranda JM. Circadian Rhythm Perturbation Aggravates Gut Microbiota Dysbiosis in Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2024; 16:247. [PMID: 38257139 PMCID: PMC10819604 DOI: 10.3390/nu16020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Circadian rhythm disruption is increasingly considered an environmental risk factor for the development and exacerbation of inflammatory bowel disease. We have reported in a previous study that nychthemeral dysregulation is associated with an increase in intestinal barrier permeability and inflammation in mice with dextran sulfate sodium (DSS)-induced colitis. To investigate the effect of circadian rhythm disruption on the composition and diversity of the gut microbiota (GM), sixty male C57BL/6J mice were initially divided to two groups, with the shifted group (n = 30) exposed to circadian shifts for three months and the non-shifted group (n = 30) kept under a normal light-dark cycle. The mice of the shifted group were cyclically housed for five days under the normal 12:12 h light-dark cycle, followed by another five days under a reversed light-dark cycle. At the end of the three months, a colitis was induced by 2% DSS given in the drinking water of 30 mice. Animals were then divided into four groups (n = 15 per group): sham group non-shifted (Sham-NS), sham group shifted (Sham-S), DSS non-shifted (DSS-NS) and DSS shifted (DSS-S). Fecal samples were collected from rectal content to investigate changes in GM composition via DNA extraction, followed by high-throughput sequencing of the bacterial 16S rRNA gene. The mouse GM was dominated by three phyla: Firmicutes, Bacteroidetes and Actinobacteria. The Firmicutes/Bacteroidetes ratio decreased in mice with induced colitis. The richness and diversity of the GM were reduced in the colitis group, especially in the group with inverted circadian rhythm. Moreover, the GM composition was modified in the inverted circadian rhythm group, with an increase in Alloprevotella, Turicibacter, Bacteroides and Streptococcus genera. Circadian rhythm inversion exacerbates GM dysbiosis to a less rich and diversified extent in a DSS-induced colitis model. These findings show possible interplay between circadian rhythm disruption, GM dynamics and colitis pathogenesis.
Collapse
Affiliation(s)
- Joseph Amara
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Tarek Itani
- Laboratoire de Microbiologie, Faculté de Pharmacie, Université Saint Joseph, Beirut 1104 2020, Lebanon;
| | - Joelle Hajal
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Jules-Joel Bakhos
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Youakim Saliba
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Saied A. Aboushanab
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Elena G. Kovaleva
- Institute of Chemical Engineering, Ural Federal University Named after the First President of Russia B. N. Yeltsin, Mira 19, Yekaterinburg 620002, Russia; (S.A.A.); (E.G.K.)
| | - Nassim Fares
- Laboratoire de Recherche en Physiologie et Physiopathologie, Pôle Technologie Santé, Faculté de Médecine, Université Saint Joseph, Beirut 1104 2020, Lebanon; (J.A.); (J.H.); (Y.S.)
| | - Alicia C. Mondragon
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| | - Jose Manuel Miranda
- Laboratorio de Higiene, Inspección y Control de Alimentos, Departamento de Química Analítica, Nutrición y Bromatología, Campus Terra, Universidade da Santiago de Compostela, 27002 Lugo, Spain;
| |
Collapse
|
5
|
Bohn T, Balbuena E, Ulus H, Iddir M, Wang G, Crook N, Eroglu A. Carotenoids in Health as Studied by Omics-Related Endpoints. Adv Nutr 2023; 14:1538-1578. [PMID: 37678712 PMCID: PMC10721521 DOI: 10.1016/j.advnut.2023.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023] Open
Abstract
Carotenoids have been associated with risk reduction for several chronic diseases, including the association of their dietary intake/circulating levels with reduced incidence of obesity, type 2 diabetes, certain types of cancer, and even lower total mortality. In addition to some carotenoids constituting vitamin A precursors, they are implicated in potential antioxidant effects and pathways related to inflammation and oxidative stress, including transcription factors such as nuclear factor κB and nuclear factor erythroid 2-related factor 2. Carotenoids and metabolites may also interact with nuclear receptors, mainly retinoic acid receptor/retinoid X receptor and peroxisome proliferator-activated receptors, which play a role in the immune system and cellular differentiation. Therefore, a large number of downstream targets are likely influenced by carotenoids, including but not limited to genes and proteins implicated in oxidative stress and inflammation, antioxidation, and cellular differentiation processes. Furthermore, recent studies also propose an association between carotenoid intake and gut microbiota. While all these endpoints could be individually assessed, a more complete/integrative way to determine a multitude of health-related aspects of carotenoids includes (multi)omics-related techniques, especially transcriptomics, proteomics, lipidomics, and metabolomics, as well as metagenomics, measured in a variety of biospecimens including plasma, urine, stool, white blood cells, or other tissue cellular extracts. In this review, we highlight the use of omics technologies to assess health-related effects of carotenoids in mammalian organisms and models.
Collapse
Affiliation(s)
- Torsten Bohn
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg.
| | - Emilio Balbuena
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Hande Ulus
- Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States
| | - Mohammed Iddir
- Nutrition and Health Research Group, Department of Precision Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Genan Wang
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, College of Engineering, North Carolina State University, Raleigh, NC, United States
| | - Abdulkerim Eroglu
- Department of Molecular and Structural Biochemistry, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC, United States; Plants for Human Health Institute, North Carolina Research Campus, North Carolina State University, Kannapolis, NC, United States.
| |
Collapse
|
6
|
Wichmann A, Buschong E, Müller A, Jünger D, Hildebrandt A, Hankeln T, Schmidt B. MetaTransformer: deep metagenomic sequencing read classification using self-attention models. NAR Genom Bioinform 2023; 5:lqad082. [PMID: 37705831 PMCID: PMC10495543 DOI: 10.1093/nargab/lqad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/14/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Deep learning has emerged as a paradigm that revolutionizes numerous domains of scientific research. Transformers have been utilized in language modeling outperforming previous approaches. Therefore, the utilization of deep learning as a tool for analyzing the genomic sequences is promising, yielding convincing results in fields such as motif identification and variant calling. DeepMicrobes, a machine learning-based classifier, has recently been introduced for taxonomic prediction at species and genus level. However, it relies on complex models based on bidirectional long short-term memory cells resulting in slow runtimes and excessive memory requirements, hampering its effective usability. We present MetaTransformer, a self-attention-based deep learning metagenomic analysis tool. Our transformer-encoder-based models enable efficient parallelization while outperforming DeepMicrobes in terms of species and genus classification abilities. Furthermore, we investigate approaches to reduce memory consumption and boost performance using different embedding schemes. As a result, we are able to achieve 2× to 5× speedup for inference compared to DeepMicrobes while keeping a significantly smaller memory footprint. MetaTransformer can be trained in 9 hours for genus and 16 hours for species prediction. Our results demonstrate performance improvements due to self-attention models and the impact of embedding schemes in deep learning on metagenomic sequencing data.
Collapse
Affiliation(s)
- Alexander Wichmann
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Etienne Buschong
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Rhineland-Palatinate, Germany
| | - André Müller
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Daniel Jünger
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Andreas Hildebrandt
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Thomas Hankeln
- Institute of Organic and Molecular Evolution (iomE), Johannes Gutenberg University, J.-J. Becher-Weg 30A, 55128 Mainz, Rhineland-Palatinate, Germany
| | - Bertil Schmidt
- Institute of Computer Science, Johannes Gutenberg University, Staudingerweg 9, 55128 Mainz, Rhineland-Palatinate, Germany
| |
Collapse
|
7
|
Liu B, Ye D, Yang H, Song J, Sun X, He Z, Mao Y, Hao G. Assessing the relationship between gut microbiota and irritable bowel syndrome: a two-sample Mendelian randomization analysis. BMC Gastroenterol 2023; 23:150. [PMID: 37173627 PMCID: PMC10182631 DOI: 10.1186/s12876-023-02791-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND Growing evidence has suggested that gut microbiota is closely related to the risk of irritable bowel syndrome (IBS), but whether there is a causal effect remains unknown. We adopted a Mendelian randomization (MR) approach to evaluate the potential causal relationships between gut microbiota and the risk of IBS. METHODS Genetic instrumental variables for gut microbiota were identified from a genome-wide association study (GWAS) of 18,340 participants. Summary statistics of IBS were drawn from a GWAS including 53,400 cases and 433,201 controls. We used the inverse-variance weighted (IVW) method as the primary analysis. To test the robustness of our results, we further performed the weighted-median method, MR-Egger regression, and MR pleiotropy residual sum and outlier test. Finally, reverse MR analysis was performed to evaluate the possibility of reverse causation. RESULTS We identified suggestive associations between three bacterial traits and the risk of IBS (odds ratio (OR): 1.08; 95% confidence interval (CI): 1.02, 1.15; p = 0.011 for phylum Actinobacteria; OR: 0.95; 95% CI: 0.91, 1.00; p = 0.030 for genus Eisenbergiella and OR: 1.10; 95% CI: 1.03, 1.18; p = 0.005 for genus Flavonifractor). The results of sensitivity analyses for these bacterial traits were consistent. We did not find statistically significant associations between IBS and these three bacterial traits in the reverse MR analysis. CONCLUSIONS Our systematic analyses provide evidence to support a potential causal relationship between several gut microbiota taxa and the risk of IBS. More studies are required to show how the gut microbiota affects the development of IBS.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Ding Ye
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Hong Yang
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Jie Song
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Xiaohui Sun
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Yingying Mao
- Department of Epidemiology, School of Public Health, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Guifeng Hao
- Center for General Practice Medicine, Department of Rheumatology and Immunology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China.
| |
Collapse
|
8
|
Meng JX, Wei XY, Guo H, Chen Y, Wang W, Geng HL, Yang X, Jiang J, Zhang XX. Metagenomic insights into the composition and function of the gut microbiota of mice infected with Toxoplasma gondii. Front Immunol 2023; 14:1156397. [PMID: 37090719 PMCID: PMC10118048 DOI: 10.3389/fimmu.2023.1156397] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Despite Toxoplasma gondii infection leading to dysbiosis and enteritis, the function of gut microbiota in toxoplasmosis has not been explored. Methods Here, shotgun metagenomics was employed to characterize the composition and function of mouse microbial community during acute and chronic T. gondii infection, respectively. Results The results revealed that the diversity of gut bacteria was decreased immediately after T. gondii infection, and was increased with the duration of infection. In addition, T. gondii infection led to gut microbiota dysbiosis both in acute and chronic infection periods. Therein, several signatures, including depression of Firmicutes to Bacteroidetes ratio and infection-enriched Proteobacteria, were observed in the chronic period, which may contribute to aggravated gut inflammation and disease severity. Functional analysis showed that a large amount of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and carbohydrate-active enzymes (CAZy) family displayed distinct variation in abundance between infected and healthy mice. The lipopolysaccharide biosynthesis related pathways were activated in the chronic infection period, which might lead to immune system imbalance and involve in intestinal inflammation. Moreover, microbial and functional spectrums were more disordered in chronic than acute infection periods, thus implying gut microbiota was more likely to participate in disease process in the chronically infected mice, even exacerbated immunologic derangement and disease progression. Discussion Our data indicate that the gut microbiota plays a potentially important role in protecting mice from T. gondii infection, and contributes to better understand the association between gut microbiota and toxoplasmosis.
