1
|
Jeena TM, Rakshitha C, Muneesa FM, Varughese A, Akarsha, Raju R, Krishnan D, Mugaranja K, Bhandary YP. miR-200 family: Gatekeepers of fibrinolytic regulation in lung pathologies during acute lung injury. Arch Biochem Biophys 2025; 768:110398. [PMID: 40127710 DOI: 10.1016/j.abb.2025.110398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/17/2025] [Accepted: 03/20/2025] [Indexed: 03/26/2025]
Abstract
Acute lung injury (ALI) is a severe condition characterized by acute inflammation and respiratory distress, often leading to significant morbidity and mortality. The complex pathophysiology of ALI involves alterations in various molecular and cellular processes, including those regulated by the miR-200 family. This study aims to investigate the regulatory function of miR-200 family members on the fibrinolytic system using three different agents: Bleomycin, IL-17A, and TGF-β, in both in vitro (A549 cells) and in vivo (C57BL/6 mice) models. The role of miR-200a and miR-200b in modulating the fibrinolytic system was assessed through mRNA and protein expression analyses. The results show that in both in vitro and in vivo models, treatment with miR-200a and miR-200b mimics greatly reduced the abnormalities caused by the three drugs. Treatments were given during the inflammatory phase of ALI at two different time points for the in vivo studies: 3 and 7 days. This was evidenced by increased uPA and uPAR mRNA levels and decreased PAI-1 mRNA and protein expression. The inverse regulatory roles of miR-200 family members, particularly miR-200a and miR-200b, suggest potential therapeutic targets in ALI. Furthermore, our study highlights how IL-17A and TGF-β modulate the fibrinolytic system and EMT pathway by influencing the expression of the miR-200 family in ALI. It elucidates the regulatory function of the miR-200 family in restoring the fibrinolytic system and the EMT pathway during lung injury, underscoring the significant therapeutic potential of miR-200 in treating ALI.
Collapse
Affiliation(s)
- T M Jeena
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - C Rakshitha
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Fathimath M Muneesa
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India; IQRAA Centre for Research and Development (ICRD), IQRAA International Hospital & Research Centre, Calicut, Kerala, India
| | - Aleena Varughese
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Akarsha
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India; The University of Texas Health Science Centre, USA
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Deepak Krishnan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya Deemed to be University, Mangalore, Karnataka, India; Centre for Systems Biology and Molecular Medicine, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Kirana Mugaranja
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India
| | - Yashodhar P Bhandary
- Cell Biology & Molecular Genetics Division, Yenepoya Research Centre, Yenepoya Deemed to be University, Mangalore, Karnataka, India; Specialized Research Unit, Yenepoya Medical College & Hospital, Yenepoya Deemed to be University, Mangalore, Karnataka, India.
| |
Collapse
|
2
|
Kim JT, Han SW, Youn DH, Jung H, Lee EH, Kang SM, Cho YJ, Jeon JP. Advanced hydrogel mesh platform with neural stem cells and human umbilical vein endothelial cells for enhanced axonal regeneration. APL Bioeng 2025; 9:026101. [PMID: 40181802 PMCID: PMC11964475 DOI: 10.1063/5.0244057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/15/2025] [Indexed: 04/05/2025] Open
Abstract
One of the major obstacles to neural recovery following intracerebral hemorrhage (ICH) is the cavity-like lesion that occurs at the site of the hemorrhage, which impedes axonal regeneration. Here, we aim to address this challenge by investigating the migratory mechanisms of neural stem cells (NSCs) within the cavity in vitro using a hydrogel and endothelial cells. Mouse NSCs (mNSCs) isolated from the subventricular and subgranular zones using the 3D hydrogel culture were evaluated for their neurogenic, extracellular matrix (ECM), and adhesion-related mRNA expression compared to microglia (BV2) and secretory factors of human umbilical vein endothelial cells (HUVECs) in vitro and in vivo conditions. A hydrogel mesh combining mNSCs and HUVECs was developed for its therapeutic potential. mNSCs exhibit high stemness, neurogenesis, and ECM remodeling capabilities. mNSCs demonstrated close interaction with HUVECs and the surrounding vascular structures in in vitro and in vivo studies. Furthermore, mNSCs could degrade high concentrations of fibrin to facilitate migration and adhesion. mNSCs and HUVECs formed mesh networks through cell-cell contacts and maintained the structure through Matrigel support, potentially ensuring sufficient survival and regeneration capabilities. Our proposed hydrogel mesh platform with mNSCs and HUVECs demonstrated successful maintenance of cell survival and provision of structural support for the delivered cells by promoting ECM remodeling and neurogenesis, which may aid in axonal regeneration in the cavity lesions following ICH.
Collapse
Affiliation(s)
- Jong-Tae Kim
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Sung Woo Han
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Dong Hyuk Youn
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Harry Jung
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Eun-Ho Lee
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, Cheonan 31066, Republic of Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon 24252, Republic of Korea
| |
Collapse
|
3
|
Shilenok V, Kobzeva K, Bushueva O. "SERBP1 (Hero45) is a Novel Link with Ischemic Heart Disease Risk: Associations with Coronary Arteries Occlusion, Blood Coagulation and Lipid Profile". Cell Biochem Biophys 2025:10.1007/s12013-025-01736-z. [PMID: 40175693 DOI: 10.1007/s12013-025-01736-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2025] [Indexed: 04/04/2025]
Abstract
Ischemic heart disease (IHD), stemming from coronary atherosclerosis, involves pathological processes in which chaperone proteins play an essential role. SERBP1 (Hero45), an RNA-binding protein, has recently been ascribed to the newly discovered class of Hero proteins with chaperone-like activity, making it particularly relevant in atherosclerosis-related diseases. In this study, 2164 subjects (836 IHD patients and 1328 controls) were genotyped for five common single nucleotide polymorphisms (SNPs) of SERBP1 using probe-based PCR. Here, we report that SNPs of SERBP1 are associated with reduced risk of left coronary artery atherosclerosis: rs4655707 (effect allele [EA] T, OR = 0.63, 95% CI 0.43-0.93, p = 0.02), (EA C, OR = 0.63, 95% CI 0.42-0.95, p = 0.02), rs12561767 (EA G, OR = 0.65, 95% CI 0.45-0.96, p = 0.03), rs6702742 (EA A, OR = 0.63, 95% CI 0.43-0.94, p = 0.02). Additionally, SERBP1 loci are linked to lower coronary artery stenosis (rs1058074), improved blood lipid profiles (rs1058074), and favorable blood coagulation parameters (rs4655707, rs6702742, rs1058074, rs12561767). Together, our study is the first to provide evidence that SERBP1 is involved in lipid metabolism and coagulation regulation, modulating IHD risk.
Collapse
Affiliation(s)
- Vladislav Shilenok
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
- Cardiology Department with the intensive care unit, Kursk Emergency Hospital, Kursk, Russia
| | - Ksenia Kobzeva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Olga Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.
| |
Collapse
|
4
|
Ling LJ, Li MD, Lu JW, Zhang F, Pan F, Su Y, Myatt L, Wang WS, Sun K, Ying H. Induction of epithelial cell senescence by SERPINE1 derived from fibroblasts in the amnion at parturition. Mech Ageing Dev 2025; 225:112053. [PMID: 40132749 DOI: 10.1016/j.mad.2025.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/28/2025] [Accepted: 03/17/2025] [Indexed: 03/27/2025]
Abstract
Senescence of amnion epithelial cells not only disrupts the fetal membrane structure, but also becomes a source of proinflammatory signals contributing to membrane inflammation at parturition. However, the trigger initiating their senescence awaits identification. In this study, we found that SERPINE1 abundance was significantly increased in the amnion at parturition, where SERPINE1 was found predominantly expressed in amnion fibroblasts. SERPINE1 from amnion fibroblasts induced amnion epithelial cell senescence by causing vitronectin shedding from the cells thereby interrupting the association of vitronectin with integrin subunit αV, which led to the inhibition of the cell survival-associated focal adhesion pathway. In turn, proinflammatory cytokines such as interleukin-1β from senescent amnion epithelial cells enhanced SERPINE1 expression in amnion fibroblasts, thus forming a feed-forward loop between SERPINE1 production in amnion fibroblasts and epithelial cell senescence at parturition. Studies in the pregnant mice showed that intra-amniotic injection of SERPINE1 induced preterm birth with increased cellular senescence in the fetal membranes, which could be reversed by co-administration of vitronectin. Our findings indicate that SERPINE1 derived from amnion fibroblasts participates in the induction of amnion epithelial cell senescence at parturition. Intervening in the interaction of SERPINE1 with vitronectin may have therapeutic benefit in the treatment of preterm birth.
Collapse
Affiliation(s)
- Li-Jun Ling
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China
| | - Meng-Die Li
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Jiang-Wen Lu
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Zhang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Fan Pan
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China
| | - Yao Su
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health & Science University, Portland, OR, USA
| | - Wang-Sheng Wang
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Kang Sun
- Center for Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, PR China.
| | - Hao Ying
- Department of Obstetrics, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, PR China; Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai, PR China.
| |
Collapse
|
5
|
Blackmon TJ, MacMahon JA, Bernardino PN, Hogans RE, Cheng MY, Vu J, Lee RD, Saito NH, Grodzki AC, Bruun DA, Wulff H, Woolard KD, Brooks-Kayal A, Harvey DJ, Gorin FA, Lein PJ. Spatiotemporal perturbations of the plasminogen activation system in a rat model of acute organophosphate intoxication. Acta Neuropathol Commun 2025; 13:62. [PMID: 40102979 PMCID: PMC11917081 DOI: 10.1186/s40478-025-01979-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
Neuroinflammation is widely posited to be a key pathogenic mechanism linking acute organophosphate (OP)-induced status epilepticus (SE) to persistent brain injury and abnormal electrical activity that contribute to epilepsy and cognitive impairment. The plasminogen activation system (PAS) promotes neuroinflammation in diverse neurological diseases but whether it is activated following acute OP intoxication has yet to be evaluated. To address this data gap, we characterized the spatiotemporal expression patterns of multiple components of the PAS in a rat model of acute intoxication with the OP, diisopropylfluorophosphate (DFP). Adult male Sprague Dawley rats administered DFP (4 mg/kg, sc), atropine sulfate (2 mg/kg, im) and 2-pralidoxime (25 mg/kg, im) went into SE that persisted for hours. One day after acute DFP-induced SE, plasmin activity and protein concentrations of plasminogen activator inhibitor-1 (PAI-1) in the plasma were increased, though not significantly. In contrast, acute DFP intoxication significantly increased brain levels of PAI-1, tissue-type plasminogen activator (tPA), urokinase plasminogen activator (uPA), and transcripts of TGF-β in a time- and region-dependent manner. In the cortex and hippocampus, quantification of PAI-1, tPA, and uPA by ELISA indicated significantly increased levels at 1 day post-exposure (DPE). PAI-1 and uPA returned to control values by 7 DPE while tPA protein remained elevated at 28 DPE. Immunohistochemistry detected elevated PAI-1 expression in the DFP brain up to 28 DPE. Co-localization of PAI-1 with biomarkers of neurons, microglia, and astrocytes demonstrated that PAI-1 localized predominantly to a subpopulation of astrocytes. Cytologically, PAI-1 localized to astrocytic end feet, but not adjacent neurovascular endothelium. Electron microscopy revealed neuronal metabolic stress and neurodegeneration with disruption of adjacent neurovascular units in the hippocampus post-DFP exposure. These data indicate that acute DFP intoxication altered PAS expression in the brain, with aberrant PAI-1 expression in a subset of reactive astrocyte populations.
Collapse
Affiliation(s)
- Thomas J Blackmon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Jeremy A MacMahon
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Pedro N Bernardino
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ryan E Hogans
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Mei-Yun Cheng
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Joan Vu
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Ruth Diana Lee
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Naomi H Saito
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Ana Cristina Grodzki
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Donald A Bruun
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Kevin D Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
| | - Amy Brooks-Kayal
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Danielle J Harvey
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, 95616, USA
| | - Fredric A Gorin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA
- Department of Neurology, School of Medicine, University of California, Davis, Sacramento, CA, 95817, USA
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA, 95616, USA.
- Molecular Biosciences, UC Davis School of Veterinary Medicine, 1089 Veterinary Research Drive, Davis, CA, 95616, USA.
| |
Collapse
|
6
|
Al Masoodi WTM, Radhi SW, Abdalsada HK, Niu M, Al-Hakeim HK, Maes M. Increased galanin-galanin receptor 1 signaling, inflammation, and insulin resistance are associated with affective symptoms and chronic fatigue syndrome due to long COVID. PLoS One 2025; 20:e0316373. [PMID: 40048451 PMCID: PMC11884674 DOI: 10.1371/journal.pone.0316373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 12/10/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Patients with Long COVID (LC) often experience neuropsychiatric symptoms such as depression, anxiety, and chronic fatigue syndrome (CFS), collectively referred to as the physio-affective phenome of LC. Activated immune-inflammatory pathways and insulin resistance significantly contribute to the physio-affective phenome associated with LC. METHODS In a cohort of 90 individuals, categorized into those with and without LC, we evaluated, 3-6 months following acute SARS-CoV-2 infection, the correlations between the Hamilton Depression (HAMD), Hamilton Anxiety (HAMA), and Fibro-Fatigue (FF) Rating Scale scores, and serum C-reactive protein (CRP), prostaglandin E2 (PGE2), galanin-galanin receptor 1 (GAL-GALR1) signaling, insulin resistance, insulin-like growth factor (IGF-1), plasminogen activator inhibitor-1 (PAI1), S100B and neuron-specific enolase (NSE). RESULTS HAMD, HAMA, FF scores, CRP, PGE2, GAL-GALR1 signaling, insulin resistance, PAI1, NSE, and S100B are all higher in people with LC compared to those without LC. The HAMD/HAMA/FF scores were significantly correlated with PGE, CRP, GAL, GALR1, insulin resistance, and PAI1 levels, and a composite score based on peak body temperature (PBT) - oxygen saturation (SpO2) (PBT/SpO2 index) during the acute infectious phase. A combination of biomarkers explained a large part of the variance in CFS and affective scores (33.6%-42.0%), with GAL-GALR1 signaling, PGE2, and CRP being the top 3 most important biomarkers. The inclusion of the PBT/SpO2 index increased the prediction (55.3%-67.1%). The PBT/SpO2 index predicted the increases in GAL-GALR1 signaling. CONCLUSION These results indicate that the CFS and affective symptoms that are linked to LC are the consequence of metabolic aberrations, activated immune-inflammatory pathways, and the severity of inflammation during the acute phase of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Wasim Talib Mahdi Al Masoodi
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
- Department of Chemistry, Faculty of Medicine, University of Al-Ameed, Karbala, Iraq
| | - Sami Waheed Radhi
- Department of Chemistry, College of Science, University of Kufa, Najaf, Iraq
| | | | - Mengqi Niu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
| | | | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Ph.D. Program in Mental Health, Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Cognitive Fitness and Biopsychological Technology Research Unit, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Dongdaemun-gu, Seoul, Korea
- Research and Innovation Program for the Development of MU – PLOVDIV–(SRIPD-MUP), Creation of a Network of Research Higher Schools, National Plan for Recovery and Sustainability, European Union – Next Generation EU, Plovdiv, Bulgaria
| |
Collapse
|
7
|
Milena E, Maurizio M. Exploring the Cardiovascular Benefits of Extra Virgin Olive Oil: Insights into Mechanisms and Therapeutic Potential. Biomolecules 2025; 15:284. [PMID: 40001586 PMCID: PMC11852600 DOI: 10.3390/biom15020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/01/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide, driven by complex interactions among genetic, environmental, and lifestyle factors, with diet playing a pivotal role. Extra Virgin Olive Oil (EVOO), a cornerstone of the Mediterranean diet (MedDiet), is a plant-based fat that has garnered attention for its robust cardiovascular benefits, which are attributed to its unique composition of monounsaturated fatty acids (MUFAs), particularly oleic acid (OA); and bioactive polyphenols, such as Hydroxytyrosol (HT) and oleocanthal. These compounds collectively exert antioxidant, anti-inflammatory, vasodilatory, and lipid-modulating effects. Numerous clinical and preclinical studies have demonstrated that EVOO's properties reduce major modifiable cardiovascular risk factors, including hypertension, dyslipidemia, obesity, and type 2 diabetes. EVOO also promotes endothelial function by increasing nitric oxide (NO) bioavailability, thus favoring vasodilation, lowering blood pressure (BP), and supporting vascular integrity. Furthermore, it modulates biomarkers of cardiovascular health, such as C-reactive protein, low-density lipoprotein (LDL) cholesterol, and NT-proBNP, aligning with improved hemostatic balance and reduced arterial vulnerability. Emerging evidence highlights its interaction with gut microbiota, further augmenting its cardioprotective effects. This review synthesizes current evidence, elucidating EVOO's multifaceted mechanisms of action and therapeutic potential. Future directions emphasize the need for advanced extraction techniques, nutraceutical formulations, and personalized dietary recommendations to maximize its health benefits. EVOO represents a valuable addition to dietary strategies aimed at reducing the global burden of cardiovascular diseases.
