1
|
Zubair A, Al-Emam A, Ali M, Hussain SM, Elmagzoub RM. Targeting HIV-1 conserved regions: An immunoinformatic pathway to vaccine innovation for the Asia. PLoS One 2025; 20:e0317382. [PMID: 40117271 PMCID: PMC11927918 DOI: 10.1371/journal.pone.0317382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/26/2024] [Indexed: 03/23/2025] Open
Abstract
A combination of humoral and cell-mediated immune system stimulation is essential for developing an effective HIV vaccine. Traditional treatment options and the challenges posed by drug resistance necessitate the discovery of a viable vaccine candidate capable of eliciting a robust immunological response. This research aims to develop an HIV vaccine with a multi-epitope component using a unique immunoinformatics approach. A subunit vaccine comprising B-cell, helper T-cell, and cytotoxic T-cell epitopes, along with appropriate adjuvants and linkers, was employed to identify conserved regions in the Pol, Vpr, Gag, Tat, Env, Nef, and Vif proteins. The HIV subunit vaccine demonstrated the potential to activate both cell-mediated and humoral immune responses, indicating its immunogenicity. The application of homology modeling and refinement further enhanced the model's accuracy. Subsequently, the molecular docking procedure utilized the refined model structure to bind to the immunological receptor TLR-3 in lymphocyte cells. Following this, the potential interactions of the subunit vaccine with TLR-3 were investigated using molecular dynamics modeling. The vaccine's stability was improved through a meticulous disulfide engineering technique that involved inserting cysteine residues into highly flexible regions. Finally, in silico cloning was employed to validate the efficacy of translating and producing the vaccine in a microbiological setting. The vaccine shows promising results in terms of population coverage, reaching 82% of the global population, with extraordinary efficacy in Asia, covering up to 95% of the population. Our HIV vaccine candidate is highly stable and elicits a robust immune response against HIV-1.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
| | - Ahmed Al-Emam
- Department of Pathology, College of Medicine, King Khalid University, Asir , Saudi Arabia
| | - Muhammad Ali
- Department of Biotechnology, Quaid-i-Azam University Islamabad, Pakistan
| | - Syeda Maryam Hussain
- Department of Livestock Production and Management, Faculty of Veterinary and Animal Sciences PIR Mehr Ali Shah-Arid Agriculture University Rawalpindi, Shamsabad, Murree Road, Pakistan
| | - Ranya Mohammed Elmagzoub
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Northern Border University, Arar, Saudi Arabia
| |
Collapse
|
2
|
Pérez-Saucedo D, Castro-Perea NV, Ruíz-Cruz A, Bustos-Jaimes I, Viveros-Rogel M, Huerta-Hernández L, Moreno-Fierros L. Design and evaluation of a multi-epitope HIV-1 vaccine based on human parvovirus virus-like particles. Vaccine 2025; 45:126663. [PMID: 39721354 DOI: 10.1016/j.vaccine.2024.126663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
The development of a protective HIV vaccine remains a challenge given the high antigenic diversity and mutational rate of the virus, which leads to viral escape and establishment of reservoirs in the host. Modern antigen design can guide immune responses towards conserved sites, consensus sequences or normally subdominant epitopes, thus enabling the development of broadly neutralizing antibodies and polyfunctional lymphocyte responses. Conventional epitope vaccines can often be impaired by low immunogenicity, a limitation that may be overcome by using a carrier system. In this work, Virus-Like Particles (VLPs) of the B19 human parvovirus were used as a carrier system for multiple HIV-1 epitopes displayed on the surface. Epitopes were selected based on being the binding site of broadly neutralizing antibodies (bnAbs) in patients. Full capsid assembly was confirmed by dynamic light scattering and morphology was confirmed by transmission electron imaging. The resulting chimeric VLPs were termed "VLP-MHIV-A". Antigenicity was confirmed by HIV+ patient sera binding to the chimeric VLP-MHIV-A. To evaluate immunogenicity, female C57bl/6 mice were immunized with the chimeric VLPs either via the intramuscular or subcutaneous route, specific humoral and cellular responses were evaluated, and neutralizing activity was measured in an in vitro reporter cell system. Substantial antibodies against whole-VLPs were induced in serum and vaginal lavages for both immunization routes. Antibody responses against the CD4 binding site, V3 loop and several epitopes of gp41 were detected. Both immunization routes demonstrated neutralizing activity; however, the I.M. route was more effective, showing significant neutralizing activity with up to 50 % inhibition of a tier 1 clade B virus infection. Taken as a whole, these results show that chimeric VLPs are an effective antigen capable of inducing HIV-1 specific antibodies with neutralizing activity.
Collapse
Affiliation(s)
- David Pérez-Saucedo
- Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Nancy Vanessa Castro-Perea
- National Technological of Mexico/Tijuana Technological Institute, Center for Graduate and Research in Chemistry, Postal Box 1166, Tijuana, Baja California 22000, Mexico
| | - Antonio Ruíz-Cruz
- Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico
| | - Ismael Bustos-Jaimes
- Department of Biochemistry, Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| | - Mónica Viveros-Rogel
- Department of Infectious Diseases, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga 15, Tlalpan, 14080 Mexico City, Mexico
| | - Leonor Huerta-Hernández
- Biomedical Research Institute, Department of Immunology, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Leticia Moreno-Fierros
- Mucosal Immunoogy Laboratory, Biomedicine Research Unit, Faculty of Higher Studies Iztacala, National Autonomous University of Mexico. Avenida de los Barrios 1, Los Reyes Iztacala, Tlalnepantla, Estado de México 54090, Mexico.
| |
Collapse
|
3
|
Grant-McAuley W, Morgenlander WR, Ruczinski I, Kammers K, Laeyendecker O, Hudelson SE, Thakar M, Piwowar-Manning E, Clarke W, Breaud A, Ayles H, Bock P, Moore A, Kosloff B, Shanaube K, Meehan SA, van Deventer A, Fidler S, Hayes R, Larman HB, Eshleman SH. Identification of antibody targets associated with lower HIV viral load and viremic control. PLoS One 2024; 19:e0305976. [PMID: 39288118 PMCID: PMC11407625 DOI: 10.1371/journal.pone.0305976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/09/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND High HIV viral loads (VL) are associated with increased morbidity, mortality, and on-going transmission. HIV controllers maintain low VLs in the absence of antiretroviral therapy (ART). We previously used a massively multiplexed antibody profiling assay (VirScan) to compare antibody profiles in HIV controllers and persons living with HIV (PWH) who were virally suppressed on ART. In this report, we used VirScan to evaluate whether antibody reactivity to specific HIV targets and broad reactivity across the HIV genome was associated with VL and controller status 1-2 years after infection. METHODS Samples were obtained from participants who acquired HIV infection in a community-randomized trial in Africa that evaluated an integrated strategy for HIV prevention (HPTN 071 PopART). Controller status was determined using VL and antiretroviral (ARV) drug data obtained at the seroconversion visit and 1 year later. Viremic controllers had VLs <2,000 copies/mL at both visits; non-controllers had VLs >2,000 copies/mL at both visits. Both groups had no ARV drugs detected at either visit. VirScan testing was performed at the second HIV-positive visit (1-2 years after HIV infection). RESULTS The study cohort included 13 viremic controllers and 64 non-controllers. We identified ten clusters of homologous peptides that had high levels of antibody reactivity (three in gag, three in env, two in integrase, one in protease, and one in vpu). Reactivity to 43 peptides (eight unique epitopes) in six of these clusters was associated with lower VL; reactivity to six of the eight epitopes was associated with HIV controller status. Higher aggregate antibody reactivity across the eight epitopes (more epitopes targeted, higher mean reactivity across all epitopes) and across the HIV genome was also associated with lower VL and controller status. CONCLUSIONS We identified HIV antibody targets associated with lower VL and HIV controller status 1-2 years after infection. Robust aggregate responses to these targets and broad antibody reactivity across the HIV genome were also associated with lower VL and controller status. These findings provide novel insights into the relationship between humoral immunity and viral containment that could help inform the design of antibody-based approaches for reducing HIV VL.
Collapse
Affiliation(s)
- Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William R. Morgenlander
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Kai Kammers
- Quantitative Sciences Division, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, Maryland, United States of America
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Manjusha Thakar
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Estelle Piwowar-Manning
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - William Clarke
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Autumn Breaud
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Helen Ayles
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Peter Bock
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Ayana Moore
- FHI 360, Durham, North Carolina, United States of America
| | - Barry Kosloff
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
- Clinical Research Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kwame Shanaube
- Zambart, University of Zambia School of Public Health, Lusaka, Zambia
| | - Sue-Ann Meehan
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Anneen van Deventer
- Desmond Tutu TB Center, Department of Paediatrics and Child Health, Stellenbosch University, Stellenbosch, Western Cape, South Africa
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Richard Hayes
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - H. Benjamin Larman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | | |
Collapse
|
4
|
Albalawi SA, Albalawi RA, Albalawi AA, Alanazi RF, Almahlawi RM, Alhwity BS, Alatawi BD, Elsherbiny N, Alqifari SF, Abdel-Maksoud MS. The Possible Mechanisms of Cu and Zn in the Treatment and Prevention of HIV and COVID-19 Viral Infection. Biol Trace Elem Res 2024; 202:1524-1538. [PMID: 37608131 DOI: 10.1007/s12011-023-03788-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 07/18/2023] [Indexed: 08/24/2023]
Abstract
Due to their unique properties and their potential therapeutic and prophylactic applications, heavy metals have attracted the interest of many researchers, especially during the outbreak of COVID-19. Indeed, zinc (Zn) and copper (Cu) have been widely used during viral infections. Zn has been reported to prevent excessive inflammatory response and cytokine storm, improve the response of the virus to Type I interferon (IFN-1), and enhance the production of IFN-a to counteract the antagonistic effect of SARS-CoV-2 virus protein on IFN. Additionally, Zn has been found to promote the proliferation and differentiation of T and B lymphocytes, thereby improving immune function, inhibiting RNA-dependent RNA polymerase (RdRp) in SARS- CoV-2 reducing the viral replication and stabilizing the cell membrane by preventing the proteolytic processing of viral polyprotein and proteases enzymes. Interestingly, Zn deficiency has been correlated with enhanced SARS-CoV-2 viral entry through interaction between the ACE2 receptor and viral spike protein. Along with zinc, Cu possesses strong virucidal capabilities and is known to be effective at neutralizing a variety of infectious viruses, including the poliovirus, influenza virus, HIV type 1, and other enveloped or nonenveloped, single- or double-stranded DNA and RNA viruses. Cu-related antiviral action has been linked to different pathways. First, it may result in permanent damage to the viral membrane, envelopes, and genetic material of viruses. Second, Cu produces reactive oxygen species to take advantage of the redox signaling mechanism to eradicate the virus. The present review focused on Zn and Cu in the treatment and prevention of viral infection. Moreover, the application of metals such as Cu and gold in nanotechnology for the development of antiviral therapies and vaccines has been also discussed.
Collapse
Affiliation(s)
- Shatha A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raneem A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Amaal A Albalawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raghad F Alanazi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Raghad M Almahlawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Basma S Alhwity
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Bashayer D Alatawi
- Pharm D program, Faculty of pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal Elsherbiny
- Department of Pharmaceutical chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Saleh F Alqifari
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Mohamed S Abdel-Maksoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
5
|
Marković V, Szczepańska A, Berlicki Ł. Antiviral Protein-Protein Interaction Inhibitors. J Med Chem 2024; 67:3205-3231. [PMID: 38394369 PMCID: PMC10945500 DOI: 10.1021/acs.jmedchem.3c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/04/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Continually repeating outbreaks of pathogenic viruses necessitate the construction of effective antiviral strategies. Therefore, the development of new specific antiviral drugs in a well-established and efficient manner is crucial. Taking into account the strong ability of viruses to change, therapies with diversified molecular targets must be sought. In addition to the widely explored viral enzyme inhibitor approach, inhibition of protein-protein interactions is a very valuable strategy. In this Perspective, protein-protein interaction inhibitors targeting HIV, SARS-CoV-2, HCV, Ebola, Dengue, and Chikungunya viruses are reviewed and discussed. Antibodies, peptides/peptidomimetics, and small molecules constitute three classes of compounds that have been explored, and each of them has some advantages and disadvantages for drug development.
