1
|
Huang R, Zhou Q, Liu J, Xia Y, Jiao Y, Zhao B, Feng T, Zhou H, Song X, Qin H, Wang J, Cheng L, Ning Y, Sun Q, Liu Y, Su X, Dong Y, Zhang W. Depletion of regulatory T cells enhances the T cell response induced by the neoantigen vaccine with weak immunogenicity. Neoplasia 2025; 59:101088. [PMID: 39579711 PMCID: PMC11625159 DOI: 10.1016/j.neo.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The neoantigen vaccine has remarkable potential in treating advanced cancer due to its tumor specificity and ability to bypass central tolerance mechanisms. However, numerous neoantigens show poor immunogenicity, and the immune inhibitory factors of present in both tumors and tumor-draining lymph nodes impair the efficacy of cancer neoantigen vaccine. Eliminating immunosuppressive cells will improve the priming and expansion of anti-tumor immune cells induced by the vaccine. METHODS In this study, a Treg-depleting regimen (consisting of CD25mAb and low-dose cyclophosphamide (LD-CTX)) was used in conjunction with a neoantigen vaccine for treating mice with solid tumors. We constructed two types of tumor models and investigated differences in therapy efficacy in the four groups (PBS, vaccine, CD25mAb+CTX and combination) at the genetic and protein levels. ELISPOT and TCR sequencing were applied to detect the expansion of neoantigen reactive T cells (NRT) and tumor antigen spreading. RESULTS In the combinational group, the ELISPOT results showed an obvious expansion of NRT cells induced by weak immunogenic peptides. The combinational group exhibited significant improvement in inhibiting the tumor growth extended the survival time of tumor-bearing mice, and promoted T cells infiltration into tumors. Besides, compared to the Vac group, more neoantigen-targeted and TAA-targeted T cells were detected in the combinational group by TCR sequencing. The results of transcriptomic sequencing and flow cytometry showed that the number of Tregs in the combinational group was lower, while the proportions of memory effector T cells and effector T cells were higher than those in the vaccine group. An increase in mature DCs was also observed in vaccinated mice after receiving this Treg-depleting strategy. CONCLUSION Our research first revealed that inhibiting the normal function of Tregs transformed "weaker" neoantigens into "stronger" ones, while also contributing to the proliferation of NRT cells. This Treg-depleting strategy allowed neoantigens with poor immunogenicity to elicit a robust immune response, thereby augmenting the efficacy of the neoantigen vaccine in delaying tumor growth and prolonging the survival of the hosts.
Collapse
Affiliation(s)
- Ruichen Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Qiao Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiajun Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Yang Jiao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Bi Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Tangtao Feng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Haosu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Xiuyan Song
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Hao Qin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Center of Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Center of Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Lan Cheng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Yunye Ning
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Qinying Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Yanfang Liu
- Department of Pathology, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325000, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Center of Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
2
|
Allen D, Szoo MJ, van Bergen TD, Seppelin A, Oh J, Saad MA. Near-infrared photoimmunotherapy: mechanisms, applications, and future perspectives in cancer research. Antib Ther 2025; 8:68-85. [PMID: 39958565 PMCID: PMC11826922 DOI: 10.1093/abt/tbaf001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/01/2024] [Accepted: 01/16/2025] [Indexed: 02/18/2025] Open
Abstract
Photoimmunotherapy (PIT) involves the targeted delivery of a photosensitizer through antibody conjugation, which, upon binding to its cellular target and activation by external irradiation, induces localized toxicity. This approach addresses several limitations of conventional cancer therapies, such as chemo- and radiotherapies, which result in off-target effects that significantly reduce patient quality of life. Furthermore, PIT improves on the challenges encountered with photodynamic therapy (PDT), such as nonspecific localization of the photosensitizer, which often results in unintended toxicities. Although PIT was first proposed in the early 1980s, its clinical applications have been constrained by limitations in antibody engineering, conjugation chemistries, and optical technologies. However, recent advances in antibody-drug conjugate (ADC) research and the emergence of sophisticated laser technologies have greatly benefited the broader applicability of PIT. Notably, the first near-infrared photoimmunotherapy (NIR-PIT) treatment for head and neck cancer has been approved in Japan and is currently in phase III clinical trials in the USA. A significant advantage of PIT over traditional ADCs in cancer management is the agnostic nature of PDT, making it more adaptable to different tumor types. Specifically, PIT can act on cancer stem cells and cancer cells displaying treatment resistance and aggressive phenotypes-a capability beyond the scope of ADCs alone. This review provides an overview of the mechanism of action of NIR-PIT, highlighting its adaptability and application in cancer therapeutics, and concludes by exploring the potential of PIT in advancing cancer treatments.
Collapse
Affiliation(s)
- Derek Allen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Madeline JoAnna Szoo
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, United States
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Tessa D van Bergen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Ani Seppelin
- Department of Biochemistry, Northeastern University, Boston, MA 02115, United States
| | - Jeonghyun Oh
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Mohammad A Saad
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
3
|
Ponomarev AV, Shubina IZ, Sokolova ZA, Baryshnikova MA, Kosorukov VS. Transplantable Murine Tumors in the Studies of Peptide Antitumor Vaccines. Oncol Rev 2024; 17:12189. [PMID: 38260723 PMCID: PMC10800450 DOI: 10.3389/or.2023.12189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Numerous studies have shown that antitumor vaccines based on synthetic peptides are safe and can induce both CD8+ and CD4+ tumor-specific T cell responses. However, clinical results are still scarce, and such approach to antitumor treatment has not gained a wide implication, yet. Recently, particular advances have been achieved due to tumor sequencing and the search for immunogenic neoantigens caused by mutations. One of the most important issues for peptide vaccines, along with the choice of optimal adjuvants and vaccination regimens, is the search for effective target antigens. Extensive studies of peptide vaccines, including those on murine models, are required to reveal the effective vaccine constructs. The review presents transplantable murine tumors with the detected peptides that showed antitumor efficacy as a vaccine compound.
Collapse
|
4
|
Lee JW, Hruban RH, Wood LD. Molecular Understanding of the Development of Ductal Pancreatic Cancer. THE PANCREAS 2023:912-920. [DOI: 10.1002/9781119876007.ch119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
5
|
Panni UY, Chen MY, Zhang F, Cullinan DR, Li L, James CA, Zhang X, Rogers S, Alarcon A, Baer JM, Zhang D, Gao F, Miller CA, Gong Q, Lim KH, DeNardo DG, Goedegebuure SP, Gillanders WE, Hawkins WG. Induction of cancer neoantigens facilitates development of clinically relevant models for the study of pancreatic cancer immunobiology. Cancer Immunol Immunother 2023; 72:2813-2827. [PMID: 37179276 PMCID: PMC10361914 DOI: 10.1007/s00262-023-03463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
Neoantigen burden and CD8 T cell infiltrate are associated with clinical outcome in pancreatic ductal adenocarcinoma (PDAC). A shortcoming of many genetic models of PDAC is the lack of neoantigen burden and limited T cell infiltrate. The goal of the present study was to develop clinically relevant models of PDAC by inducing cancer neoantigens in KP2, a cell line derived from the KPC model of PDAC. KP2 was treated with oxaliplatin and olaparib (OXPARPi), and a resistant cell line was subsequently cloned to generate multiple genetically distinct cell lines (KP2-OXPARPi clones). Clones A and E are sensitive to immune checkpoint inhibition (ICI), exhibit relatively high T cell infiltration, and have significant upregulation of genes involved in antigen presentation, T cell differentiation, and chemokine signaling pathways. Clone B is resistant to ICI and is similar to the parental KP2 cell line in terms of relatively low T cell infiltration and no upregulation of genes involved in the pathways noted above. Tumor/normal exome sequencing and in silico neoantigen prediction confirms successful generation of cancer neoantigens in the KP2-OXPARPi clones and the relative lack of cancer neoantigens in the parental KP2 cell line. Neoantigen vaccine experiments demonstrate that a subset of candidate neoantigens are immunogenic and neoantigen synthetic long peptide vaccines can restrain Clone E tumor growth. Compared to existing models, the KP2-OXPARPi clones better capture the diverse immunobiology of human PDAC and may serve as models for future investigations in cancer immunotherapies and strategies targeting cancer neoantigens in PDAC.
Collapse
Affiliation(s)
- Usman Y Panni
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Michael Y Chen
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Felicia Zhang
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Darren R Cullinan
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Lijin Li
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - C Alston James
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Xiuli Zhang
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - S Rogers
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - A Alarcon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Daoxiang Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Feng Gao
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Christopher A Miller
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - Qingqing Gong
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
| | - Kian-Huat Lim
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - S Peter Goedegebuure
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William E Gillanders
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, Campus Box 8109, 660 S. Euclid Ave., St. Louis, MO, 63110, USA.
- Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
6
|
Mukherji R, Debnath D, Hartley ML, Noel MS. The Role of Immunotherapy in Pancreatic Cancer. Curr Oncol 2022; 29:6864-6892. [PMID: 36290818 PMCID: PMC9600738 DOI: 10.3390/curroncol29100541] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/09/2022] [Accepted: 09/15/2022] [Indexed: 01/13/2023] Open
Abstract
Pancreatic adenocarcinoma remains one of the most lethal cancers globally, with a significant need for improved therapeutic options. While the recent breakthroughs of immunotherapy through checkpoint inhibitors have dramatically changed treatment paradigms in other malignancies based on considerable survival benefits, this is not so for pancreatic cancer. Chemotherapies with modest benefits are still the cornerstone of advanced pancreatic cancer treatment. Pancreatic cancers are inherently immune-cold tumors and have been largely refractory to immunotherapies in clinical trials. Understanding and overcoming the current failures of immunotherapy through elucidating resistance mechanisms and developing novel therapeutic approaches are essential to harnessing the potential durable benefits of immune-modulating therapy in pancreatic cancer patients.
Collapse
Affiliation(s)
- Reetu Mukherji
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Dipanjan Debnath
- Department of Internal Medicine, Medstar Washington Hospital Center, 110 Irving Street NW, Washington, DC 20010, USA
| | - Marion L. Hartley
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
| | - Marcus S. Noel
- The Ruesch Center for the Cure of Gastrointestinal Cancers, Georgetown Lombardi Comprehensive Cancer Center, Division of Hematology and Oncology, Medstar Georgetown University Hospital, 3800 Reservoir Road NW, Washington, DC 20007, USA
- Correspondence:
| |
Collapse
|
7
|
Sivakumar S, Abu-Shah E, Ahern DJ, Arbe-Barnes EH, Jainarayanan AK, Mangal N, Reddy S, Rendek A, Easton A, Kurz E, Silva M, Soonawalla Z, Heij LR, Bashford-Rogers R, Middleton MR, Dustin ML. Activated Regulatory T-Cells, Dysfunctional and Senescent T-Cells Hinder the Immunity in Pancreatic Cancer. Cancers (Basel) 2021; 13:1776. [PMID: 33917832 PMCID: PMC8068251 DOI: 10.3390/cancers13081776] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/20/2021] [Accepted: 03/29/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has one of the worst prognoses of any human malignancy and leukocyte infiltration is a major prognostic marker of the disease. As current immunotherapies confer negligible survival benefits, there is a need to better characterise leukocytes in pancreatic cancer to identify better therapeutic strategies. In this study, we analysed 32 human pancreatic cancer patients from two independent cohorts. A multi-parameter mass-cytometry analysis was performed on 32,000 T-cells from eight patients. Single-cell RNA sequencing dataset analysis was performed on a cohort of 24 patients. Multiplex immunohistochemistry imaging and spatial analysis were performed to map immune infiltration into the tumour microenvironment. Regulatory T-cell populations demonstrated highly immunosuppressive states with high TIGIT, ICOS and CD39 expression. CD8+ T-cells were found to be either in senescence or an exhausted state. The exhausted CD8 T-cells had low PD-1 expression but high TIGIT and CD39 expression. These findings were corroborated in an independent pancreatic cancer single-cell RNA dataset. These data suggest that T-cells are major players in the suppressive microenvironment of pancreatic cancer. Our work identifies multiple novel therapeutic targets that should form the basis for rational design of a new generation of clinical trials in pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Shivan Sivakumar
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Enas Abu-Shah
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - David J. Ahern
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| | | | - Ashwin K. Jainarayanan
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
- Interdisciplinary Bioscience Doctoral Training Program and Exeter College, University of Oxford, Oxford OX3 7DQ, UK
| | - Nagina Mangal
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK;
| | - Srikanth Reddy
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Aniko Rendek
- Department of Pathology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK;
| | - Alistair Easton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
| | - Elke Kurz
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| | - Michael Silva
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Zahir Soonawalla
- Department of Surgery, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK; (S.R.); (M.S.); (Z.S.)
| | - Lara R. Heij
- Department of General, Gastrointestinal, Hepatobiliary and Transplant Surgery, RWTH Aachen University Hospital, 52074 Aachen, Germany;
- Institute of Pathology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | | | - Mark R. Middleton
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK; (S.S.); (A.E.); (M.R.M.)