Collapse
Affiliation(s)
- Esposito Milena
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Mandalà Maurizio
- Department of Biology, Ecology & Earth Sciences, University of Calabria, 87036 Rende, Italy;
- Department of Obstetrics, Gynecology and Reproductive Sciences, Larner College of Medicine, University of Vermont, Burlington, VT 05401, USA
| |
Collapse
|
8
|
Risman RA, Milman N, Sinan H, Tutwiler V. Clot formation, structure, and fibrinolysis of pancreatic cancer patients. RESEARCH SQUARE 2025:rs.3.rs-5868575. [PMID: 39989974 PMCID: PMC11844638 DOI: 10.21203/rs.3.rs-5868575/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Background Pancreatic cancer (PC) has the highest risk of venous thromboembolisms amongst all cancer types. If not degraded through a process known as fibrinolysis, thrombi will continue to restrict blood flow and the transport of nutrients to downstream organs, which can lead to heart attack or stroke. While PC patients are known to be hypercoagulable and thus have an elevated thrombosis risk, the mechanism behind this behavior is not fully understood. Aims We aimed to characterize alterations in clotting and fibrinolytic profiles in PC patients compared to healthy controls. Methods Human blood plasma was collected from PC patients and healthy donor controls following institutional review board approval. We used kinetic turbidity to define the rates/timing of blood clot formation/degradation. Confocal and scanning electron microscopy were used to probe the effect PC has on fibrin network structure. Concentrations of proteins for clotting/fibrinolytic pathways were measured using ELISAs. Results PC patients were hypercoagulable compared to healthy donors with heightened fibrinogen concentration. A subset of patients were hypofibrinolytic, while most had similar fibrinolytic profiles to healthy. A comprehensive analysis revealed that delayed lysis in this subset was only present in patients with diabetes and/or COVID-19 due delayed clotting and, notably, elevated plasminogen activator inhibitor (PAI-1). In the general PC population, an extended PTT correlated with thicker fiber diameters while faster clotting resulted in smaller network pore size but was not correlated with lysis rate. Healthy, pooled plasma spiked with relevant concentrations of PAI-1 showed no difference in clot structure and comparable delays in lysis to patients. Conclusion PAI-1, rather than network structure or other clotting/fibrinolytic factors, played a more significant role in hypo fibrinolysis. PAI-1 inhibitors could be a prospective target for development of improved therapeutics to prevent restricted fibrinolysis.
Collapse
|
9
|
Beegam S, Al-Salam S, Zaaba NE, Elzaki O, Nemmar A. Prothrombotic State and Vascular Damage in Angiotensin II-Induced Hypertension: Influence of Waterpipe Smoke Exposure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2025; 2025:2670738. [PMID: 39959581 PMCID: PMC11824600 DOI: 10.1155/omcl/2670738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/04/2025] [Indexed: 02/18/2025]
Abstract
Hypertension is a risk factor for vascular injury and thrombotic complications, and smoking tobacco is a risk factor for the development and exacerbation of hypertension. The influence of waterpipe smoke (WPS) on coagulation and vascular injury in hypertension is not fully understood. Here, we evaluated the effects of WPS in mice made hypertensive (HT) by infusing angiotensin II (Ang II) for 42 days. On day 14 of the infusion of Ang II or vehicle (normotensive; NT), mice were exposed either to air or WPS for four consecutive weeks. Each session was 30 min/day for 5 days/week. The concentrations of tissue factor, von Willebrand factor, fibrinogen, and plasminogen activator inhibitor-1 were elevated in the HT + WPS group versus either HT + air or NT + WPS groups. Similarly, in the HT + WPS group, thrombogenicity was increased both in vivo and in vitro, compared with either HT + air or NT + WPS groups. In aortic tissue, adhesion molecules including P-selectin, E-selectin, intercellular adhesion molecule-1, and vascular adhesion molecule-1 were increased in the HT + WPS group versus the controls. Likewise, various proinflammatory cytokines and markers of oxidative stress augmented in the HT + WPS group compared with either HT + air or NT + WPS. DNA damage, cleaved caspase-3, and cytochrome C were increased in the HT + WPS group versus the controls. The immunohistochemical expression of nuclear factor erythroid 2-related factor 2 was increased in the HT + WPS group versus either HT + air or NT + WPS. Taken together, our findings show that WPS exposure intensified thrombogenicity and vascular damage in experimentally induced hypertension. Our data suggest that vascular toxicity of WPS may be exaggerated in hypertensive patients.
Collapse
Affiliation(s)
- Sumaya Beegam
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Suhail Al-Salam
- Department of Pathology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Nur Elena Zaaba
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Ozaz Elzaki
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| | - Abderrahim Nemmar
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain P.O. Box 17666, UAE
| |
Collapse
|
10
|
Gayibov E, Karim AH. A Rapid Review of Adenocarcinoma and Pulmonary Tumor Thrombotic Microangiopathy: A Deadly Duo. Cureus 2025; 17:e76842. [PMID: 39897287 PMCID: PMC11787629 DOI: 10.7759/cureus.76842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2025] [Indexed: 02/04/2025] Open
Abstract
Pulmonary tumor thrombotic microangiopathy (PTTM) is a rare paraneoplastic syndrome associated with various adenocarcinomas, most commonly gastric adenocarcinoma. This condition can progressively worsen pulmonary arterial hypertension, leading to acute or subacute pulmonary heart failure and respiratory insufficiency. This paper examines the pathogenesis, clinical presentation, diagnosis, treatment, and prognosis of PTTM. Given PTTM's poor prognosis, we emphasize treatment strategies. PTTM in adenocarcinoma patients can mimic other pulmonary diseases, causing diagnostic delays. Current PTTM treatment strategies primarily focus on managing the underlying malignancy and addressing thrombotic complications. Anti-angiogenic therapy with bevacizumab and the platelet-derived growth factor receptor antagonist imatinib have shown promise in multiple cases. Further research is needed to develop more effective and targeted therapies for this challenging condition. The precise mechanisms underlying this association remain to be fully elucidated.
Collapse
Affiliation(s)
- Emin Gayibov
- Third Faculty of Medicine, Charles University, Prague, CZE
| | - Amin H Karim
- Department of Cardiovascular Disease, Baylor College of Medicine, Houston, USA
- Department of Cardiovascular Disease, Weill Medical College of Cornell University, New York City, USA
- Department of Cardiovascular Disease, Methodist Academy of Medicine, Houston, USA
| |
Collapse
|
11
|
Marchenko VA, Zhilinskaya IN. Endothelial activation and dysfunction caused by influenza A virus ( Alphainfluenzavirus influenzae). Vopr Virusol 2024; 69:465-478. [PMID: 39841412 DOI: 10.36233/0507-4088-264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Indexed: 01/23/2025]
Abstract
Annual epidemics of influenza result in 3-5 million cases of severe illness and more than 600 000 deaths. Severe forms of influenza are usually characterized by vascular endothelial cells damage. Thus, influenza A viruses, including subtypes A(H1N1)pdm09, A(H3N2), as well as highly pathogenic avian influenza viruses, can infect the vascular endothelium, leading to activation and subsequent dysfunction of these cells. In turn, endothelial dysfunction resulting in systemic morphofunctional changes of endothelial cells, which leads to impaired vascular tone, thrombosis and other complications, and is also a risk factor and profoundly implicated in the pathogenesis of many cardiovascular diseases. Thus, endothelial dysfunction is an important aspect of the pathogenesis of severe influenza, which must be considered in the pathogenetic therapy of this infectious disease. The aim of the review is to analyze the causes and specify mechanisms of development of endothelial activation and dysfunction caused by influenza A virus.
Collapse
Affiliation(s)
- V A Marchenko
- North-Western State Medical University Named after I.I. Mechnikov
| | - I N Zhilinskaya
- North-Western State Medical University Named after I.I. Mechnikov
| |
Collapse
|
12
|
Şahin A, Babayev H, Cirigliano L, Preto M, Falcone M, Altıntas E, Gül M. Unveiling the molecular Hallmarks of Peyronie's disease: a comprehensive narrative review. Int J Impot Res 2024; 36:801-808. [PMID: 38454161 DOI: 10.1038/s41443-024-00845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/26/2024] [Accepted: 02/12/2024] [Indexed: 03/09/2024]
Abstract
Peyronie's disease, a fibroinflammatory disorder, detrimentally impacts the sexual well-being of men and their partners. The manifestation of fibrotic plaques within penile tissue, attributed to dysregulated fibrogenesis, is pathognomonic for this condition. The onset of fibrosis hinges on the perturbation of the equilibrium between matrix metalloproteinases (MMPs), crucial enzymes governing the extracellular matrix, and tissue inhibitors of MMPs (TIMPs). In the context of Peyronie's disease, there is an elevation in TIMP levels coupled with a decline in MMP levels, culminating in fibrogenesis. Despite the scant molecular insights into fibrotic pathologies, particularly in the context of Peyronie's disease, a comprehensive literature search spanning 1995 to 2023, utilizing PubMed Library, was conducted to elucidate these mechanisms. The findings underscore the involvement of growth factors such as FGF and PDGF, and cytokines like IL-1 and IL-6, alongside PAI-1, PTX-3, HIF, and IgG4 in the fibrotic cascade. Given the tissue-specific modulation of fibrosis, comprehending the molecular underpinnings of penile fibrosis becomes imperative for the innovation of novel and efficacious therapies targeting Peyronie's disease. This review stands as a valuable resource for researchers and clinicians engaged in investigating the molecular basis of fibrotic diseases, offering guidance for advancements in understanding Peyronie's disease.
Collapse
Affiliation(s)
- Ali Şahin
- Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, 7265, Davos, Switzerland
| | - Lorenzo Cirigliano
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Mirko Preto
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Marco Falcone
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Emre Altıntas
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey
| | - Murat Gül
- Department of Urology, Molinette Hospital, University of Torino, AOU Città della Salute e della Scienza di Torino, Turin, Italy.
- Department of Urology, Selcuk University School of Medicine, 42250, Konya, Turkey.
| |
Collapse
|
13
|
Shaikh SB, Balaya RDA, Dagamajalu S, Bhandary YP, Unwalla H, Prasad TSK, Rahman I. A signaling pathway map of plasminogen activator inhibitor-1 (PAI-1/SERPINE-1): a review of an innovative frontier in molecular aging and cellular senescence. Cell Commun Signal 2024; 22:544. [PMID: 39543686 PMCID: PMC11566301 DOI: 10.1186/s12964-024-01910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/26/2024] [Indexed: 11/17/2024] Open
Abstract
Plasminogen activator inhibitor-1 (PAI-1) is a vital regulator of the fibrinolytic mechanism and has been intricately involved in various physiological and clinical processes, including cancer, thrombosis, and wound healing. The PAI-1 signaling pathway is multifaceted, encompassing numerous signaling molecules and nodes. Recent studies have revealed a novel contribution of PAI-1 during cellular senescence. This review introduces a pathway resource detailing the signaling network events mediated by PAI-1. The literature curated on the PAI-1 system was manually compiled from various published studies, our analysis presents a signaling pathway network of PAI-1, which includes various events like enzyme catalysis, molecular association, gene regulation, protein expression, and protein translocation. This signaling network aims to provide a detailed analysis of the existing understanding of the PAI-1 signaling pathway in the context of cellular senescence across various research models. By developing this pathway, we aspire to deepen our understanding of aging and senescence research, ultimately contributing to the pursuit of effective therapeutic approaches for these complex chronic diseases.
