1
|
Zhang Z, Liu Y, Yu T, Liu Z. Unraveling the Complex Nexus of Macrophage Metabolism, Periodontitis, and Associated Comorbidities. J Innate Immun 2025; 17:211-225. [PMID: 40058341 PMCID: PMC11968099 DOI: 10.1159/000542531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 11/07/2024] [Indexed: 04/05/2025] Open
Abstract
BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up. BACKGROUND Periodontitis is recognized as one of the most prevalent oral dysbiotic inflammatory diseases, ultimately leading to the irreversible destruction of periodontal tissues. Macrophages play a pivotal role in the development and progression of periodontitis, and the feasibility of targeting them therapeutically has been established. Since metabolic switching significantly contributes to macrophage regulation, conducting an in-depth review of macrophage metabolism in periodontitis may serve as the foundation for developing innovative treatments. SUMMARY This paper has been carefully reviewed to provide a comprehensive overview of the roles played by macrophages in periodontitis and associated comorbidities. Initially, detailed presentations on the metabolic reprogramming of macrophages, including glucose, lipid, and amino acid metabolism, were provided. Subsequently, dominating macrophage phenotype and metabolism under lipopolysaccharide (LPS) stimulation or during periodontitis were presented with emphasize on critical molecules involved. Furthermore, in recognition of the close association between periodontitis and several comorbidities, the interaction among macrophage metabolism, periodontitis, and related metabolic diseases, was thoroughly discussed. KEY MESSAGES Through the examination of current research on macrophage metabolic reprogramming induced by periodontitis, this review provides potential immunometabolic therapeutic targets for the future and raises many important, yet unstudied, subjects for follow-up.
Collapse
Affiliation(s)
- Zihan Zhang
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yi Liu
- The State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China,
| | - Tian Yu
- Department of Stomatology, Nanbu Country People's Hospital, Nanchong, China
| | - Zhen Liu
- Department of Stomatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
2
|
Dalix E, Marotte H. From a better knowledge of periodontal disease to Porphyromonas gingivalis target for rheumatoid arthritis disease activity. Joint Bone Spine 2025; 92:105822. [PMID: 39551151 DOI: 10.1016/j.jbspin.2024.105822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 11/19/2024]
Abstract
Periodontal disease (PD) and rheumatoid arthritis (RA) are both inflammatory diseases affecting the tooth and joint, with local inflammation associated with bone loss. Bacterial infections by oral bacteria are involved in periodontal inflammation, and the best known to be associated with PD is Porphyromonas gingivalis (Pg). A large body of recent data suggests a strong involvement of this specific bacteria, Pg, in PD outcomes, but also in RA. The aim of this review is to discuss the association between PD and Pg, RA and its mechanisms, and to determine whether targeting Pg bacteria could improve RA. Numerous epidemiological studies have already confirmed the association between PD and Pg, as well as between PD and RA, which is mainly associated with a common genetic background, the shared epitope. The involvement of Pg in pathogenesis of RA is supported by the induction of gingival citrullinated proteins and therefore of anti-citrullinated proteins antibodies, which constitute the most specific biomarker of RA. The prevalence of Pg in RA is still controversial, but studies should include patients with preclinical and early RA. Finally, recent data confirmed that targeting Pg is highly effective in improving RA.
Collapse
Affiliation(s)
- Elisa Dalix
- Inserm, SAINBIOSE U1059, Mines Saint-Étienne, Université Jean-Monnet Saint-Étienne, 42023 Saint-Étienne, France.
| | - Hubert Marotte
- Inserm, SAINBIOSE U1059, Rheumatology Departement, Mines Saint-Étienne, Université Jean-Monnet Saint-Étienne, CHU de Saint-Etienne, 42023 Saint-Étienne, France.
| |
Collapse
|
3
|
Zhao H, Wang Y, Ren J. Helicobacter pylori and rheumatoid arthritis: Investigation of relation from traditional Chinese medicine. Microb Pathog 2025; 199:107239. [PMID: 39708982 DOI: 10.1016/j.micpath.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/09/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Rheumatoid arthritis (RA) is an autoimmune condition that predominantly affects synovial joints, manifesting with joint swelling, pain, and stiffness. In advanced stages, unchecked inflammation can inflict damage on bone and cartilage, resulting in disabilities and deformities of the joints. Additionally, systemic and extra-articular complications may arise due to the consequences of uncontrolled inflammation. Helicobacter pylori (H. pylori) is one of the most prevalent chronic bacterial infections in humans. This microorganism is a spiral-shaped, flagellated, microaerophilic gram-negative bacterium. Prolonged exposure leads to the activation of the immune system, with infected gastric mucosa epithelial cells continuously producing cytokines. This production, in turn, triggers the generation of antibodies as well as T Helper 1 and T Helper 2 effector T cells. The persistent antigenic stimulation resulting from H. pylori infection could lead to the progression of autoimmune diseases. Numerous clinical and pharmacological trials have illustrated the efficacy of traditional Chinese medicine against H. pylori. This review aims to delve into the connection between H. pylori and rheumatoid arthritis so as understand the pathogenesis. The concluding section of this review explores the interplay of Chinese medicine and Helicobacter pylori concerning rheumatoid arthritis.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| | - Yige Wang
- Shandong University of Traditional Chinese Medicine, No.16369, Jingshi Road, Lixia District, Jinan, 250013, China
| | - Jiahui Ren
- Department of Rheumatism and Immunology, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), No.4, Renmin Road, Shibei District, Qingdao, 266033, China
| |
Collapse
|
4
|
Massarenti L, Nielsen CH, Danielsen AK, Jensen PØ, Enevold C, Damgaard C. Evaluation of circulating IgG antibodies against Porphyromonas gingivalis or its gingipains as serological markers of periodontitis and carriage of the bacterium. J Periodontol 2025; 96:119-128. [PMID: 38884611 PMCID: PMC11866731 DOI: 10.1002/jper.23-0766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/12/2023] [Accepted: 04/21/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Increasing evidence indicates that periodontitis contributes to systemic low-grade inflammation. Porphyromonas gingivalis is strongly associated with periodontitis, and antibodies against the bacterium may be used as a serological proxy to account for periodontal status, when studying diseases associated with periodontitis. The aim of the present study is to identify an easily accessible and reliable serological biomarker for determination of periodontal status and oral carriage of the bacterium. METHODS Saliva and serum samples were collected from periodontally healthy controls (n = 27), and patients with periodontitis stage II (n = 12) or stages III or IV (n = 44). Serum levels of immunoglobulin G (IgG) antibodies against intact and fragmented P. gingivalis, recombinant gingipains (RgpA and RgpB), and the bacteria Escherichia coli and Capnocytophaga ochracea as controls were quantified with a multiplex bead-based assay. P. gingivalis was identified in saliva using quantitative polymerase chain reaction (qPCR). RESULTS Serum IgG antibodies against P. gingivalis whole bacteria were good indicators of periodontitis (area under the curve [AUC]: 0.75, 95% confidence interval [CI]: 0.64-0.85). The same was observed for levels of antibodies against P. gingivalis fragments (AUC: 0.78, 95% CI: 0.68-0.88). Likewise, levels of antibodies against P. gingivalis whole bacteria or P. gingivalis fragments were good indicators of oral carriage of P. gingivalis (AUC: 0.92, 95% CI: 0.86-0.98 and AUC: 0.96, 95% CI: 0.92-1, respectively). Conversely, antibodies against recombinant RgpA and RgpB were not good indicators of periodontitis or oral carriage of the bacterium. None of the antibody levels differed significantly between stage II and stage III or IV periodontitis. CONCLUSION Serum IgG antibody levels against heat-inactivated whole P. gingivalis proved to be the preferable biomarker for periodontitis and oral carriage of the bacterium.
Collapse
Affiliation(s)
- Laura Massarenti
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Claus Henrik Nielsen
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Anne Katrine Danielsen
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Peter Østrup Jensen
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
- Costerton Biofilm Center, Department of Immunology and MicrobiologyUniversity of Copenhagen Faculty of Health and Medical SciencesCopenhagenDenmark
- Department of Clinical MicrobiologyRigshospitaletCopenhagenDenmark
| | - Christian Enevold
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| | - Christian Damgaard
- Section for Oral Biology and Immunopathology, Department of Odontology, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Institute for Inflammation Research, Center for Rheumatology and Spine Diseases, RigshospitaletCopenhagen University HospitalCopenhagenDenmark
| |
Collapse
|
5
|
Taneja V. Gut Microbes as the Major Drivers of Rheumatoid Arthritis: Our Microbes Are Our Fortune! Microorganisms 2025; 13:255. [PMID: 40005622 PMCID: PMC11858390 DOI: 10.3390/microorganisms13020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/27/2025] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease with an unknown etiology. While certain genes provide strong susceptibility factors, the role of environmental factors is becoming increasingly recognized. Among genetic factors, human leukocyte antigen (HLA) genes, encoded within the major histocompatibility complex (MHC), have been linked to predisposition to RA, while among environmental factors, smoking, infections and diet are the major contributors. Genetic and environmental factors impact microbial composition in the host. Based on the dysbiosis observed in the gut and lung microbiome, a mucosal origin of RA has been suggested. However, proving whether genes or microbes provide a stronger risk factor has been difficult. Studies from RA patients and various mouse models, specifically humanized mice expressing HLA class II genes, have been instrumental in defining the role of environmental factors such as smoking and endogenous small intestinal microbes in modulating arthritis severity. The consensus based on most studies support an interaction between host genetic and environmental factors in the onset and severity of disease. However, until now, no microbial markers for disease prognosis or treatment efficacy have been available. Here, the role of gut microbes as markers of disease severity, and the potential for using endogenous commensals for modulating immune responses to suppress inflammation in the context of genetic factors, are discussed.
Collapse
Affiliation(s)
- Veena Taneja
- Department of Immunology, Mayo Clinic, 200 First St. SW, Rochester, MN 55905, USA
| |
Collapse
|
6
|
Yu X, Mankia K, Do T, Meade J. Oral Microbiome Dysbiosis and Citrullination in Rheumatoid Arthritis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1472:185-199. [PMID: 40111693 DOI: 10.1007/978-3-031-79146-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Rheumatoid arthritis and periodontal diseases, both characterized by chronic inflammation, share many common risk factors, sparking interest in understanding their established association. Emerging research has shed light on the link between these two diseases potentially occurring through the intricate interactions within the oral microbiome. The enrichment of pathogenic strains and species in this microbial community disrupts the delicate balance of both ecological and immunological homeostasis with the host. Particular attention has been paid to the role of key pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, known for their immunomodulatory abilities. The generation of an autoimmune response against proteins modified by citrullination is known to be a key step in the pathogenesis of RA. Importantly, the bidirectional citrullination mediated by both host innate immune cells and oral bacteria generates citrullinated peptide neoepitopes, which may serve as potential triggers for the loss of tolerance and subsequent autoimmunity in susceptible individuals. This review highlights the importance of understanding the mechanisms through which oral microbiome dysbiosis and citrullination contribute to the onset and progression of RA. Insights into these mechanisms not only advance pathobiological understanding but also offer potential therapeutic targets. Furthermore, we discuss the potential impact of nonsurgical periodontal treatment in modifying disease progression or mitigating RA, underscoring the critical role of periodontal health in managing systemic inflammatory conditions.
Collapse
Affiliation(s)
- Xia Yu
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Kulveer Mankia
- Leeds Biomedical Centre-NIHR, Leeds, UK
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Thuy Do
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK
| | - Josephine Meade
- Division of Oral Biology, School of Dentistry, University of Leeds, Leeds, UK.
| |
Collapse
|
7
|
Lamba A, Taneja V. Gut microbiota as a sensor of autoimmune response and treatment for rheumatoid arthritis. Immunol Rev 2024; 325:90-106. [PMID: 38867408 PMCID: PMC11338721 DOI: 10.1111/imr.13359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Rheumatoid arthritis (RA) is considered a multifactorial condition where interaction between the genetic and environmental factors lead to immune dysregulation causing autoreactivity. While among the various genetic factors, HLA-DR4 and DQ8, have been reported to be the strongest risk factors, the role of various environmental factors has been unclear. Though events initiating autoreactivity remain unknown, a mucosal origin of RA has gained attention based on the recent observations with the gut dysbiosis in patients. However, causality of gut dysbiosis has been difficult to prove in humans. Mouse models, especially mice expressing RA-susceptible and -resistant HLA class II genes have helped unravel the complex interactions between genetic factors and gut microbiome. This review describes the interactions between HLA genes and gut dysbiosis in sex-biased preclinical autoreactivity and discusses the potential use of endogenous commensals as indicators of treatment efficacy as well as therapeutic tool to suppress pro-inflammatory response in rheumatoid arthritis.
