1
|
Škyvarová D, Brunoni F, Žukauskaitė A, Pěnčík A. Glycosylation pathways in auxin homeostasis. PHYSIOLOGIA PLANTARUM 2025; 177:e70170. [PMID: 40133767 PMCID: PMC11936858 DOI: 10.1111/ppl.70170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 03/27/2025]
Abstract
Auxin glycosylation plays a fundamental role in the regulation of auxin homeostasis, activity, and transport, contributing to the dynamic control of plant growth and development. Glycosylation enhances auxin stability, solubility, and storage capacity, serving as a key mechanism for both temporary inactivation and long-term storage of auxin molecules. Specific glycosyltransferases are critical for this process, catalyzing glycosylation at either the carboxyl group or the nitrogen atom of the indole ring. The storage roles of glycosylated auxins, such as IAA-N-Glc, have been shown to be essential during embryogenesis and seed germination, while irreversible conjugation into catabolic products helps to maintain auxin homeostasis in vegetative tissues. This review highlights the diversity, enzymatic specificity, and physiological relevance of auxin glycosylation pathways, including a frequently overlooked N-glycosylation, underscoring its importance in the complex network of auxin metabolism.
Collapse
Affiliation(s)
- Daniela Škyvarová
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Federica Brunoni
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of SciencePalacký UniversityOlomoucCzech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of SciencePalacký UniversityOlomoucCzech Republic
- Laboratory of Growth RegulatorsInstitute of Experimental Botany, The Czech Academy of SciencesOlomoucCzech Republic
| |
Collapse
|
2
|
Chen JC, Lin HY, Novák O, Strnad M, Lee YI, Fang SC. Diverse geotropic responses in the orchid family. PLANT, CELL & ENVIRONMENT 2024; 47:3828-3845. [PMID: 38809156 DOI: 10.1111/pce.14975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/28/2024] [Accepted: 05/14/2024] [Indexed: 05/30/2024]
Abstract
In epiphytes, aerial roots are important to combat water-deficient, nutrient-poor, and high-irradiance microhabitats. However, whether aerial roots can respond to gravity and whether auxin plays a role in regulating aerial root development remain open-ended questions. Here, we investigated the gravitropic response of the epiphytic orchid Phalaenopsis aphrodite. Our data showed that aerial roots of P. aphrodite failed to respond to gravity, and this was correlated with a lack of starch granules/statolith sedimentation in the roots and the absence of the auxin efflux carrier PIN2 gene. Using an established auxin reporter, we discovered that auxin maximum was absent in the quiescent center of aerial roots of P. aphrodite. Also, gravity failed to trigger auxin redistribution in the root caps. Hence, loss of gravity sensing and gravity-dependent auxin redistribution may be the genetic factors contributing to aerial root development. Moreover, the architectural and functional innovations that achieve fast gravitropism in the flowering plants appear to be lost in both terrestrial and epiphytic orchids, but are present in the early diverged orchid subfamilies. Taken together, our findings provide physiological and molecular evidence to support the notion that epiphytic orchids lack gravitropism and suggest diverse geotropic responses in the orchid family.
Collapse
Affiliation(s)
- Jhun-Chen Chen
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsiang-Yin Lin
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Science, Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Yung-I Lee
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Su-Chiung Fang
- Biotechnology Center in Southern Taiwan, Academia Sinica, Tainan, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
3
|
Petřík I, Hladík P, Zhang C, Pěnčík A, Novák O. Spatio-temporal plant hormonomics: from tissue to subcellular resolution. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5295-5311. [PMID: 38938164 DOI: 10.1093/jxb/erae267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
Due to technological advances in mass spectrometry, significant progress has been achieved recently in plant hormone research. Nowadays, plant hormonomics is well established as a fully integrated scientific field focused on the analysis of phytohormones, mainly on their isolation, identification, and spatiotemporal quantification in plants. This review represents a comprehensive meta-study of the advances in the phytohormone analysis by mass spectrometry over the past decade. To address current trends and future perspectives, Web of Science data were systematically collected and key features such as mass spectrometry-based analyses were evaluated using multivariate data analysis methods. Our findings showed that plant hormonomics is currently divided into targeted and untargeted approaches. Both aim to miniaturize the sample, allowing high-resolution quantification to be covered in plant organs as well as subcellular compartments. Therefore, we can study plant hormone biosynthesis, metabolism, and signalling at a spatio-temporal resolution. Moreover, this trend has recently been accelerated by technological advances such as fluorescence-activated cell sorting or mass spectrometry imaging.
Collapse
Affiliation(s)
- Ivan Petřík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Pavel Hladík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Chao Zhang
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| |
Collapse
|
4
|
Gao J, Zhuang S, Zhang W. Advances in Plant Auxin Biology: Synthesis, Metabolism, Signaling, Interaction with Other Hormones, and Roles under Abiotic Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:2523. [PMID: 39274009 PMCID: PMC11397301 DOI: 10.3390/plants13172523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/16/2024]
Abstract
Auxin is a key hormone that regulates plant growth and development, including plant shape and sensitivity to environmental changes. Auxin is biosynthesized and metabolized via many parallel pathways, and it is sensed and transduced by both normal and atypical pathways. The production, catabolism, and signal transduction pathways of auxin primarily govern its role in plant growth and development, and in the response to stress. Recent research has discovered that auxin not only responds to intrinsic developmental signals, but also mediates various environmental signals (e.g., drought, heavy metals, and temperature stresses) and interacts with hormones such as cytokinin, abscisic acid, gibberellin, and ethylene, all of which are involved in the regulation of plant growth and development, as well as the maintenance of homeostatic equilibrium in plant cells. In this review, we discuss the latest research on auxin types, biosynthesis and metabolism, polar transport, signaling pathways, and interactions with other hormones. We also summarize the important role of auxin in plants under abiotic stresses. These discussions provide new perspectives to understand the molecular mechanisms of auxin's functions in plant development.
Collapse
Affiliation(s)
- Jianshuang Gao
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
- School of Economic Geography, Hunan University of Finance and Economics, Changsha 410205, China
| | - Shunyao Zhuang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Weiwei Zhang
- State Key Lab of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
5
|
Cohen JD, Strader LC. An auxin research odyssey: 1989-2023. THE PLANT CELL 2024; 36:1410-1428. [PMID: 38382088 PMCID: PMC11062468 DOI: 10.1093/plcell/koae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/23/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The phytohormone auxin is at times called the master regulator of plant processes and has been shown to be a central player in embryo development, the establishment of the polar axis, early aspects of seedling growth, as well as growth and organ formation during later stages of plant development. The Plant Cell has been key, since the inception of the journal, to developing an understanding of auxin biology. Auxin-regulated plant growth control is accomplished by both changes in the levels of active hormones and the sensitivity of plant tissues to these concentration changes. In this historical review, we chart auxin research as it has progressed in key areas and highlight the role The Plant Cell played in these scientific developments. We focus on understanding auxin-responsive genes, transcription factors, reporter constructs, perception, and signal transduction processes. Auxin metabolism is discussed from the development of tryptophan auxotrophic mutants, the molecular biology of conjugate formation and hydrolysis, indole-3-butyric acid metabolism and transport, and key steps in indole-3-acetic acid biosynthesis, catabolism, and transport. This progress leads to an expectation of a more comprehensive understanding of the systems biology of auxin and the spatial and temporal regulation of cellular growth and development.
Collapse
Affiliation(s)
- Jerry D Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, MN 55108, USA
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
6
|
Favre P, van Schaik E, Schorderet M, Yerly F, Reinhardt D. Regulation of tissue growth in plants - A mathematical modeling study on shade avoidance response in Arabidopsis hypocotyls. FRONTIERS IN PLANT SCIENCE 2024; 15:1285655. [PMID: 38486850 PMCID: PMC10938469 DOI: 10.3389/fpls.2024.1285655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/05/2024] [Indexed: 03/17/2024]
Abstract
Introduction Plant growth is a plastic phenomenon controlled both by endogenous genetic programs and by environmental cues. The embryonic stem, the hypocotyl, is an ideal model system for the quantitative study of growth due to its relatively simple geometry and cellular organization, and to its essentially unidirectional growth pattern. The hypocotyl of Arabidopsis thaliana has been studied particularly well at the molecular-genetic level and at the cellular level, and it is the model of choice for analysis of the shade avoidance syndrome (SAS), a growth reaction that allows plants to compete with neighboring plants for light. During SAS, hypocotyl growth is controlled primarily by the growth hormone auxin, which stimulates cell expansion without the involvement of cell division. Methods We assessed hypocotyl growth at cellular resolution in Arabidopsis mutants defective in auxin transport and biosynthesis and we designed a mathematical auxin transport model based on known polar and non-polar auxin transporters (ABCB1, ABCB19, and PINs) and on factors that control auxin homeostasis in the hypocotyl. In addition, we introduced into the model biophysical properties of the cell types based on precise cell wall measurements. Results and Discussion Our model can generate the observed cellular growth patterns based on auxin distribution along the hypocotyl resulting from production in the cotyledons, transport along the hypocotyl, and general turnover of auxin. These principles, which resemble the features of mathematical models of animal morphogen gradients, allow to generate robust shallow auxin gradients as they are expected to exist in tissues that exhibit quantitative auxin-driven tissue growth, as opposed to the sharp auxin maxima generated by patterning mechanisms in plant development.
Collapse
Affiliation(s)
- Patrick Favre
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Evert van Schaik
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | - Florence Yerly
- Haute école d’ingénierie et d’architecture Fribourg, Haute Ecole Spécialisée de Suisse Occidentale (HES-SO), University of Applied Sciences and Arts of Western Switzerland, Fribourg, Switzerland
| | - Didier Reinhardt
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
7
|
Smolko A, Repar J, Matković M, Pavlović I, Pěnčík A, Novák O, Ludwig-Müller J, Salopek-Sondi B. Application of Long-Chained Auxin Conjugates Influenced Auxin Metabolism and Transcriptome Response in Brassica rapa L. ssp. pekinensis. Int J Mol Sci 2023; 25:447. [PMID: 38203617 PMCID: PMC10778880 DOI: 10.3390/ijms25010447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/17/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Auxin amino acid conjugates are considered to be storage forms of auxins. Previous research has shown that indole-3-acetyl-L-alanine (IAA-Ala), indole-3-propionyl-L-alanine (IPA-Ala) and indole-3-butyryl-L-alanine (IBA-Ala) affect the root growth of Brassica rapa seedlings. To elucidate the potential mechanism of action of the conjugates, we treated B. rapa seedlings with 0.01 mM IAA-, IPA- and IBA-Ala and investigated their effects on the auxin metabolome and transcriptome. IBA-Ala and IPA-Ala caused a significant inhibition of root growth and a decrease in free IAA compared to the control and IAA-Ala treatments. The identification of free auxins IBA and IPA after feeding experiments with IBA-Ala and IPA-Ala, respectively, confirms their hydrolysis in vivo and indicates active auxins responsible for a stronger inhibition of root growth. IBA-Ala caused the induction of most DEGs (807) compared to IPA-Ala (417) and IAA-Ala (371). All treatments caused similar trends in transcription profile changes when compared to control treatments. The majority of auxin-related DEGs were found after IBA-Ala treatment, followed by IPA-Ala and IAA-Ala, which is consistent with the apparent root morphology. In addition to most YUC genes, which showed a tendency to be downregulated, transcripts of auxin-related DEGs that were identified (UGT74E2, GH3.2, SAUR, IAA2, etc.) were more highly expressed after all treatments. Our results are consistent with the hypothesis that the hydrolysis of conjugates and the release of free auxins are responsible for the effects of conjugate treatments. In conclusion, free auxins released by the hydrolysis of all auxin conjugates applied affect gene regulation, auxin homeostasis and ultimately root growth inhibition.