Collapse
Affiliation(s)
- Violeta Marković
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
- University
of Kragujevac, Faculty of Science,
Department of Chemistry, R. Domanovića 12, 34000 Kragujevac, Serbia
| | - Anna Szczepańska
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław
University of Science and Technology, Department
of Bioorganic Chemistry, Wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
6
|
Sadeghi L, Bolhassani A, Mohit E, Baesi K, Aghasadeghi MR. Heterologous DNA Prime/Protein Boost Immunization Targeting Nef-Tat Fusion Antigen Induces Potent T-cell Activity and in vitro Anti-SCR HIV-1 Effects. Curr HIV Res 2024; 22:109-119. [PMID: 38712371 DOI: 10.2174/011570162x297602240430142231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/15/2024] [Accepted: 03/20/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND Heterologous combinations in vaccine design are an effective approach to promote T cell activity and antiviral effects. The goal of this study was to compare the homologous and heterologous regimens targeting the Nef-Tat fusion antigen to develop a human immunodeficiency virus-1 (HIV-1) therapeutic vaccine candidate. METHODS At first, the DNA and protein constructs harboring HIV-1 Nef and the first exon of Tat as linked form (pcDNA-nef-tat and Nef-Tat protein) were prepared in large scale and high purity. The generation of the Nef-Tat protein was performed in the E. coli expression system using an IPTG inducer. Then, we evaluated and compared immune responses of homologous DNA prime/ DNA boost, homologous protein prime/ protein boost, and heterologous DNA prime/protein boost regimens in BALB/c mice. Finally, the ability of mice splenocytes to secret cytokines after exposure to single-cycle replicable (SCR) HIV-1 was compared between immunized and control groups in vitro. RESULTS The nef-tat gene was successfully subcloned in eukaryotic pcDNA3.1 (-) and prokaryotic pET-24a (+) expression vectors. The recombinant Nef-Tat protein was generated in the E. coli Rosetta strain under optimized conditions as a clear band of ~ 35 kDa detected on SDS-PAGE. Moreover, transfection of pcDNA-nef-tat into HEK-293T cells was successfully performed using Lipofectamine 2000, as confirmed by western blotting. The immunization studies showed that heterologous DNA prime/protein boost regimen could significantly elicit the highest levels of Ig- G2a, IFN-γ, and Granzyme B in mice as compared to homologous DNA/DNA and protein/protein regimens. Moreover, the secretion of IFN-γ was higher in DNA/protein regimens than in DNA/DNA and protein/protein regimens after exposure of mice splenocytes to SCR HIV-1 in vitro. CONCLUSION The chimeric HIV-1 Nef-Tat antigen was highly immunogenic, especially when applied in a heterologous prime/ boost regimen. This regimen could direct immune response toward cellular immunity (Th1 and CTL activity) and increase IFN-γ secretion after virus exposure.
Collapse
Affiliation(s)
- Leila Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Elham Mohit
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Baesi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
7
|
Liang J, Zhai L, Liang Z, Chen X, Jiang Y, Lin Y, Feng S, Liu Y, Zhao W, Wang F. Rational Design and Characterization of Trispecific Antibodies Targeting the HIV-1 Receptor and Envelope Glycoprotein. Vaccines (Basel) 2023; 12:19. [PMID: 38250832 PMCID: PMC10819093 DOI: 10.3390/vaccines12010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/16/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Multitudinous broadly neutralizing antibodies (bNAbs) against HIV-1 have been developed as novel antiviral prophylactic and therapeutic agents. Combinations of bNAbs are generally even more effective than when they are applied individually, showing excellent neutralization coverage and limiting the emergence of escape mutants. In this study, we investigated the design and characterization of three trispecific antibodies that allow a single molecule to interact with independent HIV-1 envelope determinants-(1) the host receptor CD4, (2) the host co-receptor CCR5 and (3) distinct domains in the envelope glycoprotein of HIV-1-using an ELISA, an HIV-1 pseudovirus neutralization assay and in vivo antiviral experiments in humanized mice. We found that trispecific bNAbs and monovalent ones all had satisfactory binding activities against the corresponding antigens in the ELISA, exhibited higher potency and breadth than any previously described single bnAb in the HIV-1 pseudovirus neutralization assay and showed an excellent antiviral effect in vivo. The trispecific antibodies simultaneously recognize the host receptor CD4, host co-receptor CCR5 and HIV-1 envelope glycoprotein, which could mean they have promise as prophylactic and therapeutic agents against HIV-1.
Collapse
Affiliation(s)
- Jinhu Liang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Linlin Zhai
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Zuxin Liang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Xiaoling Chen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Yuanlong Lin
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Shiyan Feng
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Yingxia Liu
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| | - Wei Zhao
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No.1023, South Shatai Road, Baiyun District, Guangzhou 510515, China; (L.Z.); (Z.L.); (X.C.); (Y.J.)
| | - Fuxiang Wang
- Shenzhen Key Laboratory of Pathogen and Immunity, National Clinical Research Center for Infectious Disease, State Key Discipline of Infectious Disease, Shenzhen Third People’s Hospital, Second Hospital Affiliated to Southern University of Science and Technology, Shenzhen 518112, China; (J.L.); (Y.L.); (S.F.); (Y.L.)
| |
Collapse
|
8
|
Odera DO, Tuju J, Mwai K, Nkumama IN, Fürle K, Chege T, Kimathi R, Diehl S, Musasia FK, Rosenkranz M, Njuguna P, Hamaluba M, Kapulu MC, Frank R, Osier FHA. Anti-merozoite antibodies induce natural killer cell effector function and are associated with immunity against malaria. Sci Transl Med 2023; 15:eabn5993. [PMID: 36753561 PMCID: PMC7616656 DOI: 10.1126/scitranslmed.abn5993] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 01/19/2023] [Indexed: 02/10/2023]
Abstract
Natural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized Plasmodium falciparum merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes. Ab-NK was associated with the successful control of parasitemia after experimental malaria challenge in African adults. In an independent cohort study in children, Ab-NK increased with age, was boosted by concurrent P. falciparum infections, and was associated with a lower risk of clinical episodes of malaria. Nine of the 14 vaccine candidates tested induced Ab-NK, including some less well-characterized antigens: P41, P113, MSP11, RHOPH3, and Pf_11363200. These data highlight an important role of Ab-NK activity in immunity against malaria and provide a potential mechanism for evaluating vaccine candidates.
Collapse
Affiliation(s)
- Dennis O. Odera
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - James Tuju
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Kennedy Mwai
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Epidemiology and Biostatistics Division, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Irene N. Nkumama
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Kristin Fürle
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Timothy Chege
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rinter Kimathi
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Stefan Diehl
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Fauzia K. Musasia
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Micha Rosenkranz
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Patricia Njuguna
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Mainga Hamaluba
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Melissa C. Kapulu
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
| | - Roland Frank
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
| | - Faith H. A. Osier
- Centre of Infectious Diseases, Heidelberg University Hospital, Heidelberg, Germany
- Centre for Geographic Medicine Research (Coast), Kenya Medical Research Institute–Wellcome Trust Research Programme, Kilifi, Kenya
- Department of Life Sciences, Imperial College London, UK
| |
Collapse
|
9
|
Aigbogun OP, Phenix CP, Krol ES, Price EW. The Chemistry of Creating Chemically Programmed Antibodies (cPAbs): Site-Specific Bioconjugation of Small Molecules. Mol Pharm 2023; 20:853-874. [PMID: 36696533 DOI: 10.1021/acs.molpharmaceut.2c00821] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Small-molecule drugs have been employed for years as therapeutics in the pharmaceutical industry. However, small-molecule drugs typically have short in vivo half-lives which is one of the largest impediments to the success of many potentially valuable pharmacologically active small molecules. The undesirable pharmacokinetics and pharmacology associated with some small molecules have led to the development of a new class of bioconjugates known as chemically programmed antibodies (cPAbs). cPAbs are bioconjugates in which antibodies are used to augment small molecules with effector functions and prolonged pharmacokinetic profiles, where the pharmacophore of the small molecule is harnessed for target binding and therefore biological targeting. Many different small molecules can be conjugated to large proteins such as full monoclonal antibodies (IgG), fragment crystallizable regions (Fc), or fragment antigen binding regions (Fab). In order to successfully and site-specifically conjugate small molecules to any class of antibodies (IgG, Fc, or Fab), the molecules must be derivatized with a functional group for ease of conjugation without altering the pharmacology of the small molecules. In this Review, we summarize the different synthetic or biological methods that have been employed to produce cPAbs. These unique chemistries have potential to be applied to other fields of antibody modification such as antibody drug conjugates, radioimmunoconjugates, and fluorophore-tagged antibodies.
Collapse
Affiliation(s)
- Omozojie P Aigbogun
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Christopher P Phenix
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| | - Ed S Krol
- Drug Discovery and Development Research Group, College of Pharmacy and Nutrition, University of Saskatchewan, 107 Wiggins Road, Saskatoon, S7N-5E5 Saskatchewan, Canada
| | - Eric W Price
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, S7N-5C9 Saskatchewan, Canada
| |
Collapse
|
10
|
LaMont C, Otwinowski J, Vanshylla K, Gruell H, Klein F, Nourmohammad A. Design of an optimal combination therapy with broadly neutralizing antibodies to suppress HIV-1. eLife 2022; 11:76004. [PMID: 35852143 PMCID: PMC9467514 DOI: 10.7554/elife.76004] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Infusion of broadly neutralizing antibodies (bNAbs) has shown promise as an alternative to anti-retroviral therapy against HIV. A key challenge is to suppress viral escape, which is more effectively achieved with a combination of bNAbs. Here, we propose a computational approach to predict the efficacy of a bNAb therapy based on the population genetics of HIV escape, which we parametrize using high-throughput HIV sequence data from bNAb-naive patients. By quantifying the mutational target size and the fitness cost of HIV-1 escape from bNAbs, we predict the distribution of rebound times in three clinical trials. We show that a cocktail of three bNAbs is necessary to effectively suppress viral escape, and predict the optimal composition of such bNAb cocktail. Our results offer a rational therapy design for HIV, and show how genetic data can be used to predict treatment outcomes and design new approaches to pathogenic control.
Collapse
Affiliation(s)
- Colin LaMont
- Max Planck Institute for Dynamics and Self-Organization
| | | | | | | | | | | |
Collapse
|
11
|
Martí D, Alemán C, Ainsley J, Ahumada O, Torras J. IgG1-b12-HIV-gp120 Interface in Solution: A Computational Study. J Chem Inf Model 2022; 62:359-371. [PMID: 34971312 PMCID: PMC8790758 DOI: 10.1021/acs.jcim.1c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 11/29/2022]
Abstract
The use of broadly neutralizing antibodies against human immunodeficiency virus type 1 (HIV-1) has been shown to be a promising therapeutic modality in the prevention of HIV infection. Understanding the b12-gp120 binding mechanism under physiological conditions may assist the development of more broadly effective antibodies. In this work, the main conformations and interactions between the receptor-binding domain (RBD) of spike glycoprotein gp120 of HIV-1 and the IgG1-b12 mAb are studied. Accelerated molecular dynamics (aMD) and ab initio hybrid molecular dynamics have been combined to determine the most persistent interactions between the most populated conformations of the antibody-antigen complex under physiological conditions. The results show the most persistent receptor-binding mapping in the conformations of the antibody-antigen interface in solution. The binding-free-energy decomposition reveals a small enhancement in the contribution played by the CDR-H3 region to the b12-gp120 interface compared to the crystal structure.
Collapse
Affiliation(s)
- Didac Martí
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| | - Carlos Alemán
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
- Institute
for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, 08028 Barcelona, Spain
| | - Jon Ainsley
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Evotec
Campus Curie, 195 Rte d’Espagne, 31100 Toulouse, Occitanie, France
| | - Oscar Ahumada
- Mecwins
S.L., Parque Científico de Madrid PTM, C/Santiago Grisolía 2,
Tres Cantos, Madrid 28760, Spain
| | - Juan Torras
- Department
of Chemical Engineering (EEBE), Universitat
Politècnica de Catalunya, C/Eduard Maristany 10-14, Ed I2, 08019 Barcelona, Spain
- Barcelona
Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany 10-14, 08019 Barcelona, Spain
| |
Collapse
|
12
|
Murin CD, Gilchuk P, Crowe JE, Ward AB. Structural Biology Illuminates Molecular Determinants of Broad Ebolavirus Neutralization by Human Antibodies for Pan-Ebolavirus Therapeutic Development. Front Immunol 2022; 12:808047. [PMID: 35082794 PMCID: PMC8784787 DOI: 10.3389/fimmu.2021.808047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 12/06/2021] [Indexed: 01/13/2023] Open
Abstract
Monoclonal antibodies (mAbs) have proven effective for the treatment of ebolavirus infection in humans, with two mAb-based drugs Inmazeb™ and Ebanga™ receiving FDA approval in 2020. While these drugs represent a major advance in the field of filoviral therapeutics, they are composed of antibodies with single-species specificity for Zaire ebolavirus. The Ebolavirus genus includes five additional species, two of which, Bundibugyo ebolavirus and Sudan ebolavirus, have caused severe disease and significant outbreaks in the past. There are several recently identified broadly neutralizing ebolavirus antibodies, including some in the clinical development pipeline, that have demonstrated broad protection in preclinical studies. In this review, we describe how structural biology has illuminated the molecular basis of broad ebolavirus neutralization, including details of common antigenic sites of vulnerability on the glycoprotein surface. We begin with a discussion outlining the history of monoclonal antibody therapeutics for ebolaviruses, with an emphasis on how structural biology has contributed to these efforts. Next, we highlight key structural studies that have advanced our understanding of ebolavirus glycoprotein structures and mechanisms of antibody-mediated neutralization. Finally, we offer examples of how structural biology has contributed to advances in anti-viral medicines and discuss what opportunities the future holds, including rationally designed next-generation therapeutics with increased potency, breadth, and specificity against ebolaviruses.
