1
|
Miki T, Ito M, Haneda T, Kim YG. Outer membrane barrier impairment by envC deletion reduces gut colonization of Crohn's disease pathobiont Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2024; 170:001509. [PMID: 39405098 PMCID: PMC11570989 DOI: 10.1099/mic.0.001509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024]
Abstract
Adherent-invasive Escherichia coli (AIEC) has been implicated in the aetiology of Crohn's disease (CD), a chronic inflammatory disorder of the gastrointestinal tract. The presence of Enterobacteriaceae, including AIEC, is heightened in the intestines of CD patients. Therefore, inhibiting AIEC colonization in the gastrointestinal tract could be a promising therapeutic intervention for CD. This study aims to assess the potential of EnvC as a novel therapeutic target, examining how disrupting EnvC activity through the deletion of the envC gene decreases AIEC gut colonization levels. EnvC serves as a catalyst for peptidoglycan (also called murein) amidases, facilitating bacterial cell division. An AIEC mutant lacking the envC gene exhibited impaired cell division. Furthermore, envC deletion led to a diminished outer membrane barrier, as seen in our finding that the envC mutant became susceptible to vancomycin. Finally, we found that the envC mutant is impaired in competitive gut colonization in a dysbiotic mouse model. The colonization defects might be attributable to reduced resistance to colonic bile acids, as evidenced by our finding that increased colonic levels of bile acids inhibited the colonization of the gastrointestinal tract by AIEC strains. The present findings suggest that targeting bacterial cell division through the inhibition of EnvC activity could represent a promising intervention for CD.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| | - Yun-Gi Kim
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, 108-8641, Japan
| |
Collapse
|
2
|
Miki T, Ito M, Okada N, Haneda T. The CpxRA two-component system of adherent and invasive Escherichia coli contributes to epithelial cell invasion and early-stage intestinal fitness in a dysbiotic mouse model mediated by type 1 fimbriae expression. Infect Immun 2024; 92:e0013224. [PMID: 38700334 PMCID: PMC11237727 DOI: 10.1128/iai.00132-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Adherent and invasive Escherichia coli (AIEC) is a pathobiont that is involved in the onset and exacerbation of Crohn's disease. Although the inducible expression of virulence traits is a critical step for AIEC colonization in the host, the mechanism underlying AIEC colonization remains largely unclear. We here showed that the two-component signal transduction system CpxRA contributes to AIEC gut competitive colonization by activating type 1 fimbriae expression. CpxRA from AIEC strain LF82 functioned as a transcriptional regulator, as evidenced by our finding that an isogenic cpxRA mutant exhibits reduced expression of cpxP, a known regulon gene. Transcription levels of cpxP in LF82 increased in response to envelope stress, such as exposure to antimicrobials compromising the bacterial membrane, whereas the cpxRA mutant did not exhibit this response. Furthermore, we found that the cpxRA mutant exhibits less invasiveness into host cells than LF82, primarily due to reduced expression of the type 1 fimbriae. Finally, we found that the cpxRA mutant is impaired in gut competitive colonization in a mouse model. The colonization defects were reversed by the introduction of a plasmid encoding the cpxRA gene or expressing the type 1 fimbriae. Our findings indicate that modulating CpxRA activity could be a promising approach to regulating AIEC-involved Crohn's disease.
Collapse
Affiliation(s)
- Tsuyoshi Miki
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Masahiro Ito
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Nobuhiko Okada
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| | - Takeshi Haneda
- Department of Microbiology, School of Pharmacy, Kitasato University, Tokyo, Japan
| |
Collapse
|
3
|
Leccese G, Chiara M, Dusetti I, Noviello D, Billard E, Bibi A, Conte G, Consolandi C, Vecchi M, Conte MP, Barnich N, Caprioli F, Facciotti F, Paroni M. AIEC-dependent pathogenic Th17 cell transdifferentiation in Crohn's disease is suppressed by rfaP and ybaT deletion. Gut Microbes 2024; 16:2380064. [PMID: 39069911 PMCID: PMC11290758 DOI: 10.1080/19490976.2024.2380064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/01/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024] Open
Abstract
Mucosal enrichment of the Adherent-Invasive E. coli (AIEC) pathotype and the expansion of pathogenic IFNγ-producing Th17 (pTh17) cells have been linked to Crohn's Disease (CD) pathogenesis. However, the molecular pathways underlying the AIEC-dependent pTh17 cell transdifferentiation in CD patients remain elusive. To this aim, we created and functionally screened a transposon AIEC mutant library of 10.058 mutants to identify the virulence determinants directly implicated in triggering IL-23 production and pTh17 cell generation. pTh17 cell transdifferentiation was assessed in functional assays by co-culturing AIEC-infected human dendritic cells (DCs) with autologous conventional Th17 (cTh17) cells isolated from blood of Healthy Donors (HD) or CD patients. AIEC triggered IL-23 hypersecretion and transdifferentiation of cTh17 into pTh17 cells selectively through the interaction with CD-derived DCs. Moreover, the chronic release of IL-23 by AIEC-colonized DCs required a continuous IL-23 neutralization to significantly reduce the AIEC-dependent pTh17 cell differentiation. The multi-step screenings of the AIEC mutant's library revealed that deletion of ybaT or rfaP efficiently hinder the IL-23 hypersecretion and hampered the AIEC-dependent skewing of protective cTh17 into pathogenic IFNγ-producing pTh17 cells. Overall, our findings indicate that ybaT (inner membrane transport protein) and rfaP (LPS-core heptose kinase) represent novel and attractive candidate targets to prevent chronic intestinal inflammation in CD.
Collapse
Affiliation(s)
- G. Leccese
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - M. Chiara
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - I. Dusetti
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - D. Noviello
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - E. Billard
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - A. Bibi
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - G. Conte
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - C. Consolandi
- Institute of Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - M. Vecchi
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - MP Conte
- Department of Public Health and Infectious Diseases, ‘Sapienza’ University of Rome, Rome, Italy
| | - N. Barnich
- M2iSH, UMR 1071 Inserm, INRAe USC 1382, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - F. Caprioli
- Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy
| | - F. Facciotti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milan, Italy
| | - M. Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Bleich RM, Li C, Sun S, Ahn JH, Dogan B, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Carroll IM, Simpson KW, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. MICROBIOME 2023; 11:277. [PMID: 38124090 PMCID: PMC10731797 DOI: 10.1186/s40168-023-01710-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/26/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in vitro definition fully predicts mucosal colonization in vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. RESULTS Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortium of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. CONCLUSIONS Our findings establish the in vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in vivo colonization dynamics of patient-derived bacteria in murine models. Video Abstract.
Collapse
Affiliation(s)
- Rachel M Bleich
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biology, Appalachian State University, Boone, NC, USA
| | - Chuang Li
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Shan Sun
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Ju-Hyun Ahn
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Belgin Dogan
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Cassandra J Barlogio
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Christopher A Broberg
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adrienne R Franks
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily Bulik-Sullivan
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian M Carroll
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth W Simpson
- Department of Clinical Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Anthony A Fodor
- College of Computing and Informatics, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Janelle C Arthur
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Center for Gastrointestinal Biology & Disease, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
5
|
Zangara MT, Darwish L, Coombes BK. Characterizing the Pathogenic Potential of Crohn's Disease-Associated Adherent-Invasive Escherichia coli. EcoSal Plus 2023; 11:eesp00182022. [PMID: 37220071 PMCID: PMC10729932 DOI: 10.1128/ecosalplus.esp-0018-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/04/2023] [Indexed: 01/28/2024]
Abstract
The microbiome of Crohn's disease (CD) patients is composed of a microbial community that is considered dysbiotic and proinflammatory in nature. The overrepresentation of Enterobacteriaceae species is a common feature of the CD microbiome, and much attention has been given to understanding the pathogenic role this feature plays in disease activity. Over 2 decades ago, a new Escherichia coli subtype called adherent-invasive E. coli (AIEC) was isolated and linked to ileal Crohn's disease. Since the isolation of the first AIEC strain, additional AIEC strains have been isolated from both inflammatory bowel disease (IBD) patients and non-IBD individuals using the original in vitro phenotypic characterization methods. Identification of a definitive molecular marker of the AIEC pathotype has been elusive; however, significant advancements have been made in understanding the genetic, metabolic, and virulence determinants of AIEC infection biology. Here, we review the current knowledge of AIEC pathogenesis to provide additional, objective measures that could be considered in defining AIEC and their pathogenic potential.
Collapse
Affiliation(s)
- Megan T. Zangara
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lena Darwish
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
| |
Collapse
|
6
|
Mirzahosseini HK, Najmeddin F, Najafi A, Ahmadi A, Sharifnia H, Khaledi A, Mojtahedzadeh M. Correlation of biofilm formation, virulence factors, and phylogenetic groups among Escherichia coli strains causing urinary tract infection: A global systematic review and meta-analysis. JOURNAL OF RESEARCH IN MEDICAL SCIENCES : THE OFFICIAL JOURNAL OF ISFAHAN UNIVERSITY OF MEDICAL SCIENCES 2023; 28:66. [PMID: 38024522 PMCID: PMC10668210 DOI: 10.4103/jrms.jrms_637_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/22/2023] [Accepted: 05/18/2023] [Indexed: 12/01/2023]
Abstract
Background Different virulence factors are involved in the pathogenesis of urinary tract infection (UTI) caused by Uropathogenic Escherichia coli (UPEC); hence, this study aimed to study the prevalence of biofilm formation, virulence factors, and phylogenetic groups and their correlation with biofilm formation among UPEC isolates through a systematic review and meta-analysis. Materials and Methods A literature search was conducted from 1, 2000, to the end of 2021 in different databases for studies that reported biofilm together with virulence genes or phylogenetic groups in UPEC isolates from patients with UTI according to PRISMA protocol. Data were analyzed by Comprehensive meta-analysis software. Results The pooled prevalence of biofilm formers was 74.7%. The combined prevalence of phylogenetic Groups A, B1, B2, and D (s) were reported at 19.6%, 11%, 50.7%, and 20.5%, respectively. The most common virulence genes reported worldwide were fimA, ecpA, and fimH, with a combined prevalence of 90.3%, 86.6%, and 64.9%, respectively. The pooled prevalence of biofilm formation in UPEC isolates with phylogenetic Groups A, B1, B2, D, C, and F were 12.4%, 8.7%, 33.7%, 12.4%, 2.6%, and 2.65%, respectively. Several studies showed a correlation between biofilm production and virulence genes, or phylogenetic groups. Conclusion Regarding data obtained, the high level of combined biofilm formation (74.7%) and the presence of a positive correlation between biofilm production and virulence genes, or phylogenetic groups as reported by the most studies included in the present review, indicates an important role of biofilm in the persistence of UPEC in the UTI.