Collapse
Affiliation(s)
- Ana Smolko
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (J.R.)
| | - Jelena Repar
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (J.R.)
| | - Marija Matković
- Department for Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia;
| | - Iva Pavlović
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (I.P.); (A.P.); (O.N.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (I.P.); (A.P.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science of Palacký University & Institute of Experimental Botany of the Czech Academy of Sciences, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (I.P.); (A.P.); (O.N.)
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, Zellescher Weg 20b, 01062 Dresden, Germany;
| | - Branka Salopek-Sondi
- Department for Molecular Biology, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; (A.S.); (J.R.)
| |
Collapse
|
8
|
Tamizhselvan P, Madhavan S, Constan-Aguilar C, Elrefaay ER, Liu J, Pěnčík A, Novák O, Cairó A, Hrtyan M, Geisler M, Tognetti VB. Chloroplast Auxin Efflux Mediated by ABCB28 and ABCB29 Fine-Tunes Salt and Drought Stress Responses in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 13:7. [PMID: 38202315 PMCID: PMC10780339 DOI: 10.3390/plants13010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Photosynthesis is among the first processes negatively affected by environmental cues and its performance directly determines plant cell fitness and ultimately crop yield. Primarily sites of photosynthesis, chloroplasts are unique sites also for the biosynthesis of precursors of the growth regulator auxin and for sensing environmental stress, but their role in intracellular auxin homeostasis, vital for plant growth and survival in changing environments, remains poorly understood. Here, we identified two ATP-binding cassette (ABC) subfamily B transporters, ABCB28 and ABCB29, which export auxin across the chloroplast envelope to the cytosol in a concerted action in vivo. Moreover, we provide evidence for an auxin biosynthesis pathway in Arabidopsis thaliana chloroplasts. The overexpression of ABCB28 and ABCB29 influenced stomatal regulation and resulted in significantly improved water use efficiency and survival rates during salt and drought stresses. Our results suggest that chloroplast auxin production and transport contribute to stomata regulation for conserving water upon salt stress. ABCB28 and ABCB29 integrate photosynthesis and auxin signals and as such hold great potential to improve the adaptation potential of crops to environmental cues.
Collapse
Affiliation(s)
- Prashanth Tamizhselvan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Sharmila Madhavan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Christian Constan-Aguilar
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Eman Ryad Elrefaay
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Jie Liu
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland; (J.L.); (M.G.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, & Faculty of Science, Palacký University, Šlechtitelů 27, CZ-783 71 Olomouc, Czech Republic; (A.P.); (O.N.)
| | - Albert Cairó
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Mónika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| | - Markus Geisler
- Department of Biology, University of Fribourg, CH-1700 Fribourg, Switzerland; (J.L.); (M.G.)
| | - Vanesa Beatriz Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, CZ-625 00 Brno, Czech Republic; (P.T.); (S.M.); (C.C.-A.); (E.R.E.); (A.C.); (M.H.)
| |
Collapse
|
9
|
Horemans N, Kariuki J, Saenen E, Mysara M, Beemster GTS, Sprangers K, Pavlović I, Novak O, Van Hees M, Nauts R, Duarte GT, Cuypers A. Are Arabidopsis thaliana plants able to recover from exposure to gamma radiation? A molecular perspective. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2023; 270:107304. [PMID: 37871537 DOI: 10.1016/j.jenvrad.2023.107304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 10/25/2023]
Abstract
Most plant research focuses on the responses immediately after exposure to ionizing irradiation (IR). However, it is as important to investigate how plants recover after exposure since this has a profound effect on future plant growth and development and hence on the long-term consequences of exposure to stress. This study aimed to investigate the IR-induced responses after exposure and during recovery by exposing 1-week old A. thaliana seedlings to gamma dose rates ranging from 27 to 103.7 mGy/h for 2 weeks and allowing them to recover for 4 days. A high-throughput RNAsequencing analysis was carried out. An enrichment of GO terms related to the metabolism of hormones was observed both after irradiation and during recovery at all dose rates. While plants exposed to the lowest dose rate activate defence responses after irradiation, they recover from the IR by resuming normal growth during the recovery period. Plants exposed to the intermediate dose rate invest in signalling and defence after irradiation. During recovery, in the plants exposed to the highest dose rate, fundamental metabolic processes such as photosynthesis and RNA modification were still affected. This might lead to detrimental effects in the long-term or in the next generations of those irradiated plants.
Collapse
Affiliation(s)
- Nele Horemans
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium; Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium.
| | - Jackline Kariuki
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Eline Saenen
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Mohamed Mysara
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Gerrit T S Beemster
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Katrien Sprangers
- Integrated Molecular Plant Physiology Research (IMPRES), Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Iva Pavlović
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Ondrej Novak
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - May Van Hees
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | - Robin Nauts
- Biosphere Impact Studies, SCK CEN, Boeretang 200, 2400, Mol, Belgium
| | | | - Ann Cuypers
- Centre for Environmental Research, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
10
|
Skalický V, Antoniadi I, Pěnčík A, Chamrád I, Lenobel R, Kubeš MF, Zatloukal M, Žukauskaitė A, Strnad M, Ljung K, Novák O. Fluorescence-activated multi-organelle mapping of subcellular plant hormone distribution. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1825-1841. [PMID: 37682018 DOI: 10.1111/tpj.16456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Auxins and cytokinins are two major families of phytohormones that control most aspects of plant growth, development and plasticity. Their distribution in plants has been described, but the importance of cell- and subcellular-type specific phytohormone homeostasis remains undefined. Herein, we revealed auxin and cytokinin distribution maps showing their different organelle-specific allocations within the Arabidopsis plant cell. To do so, we have developed Fluorescence-Activated multi-Organelle Sorting (FAmOS), an innovative subcellular fractionation technique based on flow cytometric principles. FAmOS allows the simultaneous sorting of four differently labelled organelles based on their individual light scatter and fluorescence parameters while ensuring hormone metabolic stability. Our data showed different subcellular distribution of auxin and cytokinins, revealing the formation of phytohormone gradients that have been suggested by the subcellular localization of auxin and cytokinin transporters, receptors and metabolic enzymes. Both hormones showed enrichment in vacuoles, while cytokinins were also accumulated in the endoplasmic reticulum.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Ivo Chamrád
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - René Lenobel
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Martin F Kubeš
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Marek Zatloukal
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany of the Czech Academy of Sciences, CZ-78371, Olomouc, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-90183, Umeå, Sweden
| |
Collapse
|
11
|
Jing H, Wilkinson EG, Sageman-Furnas K, Strader LC. Auxin and abiotic stress responses. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:7000-7014. [PMID: 37591508 PMCID: PMC10690732 DOI: 10.1093/jxb/erad325] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023]
Abstract
Plants are exposed to a variety of abiotic stresses; these stresses have profound effects on plant growth, survival, and productivity. Tolerance and adaptation to stress require sophisticated stress sensing, signaling, and various regulatory mechanisms. The plant hormone auxin is a key regulator of plant growth and development, playing pivotal roles in the integration of abiotic stress signals and control of downstream stress responses. In this review, we summarize and discuss recent advances in understanding the intersection of auxin and abiotic stress in plants, with a focus on temperature, salt, and drought stresses. We also explore the roles of auxin in stress tolerance and opportunities arising for agricultural applications.
Collapse
Affiliation(s)
- Hongwei Jing
- Department of Biology, Duke University, Durham, NC 27008, USA
| | | | | | - Lucia C Strader
- Department of Biology, Duke University, Durham, NC 27008, USA
| |
Collapse
|
12
|
Huang C, Jin X, Lin H, He J, Chen Y. Comparative Transcriptome Sequencing and Endogenous Phytohormone Content of Annual Grafted Branches of Zelkova schneideriana and Its Dwarf Variety HenTianGao. Int J Mol Sci 2023; 24:16902. [PMID: 38069226 PMCID: PMC10706849 DOI: 10.3390/ijms242316902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Zelkova schneideriana is a fast-growing tree species endemic to China. Recent surveys and reports have highlighted a continued decline in its natural populations; therefore, it is included in the Red List of Threatened Species by The International Union for Conservation of Nature. A new variety "HenTianGao" (H) has been developed with smaller plant height, slow growth, and lower branching points. In this study, we attempted to understand the differences in plant height of Z. schneideriana (J) and its dwarf variety H. We determined the endogenous hormone content in the annual grafted branches of both J and H. J exhibited higher gibberellic acid (GA)-19 and trans-Zeatin (tZ) levels, whereas H had higher levels of indole-3-acetic acid (IAA) catabolite 2-oxindole-3-acetic acid (OxIAA), IAA-Glu conjugate, and jasmonic acid (JA) (and its conjugate JA-Ile). The transcriptome comparison showed differential regulation of 20,944 genes enriched in growth and development, signaling, and metabolism-related pathways. The results show that the differential phytohormone level (IAA, JA, tZ, and GA) was consistent with the expression of the genes associated with their biosynthesis. The differences in relative OxIAA, IAA-Glu, GA19, trans-Zeatin, JA, and JA-Ile levels were linked to changes in respective signaling-related genes. We also observed significant differences in the expression of cell size, number, proliferation, cell wall biosynthesis, and remodeling-related genes in J and H. The differences in relative endogenous hormone levels, expression of biosynthesis, and signaling genes provide a theoretical basis for understanding the plant height differences in Z. schneideriana.
Collapse
Affiliation(s)
- Chenfei Huang
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Xiaoling Jin
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Haiyan Lin
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jinsong He
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| | - Yan Chen
- College of Landscape Architecture, Central South University of Forestry and Technology, Changsha 410004, China; (C.H.); (J.H.)