Collapse
Affiliation(s)
- Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Centre, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA
| | | | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Yashodhar Prabhakar Bhandary
- Division for Molecular Biology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Mangalore, Karnataka, 575018, India
| | - Hoshang Unwalla
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | | | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Centre, 601 Elmwood Avenue, Box 850, Rochester, NY, 14642, USA.
| |
Collapse
|
14
|
Dassoff ES, Hamad S, Campagna E, Thilakarathna SH, Michalski MC, Wright AJ. Influence of Emulsion Lipid Droplet Crystallinity on Postprandial Endotoxin Transporters and Atherogenic And Inflammatory Profiles in Healthy Men - A Randomized Double-Blind Crossover Acute Meal Study. Mol Nutr Food Res 2024; 68:e2400365. [PMID: 39388527 DOI: 10.1002/mnfr.202400365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/15/2024] [Indexed: 10/12/2024]
Abstract
SCOPE Consumption of high-fat meals is associated with increased endotoxemia, inflammation, and atherogenic profiles, with repeated postprandial responses suggested as contributors to chronically elevated risk factors. However, effects of lipid solid versus liquid state specifically have not been investigated. METHODS AND RESULTS This exploratory randomized crossover study tests the impact of lipid crystallinity on plasma levels of endotoxin transporters (lipopolysaccharide [LPS] binding protein [LBP] and soluble cluster of differentiation 14 [sCD14]) and select proinflammatory and atherogenic markers (tumor necrosis factor-alpha [TNF-α], C-reactive protein [CRP], interleukin-1-beta [IL-1β], interferon-gamma [IFN-γ], interleukin-6 [IL-6], soluble intercellular adhesion molecule [sICAM], soluble vascular cell adhesion molecule [sVCAM], monocyte chemoattractant protein-1 [MCP-1/CCL2], plasminogen activator inhibitor-1 [PAI-1], and fibrinogen). Fasted healthy men (n = 14, 28 ± 5.5 years, 24.1 ± 2.6 kg m-2) consumed two 50 g palm stearin oil-in-water emulsions tempered to contain either liquid or crystalline lipid droplets at 37 °C on separate occasions with blood sampling at 0, 2-, 4-, and 6-h post-meal. Timepoint data, area under the curve, and peak concentration values are compared. Overall, no treatment effects are seen (p > 0.05). There are significant effects of time, with values decreasing from baseline, for TNF-α, MCP-1/CCL2, PAI-1, and fibrinogen (p < 0.05). CONCLUSION Responder analysis pointed to differential treatment effects associated with some participant baseline characteristics but, overall, palm-stearin emulsion droplet crystallinity does not acutely affect plasma endotoxin transporters nor select inflammatory and atherogenic markers.
Collapse
Affiliation(s)
- Erik S Dassoff
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Samar Hamad
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Elaina Campagna
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Surangi H Thilakarathna
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Marie-Caroline Michalski
- INRAE, CarMeN Laboratory, Inserm, Univ-Lyon, Université Claude Bernard Lyon, Centre de Recherche en Nutrition Humain Rhône-Alpes, Pierre Bénite, France
| | - Amanda J Wright
- Human Health and Nutritional Sciences, College of Biological Sciences, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
15
|
Sadek S, Jacot TA, Duffy DM, Archer DF. Prostaglandin E 2 regulates the plasminogen activator pathway in human endometrial endothelial cells: a new in vitro model to investigate heavy menstrual bleeding. F&S SCIENCE 2024; 5:379-385. [PMID: 39038609 DOI: 10.1016/j.xfss.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/24/2024]
Abstract
OBJECTIVE To study the role of PGE2 in regulating plasminogen activator inhibitor-1 (PAI-1) and tissue plasminogen activator (tPA) in human primary endometrial endothelial cells (HEECs) from women with normal menstrual bleeding (NMB) and heavy menstrual bleeding (HMB). DESIGN In vitro study using endometrial endothelial cells. SETTING Research laboratory setting. PATIENTS Women with NMB and HMB provided endometrial biopsy samples. INTERVENTIONS Prostaglandin E2 and PGE2 receptor-selective agonists were administered to cultured HEECs. MAIN OUTCOME MEASURES Levels of PAI-1 and tPA in NMB-HEECs and HMB-HEECs after treatment with PGE2 and receptor-selective agonists. RESULTS Prostaglandin E2 increased total PAI-1 levels in NMB-HEECs, but not in HMB-HEECs, which had higher baseline PAI-1 levels. PGE2 receptors (PTGER)1 and PTGER2 agonists increased PAI-1 in NMB-HEECs, whereas PTGER3 and PTGER4 did not. Prostaglandin E2 had no effect on tPA levels in either NMB-HEECs or HMB-HEECs. CONCLUSIONS Prostaglandin E2, through PTGER1 and PTGER2, regulates the plasminogen activator system in NMB-HEECs, suggesting a role in reducing fibrinolytic activity during normal menstrual cycles. The lack of PGE2 effect and elevated baseline PAI-1 in HMB-HEECs support using this in vitro model to further understand prostaglandin pathways in NMB and HMB.
Collapse
Affiliation(s)
- Seifeldin Sadek
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia.
| | - Terry A Jacot
- Department of Obstetrics and Gynecology, Jones Institute for Reproductive Medicine/Eastern Virginia Medical School, Norfolk, Virginia
| | - Diane M Duffy
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - David F Archer
- The Jones Institute for Reproductive Medicine, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
16
|
Reynolds LM, Houston DK, Skiba MB, Whitsel EA, Stewart JD, Li Y, Zannas AS, Assimes TL, Horvath S, Bhatti P, Baccarelli AA, Tooze JA, Vitolins MZ. Diet Quality and Epigenetic Aging in the Women's Health Initiative. J Acad Nutr Diet 2024; 124:1419-1430.e3. [PMID: 38215906 PMCID: PMC11236955 DOI: 10.1016/j.jand.2024.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 12/05/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
BACKGROUND Higher diet quality scores are associated with a lower risk for many chronic diseases and all-cause mortality; however, it is unclear if diet quality is associated with aging biology. OBJECTIVE This study aimed to examine the association between diet quality and a measure of biological aging known as epigenetic aging. DESIGN A cross-sectional data analysis was used to examine the association between three diet quality scores based on self-reported food frequency questionnaire data and five measures of epigenetic aging based on DNA methylation (DNAm) data from peripheral blood. PARTICIPANTS/SETTING This study included 4,500 postmenopausal women recruited from multiple sites across the United States (1993-98), aged 50 to 79 years, with food frequency questionnaire and DNAm data available from the Women's Health Initiative baseline visit. MAIN OUTCOME MEASURES Five established epigenetic aging measures were generated from HumanMethylation450 Beadchip DNAm data, including AgeAccelHannum, AgeAccelHorvath, AgeAccelPheno, AgeAccelGrim, and DunedinPACE. STATISTICAL ANALYSES PERFORMED Linear mixed models were used to test for associations between three diet quality scores (Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores) and epigenetic aging measures, adjusted for age, race and ethnicity, education, tobacco smoking, physical activity, Women's Health Initiative substudy from which DNAm data were obtained, and DNAm-based estimates of leukocyte proportions. RESULTS Healthy Eating Index, Dietary Approaches to Stop Hypertension, and alternate Mediterranean diet scores were all inversely associated with AgeAccelPheno, AgeAccelGrim, and DunedinPACE (P < 0.05), with the largest effects with DunedinPACE. A one standard deviation increment in diet quality scores was associated with a decrement (β ± SE) in DunedinPACE z score of -0.097 ± 0.014 (P = 9.70 x 10-13) for Healthy Eating Index, -0.107 ± 0.014 (P = 1.53 x 10-14) for Dietary Approaches to Stop Hypertension, and -0.068 ± 0.013 (P = 2.31 x 10-07) for the alternate Mediterranean diet. CONCLUSIONS In postmenopausal women, diet quality scores were inversely associated with DNAm-based measures of biological aging, particularly DunedinPACE.
Collapse
Affiliation(s)
- Lindsay M Reynolds
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina.
| | - Denise K Houston
- Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Meghan B Skiba
- Division of Biobehavioral Health Science, University of Arizona Cancer Center, University of Arizona, Tucson, Arizona
| | - Eric A Whitsel
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - James D Stewart
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina; Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Yun Li
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, North Carolina; Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina
| | - Themistocles L Assimes
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California
| | - Steve Horvath
- Department of Human Genetics, University of California Los Angeles, Los Angeles, California; Altos Labs, San Diego, California
| | - Parveen Bhatti
- Cancer Control Research, BC Cancer Research Institute, Vancouver, British Columbia, Canada; School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Janet A Tooze
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mara Z Vitolins
- Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
17
|
Olansen J, Aaron RK. Similar Pathophysiological Mechanisms Between Osteoarthritis and Vascular Disease. FRONT BIOSCI-LANDMRK 2024; 29:320. [PMID: 39344315 DOI: 10.31083/j.fbl2909320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 10/01/2024]
Abstract
Osteoarthritis (OA) is a prevalent, chronic joint disorder affecting millions of people worldwide, characterized by articular cartilage degradation, subchondral bone remodeling, synovial cytokine secretion, and osteophyte formation. OA primarily affects the hips, knees, hands, and spine. Patients with OA exhibit a higher prevalence of cardiovascular comorbidities and potentially important associations between OA and cardiovascular diseases have prompted investigations into potentially similar pathophysiological associations. This review explores the coexistence of atherosclerotic peripheral vascular disease (ASPVD) in OA patients, including evidence from a contemporary study suggesting associations between OA and arterial wall thickness and blood flow changes which are characteristic of early atherosclerosis, and which stimulate reactive pathology in endothelial cells. Observations from this study demonstrate elevated arterial flow volume and increased intima-media thickness in arteries ipsilateral to OA knees, suggesting a potential link between OA and arterial wall disease. We further explore the intricate relationship between the vascular system and skeletal health, highlighting bidirectional interactions among endothelial cells, inflammatory cells, and various bone cells. Mechanical endothelial cell dysfunction is discussed, emphasizing the impact of vessel wall material changes and endothelial cell responses to alterations in fluid shear stress. Inflammatory changes in OA and ASPVD are also explored, showcasing shared pathophysiological processes involving immune cell infiltration and pro-inflammatory cytokines. Additionally, the role of hypofibrinolysis in OA and ASPVD is discussed, highlighting similarities in elevations of the hypercoagulative and hypofibrinolytic factor, plasminogen activator inhibitor (PAI-1). The review suggests a provocative relationship among low-grade chronic inflammation, endothelial dysfunction, and hypofibrinolytic states in OA and ASPVD, warranting further investigation. In conclusion, this review provides an exploration of the possible associations between OA and ASPVD. While the ongoing study's findings and other reports are observational, they suggest shared pathophysiological processes and emphasize the need for further research to elucidate additional potentially correlative linkages between these conditions. Understanding common molecular pathways may pave a way for targeted interventions that address both OA and ASPVD.
Collapse
Affiliation(s)
- Jon Olansen
- Department of Orthopaedics, Warren Alpert Medical School, Brown University, RI 02905, USA
| | - Roy K Aaron
- Department of Orthopaedics, Warren Alpert Medical School, Brown University, RI 02905, USA
| |
Collapse
|
18
|
Yang Y, Tong M, de la Monte SM. Early-Stage Moderate Alcohol Feeding Dysregulates Insulin-Related Metabolic Hormone Expression in the Brain: Potential Links to Neurodegeneration Including Alzheimer's Disease. J Alzheimers Dis Rep 2024; 8:1211-1228. [PMID: 39247872 PMCID: PMC11380283 DOI: 10.3233/adr-240026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/01/2024] [Indexed: 09/10/2024] Open
Abstract
Background Alzheimer's disease (AD), one of the most prevalent causes of dementia, is mainly sporadic in occurrence but driven by aging and other cofactors. Studies suggest that excessive alcohol consumption may increase AD risk. Objective Our study examined the degree to which short-term moderate ethanol exposure leads to molecular pathological changes of AD-type neurodegeneration. Methods Long Evans male and female rats were fed for 2 weeks with isocaloric liquid diets containing 24% or 0% caloric ethanol (n = 8/group). The frontal lobes were used to measure immunoreactivity to AD biomarkers, insulin-related endocrine metabolic molecules, and proinflammatory cytokines/chemokines by duplex or multiplex enzyme-linked immunosorbent assays (ELISAs). Results Ethanol significantly increased frontal lobe levels of phospho-tau, but reduced Aβ, ghrelin, glucagon, leptin, PAI, IL-2, and IFN-γ. Conclusions Short-term effects of chronic ethanol feeding produced neuroendocrine molecular pathologic changes reflective of metabolic dysregulation, together with abnormalities that likely contribute to impairments in neuroplasticity. The findings suggest that chronic alcohol consumption rapidly establishes a platform for impairments in energy metabolism that occur in both the early stages of AD and alcohol-related brain degeneration.
Collapse
Affiliation(s)
- Yiwen Yang
- Molecular Pharmacology, Physiology and Biotechnology Graduate Program, Brown University, Providence, RI, USA
| | - Ming Tong
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne M. de la Monte
- Department of Medicine, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Lifespan Academic Institutions, the Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
- Departments of Neurology and Neurosurgery, Rhode Island Hospital, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
19
|
Puspitasari YM, Ministrini S, Han J, Karch C, Prisco F, Liberale L, Bengs S, Akhmedov A, Montecucco F, Beer JH, Lüscher TF, Bongiovanni D, Camici GG. Hutchinson-Gilford progeria syndrome mice display accelerated arterial thrombus formation and increased platelet reactivity. Thromb Res 2024; 241:109100. [PMID: 39032390 DOI: 10.1016/j.thromres.2024.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
INTRODUCTION Hutchinson-Gilford Progeria Syndrome (HGPS) is an ultra-rare premature aging genetic disorder caused by a point mutation in the lamin A gene, LMNA. Children with HGPS display short lifespans and typically die due to myocardial infarction or ischemic stroke, both acute cardiovascular events that are tightly linked to arterial thrombosis. Despite this fact, the effect of the classic HGPS LMNA gene mutation on arterial thrombosis remains unknown. METHODS Heterozygous LmnaG609G knock-in (LmnaG609G/+) mice, yielding an equivalent classic mutation observed in HGPS patients (c.1824C>T; pG608G mutation in the human LMNA gene) and corresponding wild-type (WT) control littermates underwent photochemically laser-induced carotid injury to trigger thrombosis. Coagulation and fibrinolytic factors were measured. Furthermore, platelet activation and reactivity were investigated. RESULTS LmnaG609G/+ mice displayed accelerated arterial thrombus formation, as underlined by shortened time to occlusion compared to WT littermates. Levels of factors involved in the coagulation and fibrinolytic system were comparable between groups, while LmnaG609G/+ animals showed higher plasma levels of thrombin-antithrombin complex and lower levels of antithrombin. Bone marrow analysis showed larger megakaryocytes in progeric mice. Lastly, enhanced platelet activation upon adenosine diphosphate, collagen-related peptide, and thrombin stimulation was observed in LmnaG609G/+ animals compared to the WT group, indicating a higher platelet reactivity in progeric animals. CONCLUSIONS LMNA mutation in HGPS mice accelerates arterial thrombus formation, which is mediated, at least in part, by enhanced platelet reactivity, which consequently augments thrombin generation. Given the wide spectrum of antiplatelet agents available clinically, further investigation is warranted to consider the most suitable antiplatelet regimen for children with HGPS to mitigate disease mortality and morbidity.
