1
|
Liu X, Gutierrez Jauregui R, Lueder Y, Halle S, Ospina-Quintero L, Ritter C, Schimrock A, Willenzon S, Janssen A, Wagner K, Messerle M, Bošnjak B, Förster R. Protective function of ex vivo-expanded CD8 T cells in a mouse model of adoptive therapy for cytomegalovirus infection depends on integrin beta 1 but not CXCR3, CTLA4, or PD-1 expression. J Leukoc Biol 2025; 117:qiae256. [PMID: 40276928 DOI: 10.1093/jleuko/qiae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/24/2024] [Indexed: 04/26/2025] Open
Abstract
The adoptive transfer of virus-specific T cells (VSTs) represents a therapeutic option for viral infection treatment in immunocompromised patients. Before administration, ex vivo culture enables VST expansion. However, it is unclear how ex vivo expansion affects the circulation, homing, and intra-tissue migration of administered VSTs. We established a model of VST immunotherapy of acute cytomegalovirus infection using adoptive transfer of ex vivo-expanded OT-I CD8 T cells (recognizing SIINFEKL peptide) into Rag2-/- mice infected with murine cytomegalovirus (MCMV) encoding for the SIINFEKL peptide. Ex vivo expansion induced an effector T cell phenotype and affected the expression of integrins and chemokine receptors. CRISPR/Cas9-mediated gene deletions enabled us to address the role of selected genes in the homing of VSTs following intravenous administration. We found that deletion of Itgb1, encoding for integrin beta 1, prevented OT-I cells from entering infected organs and drastically reduced their number in blood, suggesting that adoptively transferred VSTs primarily expand in the infected tissues. By contrast, Cxcr3-/- OT-I cells provided equal protection as their Cxcr3+/+ counterparts, indicating that this chemokine receptor does not contribute to VST entry into infected organs. Further, Pdcd1 and Ctla4 deletion did not impair the transferred OT-I cells' ability to protect mice from MCMV, arguing against quick exhaustion of VSTs with an effector T cell phenotype. Together, these data indicate that ex vivo expansion affects migration and activation properties of VSTs and suggest that future clinical evaluation of adoptive T cell therapy efficacy should include homing molecule expression assessment.
Collapse
Affiliation(s)
- Xiaokun Liu
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | | | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Laura Ospina-Quintero
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Christiane Ritter
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Stefanie Willenzon
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Anika Janssen
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, Hannover 30625, Germany
| |
Collapse
|
2
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
3
|
Tillmanns J, Kicuntod J, Ehring A, Elbasani E, Borst EM, Obergfäll D, Müller R, Hahn F, Marschall M. Establishment of a Luciferase-Based Reporter System to Study Aspects of Human Cytomegalovirus Infection, Replication Characteristics, and Antiviral Drug Efficacy. Pathogens 2024; 13:645. [PMID: 39204245 PMCID: PMC11356942 DOI: 10.3390/pathogens13080645] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/09/2024] [Accepted: 07/25/2024] [Indexed: 09/03/2024] Open
Abstract
Human cytomegalovirus (HCMV) represents a highly medically important pathogen which has constantly been the subject of both molecular and clinical investigations. HCMV infections, especially those in high-risk patients, still raise many unanswered questions, so current investigations are focused on viral pathogenesis, vaccine development, and options for antiviral drug targeting. To this end, the use of suitable viral strains as well as recombinant reporter constructs in cultured cells and model systems has specific significance. We previously reported on the application of various herpesviruses that express green, red, or related fluorescent proteins, especially in the fields of virus-host interaction and antiviral research. Here, we characterized a recombinant version of the clinically relevant and cell type-adaptable HCMV strain TB40, which expresses firefly luciferase as a quantitative reporter of viral replication (TB40-FLuc). The data provide evidence for five main conclusions. First, HCMV TB40-FLuc is employable in multiple settings in primary human cells. Second, viral reporter signals are easily quantifiable, even at early time points within viral replication. Third, the FLuc reporter reflects the kinetics of viral intracellular replication, cascade-like viral IE-E-L protein production, and progeny release. Fourth, as relates to specific applications of the TB40-FLuc system, we demonstrated the reliability of quantitative antiviral compound determination in multi-well formats and its independence from fluorescence-based measurements in the case of autofluorescent inhibitors. Finally, we illustrated increased reporter sensitivity in comparison to other recombinant HCMVs. In essence, recombinant HCMV TB40-FLuc combines several molecular properties that are considered beneficial in studies on viral host tropism, replication efficiency, and antiviral drug assessment.
Collapse
Affiliation(s)
- Julia Tillmanns
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Jintawee Kicuntod
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Antonia Ehring
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Endrit Elbasani
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany; (E.E.); (E.M.B.)
| | - Eva Maria Borst
- Institute of Virology, Hannover Medical School (MHH), 30625 Hannover, Germany; (E.E.); (E.M.B.)
| | - Debora Obergfäll
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Regina Müller
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Friedrich Hahn
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), 91054 Erlangen, Germany; (J.T.); (J.K.); (A.E.); (D.O.); (R.M.); (F.H.)
| |
Collapse
|
4
|
Holtappels R, Büttner JK, Freitag K, Reddehase MJ, Lemmermann NA. Modulation of cytomegalovirus immune evasion identifies direct antigen presentation as the predominant mode of CD8 T-cell priming during immune reconstitution after hematopoietic cell transplantation. Front Immunol 2024; 15:1355153. [PMID: 38426094 PMCID: PMC10902149 DOI: 10.3389/fimmu.2024.1355153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Cytomegalovirus (CMV) infection is the most critical infectious complication in recipients of hematopoietic cell transplantation (HCT) in the period between a therapeutic hematoablative treatment and the hematopoietic reconstitution of the immune system. Clinical investigation as well as the mouse model of experimental HCT have consistently shown that timely reconstitution of antiviral CD8 T cells is critical for preventing CMV disease in HCT recipients. Reconstitution of cells of the T-cell lineage generates naïve CD8 T cells with random specificities among which CMV-specific cells need to be primed by presentation of viral antigen for antigen-specific clonal expansion and generation of protective antiviral effector CD8 T cells. For CD8 T-cell priming two pathways are discussed: "direct antigen presentation" by infected professional antigen-presenting cells (pAPCs) and "antigen cross-presentation" by uninfected pAPCs that take up antigenic material derived from infected tissue cells. Current view in CMV immunology favors the cross-priming hypothesis with the argument that viral immune evasion proteins, known to interfere with the MHC class-I pathway of direct antigen presentation by infected cells, would inhibit the CD8 T-cell response. While the mode of antigen presentation in the mouse model of CMV infection has been studied in the immunocompetent host under genetic or experimental conditions excluding either pathway of antigen presentation, we are not aware of any study addressing the medically relevant question of how newly generated naïve CD8 T cells become primed in the phase of lympho-hematopoietic reconstitution after HCT. Here we used the well-established mouse model of experimental HCT and infection with murine CMV (mCMV) and pursued the recently described approach of up- or down-modulating direct antigen presentation by using recombinant viruses lacking or overexpressing the central immune evasion protein m152 of mCMV, respectively. Our data reveal that the magnitude of the CD8 T-cell response directly reflects the level of direct antigen presentation.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Julia K. Büttner
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Niels A. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI) at the University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Virology, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
5
|
Bošnjak B, Henze E, Lueder Y, Do KTH, Rezalotfi A, Čuvalo B, Ritter C, Schimrock A, Willenzon S, Georgiev H, Fritz L, Galla M, Wagner K, Messerle M, Förster R. MCK2-mediated MCMV infection of macrophages and virus dissemination to the salivary gland depends on MHC class I molecules. Cell Rep 2023; 42:112597. [PMID: 37289588 DOI: 10.1016/j.celrep.2023.112597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/10/2023] Open
Abstract
Murine cytomegalovirus (MCMV) infection of macrophages relies on MCMV-encoded chemokine 2 (MCK2), while infection of fibroblasts occurs independently of MCK2. Recently, MCMV infection of both cell types was found to be dependent on cell-expressed neuropilin 1. Using a CRISPR screen, we now identify that MCK2-dependent infection requires MHC class Ia/β-2-microglobulin (B2m) expression. Further analyses reveal that macrophages expressing MHC class Ia haplotypes H-2b and H-2d, but not H-2k, are susceptible to MCK2-dependent infection with MCMV. The importance of MHC class I expression for MCK2-dependent primary infection and viral dissemination is highlighted by experiments with B2m-deficient mice, which lack surface expression of MHC class I molecules. In those mice, intranasally administered MCK2-proficient MCMV mimics infection patterns of MCK2-deficient MCMV in wild-type mice: it does not infect alveolar macrophages and subsequently fails to disseminate into the salivary glands. Together, these data provide essential knowledge for understanding MCMV-induced pathogenesis, tissue targeting, and virus dissemination.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | - Elisa Henze
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Yvonne Lueder
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Alaleh Rezalotfi
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Berislav Čuvalo
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Christiane Ritter
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Schimrock
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Stefanie Willenzon
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Hristo Georgiev
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Lea Fritz
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany; German Centre for Infection Research (DZIF), Partner site Hannover, Hannover, Germany.
| |
Collapse
|
6
|
Bošnjak B, Lueder Y, Messerle M, Förster R. Imaging cytomegalovirus infection and ensuing immune responses. Curr Opin Immunol 2023; 82:102307. [PMID: 36996701 DOI: 10.1016/j.coi.2023.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/30/2023]
Abstract
Cytomegaloviruses (CMVs) possess exquisite mechanisms enabling colonization, replication, and release allowing spread to new hosts. Moreover, they developed ways to escape the control of the host immune responses and hide latently within the host cells. Here, we outline studies that visualized individual CMV-infected cells using reporter viruses. These investigations provided crucial insights into all steps of CMV infection and mechanisms the host's immune response struggles to control it. Uncovering complex viral and cellular interactions and underlying molecular as well as immunological mechanisms are a prerequisite for the development of novel therapeutic interventions for successful treatment of CMV-related pathologies in neonates and transplant patients.
