1
|
Chaisupa P, Rahman MM, Hildreth SB, Moseley S, Gatling C, Bryant MR, Helm RF, Wright RC. Genetically Encoded, Noise-Tolerant, Auxin Biosensors in Yeast. ACS Synth Biol 2024; 13:2804-2819. [PMID: 39197086 PMCID: PMC11421217 DOI: 10.1021/acssynbio.4c00186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Auxins are crucial signaling molecules that regulate the growth, metabolism, and behavior of various organisms, most notably plants but also bacteria, fungi, and animals. Many microbes synthesize and perceive auxins, primarily indole-3-acetic acid (IAA, referred to as auxin herein), the most prevalent natural auxin, which influences their ability to colonize plants and animals. Understanding auxin biosynthesis and signaling in fungi may allow us to better control interkingdom relationships and microbiomes from agricultural soils to the human gut. Despite this importance, a biological tool for measuring auxin with high spatial and temporal resolution has not been engineered in fungi. In this study, we present a suite of genetically encoded, ratiometric, protein-based auxin biosensors designed for the model yeast Saccharomyces cerevisiae. Inspired by auxin signaling in plants, the ratiometric nature of these biosensors enhances the precision of auxin concentration measurements by minimizing clonal and growth phase variation. We used these biosensors to measure auxin production across diverse growth conditions and phases in yeast cultures and calibrated their responses to physiologically relevant levels of auxin. Future work will aim to improve the fold change and reversibility of these biosensors. These genetically encoded auxin biosensors are valuable tools for investigating auxin biosynthesis and signaling in S. cerevisiae and potentially other yeast and fungi and will also advance quantitative functional studies of the plant auxin perception machinery, from which they are built.
Collapse
Affiliation(s)
- Patarasuda Chaisupa
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Md Mahbubur Rahman
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Sherry B Hildreth
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saede Moseley
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Chauncey Gatling
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Matthew R Bryant
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard F Helm
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - R Clay Wright
- Department of Biological Systems Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Fralin Life Sciences Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
- The Translational Plant Sciences Center (TPSC), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Liu Q, Li H, Shi R, Wei W, Yuan X, Cao YM, Liu S. Investigation into the Synthesis, Bioactivity, and Mechanism of Action of the Novel 6-Pyrazolyl-2-picolinic Acid as a Herbicide. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8840-8848. [PMID: 38570314 DOI: 10.1021/acs.jafc.3c08517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
A series of new 4-amino-3,5-dicholo-6-(5-aryl-substituted-1H-pyrazol-1-yl)-2-picolinic acid compounds were designed and prepared to discover herbicidal molecules. The inhibitory activities of all new compounds against the root growth ofArabidopsis thaliana were assayed. On the whole, the new synthesized compounds displayed good inhibition effects and had excellent herbicidal activities on root growth of weed at 500 μM. Importantly, a selection of compounds demonstrated comparable herbicidal properties to picloram. At the dosage of 250 g/ha, most of the compounds showed a 100% postemergence herbicidal activity to control Chenopodium album and Amaranthus retroflexus. Using compound V-2, the mechanism of action was investigated based on a phenotype study using AFB5-deficient Arabidopsis thaliana. It was found that the novel 6-pyrazolyl-2-picolinic acids were auxinic compounds. In addition, it was proposed that V-2 may be an immune activator due to its upregulation of defense genes and the increased content of jasmonic acid.
Collapse
Affiliation(s)
- Qing Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Huiting Li
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Rongchuan Shi
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| | - Wei Wei
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiao Yuan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Yi-Ming Cao
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Shangzhong Liu
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
- Key Laboratory of National Forestry and Grassland Administration on Pest Chemical Control, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Fang D, Zhang W, Ye Z, Hu F, Cheng X, Cao J. The plant specific SHORT INTERNODES/STYLISH (SHI/STY) proteins: Structure and functions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:685-695. [PMID: 36565613 DOI: 10.1016/j.plaphy.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Plant specific SHORT INTERNODES/STYLISH (SHI/STY) protein is a transcription factor involved in the formation and development of early lateral organs in plants. However, research on the SHI/STY protein family is not focused enough. In this article, we review recent studies on SHI/STY genes and explore the evolution and structure of SHI/STY. The biological functions of SHI/STYs are discussed in detail in this review, and the application of each biological function to modern agriculture is discussed. All SHI/STY proteins contain typical conserved RING-like zinc finger domain and IGGH domain. SHI/STYs are involved in the formation and development of lateral root, stem extension, leaf morphogenesis, and root nodule development. They are also involved in the regulation of pistil and stamen development and flowering time. At the same time, the regulation of some GA, JA, and auxin signals also involves these family proteins. For each aspect, unanswered or poorly understood questions were identified to help define future research areas. This review will provide a basis for further functional study of this gene family.
Collapse
Affiliation(s)
- Da Fang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Weimeng Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Ziyi Ye
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Fei Hu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiuzhu Cheng
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jun Cao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
4
|
Mei M, Ai W, Liu L, Xu X, Lu X. Genome-wide identification of the auxin response factor (ARF) gene family in Magnolia sieboldii and functional analysis of MsARF5. FRONTIERS IN PLANT SCIENCE 2022; 13:958816. [PMID: 36275560 PMCID: PMC9581218 DOI: 10.3389/fpls.2022.958816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Auxin plays an essential role in flowering, embryonic development, seed dormancy, and germination. Auxin response factors (ARFs) are plant-specific key transcriptional factors in mediating the gene expression network of auxin signaling. Although ARFs in model plants such as Arabidopsis had been well characterized, their identities and potential roles in non-model plants are less studied. Here, we performed genome-wide identification of ARFs in Magnolia sieboldii K. Koch, a primitive species with high taxonomic importance and medicinal values. We found 25 ARF genes in M. sieboldii, which were widely distributed across multiple chromosomes. Based on sequence similarity, the encoded proteins could be either transcriptional repressors or activators. Gene expression analysis showed a dynamic pattern for many ARFs including MsARF5 during seed germination. In addition, overexpressing of MsARF5 showed that it restores many developmental defects in the Arabidopsis mutant. Moreover, two phenotypically distinct transgenic Arabidopsis lines were obtained, indicating a link between gene expression levels and developmental phenotypes. Taken together, we provided a systematic investigation of the ARF gene family in M. sieboldii and revealed an important role of MsARF5 in mediating auxin signaling.
Collapse
Affiliation(s)
- Mei Mei
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
- Biotechnology and Analysis Test Center, Liaoning Academy of Forest Science, Shenyang, China
| | - Wanfeng Ai
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Lin Liu
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xin Xu
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| | - Xiujun Lu
- Department of Forestry, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
5
|
Han J, Ma Z, Chen L, Wang Z, Wang C, Wang L, Chen C, Ren Z, Cao C. Morphological Characterization and Integrated Transcriptome and Proteome Analysis of Organ Development Defective 1 ( odd1) Mutant in Cucumis sativus L. Int J Mol Sci 2022; 23:ijms23105843. [PMID: 35628653 PMCID: PMC9145247 DOI: 10.3390/ijms23105843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is an economically important vegetable crop with the unique growth habit and typical trailing shoot architecture of Cucurbitaceae. Elucidating the regulatory mechanisms of growth and development is significant for improving quality and productivity in cucumber. Here we isolated a spontaneous cucumber mutant organ development defective 1 (odd1) with multiple morphological changes including root, plant stature, stem, leaf, male and female flowers, as well as fruit. Anatomical and cytological analyses demonstrated that both cell size and number decreased, and the shoot apical meristem (SAM) was smaller in odd1 compared with WT. Pollen vigor and germination assays and cross tests revealed that odd1 is female sterile, which may be caused by the absence of ovules. Genetic analysis showed that odd1 is a recessive single gene mutant. Using the MutMap strategy, the odd1 gene was found to be located on chromosome 5. Integrated profiling of transcriptome and proteome indicated that the different expression genes related to hormones and SAM maintenance might be the reason for the phenotypic changes of odd1. These results expanded the insight into the molecular regulation of organ growth and development and provided a comprehensive reference map for further studies in cucumber.
Collapse
|
6
|
Karannagoda N, Spokevicius A, Hussey S, Cassan-Wang H, Grima-Pettenati J, Bossinger G. Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13) is a novel transcriptional regulator of xylogenesis. PLANT MOLECULAR BIOLOGY 2022; 109:51-65. [PMID: 35292886 PMCID: PMC9072461 DOI: 10.1007/s11103-022-01255-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Our Induced Somatic Sector Analysis and protein-protein interaction experiments demonstrate that Eucalyptus grandis IAA13 regulates xylem fibre and vessel development, potentially via EgrIAA13 modules involving ARF2, ARF5, ARF6 and ARF19. Auxin is a crucial phytohormone regulating multiple aspects of plant growth and differentiation, including regulation of vascular cambium activity, xylogenesis and its responsiveness towards gravitropic stress. Although the regulation of these biological processes greatly depends on auxin and regulators of the auxin signalling pathway, many of their specific functions remain unclear. Therefore, the present study aims to functionally characterise Eucalyptus grandis AUX/INDOLE-3-ACETIC ACID 13 (EgrIAA13), a member of the auxin signalling pathway. In Eucalyptus and Populus, EgrIAA13 and its orthologs are preferentially expressed in the xylogenic tissues and downregulated in tension wood. Therefore, to further investigate EgrIAA13 and its function during xylogenesis, we conducted subcellular localisation and Induced Somatic Sector Analysis experiments using overexpression and RNAi knockdown constructs of EgrIAA13 to create transgenic tissue sectors on growing stems of Eucalyptus and Populus. Since Aux/IAAs interact with Auxin Responsive Factors (ARFs), in silico predictions of IAA13-ARF interactions were explored and experimentally validated via yeast-2-hybrid experiments. Our results demonstrate that EgrIAA13 localises to the nucleus and that downregulation of EgrIAA13 impedes Eucalyptus xylem fibre and vessel development. We also observed that EgrIAA13 interacts with Eucalyptus ARF2, ARF5, ARF6 and ARF19A. Based on these results, we conclude that EgrIAA13 is a regulator of Eucalyptus xylogenesis and postulate that the observed phenotypes are likely to result from alterations in the auxin-responsive transcriptome via IAA13-ARF modules such as EgrIAA13-EgrARF5. Our results provide the first insights into the regulatory role of EgrIAA13 during xylogenesis.
Collapse
Affiliation(s)
- Nadeeshani Karannagoda
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia.
- Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, Victoria, 3083, Australia.
| | - Antanas Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| | - Steven Hussey
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, 0002, South Africa
| | - Hua Cassan-Wang
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Jacqueline Grima-Pettenati
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse III, CNRS, UPS, UMR 5546, 24 Chemin de Borde Rouge, 31320, Castanet-Tolosan, France
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, VIC, 3363, Australia
| |
Collapse
|
7
|
Su Y, Wang P, Lu S, Chen B. Molecular cloning, bioinformatics analysis, and transient expression of MdAux/IAA28 in apple (Malus domestic). GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2021.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Uncovering miRNA-mRNA Regulatory Modules in Developing Xylem of Pinus massoniana via Small RNA and Degradome Sequencing. Int J Mol Sci 2021; 22:ijms221810154. [PMID: 34576316 PMCID: PMC8472836 DOI: 10.3390/ijms221810154] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022] Open
Abstract
Xylem is required for the growth and development of higher plants to provide water and mineral elements. The thickening of the xylem secondary cell wall (SCW) not only improves plant survival, but also provides raw materials for industrial production. Numerous studies have found that transcription factors and non-coding RNAs regulate the process of SCW thickening. Pinus massoniana is an important woody tree species in China and is widely used to produce materials for construction, furniture, and packaging. However, the target genes of microRNAs (miRNAs) in the developing xylem of P. massoniana are not known. In this study, a total of 25 conserved miRNAs and 173 novel miRNAs were identified via small RNA sequencing, and 58 differentially expressed miRNAs were identified between the developing xylem (PM_X) and protoplasts isolated from the developing xylem (PM_XP); 26 of these miRNAs were significantly up-regulated in PM_XP compared with PM_X, and 32 were significantly down-regulated. A total of 153 target genes of 20 conserved miRNAs and 712 target genes of 113 novel miRNAs were verified by degradome sequencing. There may be conserved miRNA-mRNA modules (miRNA-MYB, miRNA-ARF, and miRNA-LAC) involved in softwood and hardwood formation. The results of qRT-PCR-based parallel validation were in relatively high agreement. This study explored the potential regulatory network of miRNAs in the developing xylem of P. massoniana and provides new insights into wood formation in coniferous species.
Collapse
|
9
|
Gorai PS, Ghosh R, Mandal S, Ghosh S, Chatterjee S, Gond SK, Mandal NC. Bacillus siamensis CNE6- a multifaceted plant growth promoting endophyte of Cicer arietinum L. having broad spectrum antifungal activities and host colonizing potential. Microbiol Res 2021; 252:126859. [PMID: 34536676 DOI: 10.1016/j.micres.2021.126859] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/21/2021] [Accepted: 08/29/2021] [Indexed: 11/29/2022]
Abstract
Exploration of endophytic bacteria with multiple plant growth promoting (PGP) attributes is considered as an eco-friendly and cost-effective alternative to agricultural chemicals for increasing crop productivity. In the present endeavor, healthy chickpea plants (Cicer arietinum L.) collected from district Birbhum, West Bengal, India were subjected for the isolation of endophytic bacteria having multifarious PGP properties. One potent endophytic Gram positive bacterial strain CNE6 was isolated from the nodule of chickpea and was identified as Bacillus siamensis based on 16S rDNA sequence homologies. The isolate showed a number of PGP properties like phosphate solubilization, IAA production, nitrogen fixation, hydroxamate type of siderophore production and ACC deaminase activities. The isolate CNE6 produced 33.27 ± 2.16 μg/mL of IAA in the presence of tryptophan. Production of IAA was also confirmed by HPLC analysis and it was found effective for inducing lateral root branching in chickpea. In addition, the isolate displayed significant antagonistic activity against a number of plant pathogenic fungi when tested by dual culture overlay and agar well diffusion assay. 50 % cell free supernatant of CNE6 was found effective for 60-80 % inhibition of radial growth of pathogenic fungi tested. Scanning electron microscopic observation revealed massive degradation of pathogenic fungal mycelia by the antifungal metabolites of CNE6. LC-MS analysis of bacterial lipopeptides suggested the production of antifungal antibiotics like surfactin, fengycin and iturin by the isolate. The presence of genes encoding antifungal lipopeptides was also confirmed by PCR amplification using specific primers. Green fluorescent protein (GFP) tagging of CNE6 using broad host range plasmid vector (pDSK-GFPuv) followed by colonization study indicated very good host colonization potential of the isolate and its probable movement through xylem vessels. Enhanced shoot and root length and chlorophyll content upon treatment with CNE6 as observed in in vivo pot experiments also supported the positive role of the endophytic isolate on overall development and growth of the chickpea plants. This is the first report of Bacillus siamensis as an endophyte of Cicer arietinum L. which can be successfully applied for improving the productivity of this crop plant.
Collapse
Affiliation(s)
- Pralay Shankar Gorai
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, India
| | - Ranjan Ghosh
- Department of Botany, Bankura Sammilani College, Kenduadihi, Bankura, 722102, India
| | - Subhrangshu Mandal
- Department of Botany, Siksha Bhavana, Visva-Bharati, Santiniketan, 731235, India
| | - Suvranil Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Sumit Chatterjee
- Department of Microbiology, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, 700054, India
| | - Surendra Kumar Gond
- Department of Botany, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Narayan Chandra Mandal
- Mycology and Plant Pathology Laboratory, Department of Botany, Visva-Bharati, Santiniketan, 731235, India.
| |
Collapse
|
10
|
Yang J, Zhang N, Zhang J, Jin X, Zhu X, Ma R, Li S, Lui S, Yue Y, Si H. Knockdown of MicroRNA160a/b by STTM leads to root architecture changes via auxin signaling in Solanum tuberosum. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:939-949. [PMID: 34247108 DOI: 10.1016/j.plaphy.2021.06.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 06/13/2023]
Abstract
The root phenotype is an important aspect of plant architecture and plays a critical role in plant facilitation of the extraction of water and nutrition from the soil. MicroRNAs (miRNAs) are classes of small RNAs with important roles in regulating endogenous gene expression at the post-transcriptional level that function in a range of plant development processes and in the response to abiotic stresses. However, little is known concerning the molecular mechanism of miRNAs in regulating the generation and development of plant root architecture. Herein, we demonstrated that potato miR160a/b acted as a critical regulator and affected plant root architecture by targeting the mRNA of StARF10 and StARF16 for cleavage. The miR160a/b precursor was cloned from potato. Quantitative PCR assays showed that the expression levels of miR160 and its targets were down- or up-regulated with the development of potato roots, respectively. Moreover, transgenic lines with suppressed stu-miR160 expression were established with the short tandem targets mimic (STTM), and the results showed that the ectopic expression of miR160a/b altered the levels of auxin and the expression of auxin signaling-related genes and caused drastic change in root architecture compared with that in control plants. Suppressing the expression of miR160 led to a severe reduction in root length, an increase in the number of lateral roots, and a decrease in fresh root weight in potato. Collectively, our data established a key role of miR160 in modulating plant root architecture in potato.
Collapse
Affiliation(s)
- Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Ning Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Jinlin Zhang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China; The State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xin Jin
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Xi Zhu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Rui Ma
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shigui Li
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, China
| | - Shengyan Lui
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| | - Yun Yue
- Gansu Pharmaceutical Investment Group Co., Ltd, Lanzhou, 730030, China
| | - Huaijun Si
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
11
|
Kaur H, Kohli SK, Khanna K, Bhardwaj R. Scrutinizing the impact of water deficit in plants: Transcriptional regulation, signaling, photosynthetic efficacy, and management. PHYSIOLOGIA PLANTARUM 2021; 172:935-962. [PMID: 33686690 DOI: 10.1111/ppl.13389] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 01/18/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
Suboptimal availability of water limits plant growth, development, and performance. Drought is one of the leading factors responsible for worldwide crop yield reduction. In the future, owing to climate changes, more agricultural land will be affected by prolonged periods of water deficit. Thus, understanding the fundamental mechanism of drought response is a major scientific concern for improvement of crop production. To combat drought stress, plants deploy varied mechanistic strategies and alter their morphological, physiochemical, and molecular attributes. This helps plant to enhance water uptake and storage, reduce water loss and avoid wilting. Induction of several transcription factors and drought responsive genes leads to synthesis of stress proteins, regulation of water channels i.e. aquaporins and production of osmolytes that are essential for maintenance of osmotic balance at the cellular level. Self- and hormone-regulated signaling pathways are often stimulated by plants after receiving drought stress signals via secondary messengers, mitogen-activated protein kinases, and stress hormones. These signaling cascades often leads to stomatal closure and reduction in transpiration rates. Reduced carbon dioxide diffusion in chloroplast, lowered efficacy of photosystems, and other metabolic constraints limits the key regulatory photosynthetic process during water deficit. The impact of these stomatal and nonstomatal limitations varies with stress intensity, superimposed stresses and plant species. A clear understanding of the drought resistance process is thus important before adopting strategies for imparting drought tolerance in plants. These management practices at present include exogenous hormone application, breeding, and genetic engineering techniques for combating the water deficit issues.
Collapse
Affiliation(s)
- Harsimran Kaur
- PG Department of Agriculture, Plant Protection Division, Khalsa College, Amritsar, Punjab, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Sukhmeen Kaur Kohli
- PG Department of Agriculture, Plant Protection Division, Khalsa College, Amritsar, Punjab, India
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, India
| |
Collapse
|
12
|
Li D, Pan C, Lu J, Zaman W, Zhao H, Zhang J, Lü S. Lupeol Accumulation Correlates with Auxin in the Epidermis of Castor. Molecules 2021; 26:molecules26102978. [PMID: 34067825 PMCID: PMC8156332 DOI: 10.3390/molecules26102978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 11/16/2022] Open
Abstract
Lupeol, a natural lupane-type pentacyclic triterpene, possesses various pharmacological properties, and its production attracts attention. Significant quantities of lupeol are deposited on the castor aerial organ surface and are easily extractable as a predominant wax constituent. Thus, castor might be considered as a potential bioreactor for the production of lupeol. The lupeol biosynthesis pathway is well known, but how it is regulated remains largely unknown. Among large numbers of castor cultivars, we targeted one accession line (337) with high levels of lupeol on its stem surface and low levels thereof on its hypocotyl surface, implicating that lupeol synthesis is differentially regulated in the two organs. To explore the underlying mechanisms, we did comparative transcriptome analysis of the first internode of 337 stem and the upper hypocotyl. Our results show that large amounts of auxin-related genes are differentially expressed in both parts, implying some possible interactions between auxin and lupeol production. We also found that several auxin-responsive cis-elements are present in promoter regions of HMGR and LUS genes encoding two key enzymes involved in lupeol production. Furthermore, auxin treatments apparently induced the expression levels of RcHMGR and RcLUS. Furthermore, we observed that auxin treatment significantly increased lupeol contents, whereas inhibiting auxin transport led to an opposite phenotype. Our study reveals some relationships between hormone activity and lupeol synthesis and might provide a promising way for improving lupeol yields in castor.