Collapse
Affiliation(s)
| | - Stefano Ministrini
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Internal Medicine, Angiology and Atherosclerosis, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Jiaying Han
- Department of Internal Medicine I, School of Medicine, University Hospital rechts der Isar, Technical University of Munich, Munich, Germany
| | - Caroline Karch
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Francesco Prisco
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Susan Bengs
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alexander Akhmedov
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, Genoa, Italy
| | - Jürg H Beer
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Internal Medicine, Cantonal Hospital of Baden, Baden, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Cardiology, Royal Brompton & Harefield Hospitals, National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Dario Bongiovanni
- Department of Internal Medicine I, Cardiology, University Hospital Augsburg, University of Augsburg, Augsburg, Germany; Department of Cardiovascular Medicine, Humanitas Clinical and Research Center IRCCS and Humanitas University, Rozzano, Milan, Italy
| | - Giovanni G Camici
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland; Department of Research and Education, University Hospital Zurich, Zurich, Switzerland.
| |
Collapse
|
20
|
Lomelí-Nieto JA, Muñoz-Valle JF, Navarro-Zarza JE, Baños-Hernández CJ, Gutierrez-Brito JA, Renteria-Cabrera V, Horta-Chávez EA, Morales-Núñez JJ, García-Arellano S, Parra-Rojas I, Hernández-Bello J. Impact of Plasminogen Activator Inhibitor-1 Serum Levels and the -675 4G/5G Variant in the SERPINE1 Gene on Systemic Sclerosis in a Mexican Population. Life (Basel) 2024; 14:1056. [PMID: 39337840 PMCID: PMC11433212 DOI: 10.3390/life14091056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by a complex interplay of vascular damage, inflammation, and fibrosis, affecting the skin and internal organs. Plasminogen activator inhibitor-1 (PAI-1), a protein encoded by the SERPINE1 gene, is a potential biomarker of SSc because it is primarily involved in fibrinolysis and is associated with the severity of some autoimmune diseases. This study aimed to determine the association between SERPINE1 variant -675 4G/5G and soluble PAI-1 (sPAI-1) levels with the clinical characteristics and risk of SSc in a Mexican population. This cross-sectional study included 56 SSc patients and 114 control subjects (CSs). The variant was genotyped via the PCR-RFLP method and the levels of sPAI-1 were determined using enzyme-linked immunosorbent assays (ELISAs). The -675 4G/5G variant was not associated with SSc risk or sPAI-I levels. However, higher sPAI-1 levels were observed in SSc patients than in CSs (p = 0.045); these levels were significantly correlated with age, platelets, glucose, and serum levels of transforming growth factor (TGF)-β1, 2, and 3. The SERPINE1 -675 4G/5G variant did not show any association with SSc risk or sPAI-I levels. However, our study shows a possible alteration of sPAI-1 in this disease, which could be associated with the fibrotic and thrombotic processes in SSc.
Collapse
Affiliation(s)
- José Alvaro Lomelí-Nieto
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Francisco Muñoz-Valle
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Eduardo Navarro-Zarza
- Departamento de Medicina Interna-Servicio de Reumatología, Hospital General de Chilpancingo "Dr. Raymundo Abarca Alarcón", Chilpancingo de los Bravo 39020, Mexico
| | - Christian Johana Baños-Hernández
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jesús Alberto Gutierrez-Brito
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Valeria Renteria-Cabrera
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Eduardo Arturo Horta-Chávez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - José Javier Morales-Núñez
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Samuel García-Arellano
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Isela Parra-Rojas
- Facultad de Ciencias Químico-Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39020, Mexico
| | - Jorge Hernández-Bello
- Instituto de Investigación en Ciencias Biomédicas, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico
| |
Collapse
|
21
|
Kudinova AY, Kulak MJ, Daniels TE, Angeles WLDL, de la Monte S, Mathis KJ, Beck QM, Laumann LE, Tyrka AR. Increased plasminogen activator inhibitor-1 (PAI-1) and its associations with metabolic risk in healthy young adults with early life stress. Psychoneuroendocrinology 2024; 166:107071. [PMID: 38754340 PMCID: PMC11188775 DOI: 10.1016/j.psyneuen.2024.107071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/01/2024] [Accepted: 05/05/2024] [Indexed: 05/18/2024]
Abstract
OBJECTIVES We aimed to characterize the interplay between early life stress (ELS), metabolic syndrome (MetS), and plasminogen activator inhibitor-1 (PAI-1), a major inhibitor of the fibrinolytic system implicated in cardiometabolic diseases. We also examined the understudied intersection of ELS, physical activity and PAI-1. METHODS Healthy young adults ages 18-40 (N=200; 68% female) were recruited from the community. Participants with ELS (N=118) experienced childhood maltreatment, and the majority (n=92) also experienced childhood parental loss. Control participants (N=82) had no history of childhood maltreatment or parental loss. Participants had no current cardiometabolic or thrombotic conditions. Fasting plasma samples were assessed for markers of metabolic risk and total PAI-1 using the Bio-Plex Pro Human Diabetes Panel (Bio-Rad Laboratories). A composite metabolic risk z-score (MetS risk) was computed from the mean standardized z-scores of waist-to-height ratio, systolic and diastolic blood pressure, triglycerides, total cholesterol, LDL and HLD cholesterol, fasting plasma glucose, and hemoglobin A1c. RESULTS We found that a history of ELS was linked to both higher PAI-1 levels and a higher MetS risk score. ELS was associated with a higher MetS Z-score in adulthood via increased circulating PAI-1 levels (Average Causal Mediation Effect [ACME]= 0.07, p = 0.036). ELS was also linked to increased PAI-1 levels via greater MetS z-scores (ACME = 0.02, p < 0.001). There was a significant interaction effect of ELS and exercise on PAI-1 levels (p = 0.03), such that engaging in higher levels of daily exercise was linked to lower PAI-1 levels in individuals with ELS. CONCLUSION Healthy young adults with ELS have elevated PAI-1 levels and metabolic risk scores. Among individuals with ELS, exercise is linked to lower PAI-1 levels, suggesting a potential direction for early intervention.
Collapse
Affiliation(s)
- Anastacia Y Kudinova
- Department of Pediatrics, Hasbro Children's Hospital and Bradley Hospital, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Meghan J Kulak
- Warren Alpert Medical School, Brown University, Providence, RI, USA; Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA.
| | - Teresa E Daniels
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - William Lewis-de Los Angeles
- Department of Pediatrics, Hasbro Children's Hospital and Bradley Hospital, RI, USA; Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Suzanne de la Monte
- Department of Pathology, Alpert Medical School of Brown University, Providence, RI, USA; fProvidence VA Medical Center, Providence, RI, USA; Rhode Island Hospital, Providence, RI, USA
| | - Karen Jennings Mathis
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; The Miriam Hospital, Center for Behavioral and Preventive Medicine, USA
| | - Quincy M Beck
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Laura E Laumann
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| | - Audrey R Tyrka
- Initiative on Stress, Trauma, and Resilience (STAR), Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, RI, USA; Mood Disorders Research Program and Laboratory for Clinical and Translational Neuroscience, Butler Hospital, Providence, RI, USA
| |
Collapse
|
22
|
Sazdova I, Hadzi-Petrushev N, Keremidarska-Markova M, Stojchevski R, Sopi R, Shileiko S, Mitrokhin V, Gagov H, Avtanski D, Lubomirov LT, Mladenov M. SIRT-associated attenuation of cellular senescence in vascular wall. Mech Ageing Dev 2024; 220:111943. [PMID: 38762036 DOI: 10.1016/j.mad.2024.111943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/20/2024]
Abstract
This review focuses on the vital function that SIRT1 and other sirtuins play in promoting cellular senescence in vascular smooth muscle cells, which is a key element in the pathogenesis of vascular aging and associated cardiovascular diseases. Vascular aging is a gradual process caused by the accumulation of senescent cells, which results in increased vascular remodeling, stiffness, and diminished angiogenic ability. Such physiological alterations are characterized by a complex interplay of environmental and genetic variables, including oxidative stress and telomere attrition, which affect gene expression patterns and trigger cell growth arrest. SIRT1 has been highlighted for its potential to reduce cellular senescence through modulation of multiple signaling cascades, particularly the endothelial nitric oxide (eNOS)/NO signaling pathway. It also modulates cell cycle through p53 inactivation and suppresses NF-κB mediated expression of adhesive molecules at the vascular level. The study also examines the therapeutic potential of sirtuin modulation in vascular health, identifying SIRT1 and its sirtuin counterparts as potential targets for reducing vascular aging. This study sheds light on the molecular basis of vascular aging and the beneficial effects of sirtuins, paving the way for the development of tailored therapies aimed at enhancing vascular health and prolonging life.
Collapse
Affiliation(s)
- Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia
| | - Milena Keremidarska-Markova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina 10 000, Kosovo
| | - Stanislav Shileiko
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Vadim Mitrokhin
- Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia 1504, Bulgaria
| | - Dimitar Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY 10022, USA
| | - Lubomir T Lubomirov
- Vascular Biology Research Group (RenEVA), Research Institute, Medical University-Varna, Varna, Bulgaria; Institute of Physiology and Pathophysiology, Faculty of Health - School of Medicine, Biomedical Center for Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje 1000, North Macedonia; Department of Fundamental and Applied Physiology, Russian States Medical University, Moscow 117997, Russia.
| |
Collapse
|
23
|
Cui H, Hu D, Xu J, Zhao S, Song Y, Qin G, Liu Y. Identification of hub genes associated with diabetic cardiomyopathy using integrated bioinformatics analysis. Sci Rep 2024; 14:15324. [PMID: 38961143 PMCID: PMC11222523 DOI: 10.1038/s41598-024-65773-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/24/2024] [Indexed: 07/05/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is a common cardiovascular complication of diabetes, which may threaten the quality of life and shorten life expectancy in the diabetic population. However, the molecular mechanisms underlying the diabetes cardiomyopathy are not fully elucidated. We analyzed two datasets from Gene Expression Omnibus (GEO). Differentially expressed and weighted gene correlation network analysis (WGCNA) was used to screen key genes and molecules. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, and protein-protein interaction (PPI) network analysis were constructed to identify hub genes. The diagnostic value of the hub gene was evaluated using the receiver operating characteristic (ROC). Quantitative real-time PCR (RT-qPCR) was used to validate the hub genes. A total of 13 differentially co-expressed modules were selected by WGCNA and differential expression analysis. KEGG and GO analysis showed these DEGs were mainly enriched in lipid metabolism and myocardial hypertrophy pathway, cytomembrane, and mitochondrion. As a result, six genes were identified as hub genes. Finally, five genes (Pdk4, Lipe, Serpine1, Igf1r, and Bcl2l1) were found significantly changed in both the validation dataset and experimental mice with DCM. In conclusion, the present study identified five genes that may help provide novel targets for diagnosing and treating DCM.
Collapse
Affiliation(s)
- Hailong Cui
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Die Hu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Xu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shuiying Zhao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yi Song
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, 450052, China
| | - Guijun Qin
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yanling Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
24
|
Olejnik AE, Kuźnar-Kamińska B. Association of Obesity and Severe Asthma in Adults. J Clin Med 2024; 13:3474. [PMID: 38930006 PMCID: PMC11204497 DOI: 10.3390/jcm13123474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
The incidence of obesity and asthma continues to enhance, significantly impacting global public health. Adipose tissue is an organ that secretes hormones and cytokines, causes meta-inflammation, and contributes to the intensification of bronchial hyperreactivity, oxidative stress, and consequently affects the different phenotypes of asthma in obese people. As body weight increases, the risk of severe asthma increases, as well as more frequent exacerbations requiring the use of glucocorticoids and hospitalization, which consequently leads to a deterioration of the quality of life. This review discusses the relationship between obesity and severe asthma, the underlying molecular mechanisms, changes in respiratory function tests in obese people, its impact on the occurrence of comorbidities, and consequently, a different response to conventional asthma treatment. The article also reviews research on possible future therapies for severe asthma. The manuscript is a narrative review of clinical trials in severe asthma and comorbid obesity. The articles were found in the PubMed database using the keywords asthma and obesity. Studies on severe asthma were then selected for inclusion in the article. The sections: 'The classification connected with asthma and obesity', 'Obesity-related changes in pulmonary functional tests', and 'Obesity and inflammation', include studies on subjects without asthma or non-severe asthma, which, according to the authors, familiarize the reader with the pathophysiology of obesity-related asthma.
Collapse
Affiliation(s)
- Aneta Elżbieta Olejnik
- Department of Pulmonology, Allergology and Pulmonary Oncology, Poznan University of Medical Sciences, Szamarzewskiego 84 Street, 60-569 Poznan, Poland;
| | | |
Collapse
|
25
|
Zhra M, Magableh AM, Samhan LM, Fatani LM, Qasem RJ, Aljada A. The Expression of a Subset of Aging and Antiaging Markers Following the Chondrogenic and Osteogenic Differentiation of Mesenchymal Stem Cells of Placental Origin. Cells 2024; 13:1022. [PMID: 38920652 PMCID: PMC11201886 DOI: 10.3390/cells13121022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/27/2024] Open
Abstract
Mesenchymal stem cells (MSCs) of placental origin hold great promise in tissue engineering and regenerative medicine for diseases affecting cartilage and bone. However, their utility has been limited by their tendency to undergo premature senescence and phenotypic drift into adipocytes. This study aimed to explore the potential involvement of a specific subset of aging and antiaging genes by measuring their expression prior to and following in vitro-induced differentiation of placental MSCs into chondrocytes and osteoblasts as opposed to adipocytes. The targeted genes of interest included the various LMNA/C transcript variants (lamin A, lamin C, and lamin A∆10), sirtuin 7 (SIRT7), and SM22α, along with the classic aging markers plasminogen activator inhibitor 1 (PAI-1), p53, and p16INK4a. MSCs were isolated from the decidua basalis of human term placentas, expanded, and then analyzed for phenotypic properties by flow cytometry and evaluated for colony-forming efficiency. The cells were then induced to differentiate in vitro into chondrocytes, osteocytes, and adipocytes following established protocols. The mRNA expression of the targeted genes was measured by RT-qPCR in the undifferentiated cells and those fully differentiated into the three cellular lineages. Compared to undifferentiated cells, the differentiated chondrocytes demonstrated decreased expression of SIRT7, along with decreased PAI-1, lamin A, and SM22α expression, but the expression of p16INK4a and p53 increased, suggesting their tendency to undergo premature senescence. Interestingly, the cells maintained the expression of lamin C, which indicates that it is the primary lamin variant influencing the mechanoelastic properties of the differentiated cells. Notably, the expression of all targeted genes did not differ from the undifferentiated cells following osteogenic differentiation. On the other hand, the differentiation of the cells into adipocytes was associated with decreased expression of lamin A and PAI-1. The distinct patterns of expression of aging and antiaging genes following in vitro-induced differentiation of MSCs into chondrocytes, osteocytes, and adipocytes potentially reflect specific roles for these genes during and following differentiation in the fully functional cells. Understanding these roles and the network of signaling molecules involved can open opportunities to improve the handling and utility of MSCs as cellular precursors for the treatment of cartilage and bone diseases.