Collapse
MESH Headings
- Antibodies, Monoclonal/immunology
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Monoclonal, Humanized/immunology
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- Antiviral Agents/immunology
- Antiviral Agents/therapeutic use
- Drug Combinations
- Ebolavirus/drug effects
- Ebolavirus/immunology
- Ebolavirus/physiology
- Epitopes/chemistry
- Epitopes/immunology
- Glycoproteins/chemistry
- Glycoproteins/immunology
- Hemorrhagic Fever, Ebola/drug therapy
- Hemorrhagic Fever, Ebola/immunology
- Hemorrhagic Fever, Ebola/virology
- Humans
- Models, Molecular
- Protein Domains/immunology
- Viral Proteins/chemistry
- Viral Proteins/immunology
Collapse
Affiliation(s)
- Charles D. Murin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| | - Pavlo Gilchuk
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
13
|
Malatji K, Fru PN, Mufhandu H, Alexandre K. Synthesis of fluorescence labelled aptamers for use as low-cost reagents in HIV/AIDS research and diagnostics. Biomed Rep 2021; 16:8. [PMID: 34938537 PMCID: PMC8686199 DOI: 10.3892/br.2021.1491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/20/2021] [Indexed: 11/30/2022] Open
Abstract
Aptamers are nucleic acids selected by systematic evolution of ligands by exponential enrichment. They have potential as alternatives to antibodies in medical research and diagnostics, with the advantages of being non-immunogenic and relatively inexpensive to produce. In the present study, gp120 aptamers conjugated with fluorescein isothiocyanate (FITC) were generated, which could interact with HIV-1 gp120. A previously isolated gp120 aptamer, CSIR 1.1, was conjugated with FITC by incubation with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and imidazole. The conjugation and binding to the glycoprotein were confirmed by flow cytometry. FITC conjugated aptamers showed an increase in fluorescence emission 24-fold higher than baseline, and this difference was statistically significant (P=0.0016). Compared with a commercially available biotinylated anti-gp120 antibody, detected using FITC conjugated streptavidin, the emission of fluorescence obtained from the FITC-conjugated aptamer was 8-fold higher, suggesting a stronger interaction with gp120. In addition, the FITC conjugated aptamer neutralized HIV-1 pseudoviruses with an average IC50 of 21.3 nM, similar to the parent aptamer that had an IC50 of 19.2 nM. However, the difference in inhibition between the two aptamers was not statistically significant (P=0.784). These results indicate that the FITC-conjugated aptamer generated in the present study could potentially be used as a low-cost reagent in HIV/AIDS research and diagnostics.
Collapse
Affiliation(s)
- Kanyane Malatji
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng 0001, South Africa.,Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, South Africa
| | - Hazel Mufhandu
- Department of Microbiology, North West University, School of Biological Sciences, Mmabatho, North West 2735, South Africa
| | - Kabamba Alexandre
- Council for Scientific and Industrial Research, Emerging Research Area Platform, Next Generation Health Cluster, Pretoria, Gauteng 0001, South Africa
| |
Collapse
|
14
|
Xiang HR, He B, Li Y, Cheng X, Zhang QZ, Peng WX. Bamlanivimab plus etesevimab treatment have a better outcome against COVID-19: A meta-analysis. J Med Virol 2021; 94:1893-1905. [PMID: 34936121 DOI: 10.1002/jmv.27542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023]
Abstract
Bamlanivimab is routinely used in the treatment of coronavirus disease 2019 (COVID-19) worldwide. We performed a meta-analysis to investigate the efficacy and safety of bamlanivimab treatment in patients with COVID-19. We searched articles from Web of Science, PubMed, Embase, the Cochrane Library, and medRxiv between January 30, 2020 and August 5, 2021. We selected randomized clinical trials (RCTs) and observational studies with a control group to assess the efficiency of bamlanivimab in treating patients with COVID-19. Our meta-analysis retrieved three RCTs and seven cohort studies including 14 461 patients. Bmlanivimab may help outpatients to prevent hospitalization or emergency department visits (RR 0.41, 95%CI 0.29-0.58), reduce ICU admission (RR 0.47, 95%CI 0.23-0.92), and mortality (RR 0.32, 95%CI 0.13-0.77) from the disease. The combination of bamlanivimab and etesevimab may have a greater potential for positive treatment outcomes. Bamlanivimab has demonstrated clinical efficacy on mild or moderate ill patients with COVID-19 to prevent hospitalization, reduce severity, and mortality from the disease. Combinations of bamlanivimab and etesevimab have a significant relative risk reduction for COVID-related hospitalization or death for patients than the monotherapy 700 mg group. Well-designed clinical trials to identify the clinical and biochemical characteristics in the COVID-19 patients' population that could benefit from bamlanivimab or plus etesevimab are warranted in the future.
Collapse
Affiliation(s)
- Huai-Rong Xiang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bei He
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yun Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qi-Zhi Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wen-Xing Peng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, China
| |
Collapse
|
15
|
Dubé K, Kanazawa J, Dee L, Taylor J, Sauceda JA, Gianella S, Smith D, Deeks SG, Peluso MJ. Considerations for designing and implementing combination HIV cure trials: findings from a qualitative in-depth interview study in the United States. AIDS Res Ther 2021; 18:75. [PMID: 34663375 PMCID: PMC8522863 DOI: 10.1186/s12981-021-00401-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/06/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND An increasing number of HIV cure trials involve combining multiple potentially curative interventions. Until now, considerations for designing and implementing complex combination HIV cure trials have not been thoroughly considered. METHODS We used a purposive method to select key informants for our study. Informants included biomedical HIV cure researchers, regulators, policy makers, bioethicists, and community members. We used in-depth interviews to generate ethical and practical considerations to guide the design and implementation of combination HIV cure research. We analyzed the qualitative data using conventional content analysis focused on inductive reasoning. RESULTS We interviewed 11 biomedical researchers, 4 community members, 2 regulators, 1 policy researcher, and 1 bioethicist. Informants generated considerations for designing and implementing combination interventions towards an HIV cure, focused on ethical aspects, as well as considerations to guide trial design, benefit/risk determinations, regulatory requirements, prioritization and sequencing and timing of interventions, among others. Informants also provided considerations related to combining specific HIV cure research modalities, such as broadly neutralizing antibodies (bNAbs), cell and gene modification products, latency-reversing agents and immune-based interventions. Finally, informants provided suggestions to ensure meaningful therapeutic improvements over standard antiretroviral therapy, overcome challenges of designing combination approaches, and engage communities around combination HIV cure research. CONCLUSION The increasing number of combination HIV cure trials brings with them a host of ethical and practical challenges. We hope our paper will inform meaningful stakeholder dialogue around the use of combinatorial HIV cure research approaches. To protect the public trust in HIV cure research, considerations should be periodically revisited and updated with key stakeholder input as the science continues to advance.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599 USA
- UNC Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27516 USA
| | - John Kanazawa
- University of North Carolina Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599 USA
| | - Lynda Dee
- AIDS Action Baltimore, 14 East Eager Street, Baltimore, MD 21202 USA
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), 995 Potrero Avenue, San Francisco, CA 94110 USA
| | - Jeff Taylor
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), 995 Potrero Avenue, San Francisco, CA 94110 USA
- HIV+Aging Research Project-Palm Springs (H+ARP-PS), 1775 East Palm Canyon Drive, Suite 110-349, Palm Springs, CA 92264 USA
| | - John A. Sauceda
- Department of Medicine, Division of Prevention Science, Center for AIDS Prevention Studies (CAPS), University of California, San Francisco (UCSF), 550 16th Street, 3rd Floor, San Francisco, CA 94158 USA
| | - Sara Gianella
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
| | - Davey Smith
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093 USA
- AntiViral Research Center (AVRC), University of California at San Diego, 220 Dickinson Street, Suite A, San Diego, CA 92103 USA
| | - Steven G. Deeks
- Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, San Francisco General Hospital, University of California, San Francisco (UCSF), Ward 84, Building 80, San Francisco, CA 94110 USA
| | - Michael J. Peluso
- Department of Medicine, Division of HIV, Infectious Diseases, and Global Medicine, San Francisco General Hospital, University of California, San Francisco (UCSF), Ward 84, Building 80, San Francisco, CA 94110 USA
| |
Collapse
|
16
|
Parker Miller E, Finkelstein MT, Erdman MC, Seth PC, Fera D. A Structural Update of Neutralizing Epitopes on the HIV Envelope, a Moving Target. Viruses 2021; 13:v13091774. [PMID: 34578355 PMCID: PMC8472920 DOI: 10.3390/v13091774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 08/29/2021] [Accepted: 09/02/2021] [Indexed: 11/16/2022] Open
Abstract
Antibodies that can neutralize diverse HIV-1 strains develop in ~10–20% of HIV-1 infected individuals, and their elicitation is a goal of vaccine design. Such antibodies can also serve as therapeutics for those who have already been infected with the virus. Structural characterizations of broadly reactive antibodies in complex with the HIV-1 spike indicate that there are a limited number of sites of vulnerability on the spike. Analysis of their structures can help reveal commonalities that would be useful in vaccine design and provide insights on combinations of antibodies that can be used to minimize the incidence of viral resistance mutations. In this review, we give an update on recent structures determined of the spike in complex with broadly neutralizing antibodies in the context of all epitopes on the HIV-1 spike identified to date.
Collapse
|
17
|
Jensen B, Luebke N, Feldt T, Keitel V, Brandenburger T, Kindgen-Milles D, Lutterbeck M, Freise NF, Schoeler D, Haas R, Dilthey A, Adams O, Walker A, Timm J, Luedde T. Emergence of the E484K mutation in SARS-COV-2-infected immunocompromised patients treated with bamlanivimab in Germany. THE LANCET REGIONAL HEALTH. EUROPE 2021; 8:100164. [PMID: 34278371 PMCID: PMC8278033 DOI: 10.1016/j.lanepe.2021.100164] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Monoclonal antibodies (mAb) have been introduced as a promising new therapeutic approach against SARS-CoV-2. At present, there is little experience regarding their clinical effects in patient populations underrepresented in clinical trials, e.g. immunocompromised patients. Additionally, it is not well known to what extent SARS-CoV-2 treatment with monoclonal antibodies could trigger the selection of immune escape viral variants. METHODS After identifying immunocompromised patients with viral rebound under treatment with bamlanivimab, we characterized the SARS-CoV-2-isolates by whole genome sequencing. Viral load measurements and sequence analysis were performed consecutively before and after bamlanivimab administration. FINDINGS After initial decrease of viral load, viral clearance was not achieved in five of six immunocompromised patients treated with bamlanivimab. Instead, viral replication increased again over the course of the following one to two weeks. In these five patients, the E484K substitution - known to confer immune escape - was detected at the time of viral rebound but not before bamlanivimab treatment. INTERPRETATION Treatment of SARS-CoV-2 with bamlanivimab in immunocompromised patients results in the rapid development of immune escape variants in a significant proportion of cases. Given that the E484K mutation can hamper natural immunity, the effectiveness of vaccination as well as antibody-based therapies, these findings may have important implications not only for individual treatment decisions but may also pose a risk to general prevention and treatment strategies. FUNDING All authors are employed and all expenses covered by governmental, federal state, or other publicly funded institutions.