Collapse
Affiliation(s)
| | - Farhad Najmeddin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atabak Najafi
- Department of Anesthesiology and Critical Care Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Ahmadi
- Department of Anesthesiology and Critical Care Medicine, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sharifnia
- Department of Anesthesiology and Critical Care, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Azad Khaledi
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Microbiology and Immunology, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Mojtaba Mojtahedzadeh
- Department of Clinical Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Zhai YJ, Liu PY, Luo XW, Liang J, Sun YW, Cui XD, He DD, Pan YS, Wu H, Hu GZ. Analysis of Regulatory Mechanism of AcrB and CpxR on Colistin Susceptibility Based on Transcriptome and Metabolome of Salmonella Typhimurium. Microbiol Spectr 2023; 11:e0053023. [PMID: 37358428 PMCID: PMC10434024 DOI: 10.1128/spectrum.00530-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/26/2023] [Indexed: 06/27/2023] Open
Abstract
With the increasing and inappropriate use of colistin, the emerging colistin-resistant isolates have been frequently reported during the last few decades. Therefore, new potential targets and adjuvants to reverse colistin resistance are urgently needed. Our previous study has confirmed a marked increase of colistin susceptibility (16-fold compared to the wild-type Salmonella strain) of cpxR overexpression strain JSΔacrBΔcpxR::kan/pcpxR (simplified as JSΔΔ/pR). To searching for potential new drug targets, the transcriptome and metabolome analysis were carried out in this study. We found that the more susceptible strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels. The virulence-related genes and colistin resistance-related genes (CRRGs) were significantly downregulated in JSΔΔ/pR. There were significant accumulation of citrate, α-ketoglutaric acid, and agmatine sulfate in JSΔΔ/pR, and exogenous supplement of them could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. Additionally, we also demonstrated that AcrB and CpxR could target the ATP and reactive oxygen species (ROS) generation, but not proton motive force (PMF) production pathway to potentiate antibacterial activity of colistin. Collectively, these findings have revealed several previously unknown mechanisms contributing to increased colistin susceptibility and identified potential targets and adjuvants for potentiating colistin treatment of Salmonella infections. IMPORTANCE Emergence of multidrug-resistant (MDR) Gram-negative (G-) bacteria have led to the reconsideration of colistin as the last-resort therapeutic option for health care-associated infections. Finding new drug targets and strategies against the spread of MDR G- bacteria are global challenges for the life sciences community and public health. In this paper, we demonstrated the more susceptibility strain JSΔΔ/pR displayed striking perturbations at both the transcriptomics and metabolomics levels and revealed several previously unknown regulatory mechanisms of AcrB and CpxR on the colistin susceptibility. Importantly, we found that exogenous supplement of citrate, α-ketoglutaric acid, and agmatine sulfate could synergistically enhance the bactericidal effect of colistin, indicating that these metabolites may serve as potential adjuvants for colistin therapy. These results provide a theoretical basis for finding potential new drug targets and adjuvants.
Collapse
Affiliation(s)
- Ya-Jun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Pei-Yi Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Xing-Wei Luo
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Jun Liang
- Zhengzhou Animal Husbandry Bureau, Zhengzhou, China
| | - Ya-Wei Sun
- Henan Institute of Science and Technology, Xinxiang, China
| | - Xiao-Die Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dan-Dan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yu-Shan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Hua Wu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gong-Zheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
8
|
Castro VS, Ngo S, Stanford K. Influence of temperature and pH on induction of Shiga toxin Stx1a in Escherichia coli. Front Microbiol 2023; 14:1181027. [PMID: 37485504 PMCID: PMC10359099 DOI: 10.3389/fmicb.2023.1181027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/20/2023] [Indexed: 07/25/2023] Open
Abstract
Shiga toxin-producing strains represent pathogenic group that is of concern in food production. The present study evaluated forty-eight E. coli isolates (11 with intact stx gene, while remaining isolates presented only stx-fragments) for Shiga toxin production. The four most expressive stx-producers (O26, O103, O145, and O157) were selected to evaluate effects of pH (3.5, 4.5, and 7) and temperature (35, 40, and 50°C). After determining acid stress effects in media on Stx-induction, we mimicked "in natura" conditions using milk, apple, and orange juices. Only isolates that showed the presence of intact stx gene (11/48) produced Shiga toxin. In addition, acid pH had a role in down-regulating the production of Shiga toxin, in both lactic acid and juices. In contrast, non-lethal heating (40°C), when in neutral pH and milk was a favorable environment to induce Shiga toxin. Lastly, two isolates (O26 and O103) showed a higher capacity to produce Shiga toxin and were included in a genomic cluster with other E. coli involved in worldwide foodborne outbreaks. The induction of this toxin when subjected to 40°C may represent a potential risk to the consumer, since the pathogenic effect of oral ingestion of Shiga toxin has already been proved in an animal model.
Collapse
|
9
|
Overstreet AMC, Anderson B, Burge M, Zhu X, Tao Y, Cham CM, Michaud B, Horam S, Sangwan N, Dwidar M, Liu X, Santos A, Finney C, Dai Z, Leone VA, Messer JS. HMGB1 acts as an agent of host defense at the gut mucosal barrier. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542477. [PMID: 37398239 PMCID: PMC10312563 DOI: 10.1101/2023.05.30.542477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Mucosal barriers provide the first line of defense between internal body surfaces and microbial threats from the outside world. 1 In the colon, the barrier consists of two layers of mucus and a single layer of tightly interconnected epithelial cells supported by connective tissue and immune cells. 2 Microbes colonize the loose, outer layer of colonic mucus, but are essentially excluded from the tight, epithelial-associated layer by host defenses. 3 The amount and composition of the mucus is calibrated based on microbial signals and loss of even a single component of this mixture can destabilize microbial biogeography and increase the risk of disease. 4-7 However, the specific components of mucus, their molecular microbial targets, and how they work to contain the gut microbiota are still largely unknown. Here we show that high mobility group box 1 (HMGB1), the prototypical damage-associated molecular pattern molecule (DAMP), acts as an agent of host mucosal defense in the colon. HMGB1 in colonic mucus targets an evolutionarily conserved amino acid sequence found in bacterial adhesins, including the well-characterized Enterobacteriaceae adhesin FimH. HMGB1 aggregates bacteria and blocks adhesin-carbohydrate interactions, inhibiting invasion through colonic mucus and adhesion to host cells. Exposure to HMGB1 also suppresses bacterial expression of FimH. In ulcerative colitis, HMGB1 mucosal defense is compromised, leading to tissue-adherent bacteria expressing FimH. Our results demonstrate a new, physiologic role for extracellular HMGB1 that refines its functions as a DAMP to include direct, virulence limiting effects on bacteria. The amino acid sequence targeted by HMGB1 appears to be broadly utilized by bacterial adhesins, critical for virulence, and differentially expressed by bacteria in commensal versus pathogenic states. These characteristics suggest that this amino acid sequence is a novel microbial virulence determinant and could be used to develop new approaches to diagnosis and treatment of bacterial disease that precisely identify and target virulent microbes.
Collapse
|
10
|
Bleich RM, Li C, Sun S, Barlogio CJ, Broberg CA, Franks AR, Bulik-Sullivan E, Dogan B, Simpson KW, Carroll IM, Fodor AA, Arthur JC. A consortia of clinical E. coli strains with distinct in-vitro adherent/invasive properties establish their own co-colonization niche and shape the intestinal microbiota in inflammation-susceptible mice. RESEARCH SQUARE 2023:rs.3.rs-2899665. [PMID: 37214858 PMCID: PMC10197778 DOI: 10.21203/rs.3.rs-2899665/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Inflammatory bowel disease (IBD) patients experience recurrent episodes of intestinal inflammation and often follow an unpredictable disease course. Mucosal colonization with adherent-invasive Escherichia coli (AIEC) are believed to perpetuate intestinal inflammation. However, it remains unclear if the 24-year-old AIEC in-vitro definition fully predicts mucosal colonization in-vivo. To fill this gap, we have developed a novel molecular barcoding approach to distinguish strain variants in the gut and have integrated this approach to explore mucosal colonization of distinct patient-derived E. coli isolates in gnotobiotic mouse models of colitis. Results Germ-free inflammation-susceptible interleukin-10-deficient (Il10-/-) and inflammation-resistant WT mice were colonized with a consortia of AIEC and non-AIEC strains, then given a murine fecal transplant to provide niche competition. E. coli strains isolated from human intestinal tissue were each marked with a unique molecular barcode that permits identification and quantification by barcode-targeted sequencing. 16S rRNA sequencing was used to evaluate the microbiome response to E. coli colonization. Our data reveal that specific AIEC and non-AIEC strains reproducibly colonize the intestinal mucosa of WT and Il10-/- mice. These E. coli expand in Il10-/- mice during inflammation and induce compositional dysbiosis to the microbiome in an inflammation-dependent manner. In turn, specific microbes co-evolve in inflamed mice, potentially diversifying E. coli colonization patterns. We observed no selectivity in E. coli colonization patterns in the fecal contents, indicating minimal selective pressure in this niche from host-microbe and interbacterial interactions. Because select AIEC and non-AIEC strains colonize the mucosa, this suggests the in vitro AIEC definition may not fully predict in vivo colonization potential. Further comparison of seven E. coli genomes pinpointed unique genomic features contained only in highly colonizing strains (two AIEC and two non-AIEC). Those colonization-associated features may convey metabolic advantages (e.g., iron acquisition and carbohydrate consumption) to promote efficient mucosal colonization. Conclusions Our findings establish the in-vivo mucosal colonizer, not necessarily AIEC, as a principal dysbiosis driver through crosstalk with host and associated microbes. Furthermore, we highlight the utility of high-throughput screens to decode the in-vivo colonization dynamics of patient-derived bacteria in murine models.
Collapse
Affiliation(s)
| | - Chuang Li
- University of North Carolina at Chapel Hill
| | - Shan Sun
- University of North Carolina at Charlotte
| | | | | | | | | | - Belgin Dogan
- Cornell University College of Veterinary Medicine
| | | | | | | | | |
Collapse
|
11
|
Tanaka R, Imai J, Tsugawa H, Eap KB, Yazawa M, Kaneko M, Ohno M, Sugihara K, Kitamoto S, Nagao-Kitamoto H, Barnich N, Matsushima M, Suzuki T, Kagawa T, Nishizaki Y, Suzuki H, Kamada N, Hozumi K. Adherent-invasive E. coli - induced specific IgA limits pathobiont localization to the epithelial niche in the gut. Front Microbiol 2023; 14:1031997. [PMID: 36910191 PMCID: PMC9995611 DOI: 10.3389/fmicb.2023.1031997] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND AND AIM Adherent-invasive E. coli (AIEC) has been identified as a pathobiont associated with Crohn's disease (CD), that prefers to grow in inflammatory conditions. Although the colonization by AIEC is implicated in the progression of the disease and exacerbates inflammation in murine colitis models, the recognition and response of host immunity to AIEC remains elusive. METHODS Antibiotic treated female C57BL/6 mice were inoculated by commensal E. coli and LF82 AIEC strains. Luminal-IgA fractions were prepared from feces and their binding to AIEC and other strains was assessed to confirm specificity. IgA binding to isogenic mutant strains was performed to identify the functional molecules that are recognized by AIEC specific IgA. The effect of IgA on epithelial invasion of LF82 strain was confirmed using in vitro invasion assay and in vivo colonization of the colonic epithelium. RESULTS Persistent colonization by AIEC LF82 induced secretion of luminal IgA, while commensal E. coli strain did not. Induced anti-LF82 IgA showed specific binding to other AIEC strains but not to the commensal, non-AIEC E. coli strains. Induced IgA showed decreased binding to LF82 strains with mutated adhesin and outer membrane proteins which are involved in AIEC - epithelial cell interaction. Consistently, LF82-specific IgA limited the adhesion and invasion of LF82 in cultured epithelial cells, which seems to be required for the elimination in the colonic epithelium in mice. CONCLUSION These results demonstrate that host immunity selectively recognizes pathobiont E. coli, such as AIEC, and develop specific IgA. The induced IgA specific to pathobiont E. coli, in turn, contributes to preventing the pathobionts from accessing the epithelium.