- Oncology, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford OX3 9DU, UK
| | - Michael L. Dustin
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK; (D.J.A.); (A.K.J.); (E.K.)
| |
Collapse
|
8
|
Charmsaz S, Gross N, Jaffee E, Ho WJ. A global live cell barcoding approach for multiplexed mass cytometry profiling of mouse tumors. JCI Insight 2021; 6:143283. [PMID: 33690223 PMCID: PMC8119183 DOI: 10.1172/jci.insight.143283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
With the advent of cancer immunology, mass cytometry has been increasingly employed to characterize the responses to cancer therapies and the tumor microenvironment (TME). One of its most notable applications is efficient multiplexing of samples into batches by dedicating a number of metal isotope channels to barcodes, enabling robust data acquisition and analysis. Barcoding is most effective when markers are present in all cells of interest. While CD45 has been shown to be a reliable marker for barcoding all immune cells in a given sample, a strategy to reliably barcode mouse cancer cells has not been demonstrated. To this end, we identified CD29 and CD98 as markers widely expressed by commonly used mouse cancer cell lines. We conjugated anti-CD29 and anti-CD98 antibodies to cadmium or indium metals and validated their utility in 10-plex barcoding of live cells. Finally, we established a potentially novel barcoding system incorporating the combination of CD29, CD98, and CD45 to multiplex 10 tumors from s.c. MC38 and KPC tumor models, while successfully recapitulating the known contrast in the PD1-PDL1 axis between the 2 models. The ability to barcode tumor cells along with immune cells empowers the interrogation of the tumor-immune interactions in mouse TME studies.
Collapse
|
9
|
Zheng L, Ding D, Edil BH, Judkins C, Durham JN, Thomas DL, Bever KM, Mo G, Solt SE, Hoare JA, Bhattacharya R, Zhu Q, Osipov A, Onner B, Purtell KA, Cai H, Parkinson R, Hacker-Prietz A, Herman JM, Le DT, Azad NS, De Jesus-Acosta AMC, Blair AB, Kim V, Soares KC, Manos L, Cameron JL, Makary MA, Weiss MJ, Schulick RD, He J, Wolfgang CL, Thompson ED, Anders RA, Sugar E, Jaffee EM, Laheru DA. Vaccine-Induced Intratumoral Lymphoid Aggregates Correlate with Survival Following Treatment with a Neoadjuvant and Adjuvant Vaccine in Patients with Resectable Pancreatic Adenocarcinoma. Clin Cancer Res 2020; 27:1278-1286. [PMID: 33277370 DOI: 10.1158/1078-0432.ccr-20-2974] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/05/2020] [Accepted: 12/01/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE Immunotherapy is currently ineffective for nearly all pancreatic ductal adenocarcinomas (PDAC), largely due to its tumor microenvironment (TME) that lacks antigen-experienced T effector cells (Teff). Vaccine-based immunotherapies are known to activate antigen-specific Teffs in the peripheral blood. To evaluate the effect of vaccine therapy on the PDAC TME, we designed a neoadjuvant and adjuvant clinical trial of an irradiated, GM-CSF-secreting, allogeneic PDAC vaccine (GVAX). PATIENTS AND METHODS Eighty-seven eligible patients with resectable PDAC were randomly assigned (1:1:1) to receive GVAX alone or in combination with two forms of low-dose cyclophosphamide. Resected tumors following neoadjuvant immunotherapy were assessed for the formation of tertiary lymphoid aggregates (TLA) in response to treatment. The clinical endpoints are disease-free survival (DFS) and overall survival (OS). RESULTS The neoadjuvant treatment with GVAX either alone or with two forms of low-dose cyclophosphamide is safe and feasible without adversely increasing the surgical complication rate. Patients in Arm A who received neoadjuvant and adjuvant GVAX alone had a trend toward longer median OS (35.0 months) than that (24.8 months) in the historical controls who received adjuvant GVAX alone. However, Arm C, who received low-dose oral cyclophosphamide in addition to GVAX, had a significantly shorter DFS than Arm A. When comparing patients with OS > 24 months to those with OS < 15 months, longer OS was found to be associated with higher density of intratumoral TLA. CONCLUSIONS It is safe and feasible to use a neoadjuvant immunotherapy approach for PDACs to evaluate early biologic responses. In-depth analysis of TLAs is warranted in future neoadjuvant immunotherapy clinical trials.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ding Ding
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Barish H Edil
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Carol Judkins
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jennifer N Durham
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dwayne L Thomas
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katherine M Bever
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Guanglan Mo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sara E Solt
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jessica A Hoare
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Raka Bhattacharya
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Qingfeng Zhu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Arsen Osipov
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Beth Onner
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Katrina A Purtell
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hongyan Cai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rose Parkinson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Amy Hacker-Prietz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph M Herman
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Radiation Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Dung T Le
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nilofer S Azad
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ana M C De Jesus-Acosta
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alex B Blair
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria Kim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kevin C Soares
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lindsey Manos
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John L Cameron
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Martin A Makary
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Matthew J Weiss
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard D Schulick
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery and Cancer Center, University of Colorado School of Medicine, Aurora, Colorado
| | - Jin He
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth D Thompson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Sugar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,School of Public Health, Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Muth ST, Saung MT, Blair AB, Henderson MG, Thomas DL, Zheng L. CD137 agonist-based combination immunotherapy enhances activated, effector memory T cells and prolongs survival in pancreatic adenocarcinoma. Cancer Lett 2020; 499:99-108. [PMID: 33271264 DOI: 10.1016/j.canlet.2020.11.041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/05/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
Pancreatic ductal adenocarcinoma(PDAC) is resistant to the PD-1/PD-L1 blockade therapy. Previously, the combination of PD-1 blockade and vaccine therapy was shown to have a modest antitumor activity in murine models of PDAC. We used a murine syngeneic model of metastatic PDAC to identify, among multiple T cell modulators tested, which therapeutic agents in combination with the GVAX cancer vaccine and an anti-PD-1 antagonist antibody(αPD-1) are able to improve the survival. We found that an anti-CD137 agonist antibody(αCD137) most significantly improved survival in the mouse PDAC model. Moreover, αPD-1 and αCD137 together in combination with vaccine therapy more significantly increased the expression of costimulatory molecules CD137 and OX40 on CD4+PD-1+ and CD8+PD-1+ T cells comparing to αPD-1 or αCD137, respectively, suggesting that T cell activation within PDACs were enhanced by a synergy of αCD137 and αPD-1. On another hand, αCD137 treatment led to an increase in effector memory T cells independent of αPD-1. Although αCD137 does not increase the cytotoxic effector T cell function, the addition of αCD137 to GVAX+αPD-1 increased expression of IFNγ in EOMES + exhausted tumor-infiltrating T cells. Taken together, this preclinical study established the mechanism of targeting CD137 to enhance effector memory and activated T cells in PDAC. Immunohistochemistry analysis of resected human PDACs following the neo-adjuvant GVAX treatment showed increased levels of CD8+ T cells in those with high levels of CD137 expression, supporting an ongoing clinical trial of testing CD137 as a potential target in treating PDACs that are inflamed with T cells by vaccine therapy.
Collapse
Affiliation(s)
- Stephen T Muth
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - May Tun Saung
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Alex B Blair
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - MacKenzie G Henderson
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Dwayne L Thomas
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lei Zheng
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, United States; The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
11
|
Krishnamoorthy M, Lenehan JG, Burton JP, Maleki Vareki S. Immunomodulation in Pancreatic Cancer. Cancers (Basel) 2020; 12:cancers12113340. [PMID: 33198059 PMCID: PMC7696309 DOI: 10.3390/cancers12113340] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/30/2020] [Accepted: 11/10/2020] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer has a high mortality rate, and its incidence is increasing worldwide. The almost universal poor prognosis of pancreatic cancer is partly due to symptoms presenting only at late stages and limited effective treatments. Recently, immune checkpoint blockade inhibitors have drastically improved patient survival in metastatic and advanced settings in certain cancers. Unfortunately, these therapies are ineffective in pancreatic cancer. However, tumor biopsies from long-term survivors of pancreatic cancer are more likely to be infiltrated by cytotoxic T-cells and certain species of bacteria that activate T-cells. These observations suggest that T-cell activation is essential for anti-tumor immunity in pancreatic cancers. This review discusses the immunological mechanisms responsible for effective anti-tumor immunity and how immune-based strategies can be exploited to develop new pancreatic cancer treatments.
Collapse
Affiliation(s)
- Mithunah Krishnamoorthy
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (M.K.); (J.P.B.)
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
| | - John G. Lenehan
- Division of Medical Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Jeremy P. Burton
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6A 3K7, Canada; (M.K.); (J.P.B.)
- Canadian Centre for Human Microbiome and Probiotics, Lawson Health Research Institute, London, ONN6A 4V2, Canada
- Division of Urology, Department of Surgery, University of Western Ontario, London, ON N6A 3K7, Canada
| | - Saman Maleki Vareki
- Cancer Research Laboratory Program, Lawson Health Research Institute, London, ON N6A 5W9, Canada
- Department of Pathology and Laboratory Medicine, University of Western Ontario, London, ON N6A 3K7, Canada
- Division of Experimental Oncology, Department of Oncology, University of Western Ontario, London, ON N6A 3K7, Canada
- Correspondence: ; Tel.: +519-685-8500 (ext. 55769)
| |
Collapse
|
12
|
Mundry CS, Eberle KC, Singh PK, Hollingsworth MA, Mehla K. Local and systemic immunosuppression in pancreatic cancer: Targeting the stalwarts in tumor's arsenal. Biochim Biophys Acta Rev Cancer 2020; 1874:188387. [PMID: 32579889 DOI: 10.1016/j.bbcan.2020.188387] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023]
Abstract
Late detection, compromised immune system, and chemotherapy resistance underlie the poor patient prognosis for pancreatic ductal adenocarcinoma (PDAC) patients, making it the 3rd leading cause of cancer-related deaths in the United States. Cooperation between the tumor cells and the immune system leads to the immune escape and eventual establishment of the tumor. For more than 20 years, sincere efforts have been made to intercept the tumor-immune crosstalk and identify the probable therapeutic targets for breaking self-tolerance toward tumor antigens. However, the success of these studies depends on detailed examination and understanding of tumor-immune cell interactions, not only in the primary tumor but also at distant systemic niches. Innate and adaptive arms of the immune system sculpt tumor immunogenicity, where they not only aid in providing an amenable environment for their survival but also act as a driver for tumor relapse at primary or distant organ sites. This review article highlights the key events associated with tumor-immune communication and associated immunosuppression at both local and systemic microenvironments in PDAC. Furthermore, we discuss the approaches and benefits of targeting both local and systemic immunosuppression for PDAC patients. The present articles integrate data from clinical and genetic mouse model studies to provide a widespread consensus on the role of local and systemic immunosuppression in undermining the anti-tumor immune responses against PDAC.
Collapse
MESH Headings
- Adaptive Immunity/drug effects
- Animals
- Antineoplastic Agents, Immunological/pharmacology
- Antineoplastic Agents, Immunological/therapeutic use
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Bone Marrow/drug effects
- Bone Marrow/immunology
- Bone Marrow/pathology
- Cancer Vaccines/administration & dosage
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/mortality
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Chemotherapy, Adjuvant/methods
- Clinical Trials as Topic
- Combined Modality Therapy/methods
- Disease Models, Animal
- Disease-Free Survival
- Fluorouracil/pharmacology
- Fluorouracil/therapeutic use
- Humans
- Immunity, Innate/drug effects
- Immunotherapy/methods
- Irinotecan/pharmacology
- Irinotecan/therapeutic use
- Leucovorin/pharmacology
- Leucovorin/therapeutic use
- Lymph Node Excision
- Lymph Nodes/immunology
- Lymph Nodes/pathology
- Lymph Nodes/surgery
- Mice
- Mice, Transgenic
- Neoadjuvant Therapy/methods
- Oxaliplatin/pharmacology
- Oxaliplatin/therapeutic use
- Pancreas/immunology
- Pancreas/pathology
- Pancreas/surgery
- Pancreatectomy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- Spleen/immunology
- Spleen/pathology
- Spleen/surgery
- Splenectomy
- T-Lymphocytes/drug effects
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Transplantation, Autologous/methods
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- United States/epidemiology
Collapse
Affiliation(s)
- Clara S Mundry
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kirsten C Eberle
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Pankaj K Singh
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Michael A Hollingsworth
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA
| | - Kamiya Mehla
- The Eppley Institute for Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
13
|
Gautam SK, Kumar S, Dam V, Ghersi D, Jain M, Batra SK. MUCIN-4 (MUC4) is a novel tumor antigen in pancreatic cancer immunotherapy. Semin Immunol 2020; 47:101391. [PMID: 31952903 PMCID: PMC7160012 DOI: 10.1016/j.smim.2020.101391] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/01/2020] [Indexed: 12/12/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a dismal five-year survival rate. This is due to its asymptomatic nature, lack of reliable biomarkers, poor resectability, early metastasis, and high recurrence rate. Limited efficacies of current treatment modalities treatment-associated toxicity underscore the need for the development of immunotherapy-based approaches. For non-resectable, locally advanced metastatic PC, immunotherapy-based approaches including vaccines, antibody-targeted, immune checkpoint inhibition, CAR-T-cells, and adoptive T-cell transfer could be valuable additions to existing treatment modalities. Thus far, the vaccine candidates in PC have demonstrated modest immunological responses in different treatment modalities. The identification of tumor-associated antigens (TAA) and their successful implication in PC treatment is still a challenge. MUC4, a high molecular weight glycoprotein that functionally contributes to PC pathogenesis, is an attractive TAA. It is not detected in the normal pancreas; however, it is overexpressed in mouse and human pancreatic tumors. The recombinant MUC4 domain, as well as predicted immunogenic T-cell epitopes, elicited cellular and humoral anti-MUC4 response, suggesting its ulility as a vaccine candidate for PC therapy. Existence of PC-associated MUC4 splice variants, autoantibodies against overexpressed and aberrantly glycosylated MUC4 and presence of T-cell clones against the mutations present in MUC4 further reinforce its significance as a tumor antigen for vaccine development. Herein, we review the significance of MUC4 as a tumor antigen in PC immunotherapy and discuss both, the development and challenges associated with MUC4 based immunotherapy. Lastly, we will present our perspective on MUC4 antigenicity for the future development of MUC4-based PC immunotherapy.