Collapse
Affiliation(s)
- Bjoern Jensen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Nadine Luebke
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Duesseldorf, Germany
| | - Torsten Feldt
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Verena Keitel
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Timo Brandenburger
- Department of Anaesthesiology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Detlef Kindgen-Milles
- Department of Anaesthesiology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Matthias Lutterbeck
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Noemi F Freise
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - David Schoeler
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Rainer Haas
- Department of Hematology, Oncology and Clinical Immunology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Duesseldorf, Germany
| | - Alexander Dilthey
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Ortwin Adams
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Duesseldorf, Germany
| | - Andreas Walker
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Duesseldorf, Germany
| | - Joerg Timm
- Institute of Virology, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Duesseldorf, Germany
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Duesseldorf, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| |
Collapse
|
18
|
Kammers K, Chen A, Monaco DR, Hudelson SE, Grant-McAuley W, Moore RD, Alter G, Deeks SG, Morrison CS, Eller LA, Blankson JN, Laeyendecker O, Ruczinski I, Eshleman SH, Larman HB. HIV Antibody Profiles in HIV Controllers and Persons With Treatment-Induced Viral Suppression. Front Immunol 2021; 12:740395. [PMID: 34512672 PMCID: PMC8428532 DOI: 10.3389/fimmu.2021.740395] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction Low HIV viral load is associated with delayed disease progression and reduced HIV transmission. HIV controllers suppress viral load to low levels in the absence of antiretroviral treatment (ART). We used an antibody profiling system, VirScan, to compare antibody reactivity and specificity in HIV controllers, non-controllers with treatment-induced viral suppression, and viremic non-controllers. Methods The VirScan library contains 3,384 phage-displayed peptides spanning the HIV proteome. Antibody reactivity to these peptides was measured in plasma from a Discovery Cohort that included 13 elite controllers, 27 viremic controllers, 12 viremic non-controllers, and 21 non-controllers who were virally suppressed on ART. Antibody reactivity to selected peptides was also assessed in an independent cohort of 29 elite controllers and 37 non-controllers who were virally suppressed on ART (Validation Cohort) and in a longitudinal cohort of non-controllers. Results In the Discovery Cohort, 62 peptides were preferentially targeted in HIV controllers compared to non-controllers who were virally suppressed on ART. These specificities were not significantly different when comparing controllers versus viremic non-controllers. Aggregate reactivity to these peptides was also high in elite controllers from the independent Validation Cohort. The 62 peptides formed seven clusters of homologous epitopes in env, gag, integrase, and vpu. Reactivity to one of these clusters located in gag p17 was inversely correlated with viral load set point in an independent cohort of non-controllers. Conclusions Antibody reactivity was low in non-controllers suppressed on ART, but remained high in viremic controllers despite viral suppression. Antibodies in controllers and viremic non-controllers were directed against epitopes in diverse HIV proteins; higher reactivity against p17 peptides was associated with lower viral load set point. Further studies are needed to determine if these antibodies play a role in regulation of HIV viral load.
Collapse
Affiliation(s)
- Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Athena Chen
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Daniel R. Monaco
- Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E. Hudelson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wendy Grant-McAuley
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Galit Alter
- Department of Medicine, Ragon Institute of Massachusetts General Hospital (MGH), Massachusetts Institute of Technology (MIT) and Harvard, Cambridge, MA, United States
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Charles S. Morrison
- Behavioral, Epidemiologic and Clinical Sciences, Family Health International (FHI) 360, Durham, NC, United States
| | - Leigh A. Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Joel N. Blankson
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Oliver Laeyendecker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States,Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Baltimore, MD, United States
| | - Ingo Ruczinski
- Department of Biostatistics, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, United States
| | - Susan H. Eshleman
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: H. Benjamin Larman, ; Susan H. Eshleman,
| | - H. Benjamin Larman
- Department of Pathology and the Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States,*Correspondence: H. Benjamin Larman, ; Susan H. Eshleman,
| |
Collapse
|
19
|
Dubé K, Kanazawa J, Taylor J, Dee L, Jones N, Roebuck C, Sylla L, Louella M, Kosmyna J, Kelly D, Clanton O, Palm D, Campbell DM, Onaiwu MG, Patel H, Ndukwe S, Henley L, Johnson MO, Saberi P, Brown B, Sauceda JA, Sugarman J. Ethics of HIV cure research: an unfinished agenda. BMC Med Ethics 2021; 22:83. [PMID: 34193141 PMCID: PMC8243312 DOI: 10.1186/s12910-021-00651-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 06/23/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The pursuit of a cure for HIV is a high priority for researchers, funding agencies, governments and people living with HIV (PLWH). To date, over 250 biomedical studies worldwide are or have been related to discovering a safe, effective, and scalable HIV cure, most of which are early translational research and experimental medicine. As HIV cure research increases, it is critical to identify and address the ethical challenges posed by this research. METHODS We conducted a scoping review of the growing HIV cure research ethics literature, focusing on articles published in English peer-reviewed journals from 2013 to 2021. We extracted and summarized key developments in the ethics of HIV cure research. Twelve community advocates actively engaged in HIV cure research provided input on this summary and suggested areas warranting further ethical inquiry and foresight via email exchange and video conferencing. DISCUSSION Despite substantial scholarship related to the ethics of HIV cure research, additional attention should focus on emerging issues in six categories of ethical issues: (1) social value (ongoing and emerging biomedical research and scalability considerations); (2) scientific validity (study design issues, such as the use of analytical treatment interruptions and placebos); (3) fair selection of participants (equity and justice considerations); (4) favorable benefit/risk balance (early phase research, benefit-risk balance, risk perception, psychological risks, and pediatric research); (5) informed consent (attention to language, decision-making, informed consent processes and scientific uncertainty); and (6) respect for enrolled participants and community (perspectives of people living with HIV and affected communities and representation). CONCLUSION HIV cure research ethics has an unfinished agenda. Scientific research and bioethics should work in tandem to advance ethical HIV cure research. Because the science of HIV cure research will continue to rapidly advance, ethical considerations of the major themes we identified will need to be revisited and refined over time.
Collapse
Affiliation(s)
- Karine Dubé
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - John Kanazawa
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Jeff Taylor
- HIV + Aging Research Project – Palm Springs (HARP–PS), Palm Springs, CA USA
- AntiViral Research Center (AVRC) Community Advisory Board (CAB), San Diego, CA USA
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, NC USA
| | - Lynda Dee
- AIDS Action Baltimore, Baltimore, MD USA
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), San Francisco, CA USA
| | - Nora Jones
- BEAT-HIV Collaboratory CAB, Philadelphia, PA USA
| | | | | | | | - Jan Kosmyna
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee (CSS) Ethics Working Group, Nationwide, USA
| | - David Kelly
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee (CSS) Ethics Working Group, Nationwide, USA
| | - Orbit Clanton
- AIDS Clinical Trials Group Global CAB, Washington, D.C. USA
| | - David Palm
- Collaboratory of AIDS Researchers for Eradication (CARE) CAB, Chapel Hill, NC USA
- Institute of Global Health and Infectious Diseases HIV Treatment and Prevention CAB, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Danielle M. Campbell
- Delaney AIDS Research Enterprise (DARE) Community Advisory Board (CAB), San Francisco, CA USA
- Charles R. Drew College of Medicine and Science, Los Angeles, CA USA
| | - Morénike Giwa Onaiwu
- AIDS Clinical Trials Group (ACTG) Community Scientific Subcommittee (CSS) Ethics Working Group, Nationwide, USA
- Center for the Study of Women, Gender, and Sexuality (School of Humanities), Rice University, Houston, TX USA
| | - Hursch Patel
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Samuel Ndukwe
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Laney Henley
- University of North Carolina at Chapel Hill, Gillings School of Global Public Health, 4108 McGavran-Greenberg Hall, Chapel Hill, NC 27599-7469 USA
| | - Mallory O. Johnson
- Center for AIDS Prevention Studies (CAPS), Division of Prevention Sciences, UCSF, San Francisco, CA USA
| | - Parya Saberi
- Center for AIDS Prevention Studies (CAPS), Division of Prevention Sciences, UCSF, San Francisco, CA USA
| | - Brandon Brown
- Department of Social Medicine, Population and Public Health, Center for Healthy Communities, University of California, Riverside, Riverside, CA USA
| | - John A. Sauceda
- Center for AIDS Prevention Studies (CAPS), Division of Prevention Sciences, UCSF, San Francisco, CA USA
| | - Jeremy Sugarman
- Johns Hopkins Berman Institute for Bioethics, Baltimore, MD USA
| |
Collapse
|
20
|
Moore CM, Grandits M, Grünwald-Gruber C, Altmann F, Kotouckova M, Teh AYH, Ma JKC. Characterisation of a highly potent and near pan-neutralising anti-HIV monoclonal antibody expressed in tobacco plants. Retrovirology 2021; 18:17. [PMID: 34183026 PMCID: PMC8240387 DOI: 10.1186/s12977-021-00560-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/09/2021] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND HIV remains one of the most important health issues worldwide, with almost 40 million people living with HIV. Although patients develop antibodies against the virus, its high mutation rate allows evasion of immune responses. Some patients, however, produce antibodies that are able to bind to, and neutralise different strains of HIV. One such 'broadly neutralising' antibody is 'N6'. Identified in 2016, N6 can neutralise 98% of HIV-1 isolates with a median IC50 of 0.066 µg/mL. This neutralisation breadth makes N6 a very promising therapeutic candidate. RESULTS N6 was expressed in a glycoengineered line of N. benthamiana plants (pN6) and compared to the mammalian cell-expressed equivalent (mN6). Expression at 49 mg/kg (fresh leaf tissue) was achieved in plants, although extraction and purification are more challenging than for most plant-expressed antibodies. N-glycoanalysis demonstrated the absence of xylosylation and a reduction in α(1,3)-fucosylation that are typically found in plant glycoproteins. The N6 light chain contains a potential N-glycosylation site, which was modified and displayed more α(1,3)-fucose than the heavy chain. The binding kinetics of pN6 and mN6, measured by surface plasmon resonance, were similar for HIV gp120. pN6 had a tenfold higher affinity for FcγRIIIa, which was reflected in an antibody-dependent cellular cytotoxicity assay, where pN6 induced a more potent response from effector cells than that of mN6. pN6 demonstrated the same potency and breadth of neutralisation as mN6, against a panel of HIV strains. CONCLUSIONS The successful expression of N6 in tobacco supports the prospect of developing a low-cost, low-tech production platform for a monoclonal antibody cocktail to control HIV in low-to middle income countries.
Collapse
Affiliation(s)
- Catherine M. Moore
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Melanie Grandits
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Clemens Grünwald-Gruber
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Department of Chemistry, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | - Maria Kotouckova
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Audrey Y.-H. Teh
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| | - Julian K.-C. Ma
- Hotung Molecular Immunology Unit, Institute for Infection & Immunity, St George’s University of London, Cranmer Terrace, London, SW17 0RE UK
| |
Collapse
|
21
|
Use of propensity score matching to create counterfactual group to assess potential HIV prevention interventions. Sci Rep 2021; 11:7017. [PMID: 33782485 PMCID: PMC8007631 DOI: 10.1038/s41598-021-86539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/17/2021] [Indexed: 11/08/2022] Open
Abstract
The design of HIV prevention trials in the context of effective HIV preventive methods is a challenge. Alternate designs, including using non-randomised 'observational control arms' have been proposed. We used HIV simulated vaccine efficacy trials (SiVETs) to show pitfalls that may arise from using such observational controls and suggest how to conduct the analysis in the face of the pitfalls. Two SiVETs were nested within previously established observational cohorts of fisherfolk (FF) and female sex workers (FSW) in Uganda. SiVET participants received a licensed Hepatitis B vaccine in a schedule (0, 1 and 6 months) similar to that for a possible HIV vaccine efficacy trial. All participants received HIV counselling and testing every quarter for one year to assess HIV incidence rate ratio (IRR) between SiVET and non-SiVET (observational data). Propensity scores, conditional on baseline characteristics were calculated for SiVET participation and matched between SiVET and non-SiVET in the period before and during the SiVET study. We compared IRR before and after propensity score matching (PSM). In total, 3989 participants were enrolled into observational cohorts prior to SiVET, (1575 FF prior to Jul 2012 and 2414 FSW prior to Aug 2014). SiVET enrolled 572 participants (Jul 2012 to Apr 2014 in FF and Aug 2014 to Apr 2017 in FSW), with 953 non-SiVET participants observed in the SiVET concurrent period and 2928 from the pre-SiVET period (before Jul 2012 in FF or before Apr 2014 in FSW). Imbalances in baseline characteristics were observed between SiVET and non-SiVET participants in both periods before PSM. Similarly, HIV incidence was lower in SiVET than non-SiVET; SiVET-concurrent period, IRR = 0.59, 95% CI 0.31-0.68, p = 0.033 and pre-SiVET period, IRR = 0.77, 95% CI 0.43-1.29, p = 0.161. After PSM, participants baseline characteristics were comparable and there were minimal differences in HIV incidence between SiVET and non-SiVET participants. The process of screening for eligibility for efficacy trial selects participants with baseline characteristics different from the source population, confounding any observed differences in HIV incidence. Propensity score matching can be a useful tool to adjust the imbalance in the measured participants' baseline characteristics creating a counterfactual group to estimate the effect of interventions on HIV incidence.
