1
|
Xu J, Zhao X, Zhong Y, Qu T, Sun B, Zhang H, Hou C, Zhang Z, Tang X, Wang Y. Acclimation of intertidal macroalgae Ulva prolifera to UVB radiation: the important role of alternative oxidase. BMC PLANT BIOLOGY 2024; 24:143. [PMID: 38413873 PMCID: PMC10900725 DOI: 10.1186/s12870-024-04762-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Solar radiation is primarily composed of ultraviolet radiation (UVR, 200 - 400 nm) and photosynthetically active radiation (PAR, 400 - 700 nm). Ultraviolet-B (UVB) radiation accounts for only a small proportion of sunlight, and it is the primary cause of plant photodamage. The use of chlorofluorocarbons (CFCs) as refrigerants caused serious ozone depletion in the 1980s, and this had led to an increase in UVB. Although CFC emissions have significantly decreased in recent years, UVB radiation still remains at a high intensity. UVB radiation increase is an important factor that influences plant physiological processes. Ulva prolifera, a type of macroalga found in the intertidal zone, is intermittently exposed to UVB. Alternative oxidase (AOX) plays an important role in plants under stresses. This research examines the changes in AOX activity and the relationships among AOX, photosynthesis, and reactive oxygen species (ROS) homeostasis in U. prolifera under changes in UVB and photosynthetically active radiation (PAR). RESULTS UVB was the main component of solar radiation impacting the typical intertidal green macroalgae U. prolifera. AOX was found to be important during the process of photosynthesis optimization of U. prolifera due to a synergistic effect with non-photochemical quenching (NPQ) under UVB radiation. AOX and glycolate oxidase (GO) worked together to achieve NADPH homeostasis to achieve photosynthesis optimization under changes in PAR + UVB. The synergism of AOX with superoxide dismutase (SOD) and catalase (CAT) was important during the process of ROS homeostasis under PAR + UVB. CONCLUSIONS AOX plays an important role in the process of photosynthesis optimization and ROS homeostasis in U. prolifera under UVB radiation. This study provides further insights into the response of intertidal macroalgae to solar light changes.
Collapse
Grants
- No. LSKJ202203605 Laoshan Laboratory
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. 41906120, 42176204, 41976132, and 41706121 National Natural Science Foundation of China
- Nos. U1806213 and U1606404 NSFC-Shandong Joint Fund
- Nos. U1806213 and U1606404 NSFC-Shandong Joint Fund
Collapse
Affiliation(s)
- Jinhui Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xinyu Zhao
- Laoshan Laboratory, 1 Wenhai Road, Qingdao, 266237, China.
| | - Yi Zhong
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Tongfei Qu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Baixue Sun
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Huanxin Zhang
- College of Geography and Environment, Shandong Normal University, 1 Daxue Road, Jinan, 250000, China
| | - Chengzong Hou
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Zhipeng Zhang
- Tianjin Research Institute for Water Transport Engineering, Ministry of Transport, Tianjin, 300456, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao, 266237, China
| | - Ying Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, 1 Wenhai Road, Qingdao, 266237, China.
| |
Collapse
|
2
|
Ramachandran P, Pandey NK, Yadav RM, Suresh P, Kumar A, Subramanyam R. Photosynthetic efficiency and transcriptome analysis of Dunaliella salina under hypersaline: a retrograde signaling mechanism in the chloroplast. FRONTIERS IN PLANT SCIENCE 2023; 14:1192258. [PMID: 37416885 PMCID: PMC10322210 DOI: 10.3389/fpls.2023.1192258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/16/2023] [Indexed: 07/08/2023]
Abstract
Understanding the molecular mechanisms of environmental salinity stress tolerance and acclimation strategies by photosynthetic organisms facilitates accelerating the genetic improvement of tolerant economically important crops. In this study, we have chosen the marine algae Dunaliella (D.) salina, a high-potential and unique organism that shows superior tolerance against abiotic stresses, especially hypersaline conditions. We have grown the cells in three different salt concentrations 1.5M NaCl (control), 2M NaCl, and 3M NaCl (hypersaline). Fast chlorophyll fluorescence analysis showed increased initial fluorescence (Fo) and decreased photosynthetic efficiency, indicating hampered photosystem II utilization capacity under hypersaline conditions. Also, the reactive oxygen species (ROS) localization studies and quantification revealed elevated accumulation of ROS was observed in the chloroplast in the 3M condition. Pigment analysis shows a deficit in chlorophyll content and increased carotenoid accumulation, especially lutein and zeaxanthin content. This study majorly explored the chloroplast transcripts of the D. salina cell as it is the major environmental sensor. Even though most of the photosystem transcripts showed moderate upregulation in hypersaline conditions in the transcriptome study, the western blot analysis showed degradation of the core as well as antenna proteins of both the photosystems. Among the upregulated chloroplast transcripts, chloroplast Tidi, flavodoxin IsiB, and carotenoid biosynthesis-related protein transcripts strongly proposed photosynthetic apparatus remodeling. Also, the transcriptomic study revealed the upregulation of the tetrapyrrole biosynthesis pathway (TPB) and identified the presence of a negative regulator of this pathway, called the s-FLP splicing variant. These observations point towards the accumulation of TPB pathway intermediates PROTO-IX, Mg-PROTO-IX, and P-Chlide, those earlier reported as retrograde signaling molecules. Our comparative transcriptomic approach along with biophysical and biochemical studies in D. salina grown under control (1.5 M NaCl) and hypersaline (3M NaCl) conditions, unveil an efficient retrograde signaling mechanism mediated remodeling of photosynthetic apparatus.
Collapse
Affiliation(s)
- Pavithra Ramachandran
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Naveen Kumar Pandey
- Novelegene Technologies Pvt. Ltd, Genomics division, Hyderabad, Telangana, India
| | - Ranay Mohan Yadav
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Praveena Suresh
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Aman Kumar
- Novelegene Technologies Pvt. Ltd, Genomics division, Hyderabad, Telangana, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
3
|
Zhang W, He L, Pan J, Zhou Y, Ge R, Li S, Shi Y, Chen X, Chu Y. Response of Juvenile Saccharina japonica to the Combined Stressors of Elevated pCO 2 and Excess Copper. PLANTS (BASEL, SWITZERLAND) 2023; 12:1140. [PMID: 36903998 PMCID: PMC10005686 DOI: 10.3390/plants12051140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Coastal macroalgae may be subjected to global and local environmental stressors, such as ocean acidification and heavy-metal pollution. We investigated the growth, photosynthetic characteristics, and biochemical compositions of juvenile sporophytes of Saccharina japonica cultivated at two pCO2 levels (400 and 1000 ppmv) and four copper concentrations (natural seawater, control; 0.2 μM, low level; 0.5 μM, medium level; and 1 μM, high level) to better understand how macroalgae respond to ongoing environmental changes. The results showed that the responses of juvenile S. japonica to copper concentrations depended on the pCO2 level. Under the 400 ppmv condition, medium and high copper concentrations significantly decreased the relative growth rate (RGR) and non-photochemical quenching (NPQ) but increased the relative electron transfer rate (rETR) and chlorophyll a (Chl a), chlorophyll c (Chl c), carotenoid (Car), and soluble carbohydrate contents. At 1000 ppmv, however, none of the parameters had significant differences between the different copper concentrations. Our data suggest that excess copper may inhibit the growth of juvenile sporophytes of S. japonica, but this negative effect could be alleviated by CO2-induced ocean acidification.
Collapse
Affiliation(s)
- Wenze Zhang
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Department of Aquaculture and Aquatic Sciences, Kunsan National University, Gunsan 54150, Republic of Korea
| | - Lianghua He
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiangqi Pan
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuhong Zhou
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruxiang Ge
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Sufang Li
- Laboratoire Génie des Procédés et Matériaux (LGPM), CentraleSupélec, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Yunyun Shi
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinhua Chen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yaoyao Chu
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
4
|
The Genome of the Marine Alga Ulva compressa (Chlorophyta) Reveals Protein-Coding Genes with Similarity to Plants and Green Microalgae, but Also to Animal, Bacterial, and Fungal Genes. Int J Mol Sci 2022; 23:ijms23137279. [PMID: 35806287 PMCID: PMC9266709 DOI: 10.3390/ijms23137279] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The genome of the marine alga Ulva compressa was assembled using long and short reads. The genome assembly was 80.8 Mb in size and encoded 19,207 protein-coding genes. Several genes encoding antioxidant enzymes and a few genes encoding enzymes that synthesize ascorbate and glutathione were identified, showing similarity to plant and bacterial enzymes. Additionally, several genes encoding signal transduction protein kinases, such as MAPKs, CDPKS, CBLPKs, and CaMKs, were also detected, showing similarity to plants, green microalgae, and bacterial proteins. Regulatory transcription factors, such as ethylene- and ABA-responsive factors, MYB, WRKY, and HSTF, were also present and showed similarity to plant and green microalgae transcription factors. Genes encoding enzymes that synthesize ACC and ABA-aldehyde were also identified, but oxidases that synthesize ethylene and ABA, as well as enzymes that synthesize other plant hormones, were absent. Interestingly, genes involved in plant cell wall synthesis and proteins related to animal extracellular matrix were also detected. Genes encoding cyclins and CDKs were also found, and CDKs showed similarity to animal and fungal CDKs. Few genes encoding voltage-dependent calcium channels and ionotropic glutamate receptors were identified as showing similarity to animal channels. Genes encoding Transient Receptor Potential (TRP) channels were not identified, even though TRPs have been experimentally detected, indicating that the genome is not yet complete. Thus, protein-coding genes present in the genome of U. compressa showed similarity to plant and green microalgae, but also to animal, bacterial, and fungal genes.
Collapse
|
5
|
Wang X, Zhang T, Zhang Q, Xue R, Qu Y, Wang Q, Dong Z, Zhao J. Different patterns of hypoxia aggravate the toxicity of polystyrene nanoplastics in the mussels Mytilus galloprovincialis: Environmental risk assessment of plastics under global climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151818. [PMID: 34813802 DOI: 10.1016/j.scitotenv.2021.151818] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/04/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Hypoxia, largely triggered by anthropogenic activities and global climate change, exerts widespread and expanding stress on marine ecosystems. As an emerging contaminant, the influence of nanoplastics on marine organisms has also attracted attention in recent years. However, the impact of hypoxia on the risk assessments of nanoplastics is rarely considered. This study investigated the toxicity of PS-NPs (0, 0.5, and 5 mg/L) to the coastal mussels Mytilus galloprovincialis under different patterns of hypoxia (normoxia, constant hypoxia, and fluctuating hypoxia). The results showed that constant hypoxia might reduce the accumulation of PS-NPs in mussels by decreasing the standard metabolic rate. The impairment of PS-NPs on mussel immunity was also exacerbated by constant hypoxia. Fluctuating hypoxia did not affect the accumulation of PS-NPs, but aggravated the oxidative damage caused by PS-NPs. These findings emphasize the importance of environmental factors and their temporal variability in plastic risk assessment.