Collapse
|
7
|
Forte E, Li M, Ayaloglu Butun F, Hu Q, Borst EM, Schipma MJ, Piunti A, Shilatifard A, Terhune SS, Abecassis M, Meier JL, Hummel M. Critical Role for the Human Cytomegalovirus Major Immediate Early Proteins in Recruitment of RNA Polymerase II and H3K27Ac To an Enhancer-Like Element in Ori Lyt. Microbiol Spectr 2023; 11:e0314422. [PMID: 36645269 PMCID: PMC9927211 DOI: 10.1128/spectrum.03144-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/16/2022] [Indexed: 01/17/2023] Open
Abstract
Human cytomegalovirus (HCMV) is an opportunistic pathogen that infects most of the population. The complex 236 kbp genome encodes more than 170 open reading frames, whose expression is temporally regulated by both viral transcriptional regulators and cellular factors that control chromatin and transcription. Here, we have used state of the art genomic technologies to investigate the viral transcriptome in conjunction with 2 key transcriptional regulators: Pol II and H3K27Ac. Although it is well known that the major immediate early (IE) proteins activate early gene expression through both direct and indirect interactions, and that histone modifications play an important role in regulating viral gene expression, the role of the IE proteins in modulating viral chromatin is not fully understood. To address this question, we have used a virus engineered for conditional expression of the IE proteins combined with RNA and Chromatin immunoprecipitation (ChIP) analyses to assess the role of these proteins in modulating both viral chromatin and gene expression. Our results show that (i) there is an enhancer-like element in OriLyt that is extraordinarily enriched in H3K27Ac; (ii) in addition to activation of viral gene expression, the IE proteins play a critical role in recruitment of Pol II and H3K27Ac to this element. IMPORTANCE HCMV is an important human pathogen associated with complications in transplant patients and birth defects. The complex program of viral gene expression is regulated by both viral proteins and host factors. Here, we have investigated the role of the immediate early proteins in regulating the viral epigenome. Our results show that the viral immediate early proteins bring about an enormous enrichment of H3K27Ac marks at the OriLyt RNA4.9 promoter, concomitant with an increase in RNA4.9 expression. This epigenetic characteristic adds importantly to the view that OriLyt has structural and functional characteristics of a strong enhancer that, we now discover, is regulated by IE proteins.
Collapse
Affiliation(s)
- Eleonora Forte
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Ming Li
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Fatma Ayaloglu Butun
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Proteomics Center of Excellence, Northwestern University, Evanston, Illinois, USA
| | - Qiaolin Hu
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Eva Maria Borst
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Matthew J. Schipma
- NUSeq Core, Quantitative Data Science Core, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andrea Piunti
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ali Shilatifard
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Scott S. Terhune
- Department of Microbiology and Immunology and Biotechnology and Bioengineering Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Michael Abecassis
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffery L. Meier
- Departments of Internal Medicine and Epidemiology, University of Iowa and Iowa City Veterans Affairs Health Care System, Iowa City, Iowa, USA
| | - Mary Hummel
- Comprehensive Transplant Center, Department of Surgery, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
8
|
Characterization of M116.1p, a murine cytomegalovirus protein required for efficient infection of mononuclear phagocytes. J Virol 2021; 96:e0087621. [PMID: 34705561 DOI: 10.1128/jvi.00876-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Broad tissue tropism of cytomegaloviruses (CMVs) is facilitated by different glycoprotein entry complexes, which are conserved between human CMV (HCMV) and murine CMV (MCMV). Among the wide array of cell types susceptible to the infection, mononuclear phagocytes (MNPs) play a unique role in the pathogenesis of the infection as they contribute both to the virus spread and immune control. CMVs have dedicated numerous genes for the efficient infection and evasion of macrophages and dendritic cells. In this study, we have characterized the properties and function of M116, a previously poorly described but highly transcribed MCMV gene region which encodes M116.1p, a novel protein necessary for the efficient infection of MNPs and viral spread in vivo. Our study further revealed that M116.1p shares similarities with its positional homologs in HCMV and RCMV, UL116 and R116, respectively, such as late kinetics of expression, N-glycosylation, localization to the virion assembly compartment, and interaction with gH - a member of the CMVs fusion complex. This study, therefore, expands our knowledge about virally encoded glycoproteins that play important roles in viral infectivity and tropism. Importance Human cytomegalovirus (HCMV) is a species-specific herpesvirus that causes severe disease in immunocompromised individuals and immunologically immature neonates. Murine cytomegalovirus (MCMV) is biologically similar to HCMV, and it serves as a widely used model for studying the infection, pathogenesis, and immune responses to HCMV. In our previous work, we have identified the M116 ORF as one of the most extensively transcribed regions of the MCMV genome without an assigned function. This study shows that the M116 locus codes for a novel protein, M116.1p, which shares similarities with UL116 and R116 in HCMV and RCMV, respectively, and is required for the efficient infection of mononuclear phagocytes and virus spread in vivo. Furthermore, this study establishes the α-M116 monoclonal antibody and MCMV mutants lacking M116, generated in this work, as valuable tools for studying the role of macrophages and dendritic cells in limiting CMV infection following different MCMV administration routes.
Collapse
|
9
|
Vertically transferred maternal immune cells promote neonatal immunity against early life infections. Nat Commun 2021; 12:4706. [PMID: 34349112 PMCID: PMC8338998 DOI: 10.1038/s41467-021-24719-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/26/2021] [Indexed: 11/17/2022] Open
Abstract
During mammalian pregnancy, immune cells are vertically transferred from mother to fetus. The functional role of these maternal microchimeric cells (MMc) in the offspring is mostly unknown. Here we show a mouse model in which MMc numbers are either normal or low, which enables functional assessment of MMc. We report a functional role of MMc in promoting fetal immune development. MMc induces preferential differentiation of hematopoietic stem cells in fetal bone marrow towards monocytes within the myeloid compartment. Neonatal mice with higher numbers of MMc and monocytes show enhanced resilience against cytomegalovirus infection. Similarly, higher numbers of MMc in human cord blood are linked to a lower number of respiratory infections during the first year of life. Our data highlight the importance of MMc in promoting fetal immune development, potentially averting the threats caused by early life exposure to pathogens. Maternal immune cells seed into the foetus during mammalian pregnancy, yet the functional role of these cells is unclear. Here the authors show that maternal immune cells in foetal bone marrow stimulate immune development, subsequently reducing the risk or severity of infections in newborns.
Collapse
|
10
|
Supadmanaba IGP, Comandatore A, Morelli L, Giovannetti E, Lagerweij T. Organotypic-liver slide culture systems to explore the role of extracellular vesicles in pancreatic cancer metastatic behavior and guide new therapeutic approaches. Expert Opin Drug Metab Toxicol 2021; 17:937-946. [PMID: 33945374 DOI: 10.1080/17425255.2021.1925646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/30/2021] [Indexed: 02/08/2023]
Abstract
Introduction: Recent studies suggested that extracellular vesicles (EVs) play a role both in the metastatic niche formation and in the progression of several tumors, including pancreatic cancer. In particular, the effects of EVs on metastasis should be studied in model systems that take into account both the tumor cells and the metastatic site/tumor microenvironment. Studies with labeled EVs or EV-secreting cells in ex vivo models will reflect the physiological and pathological functions of EVs. The organotypic-tissue slide culture systems can fulfill such a role.Areas covered: This review provides an overview of available organotypic-culture slide systems. We specifically focus on the assay system of liver culture-slides in combination with pancreatic tumors, which can be modulated to test the efficacy of new therapeutic approaches.Expert opinion: The intercellular exchange of EVs has emerged as a biologically relevant phenomenon to drive cancer metastasis. However, further models need to be developed to better elucidate the functional roles of EVs. The use of novel organotypic slide culture systems provides the opportunity to explore the role of EVs in the metastatic behavior of pancreatic cancer, decreasing the use of costly and cumbersome organoid or animal models.
Collapse
Affiliation(s)
- I Gede Putu Supadmanaba
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Biochemistry Department, Faculty of Medicine, Universitas Udayana, Denpasar, Bali, Indonesia
| | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, AIRC Start-Up Unit, Fondazione Pisana per La Scienza, Pisa, Italy
| | - Tonny Lagerweij
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Stolp B, Thelen F, Ficht X, Altenburger LM, Ruef N, Inavalli VVGK, Germann P, Page N, Moalli F, Raimondi A, Keyser KA, Seyed Jafari SM, Barone F, Dettmer MS, Merkler D, Iannacone M, Sharpe J, Schlapbach C, Fackler OT, Nägerl UV, Stein JV. Salivary gland macrophages and tissue-resident CD8 + T cells cooperate for homeostatic organ surveillance. Sci Immunol 2020; 5:5/46/eaaz4371. [PMID: 32245888 DOI: 10.1126/sciimmunol.aaz4371] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/10/2020] [Indexed: 01/26/2023]
Abstract
It is well established that tissue macrophages and tissue-resident memory CD8+ T cells (TRM) play important roles for pathogen sensing and rapid protection of barrier tissues. In contrast, the mechanisms by which these two cell types cooperate for homeostatic organ surveillance after clearance of infections is poorly understood. Here, we used intravital imaging to show that TRM dynamically followed tissue macrophage topology in noninflamed murine submandibular salivary glands (SMGs). Depletion of tissue macrophages interfered with SMG TRM motility and caused a reduction of interepithelial T cell crossing. In the absence of macrophages, SMG TRM failed to cluster in response to local inflammatory chemokines. A detailed analysis of the SMG microarchitecture uncovered discontinuous attachment of tissue macrophages to neighboring epithelial cells, with occasional macrophage protrusions bridging adjacent acini and ducts. When dissecting the molecular mechanisms that drive homeostatic SMG TRM motility, we found that these cells exhibit a wide range of migration modes: In addition to chemokine- and adhesion receptor-driven motility, resting SMG TRM displayed a remarkable capacity for autonomous motility in the absence of chemoattractants and adhesive ligands. Autonomous SMG TRM motility was mediated by friction and insertion of protrusions into gaps offered by the surrounding microenvironment. In sum, SMG TRM display a unique continuum of migration modes, which are supported in vivo by tissue macrophages to allow homeostatic patrolling of the complex SMG architecture.
