1
|
Alecu I, Bennett SAL. Dysregulated Lipid Metabolism and Its Role in α-Synucleinopathy in Parkinson's Disease. Front Neurosci 2019; 13:328. [PMID: 31031582 PMCID: PMC6470291 DOI: 10.3389/fnins.2019.00328] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/21/2019] [Indexed: 12/23/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, the main pathological hallmark of which is the accumulation of α-synuclein (α-syn) and the formation of filamentous aggregates called Lewy bodies in the brainstem, limbic system, and cortical areas. Lipidomics is a newly emerging field which can provide fresh insights and new answers that will enhance our capacity for early diagnosis, tracking disease progression, predicting critical endpoints, and identifying risk in pre-symptomatic persons. In recent years, lipids have been implicated in many aspects of PD pathology. Biophysical and lipidomic studies have demonstrated that α-syn binds preferentially not only to specific lipid families but also to specific molecular species and that these lipid-protein complexes enhance its interaction with synaptic membranes, influence its oligomerization and aggregation, and interfere with the catalytic activity of cytoplasmic lipid enzymes and lysosomal lipases, thereby affecting lipid metabolism. The genetic link between aberrant lipid metabolism and PD is even more direct, with mutations in GBA and SMPD1 enhancing PD risk in humans and loss of GALC function increasing α-syn aggregation and accumulation in experimental murine models. Moreover, a number of lipidomic studies have reported PD-specific lipid alterations in both patient brains and plasma, including alterations in the lipid composition of lipid rafts in the frontal cortex. A further aspect of lipid dysregulation promoting PD pathogenesis is oxidative stress and inflammation, with proinflammatory lipid mediators such as platelet activating factors (PAFs) playing key roles in arbitrating the progressive neurodegeneration seen in PD linked to α-syn intracellular trafficking. Lastly, there are a number of genetic risk factors of PD which are involved in normal lipid metabolism and function. Genes such as PLA2G6 and SCARB2, which are involved in glycerophospholipid and sphingolipid metabolism either directly or indirectly are associated with risk of PD. This review seeks to describe these facets of metabolic lipid dysregulation as they relate to PD pathology and potential pathomechanisms involved in disease progression, while highlighting incongruous findings and gaps in knowledge that necessitate further research.
Collapse
Affiliation(s)
- Irina Alecu
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| | - Steffany A. L. Bennett
- Neural Regeneration Laboratory, Department of Biochemistry, Microbiology and Immunology, Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis and Research Innovation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
2
|
Brailoiu E, Barlow CL, Ramirez SH, Abood ME, Brailoiu GC. Effects of Platelet-Activating Factor on Brain Microvascular Endothelial Cells. Neuroscience 2018. [PMID: 29522856 DOI: 10.1016/j.neuroscience.2018.02.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator that exerts various pathophysiological effects by interacting with a G protein-coupled receptor. PAF has been reported to increase the permeability of the blood-brain barrier (BBB) via incompletely characterized mechanisms. We investigated the effect of PAF on rat brain microvascular endothelial cells (RBMVEC), a critical component of the BBB. PAF produced a dose-dependent increase in cytosolic Ca2+ concentration; the effect was prevented by the PAF receptor antagonist, WEB2086. The effect of PAF on cytosolic Ca2+ was abolished in Ca2+-free saline or in the presence of L-type voltage-gated Ca2+ channel inhibitor, nifedipine, indicating that Ca2+ influx is critical for PAF-induced increase in cytosolic Ca2+. PAF produced RBMVEC depolarization; the effect was inhibited by WEB2086. In cells loaded with [(4-amino-5-methylamino-2',7'-difluoro-fluorescein)diacetate] (DAF-FM), a nitric oxide (NO)-sensitive fluorescent dye, PAF increased the NO level; the effect was prevented by WEB2086, nifedipine or by l-NAME, an inhibitor of NO synthase. Immunocytochemistry studies indicate that PAF reduced the immunostaining of ZO-1, a tight junction-associated protein, increased F-actin fibers, and produced intercellular gaps. PAF produced a decrease in RBMVEC monolayer electrical resistance assessed with Electric Cell-Substrate Impedance Sensing (ECIS), indicative of a disruption of endothelial barrier function. In vivo studies indicate that PAF increased the BBB permeability, assessed with sodium fluorescein and Evans Blue methods, via PAF receptor-dependent mechanisms, consequent to Ca2+ influx and increased NO levels. Our studies reveal that PAF alters the BBB permeability by multiple mechanisms, which may be relevant for central nervous system (CNS) inflammatory disorders.
Collapse
Affiliation(s)
- Eugen Brailoiu
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Christine L Barlow
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States
| | - Servio H Ramirez
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States; Department of Pathology & Laboratory Medicine, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - Mary E Abood
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Philadelphia, PA 19140, United States
| | - G Cristina Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Philadelphia, PA 19107, United States.
| |
Collapse
|
3
|
Li ZY, Chung YH, Shin EJ, Dang DK, Jeong JH, Ko SK, Nah SY, Baik TG, Jhoo JH, Ong WY, Nabeshima T, Kim HC. YY-1224, a terpene trilactone-strengthened Ginkgo biloba, attenuates neurodegenerative changes induced by β-amyloid (1-42) or double transgenic overexpression of APP and PS1 via inhibition of cyclooxygenase-2. J Neuroinflammation 2017; 14:94. [PMID: 28449688 PMCID: PMC5408406 DOI: 10.1186/s12974-017-0866-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 04/18/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Ginkgo biloba has been reported to possess free radical-scavenging antioxidant activity and anti-inflammatory properties. In our pilot study, YY-1224, a terpene trilactone-strengthened extract of G. biloba, showed anti-inflammatory, neurotrophic, and antioxidant effects. RESULTS We investigated the pharmacological potential of YY-1224 in β-amyloid (Aβ) (1-42)-induced memory impairment using cyclooxygenase-2 (COX-2) knockout (-/-) and APPswe/PS1dE9 transgenic (APP/PS1 Tg) mice. Repeated treatment with YY-1224 significantly attenuated Aβ (1-42)-induced memory impairment in COX-2 (+/+) mice, but not in COX-2 (-/-) mice. YY-1224 significantly attenuated Aβ (1-42)-induced upregulation of platelet-activating factor (PAF) receptor gene expression, reactive oxygen species, and pro-inflammatory factors. In addition, YY-1224 significantly inhibited Aβ (1-42)-induced downregulation of PAF-acetylhydrolase-1 (PAF-AH-1) and peroxisome proliferator-activated receptor γ (PPARγ) gene expression. These changes were more pronounced in COX-2 (+/+) mice than in COX-2 (-/-) mice. YY-1224 significantly attenuated learning impairment, Aβ deposition, and pro-inflammatory microglial activation in APP/PS1 Tg mice, whereas it significantly enhanced PAF-AH and PPARγ expression. A preferential COX-2 inhibitor, meloxicam, did not affect the pharmacological activity by YY-1224, suggesting that the COX-2 gene is a critical mediator of the neuroprotective effects of YY-1224. The protective activity of YY-1224 appeared to be more efficacious than a standard G. biloba extract (Gb) against Aβ insult. CONCLUSIONS Our results suggest that the protective effects of YY-1224 against Aβ toxicity may be associated with its PAF antagonistic- and PPARγ agonistic-potential as well as inhibition of the Aβ-mediated pro-inflammatory switch of microglia phenotypes through suppression of COX-2 expression.
Collapse
Affiliation(s)
- Zheng-Yi Li
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Eun-Joo Shin
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Duy-Khanh Dang
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, 06974 Republic of Korea
| | - Sung Kwon Ko
- Department of Oriental Medical Food and Nutrition, Semyung University, Jecheon, 27136 Republic of Korea
| | - Seung-Yeol Nah
- Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine and Bio/Molecular Informatics Center, Konkuk University, Seoul, 05029 Republic of Korea
| | - Tae Gon Baik
- R&D Center, Yuyu Pharma, Seoul, 04598 Republic of Korea
| | - Jin Hyeong Jhoo
- Department of Psychiatry, Medical School, Kangwon National University, Chunchon, 24341 Republic of Korea
| | - Wei-Yi Ong
- Department of Anatomy, National University of Singapore, Singapore, 119260 Singapore
| | - Toshitaka Nabeshima
- Nabeshima Laboratory, Graduate School of Pharmaceutical Sciences, Meijo University, Nagoya, 468-8503 Japan
| | - Hyoung-Chun Kim
- Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Republic of Korea
| |
Collapse
|
4
|
Latchoumycandane C, Nagy LE, McIntyre TM. Myeloperoxidase formation of PAF receptor ligands induces PAF receptor-dependent kidney injury during ethanol consumption. Free Radic Biol Med 2015; 86:179-90. [PMID: 26003521 PMCID: PMC4554800 DOI: 10.1016/j.freeradbiomed.2015.05.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 05/07/2015] [Accepted: 05/13/2015] [Indexed: 02/06/2023]
Abstract
Cytochrome P450 2E1 (CYP2E1) induction and oxidative metabolism of ethanol in hepatocytes inflame and damage liver. Chronic ethanol ingestion also induces kidney dysfunction, which is associated with mortality from alcoholic hepatitis. Whether the kidney is directly affected by ethanol or is secondary to liver damage is not established. We found that CYP2E1 was induced in kidney tubules of mice chronically ingesting a modified Lieber-deCarli liquid ethanol diet. Phospholipids of kidney tubules were oxidized and fragmented in ethanol-fed mice with accumulation of azelaoyl phosphatidylcholine (Az-PC), a nonbiosynthetic product formed only by oxidative truncation of polyunsaturated phosphatidylcholine. Az-PC stimulates the inflammatory PAF receptor (PTAFR) abundantly expressed by neutrophils and kidney tubules, and inflammatory cells and myeloperoxidase-containing neutrophils accumulated in the kidneys of ethanol-fed mice after significant hysteresis. Decreased kidney filtration and induction of the acute kidney injury biomarker KIM-1 in tubules temporally correlated with leukocyte infiltration. Genetic ablation of PTAFR reduced accumulation of PTAFR ligands and reduced leukocyte infiltration into kidneys. Loss of this receptor in PTAFR(-/-) mice also suppressed oxidative damage and kidney dysfunction without affecting CYP2E1 induction. Neutrophilic inflammation was responsible for ethanol-induced kidney damage, because loss of neutrophil myeloperoxidase in MPO(-/-) mice was similarly protective. We conclude that ethanol catabolism in renal tubules results in a self-perpetuating cycle of CYP2E1 induction, local PTAFR ligand formation, and neutrophil infiltration and activation that leads to myeloperoxidase-dependent oxidation and damage to kidney function. Hepatocytes do not express PTAFR, so this oxidative cycle is a local response to ethanol catabolism in the kidney.