Collapse
Affiliation(s)
- Donghai Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China;
| | - Cheng Pan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
| | - Jianjun Lu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
| | - Wajid Zaman
- University of Chinese Academy of Sciences, Beijing 100049, China;
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Huayan Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
| | - Jixing Zhang
- College of Life Sciences and Food Engineering, Inner Mongolia University for Nationalities, Tongliao 028000, China;
| | - Shiyou Lü
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; (D.L.); (C.P.); (J.L.)
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China;
- Correspondence: ; Tel.: +86-27-88663882
| |
Collapse
|
13
|
Djami-Tchatchou AT, Harrison GA, Harper CP, Wang R, Prigge MJ, Estelle M, Kunkel BN. Dual Role of Auxin in Regulating Plant Defense and Bacterial Virulence Gene Expression During Pseudomonas syringae PtoDC3000 Pathogenesis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1059-1071. [PMID: 32407150 PMCID: PMC7810136 DOI: 10.1094/mpmi-02-20-0047-r] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Modification of host hormone biology is a common strategy used by plant pathogens to promote disease. For example, the bacterial pathogen strain Pseudomonas syringae DC3000 (PtoDC3000) produces the plant hormone auxin (indole-3-acetic acid [IAA]) to promote PtoDC3000 growth in plant tissue. Previous studies suggest that auxin may promote PtoDC3000 pathogenesis through multiple mechanisms, including both suppression of salicylic acid (SA)-mediated host defenses and via an unknown mechanism that appears to be independent of SA. To test if host auxin signaling is important during pathogenesis, we took advantage of Arabidopsis thaliana lines impaired in either auxin signaling or perception. We found that disruption of auxin signaling in plants expressing an inducible dominant axr2-1 mutation resulted in decreased bacterial growth and that this phenotype was suppressed by introducing the sid2-2 mutation, which impairs SA synthesis. Thus, host auxin signaling is required for normal susceptibility to PtoDC3000 and is involved in suppressing SA-mediated defenses. Unexpectedly, tir1 afb1 afb4 afb5 quadruple-mutant plants lacking four of the six known auxin coreceptors that exhibit decreased auxin perception, supported increased levels of bacterial growth. This mutant exhibited elevated IAA levels and reduced SA-mediated defenses, providing additional evidence that auxin promotes disease by suppressing host defense. We also investigated the hypothesis that IAA promotes PtoDC3000 virulence through a direct effect on the pathogen and found that IAA modulates expression of virulence genes, both in culture and in planta. Thus, in addition to suppressing host defenses, IAA acts as a microbial signaling molecule that regulates bacterial virulence gene expression.
Collapse
Affiliation(s)
| | | | - Chris P. Harper
- Department of Biology, Washington University, St. Louis, MO, U.S.A
| | - Renhou Wang
- Division of Biological Sciences, Section of Cell & Developmental Biology, University California San Diego, San Diego, CA, U.S.A
| | - Michael J. Prigge
- Division of Biological Sciences, Section of Cell & Developmental Biology, University California San Diego, San Diego, CA, U.S.A
| | - Mark Estelle
- Division of Biological Sciences, Section of Cell & Developmental Biology, University California San Diego, San Diego, CA, U.S.A
| | - Barbara N. Kunkel
- Department of Biology, Washington University, St. Louis, MO, U.S.A
- Corresponding author: B. N. Kunkel;
| |
Collapse
|
14
|
Endophytic microbes: biodiversity, plant growth-promoting mechanisms and potential applications for agricultural sustainability. Antonie van Leeuwenhoek 2020; 113:1075-1107. [PMID: 32488494 DOI: 10.1007/s10482-020-01429-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 05/22/2020] [Indexed: 10/24/2022]
Abstract
Endophytic microbes are known to live asymptomatically inside their host throughout different stages of their life cycle and play crucial roles in the growth, development, fitness, and diversification of plants. The plant-endophyte association ranges from mutualism to pathogenicity. These microbes help the host to combat a diverse array of biotic and abiotic stressful conditions. Endophytic microbes play a major role in the growth promotion of their host by solubilizing of macronutrients such as phosphorous, potassium, and zinc; fixing of atmospheric nitrogen, synthesizing of phytohormones, siderophores, hydrogen cyanide, ammonia, and act as a biocontrol agent against wide array of phytopathogens. Endophytic microbes are beneficial to plants by directly promoting their growth or indirectly by inhibiting the growth of phytopathogens. Over a long period of co-evolution, endophytic microbes have attained the mechanism of synthesis of various hydrolytic enzymes such as pectinase, xylanases, cellulase, and proteinase which help in the penetration of endophytic microbes into tissues of plants. The effective usage of endophytic microbes in the form of bioinoculants reduce the usage of chemical fertilizers. Endophytic microbes belong to different phyla such as Actinobacteria, Acidobacteria, Bacteroidetes, Deinococcus-thermus, Firmicutes, Proteobacteria, and Verrucomicrobia. The most predominant and studied endophytic bacteria belonged to Proteobacteria followed by Firmicutes and then by Actinobacteria. The most dominant among reported genera in most of the leguminous and non-leguminous plants are Bacillus, Pseudomonas, Fusarium, Burkholderia, Rhizobium, and Klebsiella. In future, endophytic microbes have a wide range of potential for maintaining health of plant as well as environmental conditions for agricultural sustainability. The present review is focused on endophytic microbes, their diversity in leguminous as well as non-leguminous crops, biotechnological applications, and ability to promote the growth of plant for agro-environmental sustainability.
Collapse
|
15
|
Nguyen CT, Tran GB, Nguyen NH. Homeostasis of histone acetylation is critical for auxin signaling and root morphogenesis. PLANT MOLECULAR BIOLOGY 2020; 103:1-7. [PMID: 32088831 DOI: 10.1007/s11103-020-00985-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/20/2020] [Indexed: 05/24/2023]
Abstract
The auxin signaling and root morphogenesis are harmoniously controlled by two counteracted teams including (1) auxin/indole-3-acetic acid (AUX/IAA)-histone deacetylase (HDA) and (2) auxin response factor (ARF)-histone acetyltransferase (HAT). The involvement of histone acetylation in the regulation of transcription was firstly reported a few decades ago. In planta, auxin is the first hormone group that was discovered and it is also the most studied phytohormone. Current studies have elucidated the functions of histone acetylation in the modulation of auxin signaling as well as in the regulation of root morphogenesis under both normal and stress conditions. Based on the recent outcomes, this review is to provide a hierarchical view about the functions of histone acetylation in auxin signaling and root morphogenesis. In this report, we suggest that the auxin signaling must be controlled harmoniously by two counteracted teams including (1) auxin/indole-3-acetic acid (AUX/IAA)-histone deacetylase (HDA) and (2) auxin response factor (ARF)-histone acetyltransferase (HAT). Moreover, the balance in auxin signaling is very critical to contribute to normal root morphogenesis.
Collapse
Affiliation(s)
- Cuong Thach Nguyen
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
| | - Gia-Buu Tran
- Department of Biotechnology, Institute of Biotechnology and Food-Technology, Industrial University of Ho Chi Minh City, 12 Nguyen Van Bao Street, Ward 4, Go Vap District, Ho Chi Minh City, Vietnam
| | - Nguyen Hoai Nguyen
- Faculty of Biotechnology, Ho Chi Minh City Open University, 97 Vo Van Tan Street, District 3, Ho Chi Minh City, Vietnam.
| |
Collapse
|
16
|
Sidhu JS, Singh D, Gill HS, Brar NK, Qiu Y, Halder J, Al Tameemi R, Turnipseed B, Sehgal SK. Genome-Wide Association Study Uncovers Novel Genomic Regions Associated With Coleoptile Length in Hard Winter Wheat. Front Genet 2020; 10:1345. [PMID: 32117410 PMCID: PMC7025573 DOI: 10.3389/fgene.2019.01345] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 12/09/2019] [Indexed: 01/13/2023] Open
Abstract
Successful seedling establishment depends on the optimum depth of seed placement especially in drought-prone conditions, providing an opportunity to exploit subsoil water and increase winter survival in winter wheat. Coleoptile length is a key determinant for the appropriate depth at which seed can be sown. Thus, understanding the genetic basis of coleoptile length is necessary and important for wheat breeding. We conducted a genome-wide association study (GWAS) using a diverse panel of 298 winter wheat genotypes to dissect the genetic architecture of coleoptile length. We identified nine genomic regions associated with the coleoptile length on seven different chromosomes. Of the nine genomic regions, five have been previously reported in various studies, including one mapped to previously known Rht-B1 region. Three novel quantitative trait loci (QTLs), QCL.sdsu-2AS, QCL.sdsu-4BL, and QCL.sdsu-5BL were identified in our study. QCL.sdsu-5BL has a large substitution effect which is comparable to Rht-B1's effect and could be used to compensate for the negative effect of Rht-B1 on coleoptile length. In total, the nine QTLs explained 59% of the total phenotypic variation. Cultivars 'Agate' and 'MT06103' have the longest coleoptile length and interestingly, have favorable alleles at nine and eight coleoptile loci, respectively. These lines could be a valuable germplasm for longer coleoptile breeding. Gene annotations in the candidate regions revealed several putative proteins of specific interest including cytochrome P450-like, expansins, and phytochrome A. The QTLs for coleoptile length linked to single-nucleotide polymorphism (SNP) markers reported in this study could be employed in marker-assisted breeding for longer coleoptile in wheat. Thus, our study provides valuable insights into the genetic and molecular regulation of the coleoptile length in winter wheat.