Collapse
Affiliation(s)
- Mahmoud Zhra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Ahmad M. Magableh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lara M. Samhan
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lein M. Fatani
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Rani J. Qasem
- Department of Pharmacology and Pharmacy Practice, College of Pharmacy, Middle East University, Amman 11831, Jordan
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
26
|
Janciauskiene S, Lechowicz U, Pelc M, Olejnicka B, Chorostowska-Wynimko J. Diagnostic and therapeutic value of human serpin family proteins. Biomed Pharmacother 2024; 175:116618. [PMID: 38678961 DOI: 10.1016/j.biopha.2024.116618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
SERPIN (serine proteinase inhibitors) is an acronym for the superfamily of structurally similar proteins found in animals, plants, bacteria, viruses, and archaea. Over 1500 SERPINs are known in nature, while only 37 SERPINs are found in humans, which participate in inflammation, coagulation, angiogenesis, cell viability, and other pathophysiological processes. Both qualitative or quantitative deficiencies or overexpression and/or abnormal accumulation of SERPIN can lead to diseases commonly referred to as "serpinopathies". Hence, strategies involving SERPIN supplementation, elimination, or correction are utilized and/or under consideration. In this review, we discuss relationships between certain SERPINs and diseases as well as putative strategies for the clinical explorations of SERPINs.
Collapse
Affiliation(s)
- Sabina Janciauskiene
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany; Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Urszula Lechowicz
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Magdalena Pelc
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland
| | - Beata Olejnicka
- Department of Pulmonary and Infectious Diseases and BREATH German Center for Lung Research (DZL), Hannover Medical School, Hannover, Germany
| | - Joanna Chorostowska-Wynimko
- Department of Genetics and Clinical Immunology, National Institute of Tuberculosis and Lung Diseases, 26 Plocka St, Warsaw 01-138, Poland.
| |
Collapse
|
27
|
Liu TT, Pascal LE, Bauer SR, Miles HN, Panksepp JB, Lloyd GL, Li L, DeFranco DB, Ricke WA. Age-Dependent Effects of Voluntary Wheel Running Exercise on Voiding Behavior and Potential Age-Related Molecular Mechanisms in Mice. J Gerontol A Biol Sci Med Sci 2024; 79:glae007. [PMID: 38198648 PMCID: PMC11079951 DOI: 10.1093/gerona/glae007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Older men frequently develop lower urinary tract symptoms attributed to benign prostatic hyperplasia (LUTS/BPH). Risk factors for LUTS/BPH include sedentary lifestyle, anxiety/depression, obesity, and frailty, which all increase with age. Although physical exercise may reduce the progression and/or severity of LUTS/BPH, the age-related mechanisms responsible remain unknown. METHODS Voiding symptoms, body mass, and frailty were assessed after 4-weeks of voluntary wheel running in 2-month (n = 10) and 24-month (n = 8) old C57Bl/6J male mice. In addition, various social and individual behaviors were examined in these cohorts. Finally, cellular and molecular markers of inflammation and mitochondrial protein expression were assessed in prostate tissue and systemically. RESULTS Despite running less (aged vs young X¯ = 12.3 vs 30.6 km/week; p = .04), aged mice had reduced voiding symptoms (X¯ = 67.3 vs 23.7; p < .0001) after 1 week of exercise, which was sustained through week 4 (X¯ = 67.3 vs 21.5; p < .0001). Exercise did not affect voiding symptoms in young mice. Exercise also increased mobility and decreased anxiety in both young and aged mice (p < .05). Exercise decreased expression of a key mitochondrial protein (PINK1; p < .05) and inflammation within the prostate (CD68; p < .05 and plasminogen activator inhibitor-1; p < .05) and in the serum (p < .05). However, a frailty index (X¯ = 0.17 vs 0.15; p = .46) and grip strength (X¯ = 1.10 vs 1.19; p = .24) were unchanged after 4 weeks of exercise in aged mice. CONCLUSIONS Voluntary aerobic exercise improves voiding behavior and mobility, and decreases prostatic mitochondrial protein expression and inflammation in aged mice. This promising model could be used to evaluate molecular mechanisms of aerobic exercise as a novel lifestyle intervention for older men with LUTS/BPH.
Collapse
Affiliation(s)
- Teresa T Liu
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Laura E Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Scott R Bauer
- Department of Medicine, Urology, Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
- San Francisco VA Medical Center, San Francisco, California, USA
| | - Hannah N Miles
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Jules B Panksepp
- Waisman Center, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Granville L Lloyd
- Division of Urology, Department of Surgery, Rocky Mountain Regional VA Medical Center, University of Colorado Anschutz School of Medicine, Aurora, Colorado, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin – Madison, Madison, Wisconsin, USA
- Department of Chemistry, University of Wisconsin – Madison, Madison, Wisconsin, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William A Ricke
- Department of Urology, George M. O’Brien Center of Research Excellence, University of Wisconsin – Madison, Madison, Wisconsin, USA
| |
Collapse
|
28
|
Jones R, Robinson AT, Beach LB, Lindsey ML, Kirabo A, Hinton A, Erlandson KM, Jenkins ND. Exercise to Prevent Accelerated Vascular Aging in People Living With HIV. Circ Res 2024; 134:1607-1635. [PMID: 38781293 PMCID: PMC11126195 DOI: 10.1161/circresaha.124.323975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.
Collapse
Affiliation(s)
- Raymond Jones
- Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL
| | | | - Lauren B. Beach
- Department of Medical Social Sciences, Northwestern, Chicago, IL
- Department of Preventive Medicine, Northwestern, Chicago, IL
| | - Merry L. Lindsey
- School of Graduate Studies, Meharry Medical College, Nashville, TN
- Research Service, Nashville VA Medical Center, Nashville, TN
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Vanderbilt Center for Immunobiology, Nashville, TN
- Vanderbilt Institute for Infection, Immunology and Inflammation, Nashville, TN
- Vanderbilt Institute for Global Health, Nashville, TN
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN
| | | | - Nathaniel D.M. Jenkins
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA
- Abboud Cardiovascular Research Center, University of Iowa, Iowa City, IA
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA
| |
Collapse
|
29
|
Dadgar N, Sherry C, Zimmerman J, Park H, Lewis C, Donnenberg A, Zaidi AH, Fan Y, Xiao K, Bartlett D, Donnenberg V, Wagner PL. Targeting interleukin-6 as a treatment approach for peritoneal carcinomatosis. J Transl Med 2024; 22:402. [PMID: 38689325 PMCID: PMC11061933 DOI: 10.1186/s12967-024-05205-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Peritoneal carcinomatosis (PC) is a complex manifestation of abdominal cancers, with a poor prognosis and limited treatment options. Recent work identifying high concentrations of the cytokine interleukin-6 (IL-6) and its soluble receptor (sIL-6-Rα) in the peritoneal cavity of patients with PC has highlighted this pathway as an emerging potential therapeutic target. This review article provides a comprehensive overview of the current understanding of the potential role of IL-6 in the development and progression of PC. We discuss mechansims by which the IL-6 pathway may contribute to peritoneal tumor dissemination, mesothelial adhesion and invasion, stromal invasion and proliferation, and immune response modulation. Finally, we review the prospects for targeting the IL-6 pathway in the treatment of PC, focusing on common sites of origin, including ovarian, gastric, pancreatic, colorectal and appendiceal cancer, and mesothelioma.
Collapse
Affiliation(s)
- Neda Dadgar
- Translational Hematology & Oncology Research, Enterprise Cancer Institute, Cleveland Clinic, Cleveland, OH, 44106, USA
| | - Christopher Sherry
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Jenna Zimmerman
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Hyun Park
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Catherine Lewis
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Albert Donnenberg
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Ali H Zaidi
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Yong Fan
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Kunhong Xiao
- Center for Proteomics & Artificial Intelligence, Center for Clinical Mass Spectrometry, Allegheny Health Network Cancer Institute, Pittsburgh, PA, 15224, USA
| | - David Bartlett
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA
| | - Vera Donnenberg
- University of Pittsburgh School of MedicineDepartment of Cardiothoracic SurgeryUPMC Hillman Cancer Center Wagner, Patrick; Allegheny Health Network Cancer Institute, Pittsburgh, USA
| | - Patrick L Wagner
- Allegheny Health Network Cancer Institute, 314 E. North Ave, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
30
|
Huang HYR, Badar S, Said M, Shah S, Bharadwaj HR, Ramamoorthy K, Alrawashdeh MM, Haroon F, Basit J, Saeed S, Aji N, Tse G, Roy P, Bardhan M. The advent of RNA-based therapeutics for metabolic syndrome and associated conditions: a comprehensive review of the literature. Mol Biol Rep 2024; 51:493. [PMID: 38580818 DOI: 10.1007/s11033-024-09457-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024]
Abstract
Metabolic syndrome (MetS) is a prevalent and intricate health condition affecting a significant global population, characterized by a cluster of metabolic and hormonal disorders disrupting lipid and glucose metabolism pathways. Clinical manifestations encompass obesity, dyslipidemia, insulin resistance, and hypertension, contributing to heightened risks of diabetes and cardiovascular diseases. Existing medications often fall short in addressing the syndrome's multifaceted nature, leading to suboptimal treatment outcomes and potential long-term health risks. This scenario underscores the pressing need for innovative therapeutic approaches in MetS management. RNA-based treatments, employing small interfering RNAs (siRNAs), microRNAs (miRNAs), and antisense oligonucleotides (ASOs), emerge as promising strategies to target underlying biological abnormalities. However, a summary of research available on the role of RNA-based therapeutics in MetS and related co-morbidities is limited. Murine models and human studies have been separately interrogated to determine whether there have been recent advancements in RNA-based therapeutics to offer a comprehensive understanding of treatment available for MetS. In a narrative fashion, we searched for relevant articles pertaining to MetS co-morbidities such as cardiovascular disease, fatty liver disease, dementia, colorectal cancer, and endocrine abnormalities. We emphasize the urgency of exploring novel therapeutic avenues to address the intricate pathophysiology of MetS and underscore the potential of RNA-based treatments, coupled with advanced delivery systems, as a transformative approach for achieving more comprehensive and efficacious outcomes in MetS patients.
Collapse
Affiliation(s)
- Helen Ye Rim Huang
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sarah Badar
- Department of Biomedical Science, The University of the West Scotland, Paisley, Scotland
| | - Mohammad Said
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Siddiqah Shah
- Faculty of Medicine and Health Science, Royal College of Surgeons in Ireland, Dublin, Ireland
| | | | - Krishna Ramamoorthy
- Department of Biochemistry and Microbiology, Rutgers University-New Brunswick, Brunswick, NJ, USA
| | | | | | - Jawad Basit
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Sajeel Saeed
- Rawalpindi Medical University, Rawalpindi, Pakistan
| | - Narjiss Aji
- Faculty of Medicine and Health, McGill University, Montreal, QC, Canada
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, China
- School of Nursing and Health Studies, Hong Kong Metropolitan University, Hong Kong, China
| | - Priyanka Roy
- Directorate of Factories, Department of Labour, Government of West Bengal, Kolkata, India
| | - Mainak Bardhan
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL, USA.
| |
Collapse
|
31
|
Orabueze I, Akpan I, Cluzet V, Harrison M. Cardiogenic Shock in a Patient With 4G/4G PAI Polymorphism and MTHFR A1298C Mutation. Cureus 2024; 16:e53554. [PMID: 38449956 PMCID: PMC10917360 DOI: 10.7759/cureus.53554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/02/2024] [Indexed: 03/08/2024] Open
Abstract
Myocardial infarction (MI) remains a common cause of morbidity and mortality. Although many well-known risk factors exist, the association between inherited thrombophilia disorders and acute MI is not well described. Here, we present a case of a 75-year-old male with known 4G/4G PAI-1 polymorphism, methylenetetrahydrofolate reductase (MTHFR) mutation, and peripheral artery disease (PAD) post stent placement who presented with cardiogenic shock in the setting of acute MI with no prior significant cardiac history.
Collapse
Affiliation(s)
- Ijeoma Orabueze
- Internal Medicine, Vassar Brothers Medical Center, Poughkeepsie, USA
| | - Inemesit Akpan
- Internal Medicine, Piedmont Athens Regional, Athens, USA
| | - Valerie Cluzet
- Infectious Diseases, Vassar Brothers Medical Center, Poughkeepsie, USA
| | - Mark Harrison
- Internal Medicine, Vassar Brothers Medical Center, Poughkeepsie, USA
| |
Collapse
|
32
|
Kusters CDJ, Paul KC, Lu AT, Ferruci L, Ritz BR, Binder AM, Horvath S. Higher testosterone and testosterone/estradiol ratio in men are associated with decreased Pheno-/GrimAge and DNA-methylation based PAI1. GeroScience 2024; 46:1053-1069. [PMID: 37369886 PMCID: PMC10828310 DOI: 10.1007/s11357-023-00832-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/18/2023] [Indexed: 06/29/2023] Open
Abstract
Sex hormones are hypothesized to drive sex-specific health disparities. Here, we study the association between sex steroid hormones and DNA methylation-based (DNAm) biomarkers of age and mortality risk including Pheno Age Acceleration (AA), Grim AA, and DNAm-based estimators of Plasminogen Activator Inhibitor 1 (PAI1), and leptin concentrations. We pooled data from three population-based cohorts, the Framingham Heart Study Offspring Cohort, the Baltimore Longitudinal Study of Aging, and the InCHIANTI Study, including 1,062 postmenopausal women without hormone therapy and 1,612 men of European descent. Sex-stratified analyses using a linear mixed regression were performed, with a Benjamini-Hochberg (BH) adjustment for multiple testing. Sex Hormone Binding Globulin (SHBG) was associated with a decrease in DNAm PAI1 among men (per 1 standard deviation (SD): -478 pg/mL; 95%CI: -614 to -343; P:1e-11; BH-P: 1e-10), and women (-434 pg/mL; 95%CI: -589 to -279; P:1e-7; BH-P:2e-6). The testosterone/estradiol (TE) ratio was associated with a decrease in Pheno AA (-0.41 years; 95%CI: -0.70 to -0.12; P:0.01; BH-P: 0.04), and DNAm PAI1 (-351 pg/mL; 95%CI: -486 to -217; P:4e-7; BH-P:3e-6) among men. In men, testosterone was associated with a decrease in DNAm PAI1 (-481 pg/mL; 95%CI: -613 to -349; P:2e-12; BH-P:6e-11). SHBG was associated with lower DNAm PAI1 among men and women. Higher testosterone and testosterone/estradiol ratio were associated with lower DNAm PAI and a younger epigenetic age in men. A decrease in DNAm PAI1 is associated with lower mortality and morbidity risk indicating a potential protective effect of testosterone on lifespan and conceivably cardiovascular health via DNAm PAI1.
Collapse
Affiliation(s)
- Cynthia D J Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA.
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA.
- Department of Epidemiology, Fielding School of Public Health at UCLA, Box 708822, 650 Charles E. Young Drive South, CA, 90095-7088, Los Angeles, USA.