Collapse
Affiliation(s)
- Bettina Stolp
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland.,Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Flavian Thelen
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Xenia Ficht
- Theodor Kocher Institute, University of Bern, 3012 Bern, Switzerland
| | - Lukas M Altenburger
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - Nora Ruef
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland
| | - V V G Krishna Inavalli
- University of Bordeaux, 33700 Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33077 Bordeaux, France
| | - Philipp Germann
- EMBL Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain
| | - Nicolas Page
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, 1211 Geneva, Switzerland
| | | | | | - Kirsten A Keyser
- Institute for Virology, OE5230, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - S Morteza Seyed Jafari
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Francesca Barone
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | | | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, 1211 Geneva, Switzerland
| | | | - James Sharpe
- EMBL Barcelona, Dr. Aiguader 88, 08003 Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| | - Christoph Schlapbach
- Department of Dermatology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Oliver T Fackler
- Department for Infectious Diseases, Integrative Virology, Center for Integrative Infectious Disease Research, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - U Valentin Nägerl
- University of Bordeaux, 33700 Bordeaux, France.,Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, 33077 Bordeaux, France
| | - Jens V Stein
- Department of Oncology, Microbiology and Immunology, University of Fribourg, 1700 Fribourg, Switzerland.
| |
Collapse
|
12
|
Herpes Simplex Virus 2 Counteracts Neurite Outgrowth Repulsion during Infection in a Nerve Growth Factor-Dependent Manner. J Virol 2020; 94:JVI.01370-20. [PMID: 32669337 PMCID: PMC7527038 DOI: 10.1128/jvi.01370-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration. During primary infection, herpes simplex virus 2 (HSV-2) replicates in epithelial cells and enters neurites to infect neurons of the peripheral nervous system. Growth factors and attractive and repulsive directional cues influence neurite outgrowth and neuronal survival. We hypothesized that HSV-2 modulates the activity of such cues to increase neurite outgrowth. To test this hypothesis, we exposed sensory neurons to nerve growth factor (NGF) and mock- or HSV-2-infected HEK-293T cells, since they express repellents of neurite outgrowth. We show that HEK-293T cells secrete factors that inhibit neurite outgrowth, while infection with HSV-2 strains MS and 333 reduces this repelling phenotype, increasing neurite numbers. The HSV-2-mediated restoration of neurite outgrowth required the activity of NGF. In the absence of infection, however, NGF did not overcome the repulsion mediated by HEK-293T cells. We previously showed that recombinant, soluble glycoprotein G of HSV-2 (rSgG2) binds and enhances NGF activity, increasing neurite outgrowth. However, the effect of gG2 during infection has not been investigated. Therefore, we addressed whether gG2 contributes to overcoming neurite outgrowth repulsion. To do so, we generated viruses lacking gG2 expression and complemented them by exogenous expression of gG2. Overall, our results suggest that HSV-2 infection of nonneuronal cells reduces their repelling effect on neurite outgrowth in an NGF-dependent manner. gG2 contributed to this phenotype, but it was not the only factor. The enhanced neurite outgrowth may facilitate HSV-2 spread from epithelial cells into neurons expressing NGF receptors and increase HSV-2-mediated pathogenesis. IMPORTANCE Herpes simplex virus 2 (HSV-2) is a prevalent human pathogen that establishes lifelong latency in neurons of the peripheral nervous system. Colonization of neurons is required for HSV-2 persistence and pathogenesis. The viral and cellular factors required for efficient infection of neurons are not fully understood. We show here that nonneuronal cells repel neurite outgrowth of sensory neurons, while HSV-2 infection overcomes this inhibition and, rather, stimulates neurite outgrowth. HSV-2 glycoprotein G and nerve growth factor contribute to this phenotype, which may attract neurites to sites of infection and facilitate virus spread to neurons. Understanding the mechanisms that modulate neurite outgrowth and facilitate HSV-2 infection of neurons might foster the development of therapeutics to reduce HSV-2 colonization of the nervous system and provide insights on neurite outgrowth and regeneration.
Collapse
|
13
|
Cytomegalovirus inhibition of extrinsic apoptosis determines fitness and resistance to cytotoxic CD8 T cells. Proc Natl Acad Sci U S A 2020; 117:12961-12968. [PMID: 32444487 DOI: 10.1073/pnas.1914667117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Viral immune evasion is currently understood to focus on deflecting CD8 T cell recognition of infected cells by disrupting antigen presentation pathways. We evaluated viral interference with the ultimate step in cytotoxic T cell function, the death of infected cells. The viral inhibitor of caspase-8 activation (vICA) conserved in human cytomegalovirus (HCMV) and murine CMV (MCMV) prevents the activation of caspase-8 and proapoptotic signaling. We demonstrate the key role of vICA from either virus, in deflecting antigen-specific CD8 T cell-killing of infected cells. vICA-deficient mutants, lacking either UL36 or M36, exhibit greater susceptibility to CD8 T cell control than mutants lacking the set of immunoevasins known to disrupt antigen presentation via MHC class I. This difference is evident during infection in the natural mouse host infected with MCMV, in settings where virus-specific CD8 T cells are adoptively transferred. Finally, we identify the molecular mechanism through which vICA acts, demonstrating the central contribution of caspase-8 signaling at a point of convergence of death receptor-induced apoptosis and perforin/granzyme-dependent cytotoxicity.
Collapse
|
14
|
Gawish R, Bulat T, Biaggio M, Lassnig C, Bago-Horvath Z, Macho-Maschler S, Poelzl A, Simonović N, Prchal-Murphy M, Rom R, Amenitsch L, Ferrarese L, Kornhoff J, Lederer T, Svinka J, Eferl R, Bosmann M, Kalinke U, Stoiber D, Sexl V, Krmpotić A, Jonjić S, Müller M, Strobl B. Myeloid Cells Restrict MCMV and Drive Stress-Induced Extramedullary Hematopoiesis through STAT1. Cell Rep 2020; 26:2394-2406.e5. [PMID: 30811989 DOI: 10.1016/j.celrep.2019.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 12/13/2018] [Accepted: 02/05/2019] [Indexed: 12/11/2022] Open
Abstract
Cytomegalovirus (CMV) has a high prevalence worldwide, is often fatal for immunocompromised patients, and causes bone marrow suppression. Deficiency of signal transducer and activator of transcription 1 (STAT1) results in severely impaired antiviral immunity. We have used cell-type restricted deletion of Stat1 to determine the importance of myeloid cell activity for the defense against murine CMV (MCMV). We show that myeloid STAT1 limits MCMV burden and infection-associated pathology in the spleen but does not affect ultimate clearance of infection. Unexpectedly, we found an essential role of myeloid STAT1 in the induction of extramedullary hematopoiesis (EMH). The EMH-promoting function of STAT1 was not restricted to MCMV infection but was also observed during CpG oligodeoxynucleotide-induced sterile inflammation. Collectively, we provide genetic evidence that signaling through STAT1 in myeloid cells is required to restrict MCMV at early time points post-infection and to induce compensatory hematopoiesis in the spleen.
Collapse
Affiliation(s)
- Riem Gawish
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Tanja Bulat
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Mario Biaggio
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Caroline Lassnig
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Biomodels Austria, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | | | - Sabine Macho-Maschler
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Biomodels Austria, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Andrea Poelzl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Natalija Simonović
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Michaela Prchal-Murphy
- Institute of Pharmacology and Toxicology, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Rita Rom
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Lena Amenitsch
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Luca Ferrarese
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Juliana Kornhoff
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Therese Lederer
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Jasmin Svinka
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Robert Eferl
- Institute of Cancer Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Markus Bosmann
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, MA 02118, USA; Center for Thrombosis and Hemostasis, University Medical Center, Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hanover Medical School and the Helmholtz Centre for Infection Research, 30625 Hannover, Germany
| | - Dagmar Stoiber
- Ludwig Boltzmann Institute for Cancer Research, Vienna and Institute of Pharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Veronika Sexl
- Institute of Pharmacology and Toxicology, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Astrid Krmpotić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Stipan Jonjić
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, 51000 Rijeka, Croatia
| | - Mathias Müller
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Biomodels Austria, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| | - Birgit Strobl
- Institute of Animal Breeding and Genetics, Department of Biomedical Science, University of Veterinary Medicine Vienna, 1210 Vienna, Austria.
| |
Collapse
|
15
|
Mouse Cytomegalovirus Differentially Exploits Cell Surface Glycosaminoglycans in a Cell Type-Dependent and MCK-2-Independent Manner. Viruses 2019; 12:v12010031. [PMID: 31892128 PMCID: PMC7019585 DOI: 10.3390/v12010031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/17/2019] [Accepted: 12/24/2019] [Indexed: 12/12/2022] Open
Abstract
Many viruses initiate interaction with target cells by binding to cell surface glycosaminoglycans (GAGs). Heparan sulfate (HS) appears to be particularly important in fibroblasts, epithelial cells and endothelial cells, where it represents the dominant GAG. How GAGs influence viral infectivity in HS-poor target cells such as macrophages has not been clearly defined. Here, we show that mouse cytomegalovirus (MCMV) targets HS in susceptible fibroblasts and cultured salivary gland acinar cells (SGACs), but not in macrophage cell lines and primary bone marrow-derived macrophages, where chondroitin sulfate was the dominant virus-binding GAG. MCK-2, an MCMV-encoded GAG-binding chemokine that promotes infection of macrophages as part of a gH/gL/MCK-2 entry complex, was dispensable for MCMV attachment to the cell surface and for direct infection of SGACs. Thus, MCMV tropism for target cells is markedly influenced by differential GAG expression, suggesting that the specificity of anti-GAG peptides now under development as HCMV therapeutics may need to be broadened for effective application as anti-viral agents.
