1
|
Iaia N, Noviello C, Muscaritoli M, Costelli P. Inflammation in cancer cachexia: still the central tenet or just another player? Am J Physiol Cell Physiol 2025; 328:C1837-C1852. [PMID: 40250836 DOI: 10.1152/ajpcell.00808.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 11/23/2024] [Accepted: 04/10/2025] [Indexed: 04/20/2025]
Abstract
Cancer cachexia, a multifactorial syndrome characterized by body weight loss, muscle, and adipose tissue wasting, affects patients with cancer. Over time, the definition of cachexia has been modified, including inflammation as one of the main causal factors. Evidence has suggested that a range of proinflammatory mediators may be involved in the regulation of intracellular signaling, resulting in enhanced resting energy expenditure, metabolic changes, and muscle atrophy, all of which are typical features of cachexia. Physiologically speaking, however, inflammation is a response aimed at facing potentially damaging events. Along this line, its induction in the cancer hosts could be an attempt to restore the physiological homeostasis. Interesting observations have shown that cytokines such as interleukins 4 and 6 could improve muscle wasting, supporting the view that the same mediator may exert pro- or anti-inflammatory activity depending on the immune cells involved as well as on the tissue metabolic demand. In conclusion, whether inflammation is crucial to the occurrence of cachexia or just one contributor among others, is still unclear. Indeed, while inflammation is a trigger of cachexia, the alterations of energy and protein metabolism and of the hormonal homeostasis occurring in cachexia likely act as inflammatory stimuli on their own. Whether the causative role prevails over the compensatory one likely depends on the tumor type and stage, patient lifestyle, the presence of comorbidities, and the response to anticancer treatments paving the way to a holistic, personalized approach to cancer cachexia.
Collapse
Affiliation(s)
- Noemi Iaia
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Chiara Noviello
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | | | - Paola Costelli
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
- Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| |
Collapse
|
2
|
León-Vega II, Oregon R, Schnoor M, Vadillo E. From Ulcerative Colitis to Metastatic Colorectal Cancer: The Neutrophil Contribution. THE AMERICAN JOURNAL OF PATHOLOGY 2025; 195:814-830. [PMID: 39889826 DOI: 10.1016/j.ajpath.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/09/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Ulcerative colitis (UC) is an inflammatory colon and rectum disease affecting approximately 5 million people worldwide. There is no cure for UC, and approximately 8% of patients with UC develop colorectal cancer (CRC) by gradual acquisition of mutations driving the formation of adenomas and their progression to adenocarcinomas and metastatic disease. CRC constitutes 10% of total cancer cases worldwide and 9% of cancer deaths. Both UC and CRC have an increasing incidence worldwide. Although the epithelium has been well studied in UC and CRC, the contribution of neutrophils is less clear. Neutrophils are rapidly recruited in excessive amounts from peripheral blood to the colon during UC, and their overactivation in the proinflammatory UC tissue environment contributes to tissue damage. In CRC, the role of neutrophils is controversial, but emerging evidence suggests that their role depends on the evolution and context of the disease. The role of neutrophils in the transition from UC to CRC is even less clear. However, recent studies propose neutrophils as therapeutic targets for better clinical management of both diseases. This review summarizes the current knowledge on the roles of neutrophils in UC and CRC.
Collapse
Affiliation(s)
- Iliana I León-Vega
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico
| | - Reyna Oregon
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Cinvestav-National Polytechnic Institute, Mexico City, Mexico.
| | - Eduardo Vadillo
- Oncology Research Unit, Oncology Hospital, National Medical Center, Mexican Institute of Social Security, Mexico City, Mexico.
| |
Collapse
|
3
|
Gibb M, Reinert AN, Schedin T, Merrick DT, Brown JM, Bauer AK. Mast cells are key mediators in the pulmonary inflammatory response to formaldehyde exposure. Toxicol Sci 2025; 205:180-190. [PMID: 39992237 PMCID: PMC12038249 DOI: 10.1093/toxsci/kfaf025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025] Open
Abstract
Formaldehyde (FA) is a common chemical linked to respiratory problems such as airway hyperresponsiveness and pulmonary inflammation. Due to its toxicological effects and ease of mass production, FA is also recognized as a significant chemical threat by the U.S. Department of Homeland Security. This study investigates the role of mast cells in the pulmonary inflammatory response to acute high-dose FA exposure. Using wild-type (C57BL/6J) and mast cell-deficient (KitW-sh) mouse models, we assessed the impact of oropharyngeal aspiration of FA on lung pathology. Our findings reveal that C57BL/6J mice experienced significant increases in cellular infiltration, altered immune cell populations, and changes in lipid mediator profiles. In contrast, KitW-sh mice exhibited significantly reduced inflammatory responses. Notably, the presence of mast cells was associated with enhanced dendritic cell migration and differential production of bioactive lipid mediators, such as specialized pro-resolving mediators and pro-inflammatory leukotrienes in C57BL/6J mice. These results highlight the crucial role of mast cells in the immune response to FA and suggest they could be therapeutic targets for treating FA-induced lung inflammation.
Collapse
Affiliation(s)
- Matthew Gibb
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Angela N Reinert
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Troy Schedin
- Department of Immunology and Microbiology, Human Immune Monitoring Shared Resource, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Daniel T Merrick
- Department of Pathology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Jared M Brown
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States
| |
Collapse
|
4
|
Nip J, Hermanson K, Lee JM. n-3 PUFAs docosahexaenoic acid and eicosapentaenoic acid are effective natural pro-resolution ingredients for topical skin applications. Int J Cosmet Sci 2025. [PMID: 40274542 DOI: 10.1111/ics.13068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/11/2025] [Accepted: 03/24/2025] [Indexed: 04/26/2025]
Abstract
Skin encounters many challenges that lead to an inflammatory response. Resolution of this inflammation is needed to return the skin to a healthy state. A review of the role of topical n-3 PUFAs, particularly DHA and EPA, in resolving skin inflammation and promoting skin health is presented. A review of the literature and Unilever data on DHA/EPA pro-resolution skin benefits. PubMed/MEDLINE, Google search of external literature as well as Unilever data relating to skin inflammation, pro-resolution, and the role of DHA and EPA. Evidence of DHA and EPA in providing pro-resolution of skin inflammation are summarized. DHA and EPA, and their derived specialized pro-resolving mediators (SPMs), can attenuate the skin inflammatory response induced by various stressors and maintain skin health.
Collapse
Affiliation(s)
- John Nip
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Kevin Hermanson
- Unilever Research and Development, Trumbull, Connecticut, USA
| | - Jian-Ming Lee
- Unilever Research and Development, Trumbull, Connecticut, USA
| |
Collapse
|
5
|
Emmetsberger J, Collins D, Karaman-Jurukovska N, Messina A, Layman D, Mammone T, Kabashima K, Pernodet N. Algae ferment regulates initiation, amplification, and resolution of inflammation. J Dermatol Sci 2025:S0923-1811(25)00045-3. [PMID: 40307118 DOI: 10.1016/j.jdermsci.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/10/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025]
Affiliation(s)
| | - Donald Collins
- Max Huber Research Laboratories, Melville, NY 11747, USA; Research and Development, Estée Lauder Companies, Melville, NY 11747, USA
| | | | - Amanda Messina
- Research and Development, Estée Lauder Companies, Melville, NY 11747, USA
| | - Dawn Layman
- Research and Development, Estée Lauder Companies, Melville, NY 11747, USA
| | - Thomas Mammone
- Research and Development, Estée Lauder Companies, Melville, NY 11747, USA
| | - Kenji Kabashima
- Department of Dermatology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nadine Pernodet
- Research and Development, Estée Lauder Companies, Melville, NY 11747, USA
| |
Collapse
|
6
|
Coperchini F, Greco A, Teliti M, Croce L, Chytiris S, Magri F, Gaetano C, Rotondi M. Inflamm-ageing: How cytokines and nutrition shape the trajectory of ageing. Cytokine Growth Factor Rev 2025; 82:31-42. [PMID: 39237438 DOI: 10.1016/j.cytogfr.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 08/20/2024] [Indexed: 09/07/2024]
Abstract
Population ageing is increasing in prevalence in most developed countries. Ageing is the decline of functional properties at the cellular, tissue, and organ level. Biochemical changes that occur in all organisms that experience biological ageing are referred to as the "Hallmarks of ageing". Inflammation is a common denominator of the hallmarks of ageing, being mechanistically involved in most age-related health consequences. Inflamm-ageing refers to age-related changes in the inflammatory and immune systems which somehow drive the ageing process towards healthy or unhealthy ageing. Current evidences, support that, reversing the age-related pro-inflammatory status of inflamm-ageing, is able to modulate most hallmarks of ageing. Inflamm-ageing is associated with increased levels of pro-inflammatory molecules (e.g. cytokines, chemokines), ultimately producing a chronic low-grade inflammatory state typically observed in older individuals. It is commonly accepted that, the balance between pro- and anti-inflammatory cytokines/chemokines is one of the factors determining whether healthy or unhealthy ageing occurs. Malnutrition and nutritional imbalances, are highly prevalent in the elderly, playing a role in driving the balance of pro- and anti-inflammatory immunoactive molecules. In particular, malnutrition is a major risk factor for sarcopenia, a phenomenon characterized by loss of muscle mass, which is often referred to as the biological basis for frailty. Given the close relationship between malnutrition and sarcopenia, there is also evidence for a link between malnutrition and frailty. Indeed, changes in cytokine/chemokine levels in elderly patients with malnutrition were demonstrated. The demonstration that specific cytokines play a role in modulating appetite and nutrient sensing and taste reception, provided further evidence for the existence of a link between inflamm-ageing, nutrition and cytokines in shaping the trajectory of ageing. The present review will overview current evidence supporting the role of specific circulating cytokines and chemokines in the relationship between ageing, inflammation, and malnutrition.
Collapse
Affiliation(s)
- Francesca Coperchini
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Alessia Greco
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy
| | - Marsida Teliti
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Laura Croce
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Spyridon Chytiris
- Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Flavia Magri
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy
| | - Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, Pavia, Italy
| | - Mario Rotondi
- Department of Internal Medicine and Therapeutics, University of Pavia, 27100, Italy; Istituti Clinici Scientifici Maugeri IRCCS, Unit of Internal Medicine and Endocrinology, Laboratory for Endocrine Disruptors, Pavia 27100, Italy.
| |
Collapse
|
7
|
Hu Z, Chen Y, Lei J, Wang K, Pan Z, Zhang L, Xu X, Li W, Zhang L, Qin X, Liu R, Chu Y, Wang C, Yu H. SIRT7 regulates T-cell antitumor immunity through modulation BCAA and fatty acid metabolism. Cell Death Differ 2025:10.1038/s41418-025-01490-y. [PMID: 40140560 DOI: 10.1038/s41418-025-01490-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 02/13/2025] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
SIRT7, one of the least studied members of the Sirtuins family, is an NAD+-dependent lysine deacetylase and desuccinylase. While previous studies using affinity enrichment and quantitative proteomics identified numerous lysine-deacetylated substrates of SIRT7, its lysine-desuccinylated substrates remain underexplored, limiting our understanding of its role in cellular homeostasis. Here, we demonstrated that SIRT7 is predominantly expressed in immune tissues, especially in adaptive immune cells, including T cells. Through proteomics, lysine succinylome, and acetylome analysis of spleen from wild-type (WT) and Sirt7-/- mice, we identified significant succinylation of proteins involved in the branched-chain amino acid (BCAA) catabolism pathway in Sirt7-/- mice. We further found that SIRT7 partially localizes to mitochondria, interacting with key enzymes of the BCAA catabolism pathway and promoting their desuccinylation. Sirt7 deficiency leads to enhanced BCAA catabolism, accumulation of acyl-CoA, and increased fatty acid (FA) synthesis. As T cells rely heavily on amino acid metabolism for activation, differentiation, and function, we investigated the impact of SIRT7 using a T cell-specific Sirt7 knockout mouse model (Sirt7fl/flCd4-Cre). Our results show that SIRT7 is crucial for T cell proliferation, activation, and antitumor function. Sirt7 deficiency in T cells results in the accumulation of BCAA metabolites and FAs, reduced cytotoxic cytokines secretion such as IFN-γ, and T cell exhaustion. Reducing BCAA levels with BT2, a BCKDK inhibitor, or BCAA-free treatment alleviated these effects, while FA treatment exacerbates them. Overall, our findings identify SIRT7 as a critical regulator linking BCAA and FA metabolism to T cell antitumor immunity, providing new insights into its potential as a therapeutic target.