Collapse
Affiliation(s)
- Shailendra K Gautam
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sushil Kumar
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vi Dam
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Dario Ghersi
- School of Interdisciplinary Informatics, University of Nebraska Omaha, NE, 68182, USA
| | - Maneesh Jain
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
14
|
Nichetti F, Marra A, Corti F, Guidi A, Raimondi A, Prinzi N, de Braud F, Pusceddu S. The Role of Mesothelin as a Diagnostic and Therapeutic Target in Pancreatic Ductal Adenocarcinoma: A Comprehensive Review. Target Oncol 2019; 13:333-351. [PMID: 29656320 DOI: 10.1007/s11523-018-0567-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesothelin is a tumor differentiation antigen, which is highly expressed in several solid neoplasms, including pancreatic cancer. Its selective expression on malignant cells and on only a limited number of healthy tissues has made it an interesting candidate for investigation as a diagnostic and prognostic biomarker and as a therapeutic target. Based on a strong preclinical rationale, a number of therapeutic agents targeting mesothelin have entered clinical trials, including immunotoxins, monoclonal antibodies, antibody-drug conjugates, cancer vaccines, and adoptive T cell therapies with chimeric antigen receptors. In pancreatic cancer, mesothelin has been investigated mainly to address two unmet issues: the urgent need for new laboratory techniques for early tumor detection and the lack of successfully targetable oncogenic alterations for patients' treatment. In this review, we describe the clinicopathological significance of mesothelin expression in pancreatic cancer initiation and progression, we summarize available studies evaluating mesothelin as a potential diagnostic and prognostic biomarker in this disease, and we discuss current evidence and future perspectives of preclinical and clinical studies testing mesothelin as a molecular target for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy.
| | - Antonio Marra
- Medical Oncology Unit, Azienda Ospedaliera San Paolo, Milan, Italy
| | - Francesca Corti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Alessandro Guidi
- Medical Oncology Unit, Azienda Ospedaliera San Gerardo, Monza, Italy
| | - Alessandra Raimondi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Natalie Prinzi
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| | - Filippo de Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
- Department of Oncology, Università degli Studi di Milano, Milan, Italy
| | - Sara Pusceddu
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Via Venezian 1, 20133, Milan, Italy
| |
Collapse
|
15
|
Rogers O, Yen H, Solomon A, Drake C, Denmeade S. An IL-2 proaerolysin fusion toxin that selectively eliminates regulatory t cells to enhance antitumor immune response. Prostate 2019; 79:1071-1078. [PMID: 31059598 DOI: 10.1002/pros.23819] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 04/03/2019] [Accepted: 04/09/2019] [Indexed: 01/22/2023]
Abstract
BACKGROUND Recent success with immune-checkpoint inhibitors in some tumor types has highlighted the power of the immune system to control and eradicate human cancer cells. However, these therapies have demonstrated a limited activity in prostate cancer, which has a more immunosuppressive microenvironment that can be because of the presence of a variety of inhibitory cell types, such as myeloid-derived suppressor cells, mesenchymal stem cells, and regulatory T cells (Tregs). One strategy to improve the efficacy of immune-based therapies for prostate cancer is to selectively eliminate these immunosuppressive cells within the tumor microenvironment. METHODS We developed and characterized a chimeric protein consisting of the cytokine IL-2 fused to binding mutant of the highly toxic bacterial toxin proaerolysin (ie IL2-R336A). RESULTS The IL2-R336A fusion protein selectively kills immunosuppressive Tregs that express the IL-2 receptor while having little to no effect on cells negative for this target. IL2-R336A depleted Tregs in both tumor bearing and nontumor bearing mice. Tumor bearing mice vaccinated with a GMCSF-expressing CT-26 GVAX vaccine had reduced tumor growth when given IL2-R336A before vaccination. IL2-R336A also enhanced immune response to a model hemagglutinin antigen (HA) in HA-tolerized mice. CONCLUSION These results suggest that this IL2-R336A toxin may be a useful in improving the therapeutic efficacy of antitumor vaccines by enhancing the immune response against target tumor antigens.
Collapse
Affiliation(s)
- Oliver Rogers
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Hung Yen
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Anna Solomon
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Charles Drake
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Samuel Denmeade
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland
| |
Collapse
|
16
|
Blair AB, Kim VM, Muth ST, Saung MT, Lokker N, Blouw B, Armstrong TD, Jaffee EM, Tsujikawa T, Coussens LM, He J, Burkhart RA, Wolfgang CL, Zheng L. Dissecting the Stromal Signaling and Regulation of Myeloid Cells and Memory Effector T Cells in Pancreatic Cancer. Clin Cancer Res 2019; 25:5351-5363. [PMID: 31186314 DOI: 10.1158/1078-0432.ccr-18-4192] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 05/01/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Myeloid cells are a prominent immunosuppressive component within the stroma of pancreatic ductal adenocarcinoma (PDAC). Previously, targeting myeloid cells has had limited success. Here, we sought to target the myeloid cells through modifying a specific stromal component. EXPERIMENTAL DESIGN A murine model of metastatic PDAC treated with an irradiated whole-cell PDAC vaccine and PDAC specimens from patients treated with the same type of vaccine were used to assess the immune-modulating effect of stromal hyaluronan (HA) degradation by PEGPH20. RESULTS Targeting stroma by degrading HA with PEGPH20 in combination with vaccine decreases CXCL12/CXCR4/CCR7 immunosuppressive signaling axis expression in cancer-associated fibroblasts, myeloid, and CD8+ T cells, respectively. This corresponds with increased CCR7- effector memory T-cell infiltration, an increase in tumor-specific IFNγ, and improved survival. In the stroma of human PDACs treated with the same vaccine, decreased stromal CXCR4 expression significantly correlated with decreased HA and increased cytotoxic activities, suggesting CXCR4 is an important therapeutic target. CONCLUSIONS This study represents the first to dissect signaling cascades following PDAC stroma remodeling via HA depletion, suggesting this not only overcomes a physical barrier for immune cell trafficking, but alters myeloid function leading to downstream selective increases in effector memory T-cell infiltration and antitumor activity.
Collapse
Affiliation(s)
- Alex B Blair
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Victoria M Kim
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stephen T Muth
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - May Tun Saung
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | - Todd D Armstrong
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Takahiro Tsujikawa
- Department of Otolaryngology, Head and Neck Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Lisa M Coussens
- Department of Cell, Developmental & Cancer Biology, Oregon Health and Science University, Portland, Oregon.,Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon
| | - Jin He
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Richard A Burkhart
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher L Wolfgang
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Lei Zheng
- The Sydney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland. .,The Pancreatic Cancer Precision Medicine Center of Excellence Program, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
17
|
Looi CK, Chung FFL, Leong CO, Wong SF, Rosli R, Mai CW. Therapeutic challenges and current immunomodulatory strategies in targeting the immunosuppressive pancreatic tumor microenvironment. J Exp Clin Cancer Res 2019; 38:162. [PMID: 30987642 PMCID: PMC6463646 DOI: 10.1186/s13046-019-1153-8] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/22/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal type of cancers, with an overall five-year survival rate of less than 5%. It is usually diagnosed at an advanced stage with limited therapeutic options. To date, no effective treatment options have demonstrated long-term benefits in advanced pancreatic cancer patients. Compared with other cancers, pancreatic cancer exhibits remarkable resistance to conventional therapy and possesses a highly immunosuppressive tumor microenvironment (TME). MAIN BODY In this review, we summarized the evidence and unique properties of TME in pancreatic cancer that may contribute to its resistance towards immunotherapies as well as strategies to overcome those barriers. We reviewed the current strategies and future perspectives of combination therapies that (1) promote T cell priming through tumor associated antigen presentation; (2) inhibit tumor immunosuppressive environment; and (3) break-down the desmoplastic barrier which improves tumor infiltrating lymphocytes entry into the TME. CONCLUSIONS It is imperative for clinicians and scientists to understand tumor immunology, identify novel biomarkers, and optimize the position of immunotherapy in therapeutic sequence, in order to improve pancreatic cancer clinical trial outcomes. Our collaborative efforts in targeting pancreatic TME will be the mainstay of achieving better clinical prognosis among pancreatic cancer patients. Ultimately, pancreatic cancer will be a treatable medical condition instead of a death sentence for a patient.
Collapse
Affiliation(s)
- Chin-King Looi
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Felicia Fei-Lei Chung
- Mechanisms of Carcinogenesis Section (MCA), Epigenetics Group (EGE) International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Chee-Onn Leong
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| | - Shew-Fung Wong
- School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Rozita Rosli
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Sri Kembangan, Selangor Malaysia
| | - Chun-Wai Mai
- School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
- Center for Cancer and Stem Cell Research, Institute for Research, Development and Innovation (IRDI), International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Blair AB, Kleponis J, Thomas DL, Muth ST, Murphy AG, Kim V, Zheng L. IDO1 inhibition potentiates vaccine-induced immunity against pancreatic adenocarcinoma. J Clin Invest 2019; 129:1742-1755. [PMID: 30747725 PMCID: PMC6436883 DOI: 10.1172/jci124077] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/05/2019] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) represents an immune quiescent tumor that is resistant to immune checkpoint inhibitors. Previously, our group has shown that a GM-CSF-secreting allogenic pancreatic tumor cell vaccine (GVAX) may prime the tumor microenvironment by inducing intratumoral T cell infiltration. Here, we show that untreated PDACs express minimal indoleamine-2,3-dioxygenase (IDO1); however, GVAX therapy induced IDO1 expression on tumor epithelia as well as vaccine-induced tertiary lymphoid aggregates. IDO1 expression plays a role in regulating the polarization of Th1, Th17, and possibly T regulatory cells in PDAC tumors. IDO1 inhibitor enhanced antitumor efficacy of GVAX in a murine model of PDACs. The combination of vaccine and IDO1 inhibitor enhanced intratumoral T cell infiltration and function, but adding anti-PD-L1 antibody to the combination did not offer further synergy and in fact may have had a negative interaction, decreasing the number of intratumoral effector T cells. Additionally, IDO1 inhibitor in the presence of vaccine therapy did not significantly modulate intratumoral myeloid-derived suppressor cells quantitatively, but diminished their suppressive effect on CD8+ proliferation. Our study supports the combination of IDO1 inhibitor and vaccine therapy; however, it does not support the combination of IDO1 inhibitor and anti-PD-1/PD-L1 antibody for T cell-inflamed tumors such as PDACs treated with vaccine therapy.
Collapse
MESH Headings
- Adenocarcinoma/immunology
- Adenocarcinoma/pathology
- Adenocarcinoma/therapy
- Animals
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/pathology
- Carcinoma, Pancreatic Ductal/therapy
- Cell Line, Tumor
- Enzyme Inhibitors/pharmacology
- Humans
- Indoleamine-Pyrrole 2,3,-Dioxygenase/antagonists & inhibitors
- Indoleamine-Pyrrole 2,3,-Dioxygenase/immunology
- Mice
- Neoplasms, Experimental/immunology
- Neoplasms, Experimental/pathology
- Neoplasms, Experimental/therapy
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/pathology
- Pancreatic Neoplasms/therapy
- T-Lymphocytes, Helper-Inducer/immunology
- T-Lymphocytes, Helper-Inducer/pathology
Collapse
Affiliation(s)
- Alex B. Blair
- The Sidney Kimmel Comprehensive Cancer Center
- Department of Oncology
- Department of Surgery, and
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Dwayne L. Thomas
- The Sidney Kimmel Comprehensive Cancer Center
- Department of Oncology
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen T. Muth
- The Sidney Kimmel Comprehensive Cancer Center
- Department of Oncology
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Adrian G. Murphy
- The Sidney Kimmel Comprehensive Cancer Center
- Department of Oncology
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Victoria Kim
- The Sidney Kimmel Comprehensive Cancer Center
- Department of Oncology
- Department of Surgery, and
| | - Lei Zheng
- The Sidney Kimmel Comprehensive Cancer Center
- Department of Oncology
- Department of Surgery, and
- The Pancreatic Cancer Precision Medicine Center of Excellence Program, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Ma HS, Poudel B, Torres ER, Sidhom JW, Robinson TM, Christmas B, Scott B, Cruz K, Woolman S, Wall VZ, Armstrong T, Jaffee EM. A CD40 Agonist and PD-1 Antagonist Antibody Reprogram the Microenvironment of Nonimmunogenic Tumors to Allow T-cell-Mediated Anticancer Activity. Cancer Immunol Res 2019; 7:428-442. [PMID: 30642833 DOI: 10.1158/2326-6066.cir-18-0061] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 08/08/2018] [Accepted: 01/08/2019] [Indexed: 11/16/2022]
Abstract
In cancers with tumor-infiltrating lymphocytes (TILs), monoclonal antibodies (mAbs) that block immune checkpoints such as CTLA-4 and PD-1/PD-L1 promote antitumor T-cell immunity. Unfortunately, most cancers fail to respond to single-agent immunotherapies. T regulatory cells, myeloid derived suppressor cells (MDSCs), and extensive stromal networks within the tumor microenvironment (TME) dampen antitumor immune responses by preventing T-cell infiltration and/or activation. Few studies have explored combinations of immune-checkpoint antibodies that target multiple suppressive cell populations within the TME, and fewer have studied the combinations of both agonist and antagonist mAbs on changes within the TME. Here, we test the hypothesis that combining a T-cell-inducing vaccine with both a PD-1 antagonist and CD40 agonist mAbs (triple therapy) will induce T-cell priming and TIL activation in mouse models of nonimmunogenic solid malignancies. In an orthotopic breast cancer model and both subcutaneous and metastatic pancreatic cancer mouse models, only triple therapy was able to eradicate most tumors. The survival benefit was accompanied by significant tumor infiltration of IFNγ-, Granzyme B-, and TNFα-secreting effector T cells. Further characterization of immune populations was carried out by high-dimensional flow-cytometric clustering analysis and visualized by t-distributed stochastic neighbor embedding (t-SNE). Triple therapy also resulted in increased infiltration of dendritic cells, maturation of antigen-presenting cells, and a significant decrease in granulocytic MDSCs. These studies reveal that combination CD40 agonist and PD-1 antagonist mAbs reprogram immune resistant tumors in favor of antitumor immunity.