Collapse
Affiliation(s)
| | - Veena Taneja
- Department of Immunology and Division of Rheumatology, Mayo Clinic College of Medicine, Rochester, MN, USA
| |
Collapse
|
8
|
Svärd A, LoMartire R, Martinsson K, Öhman C, Kastbom A, Johansson A. Presence and Immunoreactivity of Aggregatibacter actinomycetemcomitans in Rheumatoid Arthritis. Pathogens 2024; 13:368. [PMID: 38787220 PMCID: PMC11123772 DOI: 10.3390/pathogens13050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The presence of periodontal pathogens is associated with an increased prevalence of rheumatoid arthritis (RA). The systemic antibody response to epitopes of these bacteria is often used as a proxy to study correlations between bacteria and RA. The primary aim of the present study is to examine the correlation between the presence of Aggregatibacter actinomycetemcomitans (Aa) in the oral cavity and serum antibodies against the leukotoxin (LtxA) produced by this bacterium. The salivary presence of Aa was analyzed with quantitative PCR and serum LtxA ab in a cell culture-based neutralization assay. The analyses were performed on samples from a well-characterized RA cohort (n = 189) and a reference population of blood donors (n = 101). Salivary Aa was present in 15% of the RA patients and 6% of the blood donors. LtxA ab were detected in 19% of RA-sera and in 16% of sera from blood donors. The correlation between salivary Aa and serum LtxA ab was surprisingly low (rho = 0.55 [95% CI: 0.40, 0.68]). The presence of salivary Aa showed no significant association with any of the RA-associated parameters documented in the cohort. A limitation of the present study is the relatively low number of individuals with detectable concentrations of Aa in saliva. Moreover, in the comparison of detectable Aa prevalence between RA patients and blood donors, we assumed that the two groups were equivalent in other Aa prognostic factors. These limitations must be taken into consideration when the result from the study is interpreted. We conclude that a systemic immune response to Aa LtxA does not fully reflect the prevalence of Aa in saliva. In addition, the association between RA-associated parameters and the presence of Aa was negligible in the present RA cohort.
Collapse
Affiliation(s)
- Anna Svärd
- Center for Clinical Research Dalarna, Uppsala University, 791 82 Falun, Sweden; (A.S.); (R.L.)
- Department of Rheumatology, Linköping University Hospital, 581 85 Linköping, Sweden;
| | - Riccardo LoMartire
- Center for Clinical Research Dalarna, Uppsala University, 791 82 Falun, Sweden; (A.S.); (R.L.)
- School of Health and Welfare, Dalarna University, 791 88 Falun, Sweden
| | - Klara Martinsson
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - Carina Öhman
- Department of Odontology, Umeå University, 901 87 Umeå, Sweden;
| | - Alf Kastbom
- Department of Rheumatology, Linköping University Hospital, 581 85 Linköping, Sweden;
- Division of Inflammation and Infection, Department of Biomedical and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | | |
Collapse
|
9
|
Inchingolo F, Inchingolo AM, Avantario P, Settanni V, Fatone MC, Piras F, Di Venere D, Inchingolo AD, Palermo A, Dipalma G. The Effects of Periodontal Treatment on Rheumatoid Arthritis and of Anti-Rheumatic Drugs on Periodontitis: A Systematic Review. Int J Mol Sci 2023; 24:17228. [PMID: 38139057 PMCID: PMC10743440 DOI: 10.3390/ijms242417228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/03/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Rheumatoid arthritis (RA) and periodontitis are chronic inflammatory diseases that widely spread and share the same patterns of pro-inflammatory cytokines. This systematic review aims to evaluate the effects of non-surgical periodontal treatment (NSPT) on RA and, conversely, the impact of disease-modifying anti-rheumatic drugs (DMARDs) on periodontitis. PubMed, Embase, and Web of Science were searched using the MESH terms "periodontitis" and "rheumatoid arthritis" from January 2012 to September 2023. A total of 49 articles was included in the final analysis, 10 of which were randomized controlled trials. A total of 31 records concerns the effect of NSPT on parameters of RA disease activity, including a 28-joint disease activity score, anti-citrullinated protein antibodies, rheumatoid factor, C reactive protein, erythrocyte sedimentation rate, pro-inflammatory cytokines and acute phase proteins in serum, saliva, gingival crevicular fluid, and synovial fluid. A total of 18 articles investigated the effect of DMARDs on periodontal indexes and on specific cytokine levels. A quality assessment and risk-of-bias of the studies were also performed. Despite some conflicting results, there is evidence that RA patients and periodontitis patients benefit from NSPT and DMARDs, respectively. The limitations of the studies examined are the small samples and the short follow-up (usually 6 months). Further research is mandatory to evaluate if screening and treatment of periodontitis should be performed systematically in RA patients, and if the administration of DMARDs is useful in reducing the production of cytokines in the periodontium.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Pasquale Avantario
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | | | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK;
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy; (A.M.I.); (P.A.); (V.S.); (F.P.); (D.D.V.); (A.D.I.); (G.D.)
| |
Collapse
|
10
|
Kobayashi T, Bartold PM. Periodontitis and periodontopathic bacteria as risk factors for rheumatoid arthritis: A review of the last 10 years. JAPANESE DENTAL SCIENCE REVIEW 2023; 59:263-272. [PMID: 37674898 PMCID: PMC10477376 DOI: 10.1016/j.jdsr.2023.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 09/08/2023] Open
Abstract
Rheumatoid arthritis (RA) is characterized by chronic inflammatory destruction of joint tissue and is caused by an abnormal autoimmune response triggered by interactions between genetics, environmental factors, and epigenetic and posttranslational modifications. RA has been suggested to be interrelated with periodontitis, a serious form or stage of chronic inflammatory periodontal disease associated with periodontopathic bacterial infections, genetic predisposition, environmental factors, and epigenetic influences. Over the last decade, a number of animal and clinical studies have been conducted to assess whether or not periodontitis and associated periodontopathic bacteria constitute risk factors for RA. The present review introduces recent accumulating evidence to support the associations of periodontitis and periodontopathic bacteria with the risk of RA or the outcome of RA pharmacological treatment with disease-modifying antirheumatic drugs. In addition, the results from intervention studies have suggested an improvement in RA clinical parameters after nonsurgical periodontal treatment. Furthermore, the potential causal mechanisms underlying the link between periodontitis and periodontopathic bacteria and RA are summarized.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- General Dentistry and Clinical Education Unit, Faculty of Dentistry & Medical and Dental Hospital, Niigata University, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
- Division of Periodontology, Department of Oral Biological Science, Niigata University Graduate School of Medical and Dental Sciences, 2-5274 Gakkocho-dori, Chuo-ku, Niigata 951-8514, Japan
| | - Peter Mark Bartold
- Adelaide Dental School, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
11
|
Wan Jiun T, Taib H, Majdiah Wan Mohamad W, Mohamad S, Syamimee Wan Ghazali W. Periodontal health status, Porphyromonas gingivalis and anti-cyclic citrullinated peptide antibodies among rheumatoid arthritis patients. Int Immunopharmacol 2023; 124:110940. [PMID: 37722261 DOI: 10.1016/j.intimp.2023.110940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/05/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Porphyromonas gingivalis (P. gingivalis) is the primary periodontal pathogen involved in protein citrullination, which triggers the production of anti-cyclic citrullinated peptide (anti-CCP) antibodies, exacerbating rheumatoid arthritis (RA). This study aims to evaluate the amount of P. gingivalis and its association with anti-CCP antibodies in RA patients with periodontitis. This cross-sectional study involves 100 RA patients with a mean age of 52.36 (SD 13.90) years. Smokers and patients with other uncontrolled systemic diseases were excluded. Disease Activity Score-28 (DAS-28) was used to determine RA disease severity. Periodontal parameters were examined to determine periodontal status. Subsequently, plaque samples were collected from the subgingival periodontal pocket for assessment of P. gingivalis bacterial load using the loop-mediated isothermal amplification method. Blood samples (5 ml) were obtained from all participants to analyse anti-CCP antibody levels. Data was analysed by using SPSS version 24.0. Most participants were female (85.0%) and had low RA disease severity (62%). The mean RA disease duration was 7.77 (SD 6.3) years, with a mean DAS-28 of 3.17 (SD 1.0). Forty-seven per cent of participants had periodontitis, but all periodontal parameters were not associated with RA disease activity (P = 0.38). P. gingivalis bacterial load ranged from 10 to 109 copies/μl. Fifty-five per cent of the collected samples showed positive anti-CCP antibody levels, but no significant association was observed with the P. gingivalis bacterial load (P = 0.58). Considering the study's limitations, although periodontitis is prevalent among RA patients, there is a lack of association between P. gingivalis bacterial load and anti-CCP antibody levels, which should be investigated further.
Collapse
Affiliation(s)
- Tan Wan Jiun
- Unit Pakar Periodontik, Klinik Pergigian Batu Muda, No. 7 Jalan 3/12, Taman Batu Muda 51100, Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Haslina Taib
- Periodontics Unit, School of Dental Sciences, Hospital Universiti Sains Malaysia, Health Campus Universiti Sains Malaysia, Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia.
| | - Wan Majdiah Wan Mohamad
- Immunology Unit, School of Dental Sciences, Health Campus Universiti Sains Malaysia, Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
| | - Suharni Mohamad
- Microbiology Unit, School of Dental Sciences, Health Campus Universiti Sains Malaysia, Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
| | - Wan Syamimee Wan Ghazali
- Medical Department, School of Medical Sciences, Health Campus Universiti Sains Malaysia, Kubang Kerian 16150, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
12
|
Du F, Zhu Z, Lai Z, Li K, Chen J, Zhang E, Wang J, Zhao H, Liu B. Imbalance of helper T cell subtypes and adipokine secretion in perivascular adipose tissue as a trigger of atherosclerosis in chronic Porphyromonas gingivalis W83 infection. Microbes Infect 2023; 25:105181. [PMID: 37423325 DOI: 10.1016/j.micinf.2023.105181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Periodontal disease, a prevalent oral disease, is an independent risk factor for atherosclerosis. Porphyromonas gingivalis (P.g), a keystone pathogen of periodontal disease, contributes to the pathogenesis of atherosclerosis. However, the exact mechanism remains unclear. An increasing number of studies have proposed the atherogenic influence of perivascular adipose tissue (PVAT) in pathological conditions including hyperlipidemia and diabetes. Nevertheless, the role of PVAT in atherosclerosis promoted by P.g infection has not been explored. In our study, we investigated the association between P.g colonization in PVAT and progression of atherosclerosis through experiments on clinical samples. We further investigated P.g invasion of PVAT, PVAT inflammation, aortic endothelial inflammation, aortic lipid deposition, and systemic inflammation in C57BL/6 J mice with or without P.g infection at 20, 24, and 28 weeks of age. PVAT inflammation, characterized by imbalance in Th1/Treg and dysregulated adipokine levels, was associated with P.g invasion, preceding endothelial inflammation that occurred independently of its direct invasion. The phenotype of systemic inflammation coincided with that of PVAT inflammation, but systemic inflammation occurred after endothelial inflammation. Therefore PVAT inflammation in early atherosclerosis could be a primary trigger of aortic endothelial inflammation and lipid deposition in chronic P.g infection, through the dysregulated paracrine secretion of T helper-1-related adipokines.
Collapse
Affiliation(s)
- Fenghe Du
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China; Peking Union Medical College, MD Program, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Zhan Zhu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China; Peking Union Medical College, MD Program, No 9, Dong Dan San Tiao, Dongcheng District, Beijing, 100730, China
| | - Zhichao Lai
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Kang Li
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Junye Chen
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China
| | - Erli Zhang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100037, China
| | - Jing Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100005, China
| | - Hongmei Zhao
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Department of Pathophysiology, Peking Union Medical College, Beijing, 100005, China.
| | - Bao Liu
- Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Science, Beijing, 100730, China.
| |
Collapse
|
13
|
Lee TH, Wu MC, Lee MH, Liao PL, Lin CC, Wei JCC. Influence of Helicobacter pylori infection on risk of rheumatoid arthritis: a nationwide population-based study. Sci Rep 2023; 13:15125. [PMID: 37704688 PMCID: PMC10499872 DOI: 10.1038/s41598-023-42207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/06/2023] [Indexed: 09/15/2023] Open
Abstract
The relationship between Helicobacter pylori infection and rheumatoid arthritis has been investigated, but the results remain controversial. This study aims to determine the association between the two diseases via a 17-year retrospective cohort study. Using the National Health Insurance Research Database, a nationwide population based in Taiwan, we identified 97,533 individuals with H. pylori infection and matched controls between 2000 and 2017 using propensity score matching at a 1:1 ratio. The adjusted hazard ratio of rheumatoid arthritis was determined by multiple Cox regression. The incidence rate of rheumatoid arthritis was 1.28 per 10,000 person-months in the H. pylori cohort, with a higher risk compared to the control group. In the < 30 years old subgroup, the risk was highest, especially in women < 30 years old with H. pylori infection. Patients with < 1 year follow-up showed 1.58 times higher susceptibility to rheumatoid arthritis. Individuals with follow-ups of 1-5 years and over 5 years demonstrated 1.43 and 1.44 times higher risks of rheumatoid arthritis, respectively. Our study showed H. pylori infection was associated with the development of rheumatoid arthritis. Clinicians should note higher risk, especially < 30 years old. More research needed to understand underlying mechanism.