Collapse
Affiliation(s)
- Xin Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Tianyu Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Rui Xue
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Yi Qu
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qing Wang
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Zhijun Dong
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China
| | - Jianmin Zhao
- Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264117, PR China; Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, Shandong 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, Shandong 266071, PR China.
| |
Collapse
|
6
|
Nowicka B. Heavy metal-induced stress in eukaryotic algae-mechanisms of heavy metal toxicity and tolerance with particular emphasis on oxidative stress in exposed cells and the role of antioxidant response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16860-16911. [PMID: 35006558 PMCID: PMC8873139 DOI: 10.1007/s11356-021-18419-w] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/27/2021] [Indexed: 04/15/2023]
Abstract
Heavy metals is a collective term describing metals and metalloids with a density higher than 5 g/cm3. Some of them are essential micronutrients; others do not play a positive role in living organisms. Increased anthropogenic emissions of heavy metal ions pose a serious threat to water and land ecosystems. The mechanism of heavy metal toxicity predominantly depends on (1) their high affinity to thiol groups, (2) spatial similarity to biochemical functional groups, (3) competition with essential metal cations, (4) and induction of oxidative stress. The antioxidant response is therefore crucial for providing tolerance to heavy metal-induced stress. This review aims to summarize the knowledge of heavy metal toxicity, oxidative stress and antioxidant response in eukaryotic algae. Types of ROS, their formation sites in photosynthetic cells, and the damage they cause to the cellular components are described at the beginning. Furthermore, heavy metals are characterized in more detail, including their chemical properties, roles they play in living cells, sources of contamination, biochemical mechanisms of toxicity, and stress symptoms. The following subchapters contain the description of low-molecular-weight antioxidants and ROS-detoxifying enzymes, their properties, cellular localization, and the occurrence in algae belonging to different clades, as well as the summary of the results of the experiments concerning antioxidant response in heavy metal-treated eukaryotic algae. Other mechanisms providing tolerance to metal ions are briefly outlined at the end.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
7
|
Espinoza D, González A, Pizarro J, Segura R, Laporte D, Rodríguez-Rojas F, Sáez CA, Moenne A. Ulva compressa from Copper-Polluted Sites Exhibits Intracellular Copper Accumulation, Increased Expression of Metallothioneins and Copper-Containing Nanoparticles in Chloroplasts. Int J Mol Sci 2021; 22:ijms221910531. [PMID: 34638871 PMCID: PMC8508654 DOI: 10.3390/ijms221910531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 02/01/2023] Open
Abstract
In order to analyze the mechanisms involved in copper accumulation in Ulva compressa, algae were collected at control sites of central and northern Chile, and at two copper-polluted sites of northern Chile. The level of intracellular copper, reduced glutathione (GSH), phytochelatins (PCs), PC2 and PC4, and transcripts encoding metallothioneins (MTs) of U. compressa, UcMT1, UcMT2 and UcMT3, were determined. Algae of control sites contained around 20 μg of copper g−1 of dry tissue (DT) whereas algae of copper-polluted sites contained 260 and 272 μg of copper g−1 of DT. Algae of control sites and copper-polluted sites did not show detectable amounts of GSH, the level of PC2 did not change among sites whereas PC4 was increased in one of the copper-polluted sites. The level of transcripts of UcMT1 and UcMT2 were increased in algae of copper-polluted sites, but the level of UcMT3 did not change. Algae of a control site and a copper-polluted site were visualized by transmission electron microscopy (TEM) and the existence of copper in electrodense particles was analyzed using energy dispersive x-ray spectroscopy (EDXS). Algae of copper-polluted sites showed electrodense nanoparticles containing copper in the chloroplasts, whereas algae of control sites did not. Algae of a control site, Cachagua, were cultivated without copper (control) and with 10 μM copper for 5 days and they were analyzed by TEM-EDXS. Algae cultivated with copper showed copper-containing nanoparticles in the chloroplast whereas control algae did not. Thus, U. compressa from copper-polluted sites exhibits intracellular copper accumulation, an increase in the level of PC4 and expression of UcMTs, and the accumulation of copper-containing particles in chloroplasts.
Collapse
Affiliation(s)
- Daniela Espinoza
- Laboratory of Marine Biotecnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (D.E.); (A.G.)
| | - Alberto González
- Laboratory of Marine Biotecnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (D.E.); (A.G.)
| | - Jaime Pizarro
- Laboratory of Inorganic Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (J.P.); (R.S.)
| | - Rodrigo Segura
- Laboratory of Inorganic Chemistry, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (J.P.); (R.S.)
| | - Daniel Laporte
- Laboratorio Multidisciplinario, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca 3467987, Chile;
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Hub Ambiental UPLA, Centro de Estudios Avanzados, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (F.R.-R.); (C.A.S.)
| | - Claudio A. Sáez
- Laboratory of Aquatic Environmental Research, Hub Ambiental UPLA, Centro de Estudios Avanzados, Universidad de Playa Ancha, Valparaíso 2340000, Chile; (F.R.-R.); (C.A.S.)
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03690 Alicante, Spain
| | - Alejandra Moenne
- Laboratory of Marine Biotecnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 9170022, Chile; (D.E.); (A.G.)
- Correspondence:
| |
Collapse
|
8
|
Solis-Miranda J, Quinto C. The CrRLK1L subfamily: One of the keys to versatility in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 166:88-102. [PMID: 34091211 DOI: 10.1016/j.plaphy.2021.05.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/18/2021] [Indexed: 06/12/2023]
Abstract
Catharanthus roseous kinase 1L receptors (CrRLK1Ls) are a subfamily of membrane receptors unique to plant cells that perceive internal and external signals, integrate metabolic, physiological, and molecular processes, and regulate plant development. Recent genomic studies have suggested that this receptor subfamily arose during the emergence of terrestrial plants and has since diversified, preserving its essential functions. Participation of some of these CrRLK1Ls in different processes is presented and discussed herein, as well as the increasing number of interactors necessary for their function. At least five different responses have been detected after activating these receptors, such as physiological changes, formation or disassembly of protein complexes, metabolic responses, modification of gene expression, and modulation of phytohormone activity. To date, a common response mechanism for all processes involving CrRLK1Ls has not been described. In this review, the information available on the different functions of CrRLK1Ls was compiled. Additionally, the physiological and/or molecular mechanisms involved in the signaling processes triggered by these receptors are also discussed. In this review, we propose a possible common signaling mechanism for all processes regulated by CrRLK1Ls and pose questions to be answered in the future.
Collapse
Affiliation(s)
- Jorge Solis-Miranda
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| | - Carmen Quinto
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Colonia Chamilpa, Cuernavaca, Morelos, 62210, Mexico.
| |
Collapse
|
9
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
10
|
González A, Laporte D, Moenne A. Cadmium Accumulation Involves Synthesis of Glutathione and Phytochelatins, and Activation of CDPK, CaMK, CBLPK, and MAPK Signaling Pathways in Ulva compressa. FRONTIERS IN PLANT SCIENCE 2021; 12:669096. [PMID: 34234796 PMCID: PMC8255929 DOI: 10.3389/fpls.2021.669096] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/12/2021] [Indexed: 06/13/2023]
Abstract
In order to analyze the effect of cadmium in Ulva compressa (Chlorophyta), the alga was cultivated with 10, 25, and 50 μM of cadmium for 7 days, and the level of intracellular cadmium was determined. Intracellular cadmium showed an increase on day 1, no change until day 5, and an increase on day 7. Then, the alga was cultivated with 10 μM for 7 days, and the level of hydrogen peroxide, superoxide anions, and lipoperoxides; activities of antioxidant enzymes ascorbate peroxidase (AP), dehydroascorbate reductase (DHAR), and glutathione reductase (GR); the level of glutathione (GSH) and ascorbate (ASC); and the level of phytochelatins (PCs) and transcripts encoding metallothioneins (UcMTs) levels were determined. The level of hydrogen peroxide increased at 2 and 12 h, superoxide anions on day 1, and lipoperoxides on days 3 to 5. The activities of AP and GR were increased, but not the DHAR activity. The level of GSH increased on day 1, decreased on day 3, and increased again on day 5, whereas ASC slightly increased on days 3 and 7, and activities of enzymes involved in GSH and ASC synthesis were increased on days 3 to 7. The level of PC2 and PC4 decreased on day 3 but increased again on day 5. The level of transcripts encoding UcMT1 and UcMT2 increased on days 3 to 5, mainly that of UcMT2. Thus, cadmium accumulation induced an oxidative stress condition that was mitigated by the activation of antioxidant enzymes and synthesis of GSH and ASC. Then, the alga cultivated with inhibitors of calcium-dependent protein kinases (CDPKs), calmodulin-dependent protein kinases (CaMKs), calcineurin B-like protein kinases (CBLPKs), and MAPKs and 10 μM of cadmium for 5 days showed a decrease in intracellular cadmium and in the level of GSH and PCs, with the four inhibitors, and in the level of transcripts encoding UcMTs, with two inhibitors. Thus, CDPKs, CaMK, CBLPKS, and MAPKs are involved in cadmium accumulation and GSH and PC synthesis, and GSH and PCs and/or UcMTs may participate in cadmium accumulation.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| | - Daniel Laporte
- Laboratorio Multidisciplinario, Instituto de Ciencias Biomédicas, Universidad Autónoma de Chile, Talca, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago, Santiago, Chile
| |
Collapse
|
11
|
Ren H, Zhao X, Li W, Hussain J, Qi G, Liu S. Calcium Signaling in Plant Programmed Cell Death. Cells 2021; 10:cells10051089. [PMID: 34063263 PMCID: PMC8147489 DOI: 10.3390/cells10051089] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/24/2021] [Accepted: 04/28/2021] [Indexed: 12/12/2022] Open
Abstract
Programmed cell death (PCD) is a process intended for the maintenance of cellular homeostasis by eliminating old, damaged, or unwanted cells. In plants, PCD takes place during developmental processes and in response to biotic and abiotic stresses. In contrast to the field of animal studies, PCD is not well understood in plants. Calcium (Ca2+) is a universal cell signaling entity and regulates numerous physiological activities across all the kingdoms of life. The cytosolic increase in Ca2+ is a prerequisite for the induction of PCD in plants. Although over the past years, we have witnessed significant progress in understanding the role of Ca2+ in the regulation of PCD, it is still unclear how the upstream stress perception leads to the Ca2+ elevation and how the signal is further propagated to result in the onset of PCD. In this review article, we discuss recent advancements in the field, and compare the role of Ca2+ signaling in PCD in biotic and abiotic stresses. Moreover, we discuss the upstream and downstream components of Ca2+ signaling and its crosstalk with other signaling pathways in PCD. The review is expected to provide new insights into the role of Ca2+ signaling in PCD and to identify gaps for future research efforts.
Collapse
Affiliation(s)
- Huimin Ren
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Xiaohong Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Wenjie Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
| | - Jamshaid Hussain
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, University Road, Abbottabad 22060, Pakistan;
| | - Guoning Qi
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
- Correspondence: (G.Q.); (S.L.)
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China; (H.R.); (X.Z.); (W.L.)
- Correspondence: (G.Q.); (S.L.)
| |
Collapse
|
12
|
González A, Vidal C, Espinoza D, Moenne A. Anthracene induces oxidative stress and activation of antioxidant and detoxification enzymes in Ulva lactuca (Chlorophyta). Sci Rep 2021; 11:7748. [PMID: 33833321 PMCID: PMC8032757 DOI: 10.1038/s41598-021-87147-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
In order to analyze whether the marine macroalga Ulva lactuca can absorb and metabolize anthracene (ANT), the alga was cultivated with 5 µM ANT for 0-72 h, and the level of ANT was detected in the culture medium, and in the alga. The level of ANT rapidly decreased in the culture medium reaching a minimal level at 6 h, and rapidly increased in the alga reaching a maximal level at 12 h and then decreased to reach a minimal level at 48 h of culture. In addition, ANT induced an increase in hydrogen peroxide that remained until 72 h and a higher increase in superoxide anions that reach a maximal level at 24 h and remained unchanged until 72 h, indicating that ANT induced an oxidative stress condition. ANT induced an increase in lipoperoxides that reached a maximal level at 24 h and decreased at 48 h indicating that oxidative stress caused membrane damage. The activity of antioxidant enzymes SOD, CAT, AP, GR and GP increased in the alga treated with ANT whereas DHAR remained unchanged. The level of transcripts encoding these antioxidant enzymes increased and those encoding DHAR did not change. Inhibitors of monooxygenases, dioxygenases, polyphenol oxidases, glutathione-S-transferases and sulfotransferases induced an increase in the level of ANT in the alga cultivated for 24 h. These results strongly suggest that ANT is rapidly absorbed and metabolized in U. lactuca and the latter involves Phase I and II metabolizing enzymes.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Constanza Vidal
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Daniela Espinoza
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
13
|
González A, Espinoza D, Vidal C, Moenne A. Benzopyrene induces oxidative stress and increases expression and activities of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca (Chlorophyta). PLANTA 2020; 252:107. [PMID: 33206238 DOI: 10.1007/s00425-020-03508-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/02/2020] [Indexed: 06/11/2023]
Abstract
Benzopyrene is rapidly incorporated and metabolized, and induces oxidative stress and activation of antioxidant enzymes, and CYP450 and GST metabolizing enzymes in Ulva lactuca. To analyze absorption and metabolism of benzo[a]pyrene (BaP) in Ulva lactuca, the alga was cultivated with 5 µM of BaP for 72 h. In the culture medium, BaP level rapidly decreased reaching a minimal level at 12 h and, in the alga, BaP level increased until 6 h, remained stable until 24 h, and decreased until 72 h indicating that BaP is being metabolized in U. lactuca. In addition, BaP induced an initial increase in hydrogen peroxide decreasing until 24 h, superoxide anions level that remained high until 72 h, and lipoperoxides that initially increased and decreased until 72 h, showing that BaP induced oxidative stress. Activities of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (AP), glutathione reductase (GR) and glutathione peroxidase (GP) were increased, whereas dehydroascorbate reductase (DHAR) activity was unchanged. The level of transcripts encoding these antioxidant enzymes was increased, but transcripts encoding DHAR remained unchanged. Interestingly, the activity of glutathione-S-transferase (GST) was also increased, and inhibitors of cytochrome P450 (CYP450) and GST activities enhanced the level of BaP in algal tissue, suggesting that these enzymes participate in BaP metabolism.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Daniela Espinoza
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Constanza Vidal
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile.