Collapse
Affiliation(s)
- Jagdeep Singh Sidhu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Dilkaran Singh
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, United States
| | - Harsimardeep Singh Gill
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Navreet Kaur Brar
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Yeyan Qiu
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Rami Al Tameemi
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Brent Turnipseed
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| | - Sunish Kumar Sehgal
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
17
|
Effects of Metaxenia on Stone Cell Formation in Pear (Pyrus bretschneideri) Based on Transcriptomic Analysis and Functional Characterization of the Lignin-Related Gene PbC4H2. FORESTS 2020. [DOI: 10.3390/f11010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The deposition of lignin in flesh parenchyma cells for pear stone cells, and excessive stone cells reduce the taste and quality of the fruit. The effect of metaxenia on the quality of fruit has been heavily studied, but the effect of metaxenia on stone cell formation has not been fully elucidated to date. This study used P. bretschneideri (Chinese white pear) cv. ‘Yali’ (high-stone cell content) and P. pyrifolia (Sand pear) cv. ‘Cuiguan’ (low-stone cell content) as pollination trees to pollinate P. bretschneideri cv. ‘Lianglizaosu’ separately to fill this gap in the literature. The results of quantitative determination, histochemical staining and electron microscopy indicated that the content of stone cells and lignin in YL fruit (‘Yali’ (pollen parent) × ‘Lianglizaosu’ (seed parent)) was significantly higher than that in CL fruit (‘Cuiguan’ (pollen parent) × ‘Lianglizaosu’ (seed parent)). The transcriptome sequencing results that were obtained from the three developmental stages of the two types of hybrid fruits indicated that a large number of differentially expressed genes (DEGs) related to auxin signal transduction (AUX/IAAs and ARFs), lignin biosynthesis, and lignin metabolism regulation (MYBs, LIMs, and KNOXs) between the CL and YL fruits at the early stage of fruit development. Therefore, metaxenia might change the signal transduction process of auxin in pear fruit, thereby regulating the expression of transcription factors (TFs) related to lignin metabolism, and ultimately affecting lignin deposition and stone cell development. In addition, we performed functional verification of a differentially expressed gene, PbC4H2 (cinnamate 4-hydroxylase). Heterologous expression of PbC4H2 in the c4h mutant not only restored its collapsed cell wall, but also significantly increased the lignin content in the inflorescence stem. The results of our research help to elucidate the metaxenia-mediated regulation of pear stone cell development and clarify the function of PbC4H2 in cell wall development and lignin synthesis, which establishes a foundation for subsequent molecular breeding.
Collapse
|
18
|
Dédaldéchamp F, Moyen C, Fleurat-Lessard P, Roblin G. Characteristic early membrane effects induced by tryptophan in pulvinar motor cells. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:528-535. [PMID: 31473567 DOI: 10.1016/j.plaphy.2019.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/02/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
Tryptophan at concentrations higher than 0.1 mM, triggered characteristic early physiological effects such as rapid (within 5 min) dose-dependent membrane hyperpolarization in Mimosa pudica motor cells and modification of the time course of the spontaneous proton efflux monitored in the incubation medium of pulvinar tissues. The rapid modifications of the leaf turgor-mediated movements seen on the primary pulvini of M. pudica following a shock and on Cassia fasciculata leaflets during a transition from light to darkness indicate that tryptophan disturbed the ionic migrations involved in the electrophysiological events and in the osmocontractile reaction of the motor cells. These reactions were specific to tryptophan compared to those induced by serine and 5-hydroxytryptophan. The tryptophan mode of action cannot be linked to a direct modification of the plasma membrane H+-ATPase activity as monitored on purified pulvinar plasma membrane vesicles. The tryptophan metabolism-linked products tryptamine and indole also inhibited the motile reactions, activated in a continuous manner the H+ secretion of pulvinar tissues and showed properties of a protonophore and an ATPase activity inhibitor on plasma membrane vesicles, respectively. The specific behavior of tryptophan in the reaction studies here is discussed in light of the previously reported action of phytohormones.
Collapse
Affiliation(s)
- Fabienne Dédaldéchamp
- University of Poitiers, UFR Sciences Fondamentales et Appliquées, UMR CNRS 7267 Laboratoire EBI Ecologie et Biologie des Interactions, Equipe SEVE Sucres & Echanges Végétaux Environnement 3, rue Jacques Fort, Bât. B31, TSA 51106, 86073, Poitiers Cedex 9, France.
| | - Christelle Moyen
- University of Bourgogne Franche-Comté, Laboratoire de Chrono-Environnement, UMR CNRS 6249 UsC INRA, 16 route de Gray, 25000, Besançon, France
| | - Pierrette Fleurat-Lessard
- University of Poitiers, UFR Sciences Fondamentales et Appliquées, UMR CNRS 7267 Laboratoire EBI Ecologie et Biologie des Interactions, Equipe SEVE Sucres & Echanges Végétaux Environnement 3, rue Jacques Fort, Bât. B31, TSA 51106, 86073, Poitiers Cedex 9, France
| | - Gabriel Roblin
- University of Poitiers, UFR Sciences Fondamentales et Appliquées, UMR CNRS 7267 Laboratoire EBI Ecologie et Biologie des Interactions, Equipe SEVE Sucres & Echanges Végétaux Environnement 3, rue Jacques Fort, Bât. B31, TSA 51106, 86073, Poitiers Cedex 9, France
| |
Collapse
|
19
|
Nghi KN, Tondelli A, Valè G, Tagliani A, Marè C, Perata P, Pucciariello C. Dissection of coleoptile elongation in japonica rice under submergence through integrated genome-wide association mapping and transcriptional analyses. PLANT, CELL & ENVIRONMENT 2019; 42:1832-1846. [PMID: 30802973 DOI: 10.1111/pce.13540] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 02/06/2019] [Accepted: 02/10/2019] [Indexed: 05/23/2023]
Abstract
Rice is unique among cereals for its ability to germinate not only when submerged but also under anoxic conditions. Rice germination under submergence or anoxia is characterized by a longer coleoptile and delay in radicle emergence. A panel of temperate and tropical japonica rice accessions showing a large variability in coleoptile length was used to investigate genetic factors involved in this developmental process. The ability of the Khao Hlan On rice landrace to vigorously germinate when submerged has been previously associated with the presence of the trehalose 6 phosphate phosphatase 7 (TPP7) gene. In this study, we found that, in the presence of TPP7, polymorphisms and transcriptional variations of the gene in coleoptile tissue were not related to differences in the final coleoptile length under submergence. In order to find new chromosomal regions associated with the different ability of rice to elongate the coleoptile under submergence, we used genome-wide association study analysis on a panel of 273 japonica rice accessions. We discovered 11 significant marker-trait associations and identified candidate genes potentially involved in coleoptile length. Candidate gene expression analyses indicated that japonica rice genotypes possess complex genetic elements that control final coleoptile length under low oxygen.
Collapse
Affiliation(s)
- Khac Nhu Nghi
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alessandro Tondelli
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Giampiero Valè
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Vercelli, Italy
| | - Andrea Tagliani
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Caterina Marè
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Pierdomenico Perata
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Chiara Pucciariello
- PlantLab, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| |
Collapse
|
20
|
Liu N, Dong L, Deng X, Liu D, Liu Y, Li M, Hu Y, Yan Y. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L. BMC PLANT BIOLOGY 2018; 18:336. [PMID: 30522432 PMCID: PMC6282295 DOI: 10.1186/s12870-018-1559-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/22/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND The auxin response factor (ARF) gene family is involved in plant development and hormone regulation. Although the ARF gene family has been studied in some plant species, its structural features, molecular evolution, and expression profiling in Brachypodium distachyon L. are still not clear. RESULTS Genome-wide analysis identified 19 ARF genes in B. distachyon. A phylogenetic tree constructed with 182 ARF genes from seven plant species revealed three different clades, and the ARF genes from within a clade exhibited structural conservation, although certain divergences occurred in different clades. The branch-site model identified some sites where positive selection may have occurred, and functional divergence analysis found more Type II divergence sites than Type I. In particular, both positive selection and functional divergence may have occurred in 241H, 243G, 244 L, 310 T, 340G and 355 T. Subcellular localization prediction and experimental verification indicated that BdARF proteins were present in the nucleus. Transcript expression analysis revealed that BdARFs were mainly expressed in the leaf and root tips, stems, and developing seeds. Some BdARF genes exhibited significantly upregulated expression under various abiotic stressors. Particularly, BdARF4 and BdARF8 were significantly upregulated in response to abiotic stress factors such as salicylic acid and heavy metals. CONCLUSION The ARF gene family in B. distachyon was highly conserved. Several important amino acid sites were identified where positive selection and functional divergence occurred, and they may play important roles in functional differentiation. BdARF genes had clear tissue and organ expression preference and were involved in abiotic stress response, suggesting their roles in plant growth and stress resistance.
Collapse
Affiliation(s)
- Nannan Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Liwei Dong
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yue Liu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Beijing, 100048 China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, 100048 China
| |
Collapse
|
21
|
Watahiki M, Trewavas A. Systems, variation, individuality and plant hormones. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 146:3-22. [PMID: 30312622 DOI: 10.1016/j.pbiomolbio.2018.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/06/2018] [Indexed: 02/02/2023]
Abstract
Inter-individual variation in plants and particularly in hormone content, figures strongly in evolution and behaviour. Homo sapiens and Arabidopsis exhibit similar and substantial phenotypic and molecular variation. Whereas there is a very substantial degree of hormone variation in mankind, reports of inter-individual variation in plant hormone content are virtually absent but are likely to be as large if not larger than that in mankind. Reasons for this absence are discussed. Using an example of inter-individual variation in ethylene content in ripening, the article shows how biological time is compressed by hormones. It further resolves an old issue of very wide hormone dose response that result directly from negative regulation in hormone (and light) transduction. Negative regulation is used because of inter-individual variability in hormone synthesis, receptors and ancillary proteins, a consequence of substantial genomic and environmental variation. Somatic mosaics have been reported for several plant tissues and these too contribute to tissue variation and wide variation in hormone response. The article concludes by examining what variation exists in gravitropic responses. There are multiple sensing systems of gravity vectors and multiple routes towards curvature. These are an aspect of the need for reliability in both inter-individual variation and unpredictable environments. Plant hormone inter-individuality is a new area for research and is likely to change appreciation of the mechanisms that underpin individual behaviour.