- Hunan Big Data Engineering Technology Research Center of Natural Protected Areas Landscape Resources, Changsha 410004, China
| |
Collapse
|
13
|
Hladík P, Petřík I, Žukauskaitė A, Novák O, Pěnčík A. Metabolic profiles of 2-oxindole-3-acetyl-amino acid conjugates differ in various plant species. FRONTIERS IN PLANT SCIENCE 2023; 14:1217421. [PMID: 37534287 PMCID: PMC10390838 DOI: 10.3389/fpls.2023.1217421] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 06/28/2023] [Indexed: 08/04/2023]
Abstract
Auxins are a group of phytohormones that play a key role in plant growth and development, mainly presented by the major member of the family - indole-3-acetic acid (IAA). The levels of free IAA are regulated, in addition to de novo biosynthesis, by irreversible oxidative catabolism and reversible conjugation with sugars and amino acids. These conjugates, which serve as inactive storage forms of auxin and/or degradation intermediates, can also be oxidized to form 2-oxindole-3-acetyl-1-O-ß-d-glucose (oxIAA-glc) and oxIAA-amino acids (oxIAA-AAs). Until now, only oxIAA conjugates with aspartate and glutamate have been identified in plants. However, detailed information on the endogenous levels of these and other putative oxIAA-amino acid conjugates in various plant species and their spatial distribution is still not well understood but is finally getting more attention. Herein, we identified and characterized two novel naturally occurring auxin metabolites in plants, namely oxIAA-leucine (oxIAA-Leu) and oxIAA-phenylalanine (oxIAA-Phe). Subsequently, a new liquid chromatography-tandem mass spectrometry method was developed for the determination of a wide range of IAA metabolites. Using this methodology, the quantitative determination of IAA metabolites including newly characterized oxIAA conjugates in roots, shoots and cotyledons of four selected plant models - Arabidopsis thaliana, pea (Pisum sativum L.), wheat (Triticum aestivum L.) and maize (Zea mays L.) was performed to compare auxin metabolite profiles. The distribution of various groups of auxin metabolites differed notably among the studied species as well as their sections. For example, oxIAA-AA conjugates were the major metabolites found in pea, while oxIAA-glc dominated in Arabidopsis. We further compared IAA metabolite levels in plants harvested at different growth stages to monitor the dynamics of IAA metabolite profiles during early seedling development. In general, our results show a great diversity of auxin inactivation pathways among angiosperm plants. We believe that our findings will greatly contribute to a better understanding of IAA homeostasis.
Collapse
Affiliation(s)
- Pavel Hladík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ivan Petřík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Asta Žukauskaitė
- Department of Chemical Biology, Faculty of Science, Palacký University, Olomouc, Czechia
| | - Ondřej Novák
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences & Faculty of Science, Palacký University, Olomouc, Czechia
| |
Collapse
|
14
|
Jiang X, Lai S, Kong D, Hou X, Shi Y, Fu Z, Liu Y, Gao L, Xia T. Al-induced CsUGT84J2 enhances flavonol and auxin accumulation to promote root growth in tea plants. HORTICULTURE RESEARCH 2023; 10:uhad095. [PMID: 37350798 PMCID: PMC10282599 DOI: 10.1093/hr/uhad095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/25/2023] [Indexed: 06/24/2023]
Abstract
Although Al is not necessary or even toxic to most plants, it is beneficial for the growth of tea plants. However, the mechanism through which Al promotes root growth in tea plants remains unclear. In the present study, we found that flavonol glycoside levels in tea roots increased following Al treatment, and the Al-induced UDP glycosyltransferase CsUGT84J2 was involved in this mechanism. Enzyme activity assays revealed that rCsUGT84J2 exhibited catalytic activity on multiple types of substrates, including phenolic acids, flavonols, and auxins in vitro. Furthermore, metabolic analysis with UPLC-QqQ-MS/MS revealed significantly increased flavonol and auxin glycoside accumulation in CsUGT84J2-overexpressing Arabidopsis thaliana. In addition, the expression of genes involved in the flavonol pathway as well as in the auxin metabolism, transport, and signaling pathways was remarkably enhanced. Additionally, lateral root growth and exogenous Al stress tolerance were significantly improved in transgenic A. thaliana. Moreover, gene expression and metabolic accumulation related to phenolic acids, flavonols, and auxin were upregulated in CsUGT84J2-overexpressing tea plants but downregulated in CsUGT84J2-silenced tea plants. In conclusion, Al treatment induced CsUGT84J2 expression, mediated flavonol and auxin glycosylation, and regulated endogenous auxin homeostasis in tea roots, thereby promoting the growth of tea plants. Our findings lay the foundation for studying the precise mechanisms through which Al promotes the growth of tea plants.
Collapse
Affiliation(s)
| | | | - Dexu Kong
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Xiaohan Hou
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yufeng Shi
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Zhouping Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, Anhui, China
| | - Yajun Liu
- School of Life Science, Anhui Agricultural University, Hefei, Anhui, China
| | | | - Tao Xia
- Corresponding author: E-mail:
| |
Collapse
|
15
|
Lei L, Zhang JY, Pu D, Liu BZ, Meng XM, Shang QM, Duan YD, Zhang F, Zhang MX, Dong CJ. ABA-responsive AREB1/ABI3-1/ABI5 cascade regulates IAA oxidase gene SlDAO2 to inhibit hypocotyl elongation in tomato. PLANT, CELL & ENVIRONMENT 2023; 46:498-517. [PMID: 36369997 DOI: 10.1111/pce.14491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Hypocotyl elongation is dramatically influenced by environmental factors and phytohormones. Indole-3-acetic acid (IAA) plays a prominent role in hypocotyl elongation, whereas abscisic acid (ABA) is regarded as an inhibitor through repressing IAA synthesis and signalling. However, the regulatory role of ABA in local IAA deactivation remains largely uncharacterized. In this study, we confirmed the antagonistic interplay of ABA and IAA during the hypocotyl elongation of tomato (Solanum lycopersicum) seedlings. We identified an IAA oxidase enzyme DIOXYGENASE FOR AUXIN OXIDATION2 (SlDAO2), and its expression was induced by both external and internal ABA signals in tomato hypocotyls. Moreover, the overexpression of SlDAO2 led to a reduced sensitivity to IAA, and the knockout of SlDAO2 alleviated the inhibitory effect of ABA on hypocotyl elongation. Furthermore, an ABA-responsive regulatory SlAREB1/SlABI3-1/SlABI5 cascade was identified to act upstream of SlDAO2 and to precisely control its expression. SlAREB1 directly bound to the ABRE present in the SlDAO2 promoter to activate SlDAO2 expression, and SlABI3-1 enhanced while SlABI5 inhibited the activation ability of SlAREB1 by directly interacting with SlAREB1. Our findings revealed that ABA might induce local IAA oxidation and deactivation via SlDAO2 to modulate IAA homoeostasis and thereby repress hypocotyl elongation in tomato.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Jing-Ya Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Dan Pu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Bing-Zhu Liu
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Xian-Min Meng
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Qing-Mao Shang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Yun-Dan Duan
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Feng Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Meng-Xia Zhang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| | - Chun-Juan Dong
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Beijing, People's Republic of China
| |
Collapse
|
16
|
Comprehensive Phytohormone Profiling of Kohlrabi during In Vitro Growth and Regeneration: The Interplay with Cytokinin and Sucrose. LIFE (BASEL, SWITZERLAND) 2022; 12:life12101585. [PMID: 36295020 PMCID: PMC9604816 DOI: 10.3390/life12101585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/26/2022] [Accepted: 10/08/2022] [Indexed: 11/21/2022]
Abstract
The establishment of an efficient protocol for in vitro growth and regeneration of kohlrabi (Brassica oleracea var. gongylodes) allowed us to closely examine the phytohormone profiles of kohlrabi seedlings at four growth stages (T1-T4), additionally including the effects of cytokinins (CKs)-trans-zeatin (transZ) and thidiazuron (TDZ)-and high sucrose concentrations (6% and 9%). Resulting phytohormone profiles showed complex time-course patterns. At the T2 stage of control kohlrabi plantlets (with two emerged true leaves), levels of endogenous CK free bases and gibberellin GA20 increased, while increases in jasmonic acid (JA), JA-isoleucine (JA-Ile), indole-3-acetic acid (IAA) and indole-3-acetamide (IAM) peaked later, at T3. At the same time, the content of most of the analyzed IAA metabolites decreased. Supplementing growth media with CK induced de novo formation of shoots, while both CK and sucrose treatments caused important changes in most of the phytohormone groups at each developmental stage, compared to control. Principal component analysis (PCA) showed that sucrose treatment, especially at 9%, had a stronger effect on the content of endogenous hormones than CK treatments. Correlation analysis showed that the dynamic balance between the levels of certain bioactive phytohormone forms and some of their metabolites could be lost or reversed at particular growth stages and under certain CK or sucrose treatments, with correlation values changing between strongly positive and strongly negative. Our results indicate that the kohlrabi phytohormonome is a highly dynamic system that changes greatly along the developmental time scale and also during de novo shoot formation, depending on exogenous factors such as the presence of growth regulators and different sucrose concentrations in the growth media, and that it interacts intensively with these factors to facilitate certain responses.
Collapse
|
17
|
Casanova‐Sáez R, Mateo‐Bonmatí E, Šimura J, Pěnčík A, Novák O, Staswick P, Ljung K. Inactivation of the entire Arabidopsis group II GH3s confers tolerance to salinity and water deficit. THE NEW PHYTOLOGIST 2022; 235:263-275. [PMID: 35322877 PMCID: PMC9322293 DOI: 10.1111/nph.18114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 03/05/2022] [Indexed: 05/25/2023]
Abstract
Indole-3-acetic acid (IAA) controls a plethora of developmental processes. Thus, regulation of its concentration is of great relevance for plant performance. Cellular IAA concentration depends on its transport, biosynthesis and the various pathways for IAA inactivation, including oxidation and conjugation. Group II members of the GRETCHEN HAGEN 3 (GH3) gene family code for acyl acid amido synthetases catalysing the conjugation of IAA to amino acids. However, the high degree of functional redundancy among them has hampered thorough analysis of their roles in plant development. In this work, we generated an Arabidopsis gh3.1,2,3,4,5,6,9,17 (gh3oct) mutant to knock out the group II GH3 pathway. The gh3oct plants had an elaborated root architecture, showed an increased tolerance to different osmotic stresses, including an IAA-dependent tolerance to salinity, and were more tolerant to water deficit. Indole-3-acetic acid metabolite quantification in gh3oct plants suggested the existence of additional GH3-like enzymes in IAA metabolism. Moreover, our data suggested that 2-oxindole-3-acetic acid production depends, at least in part, on the GH3 pathway. Targeted stress-hormone analysis further suggested involvement of abscisic acid in the differential response to salinity of gh3oct plants. Taken together, our data provide new insights into the roles of group II GH3s in IAA metabolism and hormone-regulated plant development.