Collapse
Affiliation(s)
- Calivarathan Latchoumycandane
- Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Laura E Nagy
- Pathobiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | - Thomas M McIntyre
- Cellular and Molecular Medicine, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA.
| |
Collapse
|
5
|
Agrawal V, Jaiswal MK, Ilievski V, Beaman KD, Jilling T, Hirsch E. Platelet-activating factor: a role in preterm delivery and an essential interaction with Toll-like receptor signaling in mice. Biol Reprod 2014; 91:119. [PMID: 25253732 DOI: 10.1095/biolreprod.113.116012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Platelet-activating factor (PAF), a potent phospholipid activator of inflammation that signals through its cognate receptor (platelet-activating factor receptor, PTAFR), has been shown to induce preterm delivery in mice. Toll-like receptors (TLRs) are transmembrane receptors that mediate innate immunity. We have shown previously that Escherichia coli-induced preterm delivery in mice requires TLR signaling via the adaptor protein myeloid differentiation primary response gene 88 (MyD88), but not an alternative adaptor, Toll/IL-1 receptor domain-containing adapter protein-inducing interferon-beta (TRIF). In the present work, we analyzed the role of endogenously produced PAF in labor using mice lacking (knockout [KO]) PAF acetylhydrolase (PAF-AH; the key degrading enzyme for PAF). PAF-AH KO mice are more susceptible to E. coli-induced preterm delivery and inflammation than controls. In peritoneal macrophages, the PTAFR agonist carbamyl PAF induces production of inflammatory markers previously demonstrated to be upregulated during bacterially induced labor, including: inducible nitric oxide synthase (Nos2), the chemokine Ccl5 (RANTES), tumor necrosis factor (Tnf), and level of their end-products (NO, CCL5, TNF) in a process dependent upon both IkappaB kinase and calcium/calmodulin-dependent protein kinase II. Interestingly, this induced expression was completely eliminated not only in macrophages deficient in PTAFR, but also in those lacking either TLR4, MyD88, or TRIF. The dependence of PAF effects upon TLR pathways appears to be related to production of PTAFR itself: PAF-induced expression of Ptafr mRNA was eliminated completely in TLR4 KO and partially in MyD88 and TRIF KO macrophages. We conclude that PAF signaling plays an important role in bacterially induced preterm delivery. Furthermore, in addition to its cognate receptor, PAF signaling in peritoneal macrophages requires TLR4, MyD88, and TRIF.
Collapse
Affiliation(s)
- Varkha Agrawal
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Mukesh Kumar Jaiswal
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Vladimir Ilievski
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois
| | - Tamas Jilling
- Department of Pediatrics, Division of Neonatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Emmet Hirsch
- Department of Obstetrics and Gynecology, NorthShore University HealthSystem, Evanston, Illinois Pritzker School of Medicine, University of Chicago, Chicago, Illinois
| |
Collapse
|
6
|
Iovino F, Molema G, Bijlsma JJE. Streptococcus pneumoniae Interacts with pIgR expressed by the brain microvascular endothelium but does not co-localize with PAF receptor. PLoS One 2014; 9:e97914. [PMID: 24841255 PMCID: PMC4026408 DOI: 10.1371/journal.pone.0097914] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 04/26/2014] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pneumoniae is thought to adhere to the blood-brain barrier (BBB) endothelium prior to causing meningitis. The platelet activating factor receptor (PAFR) has been implicated in this adhesion but there is a paucity of data demonstrating direct binding of the bacteria to PAFR. Additionally, studies that inhibit PAFR strongly suggest that alternative receptors for pneumococci are present on the endothelium. Therefore, we studied the roles of PAFR and pIgR, an established epithelial pneumococcal receptor, in pneumococcal adhesion to brain endothelial cells in vivo. Mice were intravenously infected with pneumococci and sacrificed at various time points before meningitis onset. Co-localization of bacteria with PAFR and pIgR was investigated using immunofluorescent analysis of the brain tissue. In vitro blocking with antibodies and incubation of pneumococci with endothelial cell lysates were used to further probe bacteria-receptor interaction. In vivo as well as in vitro pneumococci did not co-localize with PAFR. On the other hand the majority of S. pneumoniae co-localized with endothelial pIgR and pIgR blocking reduced pneumococcal adhesion to endothelial cells. Pneumococci physically interacted with pIgR in endothelial cell lysates. In conclusion, bacteria did not associate with PAFR, indicating an indirect role of PAFR in pneumococcal adhesion to endothelial cells. In contrast, pIgR on the BBB endothelium may represent a novel pneumococcal adhesion receptor.
Collapse
Affiliation(s)
- Federico Iovino
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Grietje Molema
- Department of Pathology & Medical Biology, Medical Biology section, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jetta J. E. Bijlsma
- Department of Medical Microbiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * E-mail:
| |
Collapse
|
7
|
Abstract
This article examines the role of the endothelial cytoskeleton in the lung's ability to restrict fluid and protein to vascular space at normal vascular pressures and thereby to protect lung alveoli from lethal flooding. The barrier properties of microvascular endothelium are dependent on endothelial cell contact with other vessel-wall lining cells and with the underlying extracellular matrix (ECM). Focal adhesion complexes are essential for attachment of endothelium to ECM. In quiescent endothelial cells, the thick cortical actin rim helps determine cell shape and stabilize endothelial adherens junctions and focal adhesions through protein bridges to actin cytoskeleton. Permeability-increasing agonists signal activation of "small GTPases" of the Rho family to reorganize the actin cytoskeleton, leading to endothelial cell shape change, disassembly of cortical actin rim, and redistribution of actin into cytoplasmic stress fibers. In association with calcium- and Src-regulated myosin light chain kinase (MLCK), stress fibers become actinomyosin-mediated contractile units. Permeability-increasing agonists stimulate calcium entry and induce tyrosine phosphorylation of VE-cadherin (vascular endothelial cadherin) and β-catenins to weaken or pull apart endothelial adherens junctions. Some permeability agonists cause latent activation of the small GTPases, Cdc42 and Rac1, which facilitate endothelial barrier recovery and eliminate interendothelial gaps. Under the influence of Cdc42 and Rac1, filopodia and lamellipodia are generated by rearrangements of actin cytoskeleton. These motile evaginations extend endothelial cell borders across interendothelial gaps, and may initiate reannealing of endothelial junctions. Endogenous barrier protective substances, such as sphingosine-1-phosphate, play an important role in maintaining a restrictive endothelial barrier and counteracting the effects of permeability-increasing agonists.
Collapse
Affiliation(s)
- Stephen M Vogel
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, Illinois, USA.
| | | |
Collapse
|
8
|
Platelet-activating factor receptor knockout mice are protected from MPTP-induced dopaminergic degeneration. Neurochem Int 2013; 63:121-32. [DOI: 10.1016/j.neuint.2013.05.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 05/16/2013] [Accepted: 05/26/2013] [Indexed: 11/20/2022]
|
9
|
A Novel Platelet-Activating Factor Receptor Antagonist Inhibits Choroidal Neovascularization and Subretinal Fibrosis. PLoS One 2013; 8:e68173. [PMID: 23826375 PMCID: PMC3694891 DOI: 10.1371/journal.pone.0068173] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 05/28/2013] [Indexed: 11/19/2022] Open
Abstract
Choroidal neovascularization (CNV) is a critical pathogenesis in age-related macular degeneration (AMD), the most common cause of blindness in developed countries. To date, the precise molecular and cellular mechanisms underlying CNV have not been elucidated. Platelet-activating factor (PAF) has been previously implicated in angiogenesis; however, the roles of PAF and its receptor (PAF-R) in CNV have not been addressed. The present study reveals several important findings concerning the relationship of the PAF-R signaling with CNV. PAF-R was detected in a mouse model of laser-induced CNV and was upregulated during CNV development. Experimental CNV was suppressed by administering WEB2086, a novel PAF-R antagonist. WEB2086-dependent suppression of CNV occurred via the inhibition of macrophage infiltration and the expression of proangiogenic (vascular endothelial growth factor) and proinflammatory molecules (monocyte chemotactic protein-1 and IL-6) in the retinal pigment epithelium-choroid complex. Additionally, WEB2086-induced PAF-R blockage suppresses experimentally induced subretinal fibrosis, which resembles the fibrotic subretinal scarring observed in neovascular AMD. As optimal treatment modalities for neovascular AMD would target the multiple mechanisms of AMD-associated vision loss, including neovascularization, inflammation and fibrosis, our results suggest PAF-R as an attractive molecular target in the treatment of AMD.
Collapse
|
10
|
Abstract
Metastatic melanoma is extremely refractory to existing chemotherapeutic drugs and bioimmune adjuvant therapies, and the life span of patients with metastatic melanoma is often measured in months. Understanding the mechanisms responsible for the development of tumor metastasis is critical for finding successful curative measures. An expending amount of data reveal the importance of inflammatory microenvironment and stroma in cancer initiation and progression, which brings new directions and approaches to cancer treatment. This review will summarize current data on the role of the tumor microenvironment in shaping the metastatic phenotype of melanoma.
Collapse
Affiliation(s)
- Vladislava O Melnikova
- Department of Cancer Biology, The University of Texas, M. D. Anderson Cancer Center, Houston, TX, USA
| | | |
Collapse
|
11
|
Melnikova VO, Villares GJ, Bar-Eli M. Emerging roles of PAR-1 and PAFR in melanoma metastasis. CANCER MICROENVIRONMENT 2008; 1:103-11. [PMID: 19308689 PMCID: PMC2654348 DOI: 10.1007/s12307-008-0002-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/10/2008] [Indexed: 12/21/2022]
Abstract
Melanoma growth, angiogenesis and metastatic progression are strongly promoted by the inflammatory tumor microenvironment due to high levels of cytokine and chemokine secretion by the recruited inflammatory and stromal cells. In addition, platelets and molecular components of procoagulant pathways have been recently emerging as critical players of tumor growth and metastasis. In particular, thrombin, through the activity of its receptor protease-activated receptor-1 (PAR-1), regulates tumor cell adhesion to platelets and endothelial cells, stimulates tumor angiogenesis, and promotes tumor growth and metastasis. Notably, in many tumor types including melanoma, PAR-1 expression directly correlates with their metastatic phenotype and is directly responsible for the expression of interleukin-8, matrix metalloproteinase-2 (MMP-2), vascular endothelial growth factor, platelet-derived growth factor, and integrins. Another proinflammatory receptor–ligand pair, platelet-activating factor (PAF) and its receptor (PAFR), have been shown to act as important modulators of tumor cell adhesion to endothelial cells, angiogenesis, tumor growth and metastasis. PAF is a bioactive lipid produced by a variety of cells from membrane glycerophospholipids in the same reaction that releases arachidonic acid, and can be secreted by platelets, inflammatory cells, keratinocytes and endothelial cells. We have demonstrated that in metastatic melanoma cells, PAF stimulates the phosphorylation of cyclic adenosine monophosphate response element-binding protein (CREB) and activating transcription factor 1 (ATF-1), which results in overexpression of MMP-2 and membrane type 1-MMP (membrane type 1-MMP). Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that metastatic melanoma cells are better equipped than their non-metastatic counterparts to respond to PAF within the tumor microenvironment. The evidence supporting the hypothesis that the two G-protein coupled receptors, PAR-1 and PAFR, contribute to the acquisition of the metastatic phenotype of melanoma is presented and discussed.