Collapse
|
16
|
Reddehase MJ, Lemmermann NAW. Cellular reservoirs of latent cytomegaloviruses. Med Microbiol Immunol 2019; 208:391-403. [PMID: 31011793 DOI: 10.1007/s00430-019-00592-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/07/2019] [Indexed: 12/14/2022]
Abstract
Cytomegaloviruses (CMVs), members of the β-subfamily of the herpesvirus family, have co-speciated with their respective mammalian hosts resulting in a mutual virus-host adaptation reflected by sets of 'private' viral genes that a particular CMV species does not share with other CMVs and that define the host-species specificity of CMVs. Nonetheless, based on "biological convergence" in evolution, fundamental rules in viral pathogenesis and immune control are functionally analogous between different virus-host pairs. Therefore, the mouse model of infection with murine CMV (mCMV) has revealed generally valid principles of CMV-host interactions. Specifically, the mouse model has paved the way to cellular immunotherapy of CMV disease in immunocompromised recipients of hematopoietic cell transplantation (HCT). Precisely in the context of HCT, however, current view assumes that there exists a major difference between hCMV and mCMV regarding "latent virus reservoirs" in that only hCMV establishes latency in hematopoietic lineage cells (HLCs), whereas mCMV establishes latency in endothelial cells. This would imply that only hCMV can reactivate from transplanted HLCs of a latently infected donor. In addition, as viral transcriptional activity during latency is discussed as a driver of clonal T-cell expansion over lifetime, a phenomenon known as "memory inflation", it is important to know if hCMV and mCMV establish latency in the same cell type(s) for imprinting the immune system. Here, we review the currently available evidence to propose that the alleged difference in latent virus reservoirs between hCMV and mCMV may rather relate to a difference in the focus of research. While studies on hCMV latency in HLCs likely described a non-canonical, transient type-2 latency, studies in the mouse model focussed on canonical, lifelong type-1 latency.
Collapse
Affiliation(s)
- Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany.
| |
Collapse
|
17
|
Reuter S, Lemmermann NAW, Maxeiner J, Podlech J, Beckert H, Freitag K, Teschner D, Ries F, Taube C, Buhl R, Reddehase MJ, Holtappels R. Coincident airway exposure to low-potency allergen and cytomegalovirus sensitizes for allergic airway disease by viral activation of migratory dendritic cells. PLoS Pathog 2019; 15:e1007595. [PMID: 30845208 PMCID: PMC6405056 DOI: 10.1371/journal.ppat.1007595] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/24/2019] [Indexed: 01/08/2023] Open
Abstract
Despite a broad cell-type tropism, cytomegalovirus (CMV) is an evidentially pulmonary pathogen. Predilection for the lungs is of medical relevance in immunocompromised recipients of hematopoietic cell transplantation, in whom interstitial CMV pneumonia is a frequent and, if left untreated, fatal clinical manifestation of human CMV infection. A conceivable contribution of CMV to airway diseases of other etiology is an issue that so far attracted little medical attention. As the route of primary CMV infection upon host-to-host transmission in early childhood involves airway mucosa, coincidence of CMV airway infection and exposure to airborne environmental antigens is almost unavoidable. For investigating possible consequences of such a coincidence, we established a mouse model of airway co-exposure to CMV and ovalbumin (OVA) representing a protein antigen of an inherently low allergenic potential. Accordingly, intratracheal OVA exposure alone failed to sensitize for allergic airway disease (AAD) upon OVA aerosol challenge. In contrast, airway infection at the time of OVA sensitization predisposed for AAD that was characterized by airway inflammation, IgE secretion, thickening of airway epithelia, and goblet cell hyperplasia. This AAD histopathology was associated with a T helper type 2 (Th2) transcription profile in the lungs, including IL-4, IL-5, IL-9, and IL-25, known inducers of Th2-driven AAD. These symptoms were all prevented by a pre-challenge depletion of CD4+ T cells, but not of CD8+ T cells. As to the underlying mechanism, murine CMV activated migratory CD11b+ as well as CD103+ conventional dendritic cells (cDCs), which have been associated with Th2 cytokine-driven AAD and with antigen cross-presentation, respectively. This resulted in an enhanced OVA uptake and recruitment of the OVA-laden cDCs selectively to the draining tracheal lymph nodes for antigen presentation. We thus propose that CMV, through activation of migratory cDCs in the airway mucosa, can enhance the allergenic potential of otherwise poorly allergenic environmental protein antigens.
Collapse
Affiliation(s)
- Sebastian Reuter
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Joachim Maxeiner
- Asthma Core Facility and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Daniel Teschner
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Frederic Ries
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Medical Center Essen-Ruhrlandklinik, Essen, Germany
| | - Roland Buhl
- Department of Hematology, Medical Oncology and Pneumonology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
18
|
Laboratory diagnostics of murine blood for detection of mouse cytomegalovirus (MCMV)-induced hepatitis. Sci Rep 2018; 8:14823. [PMID: 30287927 PMCID: PMC6172243 DOI: 10.1038/s41598-018-33167-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/24/2018] [Indexed: 12/16/2022] Open
Abstract
Mouse models are important and versatile tools to study mechanisms and novel therapies of human disease in vivo. Both, the number and the complexity of murine models are constantly increasing and modification of genes of interest as well as any exogenous challenge may lead to unanticipated biological effects. Laboratory diagnostics of blood samples provide a comprehensive and rapid screening for multiple organ function and are fundamental to detect human disease. Here, we adapt an array of laboratory medicine-based tests commonly used in humans to establish a platform for standardized, multi-parametric, and quality-controlled diagnostics of murine blood samples. We determined sex-dependent reference intervals of 51 commonly used laboratory medicine tests for samples obtained from the C57BL/6J mouse strain. As a proof of principle, we applied these diagnostic tests in a mouse cytomegalovirus (MCMV) infection model to screen for organ damage. Consistent with histopathological findings, plasma concentrations of liver-specific enzymes were elevated, supporting the diagnosis of a virus-induced hepatitis. Plasma activities of aminotransferases correlated with viral loads in livers at various days after MCMV infection and discriminated infected from non-infected animals. This study provides murine blood reference intervals of common laboratory medicine parameters and illustrates the use of these tests for diagnosis of infectious disease in experimental animals.
Collapse
|
19
|
Lueder Y, Heller K, Ritter C, Keyser KA, Wagner K, Liu X, Messerle M, Stahl FR, Halle S, Förster R. Control of primary mouse cytomegalovirus infection in lung nodular inflammatory foci by cooperation of interferon-gamma expressing CD4 and CD8 T cells. PLoS Pathog 2018; 14:e1007252. [PMID: 30153311 PMCID: PMC6112668 DOI: 10.1371/journal.ppat.1007252] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/31/2018] [Indexed: 11/18/2022] Open
Abstract
Human cytomegalovirus (CMV) and mouse cytomegalovirus (MCMV) infection share many characteristics. Therefore infection of mice with MCMV is an important tool to understand immune responses and to design vaccines and therapies for patients at the risk of severe CMV disease. In this study, we investigated the immune response in the lungs following acute infection with MCMV. We used multi-color fluorescence microscopy to visualize single infected and immune cells in nodular inflammatory foci (NIFs) that formed around infected cells in the lungs. These NIFs consisted mainly of myeloid cells, T cells, and some NK cells. We found that the formation of NIFs was essential to reduce the number of infected cells in the lung tissue, showing that NIFs were sites of infection as well as sites of immune response. Comparing mice deficient for several leukocyte subsets, we identified T cells to be of prime importance for restricting MCMV infection in the lung. Moreover, T cells had to be present in NIFs in high numbers, and CD4 as well as CD8 T cells supported each other to efficiently control virus spread. Additionally, we investigated the effects of perforin and interferon-gamma (IFNγ) on the virus infection and found important roles for both mechanisms. NK cells and T cells were the major source for IFNγ in the lung and in in vitro assays we found that IFNγ had the potential to reduce plaque growth on primary lung stromal cells. Notably, the T cell-mediated control was shown to be perforin-independent but IFNγ-dependent. In total, this study systematically identifies crucial antiviral factors present in lung NIFs for early containment of a local MCMV infection at the single cell level.
Collapse
Affiliation(s)
- Yvonne Lueder
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Katrin Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Kirsten A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Xiaokun Liu
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Felix R Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
20
|
Menotti L, Avitabile E, Gatta V, Malatesta P, Petrovic B, Campadelli-Fiume G. HSV as A Platform for the Generation of Retargeted, Armed, and Reporter-Expressing Oncolytic Viruses. Viruses 2018; 10:E352. [PMID: 29966356 PMCID: PMC6070899 DOI: 10.3390/v10070352] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/28/2022] Open
Abstract
Previously, we engineered oncolytic herpes simplex viruses (o-HSVs) retargeted to the HER2 (epidermal growth factor receptor 2) tumor cell specific receptor by the insertion of a single chain antibody (scFv) to HER2 in gD, gH, or gB. Here, the insertion of scFvs to three additional cancer targets—EGFR (epidermal growth factor receptor), EGFRvIII, and PSMA (prostate specific membrane antigen)—in gD Δ6–38 enabled the generation of specifically retargeted o-HSVs. Viable recombinants resulted from the insertion of an scFv in place of aa 6–38, but not in place of aa 61–218. Hence, only the gD N-terminus accepted all tested scFv inserts. Additionally, the insertion of mIL12 in the US1-US2 intergenic region of the HER2- or EGFRvIII-retargeted o-HSVs, and the further insertion of Gaussia Luciferase, gave rise to viable recombinants capable of secreting the cytokine and the reporter. Lastly, we engineered two known mutations in gB; they increased the ability of an HER2-retargeted recombinant to spread among murine cells. Altogether, current data show that the o-HSV carrying the aa 6–38 deletion in gD serves as a platform for the specific retargeting of o-HSV tropism to a number of human cancer targets, and the retargeted o-HSVs serve as simultaneous vectors for two molecules.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Elisa Avitabile
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna 40126, Italy.
| | - Valentina Gatta
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Paolo Malatesta
- Department of Experimental Medicine, University of Genoa, Genoa 16132, Italy.
- Ospedale Policlinico San Martino-IRCCS per l'Oncologia, Genoa 16132, Italy.
| | - Biljana Petrovic
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| | - Gabriella Campadelli-Fiume
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy.
| |
Collapse
|
21
|
Abstract
Secreted reporter proteins are reliable modalities for monitoring of different biological processes, which can be measured longitudinally in conditioned medium of cultured cells or body fluids such as blood and urine, ex vivo. In this chapter, we will explore established secreted reporters and their applications and limitations for monitoring of promoter function. We will also describe both cell-based and blood-based assays for detecting three commonly used reporters: secreted alkaline phosphatase (SEAP ), Gaussia luciferase (Gluc), and Vargula luciferase (Vluc).