Collapse
Affiliation(s)
- Zuojian Hu
- Institute of Biomedicine Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Yingji Chen
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jielin Lei
- Institute of Biomedicine Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ke Wang
- Institute of Biomedicine Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Ziyue Pan
- Institute of Biomedicine Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Lei Zhang
- Institute of Biomedicine Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, China
| | - Xiayun Xu
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Wenhui Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianjun Zhang
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ronghua Liu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yiwei Chu
- Department of Immunology, School of Basic Medical Sciences, Shanghai Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Chenji Wang
- State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hongxiu Yu
- Institute of Biomedicine Sciences & Shanghai Stomatological Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Rodríguez-Fernández MA, Tristán-Flores FE, Casique-Aguirre D, Negrete-Rodríguez MDLLX, Cervantes-Montelongo JA, Conde-Barajas E, Acosta-García G, Silva-Martínez GA. Virtual Screening and Molecular Dynamics of Cytokine-Drug Complexes for Atherosclerosis Therapy. Int J Mol Sci 2025; 26:2931. [PMID: 40243563 PMCID: PMC11988346 DOI: 10.3390/ijms26072931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 03/19/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Cardiovascular disease remains the leading global cause of mortality, largely driven by atherosclerosis, a chronic inflammatory condition characterized by lipid accumulation and immune-cell infiltration in arterial walls. Macrophages play a central role by forming foam cells and secreting pro-atherogenic cytokines, such as TNF-α, IFN-γ, and IL-1β, which destabilize atherosclerotic plaques, expanding the lipid core and increasing the risk of thrombosis and ischemia. Despite the significant health burden of subclinical atherosclerosis, few targeted therapies exist. Current treatments, including monoclonal antibodies, are limited by high costs and immunosuppressive side effects, underscoring the urgent need for alternative therapeutic strategies. In this study, we employed in silico drug repositioning to identify multitarget inhibitors against TNF-α, IFN-γ, and IL-1β, leveraging a virtual screening of 2750 FDA-approved drugs followed by molecular dynamics simulations to assess the stability of selected cytokine-ligand complexes. This computational approach provides structural insights into potential inhibitors. Additionally, we highlight nutraceutical options, such as fatty acids (oleic, linoleic and eicosapentaenoic acid), which exhibited strong and stable interactions with key cytokine targets. Our study suggests that these bioactive compounds could serve as effective new therapeutic approaches for atherosclerosis.
Collapse
Affiliation(s)
- María Angélica Rodríguez-Fernández
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
| | - Fabiola Estefanía Tristán-Flores
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ciencias Básicas, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico
| | - Diana Casique-Aguirre
- Laboratorio de Citómica del Cáncer Infantil, Centro de Investigación Biomédica de Oriente, Instituto Mexicano del Seguro Social, Delegación Puebla, Puebla 06600, Mexico;
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Ciudad de México 03940, Mexico
| | - María de la Luz Xochilt Negrete-Rodríguez
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Juan Antonio Cervantes-Montelongo
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
- Escuela de Medicina, Universidad de Celaya, Celaya 38080, Guanajuato, Mexico
| | - Eloy Conde-Barajas
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Gerardo Acosta-García
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| | - Guillermo Antonio Silva-Martínez
- Posgrado de Ingeniería Bioquímica, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico; (M.A.R.-F.); (F.E.T.-F.); (M.d.l.L.X.N.-R.); (E.C.-B.); (G.A.-G.)
- Secretaría de Ciencia, Humanidades, Tecnología e Innovación (SECIHTI), Ciudad de México 03940, Mexico
- Departamento de Ingeniería Bioquímica y Ambiental, Tecnológico Nacional de México/IT de Celaya, Celaya 38010, Guanajuato, Mexico;
| |
Collapse
|
9
|
Benvenutti L, Gerhardt GM, Lucinda RM, Gerlach OMS, Cechinel-Filho V, Klein-Júnior LC, Quintão NLM, Santin JR. The effects of Calophyllum brasiliense leaves extract and isolated compound amentoflavone: implications in the resolution of inflammation. J Pharm Pharmacol 2025:rgaf009. [PMID: 40036641 DOI: 10.1093/jpp/rgaf009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/13/2025] [Indexed: 03/06/2025]
Abstract
Calophyllum brasiliense is employed in folk medicine as an analgesic and to treat inflammation. This study aimed to evaluate the anti-inflammatory effect of C. brasiliense leaves' methanol extract, fractions, and the isolated compound amentoflavone. In vitro fMLP-induced neutrophil chemotaxis and LPS-induced inflammatory mediator levels were assessed in neutrophils or macrophages treated or not with different concentrations of C. brasiliense extract, its fractions or amentoflavone. Their effects on inflammation resolution was assessed by evaluating the efferocytosis. The extract and its fractions (DFCB, AFCB, and MFCB) impaired neutrophil migration stimulated by the chemotactic mediator fMLP and its ability to produce and/or to release cytokines (TNF and IL-6) and NO. The increase of the apoptotic neutrophil efferocytosis was observed for cells treated with the ethyl acetate and methanol fractions, accompanied by the enhanced IL-10 levels in the supernatant and the decrease of TNF, as well. Amentoflavone, present in high concentration in ethyl acetate fraction, reduced the inflammatory mediators levels in LPS-stimulated macrophages, impaired the neutrophil chemotaxis, and enhanced the efferocytosis. The obtained data demonstrate that C. brasiliense extract presented anti-inflammatory effects by modulating neutrophil migration/activation, macrophage-dependent efferocytosis, and inflammatory mediator release, effects at least partly addressed to amentoflavone content.
Collapse
Affiliation(s)
- Larissa Benvenutti
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - Guilherme Moreschi Gerhardt
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - Ruth Meri Lucinda
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - Otto Maurício Santos Gerlach
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - Valdir Cechinel-Filho
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - Luiz Carlos Klein-Júnior
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - Nara Lins Meira Quintão
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| | - José Roberto Santin
- Postgraduate Program in Pharmaceutical Science, Universidade do Vale do Itajaí (UNIVALI), Santa Catarina, Brazil
| |
Collapse
|
10
|
Chen X, Sun W, Kong X, Ming X, Zhang Y, Yan W, Mohibi S, Chen M, Mitchell K, Zhang J. TAp63γ is the primary isoform of TP63 for tumor suppression but not development. Cell Death Discov 2025; 11:51. [PMID: 39915463 PMCID: PMC11802870 DOI: 10.1038/s41420-025-02326-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/19/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
TP63 is expressed as TAp63 and ΔNp63 from the P1 and P2 promoters, respectively. While TAp63 and ΔNp63 are expressed as three TAp63α/β/γ and ΔNp63α/β/γ due to alternative splicing, only p63α (TA and ΔN) and p63γ (TA and ΔN) proteins are found to be detectable and likely to be responsible for p63-dependent activity. Previous studies implied and/or demonstrated that TAp63α, which contains an N-terminal activation domain conserved in p53, functions as a tumor suppressor by regulating an array of genes for growth suppression. By contrast, ΔNp63α, which also contains an N-terminal activation domain but is different from that in TAp63, regulates a unique set of genes and functions as a master regulator for development of epidermis and other stratified epithelial tissues. However, the biological function of p63γ is largely unexplored. To explore this, we generated a mouse model in that exon 10', a coding exon specific for p63γ, was deleted by CRISPR-cas9. We showed that mice deficient in p63γ are viable and futile, which is different from mice deficient in total TP63 or p63α. Like TAp63-deficient mice, p63γ-deficient mice have a short lifespan and are prone to spontanenous tumors. Additionally, loss of p63γ shortens the lifespan of tumor-free mice potentially via increased cellular senescence. Moreover, mice deficient in p63γ are prone to chronic inflammation in multiple organs and liver steatosis potentially via altered lipid metabolism. Single-cell RNA-seq revealed that loss of p63γ increases the expression of SCD1, a rate-limiting enzyme for synthesis of monounsaturated fatty acids, leading to altered lipid homeostasis. Together, our data indicate that TP63γ is the primary isoform of TP63 for tumor suppression but not development by maintaining normal inflammatory response and lipid homeostasis.
Collapse
Affiliation(s)
- Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Wenqiang Sun
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
- Department of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Xiangmudong Kong
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Xin Ming
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Yanhong Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Wensheng Yan
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA
| | - Mingyi Chen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Keith Mitchell
- Department of Physiology and Membrane Biology, University of California Davis School of Medicine, Davis, Davis, CA, USA
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California, Davis, USA.
| |
Collapse
|
11
|
Bartold M, Ivanovski S. Biological processes and factors involved in soft and hard tissue healing. Periodontol 2000 2025; 97:16-42. [PMID: 38243683 PMCID: PMC11808446 DOI: 10.1111/prd.12546] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/21/2024]
Abstract
Wound healing is a complex and iterative process involving myriad cellular and biologic processes that are highly regulated to allow satisfactory repair and regeneration of damaged tissues. This review is intended to be an introductory chapter in a volume focusing on the use of platelet concentrates for tissue regeneration. In order to fully appreciate the clinical utility of these preparations, a sound understanding of the processes and factors involved in soft and hard tissue healing. This encompasses an appreciation of the cellular and biological mediators of both soft and hard tissues in general as well as specific consideration of the periodontal tissues. In light of good advances in this basic knowledge, there have been improvements in clinical strategies and therapeutic management of wound repair and regeneration. The use of platelet concentrates for tissue regeneration offers one such strategy and is based on the principles of cellular and biologic principles of wound repair discussed in this review.
Collapse
Affiliation(s)
- Mark Bartold
- University of QueenslandBrisbaneQueenslandAustralia
| | | |
Collapse
|
12
|
He W, Yan L, Hu D, Hao J, Liou Y, Luo G. Neutrophil heterogeneity and plasticity: unveiling the multifaceted roles in health and disease. MedComm (Beijing) 2025; 6:e70063. [PMID: 39845896 PMCID: PMC11751288 DOI: 10.1002/mco2.70063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/24/2025] Open
Abstract
Neutrophils, the most abundant circulating leukocytes, have long been recognized as key players in innate immunity and inflammation. However, recent discoveries unveil their remarkable heterogeneity and plasticity, challenging the traditional view of neutrophils as a homogeneous population with a limited functional repertoire. Advances in single-cell technologies and functional assays have revealed distinct neutrophil subsets with diverse phenotypes and functions and their ability to adapt to microenvironmental cues. This review provides a comprehensive overview of the multidimensional landscape of neutrophil heterogeneity, discussing the various axes along which diversity manifests, including maturation state, density, surface marker expression, and functional polarization. We highlight the molecular mechanisms underpinning neutrophil plasticity, focusing on the complex interplay of signaling pathways, transcriptional regulators, and epigenetic modifications that shape neutrophil responses. Furthermore, we explore the implications of neutrophil heterogeneity and plasticity in physiological processes and pathological conditions, including host defense, inflammation, tissue repair, and cancer. By integrating insights from cutting-edge research, this review aims to provide a framework for understanding the multifaceted roles of neutrophils and their potential as therapeutic targets in a wide range of diseases.
Collapse
Affiliation(s)
- Weifeng He
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Lingfeng Yan
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| | - Dongxue Hu
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
| | - Jianlei Hao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and TreatmentZhuhai Institute of Translational MedicineZhuhai People's Hospital (Zhuhai Clinical Medical College of Jinan University)Jinan UniversityZhuhaiGuangdongChina
- The Biomedical Translational Research InstituteFaculty of Medical ScienceJinan UniversityGuangzhouGuangdongChina
| | - Yih‐Cherng Liou
- Department of Biological SciencesFaculty of ScienceNational University of SingaporeSingaporeSingapore
- National University of Singapore (NUS) Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeSingapore
| | - Gaoxing Luo
- Institute of Burn ResearchState Key Laboratory of Trauma and Chemical Poisoningthe First Affiliated Hospital of Army Medical University (the Third Military Medical University)ChongqingChina
- Chongqing Key Laboratory for Wound Repair and Tissue RegenerationChongqingChina
| |
Collapse
|
13
|
Koudelka A, Buchan GJ, Cechova V, O'Brien JP, Stevenson ER, Uvalle CE, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. J Lipid Res 2025; 66:100705. [PMID: 39566850 PMCID: PMC11729656 DOI: 10.1016/j.jlr.2024.100705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 11/12/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024] Open
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily lipoxin A4 (LXA4), there are expanding concerns about the reported biological formation, detection, and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. The generation and signaling actions of LXA4 and its primary 15-oxo metabolite were assessed in control, lipopolysaccharide-activated, and arachidonic acid-supplemented RAW264.7 and bone marrow-derived macrophages. Despite the expression of catalytically active enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable in all conditions. Moreover, synthetic LXA4 and the membrane-permeable 15-oxo-LXA4 methyl ester, which rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids and can modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2-regulated expression of anti-inflammatory and repair genes and inhibited NF-κB-regulated pro-inflammatory mediator expression. Synthetic LXA4 showed no impact on these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions of synthetic LXA4. Rather, if present in sufficient concentrations, LXA4 and other mono- and poly-hydroxylated unsaturated fatty acids synthesized by macrophages would be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gregory J Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - James P O'Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Emily R Stevenson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Division of Pulmonary and Critical Care Sleep Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Crystal E Uvalle
- Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven R Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Bruce A Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
14
|
Chaparro V, Leroux LP, Lebourg A, Chagneau S, Graber TE, Alain T, Jaramillo M. Leukemia inhibitory factor drives transcriptional programs that promote lipid accumulation and M2 polarization in macrophages. J Leukoc Biol 2024; 117:qiae178. [PMID: 39178293 DOI: 10.1093/jleuko/qiae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024] Open
Abstract
Leukemia inhibitory factor, a member of the interleukin-6 cytokine family, plays a central role in homeostasis and disease. Interestingly, some of the pleiotropic effects of leukemia inhibitory factor have been attributed to the modulation of macrophage functions although the molecular underpinnings have not been explored at a genome-wide scale. Herein, we investigated leukemia inhibitory factor-driven transcriptional changes in murine bone marrow-derived macrophages by RNA sequencing. In silico analyses revealed a selective and time-dependent remodeling of macrophage gene expression programs associated with lipid metabolism and cell activation. Accordingly, a subset of leukemia inhibitory factor-upregulated transcripts related to cholesterol metabolism and lipid internalization was validated by real-time quantitative polymerase chain reaction. This was accompanied by a leukemia inhibitory factor-enhanced capacity for lipid accumulation in macrophages upon incubation with oxidized low-density lipoprotein. Mechanistically, leukemia inhibitory factor triggered the phosphorylation (Y705 and S727) and nuclear translocation of the transcription factor STAT3 in bone marrow-derived macrophages. Consistent with this, ingenuity pathway analysis identified STAT3 as an upstream regulator of a subset of transcripts, including Il4ra, in leukemia inhibitory factor-treated macrophages. Notably, leukemia inhibitory factor priming enhanced bone marrow-derived macrophage responses to interleukin-4-mediated M2 polarization (i.e. increased arginase activity and accumulation of transcripts encoding for M2 markers). Conversely, leukemia inhibitory factor stimulation had no significant effect in bone marrow-derived macrophage responses to M1-polarizing stimuli (interferon-γ and lipopolysaccharide). Thus, our study provides insight into the transcriptional landscape of leukemia inhibitory factor-treated macrophages, shedding light on its role in lipid metabolism and M2 polarization responses. A better understanding of the regulatory mechanisms governing leukemia inhibitory factor-driven changes might help informing novel therapeutic approaches aiming to reprogram macrophage phenotypes in diseased states (e.g. cancer, atherosclerosis, and infection).