Collapse
|
22
|
Vlahava VM, Murrell I, Zhuang L, Aicheler RJ, Lim E, Miners KL, Ladell K, Suárez NM, Price DA, Davison AJ, Wilkinson GW, Wills MR, Weekes MP, Wang EC, Stanton RJ. Monoclonal antibodies targeting nonstructural viral antigens can activate ADCC against human cytomegalovirus. J Clin Invest 2021; 131:139296. [PMID: 33586678 PMCID: PMC7880312 DOI: 10.1172/jci139296] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 09/16/2020] [Indexed: 12/16/2022] Open
Abstract
Human cytomegalovirus (HCMV) is a ubiquitous pathogen that causes severe disease following congenital infection and in immunocompromised individuals. No vaccines are licensed, and there are limited treatment options. We now show that the addition of anti-HCMV antibodies (Abs) can activate NK cells prior to the production of new virions, through Ab-dependent cellular cytotoxicity (ADCC), overcoming viral immune evasins. Quantitative proteomics defined the most abundant HCMV proteins on the cell surface, and we screened these targets to identify the viral antigens responsible for activating ADCC. Surprisingly, these were not structural glycoproteins; instead, the immune evasins US28, RL11, UL5, UL141, and UL16 each individually primed ADCC. We isolated human monoclonal Abs (mAbs) specific for UL16 or UL141 from a seropositive donor and optimized them for ADCC. Cloned Abs targeting a single antigen (UL141) were sufficient to mediate ADCC against HCMV-infected cells, even at low concentrations. Collectively, these findings validated an unbiased methodological approach to the identification of immunodominant viral antigens, providing a pathway toward an immunotherapeutic strategy against HCMV and potentially other pathogens.
Collapse
Affiliation(s)
- Virginia-Maria Vlahava
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Isa Murrell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lihui Zhuang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | | | - Eleanor Lim
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Kelly L. Miners
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Kristin Ladell
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Nicolás M. Suárez
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - David A. Price
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Andrew J. Davison
- University of Glasgow-MRC Centre for Virus Research, Glasgow, United Kingdom
| | - Gavin W.G. Wilkinson
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Mark R. Wills
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Eddie C.Y. Wang
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Richard J. Stanton
- Division of Infection and Immunology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Wilson A, Lynch RM. Embracing diversity: how can broadly neutralizing antibodies effectively target a diverse HIV-1 reservoir? Curr Opin Pharmacol 2020; 54:173-178. [PMID: 33189993 DOI: 10.1016/j.coph.2020.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 10/01/2020] [Accepted: 10/05/2020] [Indexed: 12/15/2022]
Abstract
Genetic diversity in the latent proviral reservoir of HIV-1 infected individuals poses a challenge to cure strategies. It has become increasingly evident that diversity increases proportionally with length of active infection, and that functional and/or sterilizing cure strategies will need to overcome this obstacle in individuals who initiated antiretroviral therapy (ART) during chronic infection. Analyzing the results of analytic treatment interruption (ATI) has allowed for the evaluation of such therapeutic strategies in HIV+ individuals. Strategies to overcome the genetic diversity of the HIV-1 reservoir include antibody combinations, pre-screening individuals for bNAb sensitivity, focusing on low-diversity individuals as well as targeting host proteins.
Collapse
Affiliation(s)
- Andrew Wilson
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine & Health Sciences, Washington DC, USA
| | - Rebecca M Lynch
- Department of Microbiology, Immunology and Tropical Medicine, The George Washington University School of Medicine & Health Sciences, Washington DC, USA.
| |
Collapse
|
24
|
Abaasa A, Nash S, Mayanja Y, Price MA, Fast PE, Kaleebu P, Todd J. Comparison of HIV Risk Behaviors Between Clinical Trials and Observational Cohorts in Uganda. AIDS Behav 2020; 24:2872-2884. [PMID: 32277309 PMCID: PMC7467908 DOI: 10.1007/s10461-020-02838-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Many key populations have high-risk behaviors for HIV infection making them suitable for HIV vaccine efficacy trials. However, these behaviors may change when participants enroll into a trial. We used HIV simulated vaccine efficacy trials (SiVETs) nested within observational cohorts of fisherfolks and female sex workers in Uganda to evaluate this difference. We screened observational cohort participants for enrolment into SiVETs, until 572 were enrolled. Those not enrolled (n = 953) continued participation in the observational cohorts. We determined risk behaviors at baseline and at 1 year, assigned a numeric score to each behavior and defined composite score as the sum of reported behaviors. We compared changes in scores over 12 months. Both observational cohorts and SiVETs saw a significant decrease in score but greatest in the SiVETs. Investigators recruiting for trials from these populations should consider the likely effect of reduction in risk behaviors on incident HIV infection and trial statistical power.
Collapse
|
25
|
Ward AR, Mota TM, Jones RB. Immunological approaches to HIV cure. Semin Immunol 2020; 51:101412. [PMID: 32981836 DOI: 10.1016/j.smim.2020.101412] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 09/10/2020] [Indexed: 02/07/2023]
Abstract
Combination antiretroviral therapy (ART) to treat human immunodeficiency virus (HIV) infection has proven remarkably successful - for those who can access and afford it - yet HIV infection persists indefinitely in a reservoir of cells, despite effective ART and despite host antiviral immune responses. An HIV cure is therefore the next aspirational goal and challenge, though approaches differ in their objectives - with 'functional cures' aiming for durable viral control in the absence of ART, and 'sterilizing cures' aiming for the more difficult to realize objective of complete viral eradication. Mechanisms of HIV persistence, including viral latency, anatomical sequestration, suboptimal immune functioning, reservoir replenishment, target cell-intrinsic immune resistance, and, potentially, target cell distraction of immune effectors, likely need to be overcome in order to achieve a cure. A small fraction of people living with HIV (PLWH) naturally control infection via immune-mediated mechanisms, however, providing both sound rationale and optimism that an immunological approach to cure is possible. Herein we review up to date knowledge and emerging evidence on: the mechanisms contributing to HIV persistence, as well as potential strategies to overcome these barriers; promising immunological approaches to achieve viral control and elimination of reservoir-harboring cells, including harnessing adaptive immune responses to HIV and engineered therapies, as well as enhancers of their functions and of complementary innate immune functioning; and combination strategies that are most likely to succeed. Ultimately, a cure must be safe, effective, durable, and, eventually, scalable in order to be widely acceptable and available.
Collapse
Affiliation(s)
- Adam R Ward
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA; PhD Program in Epidemiology, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA
| | - R Brad Jones
- Division of Infectious Diseases, Weill Cornell Medicine, New York, NY, USA; Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
26
|
Wise MC, Xu Z, Tello-Ruiz E, Beck C, Trautz A, Patel A, Elliott ST, Chokkalingam N, Kim S, Kerkau MG, Muthumani K, Jiang J, Fisher PD, Ramos SJ, Smith TR, Mendoza J, Broderick KE, Montefiori DC, Ferrari G, Kulp DW, Humeau LM, Weiner DB. In vivo delivery of synthetic DNA-encoded antibodies induces broad HIV-1-neutralizing activity. J Clin Invest 2020; 130:827-837. [PMID: 31697648 DOI: 10.1172/jci132779] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023] Open
Abstract
Interventions to prevent HIV-1 infection and alternative tools in HIV cure therapy remain pressing goals. Recently, numerous broadly neutralizing HIV-1 monoclonal antibodies (bNAbs) have been developed that possess the characteristics necessary for potential prophylactic or therapeutic approaches. However, formulation complexities, especially for multiantibody deliveries, long infusion times, and production issues could limit the use of these bNAbs when deployed, globally affecting their potential application. Here, we describe an approach utilizing synthetic DNA-encoded monoclonal antibodies (dmAbs) for direct in vivo production of prespecified neutralizing activity. We designed 16 different bNAbs as dmAb cassettes and studied their activity in small and large animals. Sera from animals administered dmAbs neutralized multiple HIV-1 isolates with activity similar to that of their parental recombinant mAbs. Delivery of multiple dmAbs to a single animal led to increased neutralization breadth. Two dmAbs, PGDM1400 and PGT121, were advanced into nonhuman primates for study. High peak-circulating levels (between 6 and 34 μg/ml) of these dmAbs were measured, and the sera of all animals displayed broad neutralizing activity. The dmAb approach provides an important local delivery platform for the in vivo generation of HIV-1 bNAbs and for other infectious disease antibodies.
Collapse
Affiliation(s)
- Megan C Wise
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | - Ziyang Xu
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edgar Tello-Ruiz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Aspen Trautz
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Ami Patel
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sarah Tc Elliott
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Neethu Chokkalingam
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Sophie Kim
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - Kar Muthumani
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Jingjing Jiang
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | - Paul D Fisher
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | | | | | - Janess Mendoza
- Inovio Pharmaceuticals, Plymouth Meeting, Pennsylvania, USA
| | | | - David C Montefiori
- Department of Surgery, Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Daniel W Kulp
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | | | - David B Weiner
- Vaccine and Immunotherapy Center, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Steiner MC, Gibson KM, Crandall KA. Drug Resistance Prediction Using Deep Learning Techniques on HIV-1 Sequence Data. Viruses 2020; 12:E560. [PMID: 32438586 PMCID: PMC7290575 DOI: 10.3390/v12050560] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/08/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022] Open
Abstract
The fast replication rate and lack of repair mechanisms of human immunodeficiency virus (HIV) contribute to its high mutation frequency, with some mutations resulting in the evolution of resistance to antiretroviral therapies (ART). As such, studying HIV drug resistance allows for real-time evaluation of evolutionary mechanisms. Characterizing the biological process of drug resistance is also critically important for sustained effectiveness of ART. Investigating the link between "black box" deep learning methods applied to this problem and evolutionary principles governing drug resistance has been overlooked to date. Here, we utilized publicly available HIV-1 sequence data and drug resistance assay results for 18 ART drugs to evaluate the performance of three architectures (multilayer perceptron, bidirectional recurrent neural network, and convolutional neural network) for drug resistance prediction, jointly with biological analysis. We identified convolutional neural networks as the best performing architecture and displayed a correspondence between the importance of biologically relevant features in the classifier and overall performance. Our results suggest that the high classification performance of deep learning models is indeed dependent on drug resistance mutations (DRMs). These models heavily weighted several features that are not known DRM locations, indicating the utility of model interpretability to address causal relationships in viral genotype-phenotype data.
Collapse
Affiliation(s)
- Margaret C. Steiner
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (K.M.G.); (K.A.C.)
| | - Keylie M. Gibson
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (K.M.G.); (K.A.C.)
| | - Keith A. Crandall
- Computational Biology Institute, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA; (K.M.G.); (K.A.C.)
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
28
|
The Conformational States of the HIV-1 Envelope Glycoproteins. Trends Microbiol 2020; 28:655-667. [PMID: 32418859 DOI: 10.1016/j.tim.2020.03.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/25/2020] [Indexed: 12/16/2022]
Abstract
During HIV-1 entry into target cells, binding of the virus to host receptors, CD4 and CCR5/CXCR4, triggers serial conformational changes in the envelope glycoprotein (Env) trimer that result in the fusion of the viral and cell membranes. Recent discoveries have refined our knowledge of Env conformational states, allowing characterization of the targets of small-molecule HIV-1 entry inhibitors and neutralizing antibodies, and identifying a novel off-pathway conformation (State 2A). Here, we provide an overview of the current understanding of these conformational states, focusing on (i) the events during HIV-1 entry; (ii) conformational preferences of HIV-1 Env ligands; (iii) evasion of the host antibody response; and (iv) potential implications for therapy and prevention of HIV-1 infection.
Collapse
|
29
|
Bharadwaj P, Riekofski C, Lin S, Seaman MS, Garber DA, Montefiori D, Sarzotti-Kelsoe M, Ackerman ME, Weiner JA. Implementation of a three-tiered approach to identify and characterize anti-drug antibodies raised against HIV-specific broadly neutralizing antibodies. J Immunol Methods 2020; 479:112764. [PMID: 32070674 PMCID: PMC7103756 DOI: 10.1016/j.jim.2020.112764] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
Abstract
The ability to detect, quantify, and interrogate the properties of immune responses raised against biological therapeutics is not only important to our understanding of these molecules, but also to their success in the clinic. A tiered assay approach to identify the presence, specificity, and titer of anti-drug antibody (ADA) responses has been adopted as a gold standard by industry leaders, the FDA, and the EMA. In order to support pre-clinical and clinical trials, these assays must be standardized, and their performance sufficiently characterized to ensure the accuracy and reproducibility of results under relevant testing conditions. Here we present implementation of electrochemiluminiscence assays that fit into the tiered paradigm of ADA testing for five HIV broadly neutralizing antibodies (3BNC117, 3BNC117-LS, 10–1074, PGT121, and PGDM1400) in compliance with Good Clinical Laboratory practices. Assay sensitivities and matrix effects were evaluated and used to inform the development of positivity cut points. Once cut points were established, assay precision, specificity, free-drug tolerance, and robustness were defined. In all cases, assay characteristics met or surpassed recommendations set forth by the FDA. To further evaluate the performance of these assays and the tiered approach, samples from non-human primates that had received a subset of the five therapeutics were evaluated. In sum, this study reports qualification of a set of ADA assays available to the scientific community as pre-clinical and clinical trials of broadly HIV-neutralizing antibodies proceed, and a framework that is easily adapted as new drug products are advanced in the clinic.