Collapse
Affiliation(s)
- Ghazal Lashgari
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Rami S Kantar
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA
| | - Bakhos A Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Department of Neurology, Neuroscience Center, Massachusetts General Hospital, Boston, MA, USA.
- Program in Neuroscience, Harvard Medical School, Boston, MA, USA.
- Neuroscience Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, MA, 02129, USA.
| |
Collapse
|
22
|
Holtappels R, Lemmermann NAW, Podlech J, Ebert S, Reddehase MJ. Reconstitution of CD8 T Cells Protective against Cytomegalovirus in a Mouse Model of Hematopoietic Cell Transplantation: Dynamics and Inessentiality of Epitope Immunodominance. Front Immunol 2016; 7:232. [PMID: 27379095 PMCID: PMC4905951 DOI: 10.3389/fimmu.2016.00232] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 05/30/2016] [Indexed: 12/02/2022] Open
Abstract
Successful reconstitution of cytomegalovirus (CMV)-specific CD8+ T cells by hematopoietic cell transplantation (HCT) gives a favorable prognosis for the control of CMV reactivation and prevention of CMV disease after hematoablative therapy of hematopoietic malignancies. In the transient immunocompromised state after HCT, pre-emptive cytoimmunotherapy with viral epitope-specific effector or memory CD8+ T cells is a promising option to speed up antiviral control. Despite high-coding capacity of CMVs and a broad CD8+ T-cell response on the population level, which reflects polymorphism in major histocompatibility complex class-I (MHC-I) glycoproteins, the response in terms of quantity of CD8+ T cells in any individual is directed against a limited set of CMV-encoded epitopes selected for presentation by the private repertoire of MHC-I molecules. Such epitopes are known as “immunodominant” epitopes (IDEs). Besides host immunogenetics, genetic variance in CMV strains harbored as latent viruses by an individual HCT recipient can also determine the set of IDEs, which complicates a “personalized immunotherapy.” It is, therefore, an important question if IDE-specific CD8+ T-cell reconstitution after HCT is critical or dispensable for antiviral control. As viruses with targeted mutations of IDEs cannot be experimentally tested in HCT patients, we employed the well-established mouse model of HCT. Notably, control of murine CMV (mCMV) after HCT was comparably efficient for IDE-deletion mutant mCMV-Δ4IDE and the corresponding IDE-expressing revertant virus mCMV-Δ4IDE-rev. Thus, antigenicity-loss mutations in IDEs do not result in loss-of-function of a polyclonal CD8+ T-cell population. Although IDE deletion was not associated with global changes in the response to non-IDE epitopes, the collective of non-IDE-specific CD8+ T-cells infiltrates infected tissue and confines infection within nodular inflammatory foci. We conclude from the model, and predict also for human CMV, that there is no need to exclusively aim for IDE-specific immunoreconstitution.
Collapse
Affiliation(s)
- Rafaela Holtappels
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Niels A W Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Stefan Ebert
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Matthias J Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
23
|
Halle S, Keyser KA, Stahl FR, Busche A, Marquardt A, Zheng X, Galla M, Heissmeyer V, Heller K, Boelter J, Wagner K, Bischoff Y, Martens R, Braun A, Werth K, Uvarovskii A, Kempf H, Meyer-Hermann M, Arens R, Kremer M, Sutter G, Messerle M, Förster R. In Vivo Killing Capacity of Cytotoxic T Cells Is Limited and Involves Dynamic Interactions and T Cell Cooperativity. Immunity 2016; 44:233-45. [PMID: 26872694 PMCID: PMC4846978 DOI: 10.1016/j.immuni.2016.01.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/08/2015] [Accepted: 11/18/2015] [Indexed: 01/11/2023]
Abstract
According to in vitro assays, T cells are thought to kill rapidly and efficiently, but the efficacy and dynamics of cytotoxic T lymphocyte (CTL)-mediated killing of virus-infected cells in vivo remains elusive. We used two-photon microscopy to quantify CTL-mediated killing in mice infected with herpesviruses or poxviruses. On average, one CTL killed 2–16 virus-infected cells per day as determined by real-time imaging and by mathematical modeling. In contrast, upon virus-induced MHC class I downmodulation, CTLs failed to destroy their targets. During killing, CTLs remained migratory and formed motile kinapses rather than static synapses with targets. Viruses encoding the calcium sensor GCaMP6s revealed strong heterogeneity in individual CTL functional capacity. Furthermore, the probability of death of infected cells increased for those contacted by more than two CTLs, indicative of CTL cooperation. Thus, direct visualization of CTLs during killing of virus-infected cells reveals crucial parameters of CD8+ T cell immunity. Two-photon imaging indicates that CTLs kill 2–16 virus-infected cells per day CTLs form kinapses rather than stable synapses when killing virus-infected cells Some CTL contacts trigger long-lasting calcium fluxes in virus-infected cells CTLs can cooperate during killing of virus-infected cells
Collapse
Affiliation(s)
- Stephan Halle
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | | | - Felix Rolf Stahl
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Andreas Busche
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Anja Marquardt
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Xiang Zheng
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Melanie Galla
- Institute of Experimental Hematology, Hannover Medical School, 30625 Hannover, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Ludwig-Maximilians-Universität München, 80336 München, Germany; Institute of Molecular Immunology, Helmholtz Zentrum München, 81377 München, Germany
| | - Katrin Heller
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Jasmin Boelter
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Yvonne Bischoff
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Rieke Martens
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Asolina Braun
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Kathrin Werth
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Alexey Uvarovskii
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Harald Kempf
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Institute for Biochemistry, Biotechnology, and Bioinformatics, Technische Universität Braunschweig, 38124 Braunschweig, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Melanie Kremer
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Gerd Sutter
- Institute for Infectious Diseases and Zoonoses, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, 30625 Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
24
|
Thomas S, Klobuch S, Podlech J, Plachter B, Hoffmann P, Renzaho A, Theobald M, Reddehase MJ, Herr W, Lemmermann NAW. Evaluating Human T-Cell Therapy of Cytomegalovirus Organ Disease in HLA-Transgenic Mice. PLoS Pathog 2015; 11:e1005049. [PMID: 26181057 PMCID: PMC4504510 DOI: 10.1371/journal.ppat.1005049] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 06/25/2015] [Indexed: 01/05/2023] Open
Abstract
Reactivation of human cytomegalovirus (HCMV) can cause severe disease in recipients of hematopoietic stem cell transplantation. Although preclinical research in murine models as well as clinical trials have provided 'proof of concept' for infection control by pre-emptive CD8 T-cell immunotherapy, there exists no predictive model to experimentally evaluate parameters that determine antiviral efficacy of human T cells in terms of virus control in functional organs, prevention of organ disease, and host survival benefit. We here introduce a novel mouse model for testing HCMV epitope-specific human T cells. The HCMV UL83/pp65-derived NLV-peptide was presented by transgenic HLA-A2.1 in the context of a lethal infection of NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV, mCMV-NLV. Scenarios of HCMV-seropositive and -seronegative human T-cell donors were modeled by testing peptide-restimulated and T-cell receptor-transduced human T cells, respectively. Upon transfer, the T cells infiltrated host tissues in an epitope-specific manner, confining the infection to nodular inflammatory foci. This resulted in a significant reduction of viral load, diminished organ pathology, and prolonged survival. The model has thus proven its potential for a preclinical testing of the protective antiviral efficacy of HCMV epitope-specific human T cells in the evaluation of new approaches to an immunotherapy of CMV disease. Pre-emptive CD8 T-cell therapy of human cytomegalovirus (HCMV) disease in immunocompromised recipients of hematopoietic stem cell transplantation gave promising results in clinical trials, but limited efficacy and the need of HCMV-seropositive memory cell donors has so far prevented adoptive cell transfer from becoming clinical routine. Further development is currently hampered by the lack of experimental animal models that allow preclinical testing of the protective efficacy of human T cells in functional organs. While humanized mouse models with human tissue implants are technically and statistically demanding, and are limited to studying human T-cell activation and local virus control in the implants, a more feasible model for control of systemic infection and prevention of multiple-organ CMV disease is regrettably missing. Here we introduce such a model based on infection of genetically immunocompromised, HLA-A2.1-transgenic NOD/SCID/IL-2rg-/- mice with a chimeric murine CMV engineered to express the HCMV NLV-peptide epitope. Mimicking the scenario of HCMV-unexperienced donors, human T cells transduced with a human T-cell receptor specific for HLA-A.2.1-presented NLV peptide controlled systemic infection and moderated organ disease resulting in a survival benefit. The model promises to become instrumental in defining T-cell properties that determine their protective efficacy for a further development of adoptive immunotherapy of post-transplantation CMV infection.
Collapse
Affiliation(s)
- Simone Thomas
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- * E-mail:
| | - Sebastian Klobuch
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Bodo Plachter
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Petra Hoffmann
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
| | - Angelique Renzaho
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias Theobald
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Matthias J. Reddehase
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Wolfgang Herr
- Department of Internal Medicine III, Hematology and Oncology, University Hospital of Regensburg, Regensburg, Germany
- Regensburg Center of Interventional Immunology, University of Regensburg, Regensburg, Germany
- Department of Internal Medicine III, Hematology, Oncology and Pneumology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Niels A. W. Lemmermann
- Institute for Virology and Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
25
|
Increased Viral Dissemination in the Brain and Lethality in MCMV-Infected, Dicer-Deficient Neonates. Viruses 2015; 7:2308-20. [PMID: 25955106 PMCID: PMC4452907 DOI: 10.3390/v7052308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/23/2015] [Accepted: 04/30/2015] [Indexed: 12/15/2022] Open
Abstract
Among Herpesviruses, Human Cytomegalovirus (HCMV or HHV-5) represents a major threat during congenital or neonatal infections, which may lead to encephalitis with serious neurological consequences. However, as opposed to other less prevalent pathogens, the mechanisms and genetic susceptibility factors for CMV encephalitis are poorly understood. This lack of information considerably reduces the prognostic and/or therapeutic possibilities. To easily monitor the effects of genetic defects on brain dissemination following CMV infection we used a recently developed in vivo mouse model based on the neonatal inoculation of a MCMV genetically engineered to express Luciferase. Here, we further validate this protocol for live imaging, and demonstrate increased lethality associated with viral infection and encephalitis in mutant mice lacking Dicer activity. Our data indicate that miRNAs are important players in the control of MCMV pathogenesis and suggest that miRNA-based endothelial functions and integrity are crucial for CMV encephalitis.