Collapse
Affiliation(s)
- Tzu-Hsuan Lee
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Meng-Che Wu
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Post-Baccalaureate, Medicine College of Medicine, National Chung Hsing University, Taichung, Taiwan
- Pediatric Inflammatory Bowel Disease Center, Massachusetts General Hospital, Boston, MA, USA
| | - Ming-Hung Lee
- Department of Otolaryngology-Head & Neck Surgery, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Pei-Lun Liao
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chieh-Chung Lin
- Division of Gastroenterology, Children's Medical Center, Taichung Veterans General Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec 1, Jianguo N. Road, Taichung, 40201, Taiwan
| | - James Cheng-Chung Wei
- Institute of Medicine, Chung Shan Medical University, No. 110, Sec 1, Jianguo N. Road, Taichung, 40201, Taiwan.
- Department of Nursing, Chung Shan Medical University, Taichung, Taiwan.
- Department of Allergy, Immunology and Rheumatology, Chung Shan Medical University Hospital, Taichung, Taiwan.
- Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan.
| |
Collapse
|
14
|
Jia S, Li X, Du Q. Host insulin resistance caused by Porphyromonas gingivalis-review of recent progresses. Front Cell Infect Microbiol 2023; 13:1209381. [PMID: 37520442 PMCID: PMC10373507 DOI: 10.3389/fcimb.2023.1209381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/27/2023] [Indexed: 08/01/2023] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a Gram-negative oral anaerobic bacterium that plays a key role in the pathogenesis of periodontitis. P. gingivalis expresses a variety of virulence factors that disrupt innate and adaptive immunity, allowing P. gingivalis to survive and multiply in the host and destroy periodontal tissue. In addition to periodontal disease, P.gingivalis is also associated with systemic diseases, of which insulin resistance is an important pathological basis. P. gingivalis causes a systemic inflammatory response, disrupts insulin signaling pathways, induces pancreatic β-cell hypofunction and reduced numbers, and causes decreased insulin sensitivity leading to insulin resistance (IR). In this paper, we systematically review the studies on the mechanism of insulin resistance induced by P. gingivalis, discuss the association between P. gingivalis and systemic diseases based on insulin resistance, and finally propose relevant therapeutic approaches. Overall, through a systematic review of the mechanisms related to systemic diseases caused by P. gingivalis through insulin resistance, we hope to provide new insights for future basic research and clinical interventions for related systemic diseases.
Collapse
Affiliation(s)
- Shuxian Jia
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qin Du
- Department of Stomatology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Ahmadi P, Mahmoudi M, Kheder RK, Faraj TA, Mollazadeh S, Abdulabbas HS, Esmaeili SA. Impacts of Porphyromonas gingivalis periodontitis on rheumatoid arthritis autoimmunity. Int Immunopharmacol 2023; 118:109936. [PMID: 37098654 DOI: 10.1016/j.intimp.2023.109936] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 03/17/2023]
Abstract
In RA patients' synovial sites, citrullinated RA-related antigens such as type II collagens, fibrin (ogen), vimentin, and α-enolase could be targeted by ACCPAs. Since ACCPA production can be initiated a long time before RA sign appearance, primary auto-immunization against these citrullinated proteins can be originated from extra-articular sites. It has been shown that there is a significant association between P. gingivalis periodontitis, anti- P. gingivalis antibodies, and RA. P. gingivalis gingipains (Rgp, Kgp) can degrade proteins such as fibrin and α-enolase into some peptides in the form of Arg in the C-terminal which is converted to citrulline by PPAD. Also, PPAD can citrullinate type II collagen and vimentins (SA antigen). P. gingivalis induces inflammation and chemoattraction of immune cells such as neutrophils and macrophages through the increase of C5a (gingipain C5 convertase-like activity) and SCFA secretion. Besides, this microorganism stimulates anoikis, a special type of apoptosis, and NETosis, an antimicrobial form of neutrophil death, leading to the release of PAD1-4, α-enolase, and vimentin from apoptotic cells into the periodontal site. In addition, gingipains can degrade macrophages CD14 and decrease their ability in apoptotic cell removal. Gingipains also can cleave IgGs in the Fc region and transform them into rheumatoid factor (RF) antigens. In the present study, the effects of P. gingivalis on rheumatoid arthritis autoimmune response have been reviewed, which could attract practical insight both in bench and clinic.
Collapse
Affiliation(s)
- Parisa Ahmadi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ramiar Kamal Kheder
- Medical Laboratory Science Department, College of Science, University of Raparin, Rania, Sulaymaniyah, Iraq; Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq
| | - Tola Abdulsattar Faraj
- Department of Medical Analysis, Faculty of Applied Science, Tishk International University, Erbil, Iraq; Department of Basic Sciences, College of Medicine, Hawler Medical University, Erbil, Iraq
| | - Samaneh Mollazadeh
- Natural Products and Medicinal Plants Research center north Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Hadi Sajid Abdulabbas
- Continuous Education Department, Faculty of Dentistry, University of Al-Ameed, Karbala 56001, Iraq
| | - Seyed-Alireza Esmaeili
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Immunology Department, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
16
|
Luo R, Chang Y, Liang H, Zhang W, Song Y, Li G, Yang C. Interactions between extracellular vesicles and microbiome in human diseases: New therapeutic opportunities. IMETA 2023; 2:e86. [PMID: 38868436 PMCID: PMC10989913 DOI: 10.1002/imt2.86] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/21/2022] [Accepted: 01/14/2023] [Indexed: 06/14/2024]
Abstract
In recent decades, accumulating research on the interactions between microbiome homeostasis and host health has broadened new frontiers in delineating the molecular mechanisms of disease pathogenesis and developing novel therapeutic strategies. By transporting proteins, nucleic acids, lipids, and metabolites in their versatile bioactive molecules, extracellular vesicles (EVs), natural bioactive cell-secreted nanoparticles, may be key mediators of microbiota-host communications. In addition to their positive and negative roles in diverse physiological and pathological processes, there is considerable evidence to implicate EVs secreted by bacteria (bacterial EVs [BEVs]) in the onset and progression of various diseases, including gastrointestinal, respiratory, dermatological, neurological, and musculoskeletal diseases, as well as in cancer. Moreover, an increasing number of studies have explored BEV-based platforms to design novel biomedical diagnostic and therapeutic strategies. Hence, in this review, we highlight the recent advances in BEV biogenesis, composition, biofunctions, and their potential involvement in disease pathologies. Furthermore, we introduce the current and emerging clinical applications of BEVs in diagnostic analytics, vaccine design, and novel therapeutic development.
Collapse
Affiliation(s)
- Rongjin Luo
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Department of Spine Surgery, Honghui HospitalXi'an Jiaotong UniversityXi'anChina
| | - Yanmin Chang
- Department of Neurology, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Huaizhen Liang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Weifeng Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Gaocai Li
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of Orthopaedics, Union Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
17
|
Ke Q, Greenawalt AN, Manukonda V, Ji X, Tisch RM. The regulation of self-tolerance and the role of inflammasome molecules. Front Immunol 2023; 14:1154552. [PMID: 37081890 PMCID: PMC10110889 DOI: 10.3389/fimmu.2023.1154552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/17/2023] [Indexed: 04/07/2023] Open
Abstract
Inflammasome molecules make up a family of receptors that typically function to initiate a proinflammatory response upon infection by microbial pathogens. Dysregulation of inflammasome activity has been linked to unwanted chronic inflammation, which has also been implicated in certain autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, type 1 diabetes, systemic lupus erythematosus, and related animal models. Classical inflammasome activation-dependent events have intrinsic and extrinsic effects on both innate and adaptive immune effectors, as well as resident cells in the target tissue, which all can contribute to an autoimmune response. Recently, inflammasome molecules have also been found to regulate the differentiation and function of immune effector cells independent of classical inflammasome-activated inflammation. These alternative functions for inflammasome molecules shape the nature of the adaptive immune response, that in turn can either promote or suppress the progression of autoimmunity. In this review we will summarize the roles of inflammasome molecules in regulating self-tolerance and the development of autoimmunity.
Collapse
Affiliation(s)
- Qi Ke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ashley Nicole Greenawalt
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Veera Manukonda
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Xingqi Ji
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Roland Michael Tisch
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
18
|
Romero-Figueroa MDS, Ramírez-Durán N, Montiel-Jarquín AJ, Horta-Baas G. Gut-joint axis: Gut dysbiosis can contribute to the onset of rheumatoid arthritis via multiple pathways. Front Cell Infect Microbiol 2023; 13:1092118. [PMID: 36779190 PMCID: PMC9911673 DOI: 10.3389/fcimb.2023.1092118] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 02/14/2023] Open
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disease characterized by loss of immune tolerance and chronic inflammation. It is pathogenesis complex and includes interaction between genetic and environmental factors. Current evidence supports the hypothesis that gut dysbiosis may play the role of environmental triggers of arthritis in animals and humans. Progress in the understanding of the gut microbiome and RA. has been remarkable in the last decade. In vitro and in vivo experiments revealed that gut dysbiosis could shape the immune system and cause persistent immune inflammatory responses. Furthermore, gut dysbiosis could induce alterations in intestinal permeability, which have been found to predate arthritis onset. In contrast, metabolites derived from the intestinal microbiota have an immunomodulatory and anti-inflammatory effect. However, the precise underlying mechanisms by which gut dysbiosis induces the development of arthritis remain elusive. This review aimed to highlight the mechanisms by which gut dysbiosis could contribute to the pathogenesis of RA. The overall data showed that gut dysbiosis could contribute to RA pathogenesis by multiple pathways, including alterations in gut barrier function, molecular mimicry, gut dysbiosis influences the activation and the differentiation of innate and acquired immune cells, cross-talk between gut microbiota-derived metabolites and immune cells, and alterations in the microenvironment. The relative weight of each of these mechanisms in RA pathogenesis remains uncertain. Recent studies showed a substantial role for gut microbiota-derived metabolites pathway, especially butyrate, in the RA pathogenesis.
Collapse
Affiliation(s)
| | - Ninfa Ramírez-Durán
- Laboratory of Medical and Environmental Microbiology, Department of Medicine, Autonomous University of the State of Mexico, Toluca, Mexico
| | - Alvaro José Montiel-Jarquín
- Dirección de Educación e Investigación en Salud, Hospital de Especialidades de Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Gabriel Horta-Baas
- Rheumatology Service, Internal Medicine Department, Instituto Mexicano del Seguro Social, Merida, Mexico
| |
Collapse
|
19
|
Li B, Yang B, Liu X, Zhao J, Ross RP, Stanton C, Zhang H, Chen W. Microbiota-assisted therapy for systemic inflammatory arthritis: advances and mechanistic insights. Cell Mol Life Sci 2022; 79:470. [PMID: 35932328 PMCID: PMC11072763 DOI: 10.1007/s00018-022-04498-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 12/22/2022]
Abstract
Research on the influence of gut microbiota on systemic inflammatory arthritis has exploded in the past decade. Gut microbiota changes may be a crucial regulatory component in systemic inflammatory arthritis. As a result of advancements in the field, microbiota-assisted therapy has evolved, but this discipline is still in its infancy. Consequently, we review the limitations of current systemic inflammatory arthritis treatment, analyze the connection between the microbiota and arthritis, and summarize the research progress of microbiota regulating systemic inflammatory arthritis and the further development aspects of microbiota-assisted therapy. Finally, the partial mechanisms of microbiota-assisted therapy of systemic inflammatory arthritis are being discussed. In general, this review summarizes the current progress, challenges, and prospects of microbiota-assisted therapy for systemic inflammatory arthritis and points out the direction for the development of microbiota-assisted therapy in the future.
Collapse
Affiliation(s)
- Bowen Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
| | - Bo Yang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
| | - Xiaoming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
| | - R Paul Ross
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China.