Collapse
Affiliation(s)
- Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xin-Yu Wei
- College of Life Science, Changchun Sci-Tech University, Changchun, China
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Huanping Guo
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, Heilongjiang, China
| | - Yu Chen
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Wei Wang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Hong-Li Geng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan, China
| | - Jiang Jiang
- College of Life Science, Changchun Sci-Tech University, Changchun, China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Comparison of the Effects between Tannins Extracted from Different Natural Plants on Growth Performance, Antioxidant Capacity, Immunity, and Intestinal Flora of Broiler Chickens. Antioxidants (Basel) 2023; 12:antiox12020441. [PMID: 36829999 PMCID: PMC9952188 DOI: 10.3390/antiox12020441] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
In this study, four plant tannins, including AT (Acacia mearnsii tannin, 68%), CT (Castanea sativa tannin, 60%), QT (Schinopsis lorenzii tannin, 73%) and TT (Caesalpinia spinosa tannin, 50%) were added to broiler diets for 42 days to evaluate and compare their effects on growth performance, antioxidant capacity, immune performance and gut microbiota in broilers. The results showed that the supplementation of five tannins could increase the production of T-AOC, GSH-Px, SOD and CAT and reduce the production of MDA in the serum of broilers (p < 0.01), but the antioxidant effect of the AT group was lower than that of the other three groups (p < 0.01). All four tannins decreased the level of the pro-inflammatory factor IL-1β and increased the level of the anti-inflammatory factor IL-10 (p < 0.01). CT, QT and TT decreased the levels of pro-inflammatory factors IL-6 and TNF-α (p < 0.01), while AT and CT increased the level of IL-2 in serum (p < 0.01). Supplementation with four tannins also increased the levels of IgG, IgM, IgA and sIgA in serum (p < 0.01) and the levels of ZO-1, claudin-1 and occludin in the jejunum (p < 0.01). The detection results of ALT and AST showed that CT, QT and TT decreased the concentrations of ALT and AST in serum (p < 0.01). The results of the gut microbiota showed that the abundance of Clostridia and Subdoligranulum increased, and the abundance of Oscillospiraceae decreased, compared to the control group after adding the four tannins to the diets (p > 0.05). In addition, CT, QT and TT decreased the abundance of Lactobacillus and increased the abundance of Bacteroides compared to the control group, while AT showed the opposite result (p > 0.05). Overall, our study shows that tannins derived from different plants have their own unique effects on broilers. AT and CT can promote broilers' growth better than other tannins, CT has the best ability to improve immune and antioxidant properties, and QT and TT have the best effect on broilers' liver protection.
Collapse
|
10
|
Ma X, Lu X, Zhang W, Yang L, Wang D, Xu J, Jia Y, Wang X, Xie H, Li S, Zhang M, He Y, Jin P, Sheng J. Gut microbiota in the early stage of Crohn’s disease has unique characteristics. Gut Pathog 2022; 14:46. [DOI: 10.1186/s13099-022-00521-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/06/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Emerging evidence suggests that gut microbiota plays a predominant role in Crohn’s disease (CD). However, the microbiome alterations in the early stage of CD patients still remain unclear. The present study aimed to identify dysbacteriosis in patients with early CD and explore specific gut bacteria related to the progression of CD.
Methods
This study was nested within a longitudinal prospective Chinese CD cohort, and it included 18 early CD patients, 22 advanced CD patients and 30 healthy controls. The microbiota communities were investigated using high-throughput Illumina HiSeq sequencing targeting the V3–V4 region of 16S ribosomal DNA (rDNA) gene. The relationship between the gut microbiota and clinical characteristics of CD was analyzed.
Results
Differential microbiota compositions were observed in CD samples (including early and advanced CD samples) and healthy controls samples. Notably, Lachnospiracea_incertae_sedis and Parabacteroides were enriched in the early CD patients, Escherichia/Shigella, Enterococcus and Proteus were enriched in the advanced CD patients, and Roseburia, Gemmiger, Coprococcus, Ruminococcus 2, Butyricicoccus, Dorea, Fusicatenibacter, Anaerostipes, Clostridium IV were enriched in the healthy controls [LDA score (log10) > 2]. Furthermore, Kruskal–Wallis Rank sum test results showed that Blautia, Clostridium IV, Coprococcus, Dorea, Fusicatenibacter continued to significantly decrease in early and advanced CD patients, and Escherichia/Shigella and Proteus continued to significantly increase compared with healthy controls (P < 0.05). The PICRUSt analysis identified 16 remarkably different metabolic pathways [LDA score (log10) > 2]. Some genera were significantly correlated with various clinical parameters, such as fecal calprotectin, erythrocyte sedimentation rate, C-reactive protein, gland reduce, goblet cells decreased, clinical symptoms (P < 0.05).
Conclusions
Dysbacteriosis occurs in the early stage of CD and is associated with the progression of CD. This data provides a foundation that furthers the understanding of the role of gut microbiota in CD’s pathogenesis.
Collapse
|
11
|
Keshav N, Ammankallu R, Shashidhar, Paithankar JG, Baliga MS, Patil RK, Kudva AK, Raghu SV. Dextran sodium sulfate alters antioxidant status in the gut affecting the survival of Drosophila melanogaster. 3 Biotech 2022; 12:280. [PMID: 36275361 PMCID: PMC9481858 DOI: 10.1007/s13205-022-03349-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/02/2022] [Indexed: 11/28/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a group of disorders characterized by chronic inflammation in the intestine. Several studies confirmed that oxidative stress induced by an enormous amount of reactive free radicals triggers the onset of IBD. Currently, there is an increasing trend in the global incidence of IBD and it is coupled with a lack of adequate long-term therapeutic options. At the same time, progress in research to understand the pathogenesis of IBD has been hampered due to the absence of adequate animal models. Currently, the toxic chemical Dextran Sulfate Sodium (DSS) induced gut inflammation in rodents is widely perceived as a good model of experimental colitis or IBD. Drosophila melanogaster, a genetic animal model, shares ~ 75% sequence similarity to genes causing different diseases in humans and also has conserved digestion and absorption features. Therefore, in the current study, we used Drosophila as a model system to induce and investigate DSS-induced colitis. Anatomical, biochemical, and molecular analyses were performed to measure the levels of inflammation and cellular disturbances in the gastrointestinal (GI) tract of Drosophila. Our study shows that DSS-induced inflammation lowers the levels of antioxidant molecules, affects the life span, reduces physiological activity and induces cellular damage in the GI tract mimicking pathophysiological features of IBD in Drosophila. Such a DSS-induced Drosophila colitis model can be further used for understanding the molecular pathology of IBD and screening novel drugs. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03349-2.
Collapse
Affiliation(s)
- Nishal Keshav
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangothri, 574199 Karnataka India
| | - Ramyalakshmi Ammankallu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangothri, 574199 Karnataka India
| | - Shashidhar
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangothri, 574199 Karnataka India
| | - Jagdish Gopal Paithankar
- Nitte University Center for Science Education and Research (NUCSER), Nitte (Deemed to be University), Mangalore, 575018 India
| | | | - Rajashekhar K. Patil
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangothri, 574199 Karnataka India
| | - Avinash Kundadka Kudva
- Department of Biochemistry, Mangalore University, Mangalagangothri, 574199 Karnataka India
| | - Shamprasad Varija Raghu
- Neurogenetics Laboratory, Department of Applied Zoology, Mangalore University, Mangalagangothri, 574199 Karnataka India
| |
Collapse
|
12
|
Lavinder TR, Fachko DN, Stanton J, Varco-Merth B, Smedley J, Okoye AA, Skalsky RL. Effects of Early Antiretroviral Therapy on the Composition and Diversity of the Fecal Microbiome of SIV-infected Rhesus Macaques ( Macaca mulatta). Comp Med 2022; 72:287-297. [PMID: 36162961 PMCID: PMC9827599 DOI: 10.30802/aalas-cm-22-000020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
HIV-infected people develop reproducible disruptions in their gastrointestinal microbiota. Despite the suppression of HIV viremia via long-term antiretroviral therapy (ART), alterations still occur in gut microbial diversity and the commensal microbiota. Mounting evidence suggests these microbial changes lead to the development of gut dysbiosis-persistent inflammation that damages the gut mucosa-and correlate with various immune defects. In this study, we examined how early ART intervention influences microbial diversity in SIV-infected rhesus macaques. Using 16S rRNA sequencing, we defined the fecal microbiome in macaques given daily ART beginning on either 3 or 7 d after SIV infection (dpi) and characterized changes in composition, α diversity, and β diversity from before infection through 112 dpi. The dominant phyla in the fecal samples before infection were Bacteroidetes, Firmicutes, Spirochaetes, and Proteobacteria. After SIV infection and ART, the relative abundance of Firmicutes and Bacteroidetes did not change significantly. Significant reductions in α diversity occurred across time when ART was initiated at 3 dpi but not at 7 dpi. Principal coordinate analysis of samples revealed a divergence in β diversity in both treatment groups after SIV infection, with significant differences depending on the timing of ART administration. These results indicate that although administration of ART at 3 or 7 dpi did not substantially alter fecal microbial composition, the timing of early ART measurably altered phylogenetic diversity.
Collapse
Affiliation(s)
- Tiffany R Lavinder
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University,,Corresponding authors. ,
| | - Devin N Fachko
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and
| | - Jeffrey Stanton
- Division of Comparative Medicine, Oregon National Primate Research Center, Oregon Health and Science University
| | - Benjamin Varco-Merth
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Jeremy Smedley
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Afam A Okoye
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon
| | - Rebecca L Skalsky
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, and,Division of Pathobiology and Immunology, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, Oregon,Corresponding authors. ,
| |
Collapse
|
13
|
Chu X, Hou Y, Meng Q, Croteau DL, Wei Y, De S, Becker KG, Bohr VA. Nicotinamide adenine dinucleotide supplementation drives gut microbiota variation in Alzheimer’s mouse model. Front Aging Neurosci 2022; 14:993615. [PMID: 36185477 PMCID: PMC9520302 DOI: 10.3389/fnagi.2022.993615] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disease. Growing evidence suggests an important role for gut dysbiosis and gut microbiota-host interactions in aging and neurodegeneration. Our previous works have demonstrated that supplementation with the nicotinamide adenine dinucleotide (NAD+) precursor, nicotinamide riboside (NR), reduced the brain features of AD, including neuroinflammation, deoxyribonucleic acid (DNA) damage, synaptic dysfunction, and cognitive impairment. However, the impact of NR administration on the intestinal microbiota of AD remains unknown. In this study, we investigated the relationship between gut microbiota and NR treatment in APP/PS1 transgenic (AD) mice. Compared with wild type (WT) mice, the gut microbiota diversity in AD mice was lower and the microbiota composition and enterotype were significantly different. Moreover, there were gender differences in gut microbiome between female and male AD mice. After supplementation with NR for 8 weeks, the decreased diversity and perturbated microbial compositions were normalized in AD mice. This included the species Oscillospira, Butyricicoccus, Desulfovibrio, Bifidobacterium, Olsenella, Adlercreutzia, Bacteroides, Akkermansia, and Lactobacillus. Our results indicate an interplay between NR and host-microbiota in APP/PS1 mice, suggesting that the effect of NR on gut dysbiosis may be an important component in its therapeutic functions in AD.
Collapse
Affiliation(s)
- Xixia Chu
- DNA Repair Section, National Institute on Aging, Baltimore, MD, United States
| | - Yujun Hou
- DNA Repair Section, National Institute on Aging, Baltimore, MD, United States
- Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qiong Meng
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Deborah L. Croteau
- DNA Repair Section, National Institute on Aging, Baltimore, MD, United States
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Yong Wei
- DNA Repair Section, National Institute on Aging, Baltimore, MD, United States
| | - Supriyo De
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Kevin G. Becker
- Laboratory of Genetics and Genomics, National Institute on Aging, Baltimore, MD, United States
| | - Vilhelm A. Bohr
- DNA Repair Section, National Institute on Aging, Baltimore, MD, United States
- *Correspondence: Vilhelm A. Bohr,
| |
Collapse
|
14
|
He C, Gao M, Zhang X, Lei P, Yang H, Qing Y, Zhang L. The Protective Effect of Sulforaphane on Dextran Sulfate Sodium-Induced Colitis Depends on Gut Microbial and Nrf2-Related Mechanism. Front Nutr 2022; 9:893344. [PMID: 35832050 PMCID: PMC9271993 DOI: 10.3389/fnut.2022.893344] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Sulforaphane (SFN), an isothiocyanate present in cruciferous vegetables such as broccoli and brussels sprouts, has a variety of biological functions. This study was undertaken to assess the potential efficacy of SFN in ameliorating dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and to elucidate the underlying mechanisms. UC was induced in mice with administration of 2% DSS in drinking water for 7 days. Male C57BL/6 mice were treated with Mesalazine (50 and 100 mg/kg body weight) and various doses of SFN (2.5, 5, 10, and 20 mg/kg body weight). In DSS colitis mice, the hallmarks of disease observed as shortened colon lengths, increased disease activity index (DAI) scores and pathological damage, higher proinflammatory cytokines and decreased expression of tight junction proteins, were alleviated by SFN treatment. SFN also partially restored the perturbed gut microbiota composition and increased production of volatile fatty acids (especially caproic acid) induced by DSS administration. The heatmap correlation analysis indicated that Lactobacillus johnsonii, Bacteroides acidifaciens, unclassified Rikenellaceae RC9, and unclassified Bacteroides were significantly correlated with disease severity. Nuclear factor (erythroid-derived 2)-like 2 (Nrf2), Signal Transducer and Activator of Transcription 3 (STAT3), and Phase II enzyme UDP-glucuronosyltransferase (UGT) were involved in the protective effect of SFN against DSS-induced colitis. This study's findings suggest that SFN may serve as a therapeutic agent protecting against UC.