Collapse
|
26
|
Podlech J, Ebert S, Becker M, Reddehase MJ, Stassen M, Lemmermann NAW. Mast cells: innate attractors recruiting protective CD8 T cells to sites of cytomegalovirus infection. Med Microbiol Immunol 2015; 204:327-34. [PMID: 25648117 DOI: 10.1007/s00430-015-0386-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 01/07/2015] [Indexed: 01/31/2023]
Abstract
Reactivation of latent cytomegalovirus (CMV) in the transient immunocompromised state after hematoablative treatment is a major concern in patients undergoing hematopoietic cell transplantation (HCT) as a therapy of hematopoietic malignancies. Timely reconstitution of antiviral CD8 T cells and their efficient recruitment to the lungs is crucial for preventing interstitial pneumonia, the most severe disease manifestation of CMV in HCT recipients. Here, we review recent work in a murine model, implicating mast cells (MC) in the control of pulmonary infection. Murine CMV (mCMV) productively infects MC in vivo and triggers their degranulation, resulting in the release of the CC chemokine ligand 5 (CCL5) that attracts CD8 T cells to infiltrate infected tissues. Comparing infection of MC-sufficient C57BL/6 mice and congenic MC-deficient Kit (W-sh/W-sh) "sash" mutants revealed an inverse relation between the number of lung-infiltrating CD8 T cells and viral burden in the lungs. Specifically, reduced lung infiltration by CD8 T cells in "sash" mutants was associated with an impaired infection control. The causal, though indirect, involvement of MC in antiviral control was confirmed by reversion of the deficiency phenotype in "sash" mutants reconstituted with MC. These recent findings predict that efficient MC reconstitution facilitates the control of CMV infection also in immunocompromised HCT recipients.
Collapse
Affiliation(s)
- Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz and Research Center for Immunotherapy (FZI), Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131, Mainz, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Coleman SM, McGregor A. A bright future for bioluminescent imaging in viral research. Future Virol 2015; 10:169-183. [PMID: 26413138 DOI: 10.2217/fvl.14.96] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Bioluminescence imaging (BLI) has emerged as a powerful tool in the study of animal models of viral disease. BLI enables real-time in vivo study of viral infection, host immune response and the efficacy of intervention strategies. Substrate dependent light emitting luciferase enzyme when incorporated into a virus as a reporter gene enables detection of bioluminescence from infected cells using sensitive charge-coupled device (CCD) camera systems. Advantages of BLI include low background, real-time tracking of infection in the same animal and reduction in the requirement for larger animal numbers. Transgenic luciferase-tagged mice enable the use of pre-existing nontagged viruses in BLI studies. Continued development in luciferase reporter genes, substrates, transgenic animals and imaging systems will greatly enhance future BLI strategies in viral research.
Collapse
Affiliation(s)
- Stewart M Coleman
- Health Science Center, Department of Microbial Pathogenesis & Immunology, Texas A&M University, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA
| | - Alistair McGregor
- Health Science Center, Department of Microbial Pathogenesis & Immunology, Texas A&M University, 407 Reynolds Medical Building, College Station, TX 77843-1114, USA
| |
Collapse
|
28
|
Stahl FR, Keyser KA, Heller K, Bischoff Y, Halle S, Wagner K, Messerle M, Förster R. Mck2-dependent infection of alveolar macrophages promotes replication of MCMV in nodular inflammatory foci of the neonatal lung. Mucosal Immunol 2015; 8:57-67. [PMID: 24894498 DOI: 10.1038/mi.2014.42] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 04/15/2014] [Indexed: 02/08/2023]
Abstract
Infection with cytomegalovirus (CMV) shows a worldwide high prevalence with only immunocompromised individuals or newborns to become symptomatic. The host's constitution and the pathogen's virulence determine whether disease occurs after infection. Mouse CMV (MCMV) is an appreciated pathogen for in vivo investigation of host-pathogen interactions. It has recently been reported that a single base pair deletion can spontaneously occur in the open reading frame of MCMV-encoded chemokine 2 (MCK2), preventing the expression of the full-length gene product. To study the consequences of this mutation, we compared the Mck2-defective reporter virus MCMV-3D with the newly generated repaired Mck2(+) mutant MCMV-3DR. Compared with MCMV-3D, neonatal mice infected with MCMV-3DR showed severe viral disease after lung infection. Viral disease coincided with high viral activity in multiple organs and increased virus replication in previously described nodular inflammatory foci (NIF) in the lung. Notably, MCMV-3DR showed tropism for alveolar macrophages in vitro and in vivo, whereas MCMV-3D did not infect this cell type. Moreover, in vivo depletion of alveolar macrophages reduced MCMV-3DR replication in the lung. We proposed an Mck2-mediated mechanism by which MCMV exploits alveolar macrophages to increase replication upon first encounter with the host's lung mucosa.
Collapse
Affiliation(s)
- F R Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - K A Keyser
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - K Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Y Bischoff
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - S Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - K Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - M Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - R Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
29
|
Herpes simplex virus internalization into epithelial cells requires Na+/H+ exchangers and p21-activated kinases but neither clathrin- nor caveolin-mediated endocytosis. J Virol 2014; 88:13378-95. [PMID: 25210183 DOI: 10.1128/jvi.03631-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) is an alphaherpesvirus that has been reported to infect some epithelial cell types by fusion at the plasma membrane but others by endocytosis. To determine the molecular mechanisms of productive HSV-1 cell entry, we perturbed key endocytosis host factors using specific inhibitors, RNA interference (RNAi), or overexpression of dominant negative proteins and investigated their effects on HSV-1 infection in the permissive epithelial cell lines Vero, HeLa, HEp-2, and PtK2. HSV-1 internalization required neither endosomal acidification nor clathrin- or caveolin-mediated endocytosis. In contrast, HSV-1 gene expression and internalization were significantly reduced after treatment with 5-(N-ethyl-N-isopropyl)amiloride (EIPA). EIPA blocks the activity of Na(+)/H(+) exchangers, which are plasma membrane proteins implicated in all forms of macropinocytosis. HSV-1 internalization furthermore required the function of p21-activated kinases that contribute to macropinosome formation. However, in contrast to some forms of macropinocytosis, HSV-1 did not enlist the activities of protein kinase C (PKC), tyrosine kinases, C-terminal binding protein 1, or dynamin to activate its internalization. These data suggest that HSV-1 depends on Na(+)/H(+) exchangers and p21-activated kinases either for macropinocytosis or for local actin rearrangements required for fusion at the plasma membrane or subsequent passage through the actin cortex underneath the plasma membrane. IMPORTANCE After initial replication in epithelial cells, herpes simplex viruses (HSVs) establish latent infections in neurons innervating these regions. Upon primary infection and reactivation from latency, HSVs cause many human skin and neurological diseases, particularly in immunocompromised hosts, despite the availability of effective antiviral drugs. Many viruses use macropinocytosis for virus internalization, and many host factors mediating this entry route have been identified, although the specific perturbation profiles vary for different host and viral cargo. In addition to an established entry pathway via acidic endosomes, we show here that HSV-1 internalization depended on sodium-proton exchangers at the plasma membrane and p21-activated kinases. These results suggest that HSV-1 requires a reorganization of the cortical actin cytoskeleton, either for productive cell entry via pH-independent fusion from macropinosomes or for fusion at the plasma membrane, and subsequent cytosolic passage to microtubules that mediate capsid transport to the nucleus for genome uncoating and replication.
Collapse
|
30
|
Sinclair J, Reeves M. The intimate relationship between human cytomegalovirus and the dendritic cell lineage. Front Microbiol 2014; 5:389. [PMID: 25147545 PMCID: PMC4124589 DOI: 10.3389/fmicb.2014.00389] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/11/2014] [Indexed: 11/13/2022] Open
Abstract
Primary infection of healthy individuals with human cytomegalovirus (HCMV) is normally asymptomatic but results in the establishment of a lifelong infection of the host. One important cellular reservoir of HCMV latency is the CD34+ haematopoietic progenitor cells resident in the bone marrow. Viral gene expression is highly restricted in these cells with an absence of viral progeny production. However, cellular differentiation into mature myeloid cells is concomitant with the induction of a full lytic transcription program, DNA replication and, ultimately, the production of infectious viral progeny. Such reactivation of HCMV is a major cause of morbidity and mortality in a number of immune-suppressed patient populations. Our current understanding of HCMV carriage and reactivation is that cellular differentiation of the CD34+ progenitor cells through the myeloid lineage, resulting in terminal differentiation to either a macrophage or dendritic cell (DC) phenotype, is crucial for the reactivation event. In this mini-review, we focus on the interaction of HCMV with DCs, with a particular emphasis on their role in reactivation, and discuss how the critical regulation of viral major immediate-early gene expression appears to be delicately entwined with the activation of cellular pathways in differentiating DCs. Furthermore, we also explore the possible immune consequences associated with reactivation in a professional antigen presenting cell and potential countermeasures HCMV employs to abrogate these.