- APC Microbiome Ireland, University College Cork, Cork, Ireland.
| | - Catherine Stanton
- International Joint Research Center for Probiotics and Gut Health, Jiangnan University, Wuxi, Jiangsu, China
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China.
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu, China.
- Beijing Innovation Center of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, China.
| |
Collapse
|
20
|
Li Y, Guo R, Oduro PK, Sun T, Chen H, Yi Y, Zeng W, Wang Q, Leng L, Yang L, Zhang J. The Relationship Between Porphyromonas Gingivalis and Rheumatoid Arthritis: A Meta-Analysis. Front Cell Infect Microbiol 2022; 12:956417. [PMID: 35923803 PMCID: PMC9340274 DOI: 10.3389/fcimb.2022.956417] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/23/2022] [Indexed: 12/13/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systematical autoimmune disease, characterized by chronic synovial joint inflammation and hurt. Porphyromonas gingivalis(P. gingivalis) can cause life-threatening inflammatory immune responses in humans when the host pathogenic clearance machinery is disordered. Some epidemiological studies have reported that P. gingivalis exposure would increase the prevalence of RA. However, the results remain inconsistent. Therefore, a meta-analysis was done to systematically analyze the relationship between P. gingivalis exposure and the prevalence of rheumatoid arthritis. Database including Cochrane Library, Web of Science, PubMed, and EMBASE were searched for published epidemiological articles assessed the relationship between P. gingivalis and RA. Obtained studies were screened based on the predefined inclusion and exclusion criteria. The overall Odds Ratios (ORs) of incorporated articles were pooled by random-effect model with STATA 15.1 software. The literature search returned a total of 2057 studies. After exclusion, 28 articles were included and analyzed. The pooled ORs showed a significant increase in the risk of RA in individuals with P. gingivalis exposure (OR = 1.86; 95% CI: 1.43-2.43). Subgroup analysis revealed that pooled ORs from populations located in Europe (OR = 2.17; 95% CI: 1.46-3.22) and North America (OR = 2.50; 95% CI: 1.23-5.08) were significantly higher than that from population in Asia (OR = 1.11; 95% CI: 1.03-1.20). Substantial heterogeneity was observed but did not significantly influence the overall outcome. In conclusion, our results indicated P. gingivalis exposure was a risk factor in RA. Prompt diagnosis and management decisions on P. gingivalis antimicrobial therapy would prevent rheumatoid arthritis development and progression.
Collapse
Affiliation(s)
- Yilin Li
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Rui Guo
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Patrick Kwabena Oduro
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Tongke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Yating Yi
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Weiqian Zeng
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Qilong Wang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
| | - Ling Leng
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Long Yang
- Research center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University, Jinan, China
- Shandong Key Laboratory of Oral Tissue Regeneration, Jinan, China
- Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
- *Correspondence: Ling Leng, ; Long Yang, ; Jun Zhang,
| |
Collapse
|
21
|
Jin S, Wetzel D, Schirmer M. Deciphering mechanisms and implications of bacterial translocation in human health and disease. Curr Opin Microbiol 2022; 67:102147. [PMID: 35461008 DOI: 10.1016/j.mib.2022.102147] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/12/2022]
Abstract
Significant increases in potential microbial translocation, especially along the oral-gut axis, have been identified in many immune-related and inflammatory diseases, such as inflammatory bowel disease, colorectal cancer, rheumatoid arthritis, and liver cirrhosis, for which we currently have no cure or long-term treatment options. Recent advances in computational and experimental omics approaches now enable strain tracking, functional profiling, and strain isolation in unprecedented detail, which has the potential to elucidate the causes and consequences of microbial translocation. In this review, we discuss current evidence for the detection of bacterial translocation, examine different translocation axes with a primary focus on the oral-gut axis, and outline currently known translocation mechanisms and how they adversely affect the host in disease. Finally, we conclude with an overview of state-of-the-art computational and experimental tools for strain tracking and highlight the required next steps to elucidate the role of bacterial translocation in human health.
Collapse
Affiliation(s)
- Shen Jin
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Daniela Wetzel
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany
| | - Melanie Schirmer
- ZIEL - Institute for Food and Health, Technical University of Munich, Gregor-Mendel-Str. 2, 85354 Freising, Germany.
| |
Collapse
|
22
|
Looh SC, Soo ZMP, Wong JJ, Yam HC, Chow SK, Hwang JS. Aggregatibacter actinomycetemcomitans as the Aetiological Cause of Rheumatoid Arthritis: What Are the Unsolved Puzzles? Toxins (Basel) 2022; 14:toxins14010050. [PMID: 35051027 PMCID: PMC8777676 DOI: 10.3390/toxins14010050] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/01/2022] [Accepted: 01/04/2022] [Indexed: 01/23/2023] Open
Abstract
Leukotoxin A (LtxA) is the major virulence factor of an oral bacterium known as Aggregatibacter actinomycetemcomitans (Aa). LtxA is associated with elevated levels of anti-citrullinated protein antibodies (ACPA) in rheumatoid arthritis (RA) patients. LtxA targets leukocytes and triggers an influx of extracellular calcium into cytosol. The current proposed model of LtxA-mediated hypercitrullination involves the dysregulated activation of peptidylarginine deiminase (PAD) enzymes to citrullinate proteins, the release of hypercitrullinated proteins through cell death, and the production of autoantigens recognized by ACPA. Although model-based evidence is yet to be established, its interaction with the host’s immune system sparked interest in the role of LtxA in RA. The first part of this review summarizes the current knowledge of Aa and LtxA. The next part highlights the findings of previous studies on the association of Aa or LtxA with RA aetiology. Finally, we discuss the unresolved aspects of the proposed link between LtxA of Aa and RA.
Collapse
Affiliation(s)
- Sung Cheng Looh
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | - Zoey May Pheng Soo
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Jia Jia Wong
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia; (Z.M.P.S.); (J.J.W.)
| | - Hok Chai Yam
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur 56000, Malaysia; (S.C.L.); (H.C.Y.)
| | | | - Jung Shan Hwang
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
23
|
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, Denis F. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms 2021; 10:59. [PMID: 35056507 PMCID: PMC8778040 DOI: 10.3390/microorganisms10010059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Although autoimmunity contributes to rheumatoid arthritis (RA), several lines of evidence challenge the dogma that it is mainly an autoimmune disorder. As RA-associated human leukocyte antigens shape microbiomes and increase the risk of dysbiosis in mucosae, RA might rather be induced by epigenetic changes in long-lived synovial presenting cells, stressed by excessive translocations into joints of bacteria from the poorly cultivable gut, lung, or oral microbiota (in the same way as more pathogenic bacteria can lead to "reactive arthritis"). This narrative review (i) lists evidence supporting this scenario, including the identification of DNA from oral and gut microbiota in the RA synovium (but in also healthy synovia), and the possibility of translocation through blood, from mucosae to joints, of microbiota, either directly from the oral cavity or from the gut, following an increase of gut permeability worsened by migration within the gut of oral bacteria such as Porphyromonas gingivalis; (ii) suggests other methodologies for future works other than cross-sectional studies of periodontal microbiota in cohorts of patients with RA versus controls, namely, longitudinal studies of oral, gut, blood, and synovial microbiota combined with transcriptomic analyses of immune cells in individual patients at risk of RA, and in overt RA, before, during, and following flares of RA.
Collapse
Affiliation(s)
- Jean-Marie Berthelot
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Octave Nadile Bandiaky
- Division of Fixed Prosthodontics, University of Nantes, 1 Place Alexis Ricordeau, 44042 Nantes, France;
| | - Benoit Le Goff
- Rheumatology Unit, Nantes University Hospital, Place Alexis Ricordeau, CEDEX 01, 44093 Nantes, France; (J.-M.B.); (B.L.G.)
| | - Gilles Amador
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Nantes Teaching Hospital, 44000 Nantes, France;
| | - Anne-Gaelle Chaux
- Nantes Teaching Hospital, 44000 Nantes, France;
- Department of Oral Surgery, Faculty of Dental Surgery, University of Nantes, 44000 Nantes, France
| | - Assem Soueidan
- Department of Periodontology, Faculty of Dental Surgery, UIC 11, Rmes U1229, CHU de Nantes, 44000 Nantes, France;
| | - Frederic Denis
- Department of Dental Public Health, Faculty of Dental Surgery, University of Nantes, 44093 Nantes, France;
- Tours Teaching Hospital, 37000 Tours, France
| |
Collapse
|
24
|
Celik D, Kantarci A. Vascular Changes and Hypoxia in Periodontal Disease as a Link to Systemic Complications. Pathogens 2021; 10:1280. [PMID: 34684229 PMCID: PMC8541389 DOI: 10.3390/pathogens10101280] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/27/2021] [Accepted: 10/02/2021] [Indexed: 12/13/2022] Open
Abstract
The hypoxic microenvironment caused by oral pathogens is the most important cause of the disruption of dynamic hemostasis between the oral microbiome and the immune system. Periodontal infection exacerbates the inflammatory response with increased hypoxia and causes vascular changes. The chronicity of inflammation becomes systemic as a link between oral and systemic diseases. The vascular network plays a central role in controlling infection and regulating the immune response. In this review, we focus on the local and systemic vascular network change mechanisms of periodontal inflammation and the pathological processes of inflammatory diseases. Understanding how the vascular network influences the pathology of periodontal diseases and the systemic complication associated with this pathology is essential for the discovery of both local and systemic proactive control mechanisms.
Collapse
Affiliation(s)
- Dilek Celik
- Immunology Division, Health Sciences Institute, Trakya University, Edirne 22100, Turkey;
| | - Alpdogan Kantarci
- Forsyth Institute, Cambridge, MA 02142, USA
- School of Dental Medicine, Harvard University, Boston, MA 02142, USA
| |
Collapse
|
25
|
González-Febles J, Sanz M. Periodontitis and rheumatoid arthritis: What have we learned about their connection and their treatment? Periodontol 2000 2021; 87:181-203. [PMID: 34463976 DOI: 10.1111/prd.12385] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Rheumatoid arthritis and periodontitis are chronic inflammatory diseases defined respectively by the destruction of the articular cartilage and tooth-supporting periodontal tissues. Although the epidemiologic evidence for an association between these two diseases is still scarce, there is emerging scientific information linking specific bacterial periodontal pathogens, such as Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans, in the citrullination process, leading to autoantibody formation and compromised immunotolerance of the susceptible patient to rheumatoid arthritis. In this review, we update the existing information on the evidence, not only regarding the epidemiologic association, but also the biologic mechanisms linking these two diseases. Finally, we review information emerging from intervention studies evaluating whether periodontal treatment could influence the initiation and progression of rheumatoid arthritis.
Collapse
Affiliation(s)
- Jerián González-Febles
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| | - Mariano Sanz
- Departament of Dental Clinical Specialties, Faculty of Odontology, University Complutense, Madrid, Spain.,Research Group on the Aetiology and Treatment of Periodontal and Periimplant Diseases (ETEP), Faculty of Odontology, University Complutense, Madrid, Spain
| |
Collapse
|
26
|
Bregaint S, Boyer E, Fong SB, Meuric V, Bonnaure-Mallet M, Jolivet-Gougeon A. Porphyromonas gingivalis outside the oral cavity. Odontology 2021; 110:1-19. [PMID: 34410562 DOI: 10.1007/s10266-021-00647-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 07/31/2021] [Indexed: 12/14/2022]
Abstract
Porphyromonas gingivalis, a Gram-negative anaerobic bacillus present in periodontal disease, is considered one of the major pathogens in periodontitis. A literature search for English original studies, case series and review articles published up to December 2019 was performed using the MEDLINE, PubMed and GoogleScholar databases, with the search terms "Porphyromonas gingivalis" AND the potentially associated condition or systemic disease Abstracts and full text articles were used to make a review of published research literature on P. gingivalis outside the oral cavity. The main points of interest of this narrative review were: (i) a potential direct action of the bacterium and not the systemic effects of the inflammatory acute-phase response induced by the periodontitis, (ii) the presence of the bacterium (viable or not) in the organ, or (iii) the presence of its virulence factors. Virulence factors (gingipains, capsule, fimbriae, hemagglutinins, lipopolysaccharide, hemolysin, iron uptake transporters, toxic outer membrane blebs/vesicles, and DNA) associated with P. gingivalis can deregulate certain functions in humans, particularly host immune systems, and cause various local and systemic pathologies. The most recent studies linking P. gingivalis to systemic diseases were discussed, remembering particularly the molecular mechanisms involved in different infections, including cerebral, cardiovascular, pulmonary, bone, digestive and peri-natal infections. Recent involvement of P. gingivalis in neurological diseases has been demonstrated. P. gingivalis modulates cellular homeostasis and increases markers of inflammation. It is also a factor in the oxidative stress involved in beta-amyloid production.