Collapse
Affiliation(s)
- Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Aurore Lebourg
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, 401 Smith Rd. Ottawa, ON K1H 8L1, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smith Rd. Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, 75 Laurier Ave E. University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
15
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
16
|
Upadhyay G, Gowda SGB, Mishra SP, Nath LR, James A, Kulkarni A, Srikant Y, Upendram R, Marimuthu M, Hui SP, Jain S, Vasundhara K, Yadav H, Halade GV. Targeted and untargeted lipidomics with integration of liver dynamics and microbiome after dietary reversal of obesogenic diet targeting inflammation-resolution signaling in aging mice. Biochim Biophys Acta Mol Cell Biol Lipids 2024; 1869:159542. [PMID: 39097080 DOI: 10.1016/j.bbalip.2024.159542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Obesity, a global epidemic linked to around 4 million deaths yearly, arises from lifestyle imbalances impacting inflammation-related conditions like non-alcoholic fatty liver disease and gut dysbiosis. But the long-term effects of inflammation caused by lifestyle-related dietary changes remain unexplained. In this study, we used young male C57Bl/6 mice which were fed either an obesogenic diet (OBD) or a control diet (CON) for six months. Later, a group of mice from the OBD group were intervened to the CON diet (OBD-R) for four months, while another OBD group remained on the OBD diet. The OBD induced distinct changes in gut microbial, notably elevating Firmicutes and Actinobacteria, while reducing Bacteroidetes and Tenericutes. OBD-R restored microbial abundance like CON. Analyzing liver, plasma, and fecal samples revealed OBD-induced alterations in various structural and bioactive lipids, which were normalized to CON in the OBD-R, showcasing lipid metabolism flexibility and adaptability to dietary shifts. OBD increased omega 6 fatty acid, Arachidonic Acid (AA) and decreased omega 3-derived lipid mediators in the OBD mimicking non-alcoholic fatty liver disease thus impacting inflammation-resolution pathways. OBD also induced hepatic inflammation via increasing alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels and proinflammatory markers CCR2, TNF-α, and IL-1β in liver. Transitioning from OBD to CON mitigated inflammatory gene expression and restored lipid and cholesterol networks. This study underscores the intricate interplay between lifestyle-driven dietary changes, gut microbiota, lipid metabolism, and liver health. Notably, it suggests that shift from an OBD (omega-6 enriched) to CON partially alleviates signs of chronic inflammation during aging. Understanding these microbial, lipidomic, and hepatic inflammatory dynamics reveals potential therapeutic avenues for metabolic disorders induced by diet, emphasizing the pivotal role of diet in sustaining metabolic health.
Collapse
Affiliation(s)
- Gunjan Upadhyay
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Siddabasave Gowda B Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan; Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Sidharth P Mishra
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Japan
| | - Adewale James
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Alisha Kulkarni
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Yuktee Srikant
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Rohitram Upendram
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - MathanKumar Marimuthu
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Shalini Jain
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | - Kain Vasundhara
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA
| | - Hariom Yadav
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA; Center for Aging and Brain Repair, University of South Florida, Tampa, FL, USA
| | - Ganesh V Halade
- Heart Institute, Division of Cardiovascular Sciences, Department of Internal Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
17
|
Cayer LGJ, Buhrke T, Roberts J, Nunnikhoven A, Sommerkorn K, Reinhold A, Braeuning A, Raju J, Aukema HM, Karakach T. An integrated multi-omics analysis of the effects of the food processing-induced contaminant 2-monochloropropane-1,3-diol (2-MCPD) in rat heart. Arch Toxicol 2024; 98:4033-4045. [PMID: 39316134 PMCID: PMC11496350 DOI: 10.1007/s00204-024-03856-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024]
Abstract
Many foods including edible oils contain 2-monochloropropane-1,3-diol (2-MCPD), a processing-induced chemical contaminant. Cardiotoxic effects have been shown to result from oral 2-MCPD exposure in rodents, but the underlying mechanisms of action remain poorly understood. We undertook a comprehensive multi-omics approach to assess changes at the transcriptomic, proteomic, and oxylipin levels in heart tissues from male F344 rats that were exposed to 0 or 40 mg/kg BW/day of 2-MCPD in the diet for 90 days, in a regulatory compliant rodent bioassay. Heart tissues were collected for RNA sequencing, quantitative PCR analysis, proteomic analysis via two-dimensional gel electrophoresis and mass spectrometry, and targeted lipidomic profiling by high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Transcriptomic and proteomic data analyses revealed upregulation of immune/inflammatory response processes and downregulation of energy metabolism and cardiac structure and functions. Among differentially expressed gene-protein pairs, coronin-1A, a key leukocyte-regulating protein, emerged as markedly up-regulated. Oxylipin profiling highlighted a selective suppression of docosahexaenoic acid-derived metabolites, suggesting a disruption in cardioprotective lipid pathways. These findings suggest that 2-MCPD disrupts homeostasis through inflammatory activation and suppression of metabolic and cardiac function. This research provides insights into 2-MCPD's cardiotoxicity, emphasizing the need for further studies to support hazard characterization.
Collapse
Affiliation(s)
- Lucien G J Cayer
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Thorsten Buhrke
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | | | - Katharina Sommerkorn
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Reinhold
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Jayadev Raju
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Health Canada, Bureau of Chemical Safety, Ottawa, Canada.
| | - Harold M Aukema
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine, St Boniface Hospital Albrechtsen Research Centre, Winnipeg, MB, Canada
| | - Tobias Karakach
- Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Pharmacology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
18
|
Deng Y, Wang F, Wang T, Zhang X, Chen D, Wang Y, Chen C, Pan G. Research progress in the mechanisms and functions of specialized pro-resolving mediators in neurological diseases. Prostaglandins Other Lipid Mediat 2024; 175:106905. [PMID: 39265777 DOI: 10.1016/j.prostaglandins.2024.106905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/30/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
The nervous system interacts with the immune system through a variety of cellular regulators, signaling pathways, and molecular mechanisms. Disruptions in these interactions lead to the development of multiple neurological diseases. Recent studies have identified that specialized pro-resolving mediators (SPMs) play a regulatory role in the neuroimmune system. This study reviews recent research on the function of SPMs in the inflammatory process and their association with the nervous system. The review aims to provide new perspectives for studying the pathogenesis of neurological diseases and identify novel targets for clinical therapy.
Collapse
Affiliation(s)
- Yu Deng
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Fei Wang
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China
| | - Tianle Wang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Xu Zhang
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Du Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China
| | - Yuhan Wang
- Hubei University of Chinese Medicine, Wuhan, Hubei 430065, China
| | - Chaojun Chen
- Guangzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510800, China.
| | - Guangtao Pan
- Yancheng TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Yancheng, Jiangsu 224000, China; Yancheng TCM Hospital, Yancheng, Jiangsu 224000, China.
| |
Collapse
|
19
|
Pires LBC, Salaroli LB, de Podesta OPG, Haraguchi FK, Lopes-Júnior LC. Omega-3 Supplementation and Nutritional Status in Patients with Pancreatic Neoplasms: A Systematic Review. Nutrients 2024; 16:4036. [PMID: 39683430 PMCID: PMC11643750 DOI: 10.3390/nu16234036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/12/2024] [Accepted: 11/12/2024] [Indexed: 12/18/2024] Open
Abstract
OBJECTIVES The purpose of this study was to synthesize and evaluate the evidence regarding the effects of omega-3 supplementation on the nutritional status of pancreatic cancer patients. METHODS A systematic review of clinical trials was conducted, adhering to the PRISMA Statement. MEDLINE/PubMed, EMBASE, CENTRAL Cochrane, Scopus, and Web of Science databases were searched up to 31 December 2022 without restrictions on the publication date or language. Independent reviewers extracted data and assessed the risk of bias. The internal validity and risk of bias in randomized controlled trials (RCT) were assessed using the revised Cochrane risk of bias tool for randomized trials-RoB2, while the risk of bias in non-randomized intervention studies was evaluated using the ROBINS-I tool. RESULTS Eight studies met all the inclusion criteria and were analyzed. Five of them were RCT, with the majority (n = 4) classified as low risk of bias, and the three quasi-experiments were deemed to have a moderate risk of bias. Among the studies investigating the outcome of weight gain/maintenance, six reported statistically significant positive results (p < 0.05). CONCLUSIONS In conclusion, the presented evidence indicates that omega-3 supplementation in pancreatic cancer patients is safe, well-tolerated, and beneficial, as it contributes to the stabilization or increase in body weight, as well as a reduction in inflammatory biomarkers.
Collapse
Affiliation(s)
| | | | | | | | - Luís Carlos Lopes-Júnior
- Graduate Program in Nutrition and Health, Health Sciences Center, Federal University of Espírito Santo (UFES), Vitória 29047-105, ES, Brazil
| |
Collapse
|
20
|
Li W, Xia Y, Yang J, Sanyal AJ, Shah VH, Chalasani NP, Yu Q. Disrupted balance between pro-inflammatory lipid mediators and anti-inflammatory specialized pro-resolving mediators is linked to hyperinflammation in patients with alcoholic hepatitis. Front Immunol 2024; 15:1377236. [PMID: 39640267 PMCID: PMC11617321 DOI: 10.3389/fimmu.2024.1377236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Background Alcoholic hepatitis (AH) is characterized by intense systemic and liver inflammation, posing significant risks of health complications and mortality. While inflammation is a crucial defense mechanism against injury and infection, its timely resolution is essential to prevent tissue damage and restore tissue homeostasis. The resolution of inflammation is primarily governed by specialized pro-resolving mediators (SPMs), lipid metabolites derived from w-6 and w-3 poly-unsaturated fatty acids (PUFAs). Currently, the balance between pro-inflammatory lipid mediators (PLMs) and SPMs in the w-6 and w-3 PUFA metabolic pathways and the impact of alcohol abstinence on profiles of PLMs and SPMs in AH patients are not well studied. Methods In this study, we used LC-MS/MS and ELISA to quantify levels of lipid mediators (LMs) and their precursors in the plasma samples from 58 AH patients, 29 heavy drinkers without overt liver diseases (HDCs), and 35 healthy controls (HCs). Subsequently, we assessed correlations of altered LMs with clinical parameters and inflammatory mediators. Furthermore, we conducted a longitudinal study to analyze the effects of alcohol abstinence on LMs over 6- and 12-month follow-ups. Results AH patients exhibited significantly higher plasma levels of w-6 PLMs (PGD2 and LTB4) and SPM RvE1 compared to HDCs or HCs. Conversely, the SPM LXA4 was significantly downregulated in AH patients. Some of these altered LMs were found to correlate with AH disease severity and various inflammatory cytokines. Particularly, the LTB4/LXA4 ratio was substantially elevated in AH patients relative to HDCs and HCs. This altered ratio displayed a positive correlation with the MELD score. Importantly, the majority of dysregulated LMs, particularly PLMs, were normalized following alcohol abstinence.