Collapse
Affiliation(s)
- Rubén Casanova‐Sáez
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Eduardo Mateo‐Bonmatí
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Jan Šimura
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| | - Aleš Pěnčík
- Laboratory of Growth RegulatorsFaculty of SciencePalacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27OlomoucCzech Republic
| | - Ondřej Novák
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
- Laboratory of Growth RegulatorsFaculty of SciencePalacký University and Institute of Experimental Botany of the Czech Academy of SciencesŠlechtitelů 27OlomoucCzech Republic
| | - Paul Staswick
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | - Karin Ljung
- Department of Forest Genetics and Plant PhysiologyUmeå Plant Science Centre (UPSC)Swedish University of Agricultural Sciences901 83UmeåSweden
| |
Collapse
|
18
|
Syrova DS, Shaposhnikov AI, Yuzikhin OS, Belimov AA. Destruction and Transformation of Phytohormones By Microorganisms. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Dziewit K, Pěnčík A, Dobrzyńska K, Novák O, Szal B, Podgórska A. Spatiotemporal auxin distribution in Arabidopsis tissues is regulated by anabolic and catabolic reactions under long-term ammonium stress. BMC PLANT BIOLOGY 2021; 21:602. [PMID: 34922457 PMCID: PMC8684078 DOI: 10.1186/s12870-021-03385-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 12/01/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND The plant hormone auxin is a major coordinator of plant growth and development in response to diverse environmental signals, including nutritional conditions. Sole ammonium (NH4+) nutrition is one of the unique growth-suppressing conditions for plants. Therefore, the quest to understand NH4+-mediated developmental defects led us to analyze auxin metabolism. RESULTS Indole-3-acetic acid (IAA), the most predominant natural auxin, accumulates in the leaves and roots of mature Arabidopsis thaliana plants grown on NH4+, but not in the root tips. We found changes at the expressional level in reactions leading to IAA biosynthesis and deactivation in different tissues. Finally, NH4+ nutrition would facilitate the formation of inactive oxidized IAA as the final product. CONCLUSIONS NH4+-mediated accelerated auxin turnover rates implicate transient and local IAA peaks. A noticeable auxin pattern in tissues correlates with the developmental adaptations of the short and highly branched root system of NH4+-grown plants. Therefore, the spatiotemporal distribution of auxin might be a root-shaping signal specific to adjust to NH4+-stress conditions.
Collapse
Affiliation(s)
- Kacper Dziewit
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Katarzyna Dobrzyńska
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Bożena Szal
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland
| | - Anna Podgórska
- Institute of Plant Bioenergetics, Faculty of Biology, University of Warsaw, I. Miecznikowa 01, 02-096, Warsaw, Poland.
| |
Collapse
|
20
|
Hayashi KI, Arai K, Aoi Y, Tanaka Y, Hira H, Guo R, Hu Y, Ge C, Zhao Y, Kasahara H, Fukui K. The main oxidative inactivation pathway of the plant hormone auxin. Nat Commun 2021; 12:6752. [PMID: 34811366 PMCID: PMC8608799 DOI: 10.1038/s41467-021-27020-1] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Inactivation of the phytohormone auxin plays important roles in plant development, and several enzymes have been implicated in auxin inactivation. In this study, we show that the predominant natural auxin, indole-3-acetic acid (IAA), is mainly inactivated via the GH3-ILR1-DAO pathway. IAA is first converted to IAA-amino acid conjugates by GH3 IAA-amidosynthetases. The IAA-amino acid conjugates IAA-aspartate (IAA-Asp) and IAA-glutamate (IAA-Glu) are storage forms of IAA and can be converted back to IAA by ILR1/ILL amidohydrolases. We further show that DAO1 dioxygenase irreversibly oxidizes IAA-Asp and IAA-Glu into 2-oxindole-3-acetic acid-aspartate (oxIAA-Asp) and oxIAA-Glu, which are subsequently hydrolyzed by ILR1 to release inactive oxIAA. This work established a complete pathway for the oxidative inactivation of auxin and defines the roles played by auxin homeostasis in plant development.
Collapse
Affiliation(s)
- Ken-Ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan.
| | - Kazushi Arai
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Yuki Aoi
- Department of Biological Production Science, United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Yuka Tanaka
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| | - Hayao Hira
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
| | - Ruipan Guo
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yun Hu
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Chennan Ge
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Yunde Zhao
- Section of Cell and Developmental Biology, University of California San Diego, Gilman Dr. La Jolla, San Diego, CA, 92093-0116, USA
| | - Hiroyuki Kasahara
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kosuke Fukui
- Department of Biochemistry, Okayama University of Science, Okayama, 700-0005, Japan
| |
Collapse
|
21
|
Müllender M, Varrelmann M, Savenkov EI, Liebe S. Manipulation of auxin signalling by plant viruses. MOLECULAR PLANT PATHOLOGY 2021; 22:1449-1458. [PMID: 34420252 PMCID: PMC8518663 DOI: 10.1111/mpp.13122] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 05/03/2023]
Abstract
Compatible plant-virus interactions result in dramatic changes of the plant transcriptome and morphogenesis, and are often associated with rapid alterations in plant hormone homeostasis and signalling. Auxin controls many aspects of plant organogenesis, development, and growth; therefore, plants can rapidly perceive and respond to changes in the cellular auxin levels. Auxin signalling is a tightly controlled process and, hence, is highly vulnerable to changes in the mRNA and protein levels of its components. There are several core nuclear components of auxin signalling. In the nucleus, the interaction of auxin response factors (ARFs) and auxin/indole acetic acid (Aux/IAA) proteins is essential for the control of auxin-regulated pathways. Aux/IAA proteins are negative regulators, whereas ARFs are positive regulators of the auxin response. The interplay between both is essential for the transcriptional regulation of auxin-responsive genes, which primarily regulate developmental processes but also modulate the plant immune system. Recent studies suggest that plant viruses belonging to different families have developed various strategies to disrupt auxin signalling, namely by (a) changing the subcellular localization of Aux/IAAs, (b) preventing degradation of Aux/IAAs by stabilization, or (c) inhibiting the transcriptional activity of ARFs. These interactions perturb auxin signalling and experimental evidence from various studies highlights their importance for virus replication, systemic movement, interaction with vectors for efficient transmission, and symptom development. In this microreview, we summarize and discuss the current knowledge on the interaction of plant viruses with auxin signalling components of their hosts.
Collapse
Affiliation(s)
| | - Mark Varrelmann
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| | - Eugene I. Savenkov
- Department of Plant BiologyUppsala BioCenter SLU, Swedish University of Agricultural Sciences, Linnean Center for Plant BiologyUppsalaSweden
| | - Sebastian Liebe
- Department of PhytopathologyInstitute of Sugar Beet ResearchGöttingenGermany
| |
Collapse
|
22
|
Kula-Maximenko M, Niewiadomska E, Maksymowicz A, Ostrowska A, Oklestkova J, Pěnčík A, Janeczko A. Insight into Details of the Photosynthetic Light Reactions and Selected Metabolic Changes in Tomato Seedlings Growing under Various Light Spectra. Int J Mol Sci 2021; 22:ijms222111517. [PMID: 34768948 PMCID: PMC8584210 DOI: 10.3390/ijms222111517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/15/2021] [Accepted: 10/21/2021] [Indexed: 11/28/2022] Open
Abstract
The objective of our study was to characterise the growth of tomato seedlings under various light spectra, but special attention has been paid to gaining a deeper insight into the details of photosynthetic light reactions. The following light combinations (generated by LEDs, constant light intensity at 300 μmol m−2 s−1) were used: blue/red light; blue/red light + far red; blue/red light + UV; white light that was supplemented with green, and white light that was supplemented with blue. Moreover, two combinations of white light for which the light intensity was changed by imitating the sunrise, sunset, and moon were also tested. The reference point was also light generated by high pressure sodium lamps (HPS). Plant growth/morphological parameters under various light conditions were only partly correlated with the photosynthetic efficiency of PSI and PSII. Illumination with blue/red as the main components had a negative effect on the functioning of PSII compared to the white light and HPS-generated light. On the other hand, the functioning of PSI was especially negatively affected under the blue/red light that was supplemented with FR. The FT-Raman studies showed that the general metabolic profile of the leaves (especially proteins and β-carotene) was similar in the plants that were grown under the HPS and under the LED-generated white light for which the light intensity changed during a day. The effect of various light conditions on the leaf hormonal balance (auxins, brassinosteroids) is also discussed.
Collapse
Affiliation(s)
- Monika Kula-Maximenko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Ewa Niewiadomska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Anna Maksymowicz
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
| | - Jana Oklestkova
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (J.O.); (A.P.)
| | - Aleš Pěnčík
- Laboratory of Growth Regulators, Faculty of Science and Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic; (J.O.); (A.P.)
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Cracow, Poland; (M.K.-M.); (E.N.); (A.M.); (A.O.)
- Correspondence:
| |
Collapse
|
23
|
Yamoune A, Cuyacot AR, Zdarska M, Hejatko J. Hormonal orchestration of root apical meristem formation and maintenance in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6768-6788. [PMID: 34343283 DOI: 10.1093/jxb/erab360] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Plant hormones are key regulators of a number of developmental and adaptive responses in plants, integrating the control of intrinsic developmental regulatory circuits with environmental inputs. Here we provide an overview of the molecular mechanisms underlying hormonal regulation of root development. We focus on key events during both embryonic and post-embryonic development, including specification of the hypophysis as a future organizer of the root apical meristem (RAM), hypophysis asymmetric division, specification of the quiescent centre (QC) and the stem cell niche (SCN), RAM maturation and maintenance of QC/SCN activity, and RAM size. We address both well-established and newly proposed concepts, highlight potential ambiguities in recent terminology and classification criteria of longitudinal root zonation, and point to contrasting results and alternative scenarios for recent models. In the concluding remarks, we summarize the common principles of hormonal control during root development and the mechanisms potentially explaining often antagonistic outputs of hormone action, and propose possible future research directions on hormones in the root.
Collapse
Affiliation(s)
- Amel Yamoune
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Abigail Rubiato Cuyacot
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Marketa Zdarska
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Jan Hejatko
- Functional Genomics and Proteomics of Plants, Central European Institute of Technology and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| |
Collapse
|
24
|
Elevated Temperature Induced Adaptive Responses of Two Lupine Species at Early Seedling Phase. PLANTS 2021; 10:plants10061091. [PMID: 34072415 PMCID: PMC8228099 DOI: 10.3390/plants10061091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
This study aimed to investigate the impact of climate warming on hormonal traits of invasive and non-invasive plants at the early developmental stage. Two different lupine species—invasive Lupinus polyphyllus Lindl. and non-invasive Lupinus luteus L.—were used in this study. Plants were grown in climate chambers under optimal (25 °C) and simulated climate warming conditions (30 °C). The content of phytohormone indole-3-acetic acid (IAA), ethylene production and the adaptive growth of both species were studied in four-day-old seedlings. A higher content of total IAA, especially of IAA-amides and transportable IAA, as well as higher ethylene emission, was determined to be characteristic for invasive lupine both under optimal and simulated warming conditions. It should be noted that IAA-L-alanine was detected entirely in the invasive plants under both growth temperatures. Further, the ethylene emission values increased significantly in invasive lupine hypocotyls under 30 °C. Invasive plants showed plasticity in their response by reducing growth in a timely manner and adapting to the rise in temperature. Based on the data of the current study, it can be suggested that the invasiveness of both species may be altered under climate warming conditions.