| |
Collapse
|
14
|
Moenne A, Gómez M, Laporte D, Espinoza D, Sáez CA, González A. Mechanisms of Copper Tolerance, Accumulation, and Detoxification in the Marine Macroalga Ulva compressa (Chlorophyta): 20 Years of Research. PLANTS (BASEL, SWITZERLAND) 2020; 9:E681. [PMID: 32471287 PMCID: PMC7355463 DOI: 10.3390/plants9060681] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/18/2020] [Accepted: 05/23/2020] [Indexed: 11/19/2022]
Abstract
Copper induces an oxidative stress condition in the marine alga Ulva compressa that is due to the production of superoxide anions and hydrogen peroxide, mainly in organelles. The increase in hydrogen peroxide is accompanied by increases in intracellular calcium and nitric oxide, and there is a crosstalk among these signals. The increase in intracellular calcium activates signaling pathways involving Calmodulin-dependent Protein Kinases (CaMKs) and Calcium-Dependent Protein Kinases (CDPKs), leading to activation of gene expression of antioxidant enzymes and enzymes involved in ascorbate (ASC) and glutathione (GSH) synthesis. It was recently shown that copper also activates Mitogen-Activated Protein Kinases (MAPKs) that participate in the increase in the expression of antioxidant enzymes. The increase in gene expression leads to enhanced activities of antioxidant enzymes and to enhanced levels of ASC and GSH. In addition, copper induces an increase in photosynthesis leading to an increase in the leve of Nicotinamide Adenine Dinucleotide Phosphate (NADPH). Copper also induces an increase in activities of enzymes involved in C, N, and S assimilation, allowing the replacement of proteins damaged by oxidative stress. The accumulation of copper in acute exposure involved increases in GSH, phytochelatins (PCs), and metallothioneins (MTs) whereas the accumulation of copper in chronic exposure involved only MTs. Acute and chronic copper exposure induced the accumulation of copper-containing particles in chloroplasts. On the other hand, copper is extruded from the alga with an equimolar amount of GSH. Thus, the increases in activities of antioxidant enzymes, in ASC, GSH, and NADPH levels, and in C, N, and S assimilation, the accumulation of copper-containing particles in chloroplasts, and the extrusion of copper ions from the alga constitute essential mechanisms that participate in the buffering of copper-induced oxidative stress in U. compressa.
Collapse
Affiliation(s)
- Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Daniela Espinoza
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| | - Claudio A. Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile;
- Hub Ambiental UPLA, Universidad de Playa Ancha, Valparaíso 2390302, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago 916000, Chile; (M.G.); (D.L.); (D.E.)
| |
Collapse
|
15
|
Saleem MH, Fahad S, Rehman M, Saud S, Jamal Y, Khan S, Liu L. Morpho-physiological traits, biochemical response and phytoextraction potential of short-term copper stress on kenaf ( Hibiscus cannabinus L.) seedlings. PeerJ 2020; 8:e8321. [PMID: 32030320 PMCID: PMC6995661 DOI: 10.7717/peerj.8321] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 11/30/2019] [Indexed: 01/24/2023] Open
Abstract
Kenaf (Hibiscus cannabinus L.) is a fibrous crop, grown in tropical climate having huge biomass and can be a good candidate for the phytoremediation of different heavy metals. Consequently, the present study was conducted to explore morpho-physiological traits, photosynthetic pigments, gaseous exchange attributes, antioxidative response and phytoextraction of copper (Cu) in H. cannabinus grown under different levels of Cu i.e. 0 (control), 60, 120 and 180 µmol L-1 in Hoagland nutrient solution (pH 6.2). The results from the present study revealed that Cu toxicity reduced plant height, plant diameter, plant fresh weight, plant dry weight, photosynthetic pigments and gaseous exchange attributes compared to control. Moreover, excess Cu in the nutrient solution ameliorates contents of malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) which showed that Cu induced oxidative damage in the roots and leaves of H. cannabinus. The oxidative stress which was induced by a high concentration of Cu in the nutrient solution is overcome by enzymatic activities of antioxidants which increased with the increase in Cu concentration, i.e. 60 and 120 µmol L-1, while the addition of Cu (180 µmol L-1) caused a reduction in the activities of superoxidase dismutase (SOD), peroxidase (POD), catalase (CAT) and ascorbate peroxidase (APX) in the roots and leaves of H. cannabinus. The results also demonstrated that an increase in Cu concentration in the nutrient solution causes an increase in Cu accumulation through roots, leaves and stems of H. cannabinus, although the highest Cu concentration was accumulated in roots while only a little transported to the above ground parts (leaves and stems) of the plants. All the values of bioaccumulation factor (BAF) and translocation factor (TF) were less than 1, which also indicated that a small quantity of Cu concentration is transported to the aboveground part of the plants. These findings suggested that phytotoxicity of Cu affected plant growth and biomass and increased ROS production while accumulation of Cu in different parts of plant proved that H. cannabinus is an ideal specie for phytoremediation of Cu when grown under Cu contaminated sites.
Collapse
Affiliation(s)
- Muhammad Hamzah Saleem
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| | - Shah Fahad
- Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | | | - Shah Saud
- College of Horticulture, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yousaf Jamal
- Department of Agriculture, University of Swabi, Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Sajjad Khan
- Crops Sciences Institute, National Agricultural Research Center (NARC), Islamabad, Pakistan
| | - Lijun Liu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agriculture University, Wuhan, Hubei, China
| |
Collapse
|
16
|
Laporte D, Rodríguez F, González A, Zúñiga A, Castro-Nallar E, Sáez CA, Moenne A. Copper-induced concomitant increases in photosynthesis, respiration, and C, N and S assimilation revealed by transcriptomic analyses in Ulva compressa (Chlorophyta). BMC PLANT BIOLOGY 2020; 20:25. [PMID: 31941449 PMCID: PMC6964094 DOI: 10.1186/s12870-019-2229-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/30/2019] [Indexed: 05/10/2023]
Abstract
BACKGROUND The marine alga Ulva compressa is the dominant species in copper-polluted coastal areas in northern Chile. It has been shown that the alga tolerates micromolar concentrations of copper and accumulates copper at the intracellular level. Transcriptomic analyses were performed using total RNA of the alga cultivated with 10 μ M copper for 0, 1, 3 and 5 days using RNA-seq in order to identify processes involved in copper tolerance. RESULTS The levels of transcripts encoding proteins belonging to Light Harvesting Complex II (LHCII), photosystem II (PSII), cytochrome b6f, PSI, LHCI, ATP synthase and proteins involved in repair of PSII and protection of PSI were increased in the alga cultivated with copper. In addition, the level of transcripts encoding proteins of mitochondrial electron transport chain, ATP synthase, and enzymes involved in C, N and S assimilation were also enhanced. The higher percentages of increase in the level of transcripts were mainly observed at days 3 and 5. In contrast, transcripts involved protein synthesis and degradation, signal transduction, and replication and DNA repair, were decreased. In addition, net photosynthesis and respiration increased in the alga cultivated with copper, mainly at days 1 to 3. Furthermore, the activities of enzymes involved in C, N and S assimilation, rubisco, glutamine synthase and cysteine synthase, respectively, were also increased, mainly at days 1 and 3. CONCLUSIONS The marine alga U. compressa tolerates copper excess through a concomitant increase in expression of proteins involved in photosynthesis, respiration, and C, N and S assimilation, which represents an exceptional mechanism of copper tolerance.
Collapse
Affiliation(s)
- Daniel Laporte
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Felipe Rodríguez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Antonio Zúñiga
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, 2340000, Valparaíso, Chile
| | - Eduardo Castro-Nallar
- Center of Bioinformatics and Integrative Biology, Faculty of Life Sciences, University Andrés Bello, República 330, Santiago, Chile
| | - Claudio A Sáez
- HUB AMBIENTAL UPLA, Vicerrectoría de Investigación, Postgrado e Innovación, University of Playa Ancha, Avenida Carvallo 270, 2340000, Valparaíso, Chile
- Laboratory of Aquatic Environmental Research, Center of Advanced Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
17
|
Laporte D, González A, Moenne A. Copper-Induced Activation of MAPKs, CDPKs and CaMKs Triggers Activation of Hexokinase and Inhibition of Pyruvate Kinase Leading to Increased Synthesis of ASC, GSH and NADPH in Ulva compressa. FRONTIERS IN PLANT SCIENCE 2020; 11:990. [PMID: 32733511 PMCID: PMC7363978 DOI: 10.3389/fpls.2020.00990] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/17/2020] [Indexed: 05/16/2023]
Abstract
In order to analyze whether copper induces activation of CaMK, CDPK and/or MAPK signaling pathways leading to carbon flux reprogramming and to the synthesis of ascorbate (ASC), glutathione (GSH) and NADPH in order to buffer copper-induced oxidative stress, U. compressa was initially cultivated with 10 µM copper for 0 to 10 days. The activities of hexokinase (HK), pyruvate kinase (PK), L-galactone 1,4 lactone dehydrogenase (L-GLDH) and glucose 6-P dehydrogenase (G6PDH) were analyzed. HK activity was increased whereas PK was inhibited, and L-GLDH and G6PDH activities were increased indicating a copper-induced modulation of glycolysis leading to carbon flux reprogramming. Then, the alga was cultivated with an inhibitor of CaMs and CaMKs, CDPKs and MAPKs, and with 10 µM of copper for 5 days and the activities of HK, PK, L-GLDH, G6PDH and glutathione synthase (GS), the levels of ASC/DHA, GSG/GSSG and NADPH/NADP, the levels of superoxide anions (SA) and hydrogen peroxide (HP) and the integrity of plasma membrane were determined. The activation of HK was dependent on MAPKs, the inhibition of PK on CDPKs/MAPKs, the activation of L-GLDH on MAPKs, the activation GS on CDPKs/MAPKs, and the activation of G6PDH on MAPKs. Increases in the level of ASC/DHA were dependent on activation of CaMKs/CDPKs/MAPKs, those of GSG/GSSG on MAPKs and those NADPH/NADP on CaMKs/CDPKs/MAPKs. The accumulation of superoxide anions and hydrogen peroxide and the integrity of plasma membrane were dependent on CaMKs/CDPKs/MAPKs. Thus, copper induced the activation of MAPKs, CDPKs and CaMKs leading to the modulation of glycolysis and carbon flux reprogramming which trigger an increase in ASC, GSH and NADPH syntheses and the activation of antioxidant enzymes in order to buffer copper-induced oxidative stress in U. compressa.
Collapse
|
18
|
Celis-Plá PSM, Rodríguez-Rojas F, Méndez L, Moenne F, Muñoz PT, Lobos MG, Díaz P, Sánchez-Lizaso JL, Brown MT, Moenne A, Sáez CA. MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Influence on Metal Exclusion/Extrusion Mechanisms and Photosynthesis. Int J Mol Sci 2019; 20:E4547. [PMID: 31540294 PMCID: PMC6769437 DOI: 10.3390/ijms20184547] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 09/08/2019] [Accepted: 09/09/2019] [Indexed: 01/23/2023] Open
Abstract
There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.