Collapse
Affiliation(s)
- Vladislava O Melnikova
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
12
|
Chen Y, Wang CP, Lu YY, Zhou L, Su SH, Jia HJ, Feng YY, Yang YP. Hepatic stellate cells may be potential effectors of platelet activating factor induced portal hypertension. World J Gastroenterol 2008; 14:218-23. [PMID: 18186558 PMCID: PMC2675117 DOI: 10.3748/wjg.14.218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To determine platelet activating factor (PAF) receptor expression in cirrhotic hepatic stellate cells.
METHODS: Hepatic stellate cells, isolated from the livers of control and CCl4-induced cirrhotic rats, were placed in serum-free medium after overnight culture. We determined the PAF receptor in hepatic stellate cells by saturation binding technique and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), and the effects of PAF and its antagonist BN52021 on prostaglandin E2 (PGE2) release by stellate cells.
RESULTS: Scatchard analysis indicated the presence of PAF receptor with dissociation constant (Kd) of 4.66 nmol/L and maximum binding capacity (Bmax) of 24.65 fmol/&mgr;g in cirrhotic stellate cells. Compared with the control, the maximum PAF binding capacity increased significantly (Bmax: 24.65 ± 1.96 fmol/&mgr;g. DNA, R = 0.982 vs 5.74 ± 1.55 fmol/&mgr;g. DNA, R = 0.93; P < 0.01), whereas receptor affinity had no significant difference (Kd of 4.66 ± 0.33 nmol/L for the cirrhosis and 3.51 ± 0.26 nmol/L for the control; P > 0.05). Consistent with the receptor binding data, the mRNA expression of PAF receptor was increased significantly in cirrhotic stellate cells. PAF in a concentration-dependent manner induced PGE2 synthesis in cirrhotic hepatic stellate cells, but the effects were blocked significantly by BN52021.
CONCLUSION: Cirrhosis sensitizes hepatic stellate cells to PAF by elevating its receptor level and hepatic stellate cells maybe potential effectors of PAF induced portal hypertension.
Collapse
|
13
|
Melnikova V, Bar-Eli M. Inflammation and melanoma growth and metastasis: the role of platelet-activating factor (PAF) and its receptor. Cancer Metastasis Rev 2008; 26:359-71. [PMID: 17721743 DOI: 10.1007/s10555-007-9092-9] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inflammatory tumor microenvironment fosters tumor growth, angiogenesis and metastatic progression. Platelet-activating factor (PAF) is an inflammatory biolipid produced from membrane glycerophospholipids. Through the activity of its G-protein coupled receptor, PAF triggers a variety of pathological reactions including tumor neo-angiogenesis. Several groups have demonstrated that inhibiting PAF-PAF receptor pathway at the level of a ligand or receptor results in an effective inhibition of experimental tumor growth and metastasis. In particular, our group has recently demonstrated that PAF receptor antagonists can effectively inhibit the metastatic potential of human melanoma cells in nude mice. Furthermore, we showed that PAF stimulated the phosphorylation of CREB and ATF-1 in metastatic melanoma cells, which resulted in overexpression of MMP-2 and MT1-MMP. Our data indicate that PAF acts as a promoter of melanoma metastasis in vivo. Since only metastatic melanoma cells overexpress CREB/ATF-1, we propose that these cells are better equipped to respond to PAF within the tumor microenvironment when compared to their non-metastatic counterparts.
Collapse
Affiliation(s)
- Vladislava Melnikova
- Department of Cancer Biology, The University of Texas M. D. Anderson Cancer Center, P.O. Box 173, Houston, TX 77030, USA
| | | |
Collapse
|
14
|
Zhang X, Pan XL, Liu XT, Wang S, Wang LJ. Down-regulation of platelet-activating factor receptor gene expression during focal reversible cerebral ischemia in rats. Neurochem Res 2007; 32:451-6. [PMID: 17268849 DOI: 10.1007/s11064-006-9248-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 12/01/2006] [Indexed: 11/28/2022]
Abstract
Platelet-activating factor (PAF) is an endogenous potent phospholipid mediator in stroke and related to the post-ischemic brain damage. The aim of this study was to investigate the regulation and mechanisms of PAF receptor gene expression in the perifocal regions of cerebral infarction after middle cerebral artery occlusion/reperfusion. Sixty mature Wistar rats were randomly divided into 12 groups: sham-operated control group, simple ischemia 90 min group, 6, 12, 18 h, 1 day (1 d), 2, 3, 4, 5, 6, 7 d reperfusion groups. After the right middle cerebral artery occluded, the rats were suffered from ischemia for 90 min, and then reperfusion was allowed for different time courses. Reverse transcription-polymerase chain reaction (RT-PCR) and radioimmunoassay were applied to evaluate the PAF receptor messenger RNA (mRNA) expression and PAF levels in the perifocal regions of cerebral infarction respectively. RT-PCR analysis revealed that PAF receptor mRNA was 0.95 +/- 0.15 in control group. However, following ischemia-reperfusion, the levels of PAF receptor mRNA progressively decreased until 2 d of reperfusion (0.54 +/- 0.10), then returned to control group's levels gradually. Compared with the control group's (582 +/- 72 pg/g wet weight), the PAF concentrations of simple ischemic and 6, 12, 18 h, 1, 2 d reperfusion group were significantly higher than that of any other groups. These results indicate that PAF receptor gene expression may be subject to down-regulation in the perifocal regions of cerebral infarction after cerebral ischemia-reperfusion and relative to the increase of endogenous PAF concentrations.
Collapse
Affiliation(s)
- Xiong Zhang
- Department of Neurology, Guangdong Provincial People's Hospital, Nanfang Medical University, 106, Zhongshan Er Road, Guangzhou, Guangdong Province 510080, PR China
| | | | | | | | | |
Collapse
|
15
|
Yang YP, Ma XM, Wang CP, Han J, Lu YY, Xiang Y, Su SH, Feng YY. Effect of increased hepatic platelet activating factor and its receptor portal hypertension in CCl 4-induced liver cirrhosis. World J Gastroenterol 2006; 12:709-15. [PMID: 16521183 PMCID: PMC4066120 DOI: 10.3748/wjg.v12.i5.709] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the changes in hepatic platelet activating factor (PAF) and its receptors and their effect on portal pressure of cirrhotic rats induced by CCl4.
METHODS: A model of liver cirrhosis was replicated in rats by intra-peritoneal injection of CCl4 for 8 wk. We determined the effect of hepatic PAF and its receptor level on portal and arterial pressure by EIA, saturation binding and RT-PCR technique.
RESULTS: Compared to control rats, cirrhotic rats had higher hepatic PAF levels and output as well as higher plasma PAF levels (P < 0.01, P < 0.01, P < 0.05, respectively). Both hepatic PAF receptor mRNA levels and PAF binding were nearly 3-fold greater in cirrhotic rats (P < 0.01). Portal injection of PAF (1 g/kg WT) increased the portal pressure by 22% and 33% in control and cirrhotic rats, respectively. In contrast, the arterial pressure was decreased in the both groups (54% in control rats and 42% in cirrhotic rats). Injection of the PAF antagonist BN52021 (5 mg/kg WT) decreased the portal pressure by 16% in cirrhotic rats but had no effect in the control rats.
CONCLUSION: The upregulation of the PAF system contributes to hepatic hemodynamic and metabolic abnormalities in cirrhosis, and the increased release of PAF into the circulation has impacts on the systemic hemodynamics.
Collapse
Affiliation(s)
- Yong-Ping Yang
- Department of Gastroenterology, 302 Hospital of the Chinese PLA, Beijing 100039, China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Nagase T, Aoki-Nagase T, Yamaguchi Y, Yamamoto H, Ouchi Y. Molecular mechanisms underlying inflammatory lung diseases in the elderly: Development of a novel therapeutic strategy for acute lung injury and pulmonary fibrosis. Geriatr Gerontol Int 2005. [DOI: 10.1111/j.1447-0594.2005.00294.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Reeves SR, Gozal D. Platelet-activating factor receptor and respiratory and metabolic responses to hypoxia and hypercapnia. Respir Physiol Neurobiol 2004; 141:13-20. [PMID: 15234672 DOI: 10.1016/j.resp.2004.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2004] [Indexed: 11/22/2022]
Abstract
Activation of the platelet-activating factor receptor (PAFR) regulates neural transmission. A PAFR blocker reduced the peak hypoxic (pHVR) but not hypercapnic ventilatory (HCVR) responses in rats [Am. J. Physiol. 275 (1998) R604]. To further examine the role of PAFR in respiratory control, genotype-verified PAFR -/- and PAFR +/+ adult male mice underwent hypoxic and hypercapnic challenges. HCVR was similar in the two groups (p-NS). However, pHVR was significantly reduced in PAFR -/- mice (38 +/- 13% baseline [S.D.]) compared to PAFR +/+ mice (78 +/- 16% baseline; P < 0.001, ANOVA), with reduced tidal volume recruitments during pHVR. In addition, hypoxic ventilatory depression was attenuated in PAFR -/- mice (P < 0.01), and was primarily due to attenuation of the time-dependent decreases in oxygen consumption during sustained hypoxia (P < 0.01). Thus, PAFR expression/function modulates components of the acute ventilatory and metabolic adaptations to hypoxia but not to hypercapnia. Imbalances in PAFR activity may lead to maladaptive regulation of the tightly controlled metabolic-ventilatory relationships during hypoxia.