Collapse
|
25
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
26
|
Antoniadi I, Skalický V, Sun G, Ma W, Galbraith DW, Novák O, Ljung K. Fluorescence activated cell sorting-A selective tool for plant cell isolation and analysis. Cytometry A 2021; 101:725-736. [PMID: 34028996 DOI: 10.1002/cyto.a.24461] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/27/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022]
Abstract
Instrumentation for flow cytometry and sorting is designed around the assumption that samples are single-cell suspensions. However, with few exceptions, higher plants comprise complex multicellular tissues and organs, in which the individual cells are held together by shared cell walls. Single-cell suspensions can be obtained through digestion of the cells walls and release of the so-called protoplasts (plants without their cell wall). Here we describe best practices for protoplast preparation, and for analysis through flow cytometry and cell sorting. Finally, the numerous downstream applications involving sorted protoplasts are discussed.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vladimír Skalický
- Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Guiling Sun
- School of Life Sciences, Henan University, Institute of Plant Stress Biology, Kaifeng, China
| | - Wen Ma
- School of Life Sciences, Henan University, Institute of Plant Stress Biology, Kaifeng, China
| | - David W Galbraith
- Department of Biomedical Engineering, University of Arizona, School of Plant Sciences, BIO5 Institute, Arizona Cancer Center, Tucson, Arizona, USA.,School of Life Sciences, Henan University, Institute of Plant Stress Biology, Kaifeng, China
| | - Ondřej Novák
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden.,Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences and Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
27
|
Mboene Noah A, Casanova-Sáez R, Makondy Ango RE, Antoniadi I, Karady M, Novák O, Niemenak N, Ljung K. Dynamics of Auxin and Cytokinin Metabolism during Early Root and Hypocotyl Growth in Theobroma cacao. PLANTS (BASEL, SWITZERLAND) 2021; 10:967. [PMID: 34066241 PMCID: PMC8151989 DOI: 10.3390/plants10050967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022]
Abstract
The spatial location and timing of plant developmental events are largely regulated by the well balanced effects of auxin and cytokinin phytohormone interplay. Together with transport, localized metabolism regulates the concentration gradients of their bioactive forms, ultimately eliciting growth responses. In order to explore the dynamics of auxin and cytokinin metabolism during early seedling growth in Theobroma cacao (cacao), we have performed auxin and cytokinin metabolite profiling in hypocotyls and root developmental sections at different times by using ultra-high-performance liquid chromatography-electrospray tandem mass spectrometry (UHPLC-MS/MS). Our work provides quantitative characterization of auxin and cytokinin metabolites throughout early root and hypocotyl development and identifies common and distinctive features of auxin and cytokinin metabolism during cacao seedling development.
Collapse
Affiliation(s)
- Alexandre Mboene Noah
- Department of Biochemistry, Faculty of Science, University of Douala, Douala P.O. Box 24157, Cameroon
| | - Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden; (R.C.-S.); (I.A.); (M.K.); (O.N.); (K.L.)
| | - Rolande Eugenie Makondy Ango
- Laboratory of Plant Physiology and Biochemistry, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, Yaounde P.O. Box 47, Cameroon; (R.E.M.A.); (N.N.)
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden; (R.C.-S.); (I.A.); (M.K.); (O.N.); (K.L.)
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden; (R.C.-S.); (I.A.); (M.K.); (O.N.); (K.L.)
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden; (R.C.-S.); (I.A.); (M.K.); (O.N.); (K.L.)
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Nicolas Niemenak
- Laboratory of Plant Physiology and Biochemistry, Department of Biological Science, Higher Teachers’ Training College, University of Yaounde I, Yaounde P.O. Box 47, Cameroon; (R.E.M.A.); (N.N.)
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183 Umeå, Sweden; (R.C.-S.); (I.A.); (M.K.); (O.N.); (K.L.)
| |
Collapse
|
28
|
Cytokinin-Controlled Gradient Distribution of Auxin in Arabidopsis Root Tip. Int J Mol Sci 2021; 22:ijms22083874. [PMID: 33918090 PMCID: PMC8069370 DOI: 10.3390/ijms22083874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The plant root is a dynamic system, which is able to respond promptly to external environmental stimuli by constantly adjusting its growth and development. A key component regulating this growth and development is the finely tuned cross-talk between the auxin and cytokinin phytohormones. The gradient distribution of auxin is not only important for the growth and development of roots, but also for root growth in various response. Recent studies have shed light on the molecular mechanisms of cytokinin-mediated regulation of local auxin biosynthesis/metabolism and redistribution in establishing active auxin gradients, resulting in cell division and differentiation in primary root tips. In this review, we focus our attention on the molecular mechanisms underlying the cytokinin-controlled auxin gradient in root tips.
Collapse
|
29
|
Casanova-Sáez R, Mateo-Bonmatí E, Ljung K. Auxin Metabolism in Plants. Cold Spring Harb Perspect Biol 2021; 13:cshperspect.a039867. [PMID: 33431579 PMCID: PMC7919392 DOI: 10.1101/cshperspect.a039867] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The major natural auxin in plants, indole-3-acetic acid (IAA), orchestrates a plethora of developmental responses that largely depend on the formation of auxin concentration gradients within plant tissues. Together with inter- and intracellular transport, IAA metabolism-which comprises biosynthesis, conjugation, and degradation-modulates auxin gradients and is therefore critical for plant growth. It is now very well established that IAA is mainly produced from Trp and that the IPyA pathway is a major and universally conserved biosynthetic route in plants, while other redundant pathways operate in parallel. Recent findings have shown that metabolic inactivation of IAA is also redundantly performed by oxidation and conjugation processes. An exquisite spatiotemporal expression of the genes for auxin synthesis and inactivation have been shown to drive several plant developmental processes. Moreover, a group of transcription factors and epigenetic regulators controlling the expression of auxin metabolic genes have been identified in past years, which are illuminating the road to understanding the molecular mechanisms behind the coordinated responses of local auxin metabolism to specific cues. Besides transcriptional regulation, subcellular compartmentalization of the IAA metabolism and posttranslational modifications of the metabolic enzymes are emerging as important contributors to IAA homeostasis. In this review, we summarize the current knowledge on (1) the pathways for IAA biosynthesis and inactivation in plants, (2) the influence of spatiotemporally regulated IAA metabolism on auxin-mediated responses, and (3) the regulatory mechanisms that modulate IAA levels in response to external and internal cues during plant development.
Collapse
Affiliation(s)
| | | | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| |
Collapse
|
30
|
De Zio E, Montagnoli A, Karady M, Terzaghi M, Sferra G, Antoniadi I, Scippa GS, Ljung K, Chiatante D, Trupiano D. Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root. FRONTIERS IN PLANT SCIENCE 2020; 11:590985. [PMID: 33363556 PMCID: PMC7754185 DOI: 10.3389/fpls.2020.590985] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 05/27/2023]
Abstract
Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent.
Collapse
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Mattia Terzaghi
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gabriella S. Scippa
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Donato Chiatante
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
31
|
Isayenkov S, Hilo A, Rizzo P, Tandron Moya YA, Rolletschek H, Borisjuk L, Radchuk V. Adaptation Strategies of Halophytic Barley Hordeum marinum ssp. marinum to High Salinity and Osmotic Stress. Int J Mol Sci 2020; 21:ijms21239019. [PMID: 33260985 PMCID: PMC7730945 DOI: 10.3390/ijms21239019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The adaptation strategies of halophytic seaside barley Hordeum marinum to high salinity and osmotic stress were investigated by nuclear magnetic resonance imaging, as well as ionomic, metabolomic, and transcriptomic approaches. When compared with cultivated barley, seaside barley exhibited a better plant growth rate, higher relative plant water content, lower osmotic pressure, and sustained photosynthetic activity under high salinity, but not under osmotic stress. As seaside barley is capable of controlling Na+ and Cl− concentrations in leaves at high salinity, the roots appear to play the central role in salinity adaptation, ensured by the development of thinner and likely lignified roots, as well as fine-tuning of membrane transport for effective management of restriction of ion entry and sequestration, accumulation of osmolytes, and minimization of energy costs. By contrast, more resources and energy are required to overcome the consequences of osmotic stress, particularly the severity of reactive oxygen species production and nutritional disbalance which affect plant growth. Our results have identified specific mechanisms for adaptation to salinity in seaside barley which differ from those activated in response to osmotic stress. Increased knowledge around salt tolerance in halophytic wild relatives will provide a basis for improved breeding of salt-tolerant crops.
Collapse
Affiliation(s)
- Stanislav Isayenkov
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Institute of Food Biotechnology and Genomics NAS of Ukraine, Osipovskogo Street, 2a, 04123 Kyiv, Ukraine
- Correspondence: (S.I.); (V.R.)
| | - Alexander Hilo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Paride Rizzo
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Yudelsy Antonia Tandron Moya
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Hardy Rolletschek
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Ljudmilla Borisjuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
| | - Volodymyr Radchuk
- Leibniz-Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany; (A.H.); (P.R.); (Y.A.T.M.); (H.R.); (L.B.)
- Correspondence: (S.I.); (V.R.)
| |
Collapse
|
32
|
Gadzinowska J, Dziurka M, Ostrowska A, Hura K, Hura T. Phytohormone synthesis pathways in sweet briar rose (Rosa rubiginosa L.) seedlings with high adaptation potential to soil drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 154:745-750. [PMID: 32768989 DOI: 10.1016/j.plaphy.2020.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/27/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
The study aimed to determine the phytohormone profile of sweet briar rose (Rosa rubiginosa L.) seedlings and privileged synthesis pathways of individual hormones including gibberellins, cytokinins and auxins in response to long-term soil drought. We detected eight gibberellins, nine auxins and fifteen cytokinins. Abscisic acid (ABA) was also detected as a sensitive indicator of water stress. Thirty days of soil drought induced significant increase of ABA content and species-specific quantitative changes of other phytohormones. We established preferred synthesis pathways for three gibberellins, six auxins and eight cytokinins. Both an increase and decrease in gibberellin and cytokinin levels may modulate sweet briar's response to soil water shortage. In the case of auxins, induction of effective adaptation mechanisms to extremely dry environments is mostly triggered by their rising levels. Under drought stress, sweet briar seedlings increased their gibberellin pool at the expense of reducing the pool of cytokinins and auxins. This may indicate a specific role of gibberellins in adaptation mechanisms to long-term soil water deficit developed by sweet briar.
Collapse
Affiliation(s)
- Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Physiology, Faculty of Agriculture and Economics, University of Agriculture, Podłużna 3, 30-239, Kraków, Poland
| | - Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239, Kraków, Poland.
| |
Collapse
|
33
|
Ding Q, Wang F, Xue J, Yang X, Fan J, Chen H, Li Y, Wu H. Identification and Expression Analysis of Hormone Biosynthetic and Metabolism Genes in the 2OGD Family for Identifying Genes That May Be Involved in Tomato Fruit Ripening. Int J Mol Sci 2020; 21:ijms21155344. [PMID: 32731334 PMCID: PMC7432023 DOI: 10.3390/ijms21155344] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Phytohormones play important roles in modulating tomato fruit development and ripening. The 2-oxoglutarate-dependent dioxygenase (2OGD) superfamily containing several subfamilies involved in hormone biosynthesis and metabolism. In this study, we aimed to identify hormone biosynthesis and metabolism-related to 2OGD proteins in tomato and explored their roles in fruit development and ripening. We identified nine 2OGD protein subfamilies involved in hormone biosynthesis and metabolism, including the gibberellin (GA) biosynthetic protein families GA20ox and GA3ox, GA degradation protein families C19-GA2ox and C20-GA2ox, ethylene biosynthetic protein family ACO, auxin degradation protein family DAO, jasmonate hydroxylation protein family JOX, salicylic acid degradation protein family DMR6, and strigolactone biosynthetic protein family LBO. These genes were differentially expressed in different tomato organs. The GA degradation gene SlGA2ox2, and the auxin degradation gene SlDAO1, showed significantly increased expression from the mature-green to the breaker stage during tomato fruit ripening, accompanied by decreased endogenous GA and auxin, indicating that SlGA2ox2 and SlDAO1 were responsible for the reduced GA and auxin concentrations. Additionally, exogenous gibberellin 3 (GA3) and indole-3-acetic acid (IAA) treatment of mature-green fruits delayed fruit ripening and increased the expression of SlGA2ox2 and SlDAO1, respectively. Therefore, SlGA2ox2 and SlDAO1 are implicated in the degradation of GAs and auxin during tomato fruit ripening.