Collapse
Affiliation(s)
- Hayley S Ma
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bibhav Poudel
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Evanthia Roussos Torres
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John-William Sidhom
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tara M Robinson
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Brian Christmas
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Blake Scott
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kayla Cruz
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Skylar Woolman
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Valerie Z Wall
- Benaroya Research Institute at Virginia Mason, Seattle, Washington
| | - Todd Armstrong
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, and the Sidney Kimmel Cancer Center at Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
20
|
The Potential for Cancer Immunotherapy in Targeting Surgery-Induced Natural Killer Cell Dysfunction. Cancers (Basel) 2018; 11:cancers11010002. [PMID: 30577463 PMCID: PMC6356325 DOI: 10.3390/cancers11010002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 12/10/2018] [Accepted: 12/17/2018] [Indexed: 12/22/2022] Open
Abstract
Natural Killer (NK) cells are granular lymphocytes of the innate immune system that are able to recognize and kill tumor cells without undergoing clonal selection. Discovered over 40 years ago, they have since been recognized to possess both cytotoxic and cytokine-producing effector functions. Following trauma, NK cells are suppressed and their effector functions are impaired. This is especially important for cancer patients undergoing the removal of solid tumors, as surgery has shown to contribute to the development of metastasis and cancer recurrence postoperatively. We have recently shown that NK cells are critical mediators in the formation of metastasis after surgery. While research into the mechanism(s) responsible for NK cell dysfunction is ongoing, knowledge of these mechanisms will pave the way for perioperative therapeutics with the potential to improve cancer outcomes by reversing NK cell dysfunction. This review will discuss mechanisms of suppression in the postoperative environment, including hypercoagulability, suppressive soluble factors, the expansion of suppressive cell populations, and how this affects NK cell biology, including modulation of cell surface receptors, the potential for anergy, and immunosuppressive NK cell functions. This review will also outline potential immunotherapies to reverse postoperative NK dysfunction, with the goal of preventing surgery-induced metastasis.
Collapse
|
21
|
Christmas BJ, Rafie CI, Hopkins AC, Scott BA, Ma HS, Cruz KA, Woolman S, Armstrong TD, Connolly RM, Azad NA, Jaffee EM, Roussos Torres ET. Entinostat Converts Immune-Resistant Breast and Pancreatic Cancers into Checkpoint-Responsive Tumors by Reprogramming Tumor-Infiltrating MDSCs. Cancer Immunol Res 2018; 6:1561-1577. [PMID: 30341213 PMCID: PMC6279584 DOI: 10.1158/2326-6066.cir-18-0070] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 06/08/2018] [Accepted: 10/18/2018] [Indexed: 12/16/2022]
Abstract
Immune-checkpoint inhibition (ICI) has revolutionized treatment in cancers that are naturally immunogenic by enabling infiltration of T cells into the tumor microenvironment (TME) and promoting cytotoxic signaling pathways. Tumors possessing complex immunosuppressive TMEs such as breast and pancreatic cancers present unique therapeutic obstacles as response rates to ICI remain low. Such tumors often recruit myeloid-derived suppressor cells (MDSCs), whose functioning prohibits both T-cell activation and infiltration. We attempted to sensitize these tumors to ICI using epigenetic modulation to target MDSC trafficking and function to foster a less immunosuppressive TME. We showed that combining a histone deacetylase inhibitor, entinostat (ENT), with anti-PD-1, anti-CTLA-4, or both significantly improved tumor-free survival in both the HER2/neu transgenic breast cancer and the Panc02 metastatic pancreatic cancer mouse models. Using flow cytometry, gene-expression profiling, and ex vivo functional assays, we characterized populations of tumor-infiltrating lymphocytes (TILs) and MDSCs, as well as their functional capabilities. We showed that addition of ENT to checkpoint inhibition led to significantly decreased suppression by granulocytic MDSCs in the TME of both tumor types. We also demonstrated an increase in activated granzyme-B-producing CD8+ T effector cells in mice treated with combination therapy. Gene-expression profiling of both MDSCs and TILs identified significant changes in immune-related pathways. In summary, addition of ENT to ICI significantly altered infiltration and function of innate immune cells, allowing for a more robust adaptive immune response. These findings provide a rationale for combination therapy in patients with immune-resistant tumors, including breast and pancreatic cancers.
Collapse
MESH Headings
- Animals
- Female
- Male
- Antineoplastic Agents/pharmacology
- Benzamides/pharmacology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/mortality
- CTLA-4 Antigen/antagonists & inhibitors
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/immunology
- Mammary Neoplasms, Experimental/drug therapy
- Mammary Neoplasms, Experimental/mortality
- Mammary Neoplasms, Experimental/pathology
- Mice, Inbred C57BL
- Mice, Transgenic
- Myeloid-Derived Suppressor Cells/drug effects
- Myeloid-Derived Suppressor Cells/immunology
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/mortality
- Pancreatic Neoplasms/pathology
- Programmed Cell Death 1 Receptor/antagonists & inhibitors
- Programmed Cell Death 1 Receptor/immunology
- Pyridines/pharmacology
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/immunology
- Mice
Collapse
Affiliation(s)
- Brian J Christmas
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine I Rafie
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexander C Hopkins
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Blake A Scott
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hayley S Ma
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kayla A Cruz
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Skylar Woolman
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd D Armstrong
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Roisin M Connolly
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Nilo A Azad
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Evanthia T Roussos Torres
- Viragh Center for Pancreatic Clinical Research and Care, Bloomberg Kimmel Institute for Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland.
- Department of Oncology, and the Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
22
|
Gunderson AJ, Young KH. Exploring optimal sequencing of radiation and immunotherapy combinations. Adv Radiat Oncol 2018; 3:494-505. [PMID: 30370348 PMCID: PMC6200887 DOI: 10.1016/j.adro.2018.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/24/2018] [Accepted: 07/24/2018] [Indexed: 12/18/2022] Open
Abstract
Purpose The purpose of this article is to assemble, review, and provide a synopsis of the historical and current literature regarding optimal sequencing of radiation (RT) and immunotherapy combination treatments. Materials and methods A review of the literature was performed using PubMed with the query "radiation" and "Immunotherapy", "PD1", "PDL1", "CTLA4", "OX40", "checkpoint", "vaccine", "macrophage", "STING", and "TGFbeta". Studies that included sequencing of therapy were evaluated and the studies were included at the authors discretion. Results A paucity of primary literature exists examining the best order of radiation and immunotherapy, most of which was performed in the pre-clinical setting. The observations are that optimal sequencing of various radiation plus immune therapy combinations is dependent on the mechanism(s) of activation by the combination treatment. Immunosuppressive molecules tend to be better inhibited prior to RT while engagement of costimulatory genes is better activated concomitantly with RT. Conclusions These data should compel more basic research into both the direct investigation of sequencing efficacy and studies on the mechanisms of immune mediated cell death potentiated by radio-therapy.
Collapse
Affiliation(s)
- Andrew J Gunderson
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon
| | - Kristina H Young
- Earle A. Chiles Research Institute, Providence Portland Medical Center, Portland, Oregon.,Radiation Oncology Division, The Oregon Clinic, Portland, Oregon
| |
Collapse
|
23
|
Kinkead HL, Hopkins A, Lutz E, Wu AA, Yarchoan M, Cruz K, Woolman S, Vithayathil T, Glickman LH, Ndubaku CO, McWhirter SM, Dubensky TW, Armstrong TD, Jaffee EM, Zaidi N. Combining STING-based neoantigen-targeted vaccine with checkpoint modulators enhances antitumor immunity in murine pancreatic cancer. JCI Insight 2018; 3:122857. [PMID: 30333318 DOI: 10.1172/jci.insight.122857] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/04/2018] [Indexed: 02/06/2023] Open
Abstract
Tumor neoantigens arising from somatic mutations in the cancer genome are less likely to be subject to central immune tolerance and are therefore attractive targets for vaccine immunotherapy. We utilized whole-exome sequencing, RNA sequencing (RNASeq), and an in silico immunogenicity prediction algorithm, NetMHC, to generate a neoantigen-targeted vaccine, PancVAX, which was administered together with the STING adjuvant ADU-V16 to mice bearing pancreatic adenocarcinoma (Panc02) cells. PancVAX activated a neoepitope-specific T cell repertoire within the tumor and caused transient tumor regression. When given in combination with two checkpoint modulators, namely anti-PD-1 and agonist OX40 antibodies, PancVAX resulted in enhanced and more durable tumor regression and a survival benefit. The addition of OX40 to vaccine reduced the coexpression of T cell exhaustion markers, Lag3 and PD-1, and resulted in rejection of tumors upon contralateral rechallenge, suggesting the induction of T cell memory. Together, these data provide the framework for testing personalized neoantigen-based combinatorial vaccine strategies in patients with pancreatic and other nonimmunogenic cancers.
Collapse
Affiliation(s)
- Heather L Kinkead
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Alexander Hopkins
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Lutz
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Annie A Wu
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Yarchoan
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kayla Cruz
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Skylar Woolman
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Teena Vithayathil
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Laura H Glickman
- Aduro Biotechnologies Inc., Berkeley, California, USA.,Actym Therapeutics Inc., Berkeley, California, USA
| | | | | | - Thomas W Dubensky
- Aduro Biotechnologies Inc., Berkeley, California, USA.,Tempest Therapeutics, San Francisco, California, USA
| | - Todd D Armstrong
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Elizabeth M Jaffee
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Neeha Zaidi
- Sidney Kimmel Comprehensive Cancer Center, Skip Viragh Center for Pancreatic Cancer, The Bloomberg~Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
24
|
Meng Q, Valentini D, Rao M, Maeurer M. KRAS RENAISSANCE(S) in Tumor Infiltrating B Cells in Pancreatic Cancer. Front Oncol 2018; 8:384. [PMID: 30283732 PMCID: PMC6156365 DOI: 10.3389/fonc.2018.00384] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023] Open
Abstract
KRAS is a driver mutation for malignant transformation. It is found in 30% of all cancers and in 90% of pancreatic cancers. The identification of small molecules selectively inhibiting KRAS mutants has been challenging, yet mutant KRAS has recently been shown to be targeted by tumor-infiltrating lymphocyte (TIL)-derived T cells that confer tumor regression upon adoptive transfer. Furthermore, a human IgG1 monoclonal antibody interfering with mutant KRAS function inside the cell has been described to inhibit growth of KRAS-mutant xenografts in tumor-bearing mice. B cells have been described to infiltrate pancreatic cancer and may be associated with tertiary lymphoid structures associated with good prognosis, or, in contrast, promote tumor growth. However, their function, nor their antigen-specificity has been clearly defined. We discuss here the presence of tumor-infiltrating B cells (TIB) in patients with pancreatic cancer that produce KRAS-mutant specific IgG, underlining that intratumoral T and B cells may exclusively target mutant KRAS. KRAS-specific IgG may, therefore, serve as a readout of the activation of both arms of the anti-tumor adaptive immune armament although some B-cell populations may promote tumor progression.
Collapse
Affiliation(s)
- Qingda Meng
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Davide Valentini
- Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| | - Martin Rao
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden
| | - Markus Maeurer
- Division of Therapeutic Immunology (TIM), Department of Laboratory Medicine (LABMED), Karolinska Institutet, Stockholm, Sweden.,Centre for Allogeneic Stem Cell Transplantation (CAST), Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
25
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is composed of a minority of malignant cells within a microenvironment of extracellular matrix, fibroblasts, endothelial cells, and immune cells. Therapeutic failures of chemotherapy, targeted therapy, and immunotherapy have all been attributed to the PDAC microenvironment. In this review, we dissect the components of the microenvironment and explain how each cell type contributes to form a highly immunosuppressive, hypoxic, and desmoplastic cancer. New efforts in single-cell profiling will enable a better understanding of the composition of the microenvironment in primary and metastatic PDAC, as well as an understanding of how the microenvironment may respond to novel therapeutic approaches.