Collapse
Affiliation(s)
- Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Lorena Méndez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
| | - Pamela T Muñoz
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
- Doctorado en Ciencias del Mar y Biología Aplicada, Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - M Gabriela Lobos
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - Patricia Díaz
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile.
| | - José Luis Sánchez-Lizaso
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain.
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile.
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
| |
Collapse
|
19
|
Rodríguez-Rojas F, Celis-Plá PSM, Méndez L, Moenne F, Muñoz PT, Lobos MG, Díaz P, Sánchez-Lizaso JL, Brown MT, Moenne A, Sáez CA. MAPK Pathway under Chronic Copper Excess in Green Macroalgae (Chlorophyta): Involvement in the Regulation of Detoxification Mechanisms. Int J Mol Sci 2019; 20:ijms20184546. [PMID: 31540290 PMCID: PMC6771120 DOI: 10.3390/ijms20184546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/01/2019] [Accepted: 09/01/2019] [Indexed: 12/16/2022] Open
Abstract
Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.
Collapse
Affiliation(s)
- Fernanda Rodríguez-Rojas
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile
| | - Paula S M Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile
| | - Lorena Méndez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile
| | - Fabiola Moenne
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile
| | - Pamela T Muñoz
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile
- Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2340000, Chile
- Doctorado en Ciencias del Mar y Biología Aplicada, Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain
| | - M Gabriela Lobos
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile
| | - Patricia Díaz
- Laboratory of Environmental and Analytical Chemistry, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso 234000, Chile
| | - José Luis Sánchez-Lizaso
- Departamento de Ciencias del Mar y Biología Aplicada, Universidad de Alicante, 03080 Alicante, Spain
| | - Murray T Brown
- School of Biological and Marine Sciences, University of Plymouth, PL4 8AA Plymouth, UK
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170020, Chile
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar 2520000, Chile.
- HUB-AMBIENTAL UPLA, Universidad de Playa Ancha, Valparaíso 2340000, Chile.
| |
Collapse
|
20
|
Tao Q, Jupa R, Liu Y, Luo J, Li J, Kováč J, Li B, Li Q, Wu K, Liang Y, Lux A, Wang C, Li T. Abscisic acid-mediated modifications of radial apoplastic transport pathway play a key role in cadmium uptake in hyperaccumulator Sedum alfredii. PLANT, CELL & ENVIRONMENT 2019; 42:1425-1440. [PMID: 30577078 DOI: 10.1111/pce.13506] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key phytohormone underlying plant resistance to toxic metals. However, regulatory effects of ABA on apoplastic transport in roots and consequences for uptake of metal ions are poorly understood. Here, we demonstrate how ABA regulates development of apoplastic barriers in roots of two ecotypes of Sedum alfredii and assess effects on cadmium (Cd) uptake. Under Cd treatment, increased endogenous ABA level was detected in roots of nonhyperaccumulating ecotype (NHE) due to up-regulated expressions of ABA biosynthesis genes (SaABA2, SaNCED), but no change was observed in hyperaccumulating ecotype (HE). Simultaneously, endodermal Casparian strips (CSs) and suberin lamellae (SL) were deposited closer to root tips of NHE compared with HE. Interestingly, the vessel-to-CSs overlap was identified as an ABA-driven anatomical trait. Results of correlation analyses and exogenous applications of ABA/Abamine indicate that ABA regulates development of both types of apoplastic barriers through promoting activities of phenylalanine ammonialyase, peroxidase, and expressions of suberin-related genes (SaCYP86A1, SaGPAT5, and SaKCS20). Using scanning ion-selected electrode technique and PTS tracer confirmed that ABA-promoted deposition of CSs and SL significantly reduced Cd entrance into root stele. Therefore, maintenance of low ABA levels in HE minimized deposition of apoplastic barriers and allowed maximization of Cd uptake via apoplastic pathway.
Collapse
Affiliation(s)
- Qi Tao
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Radek Jupa
- Department of Experimental Biology, Faculty of Science, Masaryk University, 611 37, Brno, Czech Republic
| | - Yuankun Liu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jipeng Luo
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinxing Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ján Kováč
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Keren Wu
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yongchao Liang
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15, Bratislava, Slovakia
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tingqiang Li
- Ministry of Education Key Laboratory of Environmental Remediation and Ecological Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
21
|
Sun C, Dudley S, McGinnis M, Trumble J, Gan J. Acetaminophen detoxification in cucumber plants via induction of glutathione S-transferases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 649:431-439. [PMID: 30176456 DOI: 10.1016/j.scitotenv.2018.08.346] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/24/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
Many pharmaceutical and personal care products (PPCPs) enter agroecosystems during reuse of treated wastewater and biosolids, presenting potential impacts on plant development. Here, acetaminophen, one of the most-used pharmaceuticals, was used to explore roles of glutathione (GSH) conjugation in its biotransformation in crop plants. Acetaminophen was taken up by plants, and conjugated quickly with GSH. After exposure to 5 mg L-1 acetaminophen for 144 h, GSH-acetaminophen conjugates were 15.2 ± 1.3 nmol g-1 and 1.2 ± 0.1 nmol g-1 in cucumber roots and leaves, respectively. Glutathione-acetaminophen was also observed in common bean, alfalfa, tomato, and wheat. Inhibition of cytochrome P450 decreased GSH conjugation. Moreover, the GSH conjugate was found to further convert to cysteine and N-acetylcysteine conjugates. Glutathione S-transferase activity was significantly elevated after exposure to acetaminophen, while levels of GSH decreased by 55.4% in roots after 48 h, followed by a gradual recovery thereafter. Enzymes involved in GSH synthesis, regeneration and transport were consistently induced to maintain the GSH homeostasis. Therefore, GST-mediated conjugation likely played a crucial role in minimizing phytotoxicity of acetaminophen and other PPCPs in plants.
Collapse
Affiliation(s)
- Chengliang Sun
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA.
| | - Stacia Dudley
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - Michelle McGinnis
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| | - John Trumble
- Department of Entomology, University of California, Riverside, CA 92521, USA
| | - Jay Gan
- Department of Environmental Sciences, University of California, Riverside, CA 92521, USA
| |
Collapse
|
22
|
Navarrete A, González A, Gómez M, Contreras RA, Díaz P, Lobos G, Brown MT, Sáez CA, Moenne A. Copper excess detoxification is mediated by a coordinated and complementary induction of glutathione, phytochelatins and metallothioneins in the green seaweed Ulva compressa. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 135:423-431. [PMID: 30501930 DOI: 10.1016/j.plaphy.2018.11.019] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 05/14/2023]
Abstract
In order to analyze the involvement of intracellular thiol-chelators in the accumulation and detoxification of copper, the marine alga Ulva compressa was cultivated with increasing concentrations of copper such as 2.5, 5, 7.5 and 10 μM for up to 12 d, and the amount of intracellular copper, glutathione (GSH), phytochelatins (PCs) and transcripts encoding three metallothioneins (MTs) were determined. Over this exposure period and concentration range there was a linear correlation between intracellular copper and the copper concentration in the culture medium. Increases in GSH concentrations occurred mainly between days 1 and 3 and at lower concentrations of copper (2.5 and 5 μM). The level of PCs, and particularly PC2, increased from day 1 of exposure mainly at higher concentrations of copper (7.5 and 10 μM). The levels of transcripts encoding MT7 increased at day 3, whereas those of MT3 and MT6 increased between days 9-12, mainly at higher concentrations of copper. Thus in U. compressa, the initial responses to increasing intracellular copper concentrations are increases in GSH and PCs that are followed by higher levels of MTs expression, suggesting that thiol-containing peptides and proteins may participate in copper accumulation and detoxification responding in a coordinated and complementary manner. In addition, the alga was cultivated with 10 μM copper for 5 d and transferred to synthetic seawater with no copper and cultivated for 3 d. The release of copper from cells to culture medium was observed and accompanied by a similar nanomolar amount of GSH; no PCs or small proteins were detected. These results could suggest that a component of the detoxification mechanism also involves the release of copper and GSH to the extracellular medium.
Collapse
Affiliation(s)
- Axel Navarrete
- Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Melissa Gómez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Rodrigo A Contreras
- Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile
| | - Patricia Díaz
- Laboratory of Analytical and Environmental Chemistry, Institute of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaíso, Av. Gran Bretaña, 1111, Valparaíso, Chile
| | - Gabriela Lobos
- Laboratory of Analytical and Environmental Chemistry, Institute of Chemistry and Biochemistry, Faculty of Sciences, University of Valparaíso, Av. Gran Bretaña, 1111, Valparaíso, Chile
| | - Murray T Brown
- School of Biological and Marine Sciences, Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 88AA, UK
| | - Claudio A Sáez
- Laboratory of Aquatic Environmental Research, Center of Advanced Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda, 3363, Santiago, Chile.
| |
Collapse
|
23
|
Rodríguez FE, Laporte D, González A, Mendez KN, Castro-Nallar E, Meneses C, Huidobro-Toro JP, Moenne A. Copper-induced increased expression of genes involved in photosynthesis, carotenoid synthesis and C assimilation in the marine alga Ulva compressa. BMC Genomics 2018; 19:829. [PMID: 30458726 PMCID: PMC6245705 DOI: 10.1186/s12864-018-5226-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 11/12/2022] Open
Abstract
Background The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 μM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. Results De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to β-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 μM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. Conclusions Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation. Electronic supplementary material The online version of this article (10.1186/s12864-018-5226-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Felipe E Rodríguez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Daniel Laporte
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Center of Plant Biotechnology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile.,FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.,Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
24
|
Rodríguez FE, Laporte D, González A, Mendez KN, Castro-Nallar E, Meneses C, Huidobro-Toro JP, Moenne A. Copper-induced increased expression of genes involved in photosynthesis, carotenoid synthesis and C assimilation in the marine alga Ulva compressa. BMC Genomics 2018; 19:829. [PMID: 30458726 DOI: 10.118/2fs12864-018-5226-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/06/2018] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND The marine alga Ulva compressa is the dominant species in coastal areas receiving effluents from copper mines. The alga can accumulate high amounts of copper and possesses a strong antioxidant system. Here, we performed short-term transcriptomic analyses using total RNA of the alga cultivated with 10 μM of copper for 0, 3, 6, 12 and 24 h by RNA-seq. RESULTS De novo transcriptomes were assembled using the Trinity software, putative proteins were annotated and classified using Blast2GO. Differentially expressed transcripts were identified using edgeR. Transcript levels were compared by paired times 0 vs 3, 0 vs 6, 0 vs 12 and 0 vs 24 h at an FDR < 0.01 and Log2 Fold Change > 2. Up-regulated transcripts encode proteins belonging to photosystem II (PSII), Light Harvesting II Complex (LHCII), PSI and LHCI, proteins involved in assembly and repair of PSII, and assembly and protection of PSI. In addition, transcripts encoding enzymes leading to β-carotene synthesis and enzymes belonging to the Calvin-Benson cycle were also increased. We further analyzed photosynthesis and carotenoid levels in the alga cultivated with 10 μM of copper for 0 to 24 h. Photosynthesis was increased from 3 to 24 h as well as the level of total carotenoids. The increase in transcripts encoding enzymes of the Calvin-Benson cycle suggests that C assimilation may also be increased. CONCLUSIONS Thus, U. compressa displays a short-term response to copper stress enhancing the expression of genes encoding proteins involved in photosynthesis, enzymes involved carotenoids synthesis, as well as those belonging to the Calvin-Benson cycle, which may result in an increase in C assimilation.