Collapse
Affiliation(s)
- Qiangqiang Ding
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Juan Xue
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Xinxin Yang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Junmiao Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
| | - Hong Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing 210014, China;
| | - Yi Li
- Department of Plant Science and Landscape Architecture, University of Connecticut, Storrs, CT 06269, USA;
| | - Han Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (Q.D.); (F.W.); (J.X.); (X.Y.); (J.F.)
- Correspondence:
| |
Collapse
|
34
|
Saja D, Janeczko A, Barna B, Skoczowski A, Dziurka M, Kornaś A, Gullner G. Powdery Mildew-Induced Hormonal and Photosynthetic Changes in Barley Near Isogenic Lines Carrying Various Resistant Genes. Int J Mol Sci 2020; 21:ijms21124536. [PMID: 32630603 PMCID: PMC7352864 DOI: 10.3390/ijms21124536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 11/16/2022] Open
Abstract
The present work focused on the characterization of some physiological mechanisms activated upon powdery mildew inoculation of the susceptible barley cultivar Ingrid and its near-isogenic lines (NILs) carrying various resistant genes (Mla, Mlg and mlo). After inoculation with Blumeria graminis f. sp. hordei (Bgh), measurements of leaf reflectance and chlorophyll a fluorescence were performed 3 and 7 day post-inoculation (dpi), while hormone assays were made 7 dpi. Bgh-inoculated resistant genotypes were characterized by lowered leaf reflectance parameters that correlated with carotenoids (CRI) and water content (WBI) in comparison to inoculated Ingrid. The PSII activity (i.e., Fv/Fm, ETo/CSm and P.I.ABS) strongly decreased in susceptible Ingrid leaves when the disease symptoms became visible 7 dpi. In Mla plants with visible hypersensitive spots the PSII activity decreased to a lesser extent. Inoculation resulted in a very slight decrease of photosynthesis at later stage of infection in Mlg plants, whereas in resistant mlo plants the PSII activity did not change. Chlorophyll a fluorescence measurements allowed presymptomatic detection of infection in Ingrid and Mla. Changes in the homeostasis of 22 phytohormones (cytokinins, auxins, gibberellins and the stress hormones JA, SA and ABA) in powdery mildew inoculated barley are discussed in relation to resistance against this biotrophic pathogen.
Collapse
Affiliation(s)
- Diana Saja
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
| | - Anna Janeczko
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
- Correspondence:
| | - Balázs Barna
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (G.G.)
| | - Andrzej Skoczowski
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-054 Krakow, Poland;
| | - Michał Dziurka
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Niezapominajek 21, 30-239 Krakow, Poland; (D.S.); (A.S.); (M.D.)
| | - Andrzej Kornaś
- Institute of Biology, Pedagogical University of Krakow, Podchorążych 2, 31-054 Krakow, Poland;
| | - Gábor Gullner
- Plant Protection Institute, Centre for Agricultural Research, Herman Ottó út 15, 1022 Budapest, Hungary; (B.B.); (G.G.)
| |
Collapse
|
35
|
Brunoni F, Collani S, Casanova-Sáez R, Šimura J, Karady M, Schmid M, Ljung K, Bellini C. Conifers exhibit a characteristic inactivation of auxin to maintain tissue homeostasis. THE NEW PHYTOLOGIST 2020; 226:1753-1765. [PMID: 32004385 DOI: 10.1111/nph.16463] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/27/2020] [Indexed: 06/10/2023]
Abstract
Dynamic regulation of the concentration of the natural auxin (IAA) is essential to coordinate most of the physiological and developmental processes and responses to environmental changes. Oxidation of IAA is a major pathway to control auxin concentrations in angiosperms and, along with IAA conjugation, to respond to perturbation of IAA homeostasis. However, these regulatory mechanisms remain poorly investigated in conifers. To reduce this knowledge gap, we investigated the different contributions of the IAA inactivation pathways in conifers. MS-based quantification of IAA metabolites under steady-state conditions and after perturbation was investigated to evaluate IAA homeostasis in conifers. Putative Picea abies GH3 genes (PaGH3) were identified based on a comprehensive phylogenetic analysis including angiosperms and basal land plants. Auxin-inducible PaGH3 genes were identified by expression analysis and their IAA-conjugating activity was explored. Compared to Arabidopsis, oxidative and conjugative pathways differentially contribute to reduce IAA concentrations in conifers. We demonstrated that the oxidation pathway plays a marginal role in controlling IAA homeostasis in spruce. By contrast, an excess of IAA rapidly activates GH3-mediated irreversible conjugation pathways. Taken together, these data indicate that a diversification of IAA inactivation mechanisms evolved specifically in conifers.
Collapse
Affiliation(s)
- Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, CZ-78371, Olomouc, Czech Republic
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
| | - Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
- Departmebt of Chemical Biology and Genetics, Faculty of Science, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), 90183, Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), 90736, Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| |
Collapse
|
36
|
Sun L, Feraru E, Feraru MI, Waidmann S, Wang W, Passaia G, Wang ZY, Wabnik K, Kleine-Vehn J. PIN-LIKES Coordinate Brassinosteroid Signaling with Nuclear Auxin Input in Arabidopsis thaliana. Curr Biol 2020; 30:1579-1588.e6. [PMID: 32169207 PMCID: PMC7198975 DOI: 10.1016/j.cub.2020.02.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/12/2019] [Accepted: 02/03/2020] [Indexed: 11/15/2022]
Abstract
Auxin and brassinosteroids (BR) are crucial growth regulators and display overlapping functions during plant development. Here, we reveal an alternative phytohormone crosstalk mechanism, revealing that BR signaling controls PIN-LIKES (PILS)-dependent nuclear abundance of auxin. We performed a forward genetic screen for imperial pils (imp) mutants that enhance the overexpression phenotypes of PILS5 putative intracellular auxin transport facilitator. Here, we report that the imp1 mutant is defective in the BR-receptor BRASSINOSTEROID INSENSITIVE 1 (BRI1). Our set of data reveals that BR signaling transcriptionally and post-translationally represses the accumulation of PILS proteins at the endoplasmic reticulum, thereby increasing nuclear abundance and signaling of auxin. We demonstrate that this alternative phytohormonal crosstalk mechanism integrates BR signaling into auxin-dependent organ growth rates and likely has widespread importance for plant development.
Collapse
Affiliation(s)
- Lin Sun
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Elena Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Mugurel I Feraru
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Sascha Waidmann
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria
| | - Wenfei Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA; Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, College of Life Sciences, Fujian Agriculture and Forestry University (FAFU), Fuzhou 350002, China
| | - Gisele Passaia
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Zhi-Yong Wang
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA 94305, USA
| | - Krzysztof Wabnik
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA) Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), Muthgasse 18, Vienna 1190, Austria.
| |
Collapse
|
37
|
García-González J, Kebrlová Š, Semerák M, Lacek J, Kotannal Baby I, Petrášek J, Schwarzerová K. Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:486. [PMID: 32425966 PMCID: PMC7212389 DOI: 10.3389/fpls.2020.00486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 05/29/2023]
Abstract
The Arp2/3 complex is an actin nucleator shown to be required throughout plant morphogenesis, contributing to processes such as cell expansion, tissue differentiation or cell wall assembly. A recent publication demonstrated that plants lacking functional Arp2/3 complex also present defects in auxin distribution and transport. This work shows that Arp2/3 complex subunits are predominantly expressed in the provasculature, although other plant tissues also show promoter activity (e.g., cotyledons, apical meristems, or root tip). Moreover, auxin can trigger subunit expression, indicating a role of this phytohormone in mediating the complex activity. Further investigation of the functional interaction between Arp2/3 complex and auxin signaling also reveals their cooperation in determining pavement cell shape, presumably through the role of Arp2/3 complex in the correct auxin carrier trafficking. Young seedlings of arpc5 mutants show increased auxin-triggered proteasomal degradation of DII-VENUS and altered PIN3 distribution, with higher levels of the protein in the vacuole. Closer observation of vacuolar morphology revealed the presence of a more fragmented vacuolar compartment when Arp2/3 function is abolished, hinting a generalized role of Arp2/3 complex in endomembrane function and protein trafficking.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Štépánka Kebrlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Matěj Semerák
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jozef Lacek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Innu Kotannal Baby
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
38
|
Formation of the Secondary Abscission Zone Induced by the Interaction of Methyl Jasmonate and Auxin in Bryophyllum calycinum: Relevance to Auxin Status and Histology. Int J Mol Sci 2020; 21:ijms21082784. [PMID: 32316348 PMCID: PMC7215696 DOI: 10.3390/ijms21082784] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/06/2020] [Accepted: 04/14/2020] [Indexed: 11/17/2022] Open
Abstract
The interaction of methyl jasmonate (JA-Me) and indole-3-acetic acid (IAA) to induce the formation of the secondary abscission zone in the middle of internode segments of Bryophyllum calycinum was investigated in relation to auxin status and histology. When IAA at 0.1% (w/w, in lanolin) was applied to the segments, the formation of the secondary abscission zone at a few mm above the treatment in the apical direction was observed. On the contrary, IAA at 0.5% (w/w, in lanolin) did not induce the formation of the secondary abscission zone. JA-Me at 0.5% (w/w, in lanolin) applied to the middle of internode segments kept in the normal (natural) or inverted positions also induced the formation of the secondary abscission zone below and above parts of the treatment. IAA at 0.5% applied to the cut surface of the upper part of the segments completely prevented the formation of the secondary abscission zone induced by JA-Me. Simultaneous application of IAA 0.5% with JA-Me 0.5% in the middle part of the internode segments induced the formation of the secondary abscission zone at 10 mm to 12 mm above the treatment. Histological analyses indicated that the formation of the secondary abscission zone was characterized by the presence of newly synthesized cell plates that resulted from periclinal cell division within one layer of mother cells in stems. The effects of IAA (0.1%) and JA-Me (0.5%) on the formation of the secondary abscission zone were histologically similar. Comprehensive analyses of plant hormones revealed that the balance of the endogenous levels of IAA in both sides adjacent to the abscission zone was significantly disturbed when the secondary abscission formation was induced by the application of IAA. These results strongly suggest that an auxin gradient is important in the formation of the secondary abscission zone in the internode segments of B. calycinum, and IAA gradient results from polar IAA transport from the application site. IAA is important in the regulation of formation of the secondary abscission zone induced by JA-Me. Further possible mechanisms of the formation of the secondary abscission zone in the internode segments of B. calycinum are also discussed in the interaction of JA-Me and IAA.