Collapse
Affiliation(s)
- Steeve Bregaint
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Emile Boyer
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Shao Bing Fong
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France
| | - Vincent Meuric
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Martine Bonnaure-Mallet
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France.,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France
| | - Anne Jolivet-Gougeon
- Microbiology, INSERM, INRAE, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), Université de Rennes, U1241, 2, avenue du Professeur Léon Bernard, 35043, Rennes, France. .,Teaching Hospital Pontchaillou, 2 rue Henri Le Guilloux, 35033, Rennes, France.
| |
Collapse
|
27
|
Nik-Azis NM, Mohd N, Baharin B, Said MSM, Fadzilah FM, Haflah NHM. Periodontal disease in seropositive rheumatoid arthritis: scoping review of the epidemiological evidence. Germs 2021; 11:266-286. [PMID: 34422698 PMCID: PMC8373412 DOI: 10.18683/germs.2021.1263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 12/17/2022]
Abstract
The link between periodontal disease (PD) and rheumatoid arthritis (RA) has been hypothesized to lie in the anti-cyclic citrullinated protein antibody (ACPA) molecules present in seropositive RA. This review aimed to discuss how RA and specifically ACPA-positive RA link to PD, and appraise the epidemiological evidence on the relationship between ACPA-positive RA and PD. Articles were searched following the PRISMA guideline across the MEDLINE, Web of Science, Scopus and Cochrane Library databases. A total of 21 articles met the inclusion criteria of reporting the epidemiological data on the different ACPA status of the subjects with RA and PD (or periodontitis) parameters. A discrepancy is noted in the epidemiological evidence on the difference in the prevalence and severity of PD between ACPA-positive and ACPA-negative RA patients. Although the link between RA and PD is mostly discussed in terms of ACPA, reports on the different manifestations of PD between the two RA subsets remains inconclusive.
Collapse
Affiliation(s)
- Nik-Madihah Nik-Azis
- Dr., BDS, DClindent, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Nurulhuda Mohd
- Dr., DDS, MClinDent, Department of Restorative Dentistry, Faculty of Dentistry, University Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Badiah Baharin
- Assoc. Prof. Dr., BDS, MClinDent, Department of Restorative Dentistry, Faculty of Dentistry, Universiti Kebangsaaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| | - Mohd Shahrir Mohamed Said
- Prof. Dr., MBBS, MMed, Rheumatology Unit, Medical Department, Faculty of Medicine, Hospital Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| | - Fazalina Mohd Fadzilah
- Dr., MBBS, MMed, Radiology Department, Sunway Medical Centre, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Nor Hazla Mohamed Haflah
- Prof. Dr., MBChB, MS (Orth), Orthopaedic Department, Faculty of Medicine, Hospital Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Kuala Lumpur, Malaysia
| |
Collapse
|
28
|
Paul AK, Paul A, Jahan R, Jannat K, Bondhon TA, Hasan A, Nissapatorn V, Pereira ML, Wilairatana P, Rahmatullah M. Probiotics and Amelioration of Rheumatoid Arthritis: Significant Roles of Lactobacillus casei and Lactobacillus acidophilus. Microorganisms 2021; 9:1070. [PMID: 34065638 PMCID: PMC8157104 DOI: 10.3390/microorganisms9051070] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023] Open
Abstract
Rheumatoid arthritis is a chronic autoimmune disorder that can lead to disability conditions with swollen joints, pain, stiffness, cartilage degradation, and osteoporosis. Genetic, epigenetic, sex-specific factors, smoking, air pollution, food, oral hygiene, periodontitis, Prevotella, and imbalance in the gastrointestinal microbiota are possible sources of the initiation or progression of rheumatoid arthritis, although the detailed mechanisms still need to be elucidated. Probiotics containing Lactobacillus spp. are commonly used as alleviating agents or food supplements to manage diarrhea, dysentery, develop immunity, and maintain general health. The mechanism of action of Lactobacillus spp. against rheumatoid arthritis is still not clearly known to date. In this narrative review, we recapitulate the findings of recent studies to understand the overall pathogenesis of rheumatoid arthritis and the roles of probiotics, particularly L. casei or L. acidophilus, in the management of rheumatoid arthritis in clinical and preclinical studies.
Collapse
Affiliation(s)
- Alok K. Paul
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anita Paul
- Department of Pharmacy, University of Development Alternative, Dhaka 1207, Bangladesh;
| | - Rownak Jahan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Khoshnur Jannat
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Tohmina A. Bondhon
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Anamul Hasan
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| | - Veeranoot Nissapatorn
- School of Allied Health Sciences, World Union for Herbal Drug Discovery (WUHeDD), and Research Excellence Center for Innovation and Health Products (RECIHP), Walailak University, Nakhon Si Thammarat 80160, Thailand;
| | - Maria L. Pereira
- CICECO-Aveiro Institute of Materials & Department of Medical Sciences, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 73170, Thailand
| | - Mohammed Rahmatullah
- Department of Biotechnology & Genetic Engineering, University of Development Alternative, Dhaka 1207, Bangladesh; (A.K.P.); (R.J.); (K.J.); (T.A.B.); (A.H.)
| |
Collapse
|
29
|
Lehenaff R, Tamashiro R, Nascimento MM, Lee K, Jenkins R, Whitlock J, Li EC, Sidhu G, Anderson S, Progulske-Fox A, Bubb MR, Chan EKL, Wang GP. Subgingival microbiome of deep and shallow periodontal sites in patients with rheumatoid arthritis: a pilot study. BMC Oral Health 2021; 21:248. [PMID: 33964928 PMCID: PMC8105973 DOI: 10.1186/s12903-021-01597-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/19/2021] [Indexed: 12/31/2022] Open
Abstract
Background Subgingival microbiome in disease-associated subgingival sites is known to be dysbiotic and significantly altered. In patients with rheumatoid arthritis (RA), the extent of dysbiosis in disease- and health-associated subgingival sites is not clear. Methods 8 RA and 10 non-RA subjects were recruited for this pilot study. All subjects received full oral examination and underwent collection of subgingival plaque samples from both shallow (periodontal health-associated, probing depth ≤ 3mm) and deep subgingival sites (periodontal disease-associated, probing depth ≥ 4 mm). RA subjects also had rheumatological evaluation. Plaque community profiles were analyzed using 16 S rRNA sequencing. Results The phylogenetic diversity of microbial communities in both RA and non-RA controls was significantly higher in deep subgingival sites compared to shallow sites (p = 0.022), and the overall subgingival microbiome clustered primarily according to probing depth (i.e. shallow versus deep sites), and not separated by RA status. While a large number of differentially abundant taxa and gene functions was observed between deep and shallow sites as expected in non-RA controls, we found very few differentially abundant taxa and gene functions between deep and shallow sites in RA subjects. In addition, compared to non-RA controls, the UniFrac distances between deep and shallow sites in RA subjects were smaller, suggesting increased similarity between deep and shallow subgingival microbiome in RA. Streptococcus parasanguinis and Actinomyces meyeri were overabundant in RA subjects, while Gemella morbillorum, Kingella denitrificans, Prevotella melaninogenica and Leptotrichia spp. were more abundant in non-RA subjects. Conclusions The aggregate subgingival microbiome was not significantly different between individuals with and without rheumatoid arthritis. Although the differences in the overall subgingival microbiome was driven primarily by probing depth, in contrast to the substantial microbiome differences typically seen between deep and shallow sites in non-RA patients, the microbiome of deep and shallow sites in RA patients were more similar to each other. These results suggest that factors associated with RA may modulate the ecology of subgingival microbiome and its relationship to periodontal disease, the basis of which remains unknown but warrants further investigation. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-021-01597-x.
Collapse
Affiliation(s)
- Ryanne Lehenaff
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Ryan Tamashiro
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Marcelle M Nascimento
- Department of Restorative Dental Sciences, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Kyulim Lee
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Renita Jenkins
- Dental Clinical Research Unit, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Joan Whitlock
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Eric C Li
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Gurjit Sidhu
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA
| | - Susanne Anderson
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ann Progulske-Fox
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA
| | - Michael R Bubb
- Division of Rheumatology, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Edward K L Chan
- Department of Oral Biology, College of Dentistry, Center for Molecular Microbiology, University of Florida, Gainesville, FL, USA.
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, FL, Gainesville, USA. .,Medical Service, North Florida/South Georgia Veterans Health System, Gainesville, FL, USA.
| |
Collapse
|
30
|
Moentadj R, Wang Y, Bowerman K, Rehaume L, Nel H, O Cuiv P, Stephens J, Baharom A, Maradana M, Lakis V, Morrison M, Wells T, Hugenholtz P, Benham H, Le Cao KA, Thomas R. Streptococcus species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. Ann Rheum Dis 2021; 80:573-581. [PMID: 33397732 DOI: 10.1136/annrheumdis-2020-219009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Analysis of oral dysbiosis in individuals sharing genetic and environmental risk factors with rheumatoid arthritis (RA) patients may illuminate how microbiota contribute to disease susceptibility. We studied the oral microbiota in a prospective cohort of patients with RA, first-degree relatives (FDR) and healthy controls (HC), then genomically and functionally characterised streptococcal species from each group to understand their potential contribution to RA development. METHODS After DNA extraction from tongue swabs, targeted 16S rRNA gene sequencing and statistical analysis, we defined a microbial dysbiosis score based on an operational taxonomic unit signature of disease. After selective culture from swabs, we identified streptococci by sequencing. We examined the ability of streptococcal cell walls (SCW) from isolates to induce cytokines from splenocytes and arthritis in ZAP-70-mutant SKG mice. RESULTS RA and FDR were more likely to have periodontitis symptoms. An oral microbial dysbiosis score discriminated RA and HC subjects and predicted similarity of FDR to RA. Streptococcaceae were major contributors to the score. We identified 10 out of 15 streptococcal isolates as S. parasalivarius sp. nov., a distinct sister species to S. salivarius. Tumour necrosis factor and interleukin 6 production in vitro differed in response to individual S. parasalivarius isolates, suggesting strain specific effects on innate immunity. Cytokine secretion was associated with the presence of proteins potentially involved in S. parasalivarius SCW synthesis. Systemic administration of SCW from RA and HC-associated S. parasalivarius strains induced similar chronic arthritis. CONCLUSIONS Dysbiosis-associated periodontal inflammation and barrier dysfunction may permit arthritogenic insoluble pro-inflammatory pathogen-associated molecules, like SCW, to reach synovial tissue.
Collapse
Affiliation(s)
- Rabia Moentadj
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Yiwen Wang
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Bowerman
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Linda Rehaume
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hendrik Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paraic O Cuiv
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Current address: Microba Life Sciences, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Juliette Stephens
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Amalina Baharom
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Muralidhara Maradana
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Vanessa Lakis
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Timothy Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Helen Benham
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Rheumatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Kim-Anh Le Cao
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
31
|
Bordagaray MJ, Fernández A, Garrido M, Astorga J, Hoare A, Hernández M. Systemic and Extraradicular Bacterial Translocation in Apical Periodontitis. Front Cell Infect Microbiol 2021; 11:649925. [PMID: 33816354 PMCID: PMC8017189 DOI: 10.3389/fcimb.2021.649925] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Apical periodontitis is an inflammatory disease of microbial etiology. It has been suggested that endodontic bacterial DNA might translocate to distant organs via blood vessels, but no studies have been conducted. We aimed first to explore overall extraradicular infection, as well as specifically by Porphyromonas spp; and their potential to translocate from infected root canals to blood through peripheral blood mononuclear cells. In this cross-sectional study, healthy individuals with and without a diagnosis of apical periodontitis with an associated apical lesion of endodontic origin (both, symptomatic and asymptomatic) were included. Apical lesions (N=64) were collected from volunteers with an indication of tooth extraction. Intracanal samples (N=39) and respective peripheral blood mononuclear cells from apical periodontitis (n=14) individuals with an indication of endodontic treatment, as well as from healthy individuals (n=14) were collected. The detection frequencies and loads (DNA copies/mg or DNA copies/μL) of total bacteria, Porphyromonas endodontalis and Porphyromonas gingivalis were measured by qPCR. In apical lesions, the detection frequencies (%) and median bacterial loads (DNA copies/mg) respectively were 70.8% and 4521.6 for total bacteria; 21.5% and 1789.7 for Porphyromonas endodontalis; and 18.4% and 1493.9 for Porphyromonas gingivalis. In intracanal exudates, the detection frequencies and median bacterial loads respectively were 100% and 21089.2 (DNA copies/μL) for total bacteria, 41% and 8263.9 for Porphyromonas endodontalis; and 20.5%, median 12538.9 for Porphyromonas gingivalis. Finally, bacteria were detected in all samples of peripheral blood mononuclear cells including apical periodontitis and healthy groups, though total bacterial loads (median DNA copies/μL) were significantly higher in apical periodontitis (953.6) compared to controls (300.7), p<0.05. Porphyromonas endodontalis was equally detected in both groups (50%), but its bacterial load tended to be higher in apical periodontitis (262.3) than controls (158.8), p>0.05; Porphyromonas gingivalis was not detected. Bacteria and specifically Porphyromonas spp. were frequently detected in endodontic canals and apical lesions. Also, total bacteria and Porphyromonas endodontalis DNA were detected in peripheral blood mononuclear cells, supporting their plausible role in bacterial systemic translocation.