Collapse
Affiliation(s)
- Wei Li
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Ying Xia
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jing Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Arun J. Sanyal
- Division of Gastroenterology and Hepatology, Department of Medicine, Virginia Commonwealth University, Richmond, VA, United States
| | - Vijay H. Shah
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Naga P. Chalasani
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qigui Yu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Dong C, Liu J, Quaranta A, Jing X, Nie M, Wheelock CE, Murrell B, Coquet JM, Bowden TM, Engstrand T, Adner M. Polyvinylalcohol-carbazate mitigates acute lung injury caused by hydrochloric acid. Front Pharmacol 2024; 15:1503648. [PMID: 39650159 PMCID: PMC11622038 DOI: 10.3389/fphar.2024.1503648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 11/06/2024] [Indexed: 12/11/2024] Open
Abstract
Background Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are important causes of morbidity and mortality in critically ill patients. Gastric contents aspiration is one of the most common causes of ALI/ARDS. To date, there are still no specific and effective pharmacological treatments for ALI/ARDS. Polyvinylalcohol-carbazate (PVAC), a polymer that can bind endogenous aldehydes, neutralize oxidative stress and inhibit inflammatory factors, may be a potential treatment for ALI/ARDS. Methods A hydrochloric acid (HCl) induced mouse model was employed to assess the effect of PVAC. The changes of lung mechanics, pulmonary edema, histology and immune cells, cytokines, and lipid mediators in bronchioalveolar lavage fluid (BALF) were investigated in HCl-challenged mice. Results In the HCl model, PVAC administration alleviated airway hyperresponsiveness and improved pulmonary edema and damage. In addition, it decreased the recruitment of neutrophils to the lung, and inhibited the increase of IL-6, TNF-α and leukotriene B4. Conclusion These data indicates that PVAC is a potential candidate for the treatment of ALI/ARDS induced by aspiration of gastric acid or for the control of "asthma-like" symptoms in patients with gastroesophageal reflux.
Collapse
Affiliation(s)
- Caijuan Dong
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiang Su, China
| | - Jielu Liu
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Alessandro Quaranta
- Unit of Integrative Metabolomics, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Mu Nie
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| | - Craig E. Wheelock
- Unit of Integrative Metabolomics, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
- Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden
| | - Benjamin Murrell
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jonathan M. Coquet
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tim Melander Bowden
- Department of Chemistry-Ångström Laboratory, Uppsala University, Uppsala, Sweden
| | - Thomas Engstrand
- Department of Molecular Medicine and Surgery, plastic surgery section, Karolinska University Hospital, Stockholm, Sweden
| | - Mikael Adner
- Experimental Asthma and Allergy Research Unit, Institute of Environmental Medicine (IMM), Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
22
|
Ouyang X, Liu Z. Regulatory T cells and macrophages in atherosclerosis: from mechanisms to clinical significance. Front Immunol 2024; 15:1435021. [PMID: 39582868 PMCID: PMC11581946 DOI: 10.3389/fimmu.2024.1435021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/16/2024] [Indexed: 11/26/2024] Open
Abstract
Atherosclerosis is a complex pathological process, which causes diseases that threaten the health of an increasing number of people. Studies have found that the original view of lipid accumulation is not comprehensive because the use of lipid-lowering drugs alone cannot effectively treat atherosclerosis. As the study of the pathogenesis of atherosclerosis develops in-depth, the impact of immune-inflammatory response on atherosclerosis has garnered a great deal of attention. Some new advances have been made in the role of regulatory T cells (Tregs) and macrophages with unique immunomodulatory functions in atherosclerosis. Herein, the role of Tregs, macrophages, the mechanisms of Tregs-regulated macrophages, and the effects of potential factors on Tregs and macrophages in atherosclerosis are overviewed. Targeting Tregs and macrophages may provide new research strategies for the treatment of atherosclerosis in the clinic.
Collapse
Affiliation(s)
- Xin Ouyang
- Clinical Medical College, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Zhongyong Liu
- Department of Cardiology, Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
23
|
Maliha A, Tahsin M, Fabia TZ, Rahman SM, Rahman MM. Pro-resolving metabolites: Future of the fish oil supplements. J Funct Foods 2024; 121:106439. [DOI: 10.1016/j.jff.2024.106439] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
|
24
|
Roe K. Are secondary bacterial pneumonia mortalities increased because of insufficient pro-resolving mediators? J Infect Chemother 2024; 30:959-970. [PMID: 38977072 DOI: 10.1016/j.jiac.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/10/2024]
Abstract
Respiratory viral infections, including respiratory syncytial virus (RSV), parainfluenza viruses and type A and B influenza viruses, can have severe outcomes. Bacterial infections frequently follow viral infections, and influenza or other viral epidemics periodically have higher mortalities from secondary bacterial pneumonias. Most secondary bacterial infections can cause lung immunosuppression by fatty acid mediators which activate cellular receptors to manipulate neutrophils, macrophages, natural killer cells, dendritic cells and other lung immune cells. Bacterial infections induce synthesis of inflammatory mediators including prostaglandins and leukotrienes, then eventually also special pro-resolving mediators, including lipoxins, resolvins, protectins and maresins, which normally resolve inflammation and immunosuppression. Concurrent viral and secondary bacterial infections are more dangerous, because viral infections can cause inflammation and immunosuppression before the secondary bacterial infections worsen inflammation and immunosuppression. Plausibly, the higher mortalities of secondary bacterial pneumonias are caused by the overwhelming inflammation and immunosuppression, which the special pro-resolving mediators might not resolve.
Collapse
Affiliation(s)
- Kevin Roe
- Retired United States Patent and Trademark Office, San Jose, CA, USA.
| |
Collapse
|
25
|
Ji J, Zhong H, Li Y, Billiar TR, Wilson MA, Scott MJ, Fan J. IRG1/ACOD1 promotes neutrophil reverse migration and alleviates local inflammation. J Leukoc Biol 2024; 116:854-863. [PMID: 38713770 PMCID: PMC11444257 DOI: 10.1093/jleuko/qiae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/09/2024] Open
Abstract
Polymorphonuclear neutrophil (PMN) infiltration at inflammatory site plays a critical role in inflammation. PMN reverse migration (rM) describes the phenomenon that PMNs migrate away from inflammatory site back into the vasculature, and its role within inflammatory scenarios remains to be fully determined. This study aimed to investigate the mechanism underlying PMN rM and its role in inflammation. First, we demonstrated PMN rM in a mouse model of lipopolysaccharide-induced acute lung inflammation. By single-cell RNA sequencing, we demonstrated that reverse migrated (rM-ed) PMNs in blood expressed a high level of immune-responsive gene 1 (Irg1), the encoding gene of cis-aconitate decarboxylase (ACOD1). Using a mouse air pouch model, which enabled us to directly track rM-ed PMNs in vivo, we detected higher expression of ACOD1 in the rM-ed PMNs in circulation. Furthermore, mice with Irg1 knockout exhibited decreased PMN rM and higher levels of inflammatory cytokine in inflammatory site. Mechanistically, we found that itaconate, the product of ACOD1 catalyzation, decreased PMN ICAM-1 expression at the inflammation site. Furthermore, inflammatory site showed a high level of shed Cd11a, the ligand of ICAM-1. Neutralization of either ICAM-1 or Cd11a led to increased PMN rM. These findings suggest that the binding of ICAM-1 and shed Cd11a serves as a retaining force to hold PMNs in the site of inflammation, and ACOD1-decreased PMN surface expression of ICAM-1 weakens the retaining force, promoting PMNs to leave the inflammatory site. These results indicate a regulatory role of IRG1 in PMN rM and subsequent contributions to inflammation resolution.
Collapse
Affiliation(s)
- Jingjing Ji
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
| | - Hanhui Zhong
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
| | - Yuehua Li
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
- McGowan Institute for Regenerative Medicine, University of
Pittsburgh, 450 Technology Drive, Pittsburgh, PA
15219, United States
| | - Mark A Wilson
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
- Research and Development, VA Pittsburgh Healthcare System,
University Drive C, Pittsburgh, PA 15240, United States
| | - Melanie J Scott
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
| | - Jie Fan
- Department of Surgery, University of Pittsburgh School of
Medicine, 200 Lothrop Street, Pittsburgh 15213,
United States
- McGowan Institute for Regenerative Medicine, University of
Pittsburgh, 450 Technology Drive, Pittsburgh, PA
15219, United States
- Research and Development, VA Pittsburgh Healthcare System,
University Drive C, Pittsburgh, PA 15240, United States
- Department of Immunology, University of Pittsburgh School of
Medicine, 5051 Centre Avenue, Pittsburgh 15213,
United States
| |
Collapse
|
26
|
Rodriguez Moore G, Melo-Escobar I, Stegner D, Bracko O. One immune cell to bind them all: platelet contribution to neurodegenerative disease. Mol Neurodegener 2024; 19:65. [PMID: 39334369 PMCID: PMC11438031 DOI: 10.1186/s13024-024-00754-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Alzheimer's disease (AD) and related dementias (ADRD) collectively affect a significant portion of the aging population worldwide. The pathological progression of AD involves not only the classical hallmarks of amyloid beta (Aβ) plaque buildup and neurofibrillary tangle development but also the effects of vasculature and chronic inflammatory processes. Recently, platelets have emerged as central players in systemic and neuroinflammation. Studies have shown that patients with altered platelet receptor expression exhibit accelerated cognitive decline independent of traditional risk factors. Additionally, platelets from AD patients exhibit heightened unstimulated activation compared to control groups. Platelet granules contain crucial AD-related proteins like tau and amyloid precursor protein (APP). Dysregulation of platelet exocytosis contributes to disease phenotypes characterized by increased bleeding, stroke, and cognitive decline risk. Recent studies have indicated that these effects are not associated with the quantity of platelets present in circulation. This underscores the hypothesis that disruptions in platelet-mediated inflammation and healing processes may play a crucial role in the development of ADRD. A thorough look at platelets, encompassing their receptors, secreted molecules, and diverse roles in inflammatory interactions with other cells in the circulatory system in AD and ADRD, holds promising prospects for disease management and intervention. This review discusses the pivotal roles of platelets in ADRD.
Collapse
Affiliation(s)
| | - Isabel Melo-Escobar
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA
| | - David Stegner
- Institute for Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Oliver Bracko
- Department of Biology, University of Miami, Coral Gables, FL, 33146, USA.
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
27
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. mBio 2024; 15:e0185624. [PMID: 39120139 PMCID: PMC11389395 DOI: 10.1128/mbio.01856-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant threefold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin, triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant N-formyl-L-methionyl-L-leucyl-phenylalanine (fMLP) did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased the release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier-disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.IMPORTANCEStreptococcus pneumoniae (Sp), a leading cause of pneumonia, can spread from the lung into the bloodstream to cause systemic disease. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that limit pathologic host immune responses to Sp. Excessive polymorphonuclear leukocyte (PMN) infiltration into Sp-infected airways promotes systemic disease. Using stem cell-derived respiratory cultures that reflect bona fide lung epithelium, we identified eicosanoid hepoxilin A3 as a critical pulmonary PMN chemoattractant that is sufficient to drive PMN-mediated epithelial damage by inducing the release of neutrophil elastase. Inhibition of the release or activity of this protease in mice limited epithelial barrier disruption and bacterial dissemination, suggesting a new host-directed treatment for Sp lung infection.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Program in Biotechnology, Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Tian H, Ge K, Wang L, Gao P, Chen A, Wang F, Guo F, Wang F, Zhang Q. Advances in PGD2/PTGDR2 signaling pathway in tumors: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:1055-1067. [PMID: 38704736 PMCID: PMC11378995 DOI: 10.17305/bb.2024.10485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/14/2024] [Accepted: 04/14/2024] [Indexed: 05/07/2024]
Abstract
Studies have shown that the prostaglandin (PG) family acts as an allergic inflammatory mediator in malignant diseases. Furthermore, prostaglandin E2 (PGE2) and its related receptors, as well as the prostaglandin D2 (PGD2)/PGD2 receptor (PTGDR2), play irreplaceable roles in tumorigenesis and anti-tumor therapy. Several experiments have demonstrated that PGD2 signaling through PTGDR2 not only directly inhibits cancer cell survival, proliferation, and migration but also reduces resistance toward conventional chemotherapeutic agents. Recent studies from our and other laboratories have shown that PGD2, its ligands, and related metabolites can significantly alter the tumor microenvironment (TME) by promoting the secretion of chemokines and cytokines, thereby inhibiting tumor progression. Additionally, reduced PGD2 expression has been associated with poor prognosis in patients with gastric, breast, lung, and pancreatic cancers, validating the preclinical findings and their clinical relevance. This review focuses on the current understanding of PGD2/PTGDR2 expression patterns and biological activity in cancer, proposing questions to guide the assessment of PGD2 and its receptors as potential targets for effective cancer therapies.