Collapse
Affiliation(s)
- Rika Tanaka
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Jin Imai
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
- Department of Clinical Health Science, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Tsugawa
- Transkingdom Signaling Research Unit, Division of Host Defense, Tokai University School of Medicine, Isehara, Japan
| | - Karl Bil Eap
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Masaki Yazawa
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| | - Motoki Kaneko
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Masashi Ohno
- Division of Gastroenterology, Shiga University of Medical Science, Otsu, Japan
| | - Kohei Sugihara
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Sho Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Hiroko Nagao-Kitamoto
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Nicolas Barnich
- UMR1071 Inserm/University Clermont Auvergne, INRAE USC2018, M2iSH, CRNH Auvergne, Clermont-Ferrand, France
| | - Masashi Matsushima
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Takayoshi Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Yasuhiro Nishizaki
- Department of Clinical Health Science, Tokai University School of Medicine, Isehara, Japan
| | - Hidekazu Suzuki
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, Isehara, Japan
| | - Nobuhiko Kamada
- Division of Gastroenterology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
- WPI Immunology Frontier Research Center, Osaka University, Suita, Japan
| | - Katsuto Hozumi
- Department of Immunology, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
12
|
Sheikh A, Fleckenstein JM. Interactions of pathogenic Escherichia coli with CEACAMs. Front Immunol 2023; 14:1120331. [PMID: 36865539 PMCID: PMC9971599 DOI: 10.3389/fimmu.2023.1120331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
The pathogenic Escherichia coli can be parsed into specific variants (pathovars) depending on their phenotypic behavior and/or expression of specific virulence factors. These pathogens are built around chromosomally-encoded core attributes and through acquisition of specific virulence genes that direct their interaction with the host. Engagement of E. coli pathovars with CEACAMs is determined both by core elements common to all E. coli as well as extrachromosomally-encoded pathovar-specific virulence traits, which target amino terminal immunoglobulin variable-like (IgV) regions of CEACAMs. Emerging data suggests that engagement of CEACAMs does not unilaterally benefit the pathogen and that these interactions may also provide an avenue for pathogen elimination.
Collapse
Affiliation(s)
- Alaullah Sheikh
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
| | - James M. Fleckenstein
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, MO, United States
- Infectious Diseases, Medicine Service, Veterans Affairs Saint Louis Health Care System, Saint Louis, MO, United States
| |
Collapse
|
13
|
The New Strategy for Studying Drug-Delivery Systems with Prolonged Release: Seven-Day In Vitro Antibacterial Action. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27228026. [PMID: 36432127 PMCID: PMC9695913 DOI: 10.3390/molecules27228026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022]
Abstract
The new method of antibacterial-drug-activity investigation in vitro is proposed as a powerful strategy for understanding how carriers affect drug action during long periods (7 days). In this paper, we observed fluoroquinolone moxifloxacin (MF) antibacterial-efficiency in non-covalent complexes, with the sulfobutyl ether derivative of β-cyclodextrin (SCD) and its polymer (SCDpol). We conducted in vitro studies on two Escherichia coli strains that differed in surface morphology. It was found that MF loses its antibacterial action after 3-4 days in liquid media, whereas the inclusion of the drug in SCD led to the increase of MF antibacterial activity by up to 1.4 times within 1-5 days of the experiment. In the case of MF-SCDpol, we observed a 12-fold increase in the MF action, and a tendency to prolonged antibacterial activity. We visualized this phenomenon (the state of bacteria, cell membrane, and surface morphology) during MF and MF-carrier exposure by TEM. SCD and SCDpol did not change the drug's mechanism of action. Particle adsorption on cells was the crucial factor for determining the observed effects. The proteinaceous fimbriae on the bacteria surface gave a 2-fold increase of the drug carrier adsorption, hence the strains with fimbriae are more preferable for the proposed treatment. Furthermore, the approach to visualize the CD polymer adsorption on bacteria via TEM is suggested. We hope that the proposed comprehensive method will be useful for the studies of drug-delivery systems to uncover long-term antibacterial action.
Collapse
|
14
|
Liu Y, Zhu S, Wei L, Feng Y, Cai L, Dunn S, McNally A, Zong Z. Arm race among closely-related carbapenem-resistant Klebsiella pneumoniae clones. ISME COMMUNICATIONS 2022; 2:76. [PMID: 37938732 PMCID: PMC9723571 DOI: 10.1038/s43705-022-00163-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/09/2023]
Abstract
Multiple carbapenem-resistant Klebsiella pneumoniae (CRKP) clones typically co-exist in hospital wards, but often certain clones will dominate. The factors driving this dominance are largely unclear. This study began from a genomic epidemiology analysis and followed by multiple approaches to identify the potential mechanisms driving the successful spread of a dominant clone. 638 patients in a 50-bed ICU were screened. 171 (26.8%) and 21 had CRKP from swabs and clinical specimens, respectively. Many (39.8% of those with ≥7-day ICU stay) acquired CRKP. After removing 18 unable to recover, 174 CRKP isolates were genome sequenced and belonged to six sequence types, with ST11 being the most prevalent (n = 154, 88.5%) and most (n = 169, 97.1%) carrying blaKPC-2. The 154 ST11 isolates belonged to 7 clones, with one (clone 1, KL64 capsular type) being dominant (n = 130, 84.4%). Clone 1 and the second-most common clone (clone 2, KL64, n = 15, 9.7%) emerged simultaneously, which was also detected by genome-based dating. Clone 1 exhibited decreased biofilm formation, shorter environment survival, and attenuated virulence. In murine gut, clone 1 outcompeted clone 2. Transcriptomic analysis showed significant upregulation of the ethanolamine operon in clone 1 when competing with clone 2. Clone 1 exhibited increased utilization of ethanolamine as a nitrogen source. This highlights that reduced virulence and enhanced ability to utilize ethanolamine may promote the success of nosocomial multidrug-resistant clones.
Collapse
Affiliation(s)
- Ying Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Shichao Zhu
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Cai
- Intensive Care Unit, West China Hospital, Sichuan University, Chengdu, China
| | - Steven Dunn
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Science, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China.
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Schwan WR, Luedtke J, Engelbrecht K, Mollinger J, Wheaton A, Foster JW, Wolchak R. Regulation of Escherichia coli fim gene transcription by GadE and other acid tolerance gene products. MICROBIOLOGY (READING, ENGLAND) 2022; 168:001149. [PMID: 35316170 PMCID: PMC9558354 DOI: 10.1099/mic.0.001149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) cause millions of urinary tract infections each year in the United States. Type 1 pili are important for adherence of UPEC to uroepithelial cells in the human and murine urinary tracts where osmolality and pH vary. Previous work has shown that an acidic pH adversely affects the expression of type 1 pili. To determine if acid tolerance gene products may be regulating E. coli fim gene expression, a bank of K-12 strain acid tolerance gene mutants were screened using fimA-lux, fimB-lux, and fimE-lux fusions on single copy number plasmids. We have determined that a mutation in gadE increased transcription of all three fim genes, suggesting that GadE may be acting as a repressor in a low pH environment. Complementation of the gadE mutation restored fim gene transcription to wild-type levels. Moreover, mutations in gadX, gadW, crp, and cya also affected transcription of the three fim genes. To verify the role GadE plays in type 1 pilus expression, the NU149 gadE UPEC strain was tested. The gadE mutant had higher fimE gene transcript levels, a higher frequency of Phase-OFF positioning of fimS, and hemagglutination titres that were lower in strain NU149 gadE cultured in low pH medium as compared to the wild-type bacteria. The data demonstrate that UPEC fim genes are regulated directly or indirectly by the GadE protein and this could have some future bearing on the ability to prevent urinary tract infections by acidifying the urine and shutting off fim gene expression.
Collapse
Affiliation(s)
| | | | | | | | | | - John W. Foster
- University South Alabama College of Medicine, Mobile, AL, USA
| | | |
Collapse
|
16
|
Inactivation of the Pyrimidine Biosynthesis pyrD Gene Negatively Affects Biofilm Formation and Virulence Determinants in the Crohn’s Disease-Associated Adherent Invasive Escherichia coli LF82 Strain. Microorganisms 2022; 10:microorganisms10030537. [PMID: 35336113 PMCID: PMC8956108 DOI: 10.3390/microorganisms10030537] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/17/2022] [Accepted: 02/26/2022] [Indexed: 01/07/2023] Open
Abstract
In Crohn’s disease (CD) patients, the adherent-invasive Escherichia coli (AIEC) pathovar contributes to the chronic inflammation typical of the disease via its ability to invade gut epithelial cells and to survive in macrophages. We show that, in the AIEC strain LF82, inactivation of the pyrD gene, encoding dihydroorotate dehydrogenase (DHOD), an enzyme of the de novo pyrimidine biosynthetic pathway, completely abolished its ability of to grow in a macrophage environment-mimicking culture medium. In addition, pyrD inactivation reduced flagellar motility and strongly affected biofilm formation by downregulating transcription of both type 1 fimbriae and curli subunit genes. Thus, the pyrD gene appears to be essential for several cellular processes involved in AIEC virulence. Interestingly, vidofludimus (VF), a DHOD inhibitor, has been proposed as an effective drug in CD treatment. Despite displaying a potentially similar binding mode for both human and E. coli DHOD in computational molecular docking experiments, VF showed no activity on either growth or virulence-related processes in LF82. Altogether, our results suggest that the crucial role played by the pyrD gene in AIEC virulence, and the presence of structural differences between E. coli and human DHOD allowing for the design of specific inhibitors, make E. coli DHOD a promising target for therapeutical strategies aiming at counteracting chronic inflammation in CD by acting selectively on its bacterial triggers.
Collapse
|
17
|
Zhang L, Liu F, Xue J, Lee SA, Liu L, Riordan SM. Bacterial Species Associated With Human Inflammatory Bowel Disease and Their Pathogenic Mechanisms. Front Microbiol 2022; 13:801892. [PMID: 35283816 PMCID: PMC8908260 DOI: 10.3389/fmicb.2022.801892] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/25/2022] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory condition of the gastrointestinal tract with unknown etiology. The pathogenesis of IBD results from immune responses to microbes in the gastrointestinal tract. Various bacterial species that are associated with human IBD have been identified. However, the microbes that trigger the development of human IBD are still not clear. Here we review bacterial species that are associated with human IBD and their pathogenic mechanisms to provide an updated broad understanding of this research field. IBD is an inflammatory syndrome rather than a single disease. We propose a three-stage pathogenesis model to illustrate the roles of different IBD-associated bacterial species and gut commensal bacteria in the development of human IBD. Finally, we recommend microbe-targeted therapeutic strategies based on the three-stage pathogenesis model.