Collapse
Affiliation(s)
- María José Bordagaray
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alejandra Fernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Mauricio Garrido
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Jessica Astorga
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Anilei Hoare
- Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Laboratory of Oral Microbiology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Marcela Hernández
- Laboratory of Periodontal Biology, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Pathology and Oral Medicine, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
32
|
Zhang Z, Liu D, Liu S, Zhang S, Pan Y. The Role of Porphyromonas gingivalis Outer Membrane Vesicles in Periodontal Disease and Related Systemic Diseases. Front Cell Infect Microbiol 2021; 10:585917. [PMID: 33585266 PMCID: PMC7877337 DOI: 10.3389/fcimb.2020.585917] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/14/2020] [Indexed: 12/19/2022] Open
Abstract
Periodontal disease is a chronic infectious disease associated with a variety of bacteria, which can cause damage to the periodontal support structure and affect a variety of systemic system diseases such as cancer, cardiovascular disease, diabetes, rheumatoid arthritis, non-alcoholic fatty liver, and Alzheimer's disease. Porphyromonas gingivalis (P. gingivalis) is the most important pathogenic bacteria for periodontal disease. It can produce outer membrane vesicles (OMVs) and release them into the environment, playing an important role in its pathogenesis. This article focuses on P. gingivalis OMVs, reviews its production and regulation, virulence components, mode of action and related diseases, with a view to providing new ideas for the prevention and treatment of diseases related to P. gingivalis infections.
Collapse
Affiliation(s)
- Zhiying Zhang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Dongjuan Liu
- Department of Emergency and Oral Medicine, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Sai Liu
- Department of Dental Materials, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Department of Periodontics, Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Tsujimoto S, Ozaki Y, Ito T, Nomura S. Usefulness of Cytokine Gene Polymorphisms for the Therapeutic Choice in Japanese Patients with Rheumatoid Arthritis. Int J Gen Med 2021; 14:131-139. [PMID: 33469350 PMCID: PMC7813643 DOI: 10.2147/ijgm.s287505] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 12/12/2022] Open
Abstract
Background Rheumatoid arthritis (RA) is characterized by systemic synovitis with bone erosion and joint cartilage degradation. Although the analysis of polymorphisms in cytokine-encoding genes is important or understanding the pathophysiology of RA and selecting appropriate treatment for it, few studies have examined such single-nucleotide polymorphisms (SNPs) specifically in Japanese patients. This study was established to investigate the associations between polymorphisms in cytokine-encoding genes, autoantibodies and therapeutic responses in Japanese RA patients. Methods The subjects in this study consisted of 100 RA patients and 50 healthy controls. We extracted data on sex, age, disease duration, rheumatoid factor (RF), anti-cyclic citrullinated peptide (anti-CCP) antibody, and therapeutic responses, including to methotrexate (MTX) and biological disease-modifying antirheumatic drugs (DMARDs). Genomic DNA was isolated from peripheral blood, which was genotyped for IL-10, TNF-α, TGF-β1, and IFN-γ polymorphisms. Results Regarding IL-10 (−592 C/A and −819 C/T), significant decreases in the frequencies of the IL-10 (−592) CC genotype and (−819) CC genotype were found in RA patients compared with the levels in controls. For IFN-γ (+874 T/A), a significant decrease in the frequency of the TT genotype was found in RA patients compared with that in controls. Regarding TGF-β1 (+869 T/C), patients with positivity for anti-CCP antibody had a significantly lower frequency of the CC genotype than those with negativity for it. Furthermore, the IL-10 (−592) CC genotype and (−819) CC genotype might be related to the biological DMARD-response. Conclusion Our results suggest that the analysis of polymorphisms in cytokine-encoding genes may be useful when selecting treatment for Japanese RA patients.
Collapse
Affiliation(s)
- Saki Tsujimoto
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Yoshio Ozaki
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Tomoki Ito
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| | - Shosaku Nomura
- First Department of Internal Medicine, Kansai Medical University, Hirakata, Osaka, Japan
| |
Collapse
|
34
|
Taudte N, Linnert M, Rahfeld JU, Piechotta A, Ramsbeck D, Buchholz M, Kolenko P, Parthier C, Houston JA, Veillard F, Eick S, Potempa J, Schilling S, Demuth HU, Stubbs MT. Mammalian-like type II glutaminyl cyclases in Porphyromonas gingivalis and other oral pathogenic bacteria as targets for treatment of periodontitis. J Biol Chem 2021; 296:100263. [PMID: 33837744 PMCID: PMC7948796 DOI: 10.1016/j.jbc.2021.100263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 12/25/2022] Open
Abstract
The development of a targeted therapy would significantly improve the treatment of periodontitis and its associated diseases including Alzheimer’s disease, rheumatoid arthritis, and cardiovascular diseases. Glutaminyl cyclases (QCs) from the oral pathogens Porphyromonas gingivalis, Tannerella forsythia, and Prevotella intermedia represent attractive target enzymes for small-molecule inhibitor development, as their action is likely to stabilize essential periplasmic and outer membrane proteins by N-terminal pyroglutamination. In contrast to other microbial QCs that utilize the so-called type I enzymes, these oral pathogens possess sequences corresponding to type II QCs, observed hitherto only in animals. However, whether differences between these bacteroidal QCs and animal QCs are sufficient to enable development of selective inhibitors is not clear. To learn more, we recombinantly expressed all three QCs. They exhibit comparable catalytic efficiencies and are inhibited by metal chelators. Crystal structures of the enzymes from P. gingivalis (PgQC) and T. forsythia (TfQC) reveal a tertiary structure composed of an eight-stranded β-sheet surrounded by seven α-helices, typical of animal type II QCs. In each case, an active site Zn ion is tetrahedrally coordinated by conserved residues. Nevertheless, significant differences to mammalian enzymes are found around the active site of the bacteroidal enzymes. Application of a PgQC-selective inhibitor described here for the first time results in growth inhibition of two P. gingivalis clinical isolates in a dose-dependent manner. The insights gained by these studies will assist in the development of highly specific small-molecule bacteroidal QC inhibitors, paving the way for alternative therapies against periodontitis and associated diseases.
Collapse
Affiliation(s)
- Nadine Taudte
- Periotrap Pharmaceuticals GmbH, Halle (Saale), Germany
| | - Miriam Linnert
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Jens-Ulrich Rahfeld
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany.
| | - Anke Piechotta
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Daniel Ramsbeck
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Mirko Buchholz
- Periotrap Pharmaceuticals GmbH, Halle (Saale), Germany; Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Petr Kolenko
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Parthier
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany
| | - John A Houston
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Florian Veillard
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Sigrun Eick
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Jan Potempa
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA; Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Stephan Schilling
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany; Angewandte Biowissenschaften und Prozesstechnik, Hochschule Anhalt, Köthen, Germany
| | - Hans-Ulrich Demuth
- Department of Molecular Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Halle (Saale), Germany
| | - Milton T Stubbs
- Institut für Biochemie und Biotechnologie, Charles-Tanford-Proteinzentrum, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany; ZIK HALOmem, Charles-Tanford-Proteinzentrum, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
35
|
Alpízar-Rodríguez D, Finckh A, Gilbert B. The Role of Nutritional Factors and Intestinal Microbiota in Rheumatoid Arthritis Development. Nutrients 2020; 13:nu13010096. [PMID: 33396685 PMCID: PMC7823566 DOI: 10.3390/nu13010096] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Evidence about the role of nutritional factors and microbiota in autoimmune diseases, and in rheumatoid arthritis (RA) in particular, has grown in recent years, however many controversies remain. The aim of this review is to summarize the role of nutrition and of the intestinal microbiota in the development of RA. We will focus on selected dietary patterns, individual foods and beverages that have been most consistently associated with RA or with the occurrence of systemic autoimmunity associated with RA. We will also review the evidence for a role of the intestinal microbiota in RA development. We propose that diet and digestive microbiota should be considered together in research, as they interact and may both be the target for future preventive interventions in RA.
Collapse
Affiliation(s)
- Deshiré Alpízar-Rodríguez
- Research Unit, Colegio Mexicano de Reumatología, Mexico City 04318, Mexico
- Correspondence: ; Tel.: +52-55-2525-1853
| | - Axel Finckh
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| | - Benoît Gilbert
- Department of Rheumatology, Geneva University Hospitals, 1206 Geneva, Switzerland; (A.F.); (B.G.)
| |
Collapse
|
36
|
Alhabashneh R, Alawneh K, Alshami R, Al Naji K. Rheumatoid arthritis and periodontitis: a Jordanian case-control study. J Public Health (Oxf) 2020. [DOI: 10.1007/s10389-019-01073-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Jenning M, Marklein B, Ytterberg J, Zubarev RA, Joshua V, van Schaardenburg D, van de Stadt L, Catrina AI, Nonhoff U, Häupl T, Konthur Z, Burmester GR, Skriner K. Bacterial citrullinated epitopes generated by Porphyromonas gingivalis infection-a missing link for ACPA production. Ann Rheum Dis 2020; 79:1194-1202. [PMID: 32532752 DOI: 10.1136/annrheumdis-2019-216919] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVES Porphyromonas gingivalis (P.g.) is discussed to be involved in triggering self-reactive immune responses. The aim of this study was to investigate the autocitrullinated prokaryotic peptidylarginine deiminase (PPAD) from P.g. CH2007 (RACH2007-PPAD) from a rheumatoid arthritis (RA) patient and a synthetic citrullinated PPAD peptide (CPP) containing the main autocitrullination site as potential targets for antibody reactivity in RA and to analyse the possibility of citrullinating native human proteins by PPAD in the context of RA. METHODS Recombinant RACH2007-PPAD was cloned and expressed in Escherichia coli. Purified RACH2007-PPAD and its enzymatic activity was analysed using two-dimensional electrophoresis, mass spectrometry, immunoblot and ELISA. Autoantibody response to different modified proteins and peptides was recorded and bioinformatically evaluated. RESULTS RACH2007-PPAD was capable to citrullinate major RA autoantigens, such as fibrinogen, vimentin, hnRNP-A2/B1, histone H1 and multiple peptides, which identify a common RG/RGG consensus motif. 33% of RA patients (n=30) revealed increased reactivity for α-cit-RACH2007-PPAD before RA onset. 77% of RA patients (n=99) presented α-cit-specific signals to CPP amino acids 57-71 which were positively correlated to α-CCP2 antibody levels. Interestingly, 48% of the α-CPP-positives were rheumatoidfactor IgM/anti-citrullinated peptide/protein antibodies (ACPA)-negative. Anti-CPP and α-RACH2007-PPAD antibody levels increase with age. Protein macroarrays that were citrullinated by RACH2007-PPAD and screened with RA patient sera (n=6) and controls (n=4) uncovered 16 RACH2007-PPAD citrullinated RA autoantigens and 9 autoantigens associated with lung diseases. We showed that the α-CPP response could be an important determinant in parenchymal changes in the lung at the time of RA diagnosis (n=106; p=0.018). CONCLUSIONS RACH2007-PPAD induced internal citrullination of major RA autoantigens. Anti-RACH2007-PPAD correlates with ACPA levels and interstitial lung disease autoantigen reactivity, supporting an infection-based concept for induction of ACPAs via enzymatic mimicry.