Collapse
|
26
|
Jang JE, Hajdu CH, Liot C, Miller G, Dustin ML, Bar-Sagi D. Crosstalk between Regulatory T Cells and Tumor-Associated Dendritic Cells Negates Anti-tumor Immunity in Pancreatic Cancer. Cell Rep 2018; 20:558-571. [PMID: 28723561 PMCID: PMC5649374 DOI: 10.1016/j.celrep.2017.06.062] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 03/29/2017] [Accepted: 06/21/2017] [Indexed: 12/19/2022] Open
Abstract
Regulatory T (Treg) cell infiltration constitutes a prominent feature of pancreatic ductal adenocarcinoma (PDA). However, the immunomodulatory function of Treg cells in PDA is poorly understood. Here, we demonstrate that Treg cell ablation is sufficient to evoke effective anti-tumor immune response in early and advanced pancreatic tumorigenesis in mice. This response is dependent on interferon-γ (IFN-γ)-producing cytotoxic CD8+ T cells. We show that Treg cells engage in extended interactions with tumor-associated CD11c+ dendritic cells (DCs) and restrain their immunogenic function by suppressing the expression of costimulatory ligands necessary for CD8+ T cell activation. Consequently, tumor-associated CD8+ T cells fail to display effector activities when Treg cell ablation is combined with DC depletion. We propose that tumor-infiltrating Treg cells can promote immune tolerance by suppressing tumor-associated DC immunogenicity. The therapeutic manipulation of this axis might provide an effective approach for the targeting of PDA.
Collapse
Affiliation(s)
- Jung-Eun Jang
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - Cristina H Hajdu
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA
| | - Caroline Liot
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA
| | - George Miller
- Department of Surgery, New York University School of Medicine, New York, NY 10016, USA; Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA
| | - Michael L Dustin
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA; Kennedy Institute, Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Headington, Oxford OX3 7BN, UK.
| | - Dafna Bar-Sagi
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
27
|
Dougan M, Ingram JR, Jeong HJ, Mosaheb MM, Bruck PT, Ali L, Pishesha N, Blomberg O, Tyler PM, Servos MM, Rashidian M, Nguyen QD, von Andrian UH, Ploegh HL, Dougan SK. Targeting Cytokine Therapy to the Pancreatic Tumor Microenvironment Using PD-L1-Specific VHHs. Cancer Immunol Res 2018; 6:389-401. [PMID: 29459478 PMCID: PMC6079513 DOI: 10.1158/2326-6066.cir-17-0495] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/13/2017] [Accepted: 02/07/2018] [Indexed: 12/31/2022]
Abstract
Cytokine-based therapies for cancer have not achieved widespread clinical success because of inherent toxicities. Treatment for pancreatic cancer is limited by the dense stroma that surrounds tumors and by an immunosuppressive tumor microenvironment. To overcome these barriers, we developed constructs of single-domain antibodies (VHHs) against PD-L1 fused with IL-2 and IFNγ. Targeting cytokine delivery in this manner reduced pancreatic tumor burden by 50%, whereas cytokines fused to an irrelevant VHH, or blockade of PD-L1 alone, showed little effect. Targeted delivery of IL-2 increased the number of intratumoral CD8+ T cells, whereas IFNγ reduced the number of CD11b+ cells and skewed intratumoral macrophages toward the display of M1-like characteristics. Imaging of fluorescent VHH-IFNγ constructs, as well as transcriptional profiling, demonstrated targeting of IFNγ to the tumor microenvironment. Many tumors and tumor-infiltrating myeloid cells express PD-L1, rendering them potentially susceptible to this form of targeted immunotherapy. Cancer Immunol Res; 6(4); 389-401. ©2018 AACR.
Collapse
Affiliation(s)
- Michael Dougan
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jessica R Ingram
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Hee-Jin Jeong
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Munir M Mosaheb
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Patrick T Bruck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Lestat Ali
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Novalia Pishesha
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Olga Blomberg
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Paul M Tyler
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mariah M Servos
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mohammad Rashidian
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Ulrich H von Andrian
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, Massachusetts
| | - Stephanie K Dougan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
28
|
White M, Freistaedter A, Jones GJB, Zervos E, Roper RL. Development of improved therapeutic mesothelin-based vaccines for pancreatic cancer. PLoS One 2018; 13:e0193131. [PMID: 29474384 PMCID: PMC5825036 DOI: 10.1371/journal.pone.0193131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 02/05/2018] [Indexed: 11/25/2022] Open
Abstract
Pancreatic cancer is the 5th leading cause of cancer deaths, and there are no effective treatments. We developed a poxvirus platform vaccine with improved immunogenicity and inserted the mesothelin gene to create an anti-mesothelin cancer vaccine. Mesothelin expression is mostly restricted to tumors in adult mammals and thus may be a good target for cancer treatment. We show here that the modified vaccinia virus Ankara (MVA) virus expressing mesothelin and the enhanced MVA virus missing the immunosuppressive A35 gene and expressing mesothelin were both safe in mice and were able to induce IFN-gamma secreting T cells in response to mesothelin expressing tumor cells. In addition, the MVA virus has oncolytic properties in vitro as it can replicate in and kill Panc02 pancreatic adenocarcinoma cell line tumor cells, even though it is unable to replicate in most mammalian cells. Deletion of the A35 gene in MVA improved T cell responses as expected. However, we were unable to demonstrate inhibition of Panc02 tumor growth in immunocompetent mice with pre-vaccination of mice, boosts, or even intratumoral injections of the recombinant viruses. Vaccine efficacy may be limited by shedding of mesothelin from tumor cells thus creating a protective screen from the immune system.
Collapse
Affiliation(s)
- Michael White
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Andrew Freistaedter
- Department of Microbiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Gwendolyn J B Jones
- Department of Microbiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Emmanuel Zervos
- Department of Surgery, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| | - Rachel L Roper
- Department of Microbiology, Brody School of Medicine, East Carolina University, Greenville, NC, United States of America
| |
Collapse
|
29
|
Johnson BA, Yarchoan M, Lee V, Laheru DA, Jaffee EM. Strategies for Increasing Pancreatic Tumor Immunogenicity. Clin Cancer Res 2018; 23:1656-1669. [PMID: 28373364 DOI: 10.1158/1078-0432.ccr-16-2318] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/23/2017] [Accepted: 01/27/2017] [Indexed: 12/15/2022]
Abstract
Immunotherapy has changed the standard of care for multiple deadly cancers, including lung, head and neck, gastric, and some colorectal cancers. However, single-agent immunotherapy has had little effect in pancreatic ductal adenocarcinoma (PDAC). Increasing evidence suggests that the PDAC microenvironment is comprised of an intricate network of signals between immune cells, PDAC cells, and stroma, resulting in an immunosuppressive environment resistant to single-agent immunotherapies. In this review, we discuss differences between immunotherapy-sensitive cancers and PDAC, the complex interactions between PDAC stroma and suppressive tumor-infiltrating cells that facilitate PDAC development and progression, the immunologic targets within these complex networks that are druggable, and data supporting combination drug approaches that modulate multiple PDAC signals, which should lead to improved clinical outcomes. Clin Cancer Res; 23(7); 1656-69. ©2017 AACRSee all articles in this CCR Focus section, "Pancreatic Cancer: Challenge and Inspiration."
Collapse
Affiliation(s)
- Burles A Johnson
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Mark Yarchoan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Valerie Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Daniel A Laheru
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland. .,Department of Pathology, Sidney Kimmel Comprehensive Cancer Center, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
30
|
Manrique SZ, Dominguez AL, Mirza N, Spencer CD, Bradley JM, Finke JH, Lee JJ, Pease LR, Gendler SJ, Cohen PA. Definitive activation of endogenous antitumor immunity by repetitive cycles of cyclophosphamide with interspersed Toll-like receptor agonists. Oncotarget 2018; 7:42919-42942. [PMID: 27341020 PMCID: PMC5189997 DOI: 10.18632/oncotarget.10190] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 04/29/2016] [Indexed: 01/04/2023] Open
Abstract
Many cancers both evoke and subvert endogenous anti-tumor immunity. However, immunosuppression can be therapeutically reversed in subsets of cancer patients by treatments such as checkpoint inhibitors or Toll-like receptor agonists (TLRa). Moreover, chemotherapy can leukodeplete immunosuppressive host elements, including myeloid-derived suppressor cells (MDSCs) and regulatory T-cells (Tregs). We hypothesized that chemotherapy-induced leukodepletion could be immunopotentiated by co-administering TLRa to emulate a life-threatening infection. Combining CpG (ODN 1826) or CpG+poly(I:C) with cyclophosphamide (CY) resulted in uniquely well-tolerated therapeutic synergy, permanently eradicating advanced mouse tumors including 4T1 (breast), Panc02 (pancreas) and CT26 (colorectal). Definitive treatment required endogenous CD8+ and CD4+ IFNγ-producing T-cells. Tumor-specific IFNγ-producing T-cells persisted during CY-induced leukopenia, whereas Tregs were progressively eliminated, especially intratumorally. Spleen-associated MDSCs were cyclically depleted by CY+TLRa treatment, with residual monocytic MDSCs requiring only continued exposure to CpG or CpG+IFNγ to effectively attack malignant cells while sparing non-transformed cells. Such tumor destruction occurred despite upregulated tumor expression of Programmed Death Ligand-1, but could be blocked by clodronate-loaded liposomes to deplete phagocytic cells or by nitric oxide synthase inhibitors. CY+TLRa also induced tumoricidal myeloid cells in naive mice, indicating that CY+TLRa's immunomodulatory impacts occurred in the complete absence of tumor-bearing, and that tumor-induced MDSCs were not an essential source of tumoricidal myeloid precursors. Repetitive CY+TLRa can therefore modulate endogenous immunity to eradicate advanced tumors without vaccinations or adoptive T-cell therapy. Human blood monocytes could be rendered similarly tumoricidal during in vitro activation with TLRa+IFNγ, underscoring the potential therapeutic relevance of these mouse tumor studies to cancer patients.
Collapse
Affiliation(s)
| | - Ana L Dominguez
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Noweeda Mirza
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | | | - Judy M Bradley
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - James H Finke
- Department of Immunology, Lerner Research Institute, Cleveland, OH, USA
| | - James J Lee
- Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ, USA.,Division of Pulmonary Medicine, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Larry R Pease
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Sandra J Gendler
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, USA.,Department of Biochemistry and Molecular Biology, Mayo Clinic in Arizona, Scottsdale, AZ, USA.,Division of Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| | - Peter A Cohen
- Department of Immunology, Mayo Clinic in Arizona, Scottsdale, AZ, USA.,Division of Hematology/Oncology, Mayo Clinic in Arizona, Scottsdale, AZ, USA
| |
Collapse
|
31
|
DeSelm CJ, Tano ZE, Varghese AM, Adusumilli PS. CAR T-cell therapy for pancreatic cancer. J Surg Oncol 2017; 116:63-74. [PMID: 28346697 DOI: 10.1002/jso.24627] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/05/2017] [Indexed: 12/18/2022]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy utilizes genetic engineering to redirect a patient's own T cells to target cancer cells. The remarkable results in hematological malignancies prompted investigating this approach in solid tumors such as pancreatic cancer. The complex tumor microenvironment, stromal hindrance in limiting immune response, and expression of checkpoint blockade on T cells pose hurdles. Herein, we summarize the opportunities, challenges, and state of knowledge in targeting pancreatic cancer with CAR T-cell therapy.
Collapse
Affiliation(s)
- Carl J DeSelm
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Zachary E Tano
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Anna M Varghese
- Gastrointestinal Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Prasad S Adusumilli
- Center for Cell Engineering, Memorial Sloan Kettering Cancer Center, New York, New York.,Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
32
|
Hall M, Liu H, Malafa M, Centeno B, Hodul PJ, Pimiento J, Pilon-Thomas S, Sarnaik AA. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors. J Immunother Cancer 2016; 4:61. [PMID: 27777771 PMCID: PMC5067894 DOI: 10.1186/s40425-016-0164-7] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 09/13/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND We evaluated whether tumor infiltrating lymphocytes (TIL) could be expanded from surgically resected tumors from pancreatic cancer patients. METHODS Tumors were resected from pancreatic cancer patients. Tumors were minced into fragments and cultured in media containing high dose interleukin-2 (IL-2) for up to 6 weeks. T cell phenotype, activation markers, and reactivity were measured. RESULTS TIL expansion was measured in 19 patient samples. The majority of these TIL were CD4+ T cells and were highly activated. Purified CD8+ T cells produced IFN-γ in response to HLA-matched pancreatic tumor targets. PD-1 blockade and 4-1BB stimulation were demonstrated as effective strategies to improve effective TIL yield, including the production of tumor-reactive pancreatic TIL. CONCLUSIONS TIL expanded from pancreatic tumors are functional and able to respond to pancreatic tumor associated antigens. PD-1 blockade, 41BB stimulation, and CD8+ T cell enrichment are effective strategies to improve TIL yield and tumor reactivity. These results support the development of adoptive cell therapy strategies using TIL for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- MacLean Hall
- Department of Immunology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Hao Liu
- Department of Immunology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Mokenge Malafa
- Gastrointestinal Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Barbara Centeno
- Gastrointestinal Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Pamela J Hodul
- Gastrointestinal Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - José Pimiento
- Gastrointestinal Oncology Program, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA
| | - Shari Pilon-Thomas
- Department of Immunology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA.,Cutaneous Oncology Program, H Lee Moffitt Cancer Center and Research Institute, 10920 N. McKinley Dr, Tampa, FL 33612 USA
| | - Amod A Sarnaik
- Department of Immunology, H Lee Moffitt Cancer Center and Research Institute, Tampa, FL USA.,Cutaneous Oncology Program, H Lee Moffitt Cancer Center and Research Institute, 10920 N. McKinley Dr, Tampa, FL 33612 USA
| |
Collapse
|
33
|
Soares KC, Rucki AA, Kim V, Foley K, Solt S, Wolfgang CL, Jaffee EM, Zheng L. TGF-β blockade depletes T regulatory cells from metastatic pancreatic tumors in a vaccine dependent manner. Oncotarget 2016; 6:43005-15. [PMID: 26515728 PMCID: PMC4767487 DOI: 10.18632/oncotarget.5656] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Accepted: 09/12/2015] [Indexed: 12/30/2022] Open
Abstract
Our neoadjuvant clinical trial of a GM-CSF secreting allogeneic pancreas tumor vaccine (GVAX) revealed the development of tertiary lymphoid aggregates (TLAs) within the pancreatic ductal adenocarcinoma (PDA) tumor microenvironment 2 weeks after GVAX treatment. Microarray studies revealed that multiple components of the TGF-β pathway were suppressed in TLAs from patients who survived greater than 3 years and who demonstrated vaccine-enhanced mesothelin-specific T cell responses. We tested the hypothesis that combining GVAX with TGF-β inhibitors will improve the anti-tumor immune response of vaccine therapy. In a metastatic murine model of pancreatic cancer, combination therapy with GVAX vaccine and a TGF-β blocking antibody improved the cure rate of PDA-bearing mice. TGF-β blockade in combination with GVAX significantly increased the infiltration of effector CD8+ T lymphocytes, specifically anti-tumor-specific IFN-γ producing CD8+ T cells, when compared to monotherapy controls (all p < 0.05). TGF-β blockade alone did not deplete T regulatory cells (Tregs), but when give in combination with GVAX, GVAX induced intratumoral Tregs were depleted. Therefore, our PDA preclinical model demonstrates a survival advantage in mice treated with an anti-TGF-β antibody combined with GVAX therapy and provides strong rational for testing this combinational therapy in clinical trials.