Collapse
Affiliation(s)
- Felipe E Rodríguez
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Daniel Laporte
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
| | - Katterinne N Mendez
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Eduardo Castro-Nallar
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Claudio Meneses
- Center of Plant Biotechnology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Santiago, Chile
| | - Juan Pablo Huidobro-Toro
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Av. Libertador Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
25
|
González A, Sáez CA, Morales B, Moenne A. Copper-induced activation of TRP channels promotes extracellular calcium entry and activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of antioxidant enzymes in Ectocarpus siliculosus. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 126:106-116. [PMID: 29518656 DOI: 10.1016/j.plaphy.2018.02.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/28/2018] [Accepted: 02/28/2018] [Indexed: 12/17/2023]
Abstract
The existence of functional Transient Receptor Potential (TRP) channels was analyzed in Ectocarpus siliculosus using agonists of human TRPs and specific antagonists of TRPA1, TRPC5, TRPM8 and TRPV; intracellular calcium was detected for 60 min. Increases in intracellular calcium were observed at 13, 29, 39 and 50-52 min, which appeared to be mediated by the activation of TRPM8/V1 at 13 min, TRPV1 at 29 min, TRPA1/V1 at 39 min and TRPA1/C5 at 50-52 min. In addition, intracellular calcium increases appear to be due to extracellular calcium entry, not requiring protein kinase activation. On the other hand, 2.5 μM copper exposure induced increased intracellular calcium at 13, 29, 39 and 51 min, likely due to the activation of a TRPA1/V1 at 13 min, TRPA1/C5/M8 at 29 min, TRPC5/M8 at 39 min, and a TRPC5/V1 at 51 min. The increases in intracellular calcium induced by copper were due to extracellular calcium entry and required protein kinase activation. Furthermore, from 3 to 24 h, copper exposure induced an increase in the level of transcripts encoding antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione reductase and peroxiredoxin. The described upregulation decreased with inhibitors of CaMK, PKA, PKC, PKG and CBLPK, as well as with a mixture of TRP inhibitors. Thus, copper induces the activation of TRP channels allowing extracellular calcium entry as well as the activation of CaMK, PKA, PKC, PKG and CBLPK leading to increased expression of genes encoding antioxidant enzymes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Claudio A Sáez
- Laboratory of Coastal Environmental Research, Center of Advanced Studies, University of Playa Ancha, Viña del mar, Chile
| | - Bernardo Morales
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| |
Collapse
|
26
|
González A, Sáez CA, Moenne A. Copper-induced activation of TRPs and VDCCs triggers a calcium signature response regulating gene expression in Ectocarpus siliculosus. PeerJ 2018; 6:e4556. [PMID: 29682409 PMCID: PMC5907779 DOI: 10.7717/peerj.4556] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/09/2018] [Indexed: 02/06/2023] Open
Abstract
In certain multicellular photoautotrophs, such as plants and green macroalgae, it has been demonstrated that calcium signaling importantly mediates tolerance to copper excess. However, there is no information in brown macroalgae, which are phylogenetically distant from green algae and plants. We have previously shown that chronic copper levels (2.5 μM) activate transient receptor potential (TRP) channels in the model brown macroalga Ectocarpus siliculosus, allowing extracellular calcium entry at 13, 29, 39 and 51 min. Here, we showed that intracellular calcium increases also occurred at 3 and 5 h of exposure; these increases were inhibited by antagonists of voltage-dependent calcium channels (VDCCs); a chelating agent of extracellular calcium; an antagonist of endoplasmic reticulum (ER) ATPase; and antagonists of cADPR-, NAADP- and IP3-dependent calcium channels. Thus, copper activates VDCCs allowing extracellular calcium entry and intracellular calcium release from the ER via cADPR-, IP3- and NAADP-dependent channels. Furthermore, the level of transcripts encoding a phytochelatin synthase (PS) and a metallothionein (MT) were analyzed in the alga exposed to 2.5 μM copper from 3 to 24 h. The level of ps and mt transcripts increased until 24 h and these increases were inhibited by antagonists of calmodulins (CaMs), calcineurin B-like proteins (CBLs) and calcium-dependent protein kinases (CDPKs). Finally, activation of VDCC was inhibited by a mixture of TRP antagonists and by inhibitors of protein kinases. Thus, copper-mediated activation of TRPs triggers VDCCs via protein kinases, allowing extracellular calcium entry and intracellular calcium release from ER that, in turn, activate CaMs, CBLs and CDPKs increasing expression of PS and MT encoding genes in E. siliculosus.
Collapse
Affiliation(s)
- Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| | - Claudio A Sáez
- Laboratory of Costal Environmental Research, Center of Advanced Studies, Universidad de Playa Ancha, Viña del Mar, Valparaíso, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, Universidad de Santiago de Chile, Santiago, Región Metropolitana, Chile
| |
Collapse
|
27
|
Zhang X, Tang X, Wang M, Zhang W, Zhou B, Wang Y. ROS and calcium signaling mediated pathways involved in stress responses of the marine microalgae Dunaliella salina to enhanced UV-B radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017. [DOI: 10.1016/j.jphotobiol.2017.05.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
28
|
Laporte D, Valdés N, González A, Sáez CA, Zúñiga A, Navarrete A, Meneses C, Moenne A. Copper-induced overexpression of genes encoding antioxidant system enzymes and metallothioneins involve the activation of CaMs, CDPKs and MEK1/2 in the marine alga Ulva compressa. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 177:433-40. [PMID: 27395803 DOI: 10.1016/j.aquatox.2016.06.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/16/2016] [Accepted: 06/22/2016] [Indexed: 05/14/2023]
Abstract
Transcriptomic analyses were performed in the green macroalga Ulva compressa cultivated with 10μM copper for 24h. Nucleotide sequences encoding antioxidant enzymes, ascorbate peroxidase (ap), dehydroascorbate reductase (dhar) and glutathione reductase (gr), enzymes involved in ascorbate (ASC) synthesis l-galactose dehydrogenase (l-gdh) and l-galactono lactone dehydrogenase (l-gldh), in glutathione (GSH) synthesis, γ-glutamate-cysteine ligase (γ-gcl) and glutathione synthase (gs), and metal-chelating proteins metallothioneins (mt) were identified. Amino acid sequences encoded by transcripts identified in U. compressa corresponding to antioxidant system enzymes showed homology mainly to plant and green alga enzymes but those corresponding to MTs displayed homology to animal and plant MTs. Level of transcripts encoding the latter proteins were quantified in the alga cultivated with 10μM copper for 0-12 days. Transcripts encoding enzymes of the antioxidant system increased with maximal levels at day 7, 9 or 12, and for MTs at day 3, 7 or 12. In addition, the involvement of calmodulins (CaMs), calcium-dependent protein kinases (CDPKs), and the mitogen-activated protein kinase kinase (MEK1/2) in the increase of the level of the latter transcripts was analyzed using inhibitors. Transcript levels decreased with inhibitors of CaMs, CDPKs and MEK1/2. Thus, copper induces overexpression of genes encoding antioxidant enzymes, enzymes involved in ASC and GSH syntheses and MTs. The increase in transcript levels may involve the activation of CaMs, CDPKs and MEK1/2 in U. compressa.
Collapse
Affiliation(s)
- Daniel Laporte
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Natalia Valdés
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Alberto González
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Claudio A Sáez
- Laboratory of Coastal Toxicology, Center of Advanced Studies, University of Playa Ancha, Traslaviña 450, Viña del Mar, Chile
| | - Antonio Zúñiga
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Axel Navarrete
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias Biológicas, Universidad Andrés Bello, Chile; FONDAP, Center for Genome Regulation, Universidad Andrés Bello, Chile
| | - Alejandra Moenne
- Marine Biotechnology Laboratory, Faculty of Chemistry and Biology, University of Santiago of Chile, Alameda 3363, Santiago, Chile.
| |
Collapse
|
29
|
Moenne A, González A, Sáez CA. Mechanisms of metal tolerance in marine macroalgae, with emphasis on copper tolerance in Chlorophyta and Rhodophyta. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 176:30-37. [PMID: 27107242 DOI: 10.1016/j.aquatox.2016.04.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/05/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Green and red macroalgae are closely related organisms, and with terrestrial plants, and constitute the base of marine food webs in coastal ecosystems. Green and red seaweeds, as all living organisms, require essential metals, such as copper, iron, zinc, which can act as co-factors for several proteins and enzymes; however, these metals in excess can induce stress and impair cell viability. Most important negative effects of metal excess are related to the induction of an oxidative stress condition, characterized by the over-accumulation of Reactive Oxygen Species (ROS). In this respect, copper, abundant in wastewaters disposed to coastal environments from domestic and industrial activities, has been one of the most studied metals. Different investigations have provided evidence that green and red macroalgae display several defenses against copper excess to prevent, or at least reduce, stress and damage, among which are cellular exclusion mechanisms, synthesis of metal-chelating compounds, and the activation of the antioxidant system. Most important defense mechanisms identified in green and red seaweed involve: metal-binding to cell wall and epibionts; syntheses of metallothioneins and phytochelatins that accumulate in the cytoplasm; and the increase in the activity of antioxidant enzymes such as superoxide dismutase, ascorbate peroxidase, glutathione peroxidase and catalase, and greater production of antioxidant metabolites as glutathione and ascorbate in organelles and the cytoplasm. In this review, we go through historical records, latest advances, and pending tasks aiming to expand our current knowledge on defense mechanisms to copper excess in green and red macroalgae, with emphasis on biochemical and molecular aspects.
Collapse
Affiliation(s)
- Alejandra Moenne
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile.
| | - Alberto González
- Faculty of Chemistry and Biology, University of Santiago of Chile, Santiago, Chile
| | - Claudio A Sáez
- Center of Advanced Studies, University of Playa Ancha, Viña del Mar, Chile.
| |
Collapse
|
30
|
Gómez M, González A, Sáez CA, Moenne A. Copper-Induced Membrane Depolarizations Involve the Induction of Mosaic TRP Channels, Which Activate VDCC Leading to Calcium Increases in Ulva compressa. FRONTIERS IN PLANT SCIENCE 2016; 7:754. [PMID: 27379106 PMCID: PMC4905984 DOI: 10.3389/fpls.2016.00754] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 05/17/2016] [Indexed: 06/01/2023]
Abstract
The marine macroalga Ulva compressa (Chlorophyceae) is a cosmopolitan species, tolerant to heavy metals, in particular to copper. U. compressa was cultivated with 10 μM copper for 12 h and membrane depolarization events were detected. First, seven depolarization events occurred at 4, 8, 12-13, 80, and 86 min, and at 5 and 9 h of copper exposure. Second, bathocuproine sulphonate, a specific copper-chelating compound, was added before incorporating copper to the culture medium. Copper-induced depolarizations were inhibited by bathocuproine at 4, 8, 12-13, 80, and 86 min, but not at 5 and 9 h, indicating that initial events are due to copper ions entry. Third, specific inhibitors of human TRPA1, C4, C5, M8, and V1corresponding to HC030031, ML204, SKF96363, M8B, and capsazepin, respectively, were used to analyze whether copper-induced depolarizations were due to activation of transient receptor potentials (TRPs). Inhibitor effects indicate that the seven depolarizations involved the activation of functional mosaic TRPs that displayed properties similar to human TRPA, C, M, and/or V. Finally, inhibition of copper-induced depolarizations using specific TRP inhibitors suppressed calcium increases at 2, 3, and 12 h due to activation of voltage-dependent calcium channels (VDCCs). Thus, copper induces seven depolarization events that involve activation of mosaic TRPs which, in turn, activates VDCC leading to calcium increases at 2, 3, and 12 h in U. compressa.
Collapse
Affiliation(s)
- Melissa Gómez
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of ChileSantiago, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of ChileSantiago, Chile
| | - Claudio A. Sáez
- Laboratory of Coastal Toxicology, Center of Advanced Studies, University of Playa Ancha Viña del Mar, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Faculty of Chemistry and Biology, University of Santiago of ChileSantiago, Chile
| |
Collapse
|
31
|
Matsushita S, Mochizuki S, Sakurai K, Kawano T. Prevention of copper-induced cell death by GC-rich DNA oligomers in murine macrophage-like RAW264.7 cells. Commun Integr Biol 2016; 8:e1017173. [PMID: 27066170 PMCID: PMC4802767 DOI: 10.1080/19420889.2015.1017173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/01/2023] Open
Abstract
Impact of redox active transition metals on activation of cell death signaling in plant cells have been documented to date. We have recently reported that GC-rich DNA oligomers with high affinity for binding of copper and catalytic activity for removal of ROS as novel plant cell-protecting agents. Here, we show that similar DNA oligomers protect the mouse macrophage-like RAW264.7 cells from copper-induced cell death, suggesting that the phenomenon firstly observed in plant model can be expanded to a wider range of cells and/or organisms including mammalian cells.