Collapse
Affiliation(s)
- Hengjin Tian
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Kunpeng Ge
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Lulu Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Peiyao Gao
- Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Bengbu Medical University, Bengbu, China
| | - Amin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Feifan Wang
- Department of Blood Transfusion, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Fangzheng Guo
- Anhui Province Key Laboratory of Immunology in Chronic Diseases, Bengbu Medical University, Bengbu, China
| | - FengChao Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qiang Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| |
Collapse
|
29
|
Bachmann V, Schädel P, Westhoff J, Perić M, Schömberg F, Skaltsounis AL, Höppener S, Pantsar T, Fischer D, Vilotijević I, Werz O. Bromo-substituted indirubins for inhibition of protein kinase-mediated signalling involved in inflammatory mediator release in human monocytes. Bioorg Chem 2024; 149:107470. [PMID: 38838619 DOI: 10.1016/j.bioorg.2024.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/07/2024]
Abstract
Targeting protein kinases that regulate signalling pathways in inflammation is an effective pharmacological approach to alleviate uncontrolled inflammatory diseases. In this context, the natural product indirubin and its 6-bromo-substituted analogue 6-bromoindirubin-3 -glycerol-oxime ether (6BIGOE; 1) were identified as potent inhibitors of glycogen synthase kinase-3β (GSK-3β). These inhibitors suppress the release of pro-inflammatory cytokines and prostaglandins (PG) from human monocytes. However, indirubin derivatives target several protein kinases such as cyclin-dependent kinases (CDKs) which has been a major concern for their application in inflammation therapy. Here, we report on a library of 13 5-bromo-substituted indirubin derivatives that have been designed to improve potency and target selectivity. Side-by-side comparison of reference compound 1 (6BIGOE) with 5-bromo derivatives revealed its isomer 2 (5BIGOE), as the most potent derivative able to supress pro-inflammatory cytokine and PG release in lipopolysaccharide-stimulated human monocytes. Analysis of protein kinase inhibition in intact monocytes, supported by our in silico findings, proposed higher selectivity of 1 for GSK-3β inhibition with lesser potency against CDKs 8 and 9. In contrast, 2 supressed the activity of these CDKs with higher effectiveness than GSK-3β, representing additional targets of indirubins within the inflammatory response. Encapsulation of 1 and 2 into polymer-based nanoparticles (NP) improved their pharmacological potential. In conclusion, the 5- and 6-brominated indirubins 1 and 2 as dual GSK-3β and CDK8/9 inhibitors represent a novel concept for intervention with inflammatory disorders.
Collapse
Affiliation(s)
- Vivien Bachmann
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Patrick Schädel
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany
| | - Jan Westhoff
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany
| | - Milica Perić
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Fritz Schömberg
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany
| | - Alexios-Leandros Skaltsounis
- Department of Pharmacy, Division of Pharmacognosy and Natural Product Chemistry, University of Athens, Panepistimiopolis Zografou, GR-15771 Athens, Greece
| | - Stephanie Höppener
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Tatu Pantsar
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Yliopistonrinne 3, FI-70210 Kuopio, Finland
| | - Dagmar Fischer
- Division of Pharmaceutical Technology and Biopharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstraße 4, 91058 Erlangen, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany; FAU NeW - Research Center for New Bioactive Compounds, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany
| | - Ivan Vilotijević
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Humboldtstraße 10, 07743 Jena, Germany.
| | - Oliver Werz
- Department of Pharmaceutical/ Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Philosophenweg 14, 07743 Jena, Germany; Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany.
| |
Collapse
|
30
|
Teng CY, Kao NJ, Nguyen NTK, Lin CI, Cross TWL, Lin SH. Effects of xylo-oligosaccharide on gut microbiota, brain protein expression, and lipid profile induced by high-fat diet. J Nutr Biochem 2024; 129:109640. [PMID: 38583497 DOI: 10.1016/j.jnutbio.2024.109640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/31/2024] [Accepted: 04/03/2024] [Indexed: 04/09/2024]
Abstract
Midlife overweight and obesity are risk factors of cognitive decline and Alzheimer' s disease (AD) in late life. In addition to increasing risk of obesity and cognitive dysfunction, diets rich in fats also contributes to an imbalance of gut microbiota. Xylo-oligosaccharides (XOS) are a kind of prebiotic with several biological advantages, and can selectively promote the growth of beneficial microorganisms in the gut. To explore whether XOS can alleviate cognitive decline induced by high-fat diet (HFD) through improving gut microbiota composition, mice were fed with normal control or 60% HFD for 9 weeks to induce obesity. After that, mice were supplemented with XOS (30 g or 60 g/kg-diet) or without, respectively, for 12 weeks. The results showed that XOS inhibited weight gain, decreased epidydimal fat weight, and improved fasting blood sugar and blood lipids in mice. Additionally, XOS elevated spatial learning and memory function, decreased amyloid plaques accumulation, increased brain-derived neurotrophic factor levels, and improved neuroinflammation status in hippocampus. Changes in glycerolipids metabolism-associated lipid compounds caused by HFD in hippocampus were reversed after XOS intervention. On the other hand, after XOS intervention, increase in immune-mediated bacteria, Faecalibacterium was observed. In conclusion, XOS improved gut dysbiosis and ameliorated spatial learning and memory dysfunction caused by HFD by decreasing cognitive decline-associated biomarkers and changing lipid composition in hippocampus.
Collapse
Affiliation(s)
- Chu-Yun Teng
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan
| | - Ning-Jo Kao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan, Taiwan
| | - Ngan Thi Kim Nguyen
- Program of Nutrition Science, National Taiwan Normal University, Taipei, Taiwan
| | - Ching-I Lin
- Department of Nutrition and Health Sciences, Chang-Gung University of Science and Technology, Taoyuan, Taiwan
| | - Tzu-Wen L Cross
- Departmen of Nutrition Science, Purdue University, West Lafayette, Indiana, USA
| | - Shyh-Hsiang Lin
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei, Taiwan; School of Food Safety, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
31
|
Xu S, Tan S, Romanos P, Reedy JL, Zhang Y, Mansour MK, Vyas JM, Mecsas J, Mou H, Leong JM. Blocking HXA 3-mediated neutrophil elastase release during S. pneumoniae lung infection limits pulmonary epithelial barrier disruption and bacteremia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600637. [PMID: 38979170 PMCID: PMC11230237 DOI: 10.1101/2024.06.25.600637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Streptococcus pneumoniae (Sp), a leading cause of community-acquired pneumonia, can spread from the lung into the bloodstream to cause septicemia and meningitis, with a concomitant three-fold increase in mortality. Limitations in vaccine efficacy and a rise in antimicrobial resistance have spurred searches for host-directed therapies that target pathogenic immune processes. Polymorphonuclear leukocytes (PMNs) are essential for infection control but can also promote tissue damage and pathogen spread. The major Sp virulence factor, pneumolysin (PLY), triggers acute inflammation by stimulating the 12-lipoxygenase (12-LOX) eicosanoid synthesis pathway in epithelial cells. This pathway is required for systemic spread in a mouse pneumonia model and produces a number of bioactive lipids, including hepoxilin A3 (HXA3), a hydroxy epoxide PMN chemoattractant that has been hypothesized to facilitate breach of mucosal barriers. To understand how 12-LOX-dependent inflammation promotes dissemination during Sp lung infection and dissemination, we utilized bronchial stem cell-derived air-liquid interface (ALI) cultures that lack this enzyme to show that HXA3 methyl ester (HXA3-ME) is sufficient to promote basolateral-to-apical PMN transmigration, monolayer disruption, and concomitant Sp barrier breach. In contrast, PMN transmigration in response to the non-eicosanoid chemoattractant fMLP did not lead to epithelial disruption or bacterial translocation. Correspondingly, HXA3-ME but not fMLP increased release of neutrophil elastase (NE) from Sp-infected PMNs. Pharmacologic blockade of NE secretion or activity diminished epithelial barrier disruption and bacteremia after pulmonary challenge of mice. Thus, HXA3 promotes barrier disrupting PMN transmigration and NE release, pathological events that can be targeted to curtail systemic disease following pneumococcal pneumonia.
Collapse
Affiliation(s)
- Shuying Xu
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Patricia Romanos
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Francisco de Vitoria University, Madrid, Spain
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Yihan Zhang
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - Michael K. Mansour
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Hongmei Mou
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA
| | - John M. Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
- Stuart B Levy Center for the Integrated Management of Antimicrobial Resistance, Tufts University, Boston, MA
| |
Collapse
|
32
|
Cervantes A, Hughes FM, Jin H, Purves JT. Specialized pro-resolution mediators in the bladder: effects of resolvin E1 on diabetic bladder dysfunction in the type 1 diabetic male Akita mouse model. BMC Urol 2024; 24:130. [PMID: 38907230 PMCID: PMC11191353 DOI: 10.1186/s12894-024-01519-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND One of the most common, but least studied, diabetic complication is diabetic bladder dysfunction. Current therapies include glucose control and symptom-based interventions. However, efficacy of these therapies is mixed and often have undesirable side effects. Diabetes is now known to be a chronic inflammatory disease. Specialized pro-resolving mediators are a class of compounds that promote the resolution of inflammation and have been shown to be effective in treating chronic inflammatory conditions. In this study we examine the ability of resolvin E1 to improve signs of diabetic bladder dysfunction. METHODS Male Akita mice (Type 1 diabetic) develop hyperglycemia at 4 weeks and signs of bladder underactivity by 15 weeks. Starting at 15 weeks, mice were given one or two weeks of daily resolvin E1 and compared to age-matched wild type and untreated Akita mice. RESULTS Resolvin E1 did not affect diabetic blood glucose after one week, although there was a slight decrease after two weeks. Diabetes decreased body weight and increased bladder weights and this was not affected by resolvin E1. Evan's blue dye extravasation (an indirect index of inflammation) was dramatically suppressed after one week of resolvin E1 treatment, but, surprisingly, had returned to diabetic levels after two weeks of treatment. Using cystometry, untreated Akita mice showed signs of underactivity (increased void volumes and intercontraction intervals). One week of resolvin E1treatment restored these cystometric findings back to control levels. After two weeks of treatment, cystometric changes were changed from controls but still significantly different from untreated levels, indicating a durable treatment effect even in the presence of increased inflammation at 2 weeks. CONCLUSIONS Resolvin E1 has a beneficial effect on diabetic bladder dysfunction in the type 1 diabetic male Akita mouse model.
Collapse
Affiliation(s)
- Anissa Cervantes
- Department of Urology, Duke University Medical Center, P.O. Box 3831, Durham, NC, 27710, USA
| | - Francis M Hughes
- Department of Urology, Duke University Medical Center, P.O. Box 3831, Durham, NC, 27710, USA.
| | - Huixia Jin
- Department of Urology, Duke University Medical Center, P.O. Box 3831, Durham, NC, 27710, USA
| | - J Todd Purves
- Department of Urology, Duke University Medical Center, P.O. Box 3831, Durham, NC, 27710, USA
| |
Collapse
|
33
|
Mosquera-Sulbaran JA, Pedreañez A, Vargas R, Hernandez-Fonseca JP. Apoptosis in post-streptococcal glomerulonephritis and mechanisms for failed of inflammation resolution. Pediatr Nephrol 2024; 39:1709-1724. [PMID: 37775580 DOI: 10.1007/s00467-023-06162-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Post-streptococcal glomerulonephritis is a condition resulting from infection by group A beta-hemolytic streptococcus. The main mechanism involves the formation of immune complexes formed in the circulation or in situ on the glomerular basement membrane, which activates complement and causes various inflammatory processes. Cellular mechanisms have been reported in the induction of kidney damage represented by the infiltration of innate cells (neutrophils and monocyte/macrophages) and adaptive cells (CD4 + lymphocytes and CD8 + lymphocytes) of the immune system. These cells induce kidney damage through various mechanisms. It has been reported that nephritogenic antigens are capable of inducing inflammatory processes early, even before the formation of immune complexes. Usually, this disease progresses towards clinical and renal normalization; however, in a smaller number of patients, it evolves into chronicity and persistent kidney damage. Hypotheses have been proposed regarding the mechanisms underlying this progression to chronicity including failure to induce apoptosis and failure to phagocytose apoptotic cells, allowing these cells to undergo membrane permeabilization and release pro-inflammatory molecules into the environment, thereby perpetuating renal inflammation. Other mechanisms involved include persistent infection, genetic background of the host's complement system, tubulointerstitial changes, and pre-existing kidney damage due to old age and comorbidities.