Collapse
Affiliation(s)
- Pranay Bharadwaj
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Shu Lin
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - David A Garber
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Marcella Sarzotti-Kelsoe
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA; Department of Immunology, Duke University Medical Center, Durham, North Carolina, USA
| | - Margaret E Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA; Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.
| | - Joshua A Weiner
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
30
|
Yellow Fever: Integrating Current Knowledge with Technological Innovations to Identify Strategies for Controlling a Re-Emerging Virus. Viruses 2019; 11:v11100960. [PMID: 31627415 PMCID: PMC6832525 DOI: 10.3390/v11100960] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/30/2019] [Accepted: 10/11/2019] [Indexed: 01/17/2023] Open
Abstract
Yellow fever virus (YFV) represents a re-emerging zoonotic pathogen, transmitted by mosquito vectors to humans from primate reservoirs. Sporadic outbreaks of YFV occur in endemic tropical regions, causing a viral hemorrhagic fever (VHF) associated with high mortality rates. Despite a highly effective vaccine, no antiviral treatments currently exist. Therefore, YFV represents a neglected tropical disease and is chronically understudied, with many aspects of YFV biology incompletely defined including host range, host–virus interactions and correlates of host immunity and pathogenicity. In this article, we review the current state of YFV research, focusing on the viral lifecycle, host responses to infection, species tropism and the success and associated limitations of the YFV-17D vaccine. In addition, we highlight the current lack of available treatments and use publicly available sequence and structural data to assess global patterns of YFV sequence diversity and identify potential drug targets. Finally, we discuss how technological advances, including real-time epidemiological monitoring of outbreaks using next-generation sequencing and CRISPR/Cas9 modification of vector species, could be utilized in future battles against this re-emerging pathogen which continues to cause devastating disease.
Collapse
|
31
|
Gaebler C, Lorenzi JCC, Oliveira TY, Nogueira L, Ramos V, Lu CL, Pai JA, Mendoza P, Jankovic M, Caskey M, Nussenzweig MC. Combination of quadruplex qPCR and next-generation sequencing for qualitative and quantitative analysis of the HIV-1 latent reservoir. J Exp Med 2019; 216:2253-2264. [PMID: 31350309 PMCID: PMC6781006 DOI: 10.1084/jem.20190896] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 11/22/2022] Open
Abstract
HIV-1 infection requires lifelong therapy with antiretroviral drugs due to the existence of a latent reservoir of transcriptionally inactive integrated proviruses. The goal of HIV-1 cure research is to eliminate or functionally silence this reservoir. To this end, there are numerous ongoing studies to evaluate immunological approaches, including monoclonal antibody therapies. Evaluating the results of these studies requires sensitive and specific measures of the reservoir. Here, we describe a relatively high-throughput combined quantitative PCR (qPCR) and next-generation sequencing method. Four different qPCR probes covering the packaging signal (PS), group-specific antigen (gag), polymerase (pol), and envelope (env) are combined in a single multiplex reaction to detect the HIV-1 genome in limiting dilution samples followed by sequence verification of individual reactions that are positive for combinations of any two of the four probes (Q4PCR). This sensitive and specific approach allows for an unbiased characterization of the HIV-1 latent reservoir.
Collapse
Affiliation(s)
- Christian Gaebler
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Victor Ramos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Joy A Pai
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Pilar Mendoza
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Mila Jankovic
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY
| |
Collapse
|
32
|
Rezaei R, Safaei M, Mozaffari HR, Moradpoor H, Karami S, Golshah A, Salimi B, Karami H. The Role of Nanomaterials in the Treatment of Diseases and Their Effects on the Immune System. Open Access Maced J Med Sci 2019; 7:1884-1890. [PMID: 31316678 PMCID: PMC6614262 DOI: 10.3889/oamjms.2019.486] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022] Open
Abstract
Nanotechnology has been widely exploited in recent years in various applications. Different sectors of medicine and treatment have also focused on the use of nanoproducts. One of the areas of interest in the treatment measures is the interaction between nanomaterials and immune system components. Engineered nanomaterials can stimulate the inhibition or enhancement of immune responses and prevent the detection ability of the immune system. Changes in immune function, in addition to the benefits, may also lead to some damage. Therefore, adequate assessment of the novel nanomaterials seems to be necessary before practical use in treatment. However, there is little information on the toxicological and biological effects of nanomaterials, especially on the potential ways of contacting and handling nanomaterials in the body and the body response to these materials. Extensive variation and different properties of nanomaterials have made it much more difficult to access their toxicological effects to the present. The present study aims to raise knowledge about the potential benefits and risks of using the nanomaterials on the immune system to design and safely employ these compounds in therapeutic purposes.
Collapse
Affiliation(s)
- Razieh Rezaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohsen Safaei
- Advanced Dental Sciences Research Laboratory, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Reza Mozaffari
- Medical Biology Research Centre, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Department of Oral and Maxillofacial Medicine, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hedaiat Moradpoor
- Department of Prosthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sara Karami
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Golshah
- Department of Orthodontics, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behroz Salimi
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hossein Karami
- School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Lewis GK, Ackerman ME, Scarlatti G, Moog C, Robert-Guroff M, Kent SJ, Overbaugh J, Reeves RK, Ferrari G, Thyagarajan B. Knowns and Unknowns of Assaying Antibody-Dependent Cell-Mediated Cytotoxicity Against HIV-1. Front Immunol 2019; 10:1025. [PMID: 31134085 PMCID: PMC6522882 DOI: 10.3389/fimmu.2019.01025] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 04/23/2019] [Indexed: 12/15/2022] Open
Abstract
It is now well-accepted that Fc-mediated effector functions, including antibody-dependent cellular cytotoxicity (ADCC), can contribute to vaccine-elicited protection as well as post-infection control of HIV viremia. This picture was derived using a wide array of ADCC assays, no two of which are strictly comparable, and none of which is qualified at the clinical laboratory level. An earlier comparative study of assay protocols showed that while data from different ADCC assay formats were often correlated, they remained distinct in terms of target cells and the epitopes and antigen(s) available for recognition by antibodies, the effector cells, and the readout of cytotoxicity. This initial study warrants expanded analyses of the relationships among all current assay formats to determine where they detect overlapping activities and where they do not. Here we summarize knowns and unknowns of assaying ADCC against HIV-1.
Collapse
Affiliation(s)
- George K. Lewis
- Division of Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, United States
| | | | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Department of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christiane Moog
- INSERM U1109, Fédération Hospitalo-Universitaire (FHU) OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France
| | - Marjorie Robert-Guroff
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, National Institues of Health, Bethesda, MD, United States
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Julie Overbaugh
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
| | - R. Keith Reeves
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, Boston, MA, United States
| | - Guido Ferrari
- Department of Surgery and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, United States
| | | |
Collapse
|
34
|
Dingens AS, Arenz D, Weight H, Overbaugh J, Bloom JD. An Antigenic Atlas of HIV-1 Escape from Broadly Neutralizing Antibodies Distinguishes Functional and Structural Epitopes. Immunity 2019; 50:520-532.e3. [PMID: 30709739 PMCID: PMC6435357 DOI: 10.1016/j.immuni.2018.12.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/16/2018] [Accepted: 12/14/2018] [Indexed: 11/18/2022]
Abstract
Anti-HIV broadly neutralizing antibodies (bnAbs) have revealed vaccine targets on the virus's envelope (Env) protein and are themselves promising immunotherapies. The efficacy of bnAb-based therapies and vaccines depends in part on how readily the virus can escape neutralization. Although structural studies can define contacts between bnAbs and Env, only functional studies can define mutations that confer escape. Here, we mapped how all possible single amino acid mutations in Env affect neutralization of HIV by nine bnAbs targeting five epitopes. For most bnAbs, mutations at only a small fraction of structurally defined contact sites mediated escape, and most escape occurred at sites near, but not in direct contact with, the antibody. The Env mutations selected by two pooled bnAbs were similar to those expected from the combination of the bnAbs's independent action. Overall, our mutation-level antigenic atlas provides a comprehensive dataset for understanding viral immune escape and refining therapies and vaccines.
Collapse
Affiliation(s)
- Adam S Dingens
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular & Cellular Biology PhD Program, University of Washington, Seattle, WA 98195, USA; Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Dana Arenz
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Haidyn Weight
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA
| | - Julie Overbaugh
- Division of Human Biology and Epidemiology Program, Seattle, WA 98109, USA.
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Seattle, WA 98109, USA.
| |
Collapse
|
35
|
Ashoor DN, Ben Khalaf N, Bourguiba-Hachemi S, Marzouq MH, Fathallah MD. Engineering of the upper hinge region of human IgG1 Fc enhances the binding affinity to FcγIIIa (CD16a) receptor isoform. Protein Eng Des Sel 2019; 31:205-212. [PMID: 30299461 DOI: 10.1093/protein/gzy019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/04/2018] [Indexed: 11/12/2022] Open
Abstract
The interaction between antibodies and Immune cells surface FcγRIIIa (CD16a) receptor triggers a variety of immune responses including antibody-dependent cell-mediated cytotoxicity, antibody neutralization, phagocytosis, inflammation and tissue injury. Recent studies showed that IgG1 upper hinge region and FcγRs polymorphism play a major role in the interaction with Fcγ receptors and in the stability of the immune complex hence, in mounting strong inflammatory response. To further investigate this issue, we developed a tool box of IgG1 Fc isoforms to depict the affinity between mutated IgG1 Fc regions and extracellular domain variants (V158F) of CD16a. Our strategy consisted of designing different random upper-hinge mutated variants of IgG1 Fc domain, reproducing the naturally occurring two variants of CD16a and producing all of them as recombinant fusion proteins in Pichia Pastoris. The interactions were assayed using the Surface Plasmon Resonance (Biacore) method along with an in silico analysis to identify the major interaction and key residues that underline the affinity between the Fc region and CD16a variants. Our data showed that the affinity of the Fc region to the CD16a is strongly correlated to polar interactions. This molecular engineering approach yielded an IgG1Fc mutant with enhanced binding affinity to CD16a F158 variant.
Collapse
Affiliation(s)
- Dana N Ashoor
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Noureddine Ben Khalaf
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Sonia Bourguiba-Hachemi
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - Maryam H Marzouq
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| | - M Dahmani Fathallah
- Health Biotechnology Program, Department of Life Sciences, College of Graduate Studies, Arabian Gulf University, Manama, Kingdom of Bahrain
| |
Collapse
|
36
|
Muller WJ, Chadwick EG. Pediatric Considerations for Postexposure Human Immunodeficiency Virus Prophylaxis. Infect Dis Clin North Am 2019; 32:91-101. [PMID: 29406979 DOI: 10.1016/j.idc.2017.10.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Exposures that carry risk of transmission of blood-borne disease are rare in pediatrics, but expose patients and families to great anxiety. Specialists in pediatric infectious diseases are often asked about initial antimicrobial prophylaxis in these cases. Guidelines for nonoccupational postexposure prophylaxis for human immunodeficiency virus have evolved as new formulations and medications become available and greater experience obtained in assessing relative risks of different exposures and relative costs and benefits for different interventions. This article discusses the evidence behind recent updates to Centers for Disease Control and Prevention guidelines for nonoccupational postexposure prophylaxis for human immunodeficiency virus, focusing on application in the pediatric population.
Collapse
Affiliation(s)
- William J Muller
- Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 20, Chicago, IL 60611, USA.
| | - Ellen G Chadwick
- Division of Pediatric Infectious Diseases, Northwestern University Feinberg School of Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, 225 E. Chicago Avenue, Box 20, Chicago, IL 60611, USA
| |
Collapse
|
37
|
Broad-Spectrum Antiviral Activity of an Ankyrin Repeat Protein on Viral Assembly against Chimeric NL4-3 Viruses Carrying Gag/PR Derived from Circulating Strains among Northern Thai Patients. Viruses 2018; 10:v10110625. [PMID: 30428529 PMCID: PMC6265948 DOI: 10.3390/v10110625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/06/2023] Open
Abstract
Certain proteins have demonstrated proficient human immunodeficiency virus (HIV-1) life cycle disturbance. Recently, the ankyrin repeat protein targeting the HIV-1 capsid, AnkGAG1D4, showed a negative effect on the viral assembly of the HIV-1NL4-3 laboratory strain. To extend its potential for future clinical application, the activity of AnkGAG1D4 in the inhibition of other HIV-1 circulating strains was evaluated. Chimeric NL4-3 viruses carrying patient-derived Gag/PR-coding regions were generated from 131 antiretroviral drug-naïve HIV-1 infected individuals in northern Thailand during 2001–2012. SupT1, a stable T-cell line expressing AnkGAG1D4 and ankyrin non-binding control (AnkA32D3), were challenged with these chimeric viruses. The p24CA sequences were analysed and classified using the K-means clustering method. Among all the classes of virus classified using the p24CA sequences, SupT1/AnkGAG1D4 demonstrated significantly lower levels of p24CA than SupT1/AnkA32D3, which was found to correlate with the syncytia formation. This result suggests that AnkGAG1D4 can significantly interfere with the chimeric viruses derived from patients with different sequences of the p24CA domain. It supports the possibility of ankyrin-based therapy as a broad alternative therapeutic molecule for HIV-1 gene therapy in the future.