Collapse
Affiliation(s)
- Stephen R Reeves
- Departments of Pediatrics and Pharmacology and Toxicology, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, Suite 204, 570 South Preston St., Louisville, KY 40202, USA
| | | |
Collapse
|
18
|
Reeves SR, Gozal D. Platelet-activating factor receptor modulates respiratory adaptation to long-term intermittent hypoxia in mice. Am J Physiol Regul Integr Comp Physiol 2004; 287:R369-74. [PMID: 15087283 DOI: 10.1152/ajpregu.00128.2004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During hypoxia, release of platelet-activating factor (PAF) and activation of its cognate receptor (PAFR) regulate neural transmission and are required for full expression of peak hypoxic ventilatory response (pHVR) but not hypercapnic ventilatory response. However, it is unclear whether PAFR underlie components of long-term ventilatory adaptations to hypoxia. To examine this issue, adult male PAFR(+/+) and PAFR(-/-) mice were exposed to intermittent hypoxia (IH) consisting of 90 s 21% O(2) and 90 s 10% O(2) for 30 days, and normoxic and hypoxic ventilatory patterns were assessed using whole body plethysmography. Starting at day 14 of IH, normoxic ventilation in PAFR(-/-) was reduced significantly compared with PAFR(+/+) mice (P < 0.001), the latter exhibiting a prominent long-term ventilatory facilitation (LTVF). However, IH-exposed PAFR(-/-) mice had markedly enhanced pHVR and hypoxic ventilatory decline that became similar to those of IH-exposed PAFR(+/+) mice. Thus we postulate that PAFR expression and/or function underlies critical components of IH-induced LTVF but does not play a role in the potentiation of the hypoxic ventilatory response after IH exposures.
Collapse
Affiliation(s)
- Stephen R Reeves
- Department of Pediatrics, Kosair Children's Hospital Research Institute, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | | |
Collapse
|
19
|
Yang W, Diehl JR, Roudebush WE. Organization of porcine platelet-activating factor receptor gene. Anim Biotechnol 2004; 14:177-81. [PMID: 14703076 DOI: 10.1081/abio-120026487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Four exons of porcine platelet-activating factor receptor (PAFr) gene expressing transcript 1 and transcript 2 were determined previously. In this study, we cloned and sequenced a new exon, which also initiates transcript 2, and determined the order of 5 exons in the PAFr gene. In addition, two other variants of transcript 2 were found, but no additional variants of transcript 1 were found. Transcript 2 has three variants that were detected in porcine tissues other than in white blood cells.
Collapse
Affiliation(s)
- Wensheng Yang
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|
20
|
Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M. A new model for inflammation-induced preterm birth: the role of platelet-activating factor and Toll-like receptor-4. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:2103-11. [PMID: 14578208 DOI: 10.1016/s0002-9440(10)63567-5] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Preterm birth is a leading cause of neonatal morbidity and mortality. Despite a growing body of evidence correlating inflammation with preterm birth, the signal transduction pathways responsible for the emptying of the uterus in the setting of intrauterine inflammation has not been elucidated. We now report a unique, reproducible mouse model of localized intrauterine inflammation. This model results in 100% preterm delivery with no maternal mortality. Using our model, we also show that platelet-activating factor is a crucial mediator of both inflammation-induced preterm birth and fetal demise. Using C3H/HeJ mice, we demonstrate that toll-like receptor-4 (TLR-4) plays a role in lipopolysaccharide-induced preterm birth but not in inflammation-induced fetal death. Immunohistochemistry studies demonstrate the presence of the platelet-activating factor receptor in both endometrial glands and smooth muscle in uterine tissues. Molecular studies demonstrate the differential expression of platelet-activating factor receptor and TLR-4 in uterine and cervical tissue throughout gestation. Quantitative polymerase chain reaction revealed an up-regulation of TLR-4 in the fundal region of the uterus in response to intrauterine inflammation. The use of this model will increase our understanding of the significant clinical problem of inflammation-induced preterm birth and will elucidate signal transduction pathways involved in an inflammatory state.
Collapse
Affiliation(s)
- Michal A Elovitz
- Center for Research and Reproduction in Women's Health, Department of Obstetrics and Gynecology, Biomedical Research Building II/III, University of Pennsylvania, 421 Curie Boulevard, Philadelphia, PA 19104-6142, USA.
| | | | | | | | | |
Collapse
|
21
|
Yang Y, Harvey SAK, Gandhi CR. Kupffer cells are a major source of increased platelet activating factor in the CCl4-induced cirrhotic rat liver. J Hepatol 2003; 39:200-7. [PMID: 12873816 DOI: 10.1016/s0168-8278(03)00229-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND/AIMS Endothelin-1 (ET-1) stimulates the synthesis of platelet-activating factor (PAF) by Kupffer cells in vitro. Hepatic concentrations of both ET-1 (a potent vasoconstrictor) and PAF (a mediator of hepatic vasoconstriction and the cirrhotic hyperdynamic state) increase in cirrhosis. The aim of this study was to determine if the responsiveness of Kupffer cells to produce PAF upon ET-1 challenge is modified by cirrhosis. METHODS Kupffer cells, isolated from the livers of control and CCl(4)-induced cirrhotic rats, were placed in serum-free medium after overnight culture. PAF and ET-1 receptors, ET-1-induced PAF synthesis, and PAF- and ET-1-induced prostaglandin E(2) (PGE(2)) synthesis were determined 24 h later. RESULTS Both basal and ET-1-stimulated PAF synthesis was increased in cirrhotic Kupffer cells as indicated by increased cell-associated and released PAF. Cirrhotic Kupffer cells also had elevated densities of functional receptors for both PAF and ET-1 (exclusively ET(B)), as measured by ligand binding, mRNA expression of the respective receptors, and ligand-stimulated PGE(2) synthesis. CONCLUSIONS Cirrhosis sensitizes Kupffer cells to both ET-1 and PAF by elevating their respective receptor levels. Since both mediators individually cause portal hypertension, an increase in ET-1-stimulated PAF synthesis in Kupffer cells will exacerbate the hepatic and extrahepatic complications of cirrhosis.
Collapse
Affiliation(s)
- Yongping Yang
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, E-1542 BST, 200 Lothrop Street, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
22
|
Abstract
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was named for its potential to induce platelet aggregation, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor, and activates multiple intracellular signaling pathways. In the last decade, we have identified the PAF receptor structures, intracellular signaling mechanisms, and genomic organizations. Recently, we found a single nucleotide polymorphism of the human PAF receptor (A224D) with an allele frequency of 7.8% in Japanese. Cells expressing this receptor exhibited the reduced cellular signaling, although the binding parameters remain unchanged. We have established two different types of genetically altered mice, i.e. PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice provide a novel and specific approach for identifying the pathophysiological and physiological functions of PAF in vivo. This review focuses on phenotypes of these mutant mice and summarizes the previous reports regarding PAF and PAF receptor.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Japan.
| | | | | |
Collapse
|
23
|
McManus LM, Pinckard RN. PAF, a putative mediator of oral inflammation. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2002; 11:240-58. [PMID: 12002818 DOI: 10.1177/10454411000110020701] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PAF, or platelet-activating factor, is a family of structurally related phospholipids (1-O-alkyl/acyl/alkenyl-2-acetyl-sn-glycero-3-phosphocholine) which possesses a wide spectrum of potent pro-inflammatory actions. These phospholipids are synthesized by a diverse array of cells, including neutrophilic polymorphonuclear leukocytes (PMN), platelets, mast cells, monocytes/macrophages, vascular endothelial cells, and lymphocytes. PAF targets these and other cells via specific, G-protein-coupled receptors to initiate intracrine, autocrine, paracrine, and juxtacrine cell activation. Of importance, these unique acetylated phospholipids are frequently synthesized in concert with pro-inflammatory lipid mediators derived from arachidonic acid. Since PAF synergizes with these and other mediators to amplify the inflammatory response, it seems likely that PAF plays an integral, perhaps pivotal, role in acute and chronic inflammatory processes. PAF is present in the mixed saliva of dentate, but not edentulous, human subjects. The levels of PAF in mixed saliva or in gingival crevicular fluid and tissues are significantly increased during oral inflammatory conditions such as periodontitis and mucositis. Interestingly, the levels of salivary PAF correlate with the extent/severity of these oral diseases. These observations suggest that PAF may participate in pathophysiologic events during the course of oral inflammation. The availability of specific PAF receptor antagonists and human recombinant PAF-acetylhydrolase (PAF-AH), a plasma enzyme which rapidly destroys PAF, should provide clinical tools for the investigation of the role of PAF in these and other inflammatory disorders; and perhaps, ultimately, some of these reagents may prove to be therapeutically useful in the treatment and management of these conditions.
Collapse
Affiliation(s)
- L M McManus
- Department of Pathology, The University of Texas Health Science Center, San Antonio 78229, USA.
| | | |
Collapse
|
24
|
Nagase T, Uozumi N, Ishii S, Kita Y, Yamamoto H, Ohga E, Ouchi Y, Shimizu T. A pivotal role of cytosolic phospholipase A(2) in bleomycin-induced pulmonary fibrosis. Nat Med 2002; 8:480-4. [PMID: 11984592 DOI: 10.1038/nm0502-480] [Citation(s) in RCA: 125] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pulmonary fibrosis is an interstitial disorder of the lung parenchyma whose mechanism is poorly understood. Potential mechanisms include the infiltration of inflammatory cells to the lungs and the generation of pro-inflammatory mediators. In particular, idiopathic pulmonary fibrosis is a progressive and fatal form of the disorder characterized by alveolar inflammation, fibroblast proliferation and collagen deposition. Here, we investigated the role of cytosolic phospholipase A(2) (cPLA(2)) in pulmonary fibrosis using cPLA(2)-null mutant mice, as cPLA(2) is a key enzyme in the generation of pro-inflammatory eicosanoids. Disruption of the gene encoding cPLA(2) (Pla2g4a) attenuated IPF and inflammation induced by bleomycin administration. Bleomycin-induced overproduction of thromboxanes and leukotrienes in lung was significantly reduced in cPLA(2)-null mice. Our data suggest that cPLA(2) has an important role in the pathogenesis of pulmonary fibrosis. The inhibition of cPLA(2)-initiated pathways might provide a novel therapeutic approach to pulmonary fibrosis, for which no pharmaceutical agents are currently available.