Collapse
Affiliation(s)
- Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Jessica Xue
- Faculty of Medicine, Monash University, Melbourne, VIC, Australia
| | - Seul A. Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M. Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Javed S, Mirani ZA, Pirzada ZA. Phylogenetic Group B2 Expressed Significant Biofilm Formation among Drug Resistant Uropathogenic Escherichia coli. Libyan J Med 2021; 16:1845444. [PMID: 33170767 PMCID: PMC7671661 DOI: 10.1080/19932820.2020.1845444] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 10/29/2020] [Indexed: 10/31/2022] Open
Abstract
Biofilm is an important virulent marker attributed to the development of urinary tract infections (UTIs) by uropathogenic E. coli (UPEC). Drug-resistant and biofilm-producing UPEC are highly problematic causing catheter-associated or recurrent UTIs with significant morbidity and mortality. The aim of the current study was to investigate the prevalence of biofilm formation and phylogenetic groups in drug-resistant UPEC to predict their ability to cause disease. This prospective study was conducted at the Department of Microbiology, University of Karachi from January to June 2019. A total of 50 highly drug-resistant UPEC were selected for this study. UPEC isolates were screened to form biofilm by Congo-red agar (CRA) and microtiter plate (MTP) technique. The representative biofilm-producing isolates were analysed by scanning electron microscopy (SEM) monitoring. Phylogenetic analysis was done by PCR method based on two preserved genes; chuA, yjaA and TspE4-C2 DNA fragment. On CRA 34 (68%) UPEC were slime producers, while on MTP 20 (40%) were strong biofilm producers, 19 (38%) moderate and 11 (22%) were low to negligible biofilm producers. Molecular typing confirmed that phylogenetic group B2 was prevalent in drug resistant UPEC strains. Pathogenic strains belonged to phylogenetic group B2 and D were found to have greater biofilm forming ability as compare to non-pathogenic commensal strains that belonged to phylogenetic group A. Our results indicate that biofilm formation vary in drug resistant UPEC belonged to different phylogenetic groups. This study indicates possible link between in vitro biofilm formation and phylogenetic groups of UPEC, therefore this knowledge might be helpful to predict the pathogenic potential of UPEC and help design strategies for controlling UTIs.
Collapse
Affiliation(s)
- Saima Javed
- Department of Microbiology, University of Karachi, Karachi, Pakistan
| | - Zulfiqar Ali Mirani
- Pakistan Council of Scientific and Industrial Research Laboratories Complex, Karachi, Pakistan
| | | |
Collapse
|
19
|
Long-read sequencing to interrogate strain-level variation among adherent-invasive Escherichia coli isolated from human intestinal tissue. PLoS One 2021; 16:e0259141. [PMID: 34710159 PMCID: PMC8553045 DOI: 10.1371/journal.pone.0259141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 10/13/2021] [Indexed: 01/19/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is a pathovar linked to inflammatory bowel diseases (IBD), especially Crohn’s disease, and colorectal cancer. AIEC are genetically diverse, and in the absence of a universal molecular signature, are defined by in vitro functional attributes. The relative ability of difference AIEC strains to colonize, persist, and induce inflammation in an IBD-susceptible host is unresolved. To evaluate strain-level variation among tissue-associated E. coli in the intestines, we develop a long-read sequencing approach to identify AIEC by strain that excludes host DNA. We use this approach to distinguish genetically similar strains and assess their fitness in colonizing the intestine. Here we have assembled complete genomes using long-read nanopore sequencing for a model AIEC strain, NC101, and seven strains isolated from the intestinal mucosa of Crohn’s disease and non-Crohn’s tissues. We show these strains can colonize the intestine of IBD susceptible mice and induce inflammatory cytokines from cultured macrophages. We demonstrate that these strains can be quantified and distinguished in the presence of 99.5% mammalian DNA and from within a fecal population. Analysis of global genomic structure and specific sequence variation within the ribosomal RNA operon provides a framework for efficiently tracking strain-level variation of closely-related E. coli and likely other commensal/pathogenic bacteria impacting intestinal inflammation in experimental settings and IBD patients.
Collapse
|
20
|
Chevalier G, Laveissière A, Desachy G, Barnich N, Sivignon A, Maresca M, Nicoletti C, Di Pasquale E, Martinez-Medina M, Simpson KW, Yajnik V, Sokol H, Plassais J, Strozzi F, Cervino A, Morra R, Bonny C. Blockage of bacterial FimH prevents mucosal inflammation associated with Crohn's disease. MICROBIOME 2021; 9:176. [PMID: 34425887 PMCID: PMC8383459 DOI: 10.1186/s40168-021-01135-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/01/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND An Escherichia coli (E. coli) pathotype with invasive properties, first reported by Darfeuille-Michaud and termed adherent-invasive E. coli (AIEC), was shown to be prevalent in up to half the individuals with Crohn's Disease (CD), suggesting that these bacteria could be involved in the pathophysiology of CD. Among the genes related to AIEC pathogenicity, fim has the potential to generate an inflammatory reaction from the intestinal epithelial cells and macrophages, as it interacts with TLR4, inducing the production of inflammatory cytokines independently of LPS. Therefore, targeting the bacterial adhesion of FimH-expressing bacteria seems a promising therapeutic approach, consisting of disarming bacteria without killing them, representing a selective strategy to suppress a potentially critical trigger of intestinal inflammation, without disturbing the intestinal microbiota. RESULTS We analyzed the metagenomic composition of the gut microbiome of 358 patients with CD from two different cohorts and characterized the presence of FimH-expressing bacteria. To assess the pathogenic role of FimH, we used human intestinal explants and tested a specific FimH blocker to prevent bacterial adhesion and associated inflammation. We observed a significant and disease activity-dependent enrichment of Enterobacteriaceae in the gut microbiome of patients with CD. Bacterial FimH expression was functionally confirmed in ileal biopsies from 65% of the patients with CD. Using human intestinal explants, we further show that FimH is essential for adhesion and to trigger inflammation. Finally, a specific FimH-blocker, TAK-018, inhibits bacterial adhesion to the intestinal epithelium and prevents inflammation, thus preserving mucosal integrity. CONCLUSIONS We propose that TAK-018, which is safe and well tolerated in humans, is a promising candidate for the treatment of CD and in particular in preventing its recurrence. Video abstract.
Collapse
Affiliation(s)
| | | | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000, Clermont-Ferrand, France
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, M2iSH, USC-INRA 2018, F-63000, Clermont-Ferrand, France
| | - Marc Maresca
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Eric Di Pasquale
- Aix-Marseille Université, CNRS, INP, Institut de Neurophysiopathologie, Marseille, France
| | | | | | - Vijay Yajnik
- GI Therapeutic Area Unit, Takeda Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Harry Sokol
- Gastroenterology Department, Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Saint Antoine Hospital, 75012, Paris, France
- INRA, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
- Paris Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, France
| | | | | | | | - Rachel Morra
- Enterome, 94-96 Avenue Ledru-Rollin, 75011, Paris, France
| | | |
Collapse
|
21
|
Chatterjee S, Basak AJ, Nair AV, Duraivelan K, Samanta D. Immunoglobulin-fold containing bacterial adhesins: molecular and structural perspectives in host tissue colonization and infection. FEMS Microbiol Lett 2021; 368:6045506. [PMID: 33355339 DOI: 10.1093/femsle/fnaa220] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Immunoglobulin (Ig) domains are one of the most widespread protein domains encoded by the human genome and are present in a large array of proteins with diverse biological functions. These Ig domains possess a central structure, the immunoglobulin-fold, which is a sandwich of two β sheets, each made up of anti-parallel β strands, surrounding a central hydrophobic core. Apart from humans, proteins containing Ig-like domains are also distributed in a vast selection of organisms including vertebrates, invertebrates, plants, viruses and bacteria where they execute a wide array of discrete cellular functions. In this review, we have described the key structural deviations of bacterial Ig-folds when compared to the classical eukaryotic Ig-fold. Further, we have comprehensively grouped all the Ig-domain containing adhesins present in both Gram-negative and Gram-positive bacteria. Additionally, we describe the role of these particular adhesins in host tissue attachment, colonization and subsequent infection by both pathogenic and non-pathogenic Escherichia coli as well as other bacterial species. The structural properties of these Ig-domain containing adhesins, along with their interactions with specific Ig-like and non Ig-like binding partners present on the host cell surface have been discussed in detail.
Collapse
Affiliation(s)
- Shruti Chatterjee
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Aditya J Basak
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Asha V Nair
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Kheerthana Duraivelan
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| | - Dibyendu Samanta
- School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur-721302, West Bengal, India
| |
Collapse
|
22
|
Lucchini V, Sivignon A, Pieren M, Gitzinger M, Lociuro S, Barnich N, Kemmer C, Trebosc V. The Role of OmpR in Bile Tolerance and Pathogenesis of Adherent-Invasive Escherichia coli. Front Microbiol 2021; 12:684473. [PMID: 34262546 PMCID: PMC8273539 DOI: 10.3389/fmicb.2021.684473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota dysbiosis toward adherent-invasive Escherichia coli (AIEC) plays an important role in Crohn's disease (CD). The OmpR transcriptional regulator is required for the AIEC LF82 prototype strain to adhere and invade intestinal epithelial cells. In this study, we explored the role of OmpR in AIEC pathogenesis using a panel of eight Escherichia coli strains isolated from CD patients and identified as AIEC. The deletion of ompR together with the implementation of two cell-based assays revealed that the role of OmpR in adhesion in vitro was not conserved in AIEC clinical strains. Nevertheless, we showed that OmpR was required for robust gut colonization of transgenic mice expressing human CEACAM receptors, suggesting that OmpR is involved in alternative virulence mechanisms in AIEC strains. We found that deletion of ompR compromised the ability of AIEC strains to cope with the stress induced by bile salts, which may be key for AIEC pathogenesis. More specifically, we demonstrated that OmpR was involved in a tolerance mechanism toward sodium deoxycholate (DOC), one of bile salts main component. We showed that the misregulation of OmpF or the loss of outer membrane integrity are not the drivers of OmpR-mediated DOC tolerance, suggesting that OmpR regulates a specific mechanism enhancing AIEC survival in the presence of DOC. In conclusion, the newly discovered role of OmpR in AIEC bile tolerance suggests that OmpR inhibition would interfere with different aspects of AIEC virulence arsenal and could be an alternative strategy for CD-treatment.
Collapse
Affiliation(s)
- Valentina Lucchini
- BioVersys AG, Basel, Switzerland
- Biozentrum, University of Basel, Basel, Switzerland
| | - Adeline Sivignon
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | | | | | | | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), Clermont-Ferrand, France
| | | | | |
Collapse
|
23
|
Zhang X, Zhou D, Bai H, Liu Q, Xiao XL, Yu YG. Comparative transcriptome analysis of virulence genes of enterohemorrhagic Escherichia coli O157:H7 to acid stress. FOOD BIOTECHNOL 2021. [DOI: 10.1080/08905436.2021.1908345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Xiaowei Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, China
| | - Donggen Zhou
- Ningbo International Travel Healthcare Center, Ningbo City, Haishu District, China
| | - Hong Bai
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, China
| | - Qijun Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, China
| | - Xing-Long Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, China
| | - Yi-Gang Yu
- School of Food Science and Engineering, South China University of Technology, Guangzhou City, Guangdong Province, China
| |
Collapse
|
24
|
Yersiniabactin Siderophore of Crohn's Disease-Associated Adherent-Invasive Escherichia coli Is Involved in Autophagy Activation in Host Cells. Int J Mol Sci 2021; 22:ijms22073512. [PMID: 33805299 PMCID: PMC8037853 DOI: 10.3390/ijms22073512] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 01/18/2023] Open
Abstract
Background: Adherent-invasive Escherichia coli (AIEC) have been implicated in the etiology of Crohn’s disease. The AIEC reference strain LF82 possesses a pathogenicity island similar to the high pathogenicity island of Yersinia spp., which encodes the yersiniabactin siderophore required for iron uptake and growth of the bacteria in iron-restricted environment. Here, we investigated the role of yersiniabactin during AIEC infection. Methods: Intestinal epithelial T84 cells and CEABAC10 transgenic mice were infected with LF82 or its mutants deficient in yersiniabactin expression. Autophagy was assessed by Western blot analysis for p62 and LC3-II expression. Results: Loss of yersiniabactin decreased the growth of LF82 in competitive conditions, reducing the ability of LF82 to adhere to and invade T84 cells and to colonize the intestinal tract of CEABAC10 mice. However, yersiniabactin deficiency increased LF82 intracellular replication. Mechanistically, a functional yersiniabactin is necessary for LF82-induced expression of HIF-1α, which is implicated in autophagy activation in infected cells. Conclusion: Our study highlights a novel role for yersiniabactin siderophore in AIEC–host interaction. Indeed, yersiniabactin, which is an advantage for AIEC to growth in a competitive environment, could be a disadvantage for the bacteria as it activates autophagy, a key host defense mechanism, leading to bacterial clearance.