Collapse
Affiliation(s)
- Canxia He
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Mingfei Gao
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaohong Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
| | - Peng Lei
- Center for Engineering in Medicine and Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, United States
| | - Haitao Yang
- Department of Pathology, Mingzhou Hospital of Zhejiang University, Ningbo, China
| | - Yanping Qing
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, China
- Yanping Qing
| | - Lina Zhang
- Institute of Preventative Medicine, School of Medicine, Ningbo University, Ningbo, China
- *Correspondence: Lina Zhang
| |
Collapse
|
15
|
Shen Y, Jiang Z, Zhong X, Wang H, Liu Y, Li X. Manipulation of cadmium and diethylhexyl phthalate on Rana chensinensis tadpoles affects the intestinal microbiota and fatty acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153455. [PMID: 35093358 DOI: 10.1016/j.scitotenv.2022.153455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Gastrointestinal tract and intestine microbiota can both have deep effects on the lipid metabolism and immune function of amphibians. Additionally, the composition and structure of the microbial community are influenced by environmental pollutions. It is noteworthy that environmental compounds such as Cd and DEHP are pervasive in the aquatic environment and do not exist in isolation, and single exposure experiments cannot well explain the effects of unpredictable interactions between co-existing compounds on amphibians. In this study, we calculated the parameters of morphological and histological indices of Rana chensinensis tadpoles after treated with Cd and/or DEHP. The 16S rRNA gene sequencing technology was used to assess the relative abundance of intestinal microbial community among tadpoles from each treatment groups. We also examined the mRNA expression levels of lipid digestion and absorption and SCFAs related-genes. Our results indicated that all morphological and histological indices were significantly declined in the Cd treatment group, while the mixed treatment group was similar to the control group. Compared with the control group, the relative abundances of Firmicutes, Proteobacteria and Verrucomicrobia exhibited distinctive differences in Cd and/or DEHP treatment groups. Further, RT-qPCR results revealed that the expression levels of lipid metabolism and SCFAs related-genes were also significantly altered among the treatment groups. Taken together, the present study highlighted a new evidence that the alterations in intestinal microbial community and mRNA expression levels of larval amphibians after exposure to Cd and/or DEHP may impair lipid storage and transport, as well as reduce anti-inflammatory capacity, which may ultimately lead to a decline in amphibian populations.
Collapse
Affiliation(s)
- Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Zhong
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
16
|
Cortes GM, Marcialis MA, Bardanzellu F, Corrias A, Fanos V, Mussap M. Inflammatory Bowel Disease and COVID-19: How Microbiomics and Metabolomics Depict Two Sides of the Same Coin. Front Microbiol 2022; 13:856165. [PMID: 35391730 PMCID: PMC8981987 DOI: 10.3389/fmicb.2022.856165] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 02/21/2022] [Indexed: 12/11/2022] Open
Abstract
The integrity of the gastrointestinal tract structure and function is seriously compromised by two pathological conditions sharing, at least in part, several pathogenetic mechanisms: inflammatory bowel diseases (IBD) and coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. IBD and COVID-19 are marked by gut inflammation, intestinal barrier breakdown, resulting in mucosal hyperpermeability, gut bacterial overgrowth, and dysbiosis together with perturbations in microbial and human metabolic pathways originating changes in the blood and fecal metabolome. This review compared the most relevant metabolic and microbial alterations reported from the literature in patients with IBD with those in patients with COVID-19. In both diseases, gut dysbiosis is marked by the prevalence of pro-inflammatory bacterial species and the shortfall of anti-inflammatory species; most studies reported the decrease in Firmicutes, with a specific decrease in obligately anaerobic producers short-chain fatty acids (SCFAs), such as Faecalibacterium prausnitzii. In addition, Escherichia coli overgrowth has been observed in IBD and COVID-19, while Akkermansia muciniphila is depleted in IBD and overexpressed in COVID-19. In patients with COVID-19, gut dysbiosis continues after the clearance of the viral RNA from the upper respiratory tract and the resolution of clinical symptoms. Finally, we presented and discussed the impact of gut dysbiosis, inflammation, oxidative stress, and increased energy demand on metabolic pathways involving key metabolites, such as tryptophan, phenylalanine, histidine, glutamine, succinate, citrate, and lipids.
Collapse
Affiliation(s)
- Gian Mario Cortes
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Maria Antonietta Marcialis
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Flaminia Bardanzellu
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Angelica Corrias
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Vassilios Fanos
- Neonatal Intensive Care Unit, Department of Surgical Sciences, University of Cagliari, Monserrato, Italy
| | - Michele Mussap
- Laboratory Medicine, Department of Surgical Sciences, School of Medicine, University of Cagliari, Monserrato, Italy
| |
Collapse
|
17
|
Jovel J, Nimaga A, Jordan T, O’Keefe S, Patterson J, Thiesen A, Hotte N, Bording-Jorgensen M, Subedi S, Hamilton J, Carpenter EJ, Lauga B, Elahi S, Madsen KL, Wong GKS, Mason AL. Metagenomics Versus Metatranscriptomics of the Murine Gut Microbiome for Assessing Microbial Metabolism During Inflammation. Front Microbiol 2022; 13:829378. [PMID: 35185850 PMCID: PMC8851394 DOI: 10.3389/fmicb.2022.829378] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 01/26/2023] Open
Abstract
Shotgun metagenomics studies have improved our understanding of microbial population dynamics and have revealed significant contributions of microbes to gut homeostasis. They also allow in silico inference of the metagenome. While they link the microbiome with metabolic abnormalities associated with disease phenotypes, they do not capture microbial gene expression patterns that occur in response to the multitude of stimuli that constantly ambush the gut environment. Metatranscriptomics closes that gap, but its implementation is more expensive and tedious. We assessed the metabolic perturbations associated with gut inflammation using shotgun metagenomics and metatranscriptomics. Shotgun metagenomics detected changes in abundance of bacterial taxa known to be SCFA producers, which favors gut homeostasis. Bacteria in the phylum Firmicutes were found at decreased abundance, while those in phyla Bacteroidetes and Proteobacteria were found at increased abundance. Surprisingly, inferring the coding capacity of the microbiome from shotgun metagenomics data did not result in any statistically significant difference, suggesting functional redundancy in the microbiome or poor resolution of shotgun metagenomics data to profile bacterial pathways, especially when sequencing is not very deep. Obviously, the ability of metatranscriptomics libraries to detect transcripts expressed at basal (or simply low) levels is also dependent on sequencing depth. Nevertheless, metatranscriptomics informed about contrasting roles of bacteria during inflammation. Functions involved in nutrient transport, immune suppression and regulation of tissue damage were dramatically upregulated, perhaps contributed by homeostasis-promoting bacteria. Functions ostensibly increasing bacteria pathogenesis were also found upregulated, perhaps as a consequence of increased abundance of Proteobacteria. Bacterial protein synthesis appeared downregulated. In summary, shotgun metagenomics was useful to profile bacterial population composition and taxa relative abundance, but did not inform about differential gene content associated with inflammation. Metatranscriptomics was more robust for capturing bacterial metabolism in real time. Although both approaches are complementary, it is often not possible to apply them in parallel. We hope our data will help researchers to decide which approach is more appropriate for the study of different aspects of the microbiome.
Collapse
Affiliation(s)
- Juan Jovel
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Office of Research, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Juan Jovel,
| | - Aissata Nimaga
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Tracy Jordan
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Sandra O’Keefe
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Jordan Patterson
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Aducio Thiesen
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada
| | - Naomi Hotte
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | | | - Sudip Subedi
- Office of Research, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Jessica Hamilton
- Office of Research, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Eric J. Carpenter
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Béatrice Lauga
- Universite de Pau et des Pays de l’Adour, E2S UPPA, CNRS, IPREM, Pau, France
| | - Shokrollah Elahi
- School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Karen L. Madsen
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gane Ka-Shu Wong
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
- BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China
| | - Andrew L. Mason
- Department of Medicine, University of Alberta, Edmonton, AB, Canada
- Andrew L. Mason,
| |
Collapse
|
18
|
Caparrós E, Wiest R, Scharl M, Rogler G, Gutiérrez Casbas A, Yilmaz B, Wawrzyniak M, Francés R. Dysbiotic microbiota interactions in Crohn's disease. Gut Microbes 2021; 13:1949096. [PMID: 34313550 PMCID: PMC8320851 DOI: 10.1080/19490976.2021.1949096] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Crohn's disease (CD) is a major form of inflammatory bowel disease characterized by transmural inflammation along the alimentary tract. Changes in the microbial composition and reduction in species diversity are recognized as pivotal hallmarks in disease dynamics, challenging the gut barrier function and shaping a pathological immune response in genetically influenced subjects. The purpose of this review is to delve into the modification of the gut microbiota cluster network during CD progression and to discuss how this shift compromises the gut barrier integrity, granting the translocation of microbes and their products. We then complete the scope of the review by retracing gut microbiota dysbiosis interactions with the main pathophysiologic factors of CD, starting from the host's genetic background to the immune inflammatory and fibrotic processes, providing a standpoint on the lifestyle/exogenous factors and the potential benefits of targeting a specific gut microbiota.
Collapse
Affiliation(s)
- Esther Caparrós
- Dpto Medicina Clínica, Universidad Miguel Hernández, San Juan De Alicante, Spain,Iis Isabial, Hospital General Universitario De Alicante, Alicante, Spain
| | - Reiner Wiest
- Department for Biomedical Research, Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Ana Gutiérrez Casbas
- Iis Isabial, Hospital General Universitario De Alicante, Alicante, Spain,CIBERehd, Instituto De Salud Carlos III, Madrid, Spain
| | - Bahtiyar Yilmaz
- Department for Biomedical Research, Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Marcin Wawrzyniak
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Rubén Francés
- Dpto Medicina Clínica, Universidad Miguel Hernández, San Juan De Alicante, Spain,Iis Isabial, Hospital General Universitario De Alicante, Alicante, Spain,CIBERehd, Instituto De Salud Carlos III, Madrid, Spain,CONTACT Rubén Francés Hepatic and Intestinal Immunobiology Group. Departamento De Medicina Clínica, Universidad Miguel Hernández De Elche. Carretera Alicante-Valencia, Km 8,703550San Juan De Alicante
| |
Collapse
|
19
|
Larsen OFA, van de Burgwal LHM. On the Verge of a Catastrophic Collapse? The Need for a Multi-Ecosystem Approach to Microbiome Studies. Front Microbiol 2021; 12:784797. [PMID: 34925292 PMCID: PMC8674555 DOI: 10.3389/fmicb.2021.784797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
While the COVID-19 pandemic has led to increased focus on pathogenic microbes that cross the animal-human species barrier, calls to include non-pathogenic interactions in our perspective on public health are gaining traction in the academic community. Over generations, the diversity of the human gut microbiota is being challenged by external perturbations and reduced acquisition of symbiotic species throughout life. When such reduced diversity concerns not only the microbial species, but also the higher taxonomic levels and even the guild level, adequate compensation for possible losses may be lacking. Shifts from a high-abundance to a low-abundance state, known as a tipping point, may result in simultaneous shifts in covarying taxa and ultimately to a catastrophic collapse in which the ecosystem abruptly and possibly irreversibly shifts to an alternative state. Here, we propose that co-occurrence patterns within and between microbial communities across human, animal, soil, water, and other environmental domains should be studied in light of such critical transitions. Improved mechanistic understanding of factors that shape structure and function is needed to understand whether interventions can sustainably remodel disease-prone microbiota compositions to robust and resilient healthy microbiota. Prerequisites for a rational approach are a better understanding of the microbial interaction network, both within and inter-domain, as well as the identification of early warning signs for a catastrophic collapse, warranting a timely response for intervention. We should not forget that mutualism and pathogenicity are two sides of the same coin. Building upon the planetary health concept, we argue that microbiome research should include system level approaches to conserve ecosystem resilience. HIGHLIGHTS 1. Non-pathogenic interactions between ecosystems play a key role in maintaining health. 2. The human gut microbiome may be on the verge of a catastrophic collapse. 3. Research should identify keystone taxa and guilds that interconnect different domains. 4. We should not forget that mutualism and pathogenicity are two sides of the same coin.