Collapse
Affiliation(s)
- Kevin C Soares
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Agnieszka A Rucki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Victoria Kim
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kelly Foley
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sara Solt
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christopher L Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth M Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
34
|
Ju H, Xing W, Yang J, Zheng Y, Jia X, Zhang B, Ren H. An effective cytokine adjuvant vaccine induces autologous T-cell response against colon cancer in an animal model. BMC Immunol 2016; 17:31. [PMID: 27669687 PMCID: PMC5037582 DOI: 10.1186/s12865-016-0172-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 09/20/2016] [Indexed: 12/20/2022] Open
Abstract
Background Despite recent advances in early detection and improvements in chemotherapy for colon cancer, the patients still face poor prognosis of postoperative recurrence and metastasis, the median survival for patients with metastatic colorectal cancer is approximately 22–24 months. Some immunotherapeutic approaches had been attempted in colon cancer patients to significantly increase overall survival. A vaccine based approach has shown a novel direction for colon cancer prevention and therapy. Methods In this study, the experiments were designed including prevention and therapeutic stages in order to attain effect against tumor recurrence in clinical settings. The anti-tumor efficacy of a novel cytokine adjuvant vaccine that contained cytokines GM-CSF and IL-2 and inactivated colon CT26.WT whole cell antigen was evaluated in BALB/c mouse tumor models by measuring tumor growth post vaccination and the survival time of tumor-bearing mice, analyzing the expression and distribution of CD4, CD8, CD11c, CD80, CD86 and CD83 positive cells in control and treated mice by flow cytometry and immunochemistry. The tumor-specific cytotoxic T cells (CTL) were analyzed by tumor proliferation and the lactic dehydrogenates (LDH) release assays. IFN-γ, IL-2 and GM-CSF secretion in serum was assayed by ELISA. Results Our results suggested that cytokine adjuvant vaccine significantly inhibited tumor growth and extended the survival period at least 160d. It was found that the levels of CD8 + T and the tumor-specific cytotoxicity were significantly higher in prevention and treatment group vaccinated by cytokine adjuvant vaccine. CD8 + T cells play a key role in anti-tumor response. Conclusions The novel GM-CSF and IL-2 based adjuvant vaccine effectively activated autologous T-cell response and represented a promising immunotherapeutic approach for patients with colon cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12865-016-0172-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Huanyu Ju
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China
| | - Wenjing Xing
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China
| | - Jinfeng Yang
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China
| | - Yang Zheng
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China
| | - Xiuzhi Jia
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China
| | - Benning Zhang
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China.,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China
| | - Huan Ren
- Department of Immunology, Harbin Medical University, 157 Baojian Road, Harbin, 150081, China. .,Infection and Immunity, Key Laboratory of Heilongjiang Province, Harbin, 150081, China.
| |
Collapse
|
35
|
Javle M, Golan T, Maitra A. Changing the course of pancreatic cancer--Focus on recent translational advances. Cancer Treat Rev 2016; 44:17-25. [PMID: 26924195 DOI: 10.1016/j.ctrv.2016.01.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 01/18/2016] [Accepted: 01/19/2016] [Indexed: 02/08/2023]
Abstract
In the past decade, insightful preclinical research has led to important breakthroughs in our understanding of pancreatic cancer. Even though the vast majority of pancreatic cancers are KRAS mutated, not all pancreatic cancer tumors are "KRAS equal"; there seems to be varying dependencies on the KRAS pathway. While KRAS-targeting therapies have been disappointing in the clinic, 'synthetic lethal' approaches hold promise in this setting. The pancreatic cancer stromal microenvironment appears to have contradictory roles. While there is evidence to suggest that stromal barrier prevents drug delivery, in other circumstances, stroma can play a protective role and its disruption enhances tumor dissemination. Clinical trials aimed at manipulating the various stromal components are in progress. BRCA mutation-related pancreatic tumors illustrate a unique subtype with enhanced susceptibility to DNA damaging agents and PARP-inhibition. DNA repair defects in cancer extend beyond germ line BRCA mutation and may extend the indications for DNA repair-targeting agents. Immune strategies are an area of active investigation in pancreatic cancer. Although the initial trials of single-agent checkpoint inhibitors have been negative, combinational approaches using immune-modifying agents and vaccines appear promising and goal is to identify an 'immune-therapy responsive' profile in pancreatic cancer.
Collapse
Affiliation(s)
- Milind Javle
- MD Anderson Cancer Center, 1515, Holcombe Blvd, Unit 426, Houston, TX 77030, USA
| | - Talia Golan
- Sheba Medical Center, Tel Hashomer 52621, Israel
| | - Anirban Maitra
- MD Anderson Cancer Center, 1515, Holcombe Blvd, Unit 426, Houston, TX 77030, USA
| |
Collapse
|
36
|
Incorporation of porcine adenovirus 4 fiber protein enhances infectivity of adenovirus vector on dendritic cells: implications for immune-mediated cancer therapy. PLoS One 2015; 10:e0125851. [PMID: 25933160 PMCID: PMC4416912 DOI: 10.1371/journal.pone.0125851] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 03/26/2015] [Indexed: 12/22/2022] Open
Abstract
One strategy in cancer immunotherapy is to capitalize on the key immunoregulatory and antigen presenting capabilities of dendritic cells (DCs). This approach is dependent on efficient delivery of tumor specific antigens to DCs, which subsequently induce an anti-tumor T-cell mediated immune response. Human adenovirus serotype 5 (HAdV5) has been used in human studies for gene delivery, but has limited infection in DCs, which lack the proper receptors. Addition of the porcine fiber knob (PK) from porcine adenovirus type 4 to HAdV5 allows the virus to deliver genetic material via binding to glycosylated surface proteins and bypasses the coxsackie-and-adenovirus receptor required by wild-type HAdV5. In this study we explored the potential therapeutic applications of an adenovirus with PK-based tropism against cancers expressing mesothelin. Infectivity and gene transfer assays were used to compare Ad5-PK to wild-type HAdV5. Mouse models were used to demonstrate peptide specificity and T-cell responses. We show that the PK modification highly augmented infection of DCs, including the CD141+ DC subset, a key subset for activation of naïve CD8+ T-cells. We also show that Ad5-PK increases DC infectivity and tumor specific antigen expression. Finally, vaccination of mice with the Ad5-PK vector resulted in enhanced T-cell-mediated interferon gamma (IFN-γ) release in response to both mesothelin peptide and a tumor line expressing mesothelin. Ad5-PK is a promising tool for cancer immunotherapy as it improves infectivity, gene transfer, protein expression, and subsequent T-cell activation in DCs compared to wild-type HAdV5 viruses.
Collapse
|
37
|
Fu J, Kanne DB, Leong M, Glickman LH, McWhirter SM, Lemmens E, Mechette K, Leong JJ, Lauer P, Liu W, Sivick KE, Zeng Q, Soares KC, Zheng L, Portnoy DA, Woodward JJ, Pardoll DM, Dubensky TW, Kim Y. STING agonist formulated cancer vaccines can cure established tumors resistant to PD-1 blockade. Sci Transl Med 2015; 7:283ra52. [PMID: 25877890 PMCID: PMC4504692 DOI: 10.1126/scitranslmed.aaa4306] [Citation(s) in RCA: 546] [Impact Index Per Article: 54.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Stimulator of interferon genes (STING) is a cytosolic receptor that senses both exogenous and endogenous cytosolic cyclic dinucleotides (CDNs), activating TBK1/IRF3 (interferon regulatory factor 3), NF-κB (nuclear factor κB), and STAT6 (signal transducer and activator of transcription 6) signaling pathways to induce robust type I interferon and proinflammatory cytokine responses. CDN ligands were formulated with granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing cellular cancer vaccines--termed STINGVAX--that demonstrated potent in vivo antitumor efficacy in multiple therapeutic models of established cancer. We found that rationally designed synthetic CDN derivative molecules, including one with an Rp,Rp dithio diastereomer and noncanonical c[A(2',5')pA(3',5')p] phosphate bridge structure, enhanced antitumor efficacy of STINGVAX in multiple aggressive therapeutic models of established cancer in mice. Antitumor activity was STING-dependent and correlated with increased activation of dendritic cells and tumor antigen-specific CD8(+) T cells. Tumors from STINGVAX-treated mice demonstrated marked PD-L1 (programmed death ligand 1) up-regulation, which was associated with tumor-infiltrating CD8(+)IFNγ(+) T cells. When combined with PD-1 (programmed death 1) blockade, STINGVAX induced regression of palpable, poorly immunogenic tumors that did not respond to PD-1 blockade alone.
Collapse
Affiliation(s)
- Juan Fu
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA
| | | | | | | | | | | | | | | | | | - Weiqun Liu
- Aduro Biotech Inc., Berkeley, CA 94710, USA
| | | | - Qi Zeng
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA
| | - Kevin C Soares
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Lei Zheng
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology and School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joshua J Woodward
- Department of Microbiology, University of Washington, Seattle, WA 98195, USA
| | - Drew M Pardoll
- Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - Young Kim
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, School of Medicine, Baltimore, MD 21231, USA. Department of Oncology and the Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| |
Collapse
|
38
|
Kouo T, Huang L, Pucsek AB, Cao M, Solt S, Armstrong T, Jaffee E. Galectin-3 Shapes Antitumor Immune Responses by Suppressing CD8+ T Cells via LAG-3 and Inhibiting Expansion of Plasmacytoid Dendritic Cells. Cancer Immunol Res 2015; 3:412-23. [PMID: 25691328 DOI: 10.1158/2326-6066.cir-14-0150] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 02/08/2015] [Indexed: 01/08/2023]
Abstract
Galectin-3 is a 31-kDa lectin that modulates T-cell responses through several mechanisms, including apoptosis, T-cell receptor (TCR) cross-linking, and TCR downregulation. We found that patients with pancreatic ductal adenocarcinoma (PDA) who responded to a granulocyte-macrophage colony-stimulating factor-secreting allogeneic PDA vaccine developed neutralizing antibodies to galectin-3 after immunization. We show that galectin-3 binds activated antigen-committed CD8(+) T cells only in the tumor microenvironment. Galectin-3-deficient mice exhibit improved CD8(+) T-cell effector function and increased expression of several inflammatory genes. Galectin-3 binds to LAG-3, and LAG-3 expression is necessary for galectin-3-mediated suppression of CD8(+) T cells in vitro. Lastly, galectin-3-deficient mice have elevated levels of circulating plasmacytoid dendritic cells, which are superior to conventional dendritic cells in activating CD8(+) T cells. Thus, inhibiting galectin-3 in conjunction with CD8(+) T-cell-directed immunotherapies should enhance the tumor-specific immune response.
Collapse
Affiliation(s)
- Theodore Kouo
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Lanqing Huang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alexandra B Pucsek
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Minwei Cao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sara Solt
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Todd Armstrong
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
39
|
Keenan BP, Jaffee EM, Armstrong TD. Tumor immunology: multidisciplinary science driving basic and clinical advances. Cancer Immunol Res 2015; 1:16-23. [PMID: 24409447 DOI: 10.1158/2326-6066.cir-13-0011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The fourth AACR Special Conference "Tumor Immunology: Basic and Clinical Advances" was held in Miami, FL in December 2012. The overall objective of this meeting was to discuss emerging concepts in cancer immunology and immunotherapy. The key findings that emerged from this meeting included: (i) multiple immune checkpoints should be inhibited to increase effective T-cell therapy, (ii) successful adoptive T-cell therapy will rely on obtaining the proper T-cell phenotype, (iii) chimeric antigen receptors have shown promise in treating some B-cell malignancies, and (iv) multiple pathways of inflammation within the tumor microenvironment are immunotherapy targets.