Collapse
Affiliation(s)
- Madeleine Jenning
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Bianka Marklein
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Jimmy Ytterberg
- Swedish Orphan Biovitrum AB, Stockholm, Sweden
- Department of Medical Biochemistry and Biophysics, Division of Physiological Chemistry I, Stockholm, Sweden
| | - Roman A Zubarev
- Medical Biochemistry and Biophysics, Chemistry I Division, Karolinska Institute, Stockholm, Sweden
| | - Vijay Joshua
- Rheumatology Unit, Department of Medicine, Karolinska University Hospital and Institutet, Stockholm, Sweden
| | | | | | | | | | - Thomas Häupl
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Zoltán Konthur
- Engine GmbH, Hennigsdorf, Germany
- Bundesanstalt für Materialforschung und -prüfung (BAM), Berlin, Germany
| | - Gerd R Burmester
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| | - Karl Skriner
- Department of Rheumatology and Clinical Immunology, Charité University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt University Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
38
|
Troublesome friends within us: the role of gut microbiota on rheumatoid arthritis etiopathogenesis and its clinical and therapeutic relevance. Clin Exp Med 2020; 21:1-13. [PMID: 32712721 DOI: 10.1007/s10238-020-00647-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/13/2020] [Indexed: 12/14/2022]
Abstract
The role of gut microbiota on immune regulation and the development of autoimmune diseases such as rheumatoid arthritis (RA) is an emerging research topic. Multiple studies have demonstrated alterations on gut microbiota composition and/or function (referred to as dysbiosis) both in early and established RA patients. Still, research delineating the molecular mechanisms by which gut microorganisms induce the loss of immune tolerance or contribute to disease progression is scarce. Available data indicate that gut microbiota alterations are involved in RA autoimmune response by several mechanisms including the post-translational modification of host proteins, molecular mimicry between bacterial and host epitopes, activation of immune system and polarization toward inflammatory phenotypes, as well as induction of intestinal permeability. Therefore, in this review we analyze recent clinical and molecular evidence linking gut microbiota with the etiopathogenesis of RA. The potential of the gut microbiota as a diagnostic or severity biomarker is discussed, as well as the opportunity areas for the development of complementary therapeutic strategies based on the modulation of gut microbiota in the rheumatic patient.
Collapse
|
39
|
Möller B, Kollert F, Sculean A, Villiger PM. Infectious Triggers in Periodontitis and the Gut in Rheumatoid Arthritis (RA): A Complex Story About Association and Causality. Front Immunol 2020; 11:1108. [PMID: 32582191 PMCID: PMC7283532 DOI: 10.3389/fimmu.2020.01108] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune mediated inflammatory disease of unknown origin, which is predominantly affecting the joints. Antibodies against citrullinated peptides are a rather specific immunological hallmark of this heterogeneous entity. Furthermore, certain sequences of the third hypervariable region of human leukocyte antigen (HLA)-DR class II major histocompatibility (MHC) molecules, the so called "shared epitope" sequences, appear to promote autoantibody positive types of RA. However, MHC-II molecule and other genetic associations with RA could not be linked to immune responses against specific citrullinated peptides, nor do genetic factors fully explain the origin of RA. Consequently, non-genetic factors must play an important role in the complex interaction of endogenous and exogenous disease factors. Tobacco smoking was the first environmental factor that was associated with onset and severity of RA. Notably, smoking is also an established risk factor for oral diseases. Furthermore, smoking is associated with extra-articular RA manifestations such as interstitial lung disease in anatomical proximity to the airway mucosa, but also with subcutaneous rheumatoid nodules. In the mouth, Porphyromonas gingivalis is a periodontal pathogen with unique citrullinating capacity of foreign microbial antigens as well as candidate RA autoantigens. Although the original hypothesis that this single pathogen is causative for RA remained unproven, epidemiological as well as experimental evidence linking periodontitis (PD) with RA is rapidly accumulating. Other periopathogens such as Aggregatibacter actinomycetemcomitans and Prevotella intermedia were also proposed to play a specific immunodominant role in context of RA. However, demonstration of T cell reactivity against citrullinated, MHC-II presented autoantigens from RA synovium coinciding with immunity against Prevotella copri (Pc.), a gut microbe attracted attention to another mucosal site, the intestine. Pc. was accumulated in the feces of clinically healthy subjects with citrulline directed immune responses and was correlated with RA onset. In conclusion, we retrieved more than one line of evidence for mucosal sites and different microbial taxa to be potentially involved in the development of RA. This review gives an overview of infectious agents and mucosal pathologies, and discusses the current evidence for causality between different exogenous or mucosal factors and systemic inflammation in RA.
Collapse
Affiliation(s)
- Burkhard Möller
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Florian Kollert
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| | - Anton Sculean
- Department of Periodontology, School of Dental Medicine, University of Bern, Bern, Switzerland
| | - Peter M Villiger
- Department for Rheumatology, Immunology and Allergology, Inselspital-University Hospital of Bern, Bern, Switzerland
| |
Collapse
|
40
|
杜 芹, 马 歆. [Research progress of correlation between periodontal pathogens and systemic diseases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:759-764. [PMID: 32897213 PMCID: PMC7277321 DOI: 10.12122/j.issn.1673-4254.2020.05.24] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Indexed: 11/24/2022]
Abstract
Periodontal pathogens are the main pathogenic factor of periodontitis. Periodontal pathogens have a large variety of virulence factors such as lipopolysaccharide, fimbriae and proteases, which enables the pathogens to infect periodontal tissues and stimulate the secretion of inflammatory cytokines, causing chronic systemic inflammation. Periodontal pathogens may invade multiple systems such as the circulatory system, immune system, respiratory system and digestive system to cause systematic diseases. Recent studies have shown that periodontal pathogens may have close relations with systemic diseases such as cardiovascular disease, diabetes, rheumatoid arthritis, and cancer. Among the periodontal pathogens, Porphyromonas gingivalis can be found in atherosclerotic plaques to impairing the function of the vascular endothelium; Porphyromonas gingivalis may also increase the level of inflammatory factors such as TNF-α to promote insulin resistance and diabetes. Many of the periodontal pathogens such as Porphyromonas gingivalis, Tannerella forsythia and Prevotella intermedia can be detected in the synovial fluid of rheumatoid arthritis patients, suggesting their involvement in the pathogenesis of rheumatoid arthritis. Fusobacterium nucleatum may cause alterations in the intestinal microbiome in mice and promote the occurrence of intestinal tumors. Herein we review the recent progresses in the relationship between periodontal pathogens and systemic diseases.
Collapse
Affiliation(s)
- 芹 杜
- 四川省医学科学院//四川省人民医院口腔科,四川 成都 610072Department of Stomatlogy, Sichuan Academy of Medical Science & Sichuan People's Hospital, Chengdu 610072, China
- 电子科技大学附属医学院,四川 成都 610054School of Medicine, University of Electronic Science and Technology, Chengdu 610054, China
- 中国科学院成都生物研究所,四川 成都 610041Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - 歆茹 马
- 四川省医学科学院//四川省人民医院口腔科,四川 成都 610072Department of Stomatlogy, Sichuan Academy of Medical Science & Sichuan People's Hospital, Chengdu 610072, China
- 遵义医科大学口腔医学院,贵州 遵义 563000School of Stomatology, Zunyi Medicial University, Zunyi 563000, China
| |
Collapse
|
41
|
Peng HY, Chen SY, Siao SH, Chang JT, Xue TY, Lee YH, Jan MS, Tsay GJ, Zouali M. Targeting a cysteine protease from a pathobiont alleviates experimental arthritis. Arthritis Res Ther 2020; 22:114. [PMID: 32410713 PMCID: PMC7222327 DOI: 10.1186/s13075-020-02205-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 04/29/2020] [Indexed: 01/05/2023] Open
Abstract
Background Several lines of evidence suggest that the pathobiont Porphyromonas gingivalis is involved in the development and/or progression of auto-inflammatory diseases. This bacterium produces cysteine proteases, such as gingipain RgpA, endowed with the potential to induce significant bone loss in model systems and in patients. Objective We sought to gain further insight into the role of this pathobiont in rheumatoid arthritis (RA) and to identify novel therapeutic targets for auto-inflammatory diseases. Methods We profiled the antibody response to RgPA-specific domains in patient sera. We also tested the potential protective effects of RgpA domains in an experimental arthritis model. Results Pre-immunization of rats with purified recombinant RgpA domains alleviated arthritis in the joints of the rodents and reduced bone erosion. Using a functional genomics approach at both the mRNA and protein levels, we report that the pre-immunizations reduced arthritis severity by impacting a matrix metalloprotease characteristic of articular injury, a chemokine known to be involved in recruiting inflammatory cells, and three inflammatory cytokines. Finally, we identified an amino acid motif in the RgpA catalytic domain of P. gingivalis that shares sequence homology with type II collagen. Conclusion We conclude that pre-immunization against gingipain domains can reduce the severity of experimentally induced arthritis. We suggest that targeting gingipain domains by pre-immunization, or, possibly, by small-molecule inhibitors, could reduce the potential of P. gingivalis to translocate to remote tissues and instigate and/or exacerbate pathology in RA, but also in other chronic inflammatory diseases.
Collapse
Affiliation(s)
- Hsin-Yi Peng
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Shih-Yao Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Shih-Hong Siao
- Graduate Institute of Immunology, National Taiwan University, Taipei, Taiwan
| | | | - Ting-Yin Xue
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Yi-Hsuan Lee
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan
| | - Ming-Shiou Jan
- Institute of Biochemistry, Microbiology, Immunology, Chung Shan Medical University, Taichung, Taiwan
| | - Gregory J Tsay
- Division of Immunology and Rheumatology, China Medical University Hospital, Taichung, Taiwan. .,College of Medicine, China Medical University, Taichung, Taiwan.
| | - Moncef Zouali
- Inserm UMR 1132, F-75475, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, F-75475, Paris, France. .,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.
| |
Collapse
|
42
|
Abstract
Rheumatoid Arthritis (RA) is a severe, chronic autoimmune disease that affects 1% of the world's population. Familial risk contributes 50% of the risk of seropositive RA, with strongest risks seen in first-degree relatives. Smoking increases the risk of developing anti-citrullinated peptide antibody (ACPA)+ RA, particularly in individuals with high-risk RA-susceptibility alleles. Other contributory environmental risks including particulate exposure, periodontal disease, bronchiectasis, diet, obesity and the oral contraceptive impact respiratory, oral, intestinal and genital tract mucosal sites. Furthermore, the first signs of autoimmunity may appear at mucosal sites e.g. sputum ACPA-IgA and IgG. While oral and faecal dysbiosis are well described, there is no consistent single bacterial species that appears to drive RA. Animal and human data suggest a model in which multiple environmental influences impact mucosal immune function through the host genetics through enhanced mucosal permeability and the traffic of pro-inflammatory PAMPs and the amplification of autoimmune responses. In some cases, autoimmunity may be driven by cross-reactivity, or mimicry, to pathogen-specific antigens, particularly where the host immune system fails to support their rapid control and elimination.
Collapse
Affiliation(s)
- Anne-Sophie Bergot
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-UQ, Faculty of Medicine, University of Queensland, Brisbane, 4102, QLD, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, University of Queensland, Princess Alexandra Hospital, Brisbane, 4102, QLD, Australia.
| |
Collapse
|
43
|
Hammad DBM, Hider SL, Liyanapathirana VC, Tonge DP. Molecular Characterization of Circulating Microbiome Signatures in Rheumatoid Arthritis. Front Cell Infect Microbiol 2020; 9:440. [PMID: 32039040 PMCID: PMC6987042 DOI: 10.3389/fcimb.2019.00440] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/09/2019] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid Arthritis (RA) has been increasingly associated with perturbations to the microbial communities that reside in and on the body (the microbiome), in both human and animal studies. To date, such studies have mainly focused on the microbial communities that inhabit the gut and oral cavity. Mounting evidence suggests that microbial DNA can be detected in the blood circulation using a range of molecular methods. This DNA may represent an untapped pool of biomarkers that have the potential to report on changes to the microbiome of distant sites (e.g., example, the gut and oral cavity). To this end, through amplification and sequencing of the bacterial 16S rRNA variable region four, we evaluated the presence and identity of microbial DNA in blood samples obtained from RA patients (both prior to and 3 months following the instigation of treatment) in comparison to a small number of healthy control subjects and samples obtained from patients with ankylosing spondylitis (AS) and psoriatic arthritis (PA). Bacterial-derived DNA was identified in the majority of our patient samples. Taxonomic classification revealed that the microbiome community in RA was distinct from AS, PA, and the healthy state. Through analysis of paired patient samples obtained prior to and 3 months following treatment (V0 vs. V3), we found the microbiome to be modulated by treatment, and in many cases, this shift reduced the distance between these samples and the healthy control samples, suggesting a partial normalization following treatment in some patients. This effect was especially evident in seronegative arthritis patients. Herein, we provide further evidence for the existence of a blood microbiome in health and identify specific taxa modulated in disease and following treatment. These blood-derived signatures may have significant utility as disease biomarkers and suggest this area warrants further investigation.