Collapse
|
25
|
The Role of Enterobacteriaceae in Gut Microbiota Dysbiosis in Inflammatory Bowel Diseases. Microorganisms 2021; 9:microorganisms9040697. [PMID: 33801755 PMCID: PMC8066304 DOI: 10.3390/microorganisms9040697] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBDs) are a group of chronic gastrointestinal inflammatory diseases with unknown etiology. There is a combination of well documented factors in their pathogenesis, including intestinal microbiota dysbiosis. The symbiotic microbiota plays important functions in the host, and the loss of beneficial microbes could favor the expansion of microbial pathobionts. In particular, the bloom of potentially harmful Proteobacteria, especially Enterobacteriaceae, has been described as enhancing the inflammatory response, as observed in IBDs. Herein, we seek to investigate the contribution of Enterobacteriaceae to IBD pathogenesis whilst considering the continuous expansion of the literature and data. Despite the mechanism of their expansion still remaining unclear, their expansion could be correlated with the increase in nitrate and oxygen levels in the inflamed gut and with the bile acid dysmetabolism described in IBD patients. Furthermore, in several Enterobacteriaceae studies conducted at a species level, it has been suggested that some adherent-invasive Escherichia coli (AIEC) play an important role in IBD pathogenesis. Overall, this review highlights the pivotal role played by Enterobacteriaceae in gut dysbiosis associated with IBD pathogenesis and progression.
Collapse
|
26
|
Beata S, Michał T, Mateusz O, Urszula W, Choroszy M, Andrzej T, Piotr D. Norepinephrine affects the interaction of adherent-invasive Escherichia coli with intestinal epithelial cells. Virulence 2021; 12:630-637. [PMID: 33538227 PMCID: PMC7872043 DOI: 10.1080/21505594.2021.1882780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Norepinephrine (NE), the stress hormone, stimulates many bacterial species’ growth and virulence, including Escherichia coli. However, the hormone’s impact on the adherent-invasive E. coli (AIEC) implicated in Crohn’s disease is poorly understood. In the study, we have investigated the effect of NE on the interaction of six AIEC strains isolated from an intestinal biopsy from 6 children with Crohn’s disease with Caco-2 cells. Our study focused on type 1 fimbria and CEACAM6 molecules serving as docking sites for these adhesins. The study results demonstrated that the hormone significantly increased the adherence and invasion of AIEC to Caco-2 cells in vitro. However, the effect was not associated with the impact of NE on the increased proliferation rate of AIEC or the fimA gene expression vital for their interaction with intestinal epithelial cells. Instead, the carcinoembryonic antigen-related cell-adhesion-molecule-6 (CEACAM6) level was increased significantly in NE-treated Caco-2 cells infected with AIEC in contrast to control uninfected NE-treated cells. These results indicated that NE influenced the interaction of AIEC with intestinal epithelium by increasing the level of CEACAM6 in epithelial cells, strengthening their adherence and invasion.
Collapse
Affiliation(s)
| | - Turniak Michał
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Olbromski Mateusz
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| | - Walczuk Urszula
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University , Wroclaw, Poland
| | - Tukiendorf Andrzej
- Department of Public Health, Wroclaw Medical University , Wroclaw, Poland
| | - Dzięgiel Piotr
- Department of Histology and Embryology, Wroclaw Medical University , Wroclaw, Poland
| |
Collapse
|
27
|
Minakshi P, Kumar R, Ghosh M, Brar B, Barnela M, Lakhani P. Application of Polymeric Nano-Materials in Management of Inflammatory Bowel Disease. Curr Top Med Chem 2021; 20:982-1008. [PMID: 32196449 DOI: 10.2174/1568026620666200320113322] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/25/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023]
Abstract
Inflammatory Bowel Disease (IBD) is an umbrella term used to describe disorders that involve Crohn's disease (CD), ulcerative colitis (UC) and pouchitis. The disease occurrence is more prevalent in the working group population which not only hampers the well being of an individual but also has negative economical impact on society. The current drug regime used therapy is very costly owing to the chronic nature of the disease leading to several side effects. The condition gets more aggravated due to the lower concentration of drug at the desired site. Therefore, in the present scenario, a therapy is needed which can maximize efficacy, adhere to quality of life, minimize toxicity and doses, be helpful in maintaining and stimulating physical growth of mucosa with minimum disease complications. In this aspect, nanotechnology intervention is one promising field as it can act as a carrier to reduce toxicity, doses and frequency which in turn help in faster recovery. Moreover, nanomedicine and nanodiagnostic techniques will further open a new window for treatment in understanding pathogenesis along with better diagnosis which is poorly understood till now. Therefore the present review is more focused on recent advancements in IBD in the application of nanotechnology.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| | - Mayukh Ghosh
- Department of Veterinary Physiology and Biochemistry, RGSC, Banaras Hindu University, Mirzapur (UP) - 231001, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125001, Haryana, India
| | - Manju Barnela
- Department of Nano & Biotechnology, Guru Jambheshwar University, Hisar-125001, Haryana, India
| | - Preeti Lakhani
- Department of Veterinary Physiology & Biochemistry, LUVAS, Hisar-125 004, India
| |
Collapse
|
28
|
The Canonical Long-Chain Fatty Acid Sensing Machinery Processes Arachidonic Acid To Inhibit Virulence in Enterohemorrhagic Escherichia coli. mBio 2021; 12:mBio.03247-20. [PMID: 33468701 PMCID: PMC7845647 DOI: 10.1128/mbio.03247-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Polyunsaturated fatty acids (PUFAs) play important roles in host immunity. Manipulation of lipid content in host tissues through diet or pharmacological interventions is associated with altered severity of various inflammatory diseases. The mammalian gastrointestinal tract is a complex biochemical organ that generates a diverse milieu of host- and microbe-derived metabolites. In this environment, bacterial pathogens sense and respond to specific stimuli, which are integrated into the regulation of their virulence programs. Previously, we identified the transcription factor FadR, a long-chain fatty acid (LCFA) acyl coenzyme A (acyl-CoA) sensor, as a novel virulence regulator in the human foodborne pathogen enterohemorrhagic Escherichia coli (EHEC). Here, we demonstrate that exogenous LCFAs directly inhibit the locus of enterocyte effacement (LEE) pathogenicity island in EHEC through sensing by FadR. Moreover, in addition to LCFAs that are 18 carbons in length or shorter, we introduce host-derived arachidonic acid (C20:4) as an additional LCFA that is recognized by the FadR system in EHEC. We show that arachidonic acid is processed by the acyl-CoA synthetase FadD, which permits binding to FadR and decreases FadR affinity for its target DNA sequences. This interaction enables the transcriptional regulation of FadR-responsive operons by arachidonic acid in EHEC, including the LEE. Finally, we show that arachidonic acid inhibits hallmarks of EHEC disease in a FadR-dependent manner, including EHEC attachment to epithelial cells and the formation of attaching and effacing lesions. Together, our findings delineate a molecular mechanism demonstrating how LCFAs can directly inhibit the virulence of an enteric bacterial pathogen. More broadly, our findings expand the repertoire of ligands sensed by the canonical LFCA sensing machinery in EHEC to include arachidonic acid, an important bioactive lipid that is ubiquitous within host environments.
Collapse
|
29
|
Cornelian Cherry Iridoid-Polyphenolic Extract Improves Mucosal Epithelial Barrier Integrity in Rat Experimental Colitis and Exerts Antimicrobial and Antiadhesive Activities In Vitro. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7697851. [PMID: 33299531 PMCID: PMC7707999 DOI: 10.1155/2020/7697851] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/18/2020] [Accepted: 11/01/2020] [Indexed: 12/15/2022]
Abstract
Background and Aims Inflammatory bowel disease pharmacotherapy, despite substantial progress, is still not satisfactory for both patients and clinicians. In view of the chronic and relapsing disease course and not always effective treatment with adverse effects, attempts to search for new, more efficient, and safer substances are essential and reasonable. This study was designed to elucidate the impact of cornelian cherry iridoid-polyphenolic extract (CE) and loganic acid (LA) on adherent-invasive E. coli growth and adhesion in vitro and to assess the effect of pretreatment with CE or LA on the course of intestinal inflammation in rat experimental colitis compared with sulfasalazine. Methods Antibacterial and antiadhesive activities of CE and LA were assessed using microdilution, Int407 cell adherence, and yeast agglutination assays. The colitis model was induced by 2,4,6-trinitrobenzenesulfonic acid. Studied substances were administered intragastrically for 16 days prior to colitis induction. Body weight loss; colon index; histological injuries; IL-23, IL-17, TNF-α, and chemerin levels; and STAT3, Muc2, and TFF3 mRNA expression were evaluated. Results Only CE exerted antimicrobial and antiadhesive activities in vitro and alleviated colonic symptoms. CE coadministrated with sulfasalazine was more effective than single compounds in reversing increased concentrations of TNF-α, IL-17, and chemerin and decreased Muc2 mRNA expression. Conclusions CE exerted a protective effect against experimental colitis via impaired mucosal epithelial barrier restoration and intestinal inflammatory response attenuation and given concomitantly with sulfasalazine counteracted colitis in a more effective way than sulfasalazine alone, which indicates their synergistic interaction. The beneficial effect of CE may also be due to its bacteriostatic and antiadhesive activities.
Collapse
|
30
|
Yang H, Mirsepasi-Lauridsen HC, Struve C, Allaire JM, Sivignon A, Vogl W, Bosman ES, Ma C, Fotovati A, Reid GS, Li X, Petersen AM, Gouin SG, Barnich N, Jacobson K, Yu HB, Krogfelt KA, Vallance BA. Ulcerative Colitis-associated E. coli pathobionts potentiate colitis in susceptible hosts. Gut Microbes 2020; 12:1847976. [PMID: 33258388 PMCID: PMC7781664 DOI: 10.1080/19490976.2020.1847976] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory condition linked to intestinal microbial dysbiosis, including the expansion of E. coli strains related to extra-intestinal pathogenic E. coli. These "pathobionts" exhibit pathogenic properties, but their potential to promote UC is unclear due to the lack of relevant animal models. Here, we established a mouse model using a representative UC pathobiont strain (p19A), and mice lacking single immunoglobulin and toll-interleukin 1 receptor domain (SIGIRR), a deficiency increasing susceptibility to gut infections. Strain p19A was found to adhere to the cecal mucosa of Sigirr -/- mice, causing modest inflammation. Moreover, it dramatically worsened dextran sodium sulfate-induced colitis. This potentiation was attenuated using a p19A strain lacking α-hemolysin genes, or when we targeted pathobiont adherence using a p19A strain lacking the adhesin FimH, or following treatment with FimH antagonists. Thus, UC pathobionts adhere to the intestinal mucosa, and worsen the course of colitis in susceptible hosts.