Collapse
Affiliation(s)
- Sakiko Matsushita
- Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| | - Shinichi Mochizuki
- Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| | - Kazuo Sakurai
- Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| | - Tomonori Kawano
- Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| |
Collapse
|
32
|
Kawano T, Kagenishi T, Kadono T, Bouteau F, Hiramatsu T, Lin C, Tanaka K, Tanaka L, Mancuso S, Uezu K, Okobira T, Furukawa H, Iwase J, Inokuchi R, Baluška F, Yokawa K. Production and removal of superoxide anion radical by artificial metalloenzymes and redox-active metals. Commun Integr Biol 2016; 8:e1000710. [PMID: 27066179 PMCID: PMC4802810 DOI: 10.1080/19420889.2014.1000710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 01/23/2023] Open
Abstract
Generation of reactive oxygen species is useful for various medical, engineering and agricultural purposes. These include clinical modulation of immunological mechanism, enhanced degradation of organic compounds released to the environments, removal of microorganisms for the hygienic purpose, and agricultural pest control; both directly acting against pathogenic microorganisms and indirectly via stimulation of plant defense mechanism represented by systemic acquired resistance and hypersensitive response. By aiming to develop a novel classes of artificial redox-active biocatalysts involved in production and/or removal of superoxide anion radicals, recent attempts for understanding and modification of natural catalytic proteins and functional DNA sequences of mammalian and plant origins are covered in this review article.
Collapse
Affiliation(s)
- Tomonori Kawano
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; International Photosynthesis Industrialization Research Center; The University of Kitakyushu; Kitakyushu, Japan; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan; LINV- DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy; Univ Paris Diderot; Sorbonne Paris Cité; Paris Interdisciplinary Energy Research Institute (PIERI); Paris, France
| | - Tomoko Kagenishi
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; Fukuoka Industry; Science & Technology Foundation (Fukuoka IST), Fukuoka, Japan; IZMB; University of Bonn; Bonn, Germany
| | - Takashi Kadono
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; Fukuoka Industry; Science & Technology Foundation (Fukuoka IST), Fukuoka, Japan; Present address: Laboratory of Aquatic Environmental Science; Faculty of Agriculture; Kochi University; Kochi, Japan
| | - François Bouteau
- International Photosynthesis Industrialization Research Center; The University of Kitakyushu; Kitakyushu, Japan; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan; LINV- DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy; Université Paris Diderot; Sorbonne Paris Cité; Institut des Energies de Demain (FRE 3597), Paris, France
| | - Takuya Hiramatsu
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| | - Cun Lin
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; K2R Inc.; Kitakyushu, Japan
| | | | | | - Stefano Mancuso
- International Photosynthesis Industrialization Research Center; The University of Kitakyushu; Kitakyushu, Japan; University of Florence LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan; LINV- DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy; Univ Paris Diderot; Sorbonne Paris Cité; Paris Interdisciplinary Energy Research Institute (PIERI); Paris, France
| | - Kazuya Uezu
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; International Photosynthesis Industrialization Research Center; The University of Kitakyushu; Kitakyushu, Japan
| | - Tadashi Okobira
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; Fukuoka Industry; Science & Technology Foundation (Fukuoka IST), Fukuoka, Japan; Present address: Ariake National College of Technology; Omuta Fukuoka, Japan
| | - Hiroka Furukawa
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| | - Junichiro Iwase
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; LINV- DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy; Present address: Collaboration center; Kyushu Institute of Technology; Kitakyushu, Japan
| | - Reina Inokuchi
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu ; Kitakyushu, Japan
| | - Frantisek Baluška
- International Photosynthesis Industrialization Research Center; The University of Kitakyushu; Kitakyushu, Japan; LINV- DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy; IZMB; University of Bonn; Bonn, Germany
| | - Ken Yokawa
- Graduate School and Faculty of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan; International Photosynthesis Industrialization Research Center; The University of Kitakyushu; Kitakyushu, Japan; Fukuoka Industry; Science & Technology Foundation (Fukuoka IST), Fukuoka, Japan; IZMB; University of Bonn; Bonn, Germany
| |
Collapse
|
33
|
Anderson A, Laohavisit A, Blaby IK, Bombelli P, Howe CJ, Merchant SS, Davies JM, Smith AG. Exploiting algal NADPH oxidase for biophotovoltaic energy. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:22-8. [PMID: 25641364 PMCID: PMC5016757 DOI: 10.1111/pbi.12332] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/14/2014] [Accepted: 12/12/2014] [Indexed: 05/21/2023]
Abstract
Photosynthetic microbes exhibit light-dependent electron export across the cell membrane, which can generate electricity in biological photovoltaic (BPV) devices. How electrons are exported remains to be determined; the identification of mechanisms would help selection or generation of photosynthetic microbes capable of enhanced electrical output. We show that plasma membrane NADPH oxidase activity is a significant component of light-dependent generation of electricity by the unicellular green alga Chlamydomonas reinhardtii. NADPH oxidases export electrons across the plasma membrane to form superoxide anion from oxygen. The C. reinhardtii mutant lacking the NADPH oxidase encoded by RBO1 is impaired in both extracellular superoxide anion production and current generation in a BPV device. Complementation with the wild-type gene restores both capacities, demonstrating the role of the enzyme in electron export. Monitoring light-dependent extracellular superoxide production with a colorimetric assay is shown to be an effective way of screening for electrogenic potential of candidate algal strains. The results show that algal NADPH oxidases are important for superoxide anion production and open avenues for optimizing the biological component of these devices.
Collapse
Affiliation(s)
| | | | - Ian K Blaby
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA, USA
| | - Paolo Bombelli
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| | - Alison G Smith
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
34
|
Sun C, Liu L, Yu Y, Liu W, Lu L, Jin C, Lin X. Nitric oxide alleviates aluminum-induced oxidative damage through regulating the ascorbate-glutathione cycle in roots of wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:550-61. [PMID: 25319364 DOI: 10.1111/jipb.12298] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 10/12/2014] [Indexed: 05/21/2023]
Abstract
The possible association with nitric oxide (NO) and ascorbate-glutathione (AsA-GSH) cycle in regulating aluminum (Al) tolerance of wheat (Triticum aestivum L.) was investigated using two genotypes with different Al resistance. Exposure to Al inhibited root elongation, and triggered lipid peroxidation and oxidation of AsA to dehydroascorbate and GSH to glutathione disulfide in wheat roots. Exogenous NO significantly increased endogenous NO levels, and subsequently alleviated Al-induced inhibition of root elongation and oxidation of AsA and GSH to maintain the redox molecules in the reduced form in both wheat genotypes. Under Al stress, significantly increased activities and gene transcriptional levels of ascorbate peroxidase, glutathione reductase, and dehydroascorbate reductase, were observed in the root tips of the Al-tolerant genotype Jian-864. Nitric oxide application enhanced the activity and gene transcriptional level of these enzymes in both wheat genotypes. γ-Glutamylcysteine synthetase was not significantly affected by Al or NO, but NO treatments increased the activity of glutathione peroxidase and glutathione S-transferase to a greater extent than the Al-treated wheat seedlings. Proline was significantly decreased by Al, while it was not affected by NO. These results clearly suggest that NO protects wheat root against Al-induced oxidative stress, possibly through its regulation of the AsA-GSH cycle.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
35
|
Sáez CA, González A, Contreras RA, Moody AJ, Moenne A, Brown MT. A novel field transplantation technique reveals intra-specific metal-induced oxidative responses in strains of Ectocarpus siliculosus with different pollution histories. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 199:130-8. [PMID: 25645062 DOI: 10.1016/j.envpol.2015.01.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 01/11/2015] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
A novel field transplantation technique, in which seaweed material is incorporated into dialysis tubing, was used to investigate intra-specific responses to metals in the model brown alga Ectocarpus siliculosus. Metal accumulation in the two strains was similar, with higher concentrations in material deployed to the metal-contaminated site (Ventanas, Chile) than the pristine site (Quintay, Chile). However, the oxidative responses differed. At Ventanas, strain Es147 (from low-polluted site) underwent oxidative damage whereas Es524 (from highly polluted site) was not affected. Concentrations of reduced ascorbate (ASC) and reduced glutathione (GSH) were significantly higher in Es524. Activities of the antioxidant enzymes superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) all increased in Es524, whereas only SOD increased in Es147. For the first time, employing a field transplantation technique, we provide unambiguous evidence of inter-population variation of metal-tolerance in brown algae and establish that antioxidant defences are, in part, responsible.
Collapse
Affiliation(s)
- Claudio A Sáez
- School of Marine Science & Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA, Plymouth, United Kingdom; Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile; Centro de Estudios Avanzados, Universidad de Playa Ancha, Traslaviña #450, Viña del Mar, Chile
| | - Alberto González
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Rodrigo A Contreras
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - A John Moody
- School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA, Plymouth, United Kingdom
| | - Alejandra Moenne
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Murray T Brown
- School of Marine Science & Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA, Plymouth, United Kingdom.
| |
Collapse
|
36
|
Gómez M, González A, Sáez CA, Morales B, Moenne A. Copper-induced activation of TRP channels promotes extracellular calcium entry, activation of CaMs and CDPKs, copper entry and membrane depolarization in Ulva compressa. FRONTIERS IN PLANT SCIENCE 2015; 6:182. [PMID: 25852728 PMCID: PMC4367172 DOI: 10.3389/fpls.2015.00182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/06/2015] [Indexed: 05/29/2023]
Abstract
In order to identify channels involved in membrane depolarization, Ulva compressa was incubated with agonists of TRP channels C5, A1 and V1, and the level of intracellular calcium was detected. Agonists of TRPC5, A1 and V1 induced increases in intracellular calcium at 4, 9, and 11 min of exposure, respectively, and antagonists of TRPC5, A1, and V1 corresponding to SKF-96365 (SKF), HC-030031 (HC), and capsazepin (CPZ), respectively, inhibited calcium increases indicating that functional TRPs exist in U. compressa. In addition, copper excess induced increases in intracellular calcium at 4, 9, and 12 min which were inhibited by SKF, HC, and CPZ, respectively, indicating that copper activate TRPC5, A1, and V1 channels. Moreover, copper-induced calcium increases were inhibited by EGTA, a non-permeable calcium chelating agent, but not by thapsigargin, an inhibitor of endoplasmic reticulum (ER) calcium ATPase, indicating that activation of TRPs leads to extracellular calcium entry. Furthermore, copper-induced calcium increases were not inhibited by W-7, an inhibitor of CaMs, and staurosporine, an inhibitor of CDPKs, indicating that extracellular calcium entry did not require activation of CaMs and CDPKs. In addition, copper induced membrane depolarization events at 4, 8, and 11 min and these events were inhibited by SKF, HC, CPZ, and bathocuproine, a specific copper chelating agent, indicating that copper entry through TRP channels leads to membrane depolarization. Moreover, membrane depolarization events were inhibited by W-7 and staurosporine, indicating that activation of CaMs and CDPKs is required to allow copper entry through TRPs. Interestingly, copper-induced calcium increases and depolarization events were light-dependent and were inhibited by DCMU, an inhibitor of photosystem II, and ATP-γ-S, a non-hydrolizable analog of ATP, suggesting that ATP derived from photosynthesis is required to activate TRPs. Thus, light-dependent copper-induced activation TRPC5, A1 and V1 promotes extracellular calcium entry leading to activation of CaMs and CDPKs which, in turn, promotes copper entry through TRP channels and membrane depolarization.