Collapse
Affiliation(s)
- Jesús A Mosquera-Sulbaran
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo, 4001-A, Zulia, Venezuela.
| | - Adriana Pedreañez
- Escuela de Bioanálisis, Facultad de Medicina, Universidad del Zulia, Maracaibo, Venezuela
| | - Renata Vargas
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo, 4001-A, Zulia, Venezuela
| | - Juan Pablo Hernandez-Fonseca
- Instituto de Investigaciones Clínicas "Dr. Américo Negrette," Facultad de Medicina, Universidad del Zulia, Apartado Postal: 23, Maracaibo, 4001-A, Zulia, Venezuela
- Servicio de Microscopia Electrónica del Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| |
Collapse
|
34
|
Amaro-Prellezo E, Gómez-Ferrer M, Hakobyan L, Ontoria-Oviedo I, Peiró-Molina E, Tarazona S, Salguero P, Ruiz-Saurí A, Selva-Roldán M, Vives-Sanchez R, Sepúlveda P. Extracellular vesicles from dental pulp mesenchymal stem cells modulate macrophage phenotype during acute and chronic cardiac inflammation in athymic nude rats with myocardial infarction. Inflamm Regen 2024; 44:25. [PMID: 38807194 PMCID: PMC11134765 DOI: 10.1186/s41232-024-00340-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 05/23/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND/AIMS Extracellular vesicles (EVs) derived from dental pulp mesenchymal stem cells (DP-MSCs) are a promising therapeutic option for the treatment of myocardial ischemia. The aim of this study is to determine whether MSC-EVs could promote a pro-resolving environment in the heart by modulating macrophage populations. METHODS EVs derived from three independent biopsies of DP-MSCs (MSC-EVs) were isolated by tangential flow-filtration and size exclusion chromatography and were characterized by omics analyses. Biological processes associated with these molecules were analyzed using String and GeneCodis platforms. The immunomodulatory capacity of MSC-EVs to polarize macrophages towards a pro-resolving or M2-like phenotype was assessed by evaluating surface markers, cytokine production, and efferocytosis. The therapeutic potential of MSC-EVs was evaluated in an acute myocardial infarction (AMI) model in nude rats. Infarct size and the distribution of macrophage populations in the infarct area were evaluated 7 and 21 days after intramyocardial injection of MSC-EVs. RESULTS Lipidomic, proteomic, and miRNA-seq analysis of MSC-EVs revealed their association with biological processes involved in tissue regeneration and regulation of the immune system, among others. MSC-EVs promoted the differentiation of pro-inflammatory macrophages towards a pro-resolving phenotype, as evidenced by increased expression of M2 markers and decreased secretion of pro-inflammatory cytokines. Administration of MSC-EVs in rats with AMI limited the extent of the infarcted area at 7 and 21 days post-infarction. MSC-EV treatment also reduced the number of pro-inflammatory macrophages within the infarct area, promoting the resolution of inflammation. CONCLUSION EVs derived from DP-MSCs exhibited similar characteristics at the omics level irrespective of the biopsy from which they were derived. All MSC-EVs exerted effective pro-resolving responses in a rat model of AMI, indicating their potential as therapeutic agents for the treatment of inflammation associated with AMI.
Collapse
Affiliation(s)
- Elena Amaro-Prellezo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Marta Gómez-Ferrer
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Lusine Hakobyan
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Valencia, 46100, Spain
| | - Imelda Ontoria-Oviedo
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Esteban Peiró-Molina
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Pedro Salguero
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, Valencia, 46022, Spain
| | - Amparo Ruiz-Saurí
- Department of Pathology, University of Valencia, Valencia, 46010, Spain
| | - Marta Selva-Roldán
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Rosa Vives-Sanchez
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain
| | - Pilar Sepúlveda
- Regenerative Medicine and Heart Transplantation Unit, Health Research Institute Hospital La Fe, Avda. Fernando Abril Martorell 106, Valencia, 46026, Spain.
- Hospital Universitari I Politècnic La Fe, Valencia, 46026, Spain.
- Department of Pathology, University of Valencia, Valencia, 46010, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Cardiovasculares (CIBERCV), III Institute of Health, Madrid, Carlos, Spain.
| |
Collapse
|
35
|
Tutor A, O'Keefe EL, Lavie CJ, Elagizi A, Milani R, O'Keefe J. Omega-3 fatty acids in primary and secondary prevention of cardiovascular diseases. Prog Cardiovasc Dis 2024; 84:19-26. [PMID: 38547956 PMCID: PMC11423875 DOI: 10.1016/j.pcad.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Even with substantial progress in primary and secondary prevention, cardiovascular disease (CVD) persists as a major cause of mortality and morbidity globally. Omega-3 polyunsaturated fatty acids (Ω-3 PUFAs) have gained considerable attention for their ability to improve CV health and prognosis. Metanalyses of randomized controlled trials have demonstrated Ω-3 PUFAs' positive impact on CVD outcomes for both primary and secondary prevention endpoints. Marine Ω-3 PUFAs also improve CVD risk factors including blood pressure, lipids, and inflammation; however, many physicians do not recommend Ω-3 PUFAs, largely due to inconsistent results in randomized trials. In this comprehensive review article, we evaluate both historic and current data concerning primary and secondary prevention of CVD with use of Ω-3 PUFAs, delve into the potential causes for the varied results, and examine the most current recommendations on the usage of Ω-3 PUFAs.
Collapse
Affiliation(s)
- Austin Tutor
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA
| | - Evan L O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA; University of Missouri-Kansas City, Kansas City, MO, USA
| | - Carl J Lavie
- Department of Cardiovascular Diseases, John Ochsner Heart and Vascular Institute, Ochsner Clinical School-the University of Queensland School of Medicine, New Orleans, LA, USA.
| | - Andrew Elagizi
- Department of Cardiovascular Diseases, Southlake Regional Health Centre, 596 Davis Drive, Newmarket, ON L3Y 2P9, Canada
| | - Richard Milani
- Center for Clinical Innovation, Sutter Health, Pier One, Bay 1A, San Francisco, CA 94111, USA
| | - James O'Keefe
- Saint Luke's Mid America Heart Institute and University of Missouri-Kansas City, Kansas City, MO, USA; University of Missouri-Kansas City, Kansas City, MO, USA
| |
Collapse
|
36
|
Pan L, Wu J, Wang N. Association of Gene Polymorphisms with Normal Tension Glaucoma: A Systematic Review and Meta-Analysis. Genes (Basel) 2024; 15:491. [PMID: 38674425 PMCID: PMC11050218 DOI: 10.3390/genes15040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Normal tension glaucoma (NTG) is becoming a more and more serious problem, especially in Asia. But the pathological mechanisms are still not illustrated clearly. We carried out this research to uncover the gene polymorphisms with NTG. METHODS We searched in Web of Science, Embase, Pubmed and Cochrane databases for qualified case-control studies investigating the association between single nucleotide polymorphisms (SNPs) and NTG risk. Odds ratios (ORs) and 95% confidence intervals (CIs) for each SNP were estimated by fixed- or random-effect models. Sensitivity analysis was also performed to strengthen the reliability of the results. RESULTS Fifty-six studies involving 33 candidate SNPs in 14 genetic loci were verified to be eligible for our meta-analysis. Significant associations were found between 16 SNPs (rs166850 of OPA1; rs10451941 of OPA1; rs735860 of ELOVL5; rs678350 of HK2; c.603T>A/Met98Lys of OPTN; c.412G>A/Thr34Thr of OPTN; rs10759930 of TLR4; rs1927914 of TLR4; rs1927911 of TLR4; c.*70C>G of EDNRA; rs1042522/-Arg72Pro of P53; rs10483727 of SIX1-SIX6; rs33912345 of SIX1-SIX6; rs2033008 of NCK2; rs3213787 of SRBD1 and c.231G>A of EDNRA) with increased or decreased risk of NTG. CONCLUSIONS In this study, we confirmed 16 genetic polymorphisms in 10 genes (OPA1, ELOVL5, HK2, OPTN, TLR4, EDNRA, P53, NCK2, SRBD1 and SIX1-SIX6) were associated with NTG.
Collapse
Affiliation(s)
- Lijie Pan
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| | - Jian Wu
- School of Life Sciences, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Henan Academy of Innovations in Medical Science, No. 2 Biotechnology Street, Hangkonggang District, Zhengzhou 450000, China
| | - Ningli Wang
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Key Laboratory of Ophthalmology and Visual Sciences, No. 1 Dong Jiao Min Xiang Street, Dongcheng District, Beijing 100730, China;
| |
Collapse
|
37
|
Karnam S, Maurya S, Ng E, Choudhary A, Thobani A, Flanagan JG, Gronert K. Dysregulation of neuroprotective lipoxin pathway in astrocytes in response to cytokines and ocular hypertension. Acta Neuropathol Commun 2024; 12:58. [PMID: 38610040 PMCID: PMC11010376 DOI: 10.1186/s40478-024-01767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma leads to vision loss due to retinal ganglion cell death. Astrocyte reactivity contributes to neurodegeneration. Our recent study found that lipoxin B4 (LXB4), produced by retinal astrocytes, has direct neuroprotective actions on retinal ganglion cells. In this study, we aimed to investigate how the autacoid LXB4 influences astrocyte reactivity in the retina under inflammatory cytokine-induced activation and during ocular hypertension. The protective activity of LXB4 was investigated in vivo using the mouse silicone-oil model of chronic ocular hypertension. By employing a range of analytical techniques, including bulk RNA-seq, RNAscope in-situ hybridization, qPCR, and lipidomic analyses, we discovered the formation of lipoxins and expression of the lipoxin pathway in rodents (including the retina and optic nerve), primates (optic nerve), and human brain astrocytes, indicating the presence of this neuroprotective pathway across various species. Findings in the mouse retina identified significant dysregulation of the lipoxin pathway in response to chronic ocular hypertension, leading to an increase in 5-lipoxygenase (5-LOX) activity and a decrease in 15-LOX activity. This dysregulation was coincident with a marked upregulation of astrocyte reactivity. Reactive human brain astrocytes also showed a significant increase in 5-LOX. Treatment with LXB4 amplified the lipoxin biosynthetic pathway by restoring and amplifying the generation of another member of the lipoxin family, LXA4, and mitigated astrocyte reactivity in mouse retinas and human brain astrocytes. In conclusion, the lipoxin pathway is functionally expressed in rodents, primates, and human astrocytes, and is a resident neuroprotective pathway that is downregulated in reactive astrocytes. Novel cellular targets for LXB4's neuroprotective action are inhibition of astrocyte reactivity and restoration of lipoxin generation. Amplifying the lipoxin pathway is a potential target to disrupt or prevent astrocyte reactivity in neurodegenerative diseases, including retinal ganglion cell death in glaucoma.
Collapse
Affiliation(s)
- Shruthi Karnam
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Shubham Maurya
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Elainna Ng
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Amodini Choudhary
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - Arzin Thobani
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA
| | - John G Flanagan
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA.
| | - Karsten Gronert
- Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA.
- Infectious Disease and Immunity Program, Herbert Wertheim School of Optometry and Vision Science, University of California Berkeley, Berkeley, CA, USA.
| |
Collapse
|
38
|
Ohno R, Mainka M, Kirchhoff R, Hartung NM, Schebb NH. Sterol Derivatives Specifically Increase Anti-Inflammatory Oxylipin Formation in M2-like Macrophages by LXR-Mediated Induction of 15-LOX. Molecules 2024; 29:1745. [PMID: 38675565 PMCID: PMC11052137 DOI: 10.3390/molecules29081745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
The understanding of the role of LXR in the regulation of macrophages during inflammation is emerging. Here, we show that LXR agonist T09 specifically increases 15-LOX abundance in primary human M2 macrophages. In time- and dose-dependent incubations with T09, an increase of 3-fold for ALOX15 and up to 15-fold for 15-LOX-derived oxylipins was observed. In addition, LXR activation has no or moderate effects on the abundance of macrophage marker proteins such as TLR2, TLR4, PPARγ, and IL-1RII, as well as surface markers (CD14, CD86, and CD163). Stimulation of M2-like macrophages with FXR and RXR agonists leads to moderate ALOX15 induction, probably due to side activity on LXR. Finally, desmosterol, 24(S),25-Ep cholesterol and 22(R)-OH cholesterol were identified as potent endogenous LXR ligands leading to an ALOX15 induction. LXR-mediated ALOX15 regulation is a new link between the two lipid mediator classes sterols, and oxylipins, possibly being an important tool in inflammatory regulation through anti-inflammatory oxylipins.
Collapse
Affiliation(s)
| | | | | | | | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany
| |
Collapse
|
39
|
Jiang W, Yang L, Dang Y, Jiang X, Wu L, Tong X, Guo J, Bao Y. Metabolomic profiling of deep vein thrombosis. Phlebology 2024; 39:154-168. [PMID: 37992130 PMCID: PMC10938490 DOI: 10.1177/02683555231215199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
Deep vein thrombosis (DVT) of the lower extremities is one of the most common peripheral vascular diseases, with significant complications and sequelae. Metabolomics aims to identify small molecules in biological samples. It can serve as a promising method for screening compounds that can be used for early disease detection, diagnosis, treatment response prediction, and prognosis. In addition, high-throughput metabolomics screening can yield significant insights into the pathophysiological pathways of DVT. Currently, the metabolomic profiles of DVT have yielded inconsistent expression patterns. This article examines the recent advancements in metabolomic studies of DVT and analyzes the factors that may influence the results.