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Luigi Ferruci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute On Aging, National Institutes of Health, Baltimore, USA
| | - Beate R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Alexandra M Binder
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
- Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Bruno MEC, Mukherjee S, Sturgill JL, Cornea V, Yeh P, Hawk GS, Saito H, Starr ME. PAI-1 as a critical factor in the resolution of sepsis and acute kidney injury in old age. Front Cell Dev Biol 2024; 11:1330433. [PMID: 38304613 PMCID: PMC10830627 DOI: 10.3389/fcell.2023.1330433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/27/2023] [Indexed: 02/03/2024] Open
Abstract
Elevated plasma levels of plasminogen activator inhibitor type 1 (PAI-1) are documented in patients with sepsis and levels positively correlate with disease severity and mortality. Our prior work demonstrated that PAI-1 in plasma is positively associated with acute kidney injury (AKI) in septic patients and mice. The objective of this study was to determine if PAI-1 is causally related to AKI and worse sepsis outcomes using a clinically-relevant and age-appropriate murine model of sepsis. Sepsis was induced by cecal slurry (CS)-injection to wild-type (WT, C57BL/6) and PAI-1 knockout (KO) mice at young (5-9 months) and old (18-22 months) age. Survival was monitored for at least 10 days or mice were euthanized for tissue collection at 24 or 48 h post-insult. Contrary to our expectation, PAI-1 KO mice at old age were significantly more sensitive to CS-induced sepsis compared to WT mice (24% vs. 65% survival, p = 0.0037). In comparison, loss of PAI-1 at young age had negligible effects on sepsis survival (86% vs. 88% survival, p = 0.8106) highlighting the importance of age as a biological variable. Injury to the kidney was the most apparent pathological consequence and occurred earlier in aged PAI-1 KO mice. Coagulation markers were unaffected by loss of PAI-1, suggesting thrombosis-independent mechanisms for PAI-1-mediated protection. In summary, although high PAI-1 levels are clinically associated with worse sepsis outcomes, loss of PAI-1 rendered mice more susceptible to kidney injury and death in a CS-induced model of sepsis using aged mice. These results implicate PAI-1 as a critical factor in the resolution of sepsis in old age.
Collapse
Affiliation(s)
- Maria E. C. Bruno
- Department of Surgery, University of Kentucky, Lexington, KY, United States
| | - Sujata Mukherjee
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Jamie L. Sturgill
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky, Lexington, KY, United States
| | - Virgilius Cornea
- Department of Pathology, University of Kentucky, Lexington, KY, United States
| | - Peng Yeh
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Gregory S. Hawk
- Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Hiroshi Saito
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- Department of Physiology, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, Graduate Faculty of Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Marlene E. Starr
- Department of Surgery, University of Kentucky, Lexington, KY, United States
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
34
|
Kryczka KE, Demkow M, Dzielińska Z. Biomarkers in Peripartum Cardiomyopathy-What We Know and What Is Still to Be Found. Biomolecules 2024; 14:103. [PMID: 38254703 PMCID: PMC10813209 DOI: 10.3390/biom14010103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 12/20/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Peripartum cardiomyopathy (PPCM) is a form of heart failure, often severe, that occurs in previously healthy women at the end of their pregnancy or in the first few months after delivery. In PPCM, the recovery of heart function reaches 45-50%. However, the all-cause mortality in long-term observation remains high, reaching 20% irrespective of recovery status. The incidence of PPCM is increasing globally; therefore, effort is required to clarify the pathophysiological background of the disease, as well as to discover specific diagnostic and prognostic biomarkers. The etiology of the disease remains unclear, including oxidative stress; inflammation; hormonal disturbances; endothelial, microcirculatory, cardiomyocyte and extracellular matrix dysfunction; fibrosis; and genetic mutations. Currently, antiangiogenic 16-kDa prolactin (PRL), cleaved from standard 23-kDa PRL in the case of unbalanced oxidative stress, is recognized as the main trigger of the disease. In addition, 16-kDa PRL causes damage to cardiomyocytes, acting via microRNA-146a secreted from endothelial cells as a cause of the NF-κβ pathway. Bromocriptine, which inhibits the secretion of PRL from the pituitary gland, is now the only specific treatment for PPCM. Many different phenotypes of the disease, as well as cases of non-responders to bromocriptine treatment, indicate other pathophysiological pathways that need further investigation. Biomarkers in PPCM are not well established. There is a deficiency in specific diagnostic biomarkers. Pro-brain-type natriuretic peptide (BNP) and N-terminal BNP are the best, however unspecific, diagnostic biomarkers of heart failure at the moment. Therefore, more efforts should be engaged in investigating more specific biomolecules of a diagnostic and prognostic manner such as 16-kDa PRL, galectin-3, myeloperoxidase, or soluble Fms-like tyrosine kinase-1/placental growth factor ratio. In this review, we present the current state of knowledge and future directions of exploring PPCM pathophysiology, including microRNA and heat shock proteins, which may improve diagnosis, treatment monitoring, and the development of specific treatment strategies, and consequently improve patients' prognosis and outcome.
Collapse
Affiliation(s)
- Karolina E. Kryczka
- Department of Coronary and Structural Heart Diseases, National Institute of Cardiology, 04-628 Warsaw, Poland
| | | | | |
Collapse
|
35
|
Pezzino S, Luca T, Castorina M, Puleo S, Latteri S, Castorina S. Role of Perturbated Hemostasis in MASLD and Its Correlation with Adipokines. Life (Basel) 2024; 14:93. [PMID: 38255708 PMCID: PMC10820028 DOI: 10.3390/life14010093] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise, making it one of the most prevalent chronic liver disorders. MASLD encompasses a range of liver pathologies, from simple steatosis to metabolic dysfunction-associated steatohepatitis (MASH) with inflammation, hepatocyte damage, and fibrosis. Interestingly, the liver exhibits close intercommunication with fatty tissue. In fact, adipose tissue could contribute to the etiology and advancement of MASLD, acting as an endocrine organ that releases several hormones and cytokines, with the adipokines assuming a pivotal role. The levels of adipokines in the blood are altered in people with MASLD, and recent research has shed light on the crucial role played by adipokines in regulating energy expenditure, inflammation, and fibrosis in MASLD. However, MASLD disease is a multifaceted condition that affects various aspects of health beyond liver function, including its impact on hemostasis. The alterations in coagulation mechanisms and endothelial and platelet functions may play a role in the increased vulnerability and severity of MASLD. Therefore, more attention is being given to imbalanced adipokines as causative agents in causing disturbances in hemostasis in MASLD. Metabolic inflammation and hepatic injury are fundamental components of MASLD, and the interrelation between these biological components and the hemostasis pathway is delineated by reciprocal influences, as well as the induction of alterations. Adipokines have the potential to serve as the shared elements within this complex interrelationship. The objective of this review is to thoroughly examine the existing scientific knowledge on the impairment of hemostasis in MASLD and its connection with adipokines, with the aim of enhancing our comprehension of the disease.
Collapse
Affiliation(s)
- Salvatore Pezzino
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Tonia Luca
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | | | - Stefano Puleo
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
| | - Saverio Latteri
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| | - Sergio Castorina
- Mediterranean Foundation “GB Morgagni”, 95125 Catania, Italy (M.C.); (S.C.)
- Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
36
|
Abi-Ghanem C, Salinero AE, Smith RM, Kelly RD, Belanger KM, Richard RN, Paul AS, Herzog AA, Thrasher CA, Rybka KA, Riccio D, Gannon OJ, Kordit D, Kyaw NR, Mansour FM, Groom E, Brooks HL, Robison LS, Pumiglia K, Zuloaga DG, Zuloaga KL. Effects of Menopause and High Fat Diet on Metabolic Outcomes in a Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2024; 101:1177-1194. [PMID: 39302361 PMCID: PMC12045035 DOI: 10.3233/jad-231332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background About two-thirds of those with Alzheimer's disease (AD) are women, most of whom are post-menopausal. Menopause accelerates dementia risk by increasing the risk for metabolic, cardiovascular, and cerebrovascular diseases. Mid-life metabolic disease (obesity, diabetes/prediabetes) is a well-known risk factor for dementia. A high fat diet can lead to poor metabolic health in both humans and rodents. Objective Our goal was to determine the effects of a high fat diet on metabolic outcomes in the AppNL-F knock-in mouse model of AD and assess the effects of menopause. Methods First, 3-month-old AppNL-F and WT female mice were placed on either a control or a high fat diet until 10 months of age then assessed for metabolic outcomes. Next, we did a more extensive assessment in AppNL-F mice that were administered VCD (4-vinylcyclohexene diepoxide) or vehicle (oil) and placed on a control or high fat diet for 7 months. VCD was used to model menopause by causing accelerated ovarian failure. Results Compared to WT controls, AD female mice had worse glucose intolerance. Menopause led to metabolic impairment (weight gain and glucose intolerance) and further exacerbated obesity in response to a high fat diet. There were interactions between diet and menopause on some metabolic health serum biomarkers and the expression of hypothalamic markers related to energy balance. Conclusions This work highlights the need to model endocrine aging in animal models of dementia and will contribute to further understanding the interaction between menopause and metabolic health in the context of AD.
Collapse
Affiliation(s)
- Charly Abi-Ghanem
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Abigail E. Salinero
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Rachel M. Smith
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Richard D. Kelly
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Kasey M. Belanger
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Riane N. Richard
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Aaron S. Paul
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Ava A. Herzog
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Christina A. Thrasher
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Krystyna A. Rybka
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, 1400 Washington Ave, Biology 325, Albany, NY 12222, USA
| | - David Riccio
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Olivia J. Gannon
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - David Kordit
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Nyi-Rein Kyaw
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Febronia M. Mansour
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Emily Groom
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Heddwen L. Brooks
- Department of Physiology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lisa S. Robison
- Department of Psychology and Neuroscience, Nova Southeastern University. 3300 S University Drive, Fort Lauderdale, FL 33328, USA
| | - Kevin Pumiglia
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| | - Damian G. Zuloaga
- Department of Psychology and Center for Neuroscience Research, State University of New York at Albany, 1400 Washington Ave, Biology 325, Albany, NY 12222, USA
| | - Kristen L. Zuloaga
- Department of Neuroscience & Experimental Therapeutics, Albany Medical College, 47 New Scotland Avenue; MC-136, Albany, NY 12208, USA
| |
Collapse
|
37
|
Gujjar S, Tyagi A, Sainger S, Bharti P, Nain V, Sood P, Jayabal P, Sharma JC, Sharma P, Rajput S, Pandey AK, Pandey AK, Abnave P, Mathapati S. Biocompatible Human Placental Extracellular Matrix Derived Hydrogels. Adv Biol (Weinh) 2024; 8:e2300349. [PMID: 37786307 DOI: 10.1002/adbi.202300349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/29/2023] [Indexed: 10/04/2023]
Abstract
Solubilizing extracellular matrix (ECM) materials and transforming them into hydrogels has expanded their potential applications both in vitro and in vivo. In this study, hydrogels are prepared by decellularization of human placental tissue using detergent and enzymes and by the subsequent creation of a homogenized acellular placental tissue powder (P-ECM). A perfusion-based decellularization approach is employed using detergent and enzymes. The P-ECM with and without gamma irradiation is then utilized to prepare P-ECM hydrogels. Physical and biological evaluations are conducted to assess the suitability of the P-ECM hydrogels for biocompatibility. The decellularized tissue has significantly reduced cellular content and retains the major ECM proteins. Increasing the concentration of P-ECM leads to improved mechanical properties of the P-ECM hydrogels. The biocompatibility of the P-ECM hydrogel is demonstrated through cell proliferation and viability assays. Notably, gamma-sterilized P-ECM does not support the formation of a stable hydrogel. Nonetheless, the use of HCl during the digestion process effectively decreases spore growth and bacterial bioburden. The study demonstrates that P-ECM hydrogels exhibit physical and biological attributes conducive to soft tissue reconstruction. These hydrogels establish a favorable microenvironment for cell growth and the need for investigating innovative sterilization methods.
Collapse
Affiliation(s)
- Sunil Gujjar
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Anurag Tyagi
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Saloni Sainger
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Puja Bharti
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Vaibhav Nain
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Pratibha Sood
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Prakash Jayabal
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Jagadish Chandra Sharma
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Priyanka Sharma
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Sanjay Rajput
- Shriram Institute for Industrial Research, Delhi, 110007, India
| | - Anil Kumar Pandey
- Employees State Insurance Corporation Medical College and Hospital, Faridabad, Haryana, 121012, India
| | - Amit Kumar Pandey
- Mycobacterial Pathogenesis Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| | - Prasad Abnave
- National Centre for Cell Science, Pune, Maharashtra, 411007, India
| | - Santosh Mathapati
- Biomaterials Laboratory, Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India
| |
Collapse
|
38
|
Batko J, Rusinek J, Słomka A, Litwinowicz R, Burysz M, Bartuś M, Lakkireddy DR, Lee RJ, Natorska J, Ząbczyk M, Kapelak B, Bartuś K. Postoperative Coagulation Changes in Patients after Epicardial Left Atrial Appendage Occlusion Varies Based on the Left Atrial Appendage Size. Diseases 2023; 12:8. [PMID: 38248359 PMCID: PMC10814509 DOI: 10.3390/diseases12010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024] Open
Abstract
Left atrial appendage occlusion affects systemic coagulation parameters, leading to additional patient-related benefits. The aim of this study was to investigate the differences in coagulation factor changes 6 months after epicardial left atrial appendage occlusion in patients with different LAA morphometries. This is the first study to analyze these relationships in detail. A prospective study of 22 consecutive patients was performed. Plasminogen, fibrinogen, tPA concentration, PAI-1, TAFI and computed tomography angiograms were performed. Patients were divided into subgroups based on left atrial appendage body and orifice diameter enlargement. The results of blood tests at baseline and six-month follow-up were compared. In a population with normal LAA body size and normal orifice diameter size, a significant decrease in analyzed clotting factors was observed between baseline and follow-up for all parameters except plasminogen. A significant decrease between baseline and follow-up was observed with enlarged LAA body size in all parameters except TAFI, in which it was insignificant and plasminogen, in which a significant increase was observed. Occlusion of the left atrial appendage is beneficial for systemic coagulation. Patients with a small LAA may benefit more from LAA closure in terms of stabilizing their coagulation factors associated with potential thromboembolic events in the future.