Collapse
|
39
|
Zhang ML, Huang PP, Ji Y, Wang S, Wang SS, Li Z, Guo Y, Ding Z, Wu WH, Wang Y. KUP9 maintains root meristem activity by regulating K + and auxin homeostasis in response to low K. EMBO Rep 2020; 21:e50164. [PMID: 32250038 DOI: 10.15252/embr.202050164] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/23/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
Potassium (K) is essential for plant growth and development. Here, we show that the KUP/HAK/KT K+ transporter KUP9 controls primary root growth in Arabidopsis thaliana. Under low-K+ conditions, kup9 mutants displayed a short-root phenotype that resulted from reduced numbers of root cells. KUP9 was highly expressed in roots and specifically expressed in quiescent center (QC) cells in root tips. The QC acts to maintain root meristem activity, and low-K+ conditions induced QC cell division in kup9 mutants, resulting in impaired root meristem activity. The short-root phenotype and enhanced QC cell division in kup9 mutants could be rescued by exogenous auxin treatment or by specifically increasing auxin levels in QC cells, suggesting that KUP9 affects auxin homeostasis in QC cells. Further studies showed that KUP9 mainly localized to the endoplasmic reticulum (ER), where it mediated K+ and auxin efflux from the ER lumen to the cytoplasm in QC cells under low-K+ conditions. These results demonstrate that KUP9 maintains Arabidopsis root meristem activity and root growth by regulating K+ and auxin homeostasis in response to low-K+ stress.
Collapse
Affiliation(s)
- Mei-Ling Zhang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Pan-Pan Huang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shao-Shuai Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhaojun Ding
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, College of Life Sciences, Shandong University, Qingdao, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
40
|
The dynamic response of the Arabidopsis root metabolome to auxin and ethylene is not predicted by changes in the transcriptome. Sci Rep 2020; 10:679. [PMID: 31959762 PMCID: PMC6971091 DOI: 10.1038/s41598-019-57161-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 12/19/2019] [Indexed: 12/27/2022] Open
Abstract
While the effects of phytohormones on plant gene expression have been well characterized, comparatively little is known about how hormones influence metabolite profiles. This study examined the effects of elevated auxin and ethylene on the metabolome of Arabidopsis roots using a high-resolution 24 h time course, conducted in parallel to time-matched transcriptomic analyses. Mass spectrometry using orthogonal UPLC separation strategies (reversed phase and HILIC) in both positive and negative ionization modes was used to maximize identification of metabolites with altered levels. The findings show that the root metabolome responds rapidly to hormone stimulus and that compounds belonging to the same class of metabolites exhibit similar changes. The responses were dominated by changes in phenylpropanoid, glucosinolate, and fatty acid metabolism, although the nature and timing of the response was unique for each hormone. These alterations in the metabolome were not directly predicted by the corresponding transcriptome data, suggesting that post-transcriptional events such as changes in enzyme activity and/or transport processes drove the observed changes in the metabolome. These findings underscore the need to better understand the biochemical mechanisms underlying the temporal reconfiguration of plant metabolism, especially in relation to the hormone-metabolome interface and its subsequent physiological and morphological effects.
Collapse
|
41
|
Lakehal A, Dob A, Novák O, Bellini C. A DAO1-Mediated Circuit Controls Auxin and Jasmonate Crosstalk Robustness during Adventitious Root Initiation in Arabidopsis. Int J Mol Sci 2019; 20:E4428. [PMID: 31505771 PMCID: PMC6769753 DOI: 10.3390/ijms20184428] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/31/2019] [Accepted: 09/06/2019] [Indexed: 11/16/2022] Open
Abstract
Adventitious rooting is a post-embryonic developmental program governed by a multitude of endogenous and environmental cues. Auxin, along with other phytohormones, integrates and translates these cues into precise molecular signatures to provide a coherent developmental output. Auxin signaling guides every step of adventitious root (AR) development from the early event of cell reprogramming and identity transitions until emergence. We have previously shown that auxin signaling controls the early events of AR initiation (ARI) by modulating the homeostasis of the negative regulator jasmonate (JA). Although considerable knowledge has been acquired about the role of auxin and JA in ARI, the genetic components acting downstream of JA signaling and the mechanistic basis controlling the interaction between these two hormones are not well understood. Here we provide evidence that COI1-dependent JA signaling controls the expression of DAO1 and its closely related paralog DAO2. In addition, we show that the dao1-1 loss of function mutant produces more ARs than the wild type, probably due to its deficiency in accumulating JA and its bioactive metabolite JA-Ile. Together, our data indicate that DAO1 controls a sensitive feedback circuit that stabilizes the auxin and JA crosstalk during ARI.
Collapse
Affiliation(s)
- Abdellah Lakehal
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Asma Dob
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University and Institute of Experimental Botany, The Czech Academy of Sciences, 78371 Olomouc, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Physiology, Swedish Agriculture University, SE-90183 Umea, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-90736 Umeå, Sweden.
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, FR-78000 Versailles, France.
| |
Collapse
|
42
|
Hagel JM, Facchini PJ. Expanding the roles for 2-oxoglutarate-dependent oxygenases in plant metabolism. Nat Prod Rep 2019; 35:721-734. [PMID: 29488530 DOI: 10.1039/c7np00060j] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Covering: up to 2018 2-Oxoglutarate-dependent oxygenases (2ODOs) comprise a large enzyme superfamily in plant genomes, second in size only to the cytochromes P450 monooxygenase (CYP) superfamily. 2ODOs participate in both primary and specialized plant pathways, and their occurrence across all life kingdoms points to an ancient origin. Phylogenetic evidence supports substantial expansion and diversification of 2ODOs following the split from the common ancestor of land plants. More conserved roles for these enzymes include oxidation within hormone metabolism, such as the recently described capacity of Dioxygenase for Auxin Oxidation (DAO) for governing auxin homeostasis. Conserved structural features among 2ODOs has provided a basis for continued investigation into their mechanisms, and recent structural work is expected to illuminate intriguing reactions such as that of 1-aminocyclopropane-1-carboxylic acid oxidase (ACCO). Phylogenetic radiation among this superfamily combined with neo- and subfunctionalization has enabled recruitment to highly specialized pathways, including those yielding medicines, flavours, dyes, poisons, and compounds important for plant-environment interactions. Catalytic versatility of 2ODOs in plants and across broader taxa continues to inspire biochemists tasked with the discovery of new enzymes. This highlight article summarizes recent reports up to 2018 of 2ODOs within plant metabolism. Furthermore, the respective contributions of 2ODOs and other oxidases to natural product biosynthesis are discussed as a framework for continued discovery.
Collapse
Affiliation(s)
- J M Hagel
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| | - P J Facchini
- Department of Biological Sciences, University of Calgary, 2500 University Drive N.W., Calgary, Alberta T2N 1N4, Canada.
| |
Collapse
|
43
|
Casanova-Sáez R, Voß U. Auxin Metabolism Controls Developmental Decisions in Land Plants. TRENDS IN PLANT SCIENCE 2019; 24:741-754. [PMID: 31230894 DOI: 10.1016/j.tplants.2019.05.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 05/03/2023]
Abstract
Unlike animals, whose body plans are set during embryo development, plants maintain the ability to initiate new organs throughout their life cycle. Auxin is a key regulator of almost all aspects of plant development, including morphogenesis and adaptive responses. Cellular auxin concentrations influence whether a cell will divide, grow, or differentiate, thereby contributing to organ formation, growth, and ultimately plant shape. Auxin gradients are established and maintained by a tightly regulated interplay between metabolism, signalling, and transport. Auxin is synthesised, stored, and inactivated by a multitude of parallel pathways that are all tightly regulated. Here we summarise the remarkable progress that has been achieved in identifying some key components of these pathways and the genetic complexity underlying their precise regulation.
Collapse
Affiliation(s)
- Rubén Casanova-Sáez
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ute Voß
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
44
|
Zwiewka M, Bielach A, Tamizhselvan P, Madhavan S, Ryad EE, Tan S, Hrtyan MN, Dobrev P, Vankovï R, Friml J, Tognetti VB. Root Adaptation to H2O2-Induced Oxidative Stress by ARF-GEF BEN1- and Cytoskeleton-Mediated PIN2 Trafficking. PLANT & CELL PHYSIOLOGY 2019; 60:255-273. [PMID: 30668780 DOI: 10.1093/pcp/pcz001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/03/2019] [Indexed: 05/12/2023]
Abstract
Abiotic stress poses constant challenges for plant survival and is a serious problem for global agricultural productivity. On a molecular level, stress conditions result in elevation of reactive oxygen species (ROS) production causing oxidative stress associated with oxidation of proteins and nucleic acids as well as impairment of membrane functions. Adaptation of root growth to ROS accumulation is facilitated through modification of auxin and cytokinin hormone homeostasis. Here, we report that in Arabidopsis root meristem, ROS-induced changes of auxin levels correspond to decreased abundance of PIN auxin efflux carriers at the plasma membrane (PM). Specifically, increase in H2O2 levels affects PIN2 endocytic recycling. We show that the PIN2 intracellular trafficking during adaptation to oxidative stress requires the function of the ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factor (GEF) BEN1, an actin-associated regulator of the trafficking from the PM to early endosomes and, presumably, indirectly, trafficking to the vacuoles. We propose that H2O2 levels affect the actin dynamics thus modulating ARF-GEF-dependent trafficking of PIN2. This mechanism provides a way how root growth acclimates to stress and adapts to a changing environment.