Collapse
|
40
|
Soares KC, Rucki AA, Wu AA, Olino K, Xiao Q, Chai Y, Wamwea A, Bigelow E, Lutz E, Liu L, Yao S, Anders RA, Laheru D, Wolfgang CL, Edil BH, Schulick RD, Jaffee EM, Zheng L. PD-1/PD-L1 blockade together with vaccine therapy facilitates effector T-cell infiltration into pancreatic tumors. J Immunother 2015; 38:1-11. [PMID: 25415283 PMCID: PMC4258151 DOI: 10.1097/cji.0000000000000062] [Citation(s) in RCA: 315] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDA) has a poor prognosis due to late detection and resistance to conventional therapies. Published studies show that the PDA tumor microenvironment is predominantly infiltrated with immune suppressive cells and signals that if altered, would allow effective immunotherapy. However, single-agent checkpoint inhibitors including agents that alter immune suppressive signals in other human cancers such as cytotoxic T-lymphocyte antigen 4 (CTLA-4), programmed death 1 (PD-1), and its ligand PD-L1, have failed to demonstrate objective responses when given as single agents to PDA patients. We recently reported that inhibition of the CTLA-4 pathway when given together with a T cell inducing vaccine gives objective responses in metastatic PDA patients. In this study, we evaluated blockade of the PD-1/PD-L1 pathway. We found that PD-L1 is weakly expressed at a low frequency in untreated human and murine PDAs but treatment with a granulocyte macrophage colony-stimulating factor secreting PDA vaccine (GVAX) significantly upregulates PD-L1 membranous expression after treatment of tumor-bearing mice. In addition, combination therapy with vaccine and PD-1 antibody blockade improved murine survival compared with PD-1 antibody monotherapy or GVAX therapy alone. Furthermore, PD-1 blockade increased effector CD8 T lymphocytes and tumor-specific interferon-γ production of CD8 T cells in the tumor microenvironment. Immunosuppressive pathways, including regulatory T cells and CTLA-4 expression on T cells were overcome by the addition of vaccine and low-dose cyclophosphamide to PD-1 blockade. Collectively, our study supports combining PD-1 or PD-L1 antibody therapy with a T cell inducing agent for PDA treatment.
Collapse
Affiliation(s)
- Kevin C. Soares
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Agnieszka A. Rucki
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Annie A. Wu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kelly Olino
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Qian Xiao
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Yi Chai
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Anthony Wamwea
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Elaine Bigelow
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric Lutz
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | | | - Robert A. Anders
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Daniel Laheru
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher L. Wolfgang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Barish H. Edil
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Richard D. Schulick
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Elizabeth M. Jaffee
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
- The Sidney Kimmel Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
- the Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Johns Hopkins University School of Medicine, Baltimore, MD
- the Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
41
|
Weiss VL, Lee TH, Jaffee EM, Armstrong TD. Targeting the right regulatory T-cell population for tumor immunotherapy. Oncoimmunology 2014; 1:1191-1193. [PMID: 23170276 PMCID: PMC3494642 DOI: 10.4161/onci.20664] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Regulatory T cells (Tregs) that suppress tumor-specific T cell-mediated immune responses are the subject of an intense wave of investigation. We recently reported that a subset of Tregs, namely effector/memory CD25(low) cells, are responsible for suppressing high avidity tumor-specific T cells in mouse mammary tumors. Here, we discuss additional findings that clarify this mechanism of Treg-mediated immunosuppression.
Collapse
Affiliation(s)
- Vivian L Weiss
- The Sidney Kimmel Cancer Center; Johns Hopkins University School of Medicine; Baltimore, MD USA ; Department of Oncology; Johns Hopkins University School of Medicine; Baltimore, MD USA ; Graduate Program in Immunology; Johns Hopkins School of Medicine; Baltimore, MD USA
| | | | | | | |
Collapse
|
42
|
Soares KC, Foley K, Olino K, Leubner A, Mayo SC, Jain A, Jaffee E, Schulick RD, Yoshimura K, Edil B, Zheng L. A preclinical murine model of hepatic metastases. J Vis Exp 2014:51677. [PMID: 25285458 DOI: 10.3791/51677] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Numerous murine models have been developed to study human cancers and advance the understanding of cancer treatment and development. Here, a preclinical, murine pancreatic tumor model of hepatic metastases via a hemispleen injection of syngeneic murine pancreatic tumor cells is described. This model mimics many of the clinical conditions in patients with metastatic disease to the liver. Mice consistently develop metastases in the liver allowing for investigation of the metastatic process, experimental therapy testing, and tumor immunology research.
Collapse
Affiliation(s)
- Kevin C Soares
- Department of Surgery, The Johns Hopkins University School of Medicine
| | - Kelly Foley
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine
| | - Kelly Olino
- Department of Surgery, The Johns Hopkins University School of Medicine
| | - Ashley Leubner
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine
| | - Skye C Mayo
- Department of Surgery, The Johns Hopkins University School of Medicine
| | - Ajay Jain
- Department of Surgery, The Johns Hopkins University School of Medicine
| | - Elizabeth Jaffee
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine
| | | | - Kiyoshi Yoshimura
- Department of Surgery, The Johns Hopkins University School of Medicine; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine
| | - Barish Edil
- Department of Surgery, The Johns Hopkins University School of Medicine; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine;
| | - Lei Zheng
- Department of Surgery, The Johns Hopkins University School of Medicine; Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine;
| |
Collapse
|
43
|
Al Haddad AHI, Adrian TE. Challenges and future directions in therapeutics for pancreatic ductal adenocarcinoma. Expert Opin Investig Drugs 2014; 23:1499-515. [PMID: 25078674 DOI: 10.1517/13543784.2014.933206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Pancreatic ductal adenocarcinoma (PDAC) is the fourth leading cause of cancer death in the USA. The 5-year survival of < 5% has not changed in decades. In contrast to other major cancers, the incidence of PDAC is increasing. AREAS COVERED The aims of this paper are first to analyze why PDAC is so difficult to treat and, second, to suggest future directions for PDAC therapeutics. The authors provide an article that is based on a comprehensive search through MEDLINE and the clinicalTrials.gov website. EXPERT OPINION Progress has been made recently. Notably, FOLFIRINOX or nab-paclitaxel plus gemcitabine provide survival benefit over gemcitabine alone, which was previously the mainstay of therapy for PDAC. Most of the current trials are testing combinations of repurposed drugs rather than addressing key targets in the PDAC pathogenesis. It is clear that to really make an impact on this disease, it will be necessary to address three different problems with targeted therapeutics. First, it is important to eradicate PDAC stem cells that result in recurrence. Second, it is important to reduce the peritumoral stroma that provides the tumors with growth support and provides a barrier to access of therapeutic agents. Finally, it is important to address the marked cachexia and metabolic derangement that contribute to morbidity and mortality and further complicate therapeutic intervention.
Collapse
Affiliation(s)
- Amal H I Al Haddad
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University , PO Box 17666, Al Ain , UAE
| | | |
Collapse
|
44
|
Lutz ER, Wu AA, Bigelow E, Sharma R, Mo G, Soares K, Solt S, Dorman A, Wamwea A, Yager A, Laheru D, Wolfgang CL, Wang J, Hruban RH, Anders RA, Jaffee EM, Zheng L. Immunotherapy converts nonimmunogenic pancreatic tumors into immunogenic foci of immune regulation. Cancer Immunol Res 2014; 2:616-31. [PMID: 24942756 PMCID: PMC4082460 DOI: 10.1158/2326-6066.cir-14-0027] [Citation(s) in RCA: 399] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is considered a "nonimmunogenic" neoplasm. Single-agent immunotherapies have failed to demonstrate significant clinical activity in PDAC and other "nonimmunogenic" tumors, in part due to a complex tumor microenvironment (TME) that provides a formidable barrier to immune infiltration and function. We designed a neoadjuvant and adjuvant clinical trial comparing an irradiated, granulocyte-macrophage colony-stimulating factor (GM-CSF)-secreting, allogeneic PDAC vaccine (GVAX) given as a single agent or in combination with low-dose cyclophosphamide to deplete regulatory T cells (Treg) as a means to study how the TME is altered by immunotherapy. Examination of resected PDACs revealed the formation of vaccine-induced intratumoral tertiary lymphoid aggregates in 33 of 39 patients 2 weeks after vaccine treatment. Immunohistochemical analysis showed these aggregates to be regulatory structures of adaptive immunity. Microarray analysis of microdissected aggregates identified gene-expression signatures in five signaling pathways involved in regulating immune-cell activation and trafficking that were associated with improved postvaccination responses. A suppressed Treg pathway and an enhanced Th17 pathway within these aggregates were associated with improved survival, enhanced postvaccination mesothelin-specific T-cell responses, and increased intratumoral Teff:Treg ratios. This study provides the first example of immune-based therapy converting a "nonimmunogenic" neoplasm into an "immunogenic" neoplasm by inducing infiltration of T cells and development of tertiary lymphoid structures in the TME. Post-GVAX T-cell infiltration and aggregate formation resulted in the upregulation of immunosuppressive regulatory mechanisms, including the PD-1-PD-L1 pathway, suggesting that patients with vaccine-primed PDAC may be better candidates than vaccine-naïve patients for immune checkpoint and other immunomodulatory therapies.
Collapse
Affiliation(s)
- Eric R Lutz
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Annie A Wu
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center
| | - Elaine Bigelow
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center
| | | | - Guanglan Mo
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Kevin Soares
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Sara Solt
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Alvin Dorman
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Anthony Wamwea
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Allison Yager
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center
| | - Daniel Laheru
- Authors' Affiliations: Departments of Oncology, The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care
| | - Christopher L Wolfgang
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Jiang Wang
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio
| | - Ralph H Hruban
- Authors' Affiliations: Departments of Oncology, Pathology, and The Sidney Kimmel Cancer Center; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Robert A Anders
- Authors' Affiliations: Departments of Oncology, Pathology, and The Sidney Kimmel Cancer Center; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Elizabeth M Jaffee
- Authors' Affiliations: Departments of Oncology, Pathology, and The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| | - Lei Zheng
- Authors' Affiliations: Departments of Oncology, Surgery; The Sidney Kimmel Cancer Center; The Skip Viragh Center for Pancreatic Cancer Research and Clinical Care; The Sol Goldman Pancreatic Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
| |
Collapse
|
45
|
Zhong Y, Naito Y, Cope L, Naranjo-Suarez S, Saunders T, Hong SM, Goggins MG, Herman JM, Wolfgang CL, Iacobuzio-Donahue CA. Functional p38 MAPK identified by biomarker profiling of pancreatic cancer restrains growth through JNK inhibition and correlates with improved survival. Clin Cancer Res 2014; 20:6200-11. [PMID: 24963048 DOI: 10.1158/1078-0432.ccr-13-2823] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE Numerous biomarkers for pancreatic cancer have been reported. We determined the extent to which such biomarkers are expressed throughout metastatic progression, including those that effectively predict biologic behavior. EXPERIMENTAL DESIGN Biomarker profiling was performed for 35 oncoproteins in matched primary and metastatic pancreatic cancer tissues from 36 rapid autopsy patients. Proteins of significance were validated by immunolabeling in an independent sample set, and functional studies were performed in vitro and in vivo. RESULTS Most biomarkers were similarly expressed or lost in expression in most samples analyzed, and the matched primary and metastases from a specific patient were most similar to each other than to other patients. However, a subset of proteins showed extensive interpatient heterogeneity, one of which was p38 MAPK. Strong positive pp38 MAPK immunolabeling was significantly correlated with improved postresection survival by multivariate analysis (median overall survival 27.9 months, P = 0.041). In pancreatic cancer cells, inhibition of functional p38 by SB202190 increased cell proliferation in vitro in both low-serum and low-oxygen conditions. High functional p38 activity in vitro corresponded to lower levels of pJNK protein expression, and p38 inhibition resulted in increased pJNK and pMKK7 by Western blot analysis. Moreover, JNK inhibition by SP600125 or MKK7 siRNA knockdown antagonized the effects of p38 inhibition by SB202190. In vivo, SP600125 significantly decreased growth rates of xenografts with high p38 activity compared with those without p38 expression. CONCLUSIONS Functional p38 MAPK activity contributes to overall survival through JNK signaling, thus providing a rationale for JNK inhibition in pancreatic cancer management.