Collapse
Affiliation(s)
- Masaaki Watahiki
- Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan.
| | - Anthony Trewavas
- Institute of Plant Molecular Science, University of Edinburgh, Kings Buildings, Mayfield Road, Edinburgh, EH9 3 JH, Scotland, United Kingdom.
| |
Collapse
|
22
|
Preparation of a new cellulose magnetic molecularly imprinted polymer micro-spheres to extract and analyze the indole-3-acetic acid in plant tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1092:343-349. [DOI: 10.1016/j.jchromb.2018.06.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 05/16/2018] [Accepted: 06/13/2018] [Indexed: 11/20/2022]
|
23
|
Xu YX, Xiao MZ, Liu Y, Fu JL, He Y, Jiang DA. The small auxin-up RNA OsSAUR45 affects auxin synthesis and transport in rice. PLANT MOLECULAR BIOLOGY 2017; 94:97-107. [PMID: 28321650 DOI: 10.1007/s11103-017-0595-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 02/16/2017] [Indexed: 05/25/2023]
Abstract
This research is the first to demonstrate that OsSAUR45 is involved in plant growth though affecting auxin synthesis and transport by repressing OsYUCCA and OsPIN gene expression in rice. Small auxin-up RNAs (SAURs) comprise a large multigene family and are rapidly activated as part of the primary auxin response in plants. However, little is known about the role of SAURs in plant growth and development, especially in monocots. Here, we report the biological function of OsSAUR45 in the model plant rice (Oryza sativa). OsSAUR45 is expressed in a tissue-specific pattern and is localized to the cytoplasm. Rice lines overexpressing OsSAUR45 displayed pleiotropic developmental defects including reduced plant height and primary root length, fewer adventitious roots, narrower leaves, and reduced seed setting. Auxin levels and transport were reduced in the OsSAUR45 overexpression lines, potentially because of decreased expression of Flavin-binding monooxygenase family proteins (OsYUCCAs) and PIN-FORMED family proteins (OsPINs). Exogenous auxin application rapidly induced OsSAUR45 expression and partially restored the phenotype of rice lines overexpressing OsSAUR45. These results demonstrate that OsSAUR45 is involved in plant growth by affecting auxin synthesis and transport through the repression of OsYUCCA and OsPIN gene expression in rice.
Collapse
Affiliation(s)
- Yan-Xia Xu
- National Center for Tea Improvement, Tea Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, 9 South Meiling Road, Hangzhou, 310008, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| | - Meng-Zhu Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jun-Liang Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yi He
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - De-An Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
24
|
Zhang Y, Marcon C, Tai H, von Behrens I, Ludwig Y, Hey S, Berendzen KW, Hochholdinger F. Conserved and unique features of the homeologous maize Aux/IAA proteins ROOTLESS WITH UNDETECTABLE MERISTEM 1 and RUM1-like 1. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1137-47. [PMID: 26672614 PMCID: PMC4753850 DOI: 10.1093/jxb/erv519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The maize (Zea mays L.) Aux/IAA protein RUM1 (ROOTLESS WITH UNDETECTABLE MERISTEM 1) is a key regulator of lateral and seminal root formation. An ancient maize genome duplication resulted in the emergence of its homeolog rum1-like1 (rul1), which displays 92% amino acid sequence identity with RUM1. Both, RUL1 and RUM1 exhibit the canonical four domain structure of Aux/IAA proteins. Moreover, both are localized to the nucleus, are instable and have similar short half-lives of ~23min. Moreover, RUL1 and RUM1 can be stabilized by specific mutations in the five amino acid degron sequence of domain II. In addition, proteins encoded by both genes interact in vivo with auxin response factors (ARFs) such as ZmARF25 and ZmARF34 in protoplasts. Although it was demonstrated that RUL1 and RUM1 can homo and heterodimerize in vivo, rul1 expression is independent of rum1. Moreover, on average rul1 expression is ~84-fold higher than rum1 in the 12 tested tissues and developmental stages, although the relative expression levels in different root tissues are very similar. While RUM1 and RUL1 display conserved biochemical properties, yeast-two-hybrid in combination with BiFC experiments identified a RUM1-associated protein 1 (RAP1) that specifically interacts with RUM1 but not with RUL1. This suggests that RUM1 and RUL1 are at least in part interwoven into different molecular networks.
Collapse
Affiliation(s)
- Yanxiang Zhang
- Center for Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture & Forestry University, 350002 Fuzhou, China Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Caroline Marcon
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Huanhuan Tai
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Inga von Behrens
- ZMBP, Center for Plant Molecular Biology, General Genetics, University of Tuebingen, 72076 Tuebingen, Germany
| | - Yvonne Ludwig
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Stefan Hey
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| | - Kenneth W Berendzen
- ZMBP, Center for Plant Molecular Biology, Central Facilities, University of Tuebingen, 72076 Tuebingen, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation, University of Bonn, 53113 Bonn, Germany
| |
Collapse
|
25
|
Zhang Y, von Behrens I, Zimmermann R, Ludwig Y, Hey S, Hochholdinger F. LATERAL ROOT PRIMORDIA 1 of maize acts as a transcriptional activator in auxin signalling downstream of the Aux/IAA gene rootless with undetectable meristem 1. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:3855-63. [PMID: 25911745 PMCID: PMC4473986 DOI: 10.1093/jxb/erv187] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Only little is known about target genes of auxin signalling downstream of the Aux/IAA-ARF module. In the present study, it has been demonstrated that maize lateral root primordia 1 (lrp1) encodes a transcriptional activator that is directly regulated by the Aux/IAA protein ROOTLESS WITH UNDETECTABLE MERISTEM 1 (RUM1). Expression of lrp1 is confined to early root primordia and meristems and is auxin-inducible. Based on its primary protein structure, LRP1 is predicted to be a transcription factor. This notion is supported by exclusive LRP1 localization in the nucleus and its ability to activate downstream gene activity. Based on the observation that lrp1 transcription is completely repressed in the semi-dominant gain of function mutant rum1, it was demonstrated that the lrp1 promoter is a direct target of RUM1 proteins. Subsequently, promoter activation assays indicated that RUM1 represses the expression of a GFP reporter fused to the native promoter of lrp1. Constitutive repression of lrp1 in rum1 mutants is a consequence of the stability of mutated rum1 proteins which cannot be degraded by the proteasome and thus constitutively bind to the lrp1 promoter and repress transcription. Taken together, the repression of the transcriptional activator lrp1 by direct binding of RUM1 to its promoter, together with specific expression of lrp1 in root meristems, suggests a function in maize root development via the RUM1-dependent auxin signalling pathway.
Collapse
Affiliation(s)
- Yanxiang Zhang
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, University of Bonn, D-53113 Bonn, Germany Center for Molecular Cell and Systems Biology, College of Life Science, Fujian Agriculture & Forestry University, 350002 Fuzhou, China
| | - Inga von Behrens
- ZMBP, Center for Plant Molecular Biology, Department of General Genetics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Roman Zimmermann
- ZMBP, Center for Plant Molecular Biology, Department of General Genetics, University of Tuebingen, D-72076 Tuebingen, Germany
| | - Yvonne Ludwig
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, University of Bonn, D-53113 Bonn, Germany
| | - Stefan Hey
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, University of Bonn, D-53113 Bonn, Germany
| | - Frank Hochholdinger
- INRES, Institute of Crop Science and Resource Conservation, Crop Functional Genomics, Friedrich-Ebert-Allee 144, University of Bonn, D-53113 Bonn, Germany
| |
Collapse
|
26
|
Geigenberger P, Fernie AR. Metabolic control of redox and redox control of metabolism in plants. Antioxid Redox Signal 2014; 21:1389-421. [PMID: 24960279 PMCID: PMC4158967 DOI: 10.1089/ars.2014.6018] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Reduction-oxidation (Redox) status operates as a major integrator of subcellular and extracellular metabolism and is simultaneously itself regulated by metabolic processes. Redox status not only dominates cellular metabolism due to the prominence of NAD(H) and NADP(H) couples in myriad metabolic reactions but also acts as an effective signal that informs the cell of the prevailing environmental conditions. After relay of this information, the cell is able to appropriately respond via a range of mechanisms, including directly affecting cellular functioning and reprogramming nuclear gene expression. RECENT ADVANCES The facile accession of Arabidopsis knockout mutants alongside the adoption of broad-scale post-genomic approaches, which are able to provide transcriptomic-, proteomic-, and metabolomic-level information alongside traditional biochemical and emerging cell biological techniques, has dramatically advanced our understanding of redox status control. This review summarizes redox status control of metabolism and the metabolic control of redox status at both cellular and subcellular levels. CRITICAL ISSUES It is becoming apparent that plastid, mitochondria, and peroxisome functions influence a wide range of processes outside of the organelles themselves. While knowledge of the network of metabolic pathways and their intraorganellar redox status regulation has increased in the last years, little is known about the interorganellar redox signals coordinating these networks. A current challenge is, therefore, synthesizing our knowledge and planning experiments that tackle redox status regulation at both inter- and intracellular levels. FUTURE DIRECTIONS Emerging tools are enabling ever-increasing spatiotemporal resolution of metabolism and imaging of redox status components. Broader application of these tools will likely greatly enhance our understanding of the interplay of redox status and metabolism as well as elucidating and characterizing signaling features thereof. We propose that such information will enable us to dissect the regulatory hierarchies that mediate the strict coupling of metabolism and redox status which, ultimately, determine plant growth and development.
Collapse
Affiliation(s)
- Peter Geigenberger
- 1 Department of Biology I, Ludwig Maximilian University Munich , Planegg-Martinsried, Germany
| | | |
Collapse
|
27
|
Lee S, Sundaram S, Armitage L, Evans JP, Hawkes T, Kepinski S, Ferro N, Napier RM. Defining binding efficiency and specificity of auxins for SCF(TIR1/AFB)-Aux/IAA co-receptor complex formation. ACS Chem Biol 2014; 9:673-82. [PMID: 24313839 PMCID: PMC3964829 DOI: 10.1021/cb400618m] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
![]()
Structure–activity
profiles for the phytohormone auxin have
been collected for over 70 years, and a number of synthetic auxins
are used in agriculture. Auxin classification schemes and binding
models followed from understanding auxin structures. However, all
of the data came from whole plant bioassays, meaning the output was
the integral of many different processes. The discovery of Transport
Inhibitor-Response 1 (TIR1) and the Auxin F-Box (AFB) proteins as
sites of auxin perception and the role of auxin as molecular glue
in the assembly of co-receptor complexes has allowed the development
of a definitive quantitative structure–activity relationship
for TIR1 and AFB5. Factorial analysis of binding activities offered
two uncorrelated factors associated with binding efficiency and binding
selectivity. The six maximum-likelihood estimators of Efficiency are
changes in the overlap matrixes, inferring that Efficiency is related
to the volume of the electronic system. Using the subset of compounds
that bound strongly, chemometric analyses based on quantum chemical
calculations and similarity and self-similarity indices yielded three
classes of Specificity that relate to differential binding. Specificity
may not be defined by any one specific atom or position and is influenced
by coulomb matrixes, suggesting that it is driven by electrostatic
forces. These analyses give the first receptor-specific classification
of auxins and indicate that AFB5 is the preferred site for a number
of auxinic herbicides by allowing interactions with analogues having
van der Waals surfaces larger than that of indole-3-acetic acid. The
quality factors are also examined in terms of long-standing models
for the mechanism of auxin binding.