Collapse
|
38
|
Riddler SA, Zheng L, Durand CM, Ritz J, Koup RA, Ledgerwood J, Bailer RT, Koletar SL, Eron JJ, Keefer MC, Macatangay BJC, Cyktor JC, Mellors JW. Randomized Clinical Trial to Assess the Impact of the Broadly Neutralizing HIV-1 Monoclonal Antibody VRC01 on HIV-1 Persistence in Individuals on Effective ART. Open Forum Infect Dis 2018; 5:ofy242. [PMID: 30364428 PMCID: PMC6195652 DOI: 10.1093/ofid/ofy242] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/12/2018] [Indexed: 12/31/2022] Open
Abstract
Background Broadly neutralizing monoclonal antibodies (bnMAbs) may promote clearance of HIV-1-expressing cells through antibody-dependent cell-mediated cytotoxicity. We evaluated the effect of the CD4-binding site bnMAb, VRC01, on measures of HIV-1 persistence in chronically infected individuals. Methods A5342 was a phase 1, randomized, double-blind, placebo-controlled, parallel-arm study. Participants on effective antiretroviral therapy (ART) were randomized to receive 2 infusions of VRC01 (40 mg/kg) at entry and week 3, and 2 infusions of placebo (saline) at weeks 6 and 9; or 2 infusions of placebo at entry and week 3, and 2 infusions of VRC01 at weeks 6 and 9. Results Infusion of VRC01 was safe and well tolerated. The median fold-change in the cell-associated HIV-1 RNA/DNA ratio from baseline to week 6 was 1.12 and 0.83 for the VRC01 and placebo arms, respectively, with no significant difference between arms (P = .16). There were no significant differences in the proportions with residual plasma viremia ≥1 copies/mL or in phorbol 12-myristate 13-acetate/ionomycin-induced virus production from CD4+ T cells between arms (both P > .05). Conclusions In individuals with chronic HIV-1 infection on ART, VRC01 infusions were safe and well tolerated but did not affect plasma viremia, cellular HIV-1 RNA/DNA levels, or stimulated virus production from CD4+ T cells. ClinicalTrials.gov Identifier NCT02411539
Collapse
Affiliation(s)
| | - Lu Zheng
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | | | - Justin Ritz
- Center for Biostatistics in AIDS Research, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Richard A Koup
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Julie Ledgerwood
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Robert T Bailer
- Vaccine Research Center, National Institute for Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | - Joseph J Eron
- University of North Carolina - Chapel Hill, Chapel Hill, North Carolina
| | | | | | | | | | | |
Collapse
|
39
|
Ke R, Conway JM, Margolis DM, Perelson AS. Determinants of the efficacy of HIV latency-reversing agents and implications for drug and treatment design. JCI Insight 2018; 3:123052. [PMID: 30333308 DOI: 10.1172/jci.insight.123052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 08/30/2018] [Indexed: 11/17/2022] Open
Abstract
HIV eradication studies have focused on developing latency-reversing agents (LRAs). However, it is not understood how the rate of latent reservoir reduction is affected by different steps in the process of latency reversal. Furthermore, as current LRAs are host-directed, LRA treatment is likely to be intermittent to avoid host toxicities. Few careful studies of the serial effects of pulsatile LRA treatment have yet been done. This lack of clarity makes it difficult to evaluate the efficacy of candidate LRAs or predict long-term treatment outcomes. We constructed a mathematical model that describes the dynamics of latently infected cells under LRA treatment. Model analysis showed that, in addition to increasing the immune recognition and clearance of infected cells, the duration of HIV antigen expression (i.e., the period of vulnerability) plays an important role in determining the efficacy of LRAs, especially if effective clearance is achieved. Patients may benefit from pulsatile LRA exposures compared with continuous LRA exposures if the period of vulnerability is long and the clearance rate is high, both in the presence and absence of an LRA. Overall, the model framework serves as a useful tool to evaluate the efficacy and the rational design of LRAs and combination strategies.
Collapse
Affiliation(s)
- Ruian Ke
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA.,Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Jessica M Conway
- Department of Mathematics and Center for Infectious Disease Dynamics, Pennsylvania State University, State College, Pennsylvania, USA
| | - David M Margolis
- University of North Carolina (UNC) HIV Cure Center, UNC Institute of Global Health and Infectious Diseases.,Departments of Medicine, Microbiology and Immunology, UNC Chapel Hill School of Medicine, and.,Department of Epidemiology, UNC Chapel Hill School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, MS-K710, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| |
Collapse
|
40
|
Yavuz B, Morgan JL, Showalter L, Horng KR, Dandekar S, Herrera C, LiWang P, Kaplan DL. Pharmaceutical Approaches to HIV Treatment and Prevention. ADVANCED THERAPEUTICS 2018; 1:1800054. [PMID: 32775613 PMCID: PMC7413291 DOI: 10.1002/adtp.201800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Indexed: 12/17/2022]
Abstract
Human immunodeficiency virus (HIV) infection continues to pose a major infectious disease threat worldwide. It is characterized by the depletion of CD4+ T cells, persistent immune activation, and increased susceptibility to secondary infections. Advances in the development of antiretroviral drugs and combination antiretroviral therapy have resulted in a remarkable reduction in HIV-associated morbidity and mortality. Antiretroviral therapy (ART) leads to effective suppression of HIV replication with partial recovery of host immune system and has successfully transformed HIV infection from a fatal disease to a chronic condition. Additionally, antiretroviral drugs have shown promise for prevention in HIV pre-exposure prophylaxis and treatment as prevention. However, ART is unable to cure HIV. Other limitations include drug-drug interactions, drug resistance, cytotoxic side effects, cost, and adherence. Alternative treatment options are being investigated to overcome these challenges including discovery of new molecules with increased anti-viral activity and development of easily administrable drug formulations. In light of the difficulties associated with current HIV treatment measures, and in the continuing absence of a cure, the prevention of new infections has also arisen as a prominent goal among efforts to curtail the worldwide HIV pandemic. In this review, the authors summarize currently available anti-HIV drugs and their combinations for treatment, new molecules under clinical development and prevention methods, and discuss drug delivery formats as well as associated challenges and alternative approaches for the future.
Collapse
Affiliation(s)
- Burcin Yavuz
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| | - Jessica L Morgan
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Laura Showalter
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - Katti R Horng
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Satya Dandekar
- Department of Medical Microbiology and Immunology University of California-Davis 5605 GBSF, 1 Shields Avenue, Davis, CA 95616, USA
| | - Carolina Herrera
- Department of Medicine St. Mary's Campus Imperial College Room 460 Norfolk Place, London W2 1PG, UK
| | - Patricia LiWang
- Department of Molecular Cell Biology University of California-Merced5200 North Lake Road, Merced, CA 95343, USA
| | - David L Kaplan
- Department of Biomedical Engineering Tufts University 4 Colby Street, Medford, MA 02155, USA
| |
Collapse
|
41
|
Antibody-Mediated Therapy against HIV/AIDS: Where Are We Standing Now? J Pathog 2018; 2018:8724549. [PMID: 29973995 PMCID: PMC6009031 DOI: 10.1155/2018/8724549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 04/10/2018] [Accepted: 04/26/2018] [Indexed: 11/17/2022] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) cases are on the rise globally. To date, there is still no effective measure to eradicate the causative agent, human immunodeficiency virus (HIV). Highly active antiretroviral therapy (HAART) is being used in HIV/AIDS management, but it results in long-term medication and has major drawbacks such as multiple side effects, high cost, and increasing the generation rate of escape mutants. In addition, HAART does not control HIV-related complications, and hence more medications and further management are required. With this, other alternatives are urgently needed. In the past, small-molecule inhibitors have shown potent antiviral effects, and some of them are now being evaluated in clinical trials. The challenges in developing these small molecules for clinical use include the off-target effect, poor stability, and low bioavailability. On the other hand, antibody-mediated therapy has emerged as an important therapeutic modality for anti-HIV therapeutics development. Many antiviral antibodies, namely, broad neutralizing antibodies (bnAbs) against multiple strains of HIV, have shown promising effects in vitro and in animal studies; further studies are ongoing in clinical trials to evaluate their uses in clinical applications. This short review aims to discuss the current development of therapeutic antibodies against HIV and the challenges in adopting them for clinical use.
Collapse
|
42
|
Ferrari G. Tandem bispecific broadly neutralizing antibody - a novel approach to HIV-1 treatment. J Clin Invest 2018; 128:2189-2191. [PMID: 29683434 DOI: 10.1172/jci121078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The last decade has led to a significant advance in our knowledge of HIV-1 latency and immunity. However, we are still not close to finding a cure for HIV-1. Although combination antiretroviral therapy (cART) has led to increased survival, almost close to that of the general population, it is still not curative. In the current issue of the JCI, Wu et al. studied the prophylactic and therapeutic potential of an engineered tandem bispecific broadly neutralizing antibody (bs-bnAb), BiIA-SG. This bnAb's breadth and potency were highly effective in protection and treatment settings, as measured by complete viremia control following direct infusion, as well as elimination of infected cells and delay in viral rebound when delivered with a recombinant vector. These observations underscore the need for the clinical development of BiIA-SG for the prevention of HIV-1.
Collapse
|
43
|
Che Nordin MA, Teow SY. Review of Current Cell-Penetrating Antibody Developments for HIV-1 Therapy. Molecules 2018; 23:molecules23020335. [PMID: 29415435 PMCID: PMC6017373 DOI: 10.3390/molecules23020335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/06/2018] [Accepted: 01/08/2018] [Indexed: 12/22/2022] Open
Abstract
The discovery of highly active antiretroviral therapy (HAART) in 1996 has significantly reduced the global mortality and morbidity caused by the acquired immunodeficiency syndrome (AIDS). However, the therapeutic strategy of HAART that targets multiple viral proteins may render off-target toxicity and more importantly results in drug-resistant escape mutants. These have been the main challenges for HAART and refinement of this therapeutic strategy is urgently needed. Antibody-mediated treatments are emerging therapeutic modalities for various diseases. Most therapeutic antibodies have been approved by Food and Drug Administration (FDA) mainly for targeting cancers. Previous studies have also demonstrated the promising effect of therapeutic antibodies against HIV-1, but there are several limitations in this therapy, particularly when the viral targets are intracellular proteins. The conventional antibodies do not cross the cell membrane, hence, the pathogenic intracellular proteins cannot be targeted with this classical therapeutic approach. Over the years, the advancement of antibody engineering has permitted the therapeutic antibodies to comprehensively target both extra- and intra-cellular proteins in various infections and diseases. This review aims to update on the current progress in the development of antibody-based treatment against intracellular targets in HIV-1 infection. We also attempt to highlight the challenges and limitations in the development of antibody-based therapeutic modalities against HIV-1.
Collapse
Affiliation(s)
- Muhamad Alif Che Nordin
- Kulliyyah of Medicine and Health Sciences (KMHS), Kolej Universiti INSANIAH, 09300 Kuala Ketil, Kedah, Malaysia.
| | - Sin-Yeang Teow
- Sunway Institute for Healthcare Development (SIHD), School of Healthcare and Medical Sciences (SHMS), Sunway University, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
44
|
Hessell AJ, Malherbe DC, Haigwood NL. Passive and active antibody studies in primates to inform HIV vaccines. Expert Rev Vaccines 2018; 17:127-144. [PMID: 29307225 PMCID: PMC6587971 DOI: 10.1080/14760584.2018.1425619] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Prevention of infection remains the ultimate goal for HIV vaccination, and there is compelling evidence that antibodies directed to Envelope are necessary to block infection. Generating antibodies that are sufficiently broad, potent, and sustained to block infection by the diverse HIV-1 strains circulating worldwide remains an area of intense study. AREAS COVERED In this review, we have summarized progress from publications listed as PubMed citations in 2016-17 in the areas of passive antibody studies using human neutralizing monoclonal antibodies in nonhuman primates, HIV Envelope vaccine development and active vaccination studies to generate potent neutralizing antibodies. EXPERT COMMENTARY Passive transfer studies in nonhuman primates using human neutralizing monoclonal antibodies have informed the potency, specificity, and cooperativity of antibodies needed to prevent infection, leading to clinical studies now testing potent antibodies for prevention of HIV. Progress in understanding the structure of Envelope has led to novel vaccine constructs, including mimetics, scaffolds and native-like proteins. As yet, no single approach ensures protection against the circulating global HIV-1 strains, but there is progress in understanding why, and intense research continues in these and other areas for a solution. We offer perspectives on how this knowledge may shape the design of future HIV vaccines.