Collapse
Affiliation(s)
- Jakub Batko
- CAROL—Cardiothoracic Anatomy Research Operative Lab, Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, 85-094 Bydgoszcz, Poland;
| | - Jakub Rusinek
- CAROL—Cardiothoracic Anatomy Research Operative Lab, Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Artur Słomka
- Thoracic Research Centre, Collegium Medicum Nicolaus Copernicus University, Innovative Medical Forum, 85-094 Bydgoszcz, Poland;
- Department of Pathophysiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz, 85-094 Bydgoszcz, Poland
| | - Radosław Litwinowicz
- CAROL—Cardiothoracic Anatomy Research Operative Lab, Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland
- Department of Cardiac Surgery, Regional Specialist Hospital, 86-300 Grudziądz, Poland
| | - Marian Burysz
- Department of Cardiac Surgery, Regional Specialist Hospital, 86-300 Grudziądz, Poland
| | - Magdalena Bartuś
- Department of Pharmacology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Dhanunjaya R. Lakkireddy
- The Kansas City Heart Rhythm Institution and Research Foundation, HCA MIDWEST HEALTH, Second Floor, 5100 W 110th St, Overland Park, KS 66211, USA
| | - Randall J. Lee
- Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Joanna Natorska
- Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland; (J.N.); (M.Z.)
| | - Michał Ząbczyk
- Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland; (J.N.); (M.Z.)
| | - Bogusław Kapelak
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Krzysztof Bartuś
- Department of Cardiovascular Surgery and Transplantology, Institute of Cardiology, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
39
|
Gramstad OR, Schjalm C, Mollnes TE, Nielsen EW. Increased thromboinflammatory load in hereditary angioedema. Clin Exp Immunol 2023; 214:170-181. [PMID: 37561062 PMCID: PMC10714191 DOI: 10.1093/cei/uxad091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
C1 inhibitor (C1Inh) is a serine protease inhibitor involved in the kallikrein-kinin system, the complement system, the coagulation system, and the fibrinolytic system. In addition to the plasma leakage observed in hereditary angioedema (HAE), C1Inh deficiency may also affect these systems, which are important for thrombosis and inflammation. The aim of this study was to investigate the thromboinflammatory load in C1Inh deficiency. We measured 27 cytokines including interleukins, chemokines, interferons, growth factors, and regulators using multiplex technology. Complement activation (C4d, C3bc, and sC5b-C9/TCC), haemostatic markers (β-thromboglobulin (β-TG), thrombin-antithrombin complexes (TAT), prothrombin fragment 1 + 2 (F1 + 2), active plasminogen activator inhibitor-1 (PAI-1), and the neutrophil activation marker myeloperoxidase (MPO) were measured by enzyme immunoassays. Plasma and serum samples were collected from 20 patients with HAE type 1 or 2 in clinical remission and compared with 20 healthy age- and sex-matched controls. Compared to healthy controls, HAE patients had significantly higher levels of tumour necrosis factor (TNF), interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-7, IL-9, IL-12, and IL-17A, chemokine ligand (CXCL) 8, chemokine ligand (CCL) 3, CCL4, IL-1 receptor antagonist (IL-1RA), granulocyte-macrophage colony-stimulating factor (GM-CSF), fibroblast growth factor (FGF) 2 and platelet-derived growth factor (PDGF)-BB. HAE patients also had higher levels of TAT and F1 + 2. Although granulocyte colony-stimulating factor (G-CSF), β-TG and PAI-1 were higher in HAE patients, the differences did not reach statistical significance after correction for multiple testing. In conclusion, C1Inh deficiency is associated with an increased baseline thromboinflammatory load. These findings may reflect that HAE patients are in a subclinical attack state outside of clinically apparent oedema attacks.
Collapse
Affiliation(s)
- Olav Rogde Gramstad
- Department of Dermatology and Venerology, Oslo University Hospital, Oslo, Norway
| | - Camilla Schjalm
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
| | - Tom Eirik Mollnes
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Immunology, Oslo University Hospital, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
| | - Erik Waage Nielsen
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Department of Anesthesia and Intensive Care Medicine, Nordland Hospital, Bodø, Norway
- Institute of Clinical Medicine, University of Tromsø, Tromsø, Norway
- Faculty of Nursing and Health Sciences, Nord University, Bodø, Norway
| |
Collapse
|
40
|
Gidaro A, Delitala AP, Manetti R, Caccia S, Soloski MJ, Lambertenghi Deliliers G, Castro D, Donadoni M, Bartoli A, Sanna G, Bergamaschini L, Castelli R. Platelet Microvesicles, Inflammation, and Coagulation Markers: A Pilot Study. Hematol Rep 2023; 15:684-695. [PMID: 38132277 PMCID: PMC10742513 DOI: 10.3390/hematolrep15040069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/31/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Platelet "Microvesicles" (MVs) are studied for their role in blood coagulation and inflammation. The study aimed to establish if MVs are related to age, plasma levels of inflammation, coagulation, and fibrinolysis markers in healthy individuals. METHODS We prospectively enrolled volunteers aged over 18 years. MVs, plasma levels of C-reactive protein (CRP), Interleukin 6 (IL-6), Interleukin 10 (IL-10), Interleukin 17 (IL-17), and transforming growth factor β (TGF-β), fibrinogen, plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (VWF), homocysteine, factor VII (FVII), thrombin activatable fibrinolysis inhibitor (TAFI), and Protein S were tested. RESULTS A total of 246 individuals (median age 65 years ("IQR"54-72)) were evaluated. Both univariate analysis and logistic regression models showed that MVs positively correlate with age, CRP, IL-6, IL-10, IL-17, TGF-β, fibrinogen, PAI-1, VWF, FVII, and homocysteine, while inversely correlating with TAFI and Protein S. The ROC curve analysis performed to identify a cut off for MV values (700 kMP) showed a good accuracy with over-range cytokines fibrinolysis factor and coagulation markers. CONCLUSIONS To the best of our knowledge, this study is the first to correlate MVs with an entire panel of cardiovascular risk factors in healthy individuals. A future possible role of MVs in screening exams is suggested.
Collapse
Affiliation(s)
- Antonio Gidaro
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi N° 74, 20157 Milan, Italy; (S.C.); (M.D.); (A.B.); (L.B.)
| | - Alessandro Palmerio Delitala
- Department of Medicine, Surgery and Pharmacy University of Sassari, Via San Pietro 43, 07100 Sassari, Italy; (A.P.D.); (R.M.); (D.C.); (G.S.)
| | - Roberto Manetti
- Department of Medicine, Surgery and Pharmacy University of Sassari, Via San Pietro 43, 07100 Sassari, Italy; (A.P.D.); (R.M.); (D.C.); (G.S.)
| | - Sonia Caccia
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi N° 74, 20157 Milan, Italy; (S.C.); (M.D.); (A.B.); (L.B.)
| | - Mark J. Soloski
- Division of Rheumatology, Johns Hopkins University School of Medicine, Baltimore, MD 21224, USA;
| | | | - Dante Castro
- Department of Medicine, Surgery and Pharmacy University of Sassari, Via San Pietro 43, 07100 Sassari, Italy; (A.P.D.); (R.M.); (D.C.); (G.S.)
| | - Mattia Donadoni
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi N° 74, 20157 Milan, Italy; (S.C.); (M.D.); (A.B.); (L.B.)
| | - Arianna Bartoli
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi N° 74, 20157 Milan, Italy; (S.C.); (M.D.); (A.B.); (L.B.)
| | - Giuseppe Sanna
- Department of Medicine, Surgery and Pharmacy University of Sassari, Via San Pietro 43, 07100 Sassari, Italy; (A.P.D.); (R.M.); (D.C.); (G.S.)
| | - Luigi Bergamaschini
- Department of Biomedical and Clinical Sciences Luigi Sacco, Luigi Sacco Hospital, University of Milan, Via G.B. Grassi N° 74, 20157 Milan, Italy; (S.C.); (M.D.); (A.B.); (L.B.)
| | - Roberto Castelli
- Department of Medicine, Surgery and Pharmacy University of Sassari, Via San Pietro 43, 07100 Sassari, Italy; (A.P.D.); (R.M.); (D.C.); (G.S.)
| |
Collapse
|
41
|
Hosoki S, Hansra GK, Jayasena T, Poljak A, Mather KA, Catts VS, Rust R, Sagare A, Kovacic JC, Brodtmann A, Wallin A, Zlokovic BV, Ihara M, Sachdev PS. Molecular biomarkers for vascular cognitive impairment and dementia. Nat Rev Neurol 2023; 19:737-753. [PMID: 37957261 DOI: 10.1038/s41582-023-00884-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/15/2023]
Abstract
As disease-specific interventions for dementia are being developed, the ability to identify the underlying pathology and dementia subtypes is increasingly important. Vascular cognitive impairment and dementia (VCID) is the second most common cause of dementia after Alzheimer disease, but progress in identifying molecular biomarkers for accurate diagnosis of VCID has been relatively limited. In this Review, we examine the roles of large and small vessel disease in VCID, considering the underlying pathophysiological processes that lead to vascular brain injury, including atherosclerosis, arteriolosclerosis, ischaemic injury, haemorrhage, hypoperfusion, endothelial dysfunction, blood-brain barrier breakdown, inflammation, oxidative stress, hypoxia, and neuronal and glial degeneration. We consider the key molecules in these processes, including proteins and peptides, metabolites, lipids and circulating RNA, and consider their potential as molecular biomarkers alone and in combination. We also discuss the challenges in translating the promise of these biomarkers into clinical application.
Collapse
Affiliation(s)
- Satoshi Hosoki
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Gurpreet K Hansra
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Tharusha Jayasena
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Anne Poljak
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
- Bioanalytical Mass Spectrometry Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW, Australia
| | - Karen A Mather
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Vibeke S Catts
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Ruslan Rust
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay Sagare
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jason C Kovacic
- Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, New York, NY, USA
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- St Vincent's Clinical School, University of New South Wales, Sydney, NSW, Australia
| | - Amy Brodtmann
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Anders Wallin
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Masafumi Ihara
- Department of Neurology, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Perminder S Sachdev
- Centre for Healthy Brain Ageing, Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
42
|
Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG. The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 2023; 14:1207746. [PMID: 38022578 PMCID: PMC10644737 DOI: 10.3389/fimmu.2023.1207746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
The development of cachexia in the setting of cancer or other chronic diseases is a significant detriment for patients. Cachexia is associated with a decreased ability to tolerate therapies, reduction in ambulation, reduced quality of life, and increased mortality. Cachexia appears intricately linked to the activation of the acute phase response and is a drain on metabolic resources. Work has begun to focus on the important inflammatory factors associated with the acute phase response and their role in the immune activation of cachexia. Furthermore, data supporting the liver, lung, skeletal muscle, and tumor as all playing a role in activation of the acute phase are emerging. Although the acute phase is increasingly being recognized as being involved in cachexia, work in understanding underlying mechanisms of cachexia associated with the acute phase response remains an active area of investigation and still lack a holistic understanding and a clear causal link. Studies to date are largely correlative in nature, nonetheless suggesting the possibility for a role for various acute phase reactants. Herein, we examine the current literature regarding the acute phase response proteins, the evidence these proteins play in the promotion and exacerbation of cachexia, and current evidence of a therapeutic potential for patients.
Collapse
Affiliation(s)
- Tyler P. Robinson
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Tewfik Hamidi
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Brittany Counts
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Denis C. Guttridge
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Michael C. Ostrowski
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, United States
| | - Teresa A. Zimmers
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, United States
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| | - Leonidas G. Koniaris
- Department of Surgery, Oregon Health Sciences University, Portland, OR, United States
| |
Collapse
|
43
|
Alenchery RG, Ajalik RE, Jerreld K, Midekksa F, Zhong S, Alkatib B, Awad HA. PAI-1 mediates TGF-β1-induced myofibroblast activation in tenocytes via mTOR signaling. J Orthop Res 2023; 41:2163-2174. [PMID: 37143206 PMCID: PMC10524825 DOI: 10.1002/jor.25594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/04/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Transforming growth factor-beta (TGF-β1) induces plasminogen activator inhibitor 1 (PAI-1) to effect fibrotic pathologies in several organs including tendon. Recent data implicated PAI-1 with inhibition of phosphatase and tensin homolog (PTEN) suggesting that PAI-1-induced adhesions involves phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (mTOR) signaling. Ergo, we investigated effects of TGF-β1, PAI-1, and mTOR signaling crosstalk on myofibroblast activation, senescence, and proliferation in primary flexor tenocytes from wild-type (WT) and PAI-1 knockout (KO) mice. PAI-1 deletion blunted TGF-β1-induced myofibroblast activation in murine flexor tenocytes and increased the gene expression of Mmp-2 to confer protective effects against fibrosis. While TGF-β1 significantly reduced phosphorylation of PTEN in WT cells, PAI-1 deletion rescued the activation of PTEN. Despite that, there were no differences in TGF-β1-induced activation of mTOR signaling (AKT, 4EBP1, and P70S6K) in WT or KO tenocytes. Phenotypic changes in distinct populations of WT or KO tenocytes exhibiting high or low mTOR activity were then examined. TGF-β1 increased alpha-smooth muscle actin abundance in WT cells exhibiting high mTOR activity, but this increase was blunted in KO cells exhibiting high 4EBP1 activity but not in cells exhibiting high S6 activity. DNA damage (γH2AX) was increased with TGF-β1 treatment in WT tenocytes but was blunted in KO cells exhibiting high mTOR activity. Increased mTOR activity enhanced proliferation (Ki67) in both WT and KO tenocytes. These findings point to a complex nexus of TGF-β1, PAI-1, and mTOR signaling in regulating proliferation, myofibroblast differentiation, and senescence in tenocytes, which could define therapeutic targets for chronic tendon adhesions and other fibrotic pathologies.
Collapse
Affiliation(s)
- Rahul G Alenchery
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Raquel E Ajalik
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Kyle Jerreld
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
| | - Firaol Midekksa
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Sylvia Zhong
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| | - Bashar Alkatib
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
| | - Hani A. Awad
- Center for Musculoskeletal Research, University of Rochester Medical Center, NY, United States
- Department of Orthopaedics and Rehabilitation, University of Rochester Medical Center, NY, United States
- Department of Biomedical Engineering, University of Rochester Rochester, NY, United States
| |
Collapse
|
44
|
Siebert AE, Brake MA, Verbeek SC, Johnston AJ, Morgan AP, Cleuren AC, Jurek AM, Schneider CD, Germain DM, Battistuzzi FU, Zhu G, Miller DR, Johnsen JM, Pardo-Manuel de Villena F, Rondina MT, Westrick RJ. Identification of genomic loci regulating platelet plasminogen activator inhibitor-1 in mice. J Thromb Haemost 2023; 21:2917-2928. [PMID: 37364776 PMCID: PMC10826891 DOI: 10.1016/j.jtha.2023.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 05/09/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND Plasminogen activator inhibitor-1 (PAI-1, Serpine1) is an important circulating fibrinolysis inhibitor. PAI-1 exists in 2 pools, packaged within platelet α-granules and freely circulating in plasma. Elevated plasma PAI-1 levels are associated with cardiovascular disease. However, little is known about the regulation of platelet PAI-1 (pPAI-1). OBJECTIVES We investigated the genetic control of pPAI-1 levels in mice and humans. METHODS We measured pPAI-1 antigen levels via enzyme-linked immunosorbent assay in platelets isolated from 10 inbred mouse strains, including LEWES/EiJ (LEWES) and C57BL/6J (B6). LEWES and B6 were crossed to produce the F1 generation, B6LEWESF1. B6LEWESF1 mice were intercrossed to produce B6LEWESF2 mice. These mice were subjected to genome-wide genetic marker genotyping followed by quantitative trait locus analysis to identify pPAI-1 regulatory loci. RESULTS We identified differences in pPAI-1 between several laboratory strains, with LEWES having pPAI-1 levels more than 10-fold higher than those in B6. Quantitative trait locus analysis of B6LEWESF2 offspring identified a major pPAI-1 regulatory locus on chromosome 5 from 136.1 to 137.6 Mb (logarithm of the odds score, 16.2). Significant pPAI-1 modifier loci on chromosomes 6 and 13 were also identified. CONCLUSION Identification of pPAI-1 genomic regulatory elements provides insights into platelet/megakaryocyte-specific and cell type-specific gene expression. This information can be used to design more precise therapeutic targets for diseases where PAI-1 plays a role.