Collapse
Affiliation(s)
- Sarah Lee
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
| | - Shanthy Sundaram
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
- Centre
for Biotechnology, Nehru Science Complex, University of Allahabad, Allahabad-211002, Uttar Pradesh, India
| | - Lynne Armitage
- Centre
for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - John P. Evans
- Jealott’s
Hill Intl Research Centre, Syngenta, Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Tim Hawkes
- Jealott’s
Hill Intl Research Centre, Syngenta, Ltd., Bracknell, Berkshire RG42 6EY, U.K
| | - Stefan Kepinski
- Centre
for Plant Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Noel Ferro
- Mulliken
Center for Theoretical Chemistry, Institute for Physical and Theoretical Chemistry, Wegelerstr. 12, D-53115 Bonn, Germany
| | - Richard M. Napier
- School
of Life Sciences, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, U.K
| |
Collapse
|
28
|
Abstract
An important aspect of studies on auxin is auxin response factors (ARFs), which activate or repress the auxin response genes by binding to auxin response elements (AuxREs) on their promoters. In this review, we focused on molecular biological advances of plant ARF families, and discussed ARF structures, regulation of ARF gene expression, the roles of ARFs in regulating the development of plants and in signal transduction and the mechanisms involved in the target gene regulation by ARFs. The phylogenetic relationships of ARFs in plants are close and most of them have 4 domains. ARFs are expressed in various tissues. Their expressions are regulated at both transcriptional and post-transcriptional levels. They play important roles in the interactions between auxin and other hormones.
Collapse
|
29
|
Feraru E, Vosolsobě S, Feraru MI, Petrášek J, Kleine-Vehn J. Evolution and Structural Diversification of PILS Putative Auxin Carriers in Plants. FRONTIERS IN PLANT SCIENCE 2012; 3:227. [PMID: 23091477 PMCID: PMC3470039 DOI: 10.3389/fpls.2012.00227] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 05/21/2023]
Abstract
The phytohormone auxin contributes to virtually every aspect of the plant development. The spatiotemporal distribution of auxin depends on a complex interplay between auxin metabolism and intercellular auxin transport. Intracellular auxin compartmentalization provides another link between auxin transport processes and auxin metabolism. The PIN-LIKES (PILS) putative auxin carriers localize to the endoplasmic reticulum (ER) and contribute to cellular auxin homeostasis. PILS proteins regulate intracellular auxin accumulation, the rate of auxin conjugation and, subsequently, affect nuclear auxin signaling. Here, we investigate sequence diversification of the PILS family in Arabidopsis thaliana and provide insights into the evolution of these novel putative auxin carriers in plants. Our data suggest that PILS proteins are conserved throughout the plant lineage and expanded during higher plant evolution. PILS proteins diversified early during plant evolution into three clades. Besides the ancient Clade I encompassing non-land plant species, PILS proteins evolved into two clades. The diversification of Clade II and Clade III occurred already at the level of non-vascular plant evolution and, hence, both clades contain vascular and non-vascular plant species. Nevertheless, Clade III contains fewer non- and increased numbers of vascular plants, indicating higher importance of Clade III for vascular plant evolution. Notably, PILS proteins are distinct and appear evolutionarily older than the prominent PIN-FORMED auxin carriers. Moreover, we revealed particular PILS sequence divergence in Arabidopsis and assume that these alterations could contribute to distinct gene regulations and protein functions.
Collapse
Affiliation(s)
- Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Stanislav Vosolsobě
- Department of Faculty of Science, Experimental Plant Biology, Charles UniversityPrague, Czech Republic
| | - Mugurel I. Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
| | - Jan Petrášek
- Department of Faculty of Science, Experimental Plant Biology, Charles UniversityPrague, Czech Republic
- Institute of Experimental Botany of the Academy of Sciences of the Czech RepublicPrague, Czech Republic
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life SciencesVienna, Austria
- *Correspondence: Jürgen Kleine-Vehn, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria. e-mail:
| |
Collapse
|
30
|
Paul AL, Manak MS, Mayfield JD, Reyes MF, Gurley WB, Ferl RJ. Parabolic flight induces changes in gene expression patterns in Arabidopsis thaliana. ASTROBIOLOGY 2011; 11:743-58. [PMID: 21970703 DOI: 10.1089/ast.2011.0659] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our primary objective was to evaluate gene expression changes in Arabidopsis thaliana in response to parabolic flight as part of a comprehensive approach to the molecular biology of spaceflight-related adaptations. In addition, we wished to establish parabolic flight as a tractable operations platform for molecular biology studies. In a succession of experiments on NASA's KC-135 and C-9 parabolic aircraft, Arabidopsis plants were presented with replicated exposure to parabolic flight. Transcriptome profiling revealed that parabolic flight caused changes in gene expression patterns that stood the statistical tests of replication on three different flight days. The earliest response, after 20 parabolas, was characterized by a prominence of genes associated with signal transduction. After 40 parabolas, this prominence was largely replaced by genes associated with biotic and abiotic stimuli and stress. Among these responses, three metabolic processes stand out in particular: the induction of auxin metabolism and signaling, the differential expression of genes associated with calcium-mediated signaling, and the repression of genes associated with disease resistance and cell wall biochemistry. Many, but not all, of these responses are known to be involved in gravity sensing in plants. Changes in auxin-related gene expression were also recorded by reporter genes tuned to auxin signal pathways. These data demonstrate that the parabolic flight environment is appropriate for molecular biology research involving the transition to microgravity, in that with replication, proper controls, and analyses, gene expression changes can be observed in the time frames of typical parabolic flight experiments.
Collapse
Affiliation(s)
- Anna-Lisa Paul
- Horticultural Sciences and Genetics Institute, University of Florida, Gainesville, USA
| | | | | | | | | | | |
Collapse
|
31
|
von Behrens I, Komatsu M, Zhang Y, Berendzen KW, Niu X, Sakai H, Taramino G, Hochholdinger F. Rootless with undetectable meristem 1 encodes a monocot-specific AUX/IAA protein that controls embryonic seminal and post-embryonic lateral root initiation in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:341-53. [PMID: 21219511 DOI: 10.1111/j.1365-313x.2011.04495.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The maize (Zea mays L.) rum1-R (rootless with undetectable meristems 1-Reference) mutant does not initiate embryonic seminal roots and post-embryonic lateral roots at the primary root. Map-based cloning revealed that Rum1 encodes a 269 amino acid (aa) monocot-specific Aux/IAA protein. The rum1-R protein lacks 26 amino acids including the GWPPV degron sequence in domain II and part of the bipartite NLS (nuclear localization sequence). Significantly reduced lateral root density (approximately 35%) in heterozygous plants suggests that the rum1-R is a semi-dominant mutant. Overexpression of rum1-R under the control of the maize MSY (Methionine SYnthase) promoter supports this notion by displaying a reduced number of lateral roots (31-37%). Functional characterization suggests that Rum1 is auxin-inducible and encodes a protein that localizes to the nucleus. Moreover, RUM1 is unstable with a half life time of approximately 22 min while the mutant rum1-R protein is very stable. In vitro and in vivo experiments demonstrated an interaction of RUM1 with ZmARF25 and ZmARF34 (Z. mays AUXIN RESPONSE FACTOR 25 and 34). In summary, the presented data suggest that Rum1 encodes a canonical Aux/IAA protein that is required for the initiation of embryonic seminal and post-embryonic lateral root initiation in primary roots of maize.
Collapse
Affiliation(s)
- Inga von Behrens
- Department of General Genetics, ZMBP, Center for Plant Molecular Biology, University of Tuebingen, 72076 Tuebingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
32
|
de Almeida MR, Ruedell CM, Ricachenevsky FK, Sperotto RA, Pasquali G, Fett-Neto AG. Reference gene selection for quantitative reverse transcription-polymerase chain reaction normalization during in vitro adventitious rooting in Eucalyptus globulus Labill. BMC Mol Biol 2010; 11:73. [PMID: 20854682 PMCID: PMC2955024 DOI: 10.1186/1471-2199-11-73] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/20/2010] [Indexed: 01/10/2023] Open
Abstract
Background Eucalyptus globulus and its hybrids are very important for the cellulose and paper industry mainly due to their low lignin content and frost resistance. However, rooting of cuttings of this species is recalcitrant and exogenous auxin application is often necessary for good root development. To date one of the most accurate methods available for gene expression analysis is quantitative reverse transcription-polymerase chain reaction (qPCR); however, reliable use of this technique requires reference genes for normalization. There is no single reference gene that can be regarded as universal for all experiments and biological materials. Thus, the identification of reliable reference genes must be done for every species and experimental approach. The present study aimed at identifying suitable control genes for normalization of gene expression associated with adventitious rooting in E. globulus microcuttings. Results By the use of two distinct algorithms, geNorm and NormFinder, we have assessed gene expression stability of eleven candidate reference genes in E. globulus: 18S, ACT2, EF2, EUC12, H2B, IDH, SAND, TIP41, TUA, UBI and 33380. The candidate reference genes were evaluated in microccuttings rooted in vitro, in presence or absence of auxin, along six time-points spanning the process of adventitious rooting. Overall, the stability profiles of these genes determined with each one of the algorithms were very similar. Slight differences were observed in the most stable pair of genes indicated by each program: IDH and SAND for geNorm, and H2B and TUA for NormFinder. Both programs indentified UBI and 18S as the most variable genes. To validate these results and select the most suitable reference genes, the expression profile of the ARGONAUTE1 gene was evaluated in relation to the most stable candidate genes indicated by each algorithm. Conclusion Our study showed that expression stability varied between putative reference genes tested in E. globulus. Based on the AGO1 relative expression profile obtained using the genes suggested by the algorithms, H2B and TUA were considered as the most suitable reference genes for expression studies in E. globulus adventitious rooting. UBI and 18S were unsuitable for use as controls in qPCR related to this process. These findings will enable more accurate and reliable normalization of qPCR results for gene expression studies in this economically important woody plant, particularly related to rooting and clonal propagation.