Collapse
|
45
|
Hua CK, Ackerman ME. Increasing the Clinical Potential and Applications of Anti-HIV Antibodies. Front Immunol 2017; 8:1655. [PMID: 29234320 PMCID: PMC5712301 DOI: 10.3389/fimmu.2017.01655] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/13/2017] [Indexed: 01/03/2023] Open
Abstract
Preclinical and early human clinical studies of broadly neutralizing antibodies (bNAbs) to prevent and treat HIV infection support the clinical utility and potential of bNAbs for prevention, postexposure prophylaxis, and treatment of acute and chronic infection. Observed and potential limitations of bNAbs from these recent studies include the selection of resistant viral populations, immunogenicity resulting in the development of antidrug (Ab) responses, and the potentially toxic elimination of reservoir cells in regeneration-limited tissues. Here, we review opportunities to improve the clinical utility of HIV Abs to address these challenges and further accomplish functional targets for anti-HIV Ab therapy at various stages of exposure/infection. Before exposure, bNAbs' ability to serve as prophylaxis by neutralization may be improved by increasing serum half-life to necessitate less frequent administration, delivering genes for durable in vivo expression, and targeting bNAbs to sites of exposure. After exposure and/or in the setting of acute infection, bNAb use to prevent/reduce viral reservoir establishment and spread may be enhanced by increasing the potency with which autologous adaptive immune responses are stimulated, clearing acutely infected cells, and preventing cell-cell transmission of virus. In the setting of chronic infection, bNAbs may better mediate viral remission or "cure" in combination with antiretroviral therapy and/or latency reversing agents, by targeting additional markers of tissue reservoirs or infected cell types, or by serving as targeting moieties in engineered cell therapy. While the clinical use of HIV Abs has never been closer, remaining studies to precisely define, model, and understand the complex roles and dynamics of HIV Abs and viral evolution in the context of the human immune system and anatomical compartmentalization will be critical to both optimize their clinical use in combination with existing agents and define further strategies with which to enhance their clinical safety and efficacy.
Collapse
Affiliation(s)
- Casey K. Hua
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
| | - Margaret E. Ackerman
- Department of Microbiology and Immunology, Geisel School of Medicine, Lebanon, NH, United States
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
46
|
Venuti A, Pastori C, Lopalco L. The Role of Natural Antibodies to CC Chemokine Receptor 5 in HIV Infection. Front Immunol 2017; 8:1358. [PMID: 29163468 PMCID: PMC5670346 DOI: 10.3389/fimmu.2017.01358] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 10/03/2017] [Indexed: 12/22/2022] Open
Abstract
The CC chemokine receptor 5 (CCR5) is responsible for immune and inflammatory responses by mediation of chemotactic activity in leukocytes, although it is expressed on different cell types. It has been shown to act as co-receptor for the human and simian immunodeficiency viruses (HIV-1, HIV-2, and SIV). Natural reactive antibodies (Abs) recognizing first loop (ECL1) of CCR5 have been detected in several pools of immunoglobulins from healthy donors and from several cohorts of either HIV-exposed but uninfected subjects (ESN) or HIV-infected individuals who control disease progression (LTNP) as well. The reason of development of anti-CCR5 Abs in the absence of autoimmune disease is still unknown; however, the presence of these Abs specific for CCR5 or for other immune receptors and mediators probably is related to homeostasis maintenance. The majority of anti-CCR5 Abs is directed to HIV binding site (N-terminus and ECL2) of the receptor. Conversely, it is well known that ECL1 of CCR5 does not bind HIV; thus, the anti-CCR5 Abs directed to ECL1 elicit a long-lasting internalization of CCR5 but not interfere with HIV binding directly; these Abs block HIV infection in either epithelial cells or CD4+ T lymphocytes and the mechanism differs from those ones described for all other CCR5-specific ligands. The Ab-mediated CCR5 internalization allows the formation of a stable signalosome by interaction of CCR5, β-arrestin2 and ERK1 proteins. The signalosome degradation and the subsequent de novo proteins synthesis determine the CCR5 reappearance on the cell membrane with a very long-lasting kinetics (8 days). The use of monoclonal Abs to CCR5 with particular characteristics and mode of action may represent a novel mode to fight viral infection in either vaccinal or therapeutic strategies.
Collapse
Affiliation(s)
- Assunta Venuti
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Division of Immunology, Transplantation and Infectious Diseases, DIBIT - San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
47
|
Xu L, Pegu A, Rao E, Doria-Rose N, Beninga J, McKee K, Lord DM, Wei RR, Deng G, Louder M, Schmidt SD, Mankoff Z, Wu L, Asokan M, Beil C, Lange C, Leuschner WD, Kruip J, Sendak R, Kwon YD, Zhou T, Chen X, Bailer RT, Wang K, Choe M, Tartaglia LJ, Barouch DH, O'Dell S, Todd JP, Burton DR, Roederer M, Connors M, Koup RA, Kwong PD, Yang ZY, Mascola JR, Nabel GJ. Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science 2017; 358:85-90. [PMID: 28931639 DOI: 10.1126/science.aan8630] [Citation(s) in RCA: 230] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/28/2017] [Indexed: 12/25/2022]
Abstract
The development of an effective AIDS vaccine has been challenging because of viral genetic diversity and the difficulty of generating broadly neutralizing antibodies (bnAbs). We engineered trispecific antibodies (Abs) that allow a single molecule to interact with three independent HIV-1 envelope determinants: the CD4 binding site, the membrane-proximal external region (MPER), and the V1V2 glycan site. Trispecific Abs exhibited higher potency and breadth than any previously described single bnAb, showed pharmacokinetics similar to those of human bnAbs, and conferred complete immunity against a mixture of simian-human immunodeficiency viruses (SHIVs) in nonhuman primates, in contrast to single bnAbs. Trispecific Abs thus constitute a platform to engage multiple therapeutic targets through a single protein, and they may be applicable for treatment of diverse diseases, including infections, cancer, and autoimmunity.
Collapse
Affiliation(s)
- Ling Xu
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Amarendra Pegu
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Ercole Rao
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Nicole Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | - Krisha McKee
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Dana M Lord
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Ronnie R Wei
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Gejing Deng
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Mark Louder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Stephen D Schmidt
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Zachary Mankoff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Lan Wu
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - Mangaiarkarasi Asokan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | - Jochen Kruip
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | | | - Young Do Kwon
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Tongqing Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Xuejun Chen
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Robert T Bailer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Keyun Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Misook Choe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Lawrence J Tartaglia
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.,Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - John-Paul Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Dennis R Burton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, International AIDS Vaccine Initiative (IAVI) Neutralizing Antibody Center, Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Mark Connors
- National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | - Zhi-Yong Yang
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA
| | - John R Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA.
| | - Gary J Nabel
- Sanofi, 640 Memorial Drive, Cambridge, MA 02139, USA.
| |
Collapse
|
48
|
Haußner C, Lach J, Eichler J. Synthetic antibody mimics for the inhibition of protein-ligand interactions. Curr Opin Chem Biol 2017; 40:72-77. [PMID: 28735229 DOI: 10.1016/j.cbpa.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 05/31/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022]
Abstract
The rational/structure-based design and/or combinatorial development of molecules capable of selectively binding to a protein, represents a promising strategy for a range of biomedical applications, in particular the inhibition of disease-associated protein-ligand interactions. The design of such protein binding molecules is often based on an antibody against the target protein, or involves the generation of smaller molecules that retain the binding characteristics of the antibody. Alternatively, protein binding molecules can be selected from protein libraries based on small, stably folded protein scaffolds presenting flexible loops, which are randomized in the libraries. In addition to recombinantly synthesized molecules, synthetic antibody paratope mimetic peptides have emerged as promising molecules for the design of antibody mimics.
Collapse
Affiliation(s)
- Christina Haußner
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstr. 19, 91052 Erlangen, Germany
| | - Johannes Lach
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstr. 19, 91052 Erlangen, Germany
| | - Jutta Eichler
- Department of Chemistry and Pharmacy, University of Erlangen-Nurnberg, Schuhstr. 19, 91052 Erlangen, Germany.
| |
Collapse
|
49
|
Horwitz JA, Bar-On Y, Lu CL, Fera D, Lockhart AAK, Lorenzi JCC, Nogueira L, Golijanin J, Scheid JF, Seaman MS, Gazumyan A, Zolla-Pazner S, Nussenzweig MC. Non-neutralizing Antibodies Alter the Course of HIV-1 Infection In Vivo. Cell 2017; 170:637-648.e10. [PMID: 28757252 DOI: 10.1016/j.cell.2017.06.048] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/21/2017] [Accepted: 06/29/2017] [Indexed: 11/26/2022]
Abstract
Non-neutralizing antibodies (nnAbs) to HIV-1 show little measurable activity in prevention or therapy in animal models yet were the only correlate of protection in the RV144 vaccine trial. To investigate the role of nnAbs on HIV-1 infection in vivo, we devised a replication-competent HIV-1 reporter virus that expresses a heterologous HA-tag on the surface of infected cells and virions. Anti-HA antibodies bind to, but do not neutralize, the reporter virus in vitro. However, anti-HA protects against infection in humanized mice and strongly selects for nnAb-resistant viruses in an entirely Fc-dependent manner. Similar results were also obtained with tier 2 HIV-1 viruses using a human anti-gp41 nnAb, 246D. While nnAbs are demonstrably less effective than broadly neutralizing antibodies (bNAbs) against HIV-1 in vitro and in vivo, the data show that nnAbs can protect against and alter the course of HIV-1 infection in vivo. PAPERCLIP.
Collapse
Affiliation(s)
- Joshua A Horwitz
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Laboratory of Structural Cell Biology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115, USA; Whelan Laboratory, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Yotam Bar-On
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Ching-Lan Lu
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, 1300 York Avenue, New York, NY 10065, USA
| | - Daniela Fera
- Laboratory of Molecular Medicine, Boston Children's Hospital, Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Ainsley A K Lockhart
- Laboratory of Mucosal Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Julio C C Lorenzi
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Lilian Nogueira
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jovana Golijanin
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Johannes F Scheid
- Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center/Harvard Medical School, 3 Blackfan Circle, Boston, MA 02115, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Susan Zolla-Pazner
- Zolla-Pazner Laboratory, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave, New York, NY 10065, USA.
| |
Collapse
|
50
|
Comprehensive Cross-Clade Characterization of Antibody-Mediated Recognition, Complement-Mediated Lysis, and Cell-Mediated Cytotoxicity of HIV-1 Envelope-Specific Antibodies toward Eradication of the HIV-1 Reservoir. J Virol 2017; 91:JVI.00634-17. [PMID: 28592534 DOI: 10.1128/jvi.00634-17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/30/2017] [Indexed: 11/20/2022] Open
Abstract
Immunotherapy with passive administration of broadly neutralizing HIV-1 envelope-specific antibodies (bnAbs) in the setting of established infection in vivo has yielded mixed results. The contribution of different antibodies toward the direct elimination of infected cells is poorly understood. In this study, we determined the ability of 12 well-characterized anti-HIV-1 neutralizing antibodies to recognize and eliminate primary CD4 T cells infected with HIV-1 belonging to clades A, B, C, and D, via antibody-dependent complement-mediated lysis (ADCML) and antibody-dependent cell-mediated cytotoxicity (ADCC), in vitro We further tested unique combinations of these antibodies to determine the optimal antibody cocktails to be tested in future clinical trials. We report that antibody binding to infected CD4 T cells is highly variable and correlates with ADCML and ADCC processes. Particularly, antibodies targeting the envelope glycan shield (2G12) and V1/V2 site (PG9, PG16, and PGT145) are best at recognizing HIV-1-infected CD4 T cells. However, only PG9 and PG16 and their combinations with other bnAbs sufficiently induced the elimination of HIV-1-infected CD4 T cells by ADCML, ADCC, or both. Notably, CD4 binding site antibodies VRC01, 3BNC117, and NIH45-46 G54W did not exhibit recognition of infected cells and were unable to induce their killing. Future trials geared toward the development of a cure for HIV/AIDS should incorporate V1/V2 antibodies for maximal clearance of infected cells. With the use of only primary immune cells, we conducted a comprehensive cross-clade physiological analysis to aid the direction of antibodies as therapeutics toward the development of a cure for HIV/AIDS.IMPORTANCE Several antibodies capable of neutralizing the majority of circulating HIV-1 strains have been identified to date and have been shown to prevent infection in animal models. However, the use of combinations of such broadly neutralizing antibodies (bnAbs) for the treatment and eradication of HIV-1 in infected humans remains uncertain. In this study, we tested the ability of bnAbs to directly recognize and eliminate primary human CD4 T cells infected with diverse HIV-1 strains representative of the global epidemic by antibody-dependent pathways. We also tested several combinations of bnAbs in our assays in order to maximize the clearance of infected cells. We show that the ability of bnAbs to identify and kill infected cells is highly variable and that only a few of them are able to exert this function. Our data will help guide the formulation of bnAbs to test in future human trials aimed at the development of a cure.
Collapse
|