Collapse
Affiliation(s)
- Hyungjun Yang
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada,CONTACT Hong Bing Yu Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada; Karen
| | - Hengameh Chloé Mirsepasi-Lauridsen
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Carsten Struve
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark
| | - Joannie M. Allaire
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Adeline Sivignon
- Université Clermont Auvergne, Laboratoire Microbes Intestin Inflammation Et Susceptibilité De l’Hôte (M2ish), Inserm U1071, M2iSH, F-63000, Clermont-Ferrand, France,INRA, Unité Sous Contrat 2018, Clermont-Ferrand, France
| | - Wayne Vogl
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Else S. Bosman
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Caixia Ma
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Abbas Fotovati
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Gregor S. Reid
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA
| | - Andreas Munk Petersen
- Department of Gastroenterology, Copenhagen University Hospital, Hvidovre, Denmark,Department of Clinical Microbiology, Copenhagen University Hospital, Hvidovre, Denmark
| | - Sébastien G. Gouin
- Université De Nantes, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), UMR CNRS 6230, UFR Des Sciences Et Des Techniques, Nantes, France
| | - Nicolas Barnich
- Université Clermont Auvergne, Laboratoire Microbes Intestin Inflammation Et Susceptibilité De l’Hôte (M2ish), Inserm U1071, M2iSH, F-63000, Clermont-Ferrand, France,INRA, Unité Sous Contrat 2018, Clermont-Ferrand, France
| | - Kevan Jacobson
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Hong Bing Yu
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada,CONTACT Hong Bing Yu Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada; Karen
| | - Karen Angeliki Krogfelt
- Department of Bacteria, Parasites and Fungi, Statens Serum Institute, Copenhagen, Denmark,Angeliki Krogfelt
| | - Bruce A. Vallance
- Department of Pediatrics, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada,Lead Contact,Bruce A. Vallance
| |
Collapse
|
31
|
Mancini NL, Rajeev S, Jayme TS, Wang A, Keita ÅV, Workentine ML, Hamed S, Söderholm JD, Lopes F, Shutt TE, Shearer J, McKay DM. Crohn's Disease Pathobiont Adherent-Invasive E coli Disrupts Epithelial Mitochondrial Networks With Implications for Gut Permeability. Cell Mol Gastroenterol Hepatol 2020; 11:551-571. [PMID: 32992049 PMCID: PMC7797367 DOI: 10.1016/j.jcmgh.2020.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function. METHODS Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed. RESULTS E coli-LF82 significantly affected epithelial expression of ∼8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation. CONCLUSIONS Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).
Collapse
Affiliation(s)
- Nicole L Mancini
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Sruthi Rajeev
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Timothy S Jayme
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Arthur Wang
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Åsa V Keita
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | | | - Samira Hamed
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Johan D Söderholm
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden; Department of Surgery, County Council of Östergötland, Linköping, Sweden
| | - Fernando Lopes
- Institute of Parasitology, Faculty of Agriculture and Environmental Sciences, Department of Microbiology and Immunology, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Timothy E Shutt
- Department of Medical Genetics, Alberta Children's Hospital Research Institute, University of Calgary, Alberta, Canada
| | - Jane Shearer
- Department of Biochemistry and Molecular Biology, Faculty of Kinesiology, University of Calgary, Alberta, Canada
| | - Derek M McKay
- Gastrointestinal Research Group and Inflammation Research Network, Department of Physiology and Pharmacology, Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
32
|
Ellermann M, Sperandio V. Bacterial signaling as an antimicrobial target. Curr Opin Microbiol 2020; 57:78-86. [PMID: 32916624 DOI: 10.1016/j.mib.2020.08.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/12/2022]
Abstract
Antibiotics profoundly reduced worldwide mortality. However, the emergence of resistance to the growth inhibiting effects of these drugs occurred. New approaches to treat infectious disease that reduce the likelihood for resistance are needed. In bacterial pathogens, complex signaling networks regulate virulence. Anti-virulence therapies aim to disrupt these networks to attenuate virulence without affecting growth. Quorum-sensing, a cell-to-cell communication system, represents an attractive anti-virulence target because it often activates virulence. The challenge is to identify druggable targets that inhibit virulence, while also minimizing the likelihood of mutations promoting resistance. Moreover, given the ubiquity of quorum-sensing systems in commensals, any potential effects of anti-virulence therapies on microbiome function should also be considered. Here we highlight the efficacy and drawbacks of anti-virulence approaches.
Collapse
Affiliation(s)
- Melissa Ellermann
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vanessa Sperandio
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
33
|
Chervy M, Barnich N, Denizot J. Adherent-Invasive E. coli: Update on the Lifestyle of a Troublemaker in Crohn's Disease. Int J Mol Sci 2020; 21:E3734. [PMID: 32466328 PMCID: PMC7279240 DOI: 10.3390/ijms21103734] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 05/22/2020] [Accepted: 05/24/2020] [Indexed: 12/12/2022] Open
Abstract
Besides genetic polymorphisms and environmental factors, the intestinal microbiota is an important factor in the etiology of Crohn's disease (CD). Among microbiota alterations, a particular pathotype of Escherichia coli involved in the pathogenesis of CD abnormally colonizes the intestinal mucosa of patients: the adherent-invasive Escherichia coli (AIEC) pathobiont bacteria, which have the abilities to adhere to and to invade intestinal epithelial cells (IECs), as well as to survive and replicate within macrophages. AIEC have been the subject of many studies in recent years to unveil some genes linked to AIEC virulence and to understand the impact of AIEC infection on the gut and consequently their involvement in CD. In this review, we describe the lifestyle of AIEC bacteria within the intestine, from the interaction with intestinal epithelial and immune cells with an emphasis on environmental and genetic factors favoring their implantation, to their lifestyle in the intestinal lumen. Finally, we discuss AIEC-targeting strategies such as the use of FimH antagonists, bacteriophages, or antibiotics, which could constitute therapeutic options to prevent and limit AIEC colonization in CD patients.
Collapse
Affiliation(s)
- Mélissa Chervy
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| | - Jérémy Denizot
- Université Clermont Auvergne, Inserm U1071, USC-INRAE 2018, Microbes, Intestin, Inflammation et Susceptibilité de l’Hôte (M2iSH), 63001 Clermont-Ferrand, France; (M.C.); (N.B.)
- Institut Universitaire de Technologie, Génie Biologique, 63172 Aubière, France
| |
Collapse
|
34
|
Perna A, Hay E, Contieri M, De Luca A, Guerra G, Lucariello A. Adherent-invasive Escherichia coli (AIEC): Cause or consequence of inflammation, dysbiosis, and rupture of cellular joints in patients with IBD? J Cell Physiol 2020; 235:5041-5049. [PMID: 31898324 DOI: 10.1002/jcp.29430] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
There are many factors contributing to the development of gastrointestinal diseases, grouped into genetic, environmental, and lifestyle factors. In recent years attention has fallen on pathogens; in particular, Bacteroides fragilis, Fusobacterium nucleatum, Escherichia coli (E. coli) and Helicobacter pylori have been studied. Several points remain to be clarified, and above all, as regards the adherent-invasive E. coli strains of E. coli, one wonders if they are a cause or a consequence of the disease. In this review, we have tried to clarify some points by examining a series of recent publications regarding the involvement of the bacterium in the pathology, even if other studies are necessary.
Collapse
Affiliation(s)
- Angelica Perna
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Eleonora Hay
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marcella Contieri
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, Section of Human Anatomy, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Angela Lucariello
- Department of Sport Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| |
Collapse
|
35
|
The role of major virulence factors and pathogenicity of adherent-invasive Escherichia coli in patients with Crohn's disease. GASTROENTEROLOGY REVIEW 2020; 15:279-288. [PMID: 33777266 PMCID: PMC7988836 DOI: 10.5114/pg.2020.93235] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is a term that describes Crohn's disease (CD) and ulcerative colitis (UC), and these two conditions are characterised by chronic inflammation of the gastrointestinal tract. Dysbiosis of intestinal microbiota has been consistently linked to patients with IBD. In the last two decades, the progressive implication of adherent-invasive Escherichia coli (AIEC) pathogenesis in patients with CD has been increasing. Here we discuss recent findings that indicate the role and mechanisms of AIEC in IBD. We also highlight AIEC virulence factor genes and mechanisms that suggest an important role in the severity of inflammation in CD patients. Finally, we emphasise data on the prevalence of AIEC in CD patients.
Collapse
|
36
|
Feng Y, Liu L, Lin J, Ma K, Long H, Wei L, Xie Y, McNally A, Zong Z. Key evolutionary events in the emergence of a globally disseminated, carbapenem resistant clone in the Escherichia coli ST410 lineage. Commun Biol 2019; 2:322. [PMID: 31482141 PMCID: PMC6715731 DOI: 10.1038/s42003-019-0569-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/05/2019] [Indexed: 02/05/2023] Open
Abstract
There is an urgent need to understand the global epidemiological landscape of carbapenem-resistant Escherichia coli (CREC). Here we provide combined genomic and phenotypic characterization of the emergence of a CREC clone from the ST410 lineage. We show that the clone expands with a single plasmid, within which there is frequent switching of the carbapenemase gene type between blaNDM and blaOXA-181 with no impact on plasmid stability or fitness. A search for clone-specific traits identified unique alleles of genes involved in adhesion and iron acquisition, which have been imported via recombination. These recombination-derived allelic switches had no impact on virulence in a simple infection model, but decreased efficiency in binding to abiotic surfaces and greatly enhanced fitness in iron limited conditions. Together our data show a footprint for evolution of a CREC clone, whereby recombination drives new alleles into the clone which provide a competitive advantage in colonizing mammalian hosts.
Collapse
Affiliation(s)
- Yu Feng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Lu Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Ji Lin
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Ke Ma
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Haiyan Long
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
| | - Li Wei
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Xie
- Laboratory of Clinical Microbiology, Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Alan McNally
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Zhiyong Zong
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Division of Infectious Diseases, State Key Laboratory of Biotherapy, Chengdu, China
- Center for Pathogen Research, West China Hospital, Sichuan University, Chengdu, China
- Department of Infection Control, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
37
|
Camprubí-Font C, Ruiz Del Castillo B, Barrabés S, Martínez-Martínez L, Martinez-Medina M. Amino Acid Substitutions and Differential Gene Expression of Outer Membrane Proteins in Adherent-Invasive Escherichia coli. Front Microbiol 2019; 10:1707. [PMID: 31447798 PMCID: PMC6691688 DOI: 10.3389/fmicb.2019.01707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023] Open
Abstract
Variations in the sequence and/or the expression of outer membrane proteins (OMPs) may modulate bacterial virulence. OmpA and OmpC have been involved in the interaction of adherent-invasive Escherichia coli (AIEC) strain LF82 with intestinal epithelial cells (IECs). Scarce data exist about OMPs sequence variants in a collection of AIEC strains, and no study of OMPs expression during infection exists. We aimed to determine whether particular mutations or differential expression of OMPs are associated with AIEC virulence. The ompA, ompC, and ompF genes in 14 AIEC and 30 non-AIEC strains were sequenced by Sanger method, and the protein expression profile was analyzed by urea-SDS-PAGE. Gene expression was determined during in vitro bacterial infection of intestine-407 cells by RT-qPCR. The distribution of amino acid substitutions in OmpA-A200V, OmpC-S89N, V220I, and W231D associated with pathotype and specific changes (OmpA-A200V, OmpC-V220I, D232A, OmpF-E51V, and M60K) correlated with adhesion and/or invasion indices but no particular variants were found specific of AIEC. OMPs protein levels did not differ according to pathotype when growing in Mueller-Hinton broth. Interestingly, higher OMPs gene expression levels were reported in non-AIEC growing in association with cells compared with those non-AIEC strains growing in the supernatants of infected cultures (p < 0.028), whereas in AIEC strains ompA expression was the only increased when growing in association with cells (p = 0.032), but they did not significantly alter ompC and ompF expression under this condition (p > 0.146). Despite no particular OMPs sequence variants have been found as a common and distinctive trait in AIEC, some mutations could facilitate a better interaction with the host. Moreover, the different behavior between pathotypes regarding OMPs gene expression at different stages of infection could be related with the virulence of the strains.