Collapse
Affiliation(s)
- Olaf F A Larsen
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Linda H M van de Burgwal
- Athena Institute for Research on Innovation and Communication in Health and Life Sciences, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
20
|
Nishihara Y, Ogino H, Tanaka M, Ihara E, Fukaura K, Nishioka K, Chinen T, Tanaka Y, Nakayama J, Kang D, Ogawa Y. Mucosa-associated gut microbiota reflects clinical course of ulcerative colitis. Sci Rep 2021; 11:13743. [PMID: 34215773 PMCID: PMC8253849 DOI: 10.1038/s41598-021-92870-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/17/2021] [Indexed: 12/30/2022] Open
Abstract
This longitudinal study was designed to elucidate whether gut microbiota is associated with relapse and treatment response in ulcerative colitis (UC) patients. Fifty-one patients with UC were enrolled between 2012 and 2017, and followed up through 2020. Colon mucosal biopsy were obtained at enrollment, and 16S ribosomal RNA sequencing was performed using extracted RNA. Of the 51 patients, 24 were in remission and 27 had active UC at enrollment. Of the 24 patients in remission, 17 maintained remission and 7 developed relapse during follow-up. The 7 patients with relapse showed lower diversity, with a lower proportion of Clostridiales (p = 0.0043), and a higher proportion of Bacteroides (p = 0.047) at enrollment than those without relapse. The 27 patients with active UC were classified into response (n = 6), refractory (n = 13), and non-response (n = 8) groups according to their treatment response in 6 months. The refractory and non-response groups showed lower diversity with a lower proportion of Prevotella (p = 0.048 and 0.043) at enrollment than the response group. This study is the first demonstration that reduced diversity and particular microbes are associated with the later clinical course of relapse events and treatment response in UC.
Collapse
Affiliation(s)
- Yuichiro Nishihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Clinical Chemistry and Laboratory, Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Haruei Ogino
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| | - Masaru Tanaka
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Eikichi Ihara
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.,Department of Gastroenterology and Metabolism, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keita Fukaura
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Kei Nishioka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takatoshi Chinen
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshimasa Tanaka
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Jiro Nakayama
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory, Medicine, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiro Ogawa
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| |
Collapse
|
21
|
Aldars-García L, Chaparro M, Gisbert JP. Systematic Review: The Gut Microbiome and Its Potential Clinical Application in Inflammatory Bowel Disease. Microorganisms 2021; 9:microorganisms9050977. [PMID: 33946482 PMCID: PMC8147118 DOI: 10.3390/microorganisms9050977] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/22/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing-remitting systemic disease of the gastrointestinal tract. It is well established that the gut microbiome has a profound impact on IBD pathogenesis. Our aim was to systematically review the literature on the IBD gut microbiome and its usefulness to provide microbiome-based biomarkers. A systematic search of the online bibliographic database PubMed from inception to August 2020 with screening in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted. One-hundred and forty-four papers were eligible for inclusion. There was a wide heterogeneity in microbiome analysis methods or experimental design. The IBD intestinal microbiome was generally characterized by reduced species richness and diversity, and lower temporal stability, while changes in the gut microbiome seemed to play a pivotal role in determining the onset of IBD. Multiple studies have identified certain microbial taxa that are enriched or depleted in IBD, including bacteria, fungi, viruses, and archaea. The two main features in this sense are the decrease in beneficial bacteria and the increase in pathogenic bacteria. Significant differences were also present between remission and relapse IBD status. Shifts in gut microbial community composition and abundance have proven to be valuable as diagnostic biomarkers. The gut microbiome plays a major role in IBD, yet studies need to go from casualty to causality. Longitudinal designs including newly diagnosed treatment-naïve patients are needed to provide insights into the role of microbes in the onset of intestinal inflammation. A better understanding of the human gut microbiome could provide innovative targets for diagnosis, prognosis, treatment and even cure of this relevant disease.
Collapse
Affiliation(s)
- Laila Aldars-García
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - María Chaparro
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
| | - Javier P. Gisbert
- Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Universidad Autónoma de Madrid, 28006 Madrid, Spain; (L.A.-G.); (M.C.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), 28006 Madrid, Spain
- Correspondence: ; Tel.: +34-913-093-911; Fax: +34-915-204-013
| |
Collapse
|
22
|
Yuan L, Wang W, Zhang W, Zhang Y, Wei C, Li J, Zhou D. Gut Microbiota in Untreated Diffuse Large B Cell Lymphoma Patients. Front Microbiol 2021; 12:646361. [PMID: 33927704 PMCID: PMC8076791 DOI: 10.3389/fmicb.2021.646361] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal microecology plays an important role in the development and progression of hematological malignancies. However, characteristics of gut microbiota in diffuse large B cell lymphoma (DLBCL) have not been reported. The microbiota composition of fecal samples from 25 untreated DLBCL patients and 26 healthy volunteers was examined by 16S rRNA gene sequencing. On α-diversity analysis, there was no significant difference in species diversity and abundance between the two groups. However, a significant difference was observed on β-diversity analysis. The intestinal microbiota in patients with DLBCL showed a continuous evolutionary relationship, which progressed from phylum, proteobacteria, to genus, Escherichia-Shigella. Their abundance was significantly higher than that of the control group. At the genus level, Allisonella, lachnospira, and Roseburia were more abundant in patients with DLBCL than in the control group. Functional prediction by PICRUSt indicated that thiamine metabolism and phenylalanine, tyrosine, and tryptophan biosynthesis were significantly lower in the DLBCL group than in the control group. In conclusion, our results clearly demonstrate that the gut microbiota was changed significantly in DLBCL. The study highlights fundamental differences in the microbial diversity and composition of patients with DLBCL and paves the way for future prospective studies and microbiome-directed interventional trials to improve patient outcomes.
Collapse
Affiliation(s)
- Li Yuan
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Wang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wei Zhang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yan Zhang
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chong Wei
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Jingnan Li
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Daobin Zhou
- Department of Hematology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
Wang Z, Chen J, Chen Z, Xie L, Wang W. Clinical effects of ursodeoxycholic acid on patients with ulcerative colitis may improve via the regulation of IL-23-IL-17 axis and the changes of the proportion of intestinal microflora. Saudi J Gastroenterol 2021; 27:149-157. [PMID: 33835051 PMCID: PMC8265401 DOI: 10.4103/sjg.sjg_462_20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to evaluate the therapeutic effect of additional ursodeoxycholic acid (UDCA) with mesalazine, compared to mesalazine alone in patients with ulcerative colitis (UC). The mechanism was evaluated by monitoring the changes of IL-23-IL-17 axis and the intestinal microflora. METHODS In this prospective, single center study, patients with UC were randomly assigned to the Mesalazine group (n=20) or the UDCA + Mesalazine group (n=20). Mayo score and Inflammatory Bowel Disease Questionnaire (IBDQ), and fecal samples for 16S rRNA sequencing and blood samples for IL-23 and IL-17 ELISA were collected for analysis. RESULTS Mayo scores and IBDQ score of the UDCA + Mesalazine group were significantly better than those of the Mesalazine group (P = 0.015 and P < 0.001, respectively). At post-treatment week 4, IL-23 and IL-17 levels were significantly lower in the UDCA + Mesalazine group compared to those in the Mesalazine group (both P < 0.038). In patients with UC after treatment, Firmicutes in the UDCA + Mesalazine group was higher than those in the Mesalazine group (P < 0.001). The UDCA + Mesalazine group showed lower percentage of Proteobacteria compared to those in the Mesalazine group (P < 0.001). CONCLUSION Additional UDCA could provide better therapeutic effects than mesalazine alone, possibly due to the change of IL-23 and IL-17 and the proportional distribution of intestinal microflora.
Collapse
Affiliation(s)
- Zhengjun Wang
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China
| | - Jinhua Chen
- Department of Medical Care, Union Hospital of Fujian Medical University, Fuzhou, China
| | - Zhiping Chen
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China
| | - Longke Xie
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China
| | - Wen Wang
- Department of Gastroenterology, The 900th Hospital of Joint Logistic Support Force, PLA, Fujian Medical University Fuzong Clinical College, Fuzhou, China,Address for correspondence: Dr. Wen Wang, 156 West 2nd Ring Road North, Fuzhou 350 025, China. E-mail:
| |
Collapse
|
24
|
Mechanism of Intestinal Flora and Proteomics on Regulating Immune Function of Durio zibethinus Rind Polysaccharide. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/6614028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, cyclophosphamide was injected intraperitoneally to establish an immunosuppressive mouse model to study the immune regulating effects of Durio zibethinus Murr rind polysaccharide (DZMP) through proteomics and intestinal flora. The results showed that the thymus and spleen indexes of the high-dose DZMP (200 mg/kg) group were significantly increased, and the tissue structure of the spleen was improved compared with the model group (
). The contents of IL-2, IL-4, IL-6, and TNF-α in the high-dose group of DZMP were significantly increased (
). Activities of acid phosphatase (ACP), lactate dehydrogenase (LDH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC) were increased in serum (
). In the liver, catalase (CAT) activity was increased (
) while the malondialdehyde (MDA) content was decreased and immune activity was increased (
). Proteomics studies showed that the drug group could significantly increase the low-affinity immunoglobulin gamma Fc receptor III (FcγRIII) protein and protein kinase C-α (PKC-α) compared with the model group (
). In addition, the result showed that those proteins were likely involved in the regulation of the metabolic pathways of autoimmune thyroid disease, Staphylococcus aureus infection, and NF-κB signaling pathway. Intestinal microbial studies showed that short-chain fatty acid (SCFA) content was increased as well as the relative abundance of beneficial bacteria Akkermansia, Bacteroides, and Paraprevotella, while the relative abundance of Ruminococcus and Oscillospira was decreased compared with the model group (
). The results showed that DZMP might play a beneficial role in immune regulation by improving intestinal flora.
Collapse
|
25
|
HUO W, QI P, CUI L, ZHANG L, DAI L, LIU Y, HU S, FENG Z, QIAO T, LI J. Polysaccharide from wild morels alters the spatial structure of gut microbiota and the production of short-chain fatty acids in mice. BIOSCIENCE OF MICROBIOTA, FOOD AND HEALTH 2020; 39:219-226. [PMID: 33117620 PMCID: PMC7573107 DOI: 10.12938/bmfh.2020-018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023]
Abstract
Polysaccharides from morels possess many characteristics beneficial to health, such as anti-tumor and immunomodulatory activities. The gut microbiota plays a critical role in the modulation of immune function. However, the impact of morel polysaccharides on the gut microbiota has not yet been explored. In this study, a high-throughput pyrosequencing technique was used to investigate the effects of MP, a new heteropolysaccharide extracted from wild morels, on the diversity and composition of microbiota along the intestine in mice, as well as the production of short-chain fatty acids (SCFAs). The results showed that MP treatment increased the number of operational taxonomic unit (OTUs) and diversity along the intestine, especially in the small intestine. MP treatment induced a significant decrease in the number of Firmicutes and a significant increase in the number of Bacteroidetes in the small intestine microbiota. It was also observed that the relative abundance of SCFA-producing bacteria, especially Lachnospiraceae, was increased in both the cecum and colon of MP-treated mice. Moreover, MP promoted the production of SCFAs in mice. These results provide a foundation for further understanding the health benefits conferred by morel polysaccharides.