Collapse
Affiliation(s)
- Márcia R de Almeida
- Center for Biotechnology, Federal University of Rio Grande do Sul, P,O, Box 15005, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
33
|
Ferro N, Bredow T, Jacobsen HJ, Reinard T. Route to Novel Auxin: Auxin Chemical Space toward Biological Correlation Carriers. Chem Rev 2010; 110:4690-708. [DOI: 10.1021/cr800229s] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Noel Ferro
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Bredow
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Hans-Jorg Jacobsen
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| | - Thomas Reinard
- Institute of Physical and Theoretical Chemistry, University of Bonn, Wegeler Strasse 12, Bonn, Germany 53115 and Institute for Plant Genetics, Leibniz University of Hannover, Germany
| |
Collapse
|
34
|
Hao GF, Yang GF. The role of Phe82 and Phe351 in auxin-induced substrate perception by TIR1 ubiquitin ligase: a novel insight from molecular dynamics simulations. PLoS One 2010; 5:e10742. [PMID: 20505777 PMCID: PMC2873998 DOI: 10.1371/journal.pone.0010742] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Accepted: 04/28/2010] [Indexed: 11/19/2022] Open
Abstract
It is well known that Auxin plays a key role in controlling many aspects of plant growth and development. Crystal structures of Transport inhibitor response 1 (TIR1), a true receptor of auxin, were very recently determined for TIR1 alone and in complexes with auxin and different synthetic analogues and an Auxin/Indole-3-Acetic Acid (Aux/IAA) substrate peptide. However, the dynamic conformational changes of the key residues of TIR1 that take place during the auxin and substrate perception by TIR1 and the detailed mechanism of these changes are still unclear. In the present study, various computational techniques were integrated to uncover the detailed molecular mechanism of the auxin and Aux/IAA perception process; these simulations included molecular dynamics (MD) simulations on complexes and the free enzyme, the molecular mechanics Poisson Boltzmann surface area (MM-PBSA) calculations, normal mode analysis, and hydrogen bond energy (HBE) calculations. The computational simulation results provided a reasonable explanation for the structure-activity relationships of auxin and its synthetic analogues in view of energy. In addition, a more detailed model for auxin and Aux/IAA perception was also proposed, indicating that Phe82 and Phe351 played a pivotal role in Aux/IAA perception. Upon auxin binding, Phe82 underwent conformational changes to accommodate the subsequent binding of Aux/IAA. As a result, auxin enhances the TIR1-Aux/IAA interactions by acting as a "molecular glue". Besides, Phe351 acts as a "fastener" to further improve the substrate binding. The structural and mechanistic insights obtained from the present study will provide valuable clues for the future design of promising auxin analogues.
Collapse
Affiliation(s)
- Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, People's Republic of China
- * E-mail:
| |
Collapse
|
35
|
Wasternack C, Xie D. The genuine ligand of a jasmonic acid receptor: improved analysis of jasmonates is now required. PLANT SIGNALING & BEHAVIOR 2010; 5:337-40. [PMID: 20404483 PMCID: PMC2958582 DOI: 10.4161/psb.5.4.11574] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 02/17/2010] [Indexed: 05/18/2023]
Abstract
Jasmonic acid (JA), its metabolites, such as the methyl ester or amino acid conjugates as well as its precursor 12-oxophytodienoic acid (OPDA) are lipid-derived signals. JA, OPDA and JA-amino acid conjugates are known to function as signals in plant stress responses and development. More recently, formation of JA-amino acid conjugates and high biological activity of JA-Isoleucine (JA-Ile) were found to be essential in JA signaling. A breakthrough was the identification of JAZ proteins which interact with the F-box protein COI1 if JA-Ile is bound. This interaction leads to proteasomal degradation of JAZs being negative regulators of JA-induced transcription. Surprisingly, a distinct stereoisomer of JA-Ile, the (+)-7-iso-JA-Ile [(3R,7S) form] is most active. Coronatine, a bacterial phytotoxine with an identical stereochemistry at the cyclopentanone ring, has a similar bioactivity. This was explained by the recent identification of COI1 as the JA receptor and accords well with molecular modeling studies. Whereas over the last two decades JA was quantified to describe any JA dependent process, now we have to take into account a distinct stereoisomer of JA-Ile. Until recently a quantitative analysis of (+)-7-iso-JA-Ile was missing presumable due to its equilibration to (-)-JA-Ile. Now such an analysis was achieved. These aspects will be discussed based on our new knowledge on JA perception and signaling.
Collapse
|
36
|
de Jong M, Wolters-Arts M, Feron R, Mariani C, Vriezen WH. The Solanum lycopersicum auxin response factor 7 (SlARF7) regulates auxin signaling during tomato fruit set and development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:160-70. [PMID: 18778404 DOI: 10.1111/j.1365-313x.2008.03671.x] [Citation(s) in RCA: 217] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Auxin response factors (ARFs) are encoded by a gene family of transcription factors that specifically control auxin-dependent developmental processes. A tomato ARF gene, homologous to Arabidopsis NPH4/ARF7 and therefore designated as Solanum lycopersicum ARF7 (SlARF7), was found to be expressed at a high level in unpollinated mature ovaries. More detailed analysis of tomato ovaries showed that the level of SlARF7 transcript increases during flower development, remains at a constant high level in mature flowers, and is down-regulated within 48 h after pollination. Transgenic plants with decreased SlARF7 mRNA levels formed seedless (parthenocarpic) fruits. These fruits were heart-shaped and had a rather thick pericarp due to increased cell expansion, compared with the pericarp of wild-type fruits. The expression analysis, together with the parthenocarpic fruit phenotype of the transgenic lines, suggests that, in tomato, SlARF7 acts as a negative regulator of fruit set until pollination and fertilization have taken place, and moderates the auxin response during fruit growth.
Collapse
Affiliation(s)
- Maaike de Jong
- Department of Plant Cell Biology, Institute for Water and Wetland Research, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Vadassery J, Ritter C, Venus Y, Camehl I, Varma A, Shahollari B, Novák O, Strnad M, Ludwig-Müller J, Oelmüller R. The role of auxins and cytokinins in the mutualistic interaction between Arabidopsis and Piriformospora indica. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1371-83. [PMID: 18785832 DOI: 10.1094/mpmi-21-10-1371] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arabidopsis growth and reproduction are stimulated by the endophytic fungus Piriformospora indica. The fungus produces low amounts of auxins, but the auxin levels and the expression of auxin-regulated genes are not altered in colonized roots. Also, mutants with reduced auxin levels (ilr1-1, nit1-3, tfl2, cyp79 b2b3) respond to P. indica. However, the fungus rescues the dwarf phenotype of the auxin overproducer sur1-1 by converting free auxin into conjugates, which also results in the downregulation of the auxin-induced IAA6 and the upregulation of the P. indica-induced LRR1 gene. The fungus produces relatively high levels of cytokinins, and the cytokinin levels are higher in colonized roots compared with the uncolonized controls. trans-Zeatin cytokinin biosynthesis and the CRE1/AHK2 receptor combination are crucial for P. indica-mediated growth stimulation, while mutants lacking cis-zeatin, impaired in other cytokinin receptor combinations, or containing reduced cytokinin levels respond to the fungus. Since root colonization is not affected in the cytokinin mutants, we propose that cytokinins are required for P. indica-induced growth promotion. Finally, a comparative analysis of the phytohormone mutants allows the conclusion that the response to P. indica is independent of the architecture and size of the roots.
Collapse
|
38
|
Shishova M, Yemelyanov V, Rudashevskaya E, Lindberg S. A shift in sensitivity to auxin within development of maize seedlings. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1323-30. [PMID: 17074416 DOI: 10.1016/j.jplph.2006.09.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Accepted: 09/02/2006] [Indexed: 05/08/2023]
Abstract
The auxin-induced changes in cytosolic concentrations of Ca(2+) and H(+) ions were investigated in protoplasts from maize coleoptile cells at 3rd, 4th and 5th day of development of etiolated seedlings. The shifts in [Ca(2+)](cyt) and [H(+)](cyt) were detected by use of fluorescence microscopy in single protoplasts loaded with the tetra[acetoxymethyl]esters of the fluorescent calcium binding Fura 2, or pH-sensitive carboxyfluorescein, BCECF, respectively. Both the auxin-induced shifts in the ion concentrations were specific to the physiologically active synthetic auxin, naphthalene-1-acetic acid (1-NAA), and not to the non-active naphthalene-2-acetic acid (2-NAA). Regardless of the age of the seedlings, the rise in [Ca(2+)](cyt) was prior to the acidification in all investigated cases. The maximal acidification coincided with the highest amplitude of [Ca(2+)](cyt) change, but not directly depended on the concentration of 1-NAA. Within aging of the seedlings the amplitude of auxin-induced [Ca(2+)](cyt) elevation decreased. The shift in auxin-induced acidification was almost equal at 3rd and 4th day, but largely dropped at 5th day of development. The acidification was related to changes in the plasma membrane H(+)-ATPase activity, detected as phosphate release. The decrement in amplitude of both the tested auxin-triggered reactions well coincided with the end of the physiological function of the coleoptile. Hence the primary auxin-induced increase in [Ca(2+)](cyt), which is supposed to be an important element of hormone signal perception and transduction, can be used as a test for elucidation of plant cell sensitivity to auxin.
Collapse
Affiliation(s)
- Maria Shishova
- Department of Plant Physiology and Biochemistry, St. Petersburg State University, 199034 St. Petersburg, Russia
| | | | | | | |
Collapse
|
39
|
Bertosa B, Kojić-Prodić B, Wade RC, Tomić S. Mechanism of auxin interaction with Auxin Binding Protein (ABP1): a molecular dynamics simulation study. Biophys J 2007; 94:27-37. [PMID: 17766341 PMCID: PMC2134879 DOI: 10.1529/biophysj.107.109025] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Auxin Binding Protein 1 (ABP1) is ubiquitous in green plants. It binds the phytohormone auxin with high specificity and affinity, but its role in auxin-induced processes is unknown. To understand the proposed receptor function of ABP1 we carried out a detailed molecular modeling study. Molecular dynamics simulations showed that ABP1 can adopt two conformations differing primarily in the position of the C-terminus and that one of them is stabilized by auxin binding. This is in agreement with experimental evidence that auxin induces changes at the ABP1 C-terminus. Simulations of ligand egress from ABP1 revealed three main routes by which an auxin molecule can enter or leave the ABP1 binding site. Assuming the previously proposed orientation of ABP1 to plant cell membranes, one of the routes leads to the membrane and the other two to ABP1's aqueous surroundings. A network of hydrogen-bonded water molecules leading from the bulk water to the zinc-coordinated ligands in the ABP1 binding site was formed in all simulations. Water entrance into the zinc coordination sphere occurred simultaneously with auxin egress. These results suggest that the hydrogen-bonded water molecules may assist in protonation and deprotonation of auxin molecules and their egress from the ABP1 binding site.