Collapse
Affiliation(s)
- Carla Camprubí-Font
- Laboratory of Molecular Microbiology, Department of Biology, Universitat de Girona, Girona, Spain
| | - Belén Ruiz Del Castillo
- Service of Microbiology, University Hospital Marques de Valdecilla-Valdecilla Biomedical Research Institute (IDIVAL), Santander, Spain
| | - Silvia Barrabés
- Biochemistry and Molecular Biology Unit, Department of Biology, Universitat de Girona, Girona, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, University Hospital Reina Sofia, Córdoba, Spain.,Department of Microbiology, University of Córdoba, Córdoba, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
| | | |
Collapse
|
38
|
Zhu W, Miyata N, Winter MG, Arenales A, Hughes ER, Spiga L, Kim J, Sifuentes-Dominguez L, Starokadomskyy P, Gopal P, Byndloss MX, Santos RL, Burstein E, Winter SE. Editing of the gut microbiota reduces carcinogenesis in mouse models of colitis-associated colorectal cancer. J Exp Med 2019; 216:2378-2393. [PMID: 31358565 PMCID: PMC6781011 DOI: 10.1084/jem.20181939] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 05/28/2019] [Accepted: 07/09/2019] [Indexed: 12/13/2022] Open
Abstract
Enterobacteriaceae family members such as E. coli exacerbate development of intestinal malignancy. Zhu et al. report that targeting the metabolism of protumoral Enterobacteriaceae by tungstate prevents tumor development in murine models of colitis-associated colorectal cancer. Chronic inflammation and gut microbiota dysbiosis, in particular the bloom of genotoxin-producing E. coli strains, are risk factors for the development of colorectal cancer. Here, we sought to determine whether precision editing of gut microbiota metabolism and composition could decrease the risk for tumor development in mouse models of colitis-associated colorectal cancer (CAC). Expansion of experimentally introduced E. coli strains in the azoxymethane/dextran sulfate sodium colitis model was driven by molybdoenzyme-dependent metabolic pathways. Oral administration of sodium tungstate inhibited E. coli molybdoenzymes and selectively decreased gut colonization with genotoxin-producing E. coli and other Enterobacteriaceae. Restricting the bloom of Enterobacteriaceae decreased intestinal inflammation and reduced the incidence of colonic tumors in two models of CAC, the azoxymethane/dextran sulfate sodium colitis model and azoxymethane-treated, Il10-deficient mice. We conclude that metabolic targeting of protumoral Enterobacteriaceae during chronic inflammation is a suitable strategy to prevent the development of malignancies arising from gut microbiota dysbiosis.
Collapse
Affiliation(s)
- Wenhan Zhu
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Naoteru Miyata
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX.,Digestive Disease Center, International University of Health and Welfare, Mita Hospital, Japan
| | - Maria G Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Alexandre Arenales
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Elizabeth R Hughes
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Luisella Spiga
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Jiwoong Kim
- Department of Clinical Science, Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX
| | | | - Petro Starokadomskyy
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Purva Gopal
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Mariana X Byndloss
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN
| | - Renato L Santos
- Departamento de Clinica e Cirurgia Veterinarias, Escola de Veterinaria, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ezra Burstein
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX .,Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sebastian E Winter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
39
|
Dalmasso G, Nguyen HTT, Faïs T, Massier S, Barnich N, Delmas J, Bonnet R. Crohn's Disease-Associated Adherent-Invasive Escherichia coli Manipulate Host Autophagy by Impairing SUMOylation. Cells 2019; 8:cells8010035. [PMID: 30634511 PMCID: PMC6357120 DOI: 10.3390/cells8010035] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 12/30/2018] [Accepted: 01/02/2019] [Indexed: 12/19/2022] Open
Abstract
The intestinal mucosa of Crohn’s disease (CD) patients is abnormally colonized with adherent-invasive Escherichia coli (AIEC) that are able to adhere to and to invade intestinal epithelial cells (IECs), to survive in macrophages, and to induce a pro-inflammatory response. AIEC persist in the intestine, and induce inflammation in CEABAC10 transgenic mice expressing human CAECAM6, the receptor for AIEC. SUMOylation is a eukaryotic-reversible post-translational modification, in which SUMO, an ubiquitin-like polypeptide, is covalently linked to target proteins. Here, we investigated the role of SUMOylation in host responses to AIEC infection. We found that infection with the AIEC LF82 reference strain markedly decreased the levels of SUMO-conjugated proteins in human intestinal epithelial T84 cells. This was also observed in IECs from LF82-infected CEABAC10 transgenic mice. LF82-induced deSUMOylation in IECs was due in part to increased level of microRNA (miR)-18, which targets PIAS3 mRNA encoding a protein involved in SUMOylation. Over-expression of SUMOs in T84 cells induced autophagy, leading to a significant decrease in the number of intracellular LF82. Consistently, a decreased expression of UBC9, a protein necessary for SUMOylation, was accompanied with a decrease of LF82-induced autophagy, increasing bacterial intracellular proliferation and inflammation. Finally, the inhibition of miR-18 significantly decreased the number of intracellular LF82. In conclusion, our results suggest that AIEC inhibits the autophagy response to replicate intracellularly by manipulating host SUMOylation.
Collapse
Affiliation(s)
- Guillaume Dalmasso
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Hang T T Nguyen
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Tiphanie Faïs
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| | - Sébastien Massier
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Nicolas Barnich
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
| | - Julien Delmas
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| | - Richard Bonnet
- UMR 1071 Inserm, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- INRA, USC 2018, University of Clermont Auvergne, 28 place Henri Dunant, Clermont-Ferrand 63000, France.
- Centre Hospitalier Universitaire, 58 place Montalembert, Clermont-Ferrand 63000, France.
| |
Collapse
|
40
|
Yu LCH. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J Biomed Sci 2018; 25:79. [PMID: 30413188 PMCID: PMC6234774 DOI: 10.1186/s12929-018-0483-8] [Citation(s) in RCA: 271] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 10/29/2018] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease which arises as a result of the interaction of genetic, environmental, barrier and microbial factors leading to chronic inflammation in the intestine. Patients with IBD had a higher risk of developing colorectal carcinoma (CRC), of which the subset was classified as colitis-associated cancers. Genetic polymorphism of innate immune receptors had long been considered a major risk factor for IBD, and the mutations were also recently observed in CRC. Altered microbial composition (termed microbiota dybiosis) and dysfunctional gut barrier manifested by epithelial hyperpermeability and high amount of mucosa-associated bacteria were observed in IBD and CRC patients. The findings suggested that aberrant immune responses to penetrating commensal microbes may play key roles in fueling disease progression. Accumulative evidence demonstrated that mucosa-associated bacteria harbored colitogenic and protumoral properties in experimental models, supporting an active role of bacteria as pathobionts (commensal-derived opportunistic pathogens). Nevertheless, the host factors involved in bacterial dysbiosis and conversion mechanisms from lumen-dwelling commensals to mucosal pathobionts remain unclear. Based on the observation of gut leakiness in patients and the evidence of epithelial hyperpermeability prior to the onset of mucosal histopathology in colitic animals, it was postulated that the epithelial barrier dysfunction associated with mucosal enrichment of specific bacterial strains may predispose the shift to disease-associated microbiota. The speculation of leaky gut as an initiating factor for microbiota dysbiosis that eventually led to pathological consequences was proposed as the "common ground hypothesis", which will be highlighted in this review. Overall, the understanding of the core interplay between gut microbiota and epithelial barriers at early subclinical phases will shed light to novel therapeutic strategies to manage chronic inflammatory disorders and colitis-associated cancers.
Collapse
Affiliation(s)
- Linda Chia-Hui Yu
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Suite 1020, #1 Jen-Ai Rd. Sec. 1, Taipei, 100, Taiwan, Republic of China.
| |
Collapse
|
41
|
Migliore F, Macchi R, Landini P, Paroni M. Phagocytosis and Epithelial Cell Invasion by Crohn's Disease-Associated Adherent-Invasive Escherichia coli Are Inhibited by the Anti-inflammatory Drug 6-Mercaptopurine. Front Microbiol 2018; 9:964. [PMID: 29867868 PMCID: PMC5961443 DOI: 10.3389/fmicb.2018.00964] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/24/2018] [Indexed: 12/22/2022] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) strains are overrepresented in the dysbiotic microbiota of Crohn’s disease (CD) patients, and contribute to the onset of the chronic inflammation typical of the disease. However, the effects of anti-inflammatory drugs used for CD treatment on AIEC virulence have not yet been investigated. In this report, we show that exposure of AIEC LF82 strain to amino-6-mercaptopurine (6-MP) riboside, one of the most widely used anti-inflammatory drugs in CD, impairs its ability to adhere to, and consequently to invade, human epithelial cells. Notably, phagocytosis of LF82 treated with 6-MP by human macrophages is also reduced, suggesting that 6-MP affects AIEC cell surface determinants involved both in interaction with epithelial cells and in uptake by macrophages. Since a main target of 6-MP in bacterial cells is the inhibition of the important signal molecule c-di-GMP, we also tested whether perturbations in cAMP, another major signaling pathway in E. coli, might have similar effects on interactions with human cells. To this aim, we grew LF82 in the presence of glucose, which leads to inhibition of cAMP synthesis. Growth in glucose-supplemented medium resulted in a reduction in AIEC adhesion to epithelial cells and uptake by macrophages. Consistent with these results, both 6-MP and glucose can affect expression of cell adhesion-related genes, such as the csg genes, encoding thin aggregative fimbriae (curli). In addition, glucose strongly inhibits expression of the fim operon, encoding type 1 pili, a known AIEC determinant for adhesion to human cells. To further investigate whether 6-MP can indeed inhibit c-di-GMP signaling in AIEC, we performed biofilm and motility assays and determination of extracellular polysaccharides. 6-MP clearly affected biofilm formation and cellulose production, but also, unexpectedly, reduced cell motility, itself an important virulence factor for AIEC. Our results provide strong evidence that 6-MP can affect AIEC-host cell interaction by acting on the bacterial cell, thus strengthening the hypothesis that mercaptopurines might promote CD remission also by affecting gut microbiota composition and/or physiology, and suggesting that novel drugs targeting bacterial virulence and signaling might be effective in preventing chronic inflammation in CD.
Collapse
Affiliation(s)
- Federica Migliore
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Raffaella Macchi
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Paolo Landini
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Moira Paroni
- Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| |
Collapse
|
42
|
Palmela C, Chevarin C, Xu Z, Torres J, Sevrin G, Hirten R, Barnich N, Ng SC, Colombel JF. Adherent-invasive Escherichia coli in inflammatory bowel disease. Gut 2018; 67:574-587. [PMID: 29141957 DOI: 10.1136/gutjnl-2017-314903] [Citation(s) in RCA: 352] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 09/20/2017] [Accepted: 10/28/2017] [Indexed: 02/06/2023]
Abstract
Intestinal microbiome dysbiosis has been consistently described in patients with IBD. In the last decades, Escherichia coli, and the adherent-invasive E coli (AIEC) pathotype in particular, has been implicated in the pathogenesis of IBD. Since the discovery of AIEC, two decades ago, progress has been made in unravelling these bacteria characteristics and its interaction with the gut immune system. The mechanisms of adhesion of AIEC to intestinal epithelial cells (via FimH and cell adhesion molecule 6) and its ability to escape autophagy when inside macrophages are reviewed here. We also explore the existing data on the prevalence of AIEC in patients with Crohn's disease and UC, and the association between the presence of AIEC and disease location, activity and postoperative recurrence. Finally, we highlight potential therapeutic strategies targeting AIEC colonisation of gut mucosa, including the use of phage therapy, bacteriocins and antiadhesive molecules. These strategies may open new avenues for the prevention and treatment of IBD in the future.