Collapse
Affiliation(s)
- Wenyan HUO
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Peng QI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Langjun CUI
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Liguang ZHANG
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Lu DAI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Yu LIU
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Suying HU
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Zhengping FENG
- College of Life Science, Shaanxi Normal University, Xi’an,
710062, Shaanxi, China
| | - Ting QIAO
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| | - Junzhi LI
- Fungal Research Center, Shaanxi Provincial Institute of
Microbiology, Xi’an, 710043, Shaanxi, China
| |
Collapse
|
26
|
Tang LL, Feng WZ, Cheng JJ, Gong YN. Clinical remission of ulcerative colitis after different modes of faecal microbiota transplantation: a meta-analysis. Int J Colorectal Dis 2020; 35:1025-1034. [PMID: 32388604 DOI: 10.1007/s00384-020-03599-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/13/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent and destructive disease of the gastrointestinal tract. Faecal microbiota transplantation (FMT) is a therapeutic measure in which faecal microbiota from healthy people is transplanted into patients. AIM To systematically evaluate the safety and effectiveness of treating UC with different modes of FMT. METHODS Seven databases were searched by two independent researchers and studies related to randomized controlled trials were included in the analysis. RESULTS Seven studies on UC involving 431 patients were included in the analysis. The results showed that FMT had better efficacy than placebo (OR = 2.29, 95% CI 1.48-3.53, P = 0.0002). Subgroup analyses of influencing factors showed that frozen faeces from multiple donors delivered via the lower gastrointestinal tract had a better curative effect than placebo (OR = 2.76, 95% CI 1.59-4.79, P = 0.0003; OR = 2.93, 95% CI 1.67-5.71, P = 0.0002; and OR = 2.70, 95% CI 1.67-4.37, P < 0.0001); the difference in efficacy between mixed faeces from a single donor transplanted through the upper gastrointestinal tract and placebo was not significant(P = 0.05, P = 0.09 and P = 0.98). The analysis of side effects showed no significant difference between FMT and placebo (P = 0.43). CONCLUSIONS It may be safe and effective to transplant frozen faeces from multiple donors through the lower gastrointestinal tract to treat UC.
Collapse
Affiliation(s)
- Li-Li Tang
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Wen-Zhe Feng
- Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China.
| | - Jia-Jun Cheng
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| | - Yan-Ni Gong
- Shaanxi University of Chinese Medicine, Xianyang, Shaanxi, China
| |
Collapse
|
27
|
Huo W, Feng Z, Hu S, Cui L, Qiao T, Dai L, Qi P, Zhang L, Liu Y, Li J. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food Funct 2020; 11:4291-4303. [PMID: 32356856 DOI: 10.1039/d0fo00597e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysaccharides isolated from mushrooms have been identified as potential prebiotics that could impact gut microbiota. In this study, a water-soluble polysaccharide (MP) extracted from wild morels was evaluated for its effects on the gut microbiota of non-treated and cyclophosphamide (CP)-treated mice. The results showed that MP restored the spleen weight and increased the counts of white blood cells and lymphocytes in the peripheral blood and spleen of the CP-treated mice. Mice treated with MP exhibited increased levels of short-chain fatty acid (SCFA)-producing bacteria, especially Lachnospiraceae, compared to normal mice, and increased levels of Bacteroidetes and SCFA-producing bacteria, especially Ruminococcaceae, compared to the CP-treated mice. Moreover, MP treatment increased the production of valeric acid and decreased the production of acetic acid in the non-treated mice and increased the production of acetic acid, propionic acid, butyric acid, and valeric acid in the CP-treated mice. These results show that MP is potentially good for health.
Collapse
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi'an 710043, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guo XY, Liu XJ, Hao JY. Gut microbiota in ulcerative colitis: insights on pathogenesis and treatment. J Dig Dis 2020; 21:147-159. [PMID: 32040250 DOI: 10.1111/1751-2980.12849] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 02/06/2020] [Indexed: 12/11/2022]
Abstract
Gut microbiota constitute the largest reservoir of the human microbiome and are an abundant and stable ecosystem-based on its diversity, complexity, redundancy, and host interactions This ecosystem is indispensable for human development and health. The integrity of the intestinal mucosal barrier depends on its interactions with gut microbiota. The commensal bacterial community is implicated in the pathogenesis of inflammatory bowel disease (IBD), including ulcerative colitis (UC). The dysbiosis of microbes is characterized by reduced biodiversity, abnormal composition of gut microbiota, altered spatial distribution, as well as interactions among microbiota, between different strains of microbiota, and with the host. The defects in microecology, with the related metabolic pathways and molecular mechanisms, play a critical role in the innate immunity of the intestinal mucosa in UC. Fecal microbiota transplantation (FMT) has been used to treat many diseases related to gut microbiota, with the most promising outcome reported in antibiotic-associated diarrhea, followed by IBD. This review evaluated the results of various reports of FMT in UC. The efficacy of FMT remains highly controversial, and needs to be regularized by integrated management, standardization of procedures, and individualization of treatment.
Collapse
Affiliation(s)
- Xiao Yan Guo
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Xin Juan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Jian Yu Hao
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
29
|
Ren X, Gamallat Y, Liu D, Zhu Y, Meyiah A, Yan C, Shang D, Xin Y. The distribution characteristics of intestinal microbiota in children with community-acquired pneumonia under five Years of age. Microb Pathog 2020; 142:104062. [PMID: 32058024 DOI: 10.1016/j.micpath.2020.104062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/29/2019] [Accepted: 02/10/2020] [Indexed: 02/08/2023]
Abstract
Pneumonia is the leading cause of morbidity and mortality in children under five years of age worldwide. Over the past decades, studies have shown that the upper respiratory pathogens are closely related to the occurrence of pneumonia. However, the co-occurrence of gut microbiome dysbiosis may have clinical manifestation in the prognosis of childhood pneumonia. The aim of the present study is to investigate the differences in gut microbial communities between children's diagnosed community-acquired pneumonia (CAP) under five compared to healthy controls in Inner Mongolia. Fecal samples were collected from children with CAP and healthy controls (<5 years old) and the genomic microbiome 16S rRNA was amplified using the hypervariable V4 region and subjected to MiSeq Illumina sequencing, and then analyzed for microbiota composition and phenotype. Finally functional profiling was performed by KEGG pathways analyses. Our results revealed a gut microbiota dysbiosis in children with CAP. Distinct gut microbiome composition and structure were associated with childhood CAP between two age categories compared to healthy controls. In addition, the phylogenic phenotype's prediction was found to be significantly different between the groups. The prominent genera in age group of 0-3 were Bifidobacterium and Enterococcus. On the contrary, Escherichia-Shigella, Prevotella, Faecalibacterium and Enterobacter were remarkably decreased in most of the fecal samples from CAP patients in age group of 0-3 compared to the control. At the genus level, the CAP children in the age group of 4-5 showed an increase in the abundance of Escherichia/Shigella, Bifidobacterium, Streptococcus and Psychrobacter and, a decrease in the abundance of Faecalibacterium, Bacteroides, Lachnospiraceae and Ruminococcus compared with the matched healthy controls. Moreover, CAP children in both age groups exhibited distinct profiles in the KEGG functional analysis. Our data revealed that the gut microbiota differ between CAP patients and health children and certain gut microbial species are associated with CAP. Further research to identify specific microbial species which may contribute to the development CAP are merited. In addition, rectification of microbiota dysbiosis may provide supplemental benefits for treatment of the childhood CAP.
Collapse
Affiliation(s)
- Xiaomeng Ren
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China; Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Yaser Gamallat
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Dongjie Liu
- Department of Rehabilitation, Dalian Rehabilitation Recuperation Center of PLA Joint Logistics Support Force, No. 30, Binhaixi Road, Xigang District, Dalian, 116013, China.
| | - Yanyan Zhu
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Abdo Meyiah
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| | - Chunhong Yan
- School of Food Science and Technology, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian, 116034, China.
| | - Dong Shang
- Department of Acute Abdominal Surgery, First Affiliated Hospital of Dalian Medical University, Dalian, 116011, China.
| | - Yi Xin
- Department of Biotechnology, College of Basic Medical Science, Dalian Medical University, Dalian, 116044, China.
| |
Collapse
|
30
|
Jiang H, Li J, Zhang B, Huang R, Zhang J, Chen Z, Shang X, Li X, Nie X. Intestinal Flora Disruption and Novel Biomarkers Associated With Nasopharyngeal Carcinoma. Front Oncol 2019; 9:1346. [PMID: 31867274 PMCID: PMC6908496 DOI: 10.3389/fonc.2019.01346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/15/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Nasopharyngeal carcinoma (NPC) is a malignant nasopharyngeal disease with a complicated etiology that occurs mostly in southern China. Intestinal flora imbalance is believed to be associated with a variety of organ malignancies. Current studies revealed that the destruction of intestinal flora is associated with NPC, and many studies have shown that intestinal flora can be used as a biomarker for many cancers and to predict cancer. Methods: To compare the differences in intestinal flora compositions and biological functions among 8 patients with familial NPC (NPC_F), 24 patients with sporadic NPC (NPC_S), and 27 healthy controls (NOR), we compared the intestinal flora DNA sequencing and hematological testing results between every two groups using bioinformatic methods. Results: Compared to the NOR group, the intestinal flora structures of the patients in the NPC_F and NPC_S groups showed significant changes. In NPC_F, Clostridium ramosum, Citrobacter spp., Veillonella spp., and Prevotella spp. were significantly increased, and Akkermansia muciniphila and Roseburia spp. were significantly reduced. In NPC_S, C. ramosum, Veillonella parvula, Veillonella dispar, and Klebsiella spp. were significantly increased, and Bifidobacterium adolescentis was significantly reduced. A beta diversity analysis showed significant difference compared NPC_F with NOR based on Bray Curtis (P = 0.012) and Unweighted UniFrac (P = 0.0045) index, respectively. The areas under the ROC curves plotted were all 1. Additionally, the concentrations of 5-hydroxytryptamine (5-HT) in NPC_F and NPC_S were significantly higher than those of NOR. C. ramosum was positively correlated with 5-HT (rcm: 0.85, P < 0.001). A functional analysis of the intestinal flora showed that NPC_F was associated with Neurodegenerative Diseases (P = 0.023) and that NPC_S was associated with Neurodegenerative Diseases (P = 0.045) as well. Conclusion: We found that NPC was associated with structural imbalances in the intestinal flora, with C. ramosum that promoted the elevation of 5-HT and opportunistic pathogens being significantly increased, while probiotics significantly decreased. C. ramosum can be used as a novel biomarker and disease prediction models should be established for NPC. The new biomarkers and disease prediction models may be used for disease risk prediction and the screening of high-risk populations, as well as for the early noninvasive diagnosis of NPC.
Collapse
Affiliation(s)
- Haiye Jiang
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Jian Li
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, China
| | - Bin Zhang
- Department of Anatomy and Neurobiology, Biology Postdoctoral Workstation, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Rong Huang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, China
| | - Junhua Zhang
- Department of Blood Transfusion, Third Xiangya Hospital, Central South University, Changsha, China
| | - Ziwei Chen
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Shang
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xisheng Li
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| | - Xinmin Nie
- Clinical Laboratory, Third Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
31
|
Zhang L, Cheng Y, Gao G, Jiang J. Spatial-Temporal Variation of Bacterial Communities in Sediments in Lake Chaohu, a Large, Shallow Eutrophic Lake in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16203966. [PMID: 31627458 PMCID: PMC6844080 DOI: 10.3390/ijerph16203966] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 11/16/2022]
Abstract
Sediment bacterial communities are critical for the circulation of nutrients in lake ecosystems. However, the bacterial community function and co-occurrence models of lakes have not been studied in depth. In this study, we observed significant seasonal changes and non-significant spatial changes in the beta diversity and community structure of sediment bacteria in Lake Chaohu. Through linear discriminant analysis effect size (LEfSe), we observed that certain taxa (from phylum to genus) have consistent enrichment between seasons. The sudden appearance of a Firmicutes population in spring samples from the Zhaohe River, an estuary of Lake Chaohu, and the dominance of Firmicutes populations in other regions suggested that exogenous pollution and environmental induction strongly impacted the assembly of bacterial communities in the sediments. Several taxa that serve as intermediate centers in Co-occurrence network analysis (i.e., Pedosphaeraceae, Phycisphaeraceae, Anaerolineaceae, and Geobacteraceae) may play an important role in sediments. Furthermore, compared with previous studies of plants and animals, the results of our study suggest that various organisms, including microorganisms, are resistant to environmental changes and/or exogenous invasions, allowing them to maintain their community structure.