Collapse
Affiliation(s)
- Takahide Nagase
- Department of Geriatric Medicine, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Yang W, Diehl JR, Grapes L, Rothschild MF, Roudebush WE. The pig platelet-activating factor receptor gene is expressed at the mRNA level in different tissues and is mapped to chromosome 6. Anim Reprod Sci 2002; 70:277-82. [PMID: 11943497 DOI: 10.1016/s0378-4320(02)00019-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
After the pig platelet-activating factor receptor (PAFr) gene was cloned and sequenced, the chromosomal location of this gene was studied using a pig/rodent somatic cell hybrid panel containing 27 cell lines. The results indicated that the pig PAFr gene is located on SSC6q22-23. Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is thought to be very important in the animal reproductive processes. Its function is mediated through a membrane-bound receptor. Pig PAFr mRNA distribution in different tissues was tested using reverse transcription and PCR (RT-PCR) reactions. All tissues examined expressed PAFr. Using a pig PAFr gene DNA competitor, PAFr expression was quantificated. The pig PAFr mRNA expression level was estimated to be from 1 x 10(2) to 1.2 x 10(4) copies of complementary DNA (cDNA) per 50 ng of total RNA. The highest level was found in lung, and the lowest in the skeletal muscle. These results demonstrated that PAFr was differentially expressed in pig tissues.
Collapse
Affiliation(s)
- Wensheng Yang
- Department of Animal and Veterinary Sciences, Clemson University, SC 29634, USA
| | | | | | | | | |
Collapse
|
26
|
Nagase T, Ishii S, Shindou H, Ouchi Y, Shimizu T. Airway hyperresponsiveness in transgenic mice overexpressing platelet activating factor receptor is mediated by an atropine-sensitive pathway. Am J Respir Crit Care Med 2002; 165:200-5. [PMID: 11790655 DOI: 10.1164/ajrccm.165.2.2106131] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Platelet activating factor (PAF) is a potent mediator potentially involved in the pathogenesis of inflammatory disorders, including bronchial asthma. Recently, transgenic mice overexpressing the PAF receptor (PAFR) gene have been established, and exhibit bronchial hyperresponsiveness, one of the cardinal features of asthma. To elucidate the molecular and pathophysiologic mechanisms underlying PAF-associated bronchial hyperreactivity, we studied airway responsiveness to methacholine (MCh) and serotonin (5-hydroxytryptamine; 5-HT) in PAFR-transgenic mice. In addition, we examined the role of the muscarinic receptor in PAF-induced responses and the binding activities of the muscarinic receptor. The PAFR-transgenic mice exhibited hyperresponsiveness to MCh and PAF; however, no significant differences in 5-HT responsiveness were observed between the control and PAFR-transgenic mice. The administration of atropine significantly blocked PAF-induced responses in PAFR-transgenic mice. There were no differences between the two phenotypes in the binding activities of muscarinic receptor. Morphometric analyses demonstrated that PAFR overexpression did not affect airway structure. These findings suggest that the muscarinic pathway may have a key role in airway hyperresponsiveness associated with PAFR gene overexpression. More generally, PAFR-transgenic mice may provide appropriate models for study of the molecular mechanisms underlying PAF-associated diseases.
Collapse
Affiliation(s)
- Takahide Nagase
- Departments of Geriatric Medicine and Biochemistry and Molecular Biology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
27
|
Yang W, Diehl JR, Roudebush WE. Comparison of the coding sequence of the platelet-activating factor receptor gene in three species. DNA SEQUENCE : THE JOURNAL OF DNA SEQUENCING AND MAPPING 2001; 12:239-51. [PMID: 11916258 DOI: 10.3109/10425170109024998] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The actions of platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) are mediated through the PAF receptor (PAFr), which is a member of G-protein coupled superfamily of receptors. Our laboratory has data showing PAF has a role(s) in reproduction in domestic animals. Porcine, bovine and caprine PAFr genes cloned in BAC vectors were sequenced. Each PAFr coding sequence (cds) in these three species is 1029 nucleotides long and contains no intervening sequences. The deduced amino acid sequences (AAS) appear to contain seven putative transmembrane domains with an extracellular N-terminus in each species. There is a common glycosylation site at the fourth asparagine residue of N-terminus. In the tail of each deduced amino acid sequence, five to six serines and five threonine residues could act as phosphorylation sites, which play an important role in rapid receptor desensitization. The degree of homology of the three species is from 89 to 96% in nucleotide sequences (NtS), and 87-96% in identities (I) and 94-97% in positives (P) in amino acid sequences (AAS). The degree of homology with human, guinea pig, mouse and rat is 84-87, 82-88 and 83-88% in NtS, 77-84 (I) or 85-90 (P), 77-84 (I) or 85-90 (P) and 75-83 (I) or 87-90% (P) in AAS for caprine, bovine and pig, respectively. Southern blotting results suggested that the PAFr gene exists as a single copy in the genome of pig.
Collapse
Affiliation(s)
- W Yang
- Department of Animal and Veterinary Sciences, Clemson University, SC 29634, USA
| | | | | |
Collapse
|
28
|
Nagase T, Uozumi N, Ishii S, Kume K, Izumi T, Ouchi Y, Shimizu T. Acute lung injury by sepsis and acid aspiration: a key role for cytosolic phospholipase A2. Nat Immunol 2000; 1:42-6. [PMID: 10881173 DOI: 10.1038/76897] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Adult respiratory distress syndrome (ARDS) is characterized by acute lung injury with a high mortality rate and yet its mechanism is poorly understood. Sepsis syndrome and acid aspiration are the most frequent causes of ARDS, leading to increased lung permeability, enhanced polymorphonuclear neutrophil (PMN) sequestration and respiratory failure. Using a murine model of acute lung injury induced by septic syndrome or acid aspiration, we investigated the role of cytosolic phospholipase A2 (cPLA2) in ARDS. We found that disruption of the gene encoding cPLA2 significantly reduced pulmonary edema, PMN sequestration and deterioration of gas exchange caused by lipopolysaccharide and zymosan administration. Acute lung injury induced by acid aspiration was similarly reduced in mice with a disrupted cpla2 gene. Our observations suggest that cPLA2 is a mediator of acute lung injury induced by sepsis syndrome or acid aspiration. Thus, the inhibition of cPLA2-initiated pathways may provide a therapeutic approach to acute lung injury, for which no pharmaceutical agents are currently effective.
Collapse
Affiliation(s)
- T Nagase
- Department of Geriatric Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Viswanath M, Palmer C, Roberts RL. Reduction of hypoxic-ischemic brain swelling in the neonatal rat with PAF antagonist WEB 2170: lack of long-term protection. Pediatr Res 2000; 48:109-13. [PMID: 10879808 DOI: 10.1203/00006450-200007000-00019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Platelet activating factor (PAF) is an inflammatory lipid mediator released by ischemic brain. Our objectives were to use an inhibitor of PAF that does not readily cross the blood-brain barrier, WEB 2170, to study the role of intravascular PAF on brain swelling and subsequent brain atrophy in a neonatal rat model of hypoxic-ischemic brain injury. We injured the right cerebral hemisphere of 7-d-old rats by ligating the right common carotid artery and exposing the rats to 8% oxygen for 2.25 h. Forty-two rats received saline or the PAF antagonist WEB 2170, 1 h before hypoxia. We found that WEB 2170 pretreatment reduced swelling by 64% (p = 0.003). In contrast, treatment immediately after hypoxic-ischemic injury did not reduce swelling. In two additional experiments involving 103 rats, we found that pretreatment or repeated doses of PAF antagonist before and after hypoxic-ischemic injury did not reduce atrophy. We also found that the brain-penetrating PAF antagonist, BN 52021, did not prevent atrophy in our Wistar rat model. In conclusion, we were unable to reduce long-term brain injury with either PAF antagonist. WEB 2170 pretreatment reduced brain swelling by 64% without reducing atrophy. This suggests that although brain swelling may accompany cerebral infarction, it does not contribute to the pathogenesis of infarction and subsequent atrophy in the neonatal rat. The ability to reduce early postischemic brain swelling without reducing atrophy may be particularly unique to the immature animal with a compliant skull.
Collapse
Affiliation(s)
- M Viswanath
- Department of Pediatrics, Section of Newborn Medicine, Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
30
|
Francescangeli E, Boila A, Goracci G. Properties and regulation of microsomal PAF-synthesizing enzymes in rat brain cortex. Neurochem Res 2000; 25:705-13. [PMID: 10905633 DOI: 10.1023/a:1007523422825] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Platelet-activating factor (PAF) is a phospholipid mediator of long-term potentiation, synaptic plasticity and memory formation as well as of the development of brain damage. In brain, PAF is synthesized by two distinct pathways but their relative contribution to its productions, in various physiological and pathological conditions, is not established. We have further investigated on the properties of the two enzymes that catalyze the last step of the de novo or remodeling pathways in rat brain microsomes, PAF-synthesizing phosphocholinetransferase (PAF-PCT) and lysoPAF acetyltransferase (lysoPAF-AT), respectively. The latter enzyme is fully active at microM Ca2+ concentration, inhibited by MgATP and activated by phosphorylation. Because the reversibility of the reaction catalyzed by PAF-PCT, its direction depends on the ratio [CDP-choline]/[CMP], which is related to the energy charge of the cell. These and other properties indicate that the de novo pathway should mainly contribute to PAF synthesis for maintaining its basal levels under physiological conditions. The remodeling pathway should be more involved in the production of PAF during ischemia. During reperfusion, the overproduction of PAF should be the result of the concomitant activation of both pathways.
Collapse
Affiliation(s)
- E Francescangeli
- Istituto di Biochimica e Chimica Medica, Università di Perugia, Italy
| | | | | |
Collapse
|
31
|
Ishii S, Shimizu T. Platelet-activating factor (PAF) receptor and genetically engineered PAF receptor mutant mice. Prog Lipid Res 2000; 39:41-82. [PMID: 10729607 DOI: 10.1016/s0163-7827(99)00016-8] [Citation(s) in RCA: 289] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) is a biologically active phospholipid mediator. Although PAF was initially recognized for its potential to induce platelet aggregation and secretion, intense investigations have elucidated potent biological actions of PAF in a broad range of cell types and tissues, many of which also produce the molecule. PAF acts by binding to a unique G-protein-coupled seven transmembrane receptor. PAF receptor is linked to intracellular signal transduction pathways, including turnover of phosphatidylinositol, elevation in intracellular calcium concentration, and activation of kinases, resulting in versatile bioactions. On the basis of numerous pharmacological reports, PAF is thought to have many pathophysiological and physiological functions. Recently advanced molecular technics enable us not only to clone PAF receptor cDNAs and genes, but also generate PAF receptor mutant animals, i.e., PAF receptor-overexpressing mouse and PAF receptor-deficient mouse. These mutant mice gave us a novel and specific approach for identifying the pathophysiological and physiological functions of PAF. This review also describes the phenotypes of these mutant mice and discusses them by referring to previously reported pharmacological and genetical data.