Collapse
Affiliation(s)
- Carolina Palmela
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Caroline Chevarin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Zhilu Xu
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Joana Torres
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA.,Division of Gastroenterology, Hospital Beatriz Ângelo, Loures, Portugal
| | - Gwladys Sevrin
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Robert Hirten
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Nicolas Barnich
- Université Clermont Auvergne, Inserm U1071, USC-INRA 2018, M2iSH, CRNH Auvergne, F-63000 Clermont-Ferrand, France
| | - Siew C Ng
- Department of Medicine and Therapeutics, Institute of Digestive Diseases, LKS Institute of Health Science, State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
| | - Jean-Frederic Colombel
- Division of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| |
Collapse
|
43
|
Russell CW, Fleming BA, Jost CA, Tran A, Stenquist AT, Wambaugh MA, Bronner MP, Mulvey MA. Context-Dependent Requirements for FimH and Other Canonical Virulence Factors in Gut Colonization by Extraintestinal Pathogenic Escherichia coli. Infect Immun 2018; 86:e00746-17. [PMID: 29311232 PMCID: PMC5820936 DOI: 10.1128/iai.00746-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/17/2017] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) acts as a commensal within the mammalian gut but can induce pathology upon dissemination to other host environments such as the urinary tract and bloodstream. ExPEC genomes are likely shaped by evolutionary forces encountered within the gut, where the bacteria spend much of their time, provoking the question of how their extraintestinal virulence traits arose. The principle of coincidental evolution, in which a gene that evolved in one niche happens to be advantageous in another, has been used to argue that ExPEC virulence factors originated in response to selective pressures within the gut ecosystem. As a test of this hypothesis, the fitness of ExPEC mutants lacking canonical virulence factors was assessed within the intact murine gut in the absence of antibiotic treatment. We found that most of the tested factors, including cytotoxic necrotizing factor type 1 (CNF1), Usp, colibactin, flagella, and plasmid pUTI89, were dispensable for gut colonization. The deletion of genes encoding the adhesin PapG or the toxin HlyA had transient effects but did not interfere with longer-term persistence. In contrast, a mutant missing the type 1 pilus-associated adhesin FimH displayed somewhat reduced persistence within the gut. However, this phenotype varied dependent on the presence of specific competing strains and was partially attributable to aberrant flagellin expression in the absence of fimH These data indicate that FimH and other key ExPEC-associated factors are not strictly required for gut colonization, suggesting that the development of extraintestinal virulence traits is not driven solely by selective pressures within the gut.
Collapse
Affiliation(s)
- Colin W Russell
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Brittany A Fleming
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Courtney A Jost
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alexander Tran
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Alan T Stenquist
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Morgan A Wambaugh
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| | - Mary P Bronner
- Department of Pathology, ARUP Laboratories, University of Utah, Salt Lake City, Utah, USA
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | - Matthew A Mulvey
- University of Utah School of Medicine, Department of Pathology, Division of Microbiology and Immunology, Salt Lake City, Utah, USA
| |
Collapse
|
44
|
Aygun H, Karamese M, Ozic C, Uyar F. The effects of mucosal media on some pathogenic traits of Crohn's disease-associated Escherichia coli LF82. Future Microbiol 2018; 13:141-149. [DOI: 10.2217/fmb-2017-0133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Aim: Adherent-invasive Escherichia coli (AIEC) pathovar has been identified in intestinal mucosa of patients with Crohn's disease. Our aim was to compare the impact of sterile mucosal media (Muc-M) originated from different parts of the intestine on some pathogenic traits of AIEC LF82 strain. Materials & methods: Muc-M composed of certain rates of cell culture medium or M63 minimal medium and mucosal contents obtained from different part of intestine were designed for cell-infection experiments and biofilm-formation assays. Results: The results showed that Muc-M reduced usually pathogenic properties of AIEC LF82. However, LF82 adhesion, invasion and specific biofilm formations were markedly higher in Muc-MCR than those in Muc-MIR . Conclusion: In this context, the findings of present study could help the endeavors related to determining molecular targets for AIEC bacteria.
Collapse
Affiliation(s)
- Husamettin Aygun
- Department of Biology, Faculty of Science, Dicle University, Diyarbakir 21280, Turkey
| | - Murat Karamese
- Department of Medical Microbiology, Faculty of Medicine, Kafkas University, Kars, 36100, Turkey
| | - Cem Ozic
- Department of Bioengineering, Faculty of Engineering & Architecture, Kafkas University, Kars, 36100, Turkey
| | - Fikret Uyar
- Department of Biology, Faculty of Science, Dicle University, Diyarbakir 21280, Turkey
| |
Collapse
|
45
|
Zhang HJ, Xu B, Wang H, Xu B, Wang GD, Jiang MZ, Lei C, Ding ML, Yu PF, Nie YZ, Wu KC, Sha SM, Li MB. IL-17 is a protection effector against the adherent-invasive Escherichia coli in murine colitis. Mol Immunol 2018; 93:166-172. [PMID: 29195141 DOI: 10.1016/j.molimm.2017.11.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/16/2017] [Accepted: 11/20/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is caused by aberrant immune responses to the gut microbiota. Among the gut microbiota, adherent-invasive Escherichia Coli (AIEC) is thought to be the pathogen through invading the intestinal epithelial cells and causing inflammation. IL-17 secretion increase, induced by enhanced bacterial adhesion to the intestine epithelium, could on one hand protect the mucosa, but on the other hand, over amount of IL-17 initializes inflammation reactions that in turn damages the mucosa. The relationship between IL-17 and AIEC is still unclear. In this study, we tried to elucidate the function of IL-17 in AIEC-mediated colitis. Wild type (WT) and IL-17 knockout (IL-17 KO) mice were inoculated with AIEC strain E. coli LF82 and treated with dextran sodium sulphate (DSS). Histological examination of the colon was performed. Mucosa damage was assessed and scored. IL-22 and IL-17 in colon tissues were detected by ELISA, qPCR and immunohistochemistry methods. Transient AIEC colonization in IL-17 KO mice resulted in increased intestinal epithelial damage, systemic bacterial burden and mortality compared with WT controls. Moreover, IL-17 is required for the induction of IL-22 in the experimental animal models during AIEC strain E. coli LF82 colonization. These results indicate IL-17 plays a protective role in AIEC strain E. coli LF82 induced colitis by promoting IL-22 secretion.
Collapse
Affiliation(s)
- Hai-Jia Zhang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Bin Xu
- No. 174 Hospital of People's Liberation Army, Xiamen, Fujian Province, 361000, PR China
| | - Hu Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Bing Xu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Guo-Dong Wang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Ming-Zuo Jiang
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Chao Lei
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Mei-Ling Ding
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Peng-Fei Yu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Yong-Zhan Nie
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Kai-Chun Wu
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China
| | - Su-Mei Sha
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China.
| | - Meng-Bin Li
- State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, 127 Changle Western Road, Xi'an, Shaanxi Province, 710032, PR China.
| |
Collapse
|
46
|
Cole BK, Scott E, Ilikj M, Bard D, Akins DR, Dyer DW, Chavez-Bueno S. Route of infection alters virulence of neonatal septicemia Escherichia coli clinical isolates. PLoS One 2017; 12:e0189032. [PMID: 29236742 PMCID: PMC5728477 DOI: 10.1371/journal.pone.0189032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 09/05/2017] [Indexed: 12/03/2022] Open
Abstract
Escherichia coli is the leading cause of Gram-negative neonatal septicemia in the United States. Invasion and passage across the neonatal gut after ingestion of maternal E. coli strains produce bacteremia. In this study, we compared the virulence properties of the neonatal E. coli bacteremia clinical isolate SCB34 with the archetypal neonatal E. coli meningitis strain RS218. Whole-genome sequencing data was used to compare the protein coding sequences among these clinical isolates and 33 other representative E. coli strains. Oral inoculation of newborn animals with either strain produced septicemia, whereas intraperitoneal injection caused septicemia only in pups infected with RS218 but not in those injected with SCB34. In addition to being virulent only through the oral route, SCB34 demonstrated significantly greater invasion and transcytosis of polarized intestinal epithelial cells in vitro as compared to RS218. Protein coding sequences comparisons highlighted the presence of known virulence factors that are shared among several of these isolates, and revealed the existence of proteins exclusively encoded in SCB34, many of which remain uncharacterized. Our study demonstrates that oral acquisition is crucial for the virulence properties of the neonatal bacteremia clinical isolate SCB34. This characteristic, along with its enhanced ability to invade and transcytose intestinal epithelium are likely determined by the specific virulence factors that predominate in this strain.
Collapse
Affiliation(s)
- Bryan K. Cole
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Edgar Scott
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Marko Ilikj
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David Bard
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Darrin R. Akins
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - David W. Dyer
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Susana Chavez-Bueno
- Department of Pediatrics, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- * E-mail:
| |
Collapse
|
47
|
Type I fimbriae mediate in vitro adherence of porcine F18ac+ enterotoxigenic Escherichia coli (ETEC). ANN MICROBIOL 2017. [DOI: 10.1007/s13213-017-1305-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
48
|
Yang Y, Liao Y, Ma Y, Gong W, Zhu G. The role of major virulence factors of AIEC involved in inflammatory bowl disease—a mini-review. Appl Microbiol Biotechnol 2017; 101:7781-7787. [DOI: 10.1007/s00253-017-8507-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/30/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
|
49
|
Sivignon A, Bouckaert J, Bernard J, Gouin SG, Barnich N. The potential of FimH as a novel therapeutic target for the treatment of Crohn’s disease. Expert Opin Ther Targets 2017; 21:837-847. [DOI: 10.1080/14728222.2017.1363184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Adeline Sivignon
- M2iSH, UMR 1071 Inserm, INRA USC-2018, Institut Universitaire Technologique, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| | - Julie Bouckaert
- Univ. Lille, CNRS, UMR 8576 – UGSF – Unité de Glycobiologie Structurale et Fonctionnelle, 59000 Lille, France
| | - Julien Bernard
- Université de Lyon, Lyon, France ; INSA-Lyon, Ingénierie des Matériaux Polymères (IMP), Villeurbanne, France ; CNRS, UMR 5223, Ingénierie des Matériaux Polymères, Villeurbanne, France
- INSA-Lyon, IMP, Villeurbanne, France
- UMR 5223, Ingénierie des Matériaux Polymères, CNRS, Villeurbanne, France
| | - Sebastien G. Gouin
- CEISAM, Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation, UMR CNRS 6230, UFR des Sciences et des Techniques, LUNAM Université, Nantes Cedex 3, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, INRA USC-2018, Institut Universitaire Technologique, Université Clermont Auvergne, Clermont-Ferrand 63001, France
| |
Collapse
|
50
|
Prevalence of Adherent-Invasive Escherichia coli with fimH Gene Isolated from Iranian Patients with Ulcerative Colitis. Jundishapur J Microbiol 2017. [DOI: 10.5812/jjm.13858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|