Collapse
|
40
|
Muscolo A, Sidari M, Francioso O, Tugnoli V, Nardi S. The auxin-like activity of humic substances is related to membrane interactions in carrot cell cultures. J Chem Ecol 2007; 33:115-29. [PMID: 17111220 DOI: 10.1007/s10886-006-9206-9] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
A detailed characterization of two humic fractions was performed: One with low relative molecular mass (LMr<3,500 Da) and one with high relative molecular mass (HMr>3,500 Da). Distinct (1)H NMR spectroscopic patterns were observed for the two fractions. HMr showed an aromatic proton region, an intense and broad region (3.0-5.0 ppm) attributed to sugar-like and polyether components, and an intense doublet at 1.33 ppm (identified as protons of the beta-CH(3) in lactate). In contrast, LMr did not show resonances due to aromatic protons and was characterized by a broad unresolved region, assigned to sugar-like components. The (13)C NMR spectra showed that the LMr humic fraction was richer in carboxylic and aliphatic C groups compared to HMr fraction. These substances were fluorescein-labeled [fluorescein isothiocyanate (FITC)], and their interaction with carrot cells in culture was monitored for 10 d, and compared to FITC-indole-3-acetic acid (IAA) to clarify their mechanisms of biological activity. After different incubation times, fluorescein staining of carrot cells and decrease of fluorescein concentration in the culture medium were evaluated. Fluorescent membrane staining was only present in IAA and the LMr humic fraction treated cell cultures. A consequential decrease of fluorescein concentration in the culture media was also observed. Pretreatment of carrot cells with unconjugated IAA or LMr humic fraction markedly reduced fluorescein staining of both FITC-IAA and FITC-LMr humic fraction. Blocking tests gave indirect evidence of possible binding of the LMr humic fraction to IAA cell membrane receptors. These results indicate that the two humic fractions behave differently. Only LMr humic fraction, like IAA, interacts with cellular membranes in carrot cell cultures.
Collapse
Affiliation(s)
- A Muscolo
- Department of Agricultural and Forest Systems Management, University Mediterranea of Reggio Calabria, Feo di Vito-89100, Reggio Calabria, Italy.
| | | | | | | | | |
Collapse
|
41
|
Kerr ID, Bennett MJ. New insight into the biochemical mechanisms regulating auxin transport in plants. Biochem J 2007; 401:613-22. [PMID: 17209803 PMCID: PMC1770846 DOI: 10.1042/bj20061411] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The transport of the plant hormone auxin has been under intense investigation since its identification 80 years ago. Studies have gradually refined our understanding of the importance of auxin transport in many aspects of plant signalling and development, and the focus has intensified in recent years towards the identification of the proteins involved in auxin transport and their functional mechanism. Within the past 18 months, the field has progressed rapidly, with confirmation that several distinct classes of proteins, previously dubbed as 'putative auxin permeases' or 'auxin transport facilitators', are bona fide transporters of IAA (indol-3-ylacetic acid). In this review we will appraise the recent transport data and highlight likely future research directions, including the characterization of auxiliary proteins necessary for the regulation of auxin transporters.
Collapse
Affiliation(s)
- Ian D Kerr
- School of Biomedical Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | | |
Collapse
|
42
|
Levin M. Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. ACTA ACUST UNITED AC 2006; 78:191-223. [PMID: 17061264 DOI: 10.1002/bdrc.20078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well-characterized, the left-right (LR) axis has only relatively recently begun to be understood at the molecular level. The mechanisms that ensure invariant LR asymmetry of the heart, viscera, and brain involve fundamental aspects of cell biology, biophysics, and evolutionary biology, and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis links biomolecular chirality to embryonic development and ultimately to behavior and cognition, revealing feedback loops and conserved functional modules occurring as widely as plants and mammals. This review focuses on the unique and fascinating physiological aspects of LR patterning in a number of vertebrate and invertebrate species, discusses several profound mechanistic analogies between biological regulation in diverse systems (specifically proposing a nonciliary parallel between kidney cells and the LR axis based on subcellular regulation of ion transporter targeting), highlights the possible importance of early, highly-conserved intracellular events that are magnified to embryo-wide scales, and lays out the most important open questions about the function, evolutionary origin, and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, and the Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
43
|
Esser AT, Smith KC, Weaver JC, Levin M. Mathematical model of morphogen electrophoresis through gap junctions. Dev Dyn 2006; 235:2144-59. [PMID: 16786594 DOI: 10.1002/dvdy.20870] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Gap junctional communication is important for embryonic morphogenesis. However, the factors regulating the spatial properties of small molecule signal flows through gap junctions remain poorly understood. Recent data on gap junctions, ion transporters, and serotonin during left-right patterning suggest a specific model: the net unidirectional transfer of small molecules through long-range gap junctional paths driven by an electrophoretic mechanism. However, this concept has only been discussed qualitatively, and it is not known whether such a mechanism can actually establish a gradient within physiological constraints. We review the existing functional data and develop a mathematical model of the flow of serotonin through the early Xenopus embryo under an electrophoretic force generated by ion pumps. Through computer simulation of this process using realistic parameters, we explored quantitatively the dynamics of morphogen movement through gap junctions, confirming the plausibility of the proposed electrophoretic mechanism, which generates a considerable gradient in the available time frame. The model made several testable predictions and revealed properties of robustness, cellular gradients of serotonin, and the dependence of the gradient on several developmental constants. This work quantitatively supports the plausibility of electrophoretic control of morphogen movement through gap junctions during early left-right patterning. This conceptual framework for modeling gap junctional signaling -- an epigenetic patterning mechanism of wide relevance in biological regulation -- suggests numerous experimental approaches in other patterning systems.
Collapse
Affiliation(s)
- Axel T Esser
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | | | | |
Collapse
|
44
|
Walch-Liu P, Liu LH, Remans T, Tester M, Forde BG. Evidence that L-glutamate can act as an exogenous signal to modulate root growth and branching in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2006; 47:1045-57. [PMID: 16816406 DOI: 10.1093/pcp/pcj075] [Citation(s) in RCA: 155] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The roots of many plant species are known to use inorganic nitrogen, in the form of , as a cue to initiate localized root proliferation within nutrient-rich patches of soil. We report here that, at micromolar concentrations and in a genotype-dependent manner, exogenous l-glutamate is also able to elicit complex changes in Arabidopsis root development. l-Glutamate is perceived specifically at the primary root tip and inhibits mitotic activity in the root apical meristem, but does not interfere with lateral root initiation or outgrowth. Only some time after emergence do lateral roots acquire l-glutamate sensitivity, indicating that their ability to respond to l-glutamate is developmentally regulated. Comparisons between different Arabidopsis ecotypes revealed a remarkable degree of natural variation in l-glutamate sensitivity, with C24 being the most sensitive. The aux1-7 auxin transport mutant had reduced l-glutamate sensitivity, suggesting a possible interaction between l-glutamate and auxin signaling. Surprisingly, two loss-of-function mutants at the AXR1 locus (axr1-3 and axr1-12) were hypersensitive to l-glutamate. A pharmacological approach, using agonists and antagonists of mammalian ionotropic glutamate receptors, was unable to provide evidence of a role for their plant homologs in sensing exogenous glutamate. We discuss the mechanism of l-glutamate sensing and the possible ecological significance of the observed l-glutamate-elicited changes in root architecture.
Collapse
Affiliation(s)
- Pia Walch-Liu
- Department of Biological Sciences, Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | | | | | | | | |
Collapse
|
45
|
Tax FE, Durbak A. Meristems in the movies: live imaging as a tool for decoding intercellular signaling in shoot apical meristems. THE PLANT CELL 2006; 18:1331-7. [PMID: 16741235 PMCID: PMC1475494 DOI: 10.1105/tpc.106.042572] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- Frans E Tax
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721, USA.
| | | |
Collapse
|
46
|
Kepinski S. Integrating hormone signaling and patterning mechanisms in plant development. CURRENT OPINION IN PLANT BIOLOGY 2006; 9:28-34. [PMID: 16325457 DOI: 10.1016/j.pbi.2005.11.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Accepted: 11/18/2005] [Indexed: 05/05/2023]
Abstract
Plant growth and development are driven by the bustling integration of a vast number of signals, among which plant hormones dominate. Understanding the role of hormones in particular developmental events requires their integration with developmental regulators known to be specific to those events. Using the increasing number of tools that can be utilized to probe hormone biosynthesis, transport and response, several recent studies have taken such an integrative approach, and in so doing have contributed to a clearer picture of precisely how hormones control plant development.
Collapse
Affiliation(s)
- Stefan Kepinski
- Department of Biology, University of York, Box 373, York YO10 5YW, UK.
| |
Collapse
|
47
|
Abstract
RNA has many functions in addition to being a simple messenger between the genome and the proteome. Over two decades, several classes of small noncoding RNAs c. 21 nucleotides (nt) long have been uncovered in eukaryotic genomes, which appear to play a central role in diverse and fundamental processes. In plants, small RNA-based mechanisms are involved in genome stability, gene expression and defense. Many of the discoveries in this new "small RNA world" were made by plant biologists. Here, we discuss the three major classes of small RNAs that are found in the plant kingdom, namely small interfering RNAs, microRNAs, and the recently discovered trans-acting small interfering RNAs. Recent results shed light on the identification, integration and specialization of the different components (Dicer-like, Argonaute, and others) involved in the biogenesis of the different classes of small RNAs in plants. Owing to the development of better experimental and computational methods, an ever increasing number of small noncoding RNAs are uncovered in different plant genomes. In particular the well-studied microRNAs seem to act as key regulators in several different developmental pathways, with a marked preference for transcription factors as targets. In addition, an increasing amount of data suggest that they also play an important role in other mechanisms, such as response to stress or environmental changes.
Collapse
Affiliation(s)
- Eric Bonnet
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Technologiepark 927, B-9052 Gent, Belgium
| | | | | |
Collapse
|