Collapse
Affiliation(s)
- Weiguang Jiang
- Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng, China
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Liu Yang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Yongkang Dang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Xuechao Jiang
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Lan Wu
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Xiangyang Tong
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Jianquan Guo
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| | - Yongtao Bao
- Department of Vascular Surgery, Chifeng Municipal Hospital, Chifeng, China
| |
Collapse
|
40
|
Gong J. Oxylipins biosynthesis and the regulation of bovine postpartum inflammation. Prostaglandins Other Lipid Mediat 2024; 171:106814. [PMID: 38280540 DOI: 10.1016/j.prostaglandins.2024.106814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 01/08/2024] [Accepted: 01/23/2024] [Indexed: 01/29/2024]
Abstract
Uncontrolled or dysregulated inflammation has adverse effects on the reproduction, production and health of animals, and is a major pathological cause of increased incidence and severity of infectious and metabolic diseases. To achieve successful transition from a non-lactation pregnant state to a non-pregnant lactation state, drastic metabolic and endocrine alteration have taken place in dairy cows during the periparturient period. These physiological changes, coupled with decreased dry matter intake near calving and sudden change of diet composition after calving, have the potential to disrupt the delicate balance between pro- and anti-inflammation, resulting in a disordered or excessive inflammatory response. In addition to cytokines and other immunoregulatory factors, most oxylipins formed from polyunsaturated fatty acids (PUFAs) via enzymatic and nonenzymatic oxygenation pathways have pro- or anti-inflammatory properties and play a pivotal role in the onset, development and resolution of inflammation. However, little attention has been paid to the possibility that oxylipins could function as endogenous immunomodulating agents. This review will provide a detailed overview of the main oxylipins derived from different PUFAs and discuss the regulatory role that oxylipins play in the postpartum inflammatory response in dairy cows. Based on the current research, much remains to be illuminated in this emerging field. Understanding the role that oxylipins play in the control of postpartum inflammation and inflammatory-based disease may improve our ability to prevent transition disorders via Management, pharmacological, genetic selection and dietary intervention strategies.
Collapse
Affiliation(s)
- Jian Gong
- College of Life Science and Technology, Inner Mongolia Normal University, 81 Zhaowuda Road, Hohhot 010022, China.
| |
Collapse
|
41
|
Koudelka A, Buchan GJ, Cechova V, O’Brien JP, Liu H, Woodcock SR, Mullett SJ, Zhang C, Freeman BA, Gelhaus SL. Lipoxin A 4 yields an electrophilic 15-oxo metabolite that mediates FPR2 receptor-independent anti-inflammatory signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.06.579101. [PMID: 38370667 PMCID: PMC10871244 DOI: 10.1101/2024.02.06.579101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The enzymatic oxidation of arachidonic acid is proposed to yield trihydroxytetraene species (termed lipoxins) that resolve inflammation via ligand activation of the formyl peptide receptor, FPR2. While cell and murine models activate signaling responses to synthetic lipoxins, primarily 5S,6R,15S-trihydroxy-7E,9E,11Z,13E-eicosatetraenoic acid (lipoxin A4, LXA4), there are expanding concerns about the biological formation, detection and signaling mechanisms ascribed to LXA4 and related di- and tri-hydroxy ω-6 and ω-3 fatty acids. Herein, the generation and actions of LXA4 and its primary 15-oxo metabolite were assessed in control, LPS-activated and arachidonic acid supplemented RAW 264.7 macrophages. Despite protein expression of all enzymes required for LXA4 synthesis, both LXA4 and its 15-oxo-LXA4 metabolite were undetectable. Moreover, synthetic LXA4 and the membrane permeable 15-oxo-LXA4 methyl ester that is rapidly de-esterified to 15-oxo-LXA4, displayed no ligand activity for the putative LXA4 receptor FPR2, as opposed to the FPR2 ligand WKYMVm. Alternatively, 15-oxo-LXA4, an electrophilic α,β-unsaturated ketone, alkylates nucleophilic amino acids such as cysteine to modulate redox-sensitive transcriptional regulatory protein and enzyme function. 15-oxo-LXA4 activated nuclear factor (erythroid related factor 2)-like 2 (Nrf2)-regulated gene expression of anti-inflammatory and repair genes and inhibited nuclear factor (NF)-κB-regulated pro-inflammatory mediator expression. LXA4 did not impact these macrophage anti-inflammatory and repair responses. In summary, these data show an absence of macrophage LXA4 formation and receptor-mediated signaling actions. Rather, if LXA4 were present in sufficient concentrations, this, and other more abundant mono- and poly-hydroxylated unsaturated fatty acids can be readily oxidized to electrophilic α,β-unsaturated ketone products that modulate the redox-sensitive cysteine proteome via G-protein coupled receptor-independent mechanisms.
Collapse
Affiliation(s)
- Adolf Koudelka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Gregory J. Buchan
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Veronika Cechova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - James P. O’Brien
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Heng Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven R. Woodcock
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Steven J. Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Bruce A. Freeman
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
| | - Stacy L. Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine (Pittsburgh, PA 15213)
- Health Sciences Mass Spectrometry Core, University of Pittsburgh (Pittsburgh, PA 15213)
| |
Collapse
|
42
|
Shimi G, Sohouli MH, Ghorbani A, Shakery A, Zand H. The interplay between obesity, immunosenescence, and insulin resistance. Immun Ageing 2024; 21:13. [PMID: 38317257 PMCID: PMC10840211 DOI: 10.1186/s12979-024-00414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Obesity, which is the accumulation of fat in adipose tissue, has adverse impacts on human health. Obesity-related metabolic dysregulation has similarities to the metabolic alterations observed in aging. It has been shown that the adipocytes of obese individuals undergo cellular aging, known as senescence. Senescence can be transmitted to other normal cells through a series of chemical factors referred to as the senescence-associated secretory phenotype (SASP). Most of these factors are pro-inflammatory compounds. The immune system removes these senescent T-cells, but immunosenescence, which is the senescence of immune cells, disrupts the clearance of senescent T-cells. Immunosenescence occurs as a result of aging or indirectly through transmission from senescent tissues. The significant occurrence of senescence in obesity is expected to cause immunosenescence and impairs the immune response to resolve inflammation. The sustained and chronic inflammation disrupts insulin's metabolic actions in metabolic tissues. Therefore, this review focuses on the role of senescent adipocyte cells in obesity-associated immunosenescence and subsequent metabolic dysregulation. Moreover, the article suggests novel therapeutic approaches to improve metabolic syndrome by targeting senescent T-cells or using senotherapeutics.
Collapse
Affiliation(s)
- Ghazaleh Shimi
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Mohammad Hassan Sohouli
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Arman Ghorbani
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Azam Shakery
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran
| | - Hamid Zand
- Department of Cellular and Molecular Nutrition, Faculty of Nutrition Science and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, 1981619573, Iran.
| |
Collapse
|
43
|
Pitchai A, Buhman K, Shannahan JH. Lipid mediators of inhalation exposure-induced pulmonary toxicity and inflammation. Inhal Toxicol 2024; 36:57-74. [PMID: 38422051 PMCID: PMC11022128 DOI: 10.1080/08958378.2024.2318389] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024]
Abstract
Many inhalation exposures induce pulmonary inflammation contributing to disease progression. Inflammatory processes are actively regulated via mediators including bioactive lipids. Bioactive lipids are potent signaling molecules involved in both pro-inflammatory and resolution processes through receptor interactions. The formation and clearance of lipid signaling mediators are controlled by multiple metabolic enzymes. An imbalance of these lipids can result in exacerbated and sustained inflammatory processes which may result in pulmonary damage and disease. Dysregulation of pulmonary bioactive lipids contribute to inflammation and pulmonary toxicity following exposures. For example, inhalation of cigarette smoke induces activation of pro-inflammatory bioactive lipids such as sphingolipids, and ceramides contributing to chronic obstructive pulmonary disease. Additionally, exposure to silver nanoparticles causes dysregulation of inflammatory resolution lipids. As inflammation is a common consequence resulting from inhaled exposures and a component of numerous diseases it represents a broadly applicable target for therapeutic intervention. With new appreciation for bioactive lipids, technological advances to reliably identify and quantify lipids have occurred. In this review, we will summarize, integrate, and discuss findings from recent studies investigating the impact of inhaled exposures on pro-inflammatory and resolution lipids within the lung and their contribution to disease. Throughout the review current knowledge gaps in our understanding of bioactive lipids and their contribution to pulmonary effects of inhaled exposures will be presented. New methods being employed to detect and quantify disruption of pulmonary lipid levels following inhalation exposures will be highlighted. Lastly, we will describe how lipid dysregulation could potentially be addressed by therapeutic strategies to address inflammation.
Collapse
Affiliation(s)
- Arjun Pitchai
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Kimberly Buhman
- Department of Nutrition, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| | - Jonathan H. Shannahan
- School of Health Sciences, College of Health and Human Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
44
|
Sousa LG, Alves P, Teixeira N, Correia-da-Silva G, Fonseca BM. Alterations in the pro-resolving lipid mediator machinery within first trimester maternal tissue: Implications in decidualization and miscarriage risk. Prostaglandins Leukot Essent Fatty Acids 2024; 201:102619. [PMID: 38788346 DOI: 10.1016/j.plefa.2024.102619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
A pivotal event in uterine receptivity and human reproduction is the differentiation of endometrial stromal cells into decidual cells, known as decidualization. Decidualization is interlinked with its inflammatory environment. Our study aimed to investigate the presence and role of pro-resolving lipid mediators in first trimester maternal tissue. We assessed the levels of LXA4 and RvD1, along with their metabolic LOX enzymes, in elective (control) and sporadic miscarriage samples. We investigated the effects of LXA4 and RvD1 on decidualization using primary endometrial stromal cells and the immortalized endometrial stromal St-T1b cell line. The upregulation of 12- and 15-LOX expression was observed in pregnancy tissue after sporadic miscarriage, suggesting an inflammatory imbalance. Furthermore, incubation with these lipid mediators led to a decrease in decidualization biomarkers PRL and IGFBP-1, accompanied by morphological changes indicative of aberrant differentiation. The expression of LOX enzymes in decidual natural killer cells suggests their involvement in regulating the inflammatory surroundings and the extent of decidualization.
Collapse
Affiliation(s)
- Luísa G Sousa
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal; Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | - Patrícia Alves
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal
| | - Natércia Teixeira
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal
| | - Georgina Correia-da-Silva
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal
| | - Bruno M Fonseca
- UCIBIO - Applied Molecular Biosciences Unit, Departamento de Ciências Biológicas, Laboratório de Bioquímica, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; i4HB-Institute for Health and Bioeconomy, Universidade do Porto, 4050-313 Porto, Portugal; Escola Superior de Saúde, Instituto Politécnico de Viana do Castelo (IPVC), 4900-347 Viana do Castelo, Portugal.
| |
Collapse
|
45
|
Sublette ME, Daray FM, Ganança L, Shaikh SR. The role of polyunsaturated fatty acids in the neurobiology of major depressive disorder and suicide risk. Mol Psychiatry 2024; 29:269-286. [PMID: 37993501 DOI: 10.1038/s41380-023-02322-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023]
Abstract
Long-chain polyunsaturated fatty acids (LC-PUFAs) are obtained from diet or derived from essential shorter-chain fatty acids, and are crucial for brain development and functioning. Fundamentally, LC-PUFAs' neurobiological effects derive from their physicochemical characteristics, including length and double bond configuration, which differentiate LC-PUFA species and give rise to functional differences between n(omega)-3 and n-6 LC-PUFAs. LC-PUFA imbalances are implicated in psychiatric disorders, including major depression and suicide risk. Dietary intake and genetic variants in enzymes involved in biosynthesis of LC-PUFAs from shorter chain fatty acids influence LC-PUFA status. Domains impacted by LC-PUFAs include 1) cell signaling, 2) inflammation, and 3) bioenergetics. 1) As major constituents of lipid bilayers, LC-PUFAs are determinants of cell membrane properties of viscosity and order, affecting lipid rafts, which play a role in regulation of membrane-bound proteins involved in cell-cell signaling, including monoaminergic receptors and transporters. 2) The n-3:n-6 LC-PUFA balance profoundly influences inflammation. Generally, metabolic products of n-6 LC-PUFAs (eicosanoids) are pro-inflammatory, while those of n-3 LC-PUFAs (docosanoids) participate in the resolution of inflammation. Additionally, n-3 LC-PUFAs suppress microglial activation and the ensuing proinflammatory cascade. 3) N-3 LC-PUFAs in the inner mitochondrial membrane affect oxidative stress, suppressing production of and scavenging reactive oxygen species (ROS), with neuroprotective benefits. Until now, this wealth of knowledge about LC-PUFA biomechanisms has not been adequately tapped to develop translational studies of LC-PUFA clinical effects in humans. Future studies integrating neurobiological mechanisms with clinical outcomes may suggest ways to identify depressed individuals most likely to respond to n-3 LC-PUFA supplementation, and mechanistic research may generate new treatment strategies.