Collapse
Affiliation(s)
- S Ishii
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan.
| | | |
Collapse
|
32
|
Nagase T, Ishii S, Kume K, Uozumi N, Izumi T, Ouchi Y, Shimizu T. Platelet-activating factor mediates acid-induced lung injury in genetically engineered mice. J Clin Invest 1999; 104:1071-6. [PMID: 10525045 PMCID: PMC481051 DOI: 10.1172/jci7727] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adult respiratory distress syndrome (ARDS) is an acute lung injury of high mortality rate, and the molecular mechanisms underlying it are poorly understood. Acid aspiration-induced lung injury is one of the most common causes of ARDS, characterized by an increase in lung permeability, enhanced polymorphonuclear neutrophil (PMN) sequestration, and respiratory failure. Here, we investigated the role of platelet-activating factor (PAF) and the PAF receptor (PAFR) gene in a murine model of acid aspiration-induced lung injury. Overexpression of the PAFR gene in transgenic mice enhanced lung injury, pulmonary edema, and deterioration of gas exchange caused by HCl aspiration. Conversely, mice carrying a targeted disruption of the PAFR gene experienced significantly less acid-induced injury, edema, and respiratory failure. Nevertheless, the efficiency of PMN sequestration in response to acid aspiration was unaffected by differences in PAFR expression level. The current observations suggest that PAF is involved in the pathogenesis of acute lung injury caused by acid aspiration. Thus, inhibition of this pathway might provide a novel therapeutic approach to acute lung injury, for which no specific pharmaceutical agents are currently available.
Collapse
Affiliation(s)
- T Nagase
- Department of Geriatric Medicine, and Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | |
Collapse
|
33
|
Yamada M, Tanimoto A, Ichinowatari G, Yaginuma H, Ohuchi K. Possible participation of intracellular platelet-activating factor in tumor necrosis factor-alpha production by rat peritoneal macrophages. Eur J Pharmacol 1999; 374:341-50. [PMID: 10422778 DOI: 10.1016/s0014-2999(99)00337-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stimulation of rat peritoneal macrophages by thapsigargin (46.1 nM) increased levels of tumor necrosis factor-alpha and prostaglandin E2 in the conditioned medium. Platelet-activating factor (PAF) was not detected in the conditioned medium, but the level of cell-associated PAF was increased transiently by thapsigargin. The PAF receptor antagonists such as E6123 ((S)-(+)-6-(2-chlorophenyl)-3-cyclopro-panecarbonyl-8,11-dim ethyl-2,3,4,5-tetrahydro-8 H-pyrido[4',3':4,5]thieno [3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine), L-652,73 1 (2,5-bis(3,4,5-trimethoxyphenyl) tetrahydrofuran) and CV-6209 (2-[N-acetyl-N-(2-methoxy-3-octadecyl-carbamoyloxy propoxycarbonyl)aminomethyl]-1-ethylpyridinium chloride) inhibited thapsigargin-induced production of tumor necrosis factor-alpha. The cyclooxygenase inhibitor indomethacin inhibited prostaglandin E2 production, and further enhanced thapsigargin-induced tumor necrosis factor-alpha production in parallel with further increase in cell-associated PAF production. The enhancement of tumor necrosis factor-alpha production induced by thapsigargin plus indomethacin was also inhibited by E6123, L-652,731 and CV-6209. However, exogenously added PAF up to 100 nM did not stimulate production of tumor necrosis factor-alpha. The level of tumor necrosis factor-alpha mRNA was increased by thapsigargin, but was lowered by the PAF receptor antagonist E6123, suggesting that the inhibition of tumor necrosis factor-alpha production by the PAF receptor antagonist is induced at the level of mRNA for tumor necrosis factor-alpha. These findings suggested that concurrently produced cell-associated PAF in thapsigargin-stimulated macrophages up-regulates production of tumor necrosis factor-alpha by acting as an intracellular signaling molecule and the PAF receptor antagonists might penetrate into the cells and antagonize the action of intracellular PAF.
Collapse
Affiliation(s)
- M Yamada
- Department of Pathophysiological Biochemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Miyagi, Japan
| | | | | | | | | |
Collapse
|
34
|
Flickinger BD, Olson MS. Localization of the platelet-activating factor receptor to rat pancreatic microvascular endothelial cells. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1353-8. [PMID: 10329588 PMCID: PMC1866601 DOI: 10.1016/s0002-9440(10)65389-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Platelet-activating factor (PAF) is a potent lipid autocoid involved in numerous inflammatory processes. Although PAF plays a key role as a mediator of inflammation in acute pancreatitis, the site(s) of action of PAF in the pancreas remains unknown. One of the aims of this study was to identify cell types within the pancreas expressing the PAF receptor using immunohistochemical protocols. Additionally, pancreatic microvascular endothelial cells were isolated and examined for the PAF receptor using immunohistochemistry, reverse transcription-polymerase chain reaction, and intracellular calcium responses to PAF exposure. Immunohistochemical analysis of pancreatic slices using an antibody directed toward the N-terminus of the PAF receptor revealed specific localization to the vascular endothelium with no localization to other pancreatic cell types. Reverse transcription-polymerase chain reaction of RNA isolated from cultured pancreatic islet endothelial cells yielded the predicted amplicon for the PAF receptor. Cultured pancreatic islet endothelial cells responded to PAF as measured by a transient increase in intracellular calcium, which was ameliorated in the presence of a PAF receptor antagonist. The results demonstrate the localization of PAF receptors on the pancreatic vascular endothelium. The presence of PAF receptors on the pancreatic vascular endothelium provides a defined, highly localized target for therapeutic intervention.
Collapse
Affiliation(s)
- B D Flickinger
- Department of Biochemistry, University of Texas Health Science Center, San Antonio, Texas, USA
| | | |
Collapse
|
35
|
Kobayashi K, Ishii S, Kume K, Takahashi T, Shimizu T, Manabe T. Platelet-activating factor receptor is not required for long-term potentiation in the hippocampal CA1 region. Eur J Neurosci 1999; 11:1313-6. [PMID: 10103126 DOI: 10.1046/j.1460-9568.1999.00538.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
From pharmacological studies, platelet-activating factor (PAF) has been proposed as a retrograde messenger for long-term potentiation (LTP) in the hippocampal CA1 region. We re-examined a possible contribution of PAF to LTP with a more specific approach using mice deficient in the PAF receptor. The PAF receptor-deficient mice exhibited normal LTP and showed no obvious abnormality in excitatory synaptic transmission. We also performed pharmacological experiments on the wild-type mice. Two structurally different antagonists of PAF receptors had no effects on LTP. Furthermore, the application of PAF itself caused no detectable changes in excitatory synaptic transmission. Thus, we conclude that the PAF receptor is not required for LTP in the CA1 region. Introduction
Collapse
Affiliation(s)
- K Kobayashi
- Department of Neurophysiology, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Ihida K, Predescu D, Czekay RP, Palade GE. Platelet activating factor receptor (PAF-R) is found in a large endosomal compartment in human umbilical vein endothelial cells. J Cell Sci 1999; 112 ( Pt 3):285-95. [PMID: 9885282 DOI: 10.1242/jcs.112.3.285] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In previous studies, we have localized the platelet activating factor receptor (PAF-R) in situ on the surface of the endothelium in a number of microvascular beds without providing information on its intracellular location. In the present study, we used human umbilical vein cells (HUVECs) as a model to immunolocalize PAF-R by light and electron microscopic procedures. We raised two different polyclonal antibodies against synthetic peptides of the C- and N-terminal of PAF-R and used them for immunolocalization studies. By immunofluorescence, we found that the anti-C-terminal antibody (CPAF-R) stains an extensive intracellular tubular network. By electron microscopy, using a preembedding staining procedure, we detected PAF-R on the surface of the plasmalemma in a staining pattern similar to that described on microvascular endothelia in situ, but at a considerably lower density. Immunogold labeling of thin frozen sections revealed the presence of PAF-R on the plasmalemma, and especially in an extensive network of tubular-vesicular elements and vesicles associated with it. No detectable amounts of PAF-R were found in the endoplasmic reticulum (ER) or in Golgi cisternae. Double immunofluorescence labeling with antibodies for compartment marker proteins and PAF-R revealed that PAF-R localizes in an endosomal compartment. Confocal microscopy showed that PAF-R colocalizes in this compartment together with the transferrin receptor (Tf-R) and the thrombin receptor (TH-R), but it also showed that the colocalization was partial rather than complete. These findings suggest that the endosomal network is either discontinuous or, conversely, that the proteins in its membrane do not have a fully randomized distribution.
Collapse
Affiliation(s)
- K Ihida
- Division of Cellular and Molecular Medicine, University of California, San Diego School of Medicine, La Jolla, California 92093-0602, USA
| | | | | | | |
Collapse
|
37
|
Simakajornboon N, Graff GR, Torres JE, Gozal D. Modulation of hypoxic ventilatory response by systemic platelet-activating factor receptor antagonist in the rat. RESPIRATION PHYSIOLOGY 1998; 114:213-25. [PMID: 9926986 DOI: 10.1016/s0034-5687(98)00094-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Platelet activating factor (PAF) has recently emerged as an important modulator of neuronal excitability by enhancing synaptic glutamate release. Since PAF receptors (PAFR) are ubiquitously distributed in the brain, we hypothesized that PAF may play a role in respiratory control. To examine this issue, hypoxic (10% O2 for 15 min, n = 14) and hypercapnic (5% CO2 for 30 min, n = 6) challenges were performed in chronically-instrumented, unrestrained adult rats following administration of the pre-synaptic PAFR antagonist BN52021 (i.p. 20 mg/kg in 0.5 ml) or vehicle (Veh). In normoxia, BN52021 elicited VT decreases and corresponding f increases such that minute ventilation (VE) was unaffected. During hypercapnia, peak VE increased similarly after both treatments (103+/-18% in BN52021 vs. 94+/-19% in Veh, p-NS). In contrast, significant reductions in the peak hypoxic VE response occurred after BN52021 (42+/-10% vs. 104+/-18% in Veh, P<0.002). BN52021 increased normoxic arterial blood pressure and decreased heart rate. However, hypoxia-induced chronotropic responses were attenuated and depressor responses were enhanced by BN52021. We further examined protein kinase C (PKC) translocation patterns during acute hypoxia after systemic BN52021 administration. Activation of PKC beta and delta was blocked by BN52021, PKC gamma was attenuated, with no effects on PKC alpha, epsilon, theta, iota, mu, and zeta. We conclude that systemic administration of a PAFR antagonist attenuates cardioventilatory recruitment to hypoxia and selectively attenuates activation of PKC in the rat brainstem. We speculate that enhanced regional PAF production and release during hypoxic conditions may contribute important excitatory inputs and signal transduction pathways within neuronal structures underlying cardiovascular and respiratory control.