Collapse
Affiliation(s)
- Lei Zhang
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yu Cheng
- School of Civil Engineering and Architecture, Chuzhou University, Chuzhou 239000, China.
| | - Guang Gao
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jiahu Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
32
|
Son HJ, Kim N, Song CH, Nam RH, Choi SI, Kim JS, Lee DH. Sex-related Alterations of Gut Microbiota in the C57BL/6 Mouse Model of Inflammatory Bowel Disease. J Cancer Prev 2019; 24:173-182. [PMID: 31624723 PMCID: PMC6786806 DOI: 10.15430/jcp.2019.24.3.173] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 12/30/2022] Open
Abstract
Background Gut microbiota is closely associated with development and exacerbation of inflammatory bowel diseases (IBD). The aim of this study was to investigate differences in gut microbiota depending on sex and changes of gut microbiota during IBD developments. Methods 16s rRNA metagenomic sequencing was performed for fecal materials from 8-week-old wild type (WT) and interleukin 10 (IL-10) knockout (KO) C57BL/6 mice of both sexes. Diversity indices, relative abundance of microbiota, and linear discriminant analysis effect size were examined to compare microbial communities between groups. Clustering of groups was performed by principal coordinates analysis (PCoA) and unweighted pair group method with arithmetic mean (UPGMA). Functional capabilities of microbiota were estimated using phylogenetic investigation of communities by reconstruction of unobserved states (PICRUSt) based on Kyoto Encyclopedia of Genes and Genomes database. Results PCoA and UPGMA tree analysis of beta-diversity demonstrated significant differences in gut microbiota between male and female groups of WT mice, but not of IL-10 KO mice. Firmicutes to Bacteroides ratio was higher in male group than that in female group in both WT mice and IL-10 KO mice. Phylum Proteobacteria significantly increased in female IL-10 KO mice than that in female WT mice. At species level, Lactobacillus murinus, Bacteroides acidifaciens, and Helicobacter hepaticus significantly increased in IL-10 KO mice than in WT mice. The relative abundance of beta-glucuronidase (K01195) was higher in female IL-10 KO mice than that in female WT mice by PICRUSt. Conclusions Our results suggest that microbiota-host interactions might differ between sexes during development of IBD.
Collapse
Affiliation(s)
- Hee Jin Son
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Nayoung Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research institute, Seoul National University College of Medicine, Seoul, Korea
| | - Chin-Hee Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Ryoung Hee Nam
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soo In Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Joo Sung Kim
- Department of Internal Medicine and Liver Research institute, Seoul National University College of Medicine, Seoul, Korea
| | - Dong Ho Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Korea.,Department of Internal Medicine and Liver Research institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
33
|
Wardill HR, Choo JM, Dmochowska N, Mavrangelos C, Campaniello MA, Bowen JM, Rogers GB, Hughes PA. Acute Colitis Drives Tolerance by Persistently Altering the Epithelial Barrier and Innate and Adaptive Immunity. Inflamm Bowel Dis 2019; 25:1196-1207. [PMID: 30794280 DOI: 10.1093/ibd/izz011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/29/2018] [Accepted: 01/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) has a remitting and relapsing disease course; however, relatively little is understood regarding how inflammatory damage in acute colitis influences the microbiota, epithelial barrier, and immune function in subsequent colitis. METHODS Mice were administered trinitrobenzene sulphonic acid (TNBS) via enema, and inflammation was assessed 2 days (d2) or 28 days (d28) later. Colitis was reactivated in some mice by re-treating at 28 days with TNBS and assessing 2 days later (d30). Epithelial responsiveness to secretagogues, microbiota composition, colonic infiltration, and immune activation was compared between all groups. RESULTS At day 28, the distal colon had healed, mucosa was restored, and innate immune response had subsided, but colonic transepithelial transport (P = 0.048), regulatory T-cell (TREG) infiltration (P = 0.014), adherent microbiota composition (P = 0.0081), and responsiveness of stimulated innate immune bone marrow cells (P < 0.0001 for IL-1β) differed relative to health. Two days after subsequent instillation of TNBS (d30 mice), the effects on inflammatory damage (P < 0.0001), paracellular permeability (P < 0.0001), and innate immune infiltration (P < 0.0001 for Ly6C+ Ly6G- macrophages) were reduced relative to d2 colitis. However, TREG infiltration was increased (P < 0.0001), and the responsiveness of stimulated T cells in the mesenteric lymph nodes shifted from pro-inflammatory at d2 to immune-suppressive at d30 (P < 0.0001 for IL-10). These effects were observed despite similar colonic microbiota composition and degradation of the mucosal layer between d2 and d30. CONCLUSIONS Collectively, these results indicate that acute colitis chronically alters epithelial barrier function and both innate and adaptive immune responses. These effects reduce the consequences of a subsequent colitis event, warranting longitudinal studies in human IBD subjects.
Collapse
Affiliation(s)
- Hannah R Wardill
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Jocelyn M Choo
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Nicole Dmochowska
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Chris Mavrangelos
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Melissa A Campaniello
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Joanne M Bowen
- Adelaide Medical School, University of Adelaide, Adelaide Australia
| | - Geraint B Rogers
- Infection and Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
- College of Medicine and Public Health, Flinders University, Bedford Park, South Australia, Australia
| | - Patrick A Hughes
- Centre for Nutrition and Gastrointestinal Disease, Adelaide Medical School, University of Adelaide & South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
34
|
Lavoie S, Conway KL, Lassen KG, Jijon HB, Pan H, Chun E, Michaud M, Lang JK, Gallini Comeau CA, Dreyfuss JM, Glickman JN, Vlamakis H, Ananthakrishnan A, Kostic A, Garrett WS, Xavier RJ. The Crohn's disease polymorphism, ATG16L1 T300A, alters the gut microbiota and enhances the local Th1/Th17 response. eLife 2019; 8:39982. [PMID: 30666959 PMCID: PMC6342529 DOI: 10.7554/elife.39982] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 12/20/2018] [Indexed: 12/15/2022] Open
Abstract
Inflammatory bowel disease (IBD) is driven by dysfunction between host genetics, the microbiota, and immune system. Knowledge gaps remain regarding how IBD genetic risk loci drive gut microbiota changes. The Crohn's disease risk allele ATG16L1 T300A results in abnormal Paneth cells due to decreased selective autophagy, increased cytokine release, and decreased intracellular bacterial clearance. To unravel the effects of ATG16L1 T300A on the microbiota and immune system, we employed a gnotobiotic model using human fecal transfers into ATG16L1 T300A knock-in mice. We observed increases in Bacteroides ovatus and Th1 and Th17 cells in ATG16L1 T300A mice. Association of altered Schaedler flora mice with B. ovatus specifically increased Th17 cells selectively in ATG16L1 T300A knock-in mice. Changes occur before disease onset, suggesting that ATG16L1 T300A contributes to dysbiosis and immune infiltration prior to disease symptoms. Our work provides insight for future studies on IBD subtypes, IBD patient treatment and diagnostics.
Collapse
Affiliation(s)
- Sydney Lavoie
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Kara L Conway
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
| | - Kara G Lassen
- Broad Institute of Harvard and MIT, Cambridge, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
| | - Humberto B Jijon
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
| | - Hui Pan
- Joslin Diabetes Center, Boston, United States
| | - Eunyoung Chun
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Monia Michaud
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Jessica K Lang
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | - Carey Ann Gallini Comeau
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States
| | | | - Jonathan N Glickman
- Department of Pathology, Harvard Medical School, Boston, United States.,Beth Israel Deaconess Medical Center, Boston, United States
| | - Hera Vlamakis
- Broad Institute of Harvard and MIT, Cambridge, United States
| | - Ashwin Ananthakrishnan
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States
| | - Aleksander Kostic
- Joslin Diabetes Center, Boston, United States.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, United States
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Department of Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States.,Department and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, United States
| | - Ramnik J Xavier
- Gastrointestinal Unit, Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, United States.,Broad Institute of Harvard and MIT, Cambridge, United States
| |
Collapse
|
35
|
Yilmaz B, Juillerat P, Øyås O, Ramon C, Bravo FD, Franc Y, Fournier N, Michetti P, Mueller C, Geuking M, Pittet VEH, Maillard MH, Rogler G, Wiest R, Stelling J, Macpherson AJ. Microbial network disturbances in relapsing refractory Crohn's disease. Nat Med 2019; 25:323-336. [PMID: 30664783 DOI: 10.1038/s41591-018-0308-z] [Citation(s) in RCA: 269] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 11/19/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) can be broadly divided into Crohn's disease (CD) and ulcerative colitis (UC) from their clinical phenotypes. Over 150 host susceptibility genes have been described, although most overlap between CD, UC and their subtypes, and they do not adequately account for the overall incidence or the highly variable severity of disease. Replicating key findings between two long-term IBD cohorts, we have defined distinct networks of taxa associations within intestinal biopsies of CD and UC patients. Disturbances in an association network containing taxa of the Lachnospiraceae and Ruminococcaceae families, typically producing short chain fatty acids, characterize frequently relapsing disease and poor responses to treatment with anti-TNF-α therapeutic antibodies. Alterations of taxa within this network also characterize risk of later disease recurrence of patients in remission after the active inflamed segment of CD has been surgically removed.
Collapse
Affiliation(s)
- Bahtiyar Yilmaz
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Pascal Juillerat
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ove Øyås
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Charlotte Ramon
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Francisco Damian Bravo
- Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Yannick Franc
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Fournier
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre Michetti
- Gastroenterology La Source-Beaulieu, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Christoph Mueller
- Division of Experimental Pathology, Institute of Pathology, University of Bern, Bern, Switzerland
| | - Markus Geuking
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Valerie E H Pittet
- Institute of Social and Preventive Medicine (IUMSP), Lausanne University Hospital, Lausanne, Switzerland
| | - Michel H Maillard
- Gastroenterology La Source-Beaulieu, Lausanne, Switzerland.,Service of Gastroenterology and Hepatology, Department of Medicine, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Reiner Wiest
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland.,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Jörg Stelling
- Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Andrew J Macpherson
- Maurice Müller Laboratories, Department for Biomedical Research, University of Bern, Bern, Switzerland. .,Department of Visceral Surgery and Medicine, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
36
|
Knox NC, Forbes JD, Van Domselaar G, Bernstein CN. The Gut Microbiome as a Target for IBD Treatment: Are We There Yet? ACTA ACUST UNITED AC 2019; 17:115-126. [DOI: 10.1007/s11938-019-00221-w] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
37
|
Moen AEF, Lindstrøm JC, Tannæs TM, Vatn S, Ricanek P, Vatn MH, Jahnsen J. The prevalence and transcriptional activity of the mucosal microbiota of ulcerative colitis patients. Sci Rep 2018; 8:17278. [PMID: 30467421 PMCID: PMC6250705 DOI: 10.1038/s41598-018-35243-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/01/2018] [Indexed: 12/16/2022] Open
Abstract
Active microbes likely have larger impact on gut health status compared to inactive or dormant microbes. We investigate the composition of active and total mucosal microbiota of treatment-naïve ulcerative colitis (UC) patients to determine the microbial picture at the start-up phase of disease, using both a 16S rRNA transcript and gene amplicon sequencing. DNA and RNA were isolated from the same mucosal colonic biopsies. Our aim was to identify active microbial members of the microbiota in early stages of disease and reveal which members are present, but do not act as major players. We demonstrated differences in active and total microbiota of UC patients when comparing inflamed to non-inflamed tissue. Several taxa, among them the Proteobacteria phyla and families therein, revealed lower transcriptional activity despite a high presence. The Bifidobacteriaceae family of the Actinobacteria phylum showed lower abundance in the active microbiota, although no difference in presence was detected. The most abundant microbiota members of the inflamed tissue in UC patients were not the most active. Knowledge of active members of microbiota in UC patients could enhance our understanding of disease etiology. The active microbial community composition did not deviate from the total when comparing UC patients to non-IBD controls.