Collapse
Affiliation(s)
- Marta Zwiewka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Agnieszka Bielach
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Prashanth Tamizhselvan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Sharmila Madhavan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Eman Elrefaay Ryad
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Shutang Tan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Mï Nika Hrtyan
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| | - Petre Dobrev
- Institute of Experimental Botany Czech Acad. Sci, Laboratory of Hormonal Regulations in Plants, Rozvojov� 263, Prague 6, Czech Republic
| | - Radomira Vankovï
- Institute of Experimental Botany Czech Acad. Sci, Laboratory of Hormonal Regulations in Plants, Rozvojov� 263, Prague 6, Czech Republic
| | - Jiřï Friml
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Vanesa B Tognetti
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, Czech Republic
| |
Collapse
|
45
|
Brunoni F, Collani S, Šimura J, Schmid M, Bellini C, Ljung K. A bacterial assay for rapid screening of IAA catabolic enzymes. PLANT METHODS 2019; 15:126. [PMID: 31700527 PMCID: PMC6827244 DOI: 10.1186/s13007-019-0509-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Plants rely on concentration gradients of the native auxin, indole-3-acetic acid (IAA), to modulate plant growth and development. Both metabolic and transport processes participate in the dynamic regulation of IAA homeostasis. Free IAA levels can be reduced by inactivation mechanisms, such as conjugation and degradation. IAA can be conjugated via ester linkage to glucose, or via amide linkage to amino acids, and degraded via oxidation. Members of the UDP glucosyl transferase (UGT) family catalyze the conversion of IAA to indole-3-acetyl-1-glucosyl ester (IAGlc); by contrast, IAA is irreversibly converted to indole-3-acetyl-l-aspartic acid (IAAsp) and indole-3-acetyl glutamic acid (IAGlu) by Group II of the GRETCHEN HAGEN3 (GH3) family of acyl amido synthetases. Dioxygenase for auxin oxidation (DAO) irreversibly oxidizes IAA to oxindole-3-acetic acid (oxIAA) and, in turn, oxIAA can be further glucosylated to oxindole-3-acetyl-1-glucosyl ester (oxIAGlc) by UGTs. These metabolic pathways have been identified based on mutant analyses, in vitro activity measurements, and in planta feeding assays. In vitro assays for studying protein activity are based on producing Arabidopsis enzymes in a recombinant form in bacteria or yeast followed by recombinant protein purification. However, the need to extract and purify the recombinant proteins represents a major obstacle when performing in vitro assays. RESULTS In this work we report a rapid, reproducible and cheap method to screen the enzymatic activity of recombinant proteins that are known to inactivate IAA. The enzymatic reactions are carried out directly in bacteria that produce the recombinant protein. The enzymatic products can be measured by direct injection of a small supernatant fraction from the bacterial culture on ultrahigh-performance liquid chromatography coupled to electrospray ionization tandem spectrometry (UHPLC-ESI-MS/MS). Experimental procedures were optimized for testing the activity of different classes of IAA-modifying enzymes without the need to purify recombinant protein. CONCLUSIONS This new method represents an alternative to existing in vitro assays. It can be applied to the analysis of IAA metabolites that are produced upon supplementation of substrate to engineered bacterial cultures and can be used for a rapid screening of orthologous candidate genes from non-model species.
Collapse
Affiliation(s)
- Federica Brunoni
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
- Present Address: Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Silvio Collani
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
| | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
| | - Catherine Bellini
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University (Umu), Umeå, Sweden
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, 78000 Versailles, France
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), Umeå, Sweden
| |
Collapse
|
46
|
De Zio E, Trupiano D, Karady M, Antoniadi I, Montagnoli A, Terzaghi M, Chiatante D, Ljung K, Scippa GS. Tissue-specific hormone profiles from woody poplar roots under bending stress. PHYSIOLOGIA PLANTARUM 2019; 165:101-113. [PMID: 30187489 DOI: 10.1111/ppl.12830] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/16/2018] [Accepted: 09/02/2018] [Indexed: 06/08/2023]
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| | - Michal Karady
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Ioanna Antoniadi
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Antonio Montagnoli
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Mattia Terzaghi
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Donato Chiatante
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Gabriella S Scippa
- Department of Biosciences and Territory, University of Molise, 86090 Pesche, Italy
| |
Collapse
|
47
|
Binek A, Rojo D, Godzien J, Rupérez FJ, Nuñez V, Jorge I, Ricote M, Vázquez J, Barbas C. Flow Cytometry Has a Significant Impact on the Cellular Metabolome. J Proteome Res 2018; 18:169-181. [PMID: 30362351 DOI: 10.1021/acs.jproteome.8b00472] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The characterization of specialized cell subpopulations in a heterogeneous tissue is essential for understanding organ function in health and disease. A popular method of cell isolation is fluorescence-activated cell sorting (FACS) based on probes that bind surface or intracellular markers. In this study, we analyze the impact of FACS on the cell metabolome of mouse peritoneal macrophages. Compared with directly pelleted macrophages, FACS-treated cells had an altered content of metabolites related to the plasma membrane, activating a mechanosensory signaling cascade causing inflammation-like stress. The procedure also triggered alterations related to energy consumption and cell damage. The observed changes mostly derive from the physical impact on cells during their passage through the instrument. These findings provide evidence of FACS-induced biochemical changes, which should be taken into account in the design of robust metabolic assays of cells separated by flow cytometry.
Collapse
Affiliation(s)
- Aleksandra Binek
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III , Madrid 28029 , Spain 1
| | - David Rojo
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Campus Montepríncipe , Madrid 28668 , Spain
| | - Joanna Godzien
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Campus Montepríncipe , Madrid 28668 , Spain
| | - Francisco Javier Rupérez
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Campus Montepríncipe , Madrid 28668 , Spain
| | - Vanessa Nuñez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III , Madrid 28029 , Spain 1
| | - Inmaculada Jorge
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III , Madrid 28029 , Spain 1.,CIBER de Enfermedades Cardiovasculares (CIBER CV), Madrid 28029 , Spain
| | - Mercedes Ricote
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III , Madrid 28029 , Spain 1
| | - Jesús Vázquez
- Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III , Madrid 28029 , Spain 1.,CIBER de Enfermedades Cardiovasculares (CIBER CV), Madrid 28029 , Spain
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia , Universidad CEU San Pablo , Campus Montepríncipe , Madrid 28668 , Spain
| |
Collapse
|
48
|
Skalický V, Kubeš M, Napier R, Novák O. Auxins and Cytokinins-The Role of Subcellular Organization on Homeostasis. Int J Mol Sci 2018; 19:E3115. [PMID: 30314316 PMCID: PMC6213326 DOI: 10.3390/ijms19103115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/18/2022] Open
Abstract
Plant hormones are master regulators of plant growth and development. Better knowledge of their spatial signaling and homeostasis (transport and metabolism) on the lowest structural levels (cellular and subcellular) is therefore crucial to a better understanding of developmental processes in plants. Recent progress in phytohormone analysis at the cellular and subcellular levels has greatly improved the effectiveness of isolation protocols and the sensitivity of analytical methods. This review is mainly focused on homeostasis of two plant hormone groups, auxins and cytokinins. It will summarize and discuss their tissue- and cell-type specific distributions at the cellular and subcellular levels.
Collapse
Affiliation(s)
- Vladimír Skalický
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| | - Martin Kubeš
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Richard Napier
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | - Ondřej Novák
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany of the Czech Academy of Sciences & Faculty of Science of Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic.
| |
Collapse
|
49
|
Huang L, Yu LJ, Zhang X, Fan B, Wang FZ, Dai YS, Qi H, Zhou Y, Xie LJ, Xiao S. Autophagy regulates glucose-mediated root meristem activity by modulating ROS production in Arabidopsis. Autophagy 2018; 15:407-422. [PMID: 30208757 PMCID: PMC6351127 DOI: 10.1080/15548627.2018.1520547] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Glucose produced from photosynthesis is a key nutrient signal regulating root meristem activity in plants; however, the underlying mechanisms remain poorly understood. Here, we show that, by modulating reactive oxygen species (ROS) levels, the conserved macroautophagy/autophagy degradation pathway contributes to glucose-regulated root meristem maintenance. In Arabidopsis thaliana roots, a short exposure to elevated glucose temporarily suppresses constitutive autophagosome formation. The autophagy-defective autophagy-related gene (atg) mutants have enhanced tolerance to glucose, established downstream of the glucose sensors, and accumulate less glucose-induced ROS in the root tips. Moreover, the enhanced root meristem activities in the atg mutants are associated with improved auxin gradients and auxin responses. By acting with AT4G39850/ABCD1 (ATP-binding cassette D1; Formerly PXA1/peroxisomal ABC transporter 1), autophagy plays an indispensable role in the glucose-promoted degradation of root peroxisomes, and the atg mutant phenotype is partially rescued by the overexpression of ABCD1. Together, our findings suggest that autophagy is an essential mechanism for glucose-mediated maintenance of the root meristem. Abbreviation: ABA: abscisic acid; ABCD1: ATP-binding cassette D1; ABO: ABA overly sensitive; AsA: ascorbic acid; ATG: autophagy related; CFP: cyan fluorescent protein; Co-IP: co-immunoprecipitation; DAB: 3’,3’-diaininobenzidine; DCFH-DA: 2’,7’-dichlorodihydrofluorescin diacetate; DR5: a synthetic auxin response element consists of tandem direct repeats of 11 bp that included the auxin-responsive TGTCTC element; DZ: differentiation zone; EZ, elongation zone; GFP, green fluorescent protein; GSH, glutathione; GUS: β-glucuronidase; HXK1: hexokinase 1; H2O2: hydrogen peroxide; IAA: indole-3-acetic acid; IBA: indole-3-butyric acid; KIN10/11: SNF1 kinase homolog 10/11; MDC: monodansylcadaverine; MS: Murashige and Skoog; MZ: meristem zone; NBT: nitroblue tetrazolium; NPA: 1-N-naphtylphthalamic acid; OxIAA: 2-oxindole-3-acetic acid; PIN: PIN-FORMED; PLT: PLETHORA; QC: quiescent center; RGS1: Regulator of G-protein signaling 1; ROS: reactive oxygen species; SCR: SCARECROW; SHR, SHORT-ROOT; SKL: Ser-Lys-Leu; SnRK1: SNF1-related kinase 1; TOR: target of rapamycin; UPB1: UPBEAT1; WOX5: WUSCHEL related homeobox 5; Y2H: yeast two-hybrid; YFP: yellow fluorescent protein
Collapse
Affiliation(s)
- Li Huang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Lu-Jun Yu
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Xue Zhang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Biao Fan
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Feng-Zhu Wang
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Yang-Shuo Dai
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Hua Qi
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Ying Zhou
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Li-Juan Xie
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| | - Shi Xiao
- a State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences , Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
50
|
Urbancsok J, Bones AM, Kissen R. Benzyl Cyanide Leads to Auxin-Like Effects Through the Action of Nitrilases in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 9:1240. [PMID: 30197652 PMCID: PMC6117430 DOI: 10.3389/fpls.2018.01240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/06/2018] [Indexed: 05/19/2023]
Abstract
Plants within the Brassicales order generate glucosinolate hydrolysis products that can exert different biological effects on several organisms. Here, we evaluated the physiological effects of one of these compounds, benzyl cyanide (phenylacetonitrile), when exogenously applied on Arabidopsis thaliana. Treatment with benzyl cyanide led to a dose-dependent reduction of primary root length and total biomass. Further morphological changes like elongated hypocotyls, epinastic cotyledons, and increased formation of adventitious roots resembled a severe auxin-overproducer phenotype. The elevated auxin response was confirmed by histochemical staining and gene expression analysis of auxin-responsive genes. Nitriles are converted by specific enzymes, nitrilases (NIT1-3), to their corresponding carboxylic acids. The nitrilase mutants nit1 and nit2 tolerated benzyl cyanide treatments better than the wild type, with nit2 being less resistant than nit1. A NIT2RNAi line suppressing several nitrilases was resistant to all tested benzyl cyanide concentrations. When exposed to phenylacetic acid (PAA) - the corresponding carboxylic acid of benzyl cyanide - wild type and mutant seedlings were, however, equally susceptible and showed a more severe auxin phenotype than upon cyanide treatment. Here, we demonstrate that the auxin-like effects triggered by benzyl cyanide on Arabidopsis are due to its nitrilase-mediated conversion to the natural auxin PAA.
Collapse
Affiliation(s)
| | | | - Ralph Kissen
- Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|