Collapse
Affiliation(s)
- N Simakajornboon
- Department of Pediatrics (SL-37), Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
38
|
Gozal D, Holt GA, Graff GR, Torres JE. Platelet-activating factor modulates cardiorespiratory responses in the conscious rat. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:R604-11. [PMID: 9688699 DOI: 10.1152/ajpregu.1998.275.2.r604] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Platelet-activating factor receptor (PAFR) activation is associated with increases in neuronal excitability. We hypothesized that PAF may play a role in cardiorespiratory control. Ventilatory responses to microinjection of a long-acting PAF analog (mc-PAF, 1 microg in 1 microl) within the dorsocaudal brain stem were measured in unrestrained adult rats. mc-PAF elicited significant minute ventilation (VE) enhancements that were primarily due to tidal volume increases and were accompanied by respiratory alkalosis, heart rate increase, and reduction of arterial blood pressure. Such cardiovascular and respiratory effects did not occur after administration of either vehicle or the inactive analog lyso-PAF. The effect was blocked when animals were coadministered the presynaptic PAFR antagonist BN-52021 or recombinant PAF acetyl hydrolase. To determine the relative contribution of PAF to hypercapnic and hypoxic ventilation, microinjections were performed in additional animals with either vehicle (CO, 1 microl) or with 5 microg in 1 microl of BN-52021. Hypercapnic challenges with 5% CO2 were unaffected by BN-52021. In contrast, although 10% O2 breathing increased VE from 120.4 +/- 7.5 to 204.6 +/- 11.4 ml/min in CO, after BN-52021, VE increased only from 118.7 +/- 6.9 to 137.3 +/- 8. 9 ml/min (CO vs. BN-52021, P < 0.001). We conclude that PAFR activation in the dorsocaudal brain stem exerts significant cardioventilatory effects during normoxia and appears to play an important modulatory role in the VE response to hypoxia in conscious rats.
Collapse
Affiliation(s)
- D Gozal
- Departments of Pediatrics, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
39
|
Ring A, Weiser JN, Tuomanen EI. Pneumococcal trafficking across the blood-brain barrier. Molecular analysis of a novel bidirectional pathway. J Clin Invest 1998; 102:347-60. [PMID: 9664076 PMCID: PMC508893 DOI: 10.1172/jci2406] [Citation(s) in RCA: 272] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Although Streptococcus pneumoniae is a major cause of meningitis in humans, the mechanisms underlying its traversal from the circulation across the blood-brain barrier (BBB) into the subarachnoid space are poorly understood. One mechanism might involve transcytosis through microvascular endothelial cells. In this study we investigated the ability of pneumococci to invade and transmigrate through monolayers of rat and human brain microvascular endothelial cells (BMEC). Significant variability was found in the invasive capacity of clinical isolates. Phase variation to the transparent phenotype increased invasion as much as 6-fold and loss of capsule approximately 200-fold. Invasion of transparent pneumococci required choline in the pneumococcal cell wall, and invasion was partially inhibited by antagonists of the platelet-activating factor (PAF) receptor on the BMEC. Pneumococci that gained access to an intracellular vesicle from the apical side of the monolayer subsequently were subject to three fates. Most opaque variants were killed. In contrast, the transparent phase variants were able to transcytose to the basal surface of rat and human BMEC in a manner dependent on the PAF receptor and the presence of pneumococcal choline-binding protein A. The remaining transparent bacteria entering the cell underwent a previously unrecognized recycling to the apical surface. Transcytosis eventually becomes a dominating process accounting for up to 80% of intracellular bacteria. Our data suggest that interaction of pneumococci with the PAF receptor results in sorting so as to transcytose bacteria across the cell while non-PAF receptor entry shunts bacteria for exit and reentry on the apical surface in a novel recycling pathway.
Collapse
Affiliation(s)
- A Ring
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
40
|
Shimada A, Ota Y, Sugiyama Y, Sato S, Kume K, Shimizu T, Inoue S. In situ expression of platelet-activating factor (PAF)-receptor gene in rat skin and effects of PAF on proliferation and differentiation of cultured human keratinocytes. J Invest Dermatol 1998; 110:889-93. [PMID: 9620295 DOI: 10.1046/j.1523-1747.1998.00202.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Platelet-activating factor (PAF) is a potent lipid mediator that exhibits versatile biologic activities in many diverse systems by binding to a specific cell-surface receptor (PAFR). Although the production of PAF in cultured keratinocytes and fibroblasts has been reported, physiologic roles of this mediator in skin remain unclear. In this study, we examined in situ expression of PAFR gene in rat skin and the effects of PAF on the proliferation and differentiation of cultured human keratinocytes. In rat epidermis, PAFR mRNA expression was found from the basal cells to the granular cells, and strong signals were seen in the stratum spinosum. In cultured human keratinocytes, a 3.8 kb PAFR mRNA expression was demonstrated by northern blotting, and two distinct type transcripts driven by different promoters were detected by reverse transcriptase polymerase chain reaction analysis. Addition of PAF (30-100 nM) to cultured keratinocytes during a growth phase inhibited the proliferation. This effect was receptor dependent, because the inhibition was completely blocked by a PAFR antagonist, WEB 2086 (100 nM). On the other hand, whereas PAF (30-100 nM) alone did not affect the cornified envelope formation during the process of keratinocyte differentiation, WEB 2086 (30-300 nM) accelerated it in a concentration-dependent manner. Addition of PAF (100 nM) reversed the effect of WEB 2086, suggesting that WEB 2086 induced cornification by inhibiting PAF endogeneously produced by keratinocytes in an autocrine manner. Thus, we propose that PAF is an intrinsic regulator of keratinocyte during proliferation and differentiation.
Collapse
Affiliation(s)
- A Shimada
- Basic Research Laboratory, Kanebo Ltd, Kanagawa, Odawara, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Ishii S, Kuwaki T, Nagase T, Maki K, Tashiro F, Sunaga S, Cao WH, Kume K, Fukuchi Y, Ikuta K, Miyazaki J, Kumada M, Shimizu T. Impaired anaphylactic responses with intact sensitivity to endotoxin in mice lacking a platelet-activating factor receptor. J Exp Med 1998; 187:1779-88. [PMID: 9607919 PMCID: PMC2212308 DOI: 10.1084/jem.187.11.1779] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator with diverse biological activities in addition to its well-known ability to stimulate platelet aggregation. Pharmacologic studies had suggested a role for PAF in pregnancy, neuronal cell migration, anaphylaxis, and endotoxic shock. Here we show that disruption of the PAF receptor gene in mice caused a marked reduction in systemic anaphylactic symptoms. Unexpectedly, however, the PAF receptor-deficient mice developed normally, were fertile, and remained sensitive to bacterial endotoxin. These mutant mice clearly show that PAF plays a dominant role in eliciting anaphylaxis, but that it is not essential for reproduction, brain development, or endotoxic shock.
Collapse
Affiliation(s)
- S Ishii
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of Tokyo, Tokyo 113, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Pietsch P, Hunger T, Braun M, Roediger A, Baumann G, Felix SB. Effects of platelet-activating factor on intracellular Ca2+ concentration and contractility in isolated cardiomyocytes. J Cardiovasc Pharmacol 1998; 31:758-63. [PMID: 9593076 DOI: 10.1097/00005344-199805000-00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We investigated the effects of platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) on intracellular Ca2+ concentration ([Ca2+]i) and cell length in isolated and field-stimulated rat cardiomyocytes. [Ca2+]i and cell length of field-stimulated cells were determined simultaneously by confocal laser scan microscopy by using the fluorescent Ca2+ dye Fluo-3. PAF (10(-12)-10(-8) M) inhibited systolic [Ca2+]i increase in a time- and concentration-dependent manner. Maximal effects were observed after an incubation time of 6-8 min, resulting in a 17% (10(-12) M), 41% (10(-10) M), and 52% (10(-8) M PAF) inhibition of systolic [Ca2+]i increase. A time- and concentration-dependent decrease in simultaneously measured cell shortening also was demonstrated. Cell shortening was inhibited by 10% (10(-12) M), 32% (10(-10) M), and 50% (10(-8) M) after an incubation time of 8 min. The effects of PAF could be antagonized by the PAF-receptor antagonist WEB 2170. These data demonstrate that PAF receptor-dependently induces a negative inotropic effect, which is correlated with a decrease in systolic [Ca2+]i and is most likely not due to a decrease in myofilament sensitivity.
Collapse
Affiliation(s)
- P Pietsch
- Medizinische Klinik I, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Germany
| | | | | | | | | | | |
Collapse
|
43
|
Carlson SA, Chatterjee TK, Murphy KP, Fisher RA. Mutation of a putative amphipathic alpha-helix in the third intracellular domain of the platelet-activating factor receptor disrupts receptor/G protein coupling and signaling. Mol Pharmacol 1998; 53:451-8. [PMID: 9495811 DOI: 10.1124/mol.53.3.451] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Platelet-activating factor (PAF) is a potent phospholipid mediator that interacts with G protein-coupled PAF receptors to elicit diverse physiological and pathophysiological actions. We recently demonstrated that the third intracellular domain of the rat PAF receptor (rPAFR) is a critical determinant in its coupling to phosphoinositide phospholipase C-activating G proteins. Here, we report identification of a putative amphipathic helix in the third intracellular domain of the rPAFR and the effects of mutational disruption of its amphipathic character on G protein coupling of and signaling by the rPAFR. Modeling of the third intracellular domain and adjacent transmembrane regions of the rPAFR identified a single amphipathic helix located in the amino-terminal region of the third intracellular domain of the receptor. Baby hamster kidney cells were transiently transfected with cDNAs encoding the rPAFR or rPAFR mutants in which nonconserved substitutions were made separately in the hydrophobic or polar face of this amphipathic helix. The number and affinity of binding sites for specific PAF receptor antagonist WEB2086 were identical in membranes prepared from rPAFR and amphipathic helix mutant PAFR transfectants. However, only membranes derived from rPAFR transfectants possessed high affinity PAF binding sites that were sensitive to the G protein-uncoupling effects of guanosine-5'-O-(3-thio)triphosphate. These results show that substitutions into either face of the amphipathic helical domain abolished the ability of the rPAFR to undergo coupling to G proteins to form a high affinity agonist/receptor/G protein ternary complex. To examine the effects of these mutations on rPAFR signaling, PAF-stimulated inositol phosphate accumulation was determined in cells transfected with cDNAs encoding the wild-type or amphipathic helix mutant PAFRs. Although PAF stimulated 10-fold increases in inositol phosphate accumulation in rPAFR transfectants, it had no effects on inositol phosphate accumulation in amphipathic helix mutant PAFR transfectants. These results suggest that an amphipathic helix located in the amino-terminal region of the third intracellular domain of the rPAFR is required for its coupling to and activation of G proteins. This study provides the first insight into the structure of the receptor interface for G protein coupling of a PAFR and suggests a conserved role of amphipathic helices in G protein coupling of receptors ranging from those for biogenic amines to the phospholipid mediator PAF.