Collapse
Affiliation(s)
- Yi Zhong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Yoshiki Naito
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka, Japan
| | - Leslie Cope
- Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Salvador Naranjo-Suarez
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Tyler Saunders
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Seung-Mo Hong
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Michael G Goggins
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Medicine, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Joseph M Herman
- Department of Radiation Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christopher L Wolfgang
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland. Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins Medical Institutions, Baltimore, Maryland.
| |
Collapse
|
46
|
Zheng L, Edil BH, Soares KC, El-Shami K, Uram JN, Judkins C, Zhang Z, Onners B, Laheru D, Pardoll D, Jaffee EM, Schulick RD. A safety and feasibility study of an allogeneic colon cancer cell vaccine administered with a granulocyte-macrophage colony stimulating factor-producing bystander cell line in patients with metastatic colorectal cancer. Ann Surg Oncol 2014; 21:3931-7. [PMID: 24943235 DOI: 10.1245/s10434-014-3844-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Despite recent advances in earlier detection and improvements in chemotherapy, the 5-year survival rate of patients with metastatic colorectal carcinoma remains poor. Immunotherapy is a potentially effective therapeutic approach to the treatment of colorectal carcinoma. Preclinical studies have supported the antitumor activity of immunization with a granulocyte-macrophage colony-stimulating factor (GM-CSF) producing murine colon tumor cell vaccine. METHODS A novel colorectal cancer vaccine composed of irradiated, allogeneic human colon cancer cells and GM-CSF-producing bystander cells was developed and tested in combination with a single intravenous low dose of cyclophosphamide in a phase 1 study of patients with metastatic colorectal cancer. RESULTS A total of nine patients were enrolled onto and treated in this study. Six patients had a history of colorectal adenocarcinoma hepatic metastases and underwent curative metastasectomy, while three other patients had unresectable stage IV disease. This study demonstrates the safety and feasibility of this vaccine administered in patients with metastatic colorectal cancer. At last follow-up, the six patients who underwent curative metastasectomy survived longer than 36 months, and four of these six patients were without disease recurrence. Immunologic correlate results suggest that the GM-CSF-producing colon cancer vaccine enhances the production of anti-MUC1 antibodies. CONCLUSIONS This vaccine is feasible and safe. Future investigation of the efficacy and antitumor immunity of this vaccine is warranted.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Keenan BP, Saenger Y, Kafrouni MI, Leubner A, Lauer P, Maitra A, Rucki AA, Gunderson AJ, Coussens LM, Brockstedt DG, Dubensky TW, Hassan R, Armstrong TD, Jaffee EM. A Listeria vaccine and depletion of T-regulatory cells activate immunity against early stage pancreatic intraepithelial neoplasms and prolong survival of mice. Gastroenterology 2014; 146:1784-94.e6. [PMID: 24607504 PMCID: PMC4035450 DOI: 10.1053/j.gastro.2014.02.055] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 02/09/2014] [Accepted: 02/26/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Premalignant lesions and early stage tumors contain immunosuppressive microenvironments that create barriers for cancer vaccines. Kras(G12D/+);Trp53(R172H/+);Pdx-1-Cre (KPC) mice, which express an activated form of Kras in pancreatic tissues, develop pancreatic intraepithelial neoplasms (PanIN) that progress to pancreatic ductal adenocarcinoma (PDA). We used these mice to study immune suppression in PDA. METHODS We immunized KPC and Kras(G12D/+);Pdx-1-Cre mice with attenuated intracellular Listeria monocytogenes (which induces CD4(+) and CD8(+) T-cell immunity) engineered to express Kras(G12D) (LM-Kras). The vaccine was given alone or in sequence with an anti-CD25 antibody (PC61) and cyclophosphamide to deplete T-regulatory (Treg) cells. Survival times were measured; pancreatic and spleen tissues were collected and analyzed by histologic, flow cytometry, and immunohistochemical analyses. RESULTS Interferon γ-mediated, CD8(+) T-cell responses were observed in KPC and Kras(G12D/+);Pdx-1-Cre mice given LM-Kras, but not in unvaccinated mice. Administration of LM-Kras to KPC mice 4-6 weeks old (with early stage PanINs), depleted of Treg cells, significantly prolonged survival and reduced PanIN progression (median survival, 265 days), compared with unvaccinated mice (median survival, 150 days; P = .002), mice given only LM-Kras (median survival, 150 days; P = .050), and unvaccinated mice depleted of Treg cells (median survival, 170 days; P = .048). In 8- to 12-week-old mice (with late-stage PanINs), LM-Kras, alone or in combination with Treg cell depletion, did not increase survival time or slow PanIN progression. The combination of LM-Kras and Treg cell depletion reduced numbers of Foxp3(+)CD4(+) T cells in pancreatic lymph nodes, increased numbers of CD4(+) T cells that secrete interleukin 17 and interferon γ, and caused CD11b(+)Gr1(+) cells in the pancreas to acquire an immunostimulatory phenotype. CONCLUSIONS Immunization of KPC mice with Listeria monocytogenes engineered to express Kras(G12D), along with depletion of Treg cells, reduces progression of early stage, but not late-stage, PanINs. This approach increases infiltration of the lesion with inflammatory cells. It might be possible to design immunotherapies against premalignant pancreatic lesions to slow or prevent progression to PDA.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- CD11b Antigen/metabolism
- Cancer Vaccines/immunology
- Cancer Vaccines/therapeutic use
- Carcinoma in Situ/drug therapy
- Carcinoma in Situ/genetics
- Carcinoma in Situ/immunology
- Carcinoma in Situ/metabolism
- Carcinoma in Situ/pathology
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/immunology
- Carcinoma, Pancreatic Ductal/metabolism
- Carcinoma, Pancreatic Ductal/pathology
- Cyclophosphamide/pharmacology
- Disease Models, Animal
- Disease Progression
- Forkhead Transcription Factors/metabolism
- Homeodomain Proteins/genetics
- Homeodomain Proteins/metabolism
- Humans
- Inflammation Mediators/metabolism
- Integrases/genetics
- Integrases/metabolism
- Interferon-gamma/metabolism
- Interleukin-17/metabolism
- Listeria monocytogenes/genetics
- Listeria monocytogenes/immunology
- Listeria monocytogenes/metabolism
- Mice
- Mice, 129 Strain
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/immunology
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins p21(ras)/genetics
- Proto-Oncogene Proteins p21(ras)/metabolism
- Receptors, Chemokine/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Time Factors
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
Collapse
Affiliation(s)
- Bridget P Keenan
- The Sidney Kimmel Comprehensive Cancer Center, the Skip Viragh Center for Clinical Pancreatic Cancer Research, and the Sol Goldman Pancreatic Cancer Center at Johns Hopkins, Baltimore, Maryland; Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yvonne Saenger
- Division of Hematology and Oncology, Tisch Cancer Institute and Department of Dermatology, Mount Sinai School of Medicine, New York, New York
| | - Michel I Kafrouni
- The Sidney Kimmel Comprehensive Cancer Center, the Skip Viragh Center for Clinical Pancreatic Cancer Research, and the Sol Goldman Pancreatic Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Ashley Leubner
- The Sidney Kimmel Comprehensive Cancer Center, the Skip Viragh Center for Clinical Pancreatic Cancer Research, and the Sol Goldman Pancreatic Cancer Center at Johns Hopkins, Baltimore, Maryland
| | | | - Anirban Maitra
- Department of Pathology and Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Agnieszka A Rucki
- The Sidney Kimmel Comprehensive Cancer Center, the Skip Viragh Center for Clinical Pancreatic Cancer Research, and the Sol Goldman Pancreatic Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Andrew J Gunderson
- Department of Cell and Developmental Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
| | - Lisa M Coussens
- Department of Cell and Developmental Biology, Knight Cancer Institute, Oregon Health and Sciences University, Portland, Oregon
| | | | | | - Raffit Hassan
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Todd D Armstrong
- The Sidney Kimmel Comprehensive Cancer Center, the Skip Viragh Center for Clinical Pancreatic Cancer Research, and the Sol Goldman Pancreatic Cancer Center at Johns Hopkins, Baltimore, Maryland
| | - Elizabeth M Jaffee
- The Sidney Kimmel Comprehensive Cancer Center, the Skip Viragh Center for Clinical Pancreatic Cancer Research, and the Sol Goldman Pancreatic Cancer Center at Johns Hopkins, Baltimore, Maryland.
| |
Collapse
|
48
|
Sideras K, Braat H, Kwekkeboom J, van Eijck CH, Peppelenbosch MP, Sleijfer S, Bruno M. Role of the immune system in pancreatic cancer progression and immune modulating treatment strategies. Cancer Treat Rev 2013; 40:513-22. [PMID: 24315741 DOI: 10.1016/j.ctrv.2013.11.005] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 11/08/2013] [Accepted: 11/12/2013] [Indexed: 12/11/2022]
Abstract
Traditional chemotherapeutics have largely failed to date to produce significant improvements in pancreatic cancer survival. One of the reasons for the resilience of pancreatic cancer towards intensive treatment is that the cancer is capable of high jacking the immune system: during disease progression the immune system is converted from a system that attacks tumor cells into a support structure for the cancer, exerting trophic actions on the cancer cells. This turn-around of immune system action is achieved through mobilization and activation of regulatory T cells, myeloid derived suppressor cells, tumor-associated macrophages and fibroblasts, all of which suppress CD8 T cells and NK cells. This immune suppression occurs both through the expression of tolerance-inducing cell surface molecules, such as PD-L1, as well as through the production of "tolerogenic" cytokines, such as IL-10 and TGF-β. Based on the accumulating insight into the importance of the immune system for the outcome of pancreatic cancer patients multiple new immunotherapeutic approaches against pancreatic cancer are being currently tested in clinical trials. In this review we give an overview of both the immune escaping mechanisms of pancreatic cancer as well as the new immune related therapeutic strategies currently being tested in pancreatic cancer clinical trials.
Collapse
Affiliation(s)
- K Sideras
- Erasmus University Medical Center, Department of Gastroenterology and Hepatology, NA-0621's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - H Braat
- Erasmus University Medical Center, Department of Gastroenterology and Hepatology, Hs-510's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - J Kwekkeboom
- Erasmus University Medical Center, Laboratory of Gastroenterology and Hepatology, NA-1009's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - C H van Eijck
- Erasmus University Medical Center, Department of Surgery, Room H-818k's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - M P Peppelenbosch
- Erasmus University Medical Center, Laboratory of Gastroenterology and Hepatology, Na-1007's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - S Sleijfer
- Erasmus University Medical Center, Department of Oncology, He-116's Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| | - M Bruno
- Erasmus University Medical Center, Department of Gastroenterology and Hepatology, H-358's, Gravendijkwal 230, 3015 CE Rotterdam, The Netherlands.
| |
Collapse
|
49
|
Duraiswamy J, Freeman GJ, Coukos G. Therapeutic PD-1 pathway blockade augments with other modalities of immunotherapy T-cell function to prevent immune decline in ovarian cancer. Cancer Res 2013; 73:6900-12. [PMID: 23975756 DOI: 10.1158/0008-5472.can-13-1550] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The tumor microenvironment mediates induction of the immunosuppressive programmed cell death-1 (PD-1) pathway, and targeted interventions against this pathway can help restore antitumor immunity. To gain insight into these responses, we studied the interaction between PD-1 expressed on T cells and its ligands (PD-1:PD-L1, PD-1:PD-L2, and PD-L1:B7.1), expressed on other cells in the tumor microenvironment, using a syngeneic orthotopic mouse model of epithelial ovarian cancer (ID8). Exhaustion of tumor-infiltrating lymphocytes (TIL) correlated with expression of PD-1 ligands by tumor cells and tumor-derived myeloid cells, including tumor-associated macrophages (TAM), dendritic cells, and myeloid-derived suppressor cells (MDSC). When combined with GVAX or FVAX vaccination (consisting of irradiated ID8 cells expressing granulocyte macrophage colony-stimulating factor or FLT3 ligand) and costimulation by agonistic α-4-1BB or TLR 9 ligand, antibody-mediated blockade of PD-1 or PD-L1 triggered rejection of ID8 tumors in 75% of tumor-bearing mice. This therapeutic effect was associated with increased proliferation and function of tumor antigen-specific effector CD8(+) T cells, inhibition of suppressive regulatory T cells (Treg) and MDSC, upregulation of effector T-cell signaling molecules, and generation of T memory precursor cells. Overall, PD-1/PD-L1 blockade enhanced the amplitude of tumor immunity by reprogramming suppressive and stimulatory signals that yielded more powerful cancer control.
Collapse
Affiliation(s)
- Jaikumar Duraiswamy
- Authors' Affiliations: Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts; and Department of Oncology and Ludwig Center for Cancer Research, University Hospital of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|
50
|
Chiang CLL, Kandalaft LE, Tanyi J, Hagemann AR, Motz GT, Svoronos N, Montone K, Mantia-Smaldone GM, Smith L, Nisenbaum HL, Levine BL, Kalos M, Czerniecki BJ, Torigian DA, Powell DJ, Mick R, Coukos G. A dendritic cell vaccine pulsed with autologous hypochlorous acid-oxidized ovarian cancer lysate primes effective broad antitumor immunity: from bench to bedside. Clin Cancer Res 2013; 19:4801-15. [PMID: 23838316 DOI: 10.1158/1078-0432.ccr-13-1185] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE Whole tumor lysates are promising antigen sources for dendritic cell (DC) therapy as they contain many relevant immunogenic epitopes to help prevent tumor escape. Two common methods of tumor lysate preparations are freeze-thaw processing and UVB irradiation to induce necrosis and apoptosis, respectively. Hypochlorous acid (HOCl) oxidation is a new method for inducing primary necrosis and enhancing the immunogenicity of tumor cells. EXPERIMENTAL DESIGN We compared the ability of DCs to engulf three different tumor lysate preparations, produce T-helper 1 (TH1)-priming cytokines and chemokines, stimulate mixed leukocyte reactions (MLR), and finally elicit T-cell responses capable of controlling tumor growth in vivo. RESULTS We showed that DCs engulfed HOCl-oxidized lysate most efficiently stimulated robust MLRs, and elicited strong tumor-specific IFN-γ secretions in autologous T cells. These DCs produced the highest levels of TH1-priming cytokines and chemokines, including interleukin (IL)-12. Mice vaccinated with HOCl-oxidized ID8-ova lysate-pulsed DCs developed T-cell responses that effectively controlled tumor growth. Safety, immunogenicity of autologous DCs pulsed with HOCl-oxidized autologous tumor lysate (OCDC vaccine), clinical efficacy, and progression-free survival (PFS) were evaluated in a pilot study of five subjects with recurrent ovarian cancer. OCDC vaccination produced few grade 1 toxicities and elicited potent T-cell responses against known ovarian tumor antigens. Circulating regulatory T cells and serum IL-10 were also reduced. Two subjects experienced durable PFS of 24 months or more after OCDC. CONCLUSIONS This is the first study showing the potential efficacy of a DC vaccine pulsed with HOCl-oxidized tumor lysate, a novel approach in preparing DC vaccine that is potentially applicable to many cancers.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Ovarian Cancer Research Center, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|