Collapse
Affiliation(s)
- Melissa Gómez
- Laboratory of Marine Biotechnology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Alberto González
- Laboratory of Marine Biotechnology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Claudio A. Sáez
- Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa AnchaValparaíso, Chile
- Centro de Estudios Avanzados, Universidad de Playa AnchaViña del Mar, Chile
| | - Bernardo Morales
- Laboratory of Marine Biotechnology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| | - Alejandra Moenne
- Laboratory of Marine Biotechnology, Department of Biology, Faculty of Chemistry and Biology, Universidad de Santiago de ChileSantiago, Chile
| |
Collapse
|
37
|
Sáez CA, Roncarati F, Moenne A, Moody AJ, Brown MT. Copper-induced intra-specific oxidative damage and antioxidant responses in strains of the brown alga Ectocarpus siliculosus with different pollution histories. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:81-9. [PMID: 25521566 DOI: 10.1016/j.aquatox.2014.11.019] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/18/2014] [Accepted: 11/22/2014] [Indexed: 06/04/2023]
Abstract
Inter- and intra-specific variation in metal resistance has been observed in the ecologically and economically important marine brown macroalgae (Phaeophyceae), but the mechanisms of cellular tolerance are not well elucidated. To investigate inter-population responses of brown seaweeds to copper (Cu) pollution, the extent of oxidative damage and antioxidant responses were compared in three strains of the filamentous brown seaweed Ectocarpus siliculosus, the model organism for the algal class Phaeophyceae that diverged from other major eukaryotic groups over a billion year ago. Strains isolated from locations with different pollution histories (i.e. LIA, from a pristine site in Scotland; REP and Es524 from Cu-contaminated sites in England and Chile, respectively) were exposed to total dissolved Cu concentrations (CuT) of up to 2.4 μM (equivalent to 128 nM Cu(2+)) for 10 d. LIA exhibited oxidative stress, with increases in hydrogen peroxide (H2O2) and lipid peroxidation (measured as TBARS levels), and decreased concentrations of photosynthetic pigments. Es524 presented no apparent oxidative damage whereas in REP, TBARS increased, revealing some level of oxidative damage. Adjustments to activities of enzymes and antioxidant compounds concentrations in Es524 and REP were strain and treatment dependent. Mitigation of oxidative stress in Es524 was by increased activities of superoxide dismutases (SOD) at low CuT, and catalase (CAT) and ascorbate peroxidase (APX) at all CuT, accompanied by higher levels of antioxidants (ascorbate, glutathione, phenolics) at higher CuT. In REP, only APX activity increased, as did the antioxidants. For the first time evidence is presented for distinctive oxidative stress defences under excess Cu in two populations of a species of brown seaweed from environments contaminated by Cu.
Collapse
Affiliation(s)
- Claudio A Sáez
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - Francesca Roncarati
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom
| | - Alejandra Moenne
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | - A John Moody
- School of Biological Sciences, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom
| | - Murray T Brown
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, PL4 8AA Plymouth, United Kingdom.
| |
Collapse
|
38
|
Roncarati F, Sáez CA, Greco M, Gledhill M, Bitonti MB, Brown MT. Response differences between Ectocarpus siliculosus populations to copper stress involve cellular exclusion and induction of the phytochelatin biosynthetic pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:167-75. [PMID: 25546007 DOI: 10.1016/j.aquatox.2014.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/09/2014] [Accepted: 12/10/2014] [Indexed: 06/04/2023]
Abstract
Some populations of brown seaweed species inhabit metal-polluted environments and can develop tolerance to metal stress, but the mechanisms by which this is accomplished are still to be elucidated. To address this, the responses of two strains of the model brown alga Ectocarpus siliculosus isolated from sites with different histories of metal contamination exposed to total copper (CuT) concentrations ranging between 0 and 2.4 μM for 10 days were investigated. The synthesis of the metal-chelator phytochelatin (PCs) and relative levels of transcripts encoding the enzymes γ-glutamylcysteine synthetase (γ-GCS), glutathione synthase (GS) and phytochelatin synthase (PCS) that participate in the PC biosynthetic pathway were measured, along with the effects on growth, and adsorption and uptake of Cu. Growth of strain LIA, from a pristine site in Scotland, was inhibited to a greater extent, and at lower concentrations, than that of Es524, isolated from a Cu-contaminated site in Chile. Concentrations of intra-cellular Cu were higher and the exchangeable fraction was lower in LIA than Es524, especially at the highest exposure levels. Total glutathione concentrations increased in both strains with Cu exposure, whereas total PCs levels were higher in Es524 than LIA; PC2 and PC3 were detected in Es524 but PC2 only was found in LIA. The greater production and levels of polymerisation of PCs in Es524 can be explained by the up-regulation of genes encoding for key enzymes involved in the synthesis of PCs. In Es524 there was an increase in the transcripts of γ-GCS, GS and PCS, particularly under high Cu exposure, whereas in LIA4 transcripts of γ-GCS1 increased only slightly, γ-GCS2 and GS decreased and PCS did not change. The consequences of higher intra-cellular concentrations of Cu, lower production of PCs, and lower expression of enzymes involved in GSH-PCs synthesis may be contributing to an induced oxidative stress condition in LIA, which explains, at least in part, the observed sensitivity of LIA to Cu. Therefore, responses to Cu exposure in E. siliculosus relate to the contamination histories of the locations from where the strains were isolated and differences in Cu exclusion and PCs production are in part responsible for the development of intra-specific resistance.
Collapse
Affiliation(s)
- Francesca Roncarati
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK
| | - Claudio A Sáez
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK; Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, casilla 40 correo 33, Santiago, Chile; Departamento de Medio Ambiente, Facultad de Ingeniería, Universidad de Playa Ancha, Casilla 34-V, Valparaíso, Chile
| | - Maria Greco
- Laboratory of Plant Cyto-Physiology, University of Calabria, Arcavata di Rende, Cosenza 87036, Italy
| | - Martha Gledhill
- Helmholtz Centre for Ocean Research, GEOMAR, Wischhofstrasse 1-3, Build. 12, D-24148 Kiel, Germany
| | - Maria B Bitonti
- Laboratory of Plant Cyto-Physiology, University of Calabria, Arcavata di Rende, Cosenza 87036, Italy
| | - Murray T Brown
- School of Marine Science and Engineering, Faculty of Science and Environment, Plymouth University, Drake Circus, Plymouth PL4 8AA, UK.
| |
Collapse
|
39
|
Takaichi H, Comparini D, Iwase J, Bouteau F, Mancuso S, Kawano T. Mitigation of copper toxicity by DNA oligomers in green paramecia. PLANT SIGNALING & BEHAVIOR 2015; 10:e1010919. [PMID: 26418558 PMCID: PMC4883909 DOI: 10.1080/15592324.2015.1010919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 12/28/2014] [Accepted: 01/05/2015] [Indexed: 06/05/2023]
Abstract
Impact of transition metals which catalyze the generation of reactive oxygen species (ROS), on activation of cell death signaling in plant cells have been documented to date. Similarly in green paramecia (Paramecium bursaria), an aquatic protozoan species harboring symbiotic green algae in the cytoplasm, toxicities of various metallic ions have been documented. We have recently examined the effects of double-stranded GC-rich DNA fragments with copper-binding nature and ROS removal catalytic activity as novel plant cell-protecting agents, using the suspension-cultured tobacco cells. Here, we show that above DNA oligomers protect the cells of green paramecia from copper-induced cell death, suggesting that the phenomenon firstly observed in tobacco cells is not limited only within higher plants but it could be universally observable in wider range of organisms.
Collapse
Affiliation(s)
- Hiroshi Takaichi
- Laboratory of Chemical Biology and Bioengineering; Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan
| | - Diego Comparini
- Laboratory of Chemical Biology and Bioengineering; Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan
- University of Florence; LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan
| | - Junichiro Iwase
- University of Florence; LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan
- Collaboration center; Kyushu Institute of Technology; Kitakyushu, Japan
| | - François Bouteau
- University of Florence; LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan
- Université Paris Diderot; Sorbonne Paris Cité; Institut des Energies de Demain (FRE 3597); Paris, France
- LINV-DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy
| | - Stefano Mancuso
- University of Florence; LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan
- LINV-DiSPAA; Department of Agri-Food and Environmental Science; University of Florence; Sesto Fiorentino (FI), Italy
- Université Paris Diderot; Sorbonne Paris Cité; Paris 7 Interdisciplinary Energy Research Institute (PIERI); Paris, France
| | - Tomonori Kawano
- Laboratory of Chemical Biology and Bioengineering; Faculty and Graduate School of Environmental Engineering; The University of Kitakyushu; Kitakyushu, Japan
- University of Florence; LINV Kitakyushu Research Center (LINV@Kitakyushu); Kitakyushu, Japan
- Université Paris Diderot; Sorbonne Paris Cité; Paris 7 Interdisciplinary Energy Research Institute (PIERI); Paris, France
| |
Collapse
|
40
|
Zou HX, Pang QY, Lin LD, Zhang AQ, Li N, Lin YQ, Li LM, Wu QQ, Yan XF. Behavior of the edible seaweed Sargassum fusiforme to copper pollution: short-term acclimation and long-term adaptation. PLoS One 2014; 9:e101960. [PMID: 25025229 PMCID: PMC4098904 DOI: 10.1371/journal.pone.0101960] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 06/12/2014] [Indexed: 12/31/2022] Open
Abstract
Aquatic agriculture in heavy-metal-polluted coastal areas faces major problems due to heavy metal transfer into aquatic organisms, leading to various unexpected changes in nutrition and primary and/or secondary metabolism. In the present study, the dual role of heavy metal copper (Cu) played in the metabolism of photosynthetic organism, the edible seaweed Sargassum fusiforme, was evaluated by characterization of biochemical and metabolic responses using both 1H NMR and GC-MS techniques under acute (47 µM, 1 day) and chronic stress (8 µM, 7 days). Consequently, photosynthesis may be seriously inhibited by acute Cu exposure, resulting in decreasing levels of carbohydrates, e.g., mannitol, the main products of photosynthesis. Ascorbate may play important roles in the antioxidant system, whose content was much more seriously decreased under acute than that under chronic Cu stress. Overall, these results showed differential toxicological responses on metabolite profiles of S. fusiforme subjected to acute and chronic Cu exposures that allowed assessment of impact of Cu on marine organisms.
Collapse
Affiliation(s)
- Hui-Xi Zou
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qiu-Ying Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Li-Dong Lin
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Ai-Qin Zhang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration in Oil Field, Northeast Forest University, Harbin, People's Republic of China
| | - Nan Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Yan-Qing Lin
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Lu-Min Li
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Qin-Qin Wu
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| | - Xiu-Feng Yan
- Zhejiang Provincial Key Lab for Subtropical Water Environment and Marine Biological Resources Protection, College of Life and Environmental Science, Wenzhou University, Wenzhou, People's Republic of China
| |
Collapse
|
41
|
Iwase J, Furukawa H, Hiramatsu T, Bouteau F, Mancuso S, Tanaka K, Okazaki T, Kawano T. Protection of tobacco cells from oxidative copper toxicity by catalytically active metal-binding DNA oligomers. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1391-402. [PMID: 24659609 DOI: 10.1093/jxb/eru028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The impact of copper ions on the oxidative and calcium signal transductions, leading to cell death in plant cells, have been documented. Copper induces a series of biological and chemical reactions in plant cells including the oxidative burst reflecting the production of reactive oxygen species and the stimulation of calcium channel opening allowing a transient increase in cytosolic calcium concentrations. These early events, completed within a few minutes after the contact with copper, are known to trigger the development of cell death. The effects of DNA fragments with copper-binding motifs as novel plant cell-protecting agents were assessed using cell suspension cultures of transgenic tobacco (Nicotiana tabacum L., cell line BY-2) expressing the aequorin gene. The addition of GC-rich double-stranded DNA fragments, prior to the addition of copper ions, effectively blocked both the copper-induced calcium influx and cell death. In addition, the DNA-Cu complex examined was shown to possess superoxide-scavenging catalytic activity, suggesting that DNA-mediated protection of the cells from copper toxicity is due to the removal of superoxide. Lastly, a possible mechanism of DNA-Cu interaction and future applications of these DNA fragments in the protection of plant roots from metal toxicity or in aid of phyto-remediation processes are discussed.