Collapse
Affiliation(s)
- M Elizabeth Sublette
- Department of Psychiatry, Columbia University, New York, NY, USA.
- Molecular Imaging & Neuropathology Area, New York State Psychiatric Institute, New York, NY, USA.
| | - Federico Manuel Daray
- University of Buenos Aires, School of Medicine, Institute of Pharmacology, Buenos Aires, Argentina
- National Scientific and Technical Research Council, Buenos Aires, Argentina
| | - Licínia Ganança
- Clínica Universitária de Psiquiatria e Psicologia Médica, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | - Saame Raza Shaikh
- Nutritional Obesity Research Center, Department of Nutrition, Gillings School of Global Public Health and School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
46
|
Belz DC, Woo H, Jackson MK, Putcha N, Fawzy A, Lorizio W, McCormack MC, Eakin MN, Hanson CK, Hansel NN. Food Insecurity is Associated With COPD Morbidity and Perceived Stress. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:47-55. [PMID: 37931596 PMCID: PMC10913918 DOI: 10.15326/jcopdf.2023.0440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/08/2023]
Abstract
Background Low socioeconomic status (SES) has been associated with worse clinical outcomes in chronic obstructive pulmonary disease (COPD). Food insecurity is more common among individuals with low SES and has been associated with poor outcomes in other chronic illnesses, but its impact on COPD has not been studied. Methods Former smokers with spirometry-confirmed COPD were recruited from low-income areas of Baltimore, Maryland, and followed for 9 months as part of a cohort study of diet and indoor air pollution. Food insecurity and respiratory outcomes, including COPD exacerbations and patient-reported outcomes, were assessed at regular intervals. The association between food insecurity and COPD outcomes was analyzed using generalized linear mixed models. Additional analyses examined the association of COPD morbidity with subdomains of food insecurity and the association of food insecurity with psychological well-being measures. Results Ninety-nine participants had available data on food insecurity and COPD outcomes. A total of 26.3% of participants were food insecure at 1 or more times during the study. After adjusting for individual SES, neighborhood poverty, and low healthy food access, food insecurity was associated with a higher incidence rate of moderate and severe exacerbations and worse dyspnea, COPD health status, and respiratory-specific quality of life. Subdomains of food insecurity were independently associated with worse patient-reported outcomes. Food insecurity was additionally associated with higher perceived stress. Discussion Among former smokers with COPD, food insecurity was associated with a higher incidence of exacerbations, worse patient-reported outcomes, and higher perceived stress. Subdomains of food insecurity were independently associated with worse patient-reported outcomes.
Collapse
Affiliation(s)
- Daniel C. Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Han Woo
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Mariah K. Jackson
- Medical Nutrition Program, College of Allied Health Professions, University of Nebraska, Omaha, Nebraska, United States
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Ashraf Fawzy
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Wendy Lorizio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Meredith C. McCormack
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Michelle N. Eakin
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Corrine K. Hanson
- Medical Nutrition Program, College of Allied Health Professions, University of Nebraska, Omaha, Nebraska, United States
| | - Nadia N. Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| |
Collapse
|
47
|
Mehta V, Dwivedi AR, Ludhiadch A, Rana V, Goel KK, Uniyal P, Joshi G, Kumar A, Kumar B. A decade of USFDA-approved small molecules as anti-inflammatory agents: Recent trends and Commentaries on the "industrial" perspective. Eur J Med Chem 2024; 263:115942. [PMID: 38000212 DOI: 10.1016/j.ejmech.2023.115942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/05/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Inflammation is the human body's defence process against various pathogens, toxic substances, irradiation, and physically injured cells that have been damaged. Inflammation is characterized by swelling, pain, redness, heat, as well as diminished tissue function. Multiple important inflammatory markers determine the prognosis of inflammatory processes, which include likes of pro-inflammatory cytokines which are controlled by nuclear factor kappa-B (NF-kB), mitogen-activated protein kinase (MAPK), Janus kinase signal transducer and activator of transcription (JAK-STAT) pathway, all of which are activated in response to the stimulation of specific receptors. Besides these, the cyclooxygenase (COX) enzyme family also plays a significant role in inflammation. The current review is kept forth to compile a summary of small molecules-based drugs approved by the USFDA during the study period of 2013-2023. A thorough discussion has also been made to focus on biologics, macromolecules, and small chemical entities approved during this study period and their greener synthetic routes with a brief discussion on the chemical spacing parameters of anti-inflammatory drugs. The compilation is expected to assist the medicinal chemist and the scientist actively engaged in drug discovery and development of anti-inflammatory agents from newer perspectives during the current years.
Collapse
Affiliation(s)
- Vikrant Mehta
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Texas, 78229, USA
| | | | - Abhilash Ludhiadch
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, 10032, USA
| | - Vikas Rana
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Kapil Kumar Goel
- Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, Uttarakhand, India
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Clement town, Dehradun, 248002, Uttarakhand, India
| | - Gaurav Joshi
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India; Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, 248002, Uttarakhand, India.
| | - Asim Kumar
- Amity Institute of Pharmacy (AIP), Amity University Haryana, Panchgaon, Manesar, 122413, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, HNB Garhwal University, Chauras Campus, Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
48
|
Liu L, Zhang J, Lu K, Zhang Y, Xu X, Deng J, Zhang X, Zhang H, Zhao Y, Wang X. ChemR23 signaling ameliorates brain injury via inhibiting NLRP3 inflammasome-mediated neuronal pyroptosis in ischemic stroke. J Transl Med 2024; 22:23. [PMID: 38178174 PMCID: PMC10768115 DOI: 10.1186/s12967-023-04813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Inflammatory response has been recognized as a pivotal pathophysiological process during cerebral ischemia. ChemR23 signaling is involved in the pathophysiology of various inflammatory diseases. Nevertheless, the role of ChemR23 signaling in ischemic stroke remains largely unknown. METHODS Permanent ischemic stroke mouse model was accomplished by middle cerebral artery occlusion (MCAO). Resolvin E1 (RvE1) or chemerin-9 (C-9), the agonists of ChemR23, were administered by intracerebroventricular (i.c.v) injection before MCAO induction. Then, analysis of neurobehavioral deficits and brain sampling were done at Day 1 after MCAO. The brain samples were further analyzed by histological staining, immunofluorescence, RNA sequencing, ELISA, transmission electron microscope, and western blots. Furthermore, oxygen-glucose deprivation (OGD) was employed in SH-SY5Y to mimic MCAO in vitro, and ChemR23 signaling pathway was further studied by overexpression of ChemR23 or administration of related agonists or antagonists. Analysis of cell death and related pathway markers were performed. RESULTS ChemR23 expression was upregulated following MCAO. Under in vitro and in vivo ischemic conditions, ChemR23 deficiency or inhibition contributed to excessive NLRP3-mediated maturation and release of IL-1β and IL-18, as well as enhanced cleavage of GSDMD-N and neuronal pyroptosis. These influences ultimately aggravated brain injury and neuronal damage. On the other hand, ChemR23 activation by RvE1 or C-9 mitigated the above pathophysiological abnormalities in vivo and in vitro, and overexpression of ChemR23 in SH-SY5Y cells also rescued OGD-induced neuronal pyroptosis. Blockade of NLRP3 mimics the protective effects of ChemR23 activation in vitro. CONCLUSION Our data indicated that ChemR23 modulates NLRP3 inflammasome-mediated neuronal pyroptosis in ischemic stroke. Activation of ChemR23 may serve as a promising potential target for neuroprotection in cerebral ischemia.
Collapse
Affiliation(s)
- Lan Liu
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jiawei Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Kaili Lu
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Yaxuan Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaofeng Xu
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Jiangshan Deng
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China
| | - Haibing Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuwu Zhao
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China.
| | - Xiuzhe Wang
- Department of Neurology, Shanghai Sixth People's Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
- Shanghai Neurological Rare Disease Biobank and Precision Diagnostic Technical Service Platform, Shanghai, China.
| |
Collapse
|
49
|
Ohhara Y, Sagisaka C, Yamakawa-Kobayashi K. The collembolan Sinella dubiosa produces eicosapentaenoic acid. Comp Biochem Physiol B Biochem Mol Biol 2024; 269:110900. [PMID: 37689345 DOI: 10.1016/j.cbpb.2023.110900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/17/2023] [Accepted: 09/05/2023] [Indexed: 09/11/2023]
Abstract
n-3 polyunsaturated fatty acids (n-3 PUFAs), including eicosapentaenoic acid (EPA), are essential nutrients for vertebrate development and physiology. Microorganisms, such as microalgae, produce n-3 PUFAs that are transferred to higher predators in the aquatic food web. However, recent studies have demonstrated that various aquatic invertebrates possess the biosynthetic enzymes required for n-3 PUFA production, raising the possibility that n-3 PUFAs are also produced in certain aquatic invertebrates. In contrast to aquatic invertebrates, it remains unclear whether and how PUFAs are produced in terrestrial invertebrates, including collembolans, one of the most widespread microarthropods in soil ecosystems. In this study, we investigated the biosynthetic capacity of n-3 PUFAs in litter-dwelling Collembola, Sinella dubiosa. We detected EPA in Sinella dubiosa reared on Brewer's yeast, which produced only saturated and monounsaturated fatty acids. Furthermore, metabolic analysis using isotope-labeled fatty acids revealed that oleic, linolenic, and arachidonic acids were metabolized to EPA in Sinella dubiosa. Given that collembolans are food for predatory arthropods and their nutrients are transferred to higher predatory vertebrates in the soil food web, we propose that Collembola serve as an EPA source in soil ecosystems.
Collapse
Affiliation(s)
- Yuya Ohhara
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan.
| | - Chiemi Sagisaka
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Kimiko Yamakawa-Kobayashi
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan; Graduate School of Integrated Pharmaceutical and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
50
|
Carpinter BA, Renhe DC, Bellei JCB, Vieira CD, Rodolphi CM, Ferreira MVR, de Freitas CS, Neto AFDS, Coelho EAF, Mietto BDS, Gomes FLR, Rocha VN, Scopel KKG. DHA-rich fish oil plays a protective role against experimental cerebral malaria by controlling inflammatory and mechanical events from infection. J Nutr Biochem 2024; 123:109492. [PMID: 37866427 DOI: 10.1016/j.jnutbio.2023.109492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/17/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023]
Abstract
Every year, thousands of children, particularly those under 5 years old, die because of cerebral malaria (CM). Following conventional treatment, approximately 25% of surviving individuals have lifelong severe neurocognitive sequelae. Therefore, improved conventional therapies or effective alternative therapies that prevent the severe infection are crucial. Omega-3 (Ω-3) polyunsaturated fatty acids (PUFAs) are known to have antioxidative and anti-inflammatory effects and protect against diverse neurological disorders, including Alzheimer's and Parkinson's diseases. However, little is known regarding the effects of Ω-3 PUFAs against parasitic infections. In this study, C57BL/6 mice received supplemental treatment of a fish oil rich in the Ω-3 PUFA, docosahexaenoic acid (DHA), which was started 15 days prior to infection with Plasmodium berghei ANKA and was maintained until the end of the study. Animals treated with the highest doses of DHA, 3.0 and 6.0 g/kg body weight, had 60 and 80% chance of survival, respectively, while all nontreated mice died by the 7th day postinfection due to CM. Furthermore, the parasite load during the critical period for CM development (5th to 11th day postinfection) was controlled in treated mice. However, after this period all animals developed high levels of parasitemia until the 20th day of infection. DHA treatment also effectively reduced blood-brain barrier (BBB) damage and brain edema and completely prevented brain hemorrhage and vascular occlusion. A strong anti-inflammatory profile was observed in the brains of DHA-treated mice, as well as, an increased number of neutrophil and reduced number of CD8+ T leukocytes in the spleen. Thus, this is the first study to demonstrate that the prophylactic use of DHA-rich fish oil exerts protective effects against experimental CM, reducing the mechanical and immunological events caused by the P. berghei ANKA infection.
Collapse
Affiliation(s)
- Bárbara Albuquerque Carpinter
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Daniela Chaves Renhe
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Jéssica Correa Bezerra Bellei
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Carolina David Vieira
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Cinthia Magalhães Rodolphi
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Camila Simões de Freitas
- Post-graduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Adolfo Firmino da Silva Neto
- Department of Biology, Research Centre of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Eduardo Antônio Ferraz Coelho
- Post-graduation Program in Health Sciences, Infectology and Tropical Medicine, Faculty of Medicine, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno de Siqueira Mietto
- Department of Biology, Research Centre of Cellular Biology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | | | - Vinicius Novaes Rocha
- Department of Veterinary Medicine, Research Centre of Pathology and Veterinary Histology, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Kézia Katiani Gorza Scopel
- Department of Parasitology, Microbiology and Immunology and Post-Graduation Program in Biological Science, Research Centre of Parasitology, Federal University of Juiz de Fora, Juiz de Fora, Brazil.
| |
Collapse
|