Collapse
Affiliation(s)
- Amy E Siebert
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Marisa A Brake
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Stephanie C Verbeek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | | | - Andrew P Morgan
- Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Audrey C Cleuren
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Adrianna M Jurek
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Caitlin D Schneider
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Derrik M Germain
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA
| | - Fabia U Battistuzzi
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA
| | - Guojing Zhu
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Darla R Miller
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jill M Johnsen
- Department of Medicine, Institute for Stem Cell & Regenerative Medicine, and Center for Cardiovascular Biology, University of Washington, Seattle, Washington, USA
| | - Fernando Pardo-Manuel de Villena
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matthew T Rondina
- Molecular Medicine Program, Departments of Internal Medicine and Pathology, the University of Utah, Salt Lake City, Utah, USA; The George E. Wahlen Department of Medical Affairs Medical Center, Salt Lake City, Utah, USA
| | - Randal J Westrick
- Department of Biological Sciences, Oakland University, Rochester, Michigan, USA; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, USA; Department of Bioengineering, Oakland University, Rochester, Michigan, USA; Centers for Data Science and Big Data Analytics and Biomedical Research, Oakland University, Rochester, Michigan, USA; Eye Research Center and Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA.
| |
Collapse
|
45
|
Chen BH, Lu XQ, Liang XH, Wang P. Serpin E1 mediates the induction of renal tubular degeneration and premature senescence upon diabetic insult. Sci Rep 2023; 13:16210. [PMID: 37758806 PMCID: PMC10533493 DOI: 10.1038/s41598-023-43411-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 09/29/2023] Open
Abstract
As a leading cause of chronic kidney disease, diabetic kidney disease (DKD) involves insidious but progressive impairments of renal tubules, and is associated with premature renal aging. The underlying pathomechanisms remain elusive. Post hoc analyses of the publicly-available renal transcriptome revealed that TGFβ1 is overexpressed in renal tubulointerstitia in patients with DKD and positively correlated with kidney aging signaling. This finding was validated in kidney biopsy specimens collected from patients with DKD, associated with renal tubular senescence and degenerative changes. In vitro in renal tubular epithelial cells, exposure to a diabetic milieu, stimulated with high ambient glucose and TGFβ1, elicited premature senescence, as evidenced by staining for senescence-associated β-galactosidase activity and increased expression of p16INK4A, and p53. This coincided with Serpin E1 induction, in parallel with increased fibronectin accumulation and reduced expression of the epithelial marker E-cadherin, all indicative of degenerative changes. Reminiscent of the action of typical senolytics, a small molecule inhibitor of Serpin E1 substantially mitigated the pro-senescent and degenerating effects of the diabetic milieu, suggesting an essential role of Serpin E1 in mediating renal tubular senescence upon diabetic insult. Moreover, inhibition of Serpin E1 abolished the diabetic insult-triggered paracrine senescence of renal tubular cells. In consistency, in patients with DKD, renal tubular expression of Serpin E1 was upregulated and positively correlated with tubular senescence and fibrosis in renal tubulointerstitia. Collectively, diabetic insult induces renal tubular degeneration and premature senescence via, at least in part, Serpin E1 signaling.
Collapse
Affiliation(s)
- Bo Han Chen
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China
| | - Xiao Qing Lu
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xian Hui Liang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pei Wang
- Blood Purification Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
- Research Institute of Nephrology, Zhengzhou University, Zhengzhou, China.
- Blood Purification Center, Department of Nephrology, The First Affiliated Hospital of Zhengzhou University, 1 East Jianshe Road, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
46
|
Donmez HG, Beksac MS. Association of single nucleotide polymorphisms (4G/5G) of plasminogen activator inhibitor-1 and the risk factors for placenta-related obstetric complications. Blood Coagul Fibrinolysis 2023; 34:396-402. [PMID: 37577872 DOI: 10.1097/mbc.0000000000001242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
BACKGROUND Placenta-related obstetric complications (PROCs) such as miscarriage, fetal growth restriction, preeclampsia, and preterm birth are the major causes of maternal and fetal morbidity and mortality. The objective of this study was to search the relevance of plasminogen activator inhibitor-1 (PAI-1) polymorphisms and co-morbidities and the risk factors for PROCs such as miscarriage, fetal growth restriction, preeclampsia, and preterm birth. METHOD This retrospective study analyzed the PAI-1 genotype in a cohort of 268 multiparous women with poor obstetric history. Poor obstetric history was defined as the presence of at least one of the PROCs and/or poor gestational outcomes at the previous pregnancy/pregnancies. RESULTS 5G allele frequency was higher than the 4G allele frequency in the cohort (0.767 vs. 0.233). The frequencies of having at least one risk factor are relatively similar among the different PAI-1 genotypes ( P > 0.05). However, the presence of MTHFR polymorphisms (homozygous and compound heterozygous forms of C677T and A1298G) and hereditary thrombophilia (Factor V Leiden and prothrombin G20210A gene mutations, and FXIII deficiency) were found to be associated with PAI 4G/4G ( P = 0.048) and 5G/5G ( P = 0.022) genotypes, respectively. Significant differences were not observed in other risk factors and co-morbidities such as autoimmune disorders, chronic inflammatory diseases, history of venous thromboembolism, carbohydrate metabolism disorders, hyperlipidemia, cardiovascular and cerebrovascular diseases depending on PAI-1 genotypes ( P > 0.05). CONCLUSION MTHFR polymorphisms were found to be associated with PAI 4G/4G genotype, while 5G/5G genotype was observed more frequently in hereditary thrombophilia cases.
Collapse
Affiliation(s)
| | - Mehmet Sinan Beksac
- Division of Perinatology, Department of Obstetrics and Gynecology, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
47
|
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023; 13:919. [PMID: 37623863 PMCID: PMC10456624 DOI: 10.3390/metabo13080919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Carotid artery stenosis (CAS), an atherosclerotic disease of the carotid artery, is one of the leading causes of transient ischemic attacks (TIA) and cerebrovascular attacks (CVA). The atherogenic process of CAS affects a wide range of physiological processes, such as inflammation, endothelial cell function, smooth muscle cell migration and many more. The current gold-standard test for CAS is Doppler ultrasound; however, there is yet to be determined a strong, clinically validated biomarker in the blood that can diagnose patients with CAS and/or predict adverse outcomes in such patients. In this comprehensive literature review, we evaluated all of the current research on plasma and serum proteins that are current contenders for biomarkers for CAS. In this literature review, 36 proteins found as potential biomarkers for CAS were categorized in to the following nine categories based on protein function: (1) Inflammation and Immunity, (2) Lipid Metabolism, (3) Haemostasis, (4) Cardiovascular Markers, (5) Markers of Kidney Function, (6) Bone Health, (7) Cellular Structure, (8) Growth Factors, and (9) Hormones. This literature review is the most up-to-date and current comprehensive review of research on biomarkers of CAS, and the only review that demonstrated the several pathways that contribute to the initiation and progression of the disease. With this review, future studies can determine if any new markers, or a panel of the proteins explored in this study, may be contenders as diagnostic or prognostic markers for CAS.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
48
|
Kusters CDJ, Paul KC, Lu AT, Ferrucci L, Ritz BR, Binder AM, Horvath S. Higher testosterone and testosterone/estradiol ratio in men are associated with better epigenetic estimators of mortality risk. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.16.23285997. [PMID: 36865294 PMCID: PMC9980235 DOI: 10.1101/2023.02.16.23285997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Introduction Sex hormones are hypothesized to drive sex-specific health disparities. Here, we study the association between sex steroid hormones and DNA methylation-based (DNAm) biomarkers of age and mortality risk including Pheno Age Acceleration (AA), Grim AA, and DNAm-based estimators of Plasminogen Activator Inhibitor 1 (PAI1), and leptin concentrations. Methods We pooled data from three population-based cohorts, the Framingham Heart Study Offspring Cohort (FHS), the Baltimore Longitudinal Study of Aging (BLSA), and the InCHIANTI Study, including 1,062 postmenopausal women without hormone therapy and 1,612 men of European descent. Sex hormone concentrations were standardized with mean 0 and standard deviation of 1, for each study and sex separately. Sex-stratified analyses using a linear mixed regression were performed, with a Benjamini-Hochberg (BH) adjustment for multiple testing. Sensitivity analysis was performed excluding the previously used training-set for the development of Pheno and Grim age. Results Sex Hormone Binding Globulin (SHBG) is associated with a decrease in DNAm PAI1 among men (per 1 standard deviation (SD): -478 pg/mL; 95%CI: -614 to -343; P:1e-11; BH-P: 1e-10), and women (-434 pg/mL; 95%CI: -589 to -279; P:1e-7; BH-P:2e-6). The testosterone/estradiol (TE) ratio was associated with a decrease in Pheno AA (-0.41 years; 95%CI: -0.70 to -0.12; P:0.01; BH-P: 0.04), and DNAm PAI1 (-351 pg/mL; 95%CI: -486 to -217; P:4e-7; BH-P:3e-6) among men. In men, 1 SD increase in total testosterone was associated with a decrease in DNAm PAI1 (-481 pg/mL; 95%CI: -613 to -349; P:2e-12; BH-P:6e-11). Conclusion SHBG was associated with lower DNAm PAI1 among men and women. Higher testosterone and testosterone/estradiol ratio were associated with lower DNAm PAI and a younger epigenetic age in men. A decrease in DNAm PAI1 is associated with lower mortality and morbidity risk indicating a potential protective effect of testosterone on lifespan and conceivably cardiovascular health via DNAm PAI1.
Collapse
Affiliation(s)
- Cynthia DJ Kusters
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Kimberly C Paul
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| | - Ake T Lu
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, USA
| | - Beate R Ritz
- Department of Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Department of Environmental Health, UCLA Fielding School of Public Health, Los Angeles, CA, USA
| | - Alexandra M Binder
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, CA, USA
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, Los Angeles, CA, USA
- Altos Labs, San Diego, USA
- Population Sciences in the Pacific Program, University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| |
Collapse
|
49
|
Khawaja M, Siddiqui R, Virani SS, Amos CI, Bandyopadhyay D, Virk HUH, Alam M, Jneid H, Krittanawong C. Integrative Genetic Approach Facilitates Precision Strategies for Acute Myocardial Infarction. Genes (Basel) 2023; 14:1340. [PMID: 37510245 PMCID: PMC10379681 DOI: 10.3390/genes14071340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Acute myocardial infarction remains a significant cause of mortality worldwide and its burden continues to grow. Its pathophysiology is known to be complex and multifactorial, with several acquired and inherited risk factors. As advances in technology and medical therapy continue, there is now increasing recognition of the role that genetics play in the development and management of myocardial infarction. The genetic determinants of acute coronary syndrome are still vastly understudied, but the advent of whole-genome scanning and genome-wide association studies has significantly expanded the current understanding of genetics and simultaneously fostered hope that genetic profiling and gene-guided treatments could substantially impact clinical outcomes. The identification of genes associated with acute myocardial infarction can help in the development of personalized medicine, risk stratification, and improved therapeutic strategies. In this context, several genes have been studied, and their potential involvement in increasing the risk for acute myocardial infarction is being investigated. As such, this article provides a review of some of the genes potentially related to an increased risk for acute myocardial infarction as well as the latest updates in gene-guided risk stratification and treatment strategies.
Collapse
Affiliation(s)
- Muzamil Khawaja
- Department of Cardiology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Rehma Siddiqui
- Department of Internal Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Salim S Virani
- Department of Cardiology, The Aga Khan University, Karachi 74800, Pakistan
- Department of Cardiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christopher I Amos
- Department of Medicine, Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77054, USA
| | - Dhrubajyoti Bandyopadhyay
- Department of Cardiology, Westchester Medical Centre, New York Medical College, Valhalla, NY 10595, USA
| | - Hafeez Ul Hassan Virk
- Department of Cardiology, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Mahboob Alam
- Department of Cardiology, The Texas Heart Institute, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hani Jneid
- Department of Cardiology, University of Texas Medical Branch, Houston, TX 77030, USA
| | - Chayakrit Krittanawong
- Department of Cardiology, NYU Langone Health and NYU School of Medicine, New York, NY 10016, USA
| |
Collapse
|
50
|
Lv R, Liu X, Zhang Y, Dong N, Wang X, He Y, Yue H, Yin Q. Pathophysiological mechanisms and therapeutic approaches in obstructive sleep apnea syndrome. Signal Transduct Target Ther 2023; 8:218. [PMID: 37230968 DOI: 10.1038/s41392-023-01496-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Obstructive sleep apnea syndrome (OSAS) is a common breathing disorder in sleep in which the airways narrow or collapse during sleep, causing obstructive sleep apnea. The prevalence of OSAS continues to rise worldwide, particularly in middle-aged and elderly individuals. The mechanism of upper airway collapse is incompletely understood but is associated with several factors, including obesity, craniofacial changes, altered muscle function in the upper airway, pharyngeal neuropathy, and fluid shifts to the neck. The main characteristics of OSAS are recurrent pauses in respiration, which lead to intermittent hypoxia (IH) and hypercapnia, accompanied by blood oxygen desaturation and arousal during sleep, which sharply increases the risk of several diseases. This paper first briefly describes the epidemiology, incidence, and pathophysiological mechanisms of OSAS. Next, the alterations in relevant signaling pathways induced by IH are systematically reviewed and discussed. For example, IH can induce gut microbiota (GM) dysbiosis, impair the intestinal barrier, and alter intestinal metabolites. These mechanisms ultimately lead to secondary oxidative stress, systemic inflammation, and sympathetic activation. We then summarize the effects of IH on disease pathogenesis, including cardiocerebrovascular disorders, neurological disorders, metabolic diseases, cancer, reproductive disorders, and COVID-19. Finally, different therapeutic strategies for OSAS caused by different causes are proposed. Multidisciplinary approaches and shared decision-making are necessary for the successful treatment of OSAS in the future, but more randomized controlled trials are needed for further evaluation to define what treatments are best for specific OSAS patients.
Collapse
Affiliation(s)
- Renjun Lv
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xueying Liu
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yue Zhang
- Department of Geriatrics, the 2nd Medical Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Na Dong
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xiao Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Yao He
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Hongmei Yue
- Department of Pulmonary and Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qingqing Yin
- Department of Geriatric Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China.
| |
Collapse
|