Collapse
Affiliation(s)
- John Sinclair
- Department of Medicine, University of Cambridge - Addenbrooke's Hospital Cambridge, UK
| | - Matthew Reeves
- Institute of Immunity and Transplantation, University College London - Royal Free Hospital Hampstead, London, UK
| |
Collapse
|
31
|
|
32
|
Daley-Bauer LP, Roback LJ, Wynn GM, Mocarski ES. Cytomegalovirus hijacks CX3CR1(hi) patrolling monocytes as immune-privileged vehicles for dissemination in mice. Cell Host Microbe 2014; 15:351-62. [PMID: 24629341 PMCID: PMC3989205 DOI: 10.1016/j.chom.2014.02.002] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 12/10/2013] [Accepted: 02/04/2014] [Indexed: 12/24/2022]
Abstract
Peripheral blood myelomonocytic cells are important for cytomegalovirus dissemination to distal organs such as salivary glands where persistent replication and shedding dictates transmission patterns. We find that this process is markedly enhanced by the murine cytomegalovirus (MCMV)-encoded CC chemokine, MCK2, which promotes recruitment of CX3CR1(hi) patrolling monocytes to initial infection sites in the mouse. There, these cells become infected and traffic via the bloodstream to distal sites. In contrast, inflammatory monocytes, the other major myelomonocytic subset, remain virus negative. CX3CR1 deficiency prevents patrolling monocyte migration on the vascular endothelium and interrupts MCMV dissemination to the salivary glands independent of antiviral NK and T cell immune control. In this manner, CX3CR1(hi) patrolling monocytes serve as immune-privileged vehicles to transport MCMV via the bloodstream to distal organs. MCMV commandeers patrolling monocytes to mediate systemic infection and seed a persistent reservoir essential for horizontal transmission.
Collapse
Affiliation(s)
- Lisa P Daley-Bauer
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Linda J Roback
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Grace M Wynn
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Stahl FR, Heller K, Halle S, Keyser KA, Busche A, Marquardt A, Wagner K, Boelter J, Bischoff Y, Kremmer E, Arens R, Messerle M, Förster R. Nodular inflammatory foci are sites of T cell priming and control of murine cytomegalovirus infection in the neonatal lung. PLoS Pathog 2013; 9:e1003828. [PMID: 24348257 PMCID: PMC3861546 DOI: 10.1371/journal.ppat.1003828] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Accepted: 10/28/2013] [Indexed: 02/01/2023] Open
Abstract
Neonates, including mice and humans, are highly susceptible to cytomegalovirus (CMV) infection. However, many aspects of neonatal CMV infections such as viral cell tropism, spatio-temporal distribution of the pathogen as well as genesis of antiviral immunity are unknown. With the use of reporter mutants of the murine cytomegalovirus (MCMV) we identified the lung as a primary target of mucosal infection in neonatal mice. Comparative analysis of neonatal and adult mice revealed a delayed control of virus replication in the neonatal lung mucosa explaining the pronounced systemic infection and disease in neonates. This phenomenon was supplemented by a delayed expansion of CD8+ T cell clones recognizing the viral protein M45 in neonates. We detected viral infection at the single-cell level and observed myeloid cells forming “nodular inflammatory foci” (NIF) in the neonatal lung. Co-localization of infected cells within NIFs was associated with their disruption and clearance of the infection. By 2-photon microscopy, we characterized how neonatal antigen-presenting cells (APC) interacted with T cells and induced mature adaptive immune responses within such NIFs. We thus define NIFs of the neonatal lung as niches for prolonged MCMV replication and T cell priming but also as sites of infection control. Neonates are highly susceptible to a number of infections that usually cause disease only in immunocompromised individuals, most likely because of their incompletely developed immune system. Although this phenomenon has been frequently observed, immune responses of neonates remain largely undefined upon infections with viruses. There is lack of knowledge about the spatio-temporal dynamics of host-virus interaction, especially in comparative infection models of neonates and adults. In this study, with the use of virus reporter mutants, we provide elaborate insight into these aspects in the mouse model of CMV infection. We define hallmarks of virus tropism, early cellular immune responses and general infection dynamics, findings that are fundamental to understand neonatal antiviral immunity. Furthermore, we found that neonatal APCs induce T cell responses in nodular inflammatory foci of the lung, a process which was supposed to be restricted to lymphoid organs. However, the MCMV-specific T cell response was qualitatively different in neonates from that in adults, possibly explaining - in part - the higher susceptibility of newborns. These observations expand our understanding of where adaptive immunity can be initiated, highlights the importance of early local cellular immune responses and sheds more light on neonatal antiviral immunity.
Collapse
Affiliation(s)
- Felix R. Stahl
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail: (FRS); (RF)
| | - Katrin Heller
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Stephan Halle
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | | | - Andreas Busche
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Anja Marquardt
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Karen Wagner
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Jasmin Boelter
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Yvonne Bischoff
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Elisabeth Kremmer
- Helmholtz Zentrum München, Institut für Molekulare Immunologie, München, Germany
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Leiden, The Netherlands
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany
- * E-mail: (FRS); (RF)
| |
Collapse
|
34
|
Dag F, Weingärtner A, Butueva M, Conte I, Holzki J, May T, Adler B, Wirth D, Cicin-Sain L. A new reporter mouse cytomegalovirus reveals maintained immediate-early gene expression but poor virus replication in cycling liver sinusoidal endothelial cells. Virol J 2013; 10:197. [PMID: 23773211 PMCID: PMC3765632 DOI: 10.1186/1743-422x-10-197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/17/2013] [Indexed: 02/05/2023] Open
Abstract
Background The MCMV major immediate early promoter/enhancer (MIEP) is a bidirectional promoter that drives the expression of the three immediate early viral genes, namely ie1, ie2 and ie3. The regulation of their expression is intensively studied, but still incompletely understood. Methods We constructed a reporter MCMV, (MCMV-MIEPr) expressing YFP and tdTomato under the control of the MIEP as proxies of ie1 and ie2, respectively. Moreover, we generated a liver sinusoidal endothelial cell line (LSEC-uniLT) where cycling is dependent on doxycycline. We used these novel tools to study the kinetics of MIEP-driven gene expression in the context of infection and at the single cell level by flow cytometry and by live imaging of proliferating and G0-arrested cells. Results MCMV replicated to higher titers in G0-arrested LSEC, and cycling cells showed less cytopathic effect or YFP and tdTomato expression at 5 days post infection. In the first 24 h post infection, however, there was no difference in MIEP activity in cycling or G0-arrested cells, although we could observe different profiles of MIEP gene expression in different cell types, like LSECs, fibroblasts or macrophages. We monitored infected LSEC-uniLT in G0 by time lapse microscopy over five days and noticed that most cells survived infection for at least 96 h, arguing that quick lysis of infected cells could not account for the spread of the virus. Interestingly, we noticed a strong correlation between the ratio of median YFP and tdTomato expression and length of survival of infected cells. Conclusion By means of our newly developed genetic tools, we showed that the expression pattern of MCMV IE1 and IE2 genes differs between macrophages, endothelial cells and fibroblasts. Substantial and cell-cycle independent differences in the ie1 and ie2 transcription could also be observed within individual cells of the same population, and marked ie2 gene expression was associated with longer survival of the infected cells.
Collapse
|
35
|
Bolinger B, Sims S, O’Hara G, de Lara C, Tchilian E, Firner S, Engeler D, Ludewig B, Klenerman P. A new model for CD8+ T cell memory inflation based upon a recombinant adenoviral vector. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 190:4162-74. [PMID: 23509359 PMCID: PMC3672979 DOI: 10.4049/jimmunol.1202665] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
CD8(+) T cell memory inflation, first described in murine CMV (MCMV) infection, is characterized by the accumulation of high-frequency, functional Ag-specific CD8(+) T cell pools with an effector-memory phenotype and enrichment in peripheral organs. Although persistence of Ag is considered essential, the rules underpinning memory inflation are still unclear. The MCMV model is, however, complicated by the virus's low-level persistence and stochastic reactivation. We developed a new model of memory inflation based on a β-galactosidase (βgal)-recombinant adenovirus vector. After i.v. administration in C57BL/6 mice, we observed marked memory inflation in the βgal96 epitope, whereas a second epitope, βgal497, undergoes classical memory formation. The inflationary T cell responses show kinetics, distribution, phenotype, and functions similar to those seen in MCMV and are reproduced using alternative routes of administration. Memory inflation in this model is dependent on MHC class II. As in MCMV, only the inflating epitope showed immunoproteasome independence. These data define a new model for memory inflation, which is fully replication independent, internally controlled, and reproduces the key immunologic features of the CD8(+) T cell response. This model provides insight into the mechanisms responsible for memory inflation and, because it is based on a vaccine vector, also is relevant to novel T cell-inducing vaccines in humans.
Collapse
Affiliation(s)
- Beatrice Bolinger
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Stuart Sims
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Geraldine O’Hara
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Catherine de Lara
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Elma Tchilian
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| | - Sonja Firner
- Institute of Immunobiology, Cantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Daniel Engeler
- Institute of Immunobiology, Cantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Cantonal Hospital St. Gallen, CH-9007 St. Gallen, Switzerland
| | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Palaniyandi S, Radhakrishnan SV, Karlsson FJ, Stokes KY, Kittan N, Huber E, Hildebrandt GC. Murine cytomegalovirus immediate-early 1 gene expression correlates with increased GVHD after allogeneic hematopoietic cell transplantation in recipients reactivating from latent infection. PLoS One 2013; 8:e61841. [PMID: 23596528 PMCID: PMC3626592 DOI: 10.1371/journal.pone.0061841] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 03/14/2013] [Indexed: 12/19/2022] Open
Abstract
The success of allogeneic (allo) hematopoietic cell transplantation (HCT) is limited by its treatment related complications, mostly graft versus host disease (GVHD) and fungal and viral infections. CMV reactivation after HCT has been associated with increased morbidity and mortality, and a causal relation between GVHD, immunosuppressive therapy and vice versa has been postulated. Using a low GVHD severity murine HCT model, we assessed the role of MCMV reactivation and GVHD development. BALB/c mice were infected with either murine CMV (MCMV) or mock and monitored for 25 weeks to establish latency, followed by sublethal irradiation conditioning and infusion of bone marrow plus splenocytes from either syngeneic (syn) BALB/c or allo B10.D2 donors. Engraftment of allo donor cells was confirmed by PCR for D2Mit265 gene product size. Day+100 mortality and overall GVHD severity in allo MCMV pre-infected recipients was higher than in allo mock controls. Pathologic changes of lung and liver GVHD in immediate-early gene 1 (IE1) positive recipients were significantly increased compared to mock controls, and were only slightly increased in IE1 negative. No significant gut injury was seen in any group. Aggravated lung injury in IE1 positive recipients correlated with higher BAL cell counts both for total cells and for CD4+ T cells when compared with mock controls, and also with protein expression of lung IFN-gamma and liver TNF. No evidence for CMV specific morphologic changes was seen on histopathology in any organ of IE1 positive recipients, suggesting that CMV reactivation is related to increased GVHD severity but does not require active CMV disease, strengthening the concept of a reciprocal relationship between CMV and GVHD.