Collapse
Affiliation(s)
- Aina E Fossum Moen
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Jonas Christoffer Lindstrøm
- Health Services Research Unit, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Tone Møller Tannæs
- Department of Clinical Molecular Biology (EpiGen), Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway.
| | - Simen Vatn
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Petr Ricanek
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | - Morten H Vatn
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
| | - Jørgen Jahnsen
- Institute of Clinical Medicine, Campus Ahus, University of Oslo, Oslo, Norway
- Department of Gastroenterology, Division of Medicine, Akershus University Hospital, Lørenskog, and University of Oslo, Oslo, Norway
| | | |
Collapse
|
38
|
Moureau NL, Marsh N, Zhang L, Bauer MJ, Larsen E, Mihala G, Corley A, Lye I, Cooke M, Rickard CM. Evaluation of Skin Colonisation And Placement of vascular access device Exit sites (ESCAPE Study). J Infect Prev 2018; 20:51-59. [PMID: 30719089 DOI: 10.1177/1757177418805836] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/14/2018] [Indexed: 01/08/2023] Open
Abstract
Background Skin microorganisms may contribute to the development of vascular access device (VAD) infections. Baseline skin microorganism type and quantity vary between body sites, yet there is little evidence to inform choice of VAD site selection. Objective To compare microorganisms present at different body sites used for VAD insertions and understand the effect of transparent dressings on skin microflora. Methods The ESCAPE observational study consisted of three phases: (1) skin swabs of four sites (mid-neck, base neck, chest, upper arm) from 48 hospital patients; (2) skin swabs of five body sites (mid-neck, base neck, chest, upper arm, lower arm) from 10 healthy volunteers; and (3) paired skin swabs (n = 72) under and outside of transparent dressings from 36 hospital patients (16 mid/base neck, 10 chest, upper arm). Specimens were cultured for 72 h, species identified and colony-forming units (CFU) counted. Ordinal logistic regression compared CFU categories between variables of interest. Results The chest and upper arm were significantly associated with fewer microorganisms compared to neck or forearm (odds ratio [OR] = 0.40, 95% confidence interval [CI] = 0.25-0.65, P < 0.05). CFU levels under transparent dressings were not significantly different from outside (OR = 0.57, 95% CI = 0.22-1.45). Staphylococci were predominant at all sites. Other significant (P < 0.05) predictors of higher CFU count included prolonged hospitalisation and medical/surgical patient status. Discussion Skin microorganism load was significantly lower at the upper arm or chest, compared to the mid- or base neck. This may impact VAD site selection and subsequent infection risk.
Collapse
Affiliation(s)
- Nancy L Moureau
- PICC Excellence, Inc., Alliance for Vascular Access Teaching and Research (AVATAR) Group, Menzies Health Institute Queensland (MHIQ), Griffith University, Brisbane, Australia
| | - Nicole Marsh
- Royal Brisbane and Women's Hospital, AVATAR, MHIQ, Griffith University, Brisbane, Australia
| | - Li Zhang
- AVATAR, MHIQ, Griffith University, Brisbane, Australia
| | | | - Emily Larsen
- AVATAR, MHIQ, Griffith University, Brisbane, Australia
| | - Gabor Mihala
- Centre for Applied Health Economics, MHIQ, Griffith University, Brisbane, Australia
| | - Amanda Corley
- AVATAR, MHIQ, Griffith University, Brisbane, Australia.,Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia
| | - India Lye
- AVATAR, MHIQ, Griffith University, Brisbane, Australia.,Critical Care Research Group, Prince Charles Hospital, Brisbane, Australia
| | - Marie Cooke
- AVATAR, MHIQ, Griffith University, Brisbane, Australia
| | - Claire M Rickard
- AVATAR, MHIQ, Griffith University, Brisbane, Australia.,Centre for Clinical Nursing, Royal Brisbane and Women's Hospital, Brisbane, Australia
| |
Collapse
|
39
|
Hiippala K, Jouhten H, Ronkainen A, Hartikainen A, Kainulainen V, Jalanka J, Satokari R. The Potential of Gut Commensals in Reinforcing Intestinal Barrier Function and Alleviating Inflammation. Nutrients 2018; 10:nu10080988. [PMID: 30060606 PMCID: PMC6116138 DOI: 10.3390/nu10080988] [Citation(s) in RCA: 409] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/19/2018] [Accepted: 07/27/2018] [Indexed: 02/06/2023] Open
Abstract
The intestinal microbiota, composed of pro- and anti-inflammatory microbes, has an essential role in maintaining gut homeostasis and functionality. An overly hygienic lifestyle, consumption of processed and fiber-poor foods, or antibiotics are major factors modulating the microbiota and possibly leading to longstanding dysbiosis. Dysbiotic microbiota is characterized to have altered composition, reduced diversity and stability, as well as increased levels of lipopolysaccharide-containing, proinflammatory bacteria. Specific commensal species as novel probiotics, so-called next-generation probiotics, could restore the intestinal health by means of attenuating inflammation and strengthening the epithelial barrier. In this review we summarize the latest findings considering the beneficial effects of the promising commensals across all major intestinal phyla. These include the already well-known bifidobacteria, which use extracellular structures or secreted substances to promote intestinal health. Faecalibacterium prausnitzii, Roseburia intestinalis, and Eubacterium hallii metabolize dietary fibers as major short-chain fatty acid producers providing energy sources for enterocytes and achieving anti-inflammatory effects in the gut. Akkermansia muciniphila exerts beneficial action in metabolic diseases and fortifies the barrier function. The health-promoting effects of Bacteroides species are relatively recently discovered with the findings of excreted immunomodulatory molecules. These promising, unconventional probiotics could be a part of biotherapeutic strategies in the future.
Collapse
Affiliation(s)
- Kaisa Hiippala
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Hanne Jouhten
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Aki Ronkainen
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Anna Hartikainen
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Veera Kainulainen
- Pharmacology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Jonna Jalanka
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| | - Reetta Satokari
- Immunobiology Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.
| |
Collapse
|
40
|
Molecular profiling of mucosal tissue associated microbiota in patients manifesting acute exacerbations and remission stage of ulcerative colitis. World J Microbiol Biotechnol 2018; 34:76. [PMID: 29796862 DOI: 10.1007/s11274-018-2449-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/18/2018] [Indexed: 12/22/2022]
Abstract
Dysbiosis of intestinal microflora has been postulated in ulcerative colitis (UC), which is characterized by imbalance of mucosal tissue associated bacterial communities. However, the specific changes in mucosal microflora during different stages of UC are still unknown. The aim of the current study was to investigate the changes in mucosal tissue associated microbiota during acute exacerbations and remission stages of UC. The mucosal microbiota associated with colon biopsy of 12 patients suffering from UC (exacerbated stage) and the follow-up samples from the same patients (remission stage) as well as non-IBD subjects was studied using 16S rRNA gene-based sequencing and quantitative PCR. The total bacterial count in patients suffering from exacerbated phase of UC was observed to be two fold lower compared to that of the non-IBD subjects (p = 0.0049, Wilcox on matched-pairs signed rank tests). Bacterial genera including Stenotrophomonas, Parabacteroides, Elizabethkingia, Pseudomonas, Micrococcus, Ochrobactrum and Achromobacter were significantly higher in abundance during exacerbated phase of UC as compared to remission phase. The alterations in bacterial diversity with an increase in the abnormal microbial communities signify the extent of dysbiosis in mucosal microbiota in patients suffering from UC. Our study helps in identifying the specific genera dominating the microbiota during the disease and thus lays a basis for further investigation of the possible role of these bacteria in pathogenesis of UC.
Collapse
|
41
|
Roberto AA, Van Gray JB, Leff LG. Sediment bacteria in an urban stream: Spatiotemporal patterns in community composition. WATER RESEARCH 2018; 134:353-369. [PMID: 29454907 DOI: 10.1016/j.watres.2018.01.045] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/04/2018] [Accepted: 01/20/2018] [Indexed: 05/25/2023]
Abstract
Sediment bacterial communities play a critical role in biogeochemical cycling in lotic ecosystems. Despite their ecological significance, the effects of urban discharge on spatiotemporal distribution of bacterial communities are understudied. In this study, we examined the effect of urban discharge on the spatiotemporal distribution of stream sediment bacteria in a northeast Ohio stream. Water and sediment samples were collected after large storm events (discharge > 100 m) from sites along a highly impacted stream (Tinkers Creek, Cuyahoga River watershed, Ohio, USA) and two reference streams. Although alpha (α) diversity was relatively constant spatially, multivariate analysis of bacterial community 16S rDNA profiles revealed significant spatial and temporal effects on beta (β) diversity and community composition and identified a number of significant correlative abiotic parameters. Clustering of upstream and reference sites from downstream sites of Tinkers Creek combined with the dominant families observed in specific locales suggests that environmentally-induced species sorting had a strong impact on the composition of sediment bacterial communities. Distinct groupings of bacterial families that are often associated with nutrient pollution (i.e., Comamonadaceae, Rhodobacteraceae, and Pirellulaceae) and other contaminants (i.e., Sphingomonadaceae and Phyllobacteriaceae) were more prominent at sites experiencing higher degrees of discharge associated with urbanization. Additionally, there were marked seasonal changes in community composition, with individual taxa exhibiting different seasonal abundance patterns. However, spatiotemporal variation in stream conditions did not affect bacterial community functional profiles. Together, these results suggest that local environmental drivers and niche filtering from discharge events associated with urbanization shape the bacterial community structure. However, dispersal limitations and interactions among other species likely play a role as well.
Collapse
Affiliation(s)
- Alescia A Roberto
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Jonathon B Van Gray
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| | - Laura G Leff
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA.
| |
Collapse
|
42
|
Ma HQ, Yu TT, Zhao XJ, Zhang Y, Zhang HJ. Fecal microbial dysbiosis in Chinese patients with inflammatory bowel disease. World J Gastroenterol 2018; 24:1464-1477. [PMID: 29632427 PMCID: PMC5889826 DOI: 10.3748/wjg.v24.i13.1464] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To analyze the alterations of fecal microbiota in Chinese patients with inflammatory bowel disease (IBD).
METHODS Fecal samples from 15 patients with Crohn’s disease (CD) (11 active CD, 4 inactive CD), 14 patients with active ulcerative colitis (UC) and 13 healthy individuals were collected and subjected to 16S ribosomal DNA (rDNA) gene sequencing. The V4 hypervariable regions of 16S rDNA gene were amplified from all samples and sequenced by the Illumina MiSeq platform. Quality control and operational taxonomic units classification of reads were calculated with QIIME software. Alpha diversity and beta diversity were displayed with R software.
RESULTS Community richness (chao) and microbial structure in both CD and UC were significantly different from those in normal controls. At the phyla level, analysis of the microbial compositions revealed a significantly greater abundance of Proteobacteria in IBD as compared to that in controls. At the genera level, 8 genera in CD and 23 genera in UC (in particular, the Escherichia genus) showed significantly greater abundance as compared to that in normal controls. The relative abundance of Bacteroidetes in the active CD group was markedly lower than that in the inactive CD group. The abundance of Proteobacteria in patients with active CD was nominally higher than that in patients with inactive CD; however, the difference was not statistically significant after correction. Furthermore, the relative abundance of Bacteroidetes showed a negative correlation with the CD activity index scores.
CONCLUSION Our study profiles specific characteristics and microbial dysbiosis in the gut of Chinese patients with IBD. Bacteroidetes may have a negative impact on inflammatory development.