Collapse
Affiliation(s)
- Junichiro Iwase
- Graduate School of Environmental Engineering, The University of Kitakyushu, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kumari P, Kumar M, Reddy C, Jha B. Nitrate and Phosphate Regimes Induced Lipidomic and Biochemical Changes in the Intertidal Macroalga Ulva lactuca (Ulvophyceae, Chlorophyta). ACTA ACUST UNITED AC 2013; 55:52-63. [DOI: 10.1093/pcp/pct156] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
43
|
Cai SW, Huang WX, Xiong ZT, Ye FY, Ren C, Xu ZR, Liu C, Deng SQ, Zhao J. Comparative study of root growth and sucrose-cleaving enzymes in metallicolous and non-metallicolous populations of Rumex dentatus under copper stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 98:95-102. [PMID: 24367815 DOI: 10.1016/j.ecoenv.2013.09.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sucrose metabolism in roots of metallophytes is very important for root growth and maintenance of heavy metal tolerance. However, rare researches have been carried out on this topic so far. We tested here a hypothesis that roots of copper-tolerant plants should manifest higher activities of sucrose-cleaving enzymes than non-tolerant plants for maintaining root growth under Cu stress. Plants of two contrasting populations of metallophyte Rumex dentatus, one from an ancient Cu mine (MP) and the other from a non-mine site (NMP), were treated with Cu in controlled experiments. Cu treatment resulted in a higher root biomass and root/shoot biomass ratio in MP compared to NMP. More complicated root system architecture was showed in MP under Cu stress. Activities and transcript levels of acid invertase as well as contents of sucrose and reducing sugar in MP were elevated under Cu treatment, while activities of neutral/alkaline invertase and sucrose synthase showed no significant differences between two populations. The results indicate important roles of acid invertase in governing root growth under Cu stress.
Collapse
|
44
|
Rodrigo-Moreno A, Poschenrieder C, Shabala S. Transition metals: a double edge sward in ROS generation and signaling. PLANT SIGNALING & BEHAVIOR 2013; 8:e23425. [PMID: 23333964 PMCID: PMC3676510 DOI: 10.4161/psb.23425] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Transition metals such as Iron (Fe) and Copper (Cu) are essential for plant cell development. At the same time, due their capability to generate hydroxyl radicals they can be potentially toxic to plant metabolism. Recent works on hydroxyl-radical activation of ion transporters suggest that hydroxyl radicals generated by transition metals could play an important role in plant growth and adaptation to imbalanced environments. In this mini-review, the relation between transition metals uptake and utilization and oxidative stress-activated ion transport in plant cells is analyzed, and a new model depicting both apoplastic and cytosolic mode of ROS signaling to plasma membrane transporters is suggested.
Collapse
Affiliation(s)
- Ana Rodrigo-Moreno
- LINV; Plant, Soil & Environmental Science; University of Firenze; Viale delle idee; Sesto Fiorentino (FI), Italy
| | - Charlotte Poschenrieder
- Fisiología Vegetal; Facultad de Biociencias; Universidad Autónoma de Barcelona; Bellaterra, Spain
| | - Sergey Shabala
- School of Agricultural Sciences; University of Tasmania; Hobart, TAS Australia
- Correspondence to: Sergey Shabala,
| |
Collapse
|
45
|
Kumari P, Singh RP, Bijo AJ, Reddy CRK, Jha B. Estimation of Lipid Hydroperoxide Levels in Tropical Marine Macroalgae. JOURNAL OF PHYCOLOGY 2012; 48:1362-1373. [PMID: 27009988 DOI: 10.1111/j.1529-8817.2012.01208.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 06/05/2012] [Indexed: 06/05/2023]
Abstract
The incipient levels of lipid hydroperoxides (LHPOs) were determined in selected green, brown, and red macroalgae by the FOX assay using hydroperoxy HPLC mix. The LHPOs contents varied between the investigated species and showed relatively low values in this study. Among the greens, it varied from 12 ± 6.2 μg · g(-1) (Codium sursum) to 31.5 ± 2.8 μg · g(-1) (Ulva lactuca), whereas in reds, from 5.7 ± 1.6 μg · g(-1) (Gracilaria corticata) to 46.2 ± 6 μg · g(-1) (Sarconema filiforme), and in browns, from 4.6 ± 4.4 μg · g(-1) (Dictyota bartayresiana) to 79 ± 5.0 μg · g(-1) (Sargassum tenerrimum), on fresh weight basis. These hydroperoxides represented a minor fraction of total lipids and ranged from 0.04% (S. swartzii) to 1.1% (S. tenerrimum) despite being a rich source of highly unsaturated fatty acids. The susceptibility of peroxidation was assessed by specific lipid peroxidazibility (SLP) values for macroalgal tissues. The LHPO values were found to be independent of both the PUFAs contents and their degree of unsaturation (DBI), as evident from the PCA analysis. SLP values were positively correlated with the LHPOs and negatively with DBI. The FOX assay gave ≥20-fold higher values for LHPOs as compared to the TBARS method for all the samples investigated in this study. Furthermore, U. lactuca cultured in artificial seawater (ASW) enriched with nutrients (N, P, and NP) showed a sharp decline in LHPOs contents relative to those cultured in ASW alone P ≤ 0.05. It is inferred from this study that the FOX assay is an efficient, rapid, sensitive, and inexpensive technique for detecting the incipient lipid peroxidation in macroalgal tissues.
Collapse
Affiliation(s)
- Puja Kumari
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - Ravindra Pal Singh
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - A J Bijo
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - C R K Reddy
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| | - Bhavanath Jha
- Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, 364002, Gujarat, India
| |
Collapse
|
46
|
González A, Cabrera MDLÁ, Henríquez MJ, Contreras RA, Morales B, Moenne A. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess. PLANT PHYSIOLOGY 2012; 158:1451-62. [PMID: 22234999 PMCID: PMC3291273 DOI: 10.1104/pp.111.191759] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases.
Collapse
|
47
|
Mellado M, Contreras RA, González A, Dennett G, Moenne A. Copper-induced synthesis of ascorbate, glutathione and phytochelatins in the marine alga Ulva compressa (Chlorophyta). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 51:102-8. [PMID: 22153245 DOI: 10.1016/j.plaphy.2011.10.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/13/2011] [Indexed: 05/20/2023]
Abstract
In order to analyze the synthesis of antioxidant and heavy metal-chelating compounds in response to copper stress, the marine alga Ulva compressa (Chlorophyta) was exposed to 10 μM copper for 7 days and treated with inhibitors of ASC synthesis, lycorine, and GSH synthesis, buthionine sulfoximine (BSO). The levels of ascorbate, in its reduced (ASC) and oxidized (DHA) forms, glutathione, in its reduced (GSH) and oxidized (GSSG) forms, and phytochelatins (PCs) were determined as well as activities of enzymes involved in ASC synthesis, L-galactose dehydrogenase (GDH) and L-galactono 1,4 lactone dehydrogenase (GLDH), and in GSH synthesis, γ-glutamylcysteine synthase (γ-GCS) and glutathione synthase (GS). The level of ASC rapidly decreased to reach a minimum at day 1 that remained low until day 7, DHA decreased until day 1 but slowly increased up to day 7 and its accumulation was inhibited by lycorine. In addition, GSH level increased to reach a maximal level at day 5 and GSSG increased up to day 7 and their accumulation was inhibited by BSO. Activities of GDH and GLDH increased until day 7 and GLDH was inhibited by lycorine. Moreover, activities of γ-GCS and GS increased until day 7 and γ-GCS was inhibited by BSO. Furthermore, PC2, PC3 and PC4, increased until day 7 and their accumulation was inhibited by BSO. Thus, copper induced the synthesis of ascorbate, glutathione and PCs in U. compressa suggesting that these compounds are involved in copper tolerance. Interestingly, U. compressa is, until now, the only ulvophyte showing ASC, GSH and PCs synthesis in response to copper excess.
Collapse
Affiliation(s)
- Macarena Mellado
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40 Correo 33, Santiago, Chile
| | | | | | | | | |
Collapse
|
48
|
Ramos-Jiliberto R, Garay-Narváez L, Medina MH. Retrospective qualitative analysis of ecological networks under environmental perturbation: a copper-polluted intertidal community as a case study. ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:234-243. [PMID: 21877226 DOI: 10.1007/s10646-011-0782-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2011] [Indexed: 05/31/2023]
Abstract
The coast of Chañaral Bay in northern Chile has been affected by copper mine wastes for decades. This sustained perturbation has disrupted the intertidal community in several ways, but the mechanisms behind the observed shifts in local biodiversity remain poorly understood. Our main goal was to identify the species (lumped into trophic groups) belonging to the Chañaral intertidal community that, being directly affected by copper pollution, contributed primarily to the generation of the observed changes in community structure. These groups of species were called initiators. We applied a qualitative modelling approach based only on the sign and direction of effects among species, and present a formula for predicting changes in equilibrium abundances considering stress on multiple variables simultaneously. We then applied this technique retrospectively to identify the most likely set of initiators. Our analyses allowed identification of a unique set of four initiators in the studied intertidal system (a group of algae, sessile invertebrates, a group of herbivores and starfish), which were hypothesized to be the primary drivers of the observed changes in community structure. In addition, a hypothesis was derived about how the perturbation affected these initiators. The hypothesis is that pollution affected negatively the population growth rate of both algae and sessile invertebrates and suppressed the interaction between herbivores and starfish. Our analytic approach, focused on identifying initiators, constitutes an advance towards understanding the mechanisms underlying human-driven ecosystem disruption and permits identifying species that may serve as a focal point for community management and restoration.
Collapse
Affiliation(s)
- Rodrigo Ramos-Jiliberto
- Centro Nacional del Medio Ambiente, Fundación de la Universidad de Chile, Av. Larraín, 9975 La Reina, Santiago, Chile.
| | | | | |
Collapse
|
49
|
Anderson A, Bothwell JH, Laohavisit A, Smith AG, Davies JM. NOX or not? Evidence for algal NADPH oxidases. TRENDS IN PLANT SCIENCE 2011; 16:579-581. [PMID: 22000495 DOI: 10.1016/j.tplants.2011.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 09/08/2011] [Accepted: 09/09/2011] [Indexed: 05/31/2023]
|
50
|
Contreras-Porcia L, Dennett G, González A, Vergara E, Medina C, Correa JA, Moenne A. Identification of copper-induced genes in the marine alga Ulva compressa (Chlorophyta). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:544-56. [PMID: 20936320 DOI: 10.1007/s10126-010-9325-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 09/23/2010] [Indexed: 05/14/2023]
Abstract
In order to identify genes/proteins involved in copper tolerance, the marine alga Ulva compressa was cultivated with 10 μM copper for 3 days. The activities of antioxidant enzymes ascorbate peroxidase (AP), peroxiredoxin (PRX), thioredoxin (TRX), and glutathione-S-transferase (GST) and the level of lipoperoxides were determined in the alga cultivated with and without copper addition. Antioxidant enzyme activities and lipoperoxides level increased in response to copper excess, indicating that the alga was under oxidative stress. A cDNA library was prepared using U. compressa cultivated with 10 μM copper for 3 days. A total of 3 × 10(4) clones were isolated and 480 clones were sequenced, resulting in 235 non-redundant ESTs, of which 104 encode proteins with known functions. Among them, we identified proteins involved in (1) antioxidant metabolism such as AP, PRX, TRX, GST, and metalothionein (MET), (2) signal transduction, such as calmodulin (CAM), (3) calcium-dependent protein kinase (CDPK) and nucleoside diphosphate kinase (NDK), (4) gene expression, (5) protein synthesis and degradation, and (6) chloroplast and mitochondria electron transport chains. Half of the identified proteins are potentially localized in organelles. The relative level of 18 genes, including those coding for AP, PRX, TRX, GST, MET, CAM, CDPK, and NDK were determined by quantitative RT-PCR in the alga cultivated with 10 μM copper for 0 to 7 days. Transcript levels increased in response to copper stress and most of them reached a maximum at days 3 and 5. Thus, the selected genes are induced by copper stress and they are probably involved in copper acclimation and tolerance.
Collapse
Affiliation(s)
- Loretto Contreras-Porcia
- Departamento de Ecología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, 6513677, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|