Collapse
Affiliation(s)
- S A Carlson
- Department of Pharmacology, University of Iowa College of Medicine, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
44
|
Abstract
Glial cells respond to various electrical, mechanical, and chemical stimuli, including neurotransmitters, neuromodulators, and hormones, with an increase in intracellular Ca2+ concentration ([Ca2+]i). The increases exhibit a variety of temporal and spatial patterns. These [Ca2+]i responses result from the coordinated activity of a number of molecular cascades responsible for Ca2+ movement into or out of the cytoplasm either by way of the extracellular space or intracellular stores. Transplasmalemmal Ca2+ movements may be controlled by several types of voltage- and ligand-gated Ca(2+)-permeable channels as well as Ca2+ pumps and a Na+/Ca2+ exchanger. In addition, glial cells express various metabotropic receptors coupled to intracellular Ca2+ stores through the intracellular messenger inositol 1,4,5-triphosphate. The interplay of different molecular cascades enables the development of agonist-specific patterns of Ca2+ responses. Such agonist specificity may provide a means for intracellular and intercellular information coding. Calcium signals can traverse gap junctions between glial cells without decrement. These waves can serve as a substrate for integration of glial activity. By controlling gap junction conductance, Ca2+ waves may define the limits of functional glial networks. Neuronal activity can trigger [Ca2+]i signals in apposed glial cells, and moreover, there is some evidence that glial [Ca2+]i waves can affect neurons. Glial Ca2+ signaling can be regarded as a form of glial excitability.
Collapse
Affiliation(s)
- A Verkhratsky
- Department of Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | |
Collapse
|
45
|
Bennett SAL, Birnboim HC. Receptor-mediated and protein kinase-dependent growth enhancement of primary human fibroblasts by platelet activating factor. Mol Carcinog 1997. [DOI: 10.1002/(sici)1098-2744(199712)20:4<366::aid-mc6>3.0.co;2-h] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Nagase T, Ishii S, Katayama H, Fukuchi Y, Ouchi Y, Shimizu T. Airway responsiveness in transgenic mice overexpressing platelet-activating factor receptor. Roles of thromboxanes and leukotrienes. Am J Respir Crit Care Med 1997; 156:1621-7. [PMID: 9372685 DOI: 10.1164/ajrccm.156.5.9703016] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Platelet-activating factor (PAF) is a potent proinflammatory compound potentially involved in the pathogenesis of inflammatory disorders, including bronchial asthma. To elucidate the pathophysiologic roles of PAF in bronchial asthma, we studied airway responsiveness in transgenic mice overexpressing PAF receptor. In the transgenic mice, PAF-induced airway smooth muscle contraction was demonstrated by physiologic and morphometric analyses, whereas there was no significant response in the littermate control group. The PAF-elicited bronchoconstriction in the transgenic mice was significantly reduced not only by a PAF receptor antagonist (WEB-2086) but also by a thromboxane synthesis inhibitor (indomethacin or ozagrel), an inhibitor of 5-lipoxygenase-activating protein (MK-886), or a cysteinyl leukotriene (LT) antagonist (pranlukast). LTB4 receptor antagonist (ONO-4057), however, had no effect on the PAF-induced responses. The transgenic mice showed a bronchial hyperreactivity to methacholine challenge, which was also inhibited by pretreatment with either thromboxane synthesis inhibitor or cysteinyl LT antagonist. These observations suggest that both thromboxane A2 and cysteinyl LTs (LTC4, LTD4, and LTE4) are involved in the bronchial responses to PAF or cholinergic stimulus in mice. The transgenic mice overexpressing PAF receptor may provide an appropriate model to study various PAF-related lung diseases, including bronchial asthma.
Collapse
Affiliation(s)
- T Nagase
- Department of Geriatrics, Faculty of Medicine, University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Ishii S, Nakamura M, Waga I, Kume K, Izumi T, Shimizu T. Cloning and characterization of a murine platelet-activating factor receptor gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 407:347-55. [PMID: 9321975 DOI: 10.1007/978-1-4899-1813-0_52] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A murine gene encoding a platelet-activating factor receptor (PAFR) was cloned. The gene was mapped to a distal region of chromosome 4 both by fluorescence in situ hybridization and by molecular linkage analysis. Northern blot analysis showed a high expression of the PAFR message in peritoneal macrophages. When C3H/HeN macrophages were treated with bacterial lipopolysaccharide (LPS) or synthetic lipid A, the PAFR gene expression was induced. Bacterial LPS, but not lipid A, induced the level of PAFR mRNA in LPS-unresponsive C3H/HeJ macrophages. These induction patterns were parallel to those of tumor necrosis factor-alpha mRNA. Thus, the PAFR in macrophages plays important roles in LPS-induced pathologies.
Collapse
Affiliation(s)
- S Ishii
- Department of Biochemistry, Faculty of Medicine, University of Tokyo
| | | | | | | | | | | |
Collapse
|
48
|
Shimizu T, Mutoh H. Structure and regulation of platelet activating factor receptor gene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1997; 407:197-204. [PMID: 9321953 DOI: 10.1007/978-1-4899-1813-0_30] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- T Shimizu
- Department of Biochemistry, Faculty of Medicine, University of Tokyo, Japan.
| | | |
Collapse
|
49
|
Le Solleu H, Laguerre M, Saux M, Dubost JP. A pharmacophore for high affinity PAF antagonists. II. Hydrophobicity study using the molecular lipophilicity potential. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1997; 16:75-113. [PMID: 9172050 DOI: 10.1016/s0929-7855(97)00574-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet-activating factor (PAF) is a powerful phospholipid-derived autacoid involved in many physiopathological mechanisms. Many PAF antagonists have been synthesized and evaluated as therapeutic candidates. In a previous report, we have described an electronic pharmacophore of PAF antagonists using the molecular electrostatic potential. In the present study, a molecular lipophilicity potential is used to compare the hydrophobic properties of 49 "heterocyclic sp2 nitrogen' highly potent PAF antagonists, belonging to six structurally different series (nine hetrazepines, five pyrrolo[1,2-c]thiazoles, 14 carboxamides, nine dihydropyridines, nine pyridinyl-thiazolidines and three imidazo[4,5-c]pyridines). Their common features consist of three hydrophilic (HYD2, HY14(3)B and HYD3) and two lipophilic zones (LIP3 and LIP4), defining the lipophilic pharmacophore of the antagonists. This pharmacophore is also characterized by several zone-to-zone distances: HYD3-HYD2 = 1.3 +/- 1.0 A, HY3B-HYD2 = 7.8 +/- 1.1, HYD3-HY3B = 5.1 +/- 1.1 A, LIP4-LIP3 = 5.4 +/- 1.1 A, LIP3-HYD2 = 11.3 +/- 1.6 A, LIP3-HY3B = 5.9 +/- 1.0 A, LIP3-HYD3 = 4.3 +/- 0.9 A, LIP4-HYD2 = 14.7 +/- 1.6 A, LIP4-HY3B = 8.1 +/- 1.2 A and LIP4-HYD3 = 3.9 +/- 1.1 A. These results represent a new step in the determination of a global pharmacophore for PAF antagonists.
Collapse
Affiliation(s)
- H Le Solleu
- G.E.R.S.A.A.C., Laboratoire de Chimie Analytique, UFR des Sciences Pharmaceutiques, Université de Bordeaux II, France
| | | | | | | |
Collapse
|
50
|
Chen J, Giris N. Species differences in PAF receptor binding in the lungs between hamster and guinea pig. JOURNAL OF LIPID MEDIATORS AND CELL SIGNALLING 1997; 16:63-74. [PMID: 9172049 DOI: 10.1016/s0929-7855(97)00573-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Platelet-activating factor (PAF) receptor in normal Golden Syrian hamster lung was characterized using radioligand binding studies and compared with guinea pig lung PAF receptor. [3H]WEB2086, a potent and specific PAF antagonist, was used as a radioligand for equilibrium binding, kinetic studies, competitive binding in receptor preparation (0-110000 g fraction of lung homogenate) from hamster and guinea pig lungs. Binding of [3H]WEB 2086 to the receptor preparation was saturable, reversible and specific in both hamster and guinea pig lungs. Scatchard plot analysis of equilibrium binding data indicates a single binding site in hamster lung with the equilibrium dissociation constant (KD) of 66.1 +/- 36.7 nM (n = 4) and maximal binding (Bmax) of 135.4 +/- 63.1 fmol/mg, but two binding sites in guinea pig lung with a high affinity site (KD = 1.7 +/- 0.6 nM; Bmax = 48.6 +/- 2.6 fmol/mg) and a low affinity site (KD = 83.8 +/- 32 nM; Bmax = 480.8 +/- 158 fmol/mg). The heterogeneity of [3H]WEB2086 binding to guinea pig lung but not to hamster lung was also confirmed by dissociation kinetic studies, in which biphasic dissociation kinetic was shown in guinea pig and monophasic kinetic in hamster lung. Although the specific [3H]WEB 2086 binding to lungs of both species was displaced by PAF-C18 and antagonists L659989 and CL184005 in a dose-dependent manner and not by lyso-PAF (a biologically inactive form of PAF), the potencies of the competitive inhibition were significantly different between the two species. The relative potencies ranked WEB2086 approximately L659989 > PAF > CL184005 in hamster lung, whereas in guinea pig lung the potencies ranked PAF > WEB2086 approximately L659989 approximately CL184005. The present study demonstrates for the first time the existence of PAF receptor in the hamster lung and its binding characteristics different from guinea pig lung suggest the possible existence of different PAF receptor subtypes in hamster lung.
Collapse
Affiliation(s)
- J Chen
- Department of Molecular Biosciences, University of California, Davis 95616, USA.
| | | |
Collapse
|