Collapse
Affiliation(s)
- Senthilnathan Palaniyandi
- Department of Medicine, Division of Hematology and Oncology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States of America
- Department of Medicine, Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Sabarinath Venniyil Radhakrishnan
- Department of Medicine, Division of Hematology and Oncology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States of America
| | - Fridrik J. Karlsson
- Department of Medicine, Division of Hematology and Oncology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States of America
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States of America
| | - Nicolai Kittan
- Department of Medicine, Division of Hematology and Oncology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States of America
| | - Elisabeth Huber
- Department of Pathology, University of Regensburg Medical School, Regensburg, Germany
| | - Gerhard C. Hildebrandt
- Department of Medicine, Division of Hematology and Oncology, Feist-Weiller Cancer Center, Louisiana State University Health Sciences Center Shreveport, Shreveport, Louisiana, United States of America
- Department of Medicine, Division of Hematology and Hematologic Malignancies, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
37
|
Seckert CK, Griessl M, Büttner JK, Scheller S, Simon CO, Kropp KA, Renzaho A, Kühnapfel B, Grzimek NKA, Reddehase MJ. Viral latency drives 'memory inflation': a unifying hypothesis linking two hallmarks of cytomegalovirus infection. Med Microbiol Immunol 2012; 201:551-66. [PMID: 22991040 DOI: 10.1007/s00430-012-0273-y] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 08/29/2012] [Indexed: 11/29/2022]
Abstract
Low public awareness of cytomegalovirus (CMV) results from the only mild and transient symptoms that it causes in the healthy immunocompetent host, so that primary infection usually goes unnoticed. The virus is not cleared, however, but stays for the lifetime of the host in a non-infectious, replicatively dormant state known as 'viral latency'. Medical interest in CMV results from the fact that latent virus can reactivate to cytopathogenic, tissue-destructive infection causing life-threatening end-organ disease in immunocompromised recipients of solid organ transplantation (SOT) or hematopoietic cell transplantation (HCT). It is becoming increasingly clear that CMV latency is not a static state in which the viral genome is silenced at all its genetic loci making the latent virus immunologically invisible, but rather is a dynamic state characterized by stochastic episodes of transient viral gene desilencing. This gene expression can lead to the presentation of antigenic peptides encoded by 'antigenicity-determining transcripts expressed in latency (ADTELs)' sensed by tissue-patrolling effector-memory CD8 T cells for immune surveillance of latency [In Reddehase et al., Murine model of cytomegalovirus latency and reactivation, Current Topics in Microbiology and Immunology, vol 325. Springer, Berlin, pp 315-331, 2008]. A hallmark of the CD8 T cell response to CMV is the observation that with increasing time during latency, CD8 T cells specific for certain viral epitopes increase in numbers, a phenomenon that has gained much attention in recent years and is known under the catchphrase 'memory inflation.' Here, we provide a unifying hypothesis linking stochastic viral gene desilencing during latency to 'memory inflation.'
Collapse
Affiliation(s)
- Christof K Seckert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University Mainz, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Bovenberg MSS, Degeling MH, Tannous BA. Enhanced Gaussia luciferase blood assay for monitoring of in vivo biological processes. Anal Chem 2012; 84:1189-92. [PMID: 22148161 PMCID: PMC3264838 DOI: 10.1021/ac202833r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Secreted Gaussia luciferase (Gluc) has been shown to be a useful tool for ex vivo monitoring of in vivo biological processes. The Gluc level in the blood was used to detect tumor growth, metastasis and response to therapy, gene transfer, and circulating cells viability, as well as transcription factors activation, complementing in vivo bioluminescence imaging. The sensitivity of the Gluc blood assay is limited due to the absorption of blue light by pigmented molecules such as hemoglobin, resulting in quenching of the signal and therefore lower sensitivity. To overcome this problem, we designed an alternative microtiter well-based binding assay in which Gluc is captured first from blood using a specific antibody followed by the addition of coelenterazine and signal acquisition using a luminometer. This assay showed to be over 1 order of magnitude more sensitive in detecting Gluc in the blood as compared to the direct Gluc blood assay enhancing ex vivo monitoring of biological processes.
Collapse
Affiliation(s)
- M. Sarah S. Bovenberg
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Boston, MA 02114 USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114 USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - M. Hannah Degeling
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Boston, MA 02114 USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114 USA
- Department of Neurosurgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Bakhos A. Tannous
- Experimental Therapeutics and Molecular Imaging Laboratory, Neuroscience Center, Department of Neurology, Boston, MA 02114 USA
- Program in Neuroscience, Harvard Medical School, Boston, MA 02114 USA
| |
Collapse
|
39
|
Secreted blood reporters: insights and applications. Biotechnol Adv 2011; 29:997-1003. [PMID: 21920429 DOI: 10.1016/j.biotechadv.2011.08.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 08/27/2011] [Accepted: 08/30/2011] [Indexed: 11/23/2022]
Abstract
Secreted reporters detected in body fluids (blood, serum or urine) have shown to be simple and useful tools for ex vivo real-time monitoring of in vivo biological processes. Here we explore the most commonly used secreted blood reporters in experimental animals: secreted alkaline phosphatase, soluble marker peptides derived from human carcinoembryonic antigen and human chorionic gonadotropin, as well as Gaussia luciferase. We also comment on other recently discovered secreted luciferases and their potential use as blood reporters for multiplexing applications.
Collapse
|
40
|
Seckert CK, Schader SI, Ebert S, Thomas D, Freitag K, Renzaho A, Podlech J, Reddehase MJ, Holtappels R. Antigen-presenting cells of haematopoietic origin prime cytomegalovirus-specific CD8 T-cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol 2011; 92:1994-2005. [PMID: 21632567 DOI: 10.1099/vir.0.031815-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Expansion of the CD8 T-cell memory pool, also known as 'memory inflation', for certain but not all viral epitopes in latently infected host tissues is a special feature of the immune response to cytomegalovirus. The L(d)-presented murine cytomegalovirus (mCMV) immediate-early (IE) 1 peptide is the prototype of an epitope that is associated with memory inflation. Based on the detection of IE1 transcripts in latently infected lungs it was previously proposed that episodes of viral gene expression and antigenic activity due to desilencing of a limited number of viral genes may drive epitope-specific memory inflation. This would imply direct antigen presentation through latently infected host tissue cells rather than cell death-associated cross-presentation of viral antigens derived from productively infected cells through uninfected, professional antigen-presenting cells (profAPCs). To address the role of bone marrow-derived profAPCs in CD8 T-cell priming and memory to mCMV, we have used here a combined sex-mismatched and MHC class-I mismatched dual-marker bone marrow chimera model in which presentation of the IE1 epitope is restricted to donor-derived sry(+)L(d+) cells of haematopoietic differentiation lineages. Successful CD8 T-cell priming specific for the L(d)- and D(d)-presented inflationary epitopes IE1 and m164, respectively, but selective failure in IE1 epitope-specific memory inflation in these chimeras indicates different modes of antigen presentation involved in CD8 T-cell priming and memory inflation. These data suggest that memory inflation during mCMV latency requires expression of the epitope-presenting MHC class-I molecule by latently infected non-haematopoietic host tissue cells and thus predicts a role for direct antigen presentation in memory inflation.
Collapse
Affiliation(s)
- Christof K Seckert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Sina I Schader
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Stefan Ebert
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Doris Thomas
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Kirsten Freitag
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Angélique Renzaho
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Jürgen Podlech
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Matthias J Reddehase
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| | - Rafaela Holtappels
- Institute for Virology, University Medical Center of the Johannes Gutenberg-University, Obere Zahlbacher Strasse 67, Hochhaus am Augustusplatz, 55131 Mainz, Germany
| |
Collapse
|
41
|
Browne AW, Leddon JL, Currier MA, Williams JP, Frischer JS, Collins MH, Ahn CH, Cripe TP. Cancer screening by systemic administration of a gene delivery vector encoding tumor-selective secretable biomarker expression. PLoS One 2011; 6:e19530. [PMID: 21589655 PMCID: PMC3092745 DOI: 10.1371/journal.pone.0019530] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 03/31/2011] [Indexed: 12/31/2022] Open
Abstract
Cancer biomarkers facilitate screening and early detection but are known for only a few cancer types. We demonstrated the principle of inducing tumors to secrete a serum biomarker using a systemically administered gene delivery vector that targets tumors for selective expression of an engineered cassette. We exploited tumor-selective replication of a conditionally replicative Herpes simplex virus (HSV) combined with a replication-dependent late viral promoter to achieve tumor-selective biomarker expression as an example gene delivery vector. Virus replication, cytotoxicity and biomarker production were low in quiescent normal human foreskin keratinocytes and high in cancer cells in vitro. Following intravenous injection of virus >90% of tumor-bearing mice exhibited higher levels of biomarker than non-tumor-bearing mice and upon necropsy, we detected virus exclusively in tumors. Our strategy of forcing tumors to secrete a serum biomarker could be useful for cancer screening in high-risk patients, and possibly for monitoring response to therapy. In addition, because oncolytic vectors for tumor specific gene delivery are cytotoxic, they may supplement our screening strategy as a "theragnostic" agent. The cancer screening approach presented in this work introduces a paradigm shift in the utility of gene delivery which we foresee being improved by alternative vectors targeting gene delivery and expression to tumors. Refining this approach will usher a new era for clinical cancer screening that may be implemented in the developed and undeveloped world.
Collapse
Affiliation(s)
- Andrew W. Browne
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Jennifer L. Leddon
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Physician Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mark A. Currier
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jon P. Williams
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jason S. Frischer
- Division of Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Margaret H. Collins
- Division of Pathology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Chong H. Ahn
- Department of Electrical and Computer Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Timothy P. Cripe
- Division of Oncology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
- Division of Experimental Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|