Collapse
Affiliation(s)
- Hai-Qin Ma
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Ting-Ting Yu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Xiao-Jing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Yi Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Hong-Jie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
43
|
Schirmer M, Franzosa EA, Lloyd-Price J, McIver LJ, Schwager R, Poon TW, Ananthakrishnan AN, Andrews E, Barron G, Lake K, Prasad M, Sauk J, Stevens B, Wilson RG, Braun J, Denson LA, Kugathasan S, McGovern DPB, Vlamakis H, Xavier RJ, Huttenhower C. Dynamics of metatranscription in the inflammatory bowel disease gut microbiome. Nat Microbiol 2018; 3:337-346. [PMID: 29311644 PMCID: PMC6131705 DOI: 10.1038/s41564-017-0089-z] [Citation(s) in RCA: 351] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of chronic diseases of the digestive tract that affects millions of people worldwide. Genetic, environmental and microbial factors have been implicated in the onset and exacerbation of IBD. However, the mechanisms associating gut microbial dysbioses and aberrant immune responses remain largely unknown. The integrative Human Microbiome Project seeks to close these gaps by examining the dynamics of microbiome functionality in disease by profiling the gut microbiomes of >100 individuals sampled over a 1-year period. Here, we present the first results based on 78 paired faecal metagenomes and metatranscriptomes, and 222 additional metagenomes from 59 patients with Crohn's disease, 34 with ulcerative colitis and 24 non-IBD control patients. We demonstrate several cases in which measures of microbial gene expression in the inflamed gut can be informative relative to metagenomic profiles of functional potential. First, although many microbial organisms exhibited concordant DNA and RNA abundances, we also detected species-specific biases in transcriptional activity, revealing predominant transcription of pathways by individual microorganisms per host (for example, by Faecalibacterium prausnitzii). Thus, a loss of these organisms in disease may have more far-reaching consequences than suggested by their genomic abundances. Furthermore, we identified organisms that were metagenomically abundant but inactive or dormant in the gut with little or no expression (for example, Dialister invisus). Last, certain disease-specific microbial characteristics were more pronounced or only detectable at the transcript level, such as pathways that were predominantly expressed by different organisms in patients with IBD (for example, Bacteroides vulgatus and Alistipes putredinis). This provides potential insights into gut microbial pathway transcription that can vary over time, inducing phenotypical changes that are complementary to those linked to metagenomic abundances. The study's results highlight the strength of analysing both the activity and the presence of gut microorganisms to provide insight into the role of the microbiome in IBD.
Collapse
Affiliation(s)
- Melanie Schirmer
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Eric A Franzosa
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Jason Lloyd-Price
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Lauren J McIver
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Randall Schwager
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Tiffany W Poon
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashwin N Ananthakrishnan
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth Andrews
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Gildardo Barron
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kathleen Lake
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mahadev Prasad
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jenny Sauk
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
- Vatche and Tamar Manoukian Division of Digestive Disease, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Betsy Stevens
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Robin G Wilson
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | - Jonathan Braun
- Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Lee A Denson
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Subra Kugathasan
- Division of Pediatric Gastroenterology, Emory University School of Medicine, Atlanta, GA, USA
- Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Dermot P B McGovern
- The F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Hera Vlamakis
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA.
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Curtis Huttenhower
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
44
|
Tang C, Sun J, Zhou B, Jin C, Liu J, Kan J, Qian C, Zhang N. Effects of polysaccharides from purple sweet potatoes on immune response and gut microbiota composition in normal and cyclophosphamide treated mice. Food Funct 2018; 9:937-950. [DOI: 10.1039/c7fo01302g] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three polysaccharides were extracted from purple sweet potatoes and then administered to normal and cyclophosphamide treated mice by gavage.
Collapse
Affiliation(s)
- Chao Tang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jian Sun
- College of Chemistry and Chemical Engineering
- Yangzhou University
- Yangzhou 225002
- China
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area
| | - Bo Zhou
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Changhai Jin
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Jun Liu
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Juan Kan
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Chunlu Qian
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| | - Nianfeng Zhang
- College of Food Science and Engineering
- Yangzhou University
- Yangzhou 225127
- China
| |
Collapse
|
45
|
Basson AR, Lam M, Cominelli F. Complementary and Alternative Medicine Strategies for Therapeutic Gut Microbiota Modulation in Inflammatory Bowel Disease and their Next-Generation Approaches. Gastroenterol Clin North Am 2017; 46:689-729. [PMID: 29173517 PMCID: PMC5909826 DOI: 10.1016/j.gtc.2017.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The human gut microbiome exerts a major impact on human health and disease, and therapeutic gut microbiota modulation is now a well-advocated strategy in the management of many diseases, including inflammatory bowel disease (IBD). Scientific and clinical evidence in support of complementary and alternative medicine, in targeting intestinal dysbiosis among patients with IBD, or other disorders, has increased dramatically over the past years. Delivery of "artificial" stool replacements for fecal microbiota transplantation (FMT) could provide an effective, safer alternative to that of human donor stool. Nevertheless, optimum timing of FMT administration in IBD remains unexplored, and future investigations are essential.
Collapse
Affiliation(s)
- Abigail R Basson
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Minh Lam
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Fabio Cominelli
- Digestive Health Research Institute, Case Western Reserve University, Cleveland, OH, USA; Department of Medicine, Case Western Reserve University, Cleveland, OH, USA; Department of Pathology, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
46
|
Zhang SL, Wang SN, Miao CY. Influence of Microbiota on Intestinal Immune System in Ulcerative Colitis and Its Intervention. Front Immunol 2017; 8:1674. [PMID: 29234327 PMCID: PMC5712343 DOI: 10.3389/fimmu.2017.01674] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Accepted: 11/14/2017] [Indexed: 01/07/2023] Open
Abstract
Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with chronic and recurrent characteristics caused by multiple reasons. Although the pathogenic factors have not been clarified yet, recent studies have demonstrated that intestinal microbiota plays a major role in UC, especially in the immune system. This review focuses on the description of several major microbiota communities that affect UC and their interactions with the host. In this review, eight kinds of microbiota that are highly related to IBD, including Faecalibacterium prausnitzii, Clostridium clusters IV and XIVa, Bacteroides, Roseburia species, Eubacterium rectale, Escherichia coli, Fusobacterium, and Candida albicans are demonstrated on the changes in amount and roles in the onset and progression of IBD. In addition, potential therapeutic targets for UC involved in the regulation of microbiota, including NLRPs, vitamin D receptor as well as secreted proteins, are discussed in this review.
Collapse
Affiliation(s)
- Sai-Long Zhang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Shu-Na Wang
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| | - Chao-Yu Miao
- Department of Pharmacology, Second Military Medical University, Shanghai, China
| |
Collapse
|
47
|
Proteobacteria: A Common Factor in Human Diseases. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9351507. [PMID: 29230419 PMCID: PMC5688358 DOI: 10.1155/2017/9351507] [Citation(s) in RCA: 760] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/16/2017] [Indexed: 12/11/2022]
Abstract
Microbiota represents the entire microbial community present in the gut host. It serves several functions establishing a mutualistic relation with the host. Latest years have seen a burst in the number of studies focusing on this topic, in particular on intestinal diseases. In this scenario, Proteobacteria are one of the most abundant phyla, comprising several known human pathogens. This review highlights the latest findings on the role of Proteobacteria not only in intestinal but also in extraintestinal diseases. Indeed, an increasing amount of data identifies Proteobacteria as a possible microbial signature of disease. Several studies demonstrate an increased abundance of members belonging to this phylum in such conditions. Major evidences currently involve metabolic disorders and inflammatory bowel disease. However, more recent studies suggest a role also in lung diseases, such as asthma and chronic obstructive pulmonary disease, but evidences are still scant. Notably, all these conditions are sustained by various degree of inflammation, which thus represents a core aspect of Proteobacteria-related diseases.
Collapse
|
48
|
Khajah MA. The potential role of fecal microbiota transplantation in the treatment of inflammatory Bowel disease. Scand J Gastroenterol 2017; 52:1172-1184. [PMID: 28685630 DOI: 10.1080/00365521.2017.1347812] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disorder of an unknown etiology. Its pathogenesis involves an interplay of infectious, genetic, environmental, and immunological factors. The current therapeutic options have various limitations in terms of cost, side effect profile, and the development of drug resistance and dependence. Therefore, there is a need to develop future therapeutic options which are safe and effective to control the inflammatory process. This review focuses in a method for the administration of fecal matters (which contains a mixture of various commensals) from a healthy donor to the inflamed colon called fecal microbiota transplantation (FMT) aiming to correct the underlying dysbiosis in the gut as one of the major driving force for the inflammatory process. IBD patients have reduced number of protective (e.g., clostridia and bacteroids) and increased number of pathogenic (e.g., adhesive invasive E. coli and mycobacterium avium paratuberculosis) commensals, and this method is aimed to shift these changes in the gut. Recent studies from animal models and clinical trials suggest promising effects of this method in treating patients with IBD, but more studies are urgently needed to confirm its efficacy and safety, since the etiology of this chronic inflammatory disease is not fully understood and caution should be taken when transplanting fecal matters between individuals which might transfer other infectious organisms and diseases.
Collapse
Affiliation(s)
- Maitham Abbas Khajah
- a Pharmacology & Therapeutics, Faculty of Pharmacy , Kuwait University , Kuwait , Kuwait
| |
Collapse
|
49
|
Zamani S, Hesam Shariati S, Zali MR, Asadzadeh Aghdaei H, Sarabi Asiabar A, Bokaie S, Nomanpour B, Sechi LA, Feizabadi MM. Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog 2017; 9:53. [PMID: 28924454 PMCID: PMC5599888 DOI: 10.1186/s13099-017-0202-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/03/2017] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Ulcerative colitis (UC) as a type of inflammatory bowel disease (IBD), presumed to occur as a consequence of increased immune responses to intestinal microbiota in genetically susceptible individuals. Enterotoxigenic Bacteroides fragilis (ETBF) strains are important intestinal bacteria that can be involved in IBD. The aim of this study was to design a quantitative assay for detection of B. fragilis and ETBF and also to find their association with UC. METHODS Ninety-five biopsies were collected from patients with UC (n = 35) and with no IBD (nIBD, n = 60). All the specimens were cultured in Bacteroides bile esculin agar medium. Specific primers and probes were designed for quantitative real-time PCR (QRT-PCR) based on 16S rRNA and bft genes sequences of ETBF. RESULTS The bft genes were detected in 51.4% of UC samples and 1.6% of nIBD samples, respectively. In UC patients, 37.1% of samples with diarrhea and 11.4% of samples without diarrhea, harbored the bft gene. Mean value of the number of ETBF with bft gene in UC and nIBD samples were 4.46 ן 102 and 1.96, respectively. Likewise these result for 16S rRNA gene in UC and nIBD samples were 2.0 × 103 and 8.4 × 103, respectively. CONCLUSIONS There was no significant association between presence and numbers of 16S rRNA gene of B. fragilis and UC. ETBF was detected more in UC specimens and biopsies of UC patients with diarrhea than in the control group. These data demonstrated that ETBF is associated with development of UC and as a causative agent for the development of diarrhea in these patients.
Collapse
Affiliation(s)
- Samin Zamani
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sonia Hesam Shariati
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Akram Sarabi Asiabar
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Division of Epidemiology & Zoonoses, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Bizhan Nomanpour
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43b, 07100 Sassari, Italy
| | - Mohammad Mehdi Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Thoracic Research Center, Imam Khomeini Hospital, Tehran, Iran
| |
Collapse
|
50
|
Nagao-Kitamoto H, Kamada N. Host-microbial Cross-talk in Inflammatory Bowel Disease. Immune Netw 2017; 17:1-12. [PMID: 28261015 PMCID: PMC5334117 DOI: 10.4110/in.2017.17.1.1] [Citation(s) in RCA: 117] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/19/2017] [Accepted: 01/27/2017] [Indexed: 02/06/2023] Open
Abstract
A vast community of commensal microorganisms, commonly referred to as the gut microbiota, colonizes the gastrointestinal tract (GI). The involvement of the gut microbiota in the maintenance of the gut ecosystem is two-fold: it educates host immune cells and protects the host from pathogens. However, when healthy microbial composition and function are disrupted (dysbiosis), the dysbiotic gut microbiota can trigger the initiation and development of various GI diseases, including inflammatory bowel disease (IBD). IBD, primarily includes ulcerative colitis (UC) and Crohn's disease (CD), is a major global public health problem affecting over 1 million patients in the United States alone. Accumulating evidence suggests that various environmental and genetic factors contribute to the pathogenesis of IBD. In particular, the gut microbiota is a key factor associated with the triggering and presentation of disease. Gut dysbiosis in patients with IBD is defined as a reduction of beneficial commensal bacteria and an enrichment of potentially harmful commensal bacteria (pathobionts). However, as of now it is largely unknown whether gut dysbiosis is a cause or a consequence of IBD. Recent technological advances have made it possible to address this question and investigate the functional impact of dysbiotic microbiota on IBD. In this review, we will discuss the recent advances in the field, focusing on host-microbial cross-talk in IBD.
Collapse
Affiliation(s)
- Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|