Collapse
Affiliation(s)
- Dargham B. M. Hammad
- Faculty of Natural Sciences, School of Life Sciences, Keele University, Keele, United Kingdom
| | - S. L. Hider
- Arthritis Research UK Primary Care Centre, Research Institute for Primary Care and Health Sciences, Keele University, Keele, United Kingdom
- Haywood Academic Rheumatology Group, Midlands Partnership Foundation Trust, Staffordshire, United Kingdom
| | | | - Daniel P. Tonge
- Faculty of Natural Sciences, School of Life Sciences, Keele University, Keele, United Kingdom
| |
Collapse
|
44
|
Hammad DBM, Liyanapathirana V, Tonge DP. Molecular characterisation of the synovial fluid microbiome in rheumatoid arthritis patients and healthy control subjects. PLoS One 2019; 14:e0225110. [PMID: 31751379 PMCID: PMC6871869 DOI: 10.1371/journal.pone.0225110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/28/2019] [Indexed: 12/13/2022] Open
Abstract
METHODS The presence and identity of bacterial and fungal DNA in the synovial fluid of rheumatoid arthritis (RA) patients and healthy control subjects was investigated through amplification and sequencing of the bacterial 16S rRNA gene and fungal internal transcribed spacer region 2 respectively. Synovial fluid concentrations of the cytokines IL-6, IL-17A, IL22 and IL-23 were determined by ELISA. RESULTS Bacterial 16S rRNA genes were detected in 87.5% RA patients, and all healthy control subjects. At the phylum level, the microbiome was predominated by Proteobacteria (Control = 83.5%, RA = 79.3%) and Firmicutes (Control = 16.1%, RA = 20.3%), and to a much lesser extent, Actinobacteria (Control = 0.2%, RA = 0.3%) and Bacteroidetes (Control = 0.1%, RA = 0.1%). Fungal DNA was identified in 75% RA samples, and 88.8% healthy controls. At the phylum level, synovial fluid was predominated by members of the Basidiomycota (Control = 53.9%, RA = 46.9%) and Ascomycota (Control = 35.1%, RA = 50.8%) phyla. Statistical analysis revealed key taxa that were differentially present or abundant dependent on disease status. CONCLUSIONS This study reports the presence of a synovial fluid microbiome, and determines that this is modulated by disease status (RA) as are other classical microbiome niches.
Collapse
Affiliation(s)
- Dargham Bayan Mohsen Hammad
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, Newcastle, England, United Kingdom
| | | | - Daniel Paul Tonge
- School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, Newcastle, England, United Kingdom
| |
Collapse
|
45
|
Periodontal Pathogens as Risk Factors of Cardiovascular Diseases, Diabetes, Rheumatoid Arthritis, Cancer, and Chronic Obstructive Pulmonary Disease-Is There Cause for Consideration? Microorganisms 2019; 7:microorganisms7100424. [PMID: 31600905 PMCID: PMC6843669 DOI: 10.3390/microorganisms7100424] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/30/2022] Open
Abstract
Cardiovascular diseases, chronic obstructive pulmonary diseases, diabetes, rheumatoid arthritis, and cancer are the most common noncommunicable diseases (NCDs). These NCDs share risk factors with periodontal disease (PD), a preventable risk factor linked to lifestyle. The discussion regarding the association between these chronic diseases is more complex. There is still a significant knowledge gap particularly of the causal relationship between PD and NCDs. In this paper, we present fundamental knowledge of the mechanisms and roles of putative periodontal bacteria to gather several hypotheses, evidence that clinical studies thus far have not produced. Although the causal hypotheses are not yet clearly established on a biological basis, prevention and prophylactic measures are recommended to prevent even the possibility of such potential risk factors.
Collapse
|
46
|
Huck O, Han X, Mulhall H, Gumenchuk I, Cai B, Panek J, Iyer R, Amar S. Identification of a Kavain Analog with Efficient Anti-inflammatory Effects. Sci Rep 2019; 9:12940. [PMID: 31506483 PMCID: PMC6737110 DOI: 10.1038/s41598-019-49383-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Kavain, a compound derived from Piper methysticum, has demonstrated anti-inflammatory properties. To optimize its drug properties, identification and development of new kavain-derived compounds was undertaken. A focused library of analogs was synthesized and their effects on Porphyromonas gingivalis (P. gingivalis) elicited inflammation were evaluated in vitro and in vivo. The library contained cyclohexenones (5,5-dimethyl substituted cyclohexenones) substituted with a benzoate derivative at the 3-position of the cyclohexanone. The most promising analog identifed was a methylated derivative of kavain, Kava-205Me (5,5-dimethyl-3-oxocyclohex-1-en-1-yl 4-methylbenzoate.) In an in vitro assay of anti-inflammatory effects, murine macrophages (BMM) and THP-1 cells were infected with P. gingivalis (MOI = 20:1) and a panel of cytokines were measured. Both cell types treated with Kava-205Me (10 to 200 μg/ml) showed significantly and dose-dependently reduced TNF-α secretion induced by P. gingivalis. In BMM, Kava-205Me also reduced secretion of other cytokines involved in the early phase of inflammation, including IL-12, eotaxin, RANTES, IL-10 and interferon-γ (p < 0.05). In vivo, in an acute model of P. gingivalis-induced calvarial destruction, administration of Kava-205Me significantly improved the rate of healing associated with reduced soft tissue inflammation and osteoclast activation. In an infective arthritis murine model induced by injection of collagen-antibody (ArthriomAb) + P. gingivalis, administration of Kava-205Me was able to reduce efficiently paw swelling and joint destruction. These results highlight the strong anti-inflammatory properties of Kava-205Me and strengthen the interest of testing such compounds in the management of P. gingivalis elicited inflammation, especially in the management of periodontitis.
Collapse
Affiliation(s)
- Olivier Huck
- Université de Strasbourg, Faculté de Chirurgie-Dentaire, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Xiaxian Han
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Hannah Mulhall
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Iryna Gumenchuk
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Bin Cai
- Department of Chemistry, Boston University, Boston, MA, USA
| | - James Panek
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Radha Iyer
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Salomon Amar
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA.
| |
Collapse
|
47
|
de Oliveira Ferreira R, de Brito Silva R, Magno MB, Carvalho Almeida APCPS, Fagundes NCF, Maia LC, Lima RR. Does periodontitis represent a risk factor for rheumatoid arthritis? A systematic review and meta-analysis. Ther Adv Musculoskelet Dis 2019; 11:1759720X19858514. [PMID: 31316593 PMCID: PMC6620730 DOI: 10.1177/1759720x19858514] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 05/18/2019] [Indexed: 12/22/2022] Open
Abstract
Periodontitis is an inflammatory disease of dental supporting tissues (gingiva, periodontal ligament, and bone) and it has been suggested as a possible etiology for rheumatoid arthritis (RA). In this systematic review, we aim to verify if periodontitis represents a risk factor for RA. Electronic databases were consulted until March 2018 considering eligibility criteria focusing on: (P, participants) adults; (E, exposure) with periodontitis; (C, comparison) without periodontitis; and (O, outcome) development of RA. Quality assessment of studies and risk-of-bias evaluation were also performed. To undertake a quantitative analysis, the number of persons with RA and a total number of participants for the case group (with periodontitis) and control group (without periodontitis) were used to calculate the odds ratio (OR) with a 95% confidence interval (CI). A total of 3888 articles were identified, and nine studies were considered eligible. Seven of 9 articles suggested an association among diseases by the common pro-inflammatory profiles. The pooled analysis of 3 articles showed a higher RA prevalence for persons with periodontitis (n = 1177) than controls (n = 254) (OR 1.97; CI 1.68–2.31; p < 0.00001). However, considerable heterogeneity among studies was verified (I2 = 96%, p < 0.00001). Periodontitis may represent a risk factor for RA by heredity, bacterial infection, and the pro-inflammatory profile shared between both diseases. Although most of the elective studies report an association between periodontitis and RA, the quantitative analysis showed a high heterogeneity, leading to the need for further studies.
Collapse
Affiliation(s)
| | - Raíra de Brito Silva
- Laboratory of Functional and Structural Biology, Universidade Federal do Pará, Belém, Brazil
| | - Marcela Baraúna Magno
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Lucianne Cople Maia
- Department of Pediatric Dentistry and Orthodontics, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Pará, Rua Augusto Corrêa 1, Guamá, Belém, PA 66075-900, Brazil
| |
Collapse
|
48
|
Kriauciunas A, Gleiznys A, Gleiznys D, Janužis G. The Influence of Porphyromonas Gingivalis Bacterium Causing Periodontal Disease on the Pathogenesis of Rheumatoid Arthritis: Systematic Review of Literature. Cureus 2019; 11:e4775. [PMID: 31363455 PMCID: PMC6663055 DOI: 10.7759/cureus.4775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Periodontal pathologies are highly widespread throughout the world. Epidemiological studies have shown that as much as 1% of the population is suffering from periodontal disease. In recent years, there has been a growing number of studies linking these diseases with autoimmune diseases, especially with rheumatoid arthritis. This literature review evaluates changes in the relationship between periodontal pathologies caused by the bacterium Porphyromonas gingivalis and rheumatoid arthritis. The systematic review of the literature was performed according to the PRISMA analysis protocol. The review was performed with articles from the PubMed database. Searched articles were not older than 5 years. Only full texts and research performed with people were selected. A total of 56 results were received. A review and analysis of their full texts have been carried out and 10 articles were selected according to the established criteria. They were analyzed and results were presented. The results obtained from the literature were based on the influence of Porphyromonas gingivalis on the pathogenesis of rheumatoid arthritis. In the literature, the activity of this bacterium is explained by the analysis of its enzyme peptidylarginine deiminase and its principle of action. Studies have also been found to prove the presence of Porphyromonas gingivalis not only in the oral cavity but its DNA is also found in synovial fluid and plasma. In the researched articles, direct links between Porphyromonas gingivalis and rheumatoid arthritis have led doctors to draw attention to patients' oral hygiene and the condition of parodentium, as this may be the cause of autoimmune lesions. Treatment of periodontal disease will not only help maintain a healthy oral cavity but prevent the spread of bacteria to the surrounding tissues.
Collapse
Affiliation(s)
- Albertas Kriauciunas
- Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, LTU
| | - Alvydas Gleiznys
- Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, LTU
| | - Darius Gleiznys
- Dental and Maxillofacial Orthopedics, Lithuanian University of Health Sciences, Kaunas, LTU
| | - Gintaras Janužis
- Maxillofacial Surgery, Lithuanian University of Health Sciences, Kaunas, LTU
| |
Collapse
|
49
|
Ceccarelli F, Saccucci M, Di Carlo G, Lucchetti R, Pilloni A, Pranno N, Luzzi V, Valesini G, Polimeni A. Periodontitis and Rheumatoid Arthritis: The Same Inflammatory Mediators? Mediators Inflamm 2019; 2019:6034546. [PMID: 31191116 PMCID: PMC6525860 DOI: 10.1155/2019/6034546] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 02/06/2019] [Indexed: 02/07/2023] Open
Abstract
The strict link between periodontitis (PD) and rheumatoid arthritis (RA) has been widely demonstrated by several studies. PD is significantly more frequent in RA patients in comparison with healthy subjects: this prevalence is higher in individuals at the earliest stages of disease and in seropositive patients. This is probably related to the role of P. gingivalis in inducing citrullination and leading to the development of the new antigens. Despite the many studies conducted on this topic, there is very little data available concerning the possibility to use the same biomarkers to evaluate both RA and PD patients. The aim of the review is to summarize this issue. Starting from genetic factors, data from literature demonstrated the association between HLA-DRB1 alleles and PD susceptibility, similar to RA patients; moreover, SE-positive patients showed simultaneously structural damage to the wrist and periodontal sites. Contrasting results are available concerning other genetic polymorphisms. Moreover, the possible role of proinflammatory cytokines, such as TNF and IL6 and autoantibodies, specifically anticyclic citrullinated peptide antibodies, has been examined, suggesting the need to perform further studies to better define this issue.
Collapse
Affiliation(s)
- Fulvia Ceccarelli
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Matteo Saccucci
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Gabriele Di Carlo
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Ramona Lucchetti
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Andrea Pilloni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Nicola Pranno
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Valeria Luzzi
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| | - Guido Valesini
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillo-Facial Sciences, Sapienza University of Rome, Viale Regina Elena 287a, 00161 Rome, Italy
| |
Collapse
|
50
|
Are There Any Common Genetic Risk Markers for Rheumatoid Arthritis and Periodontal Diseases? A Case-Control Study. Mediators Inflamm 2019; 2019:2907062. [PMID: 30890897 PMCID: PMC6390239 DOI: 10.1155/2019/2907062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/14/2019] [Accepted: 01/29/2019] [Indexed: 12/15/2022] Open
Abstract
Background Several studies suggest that there is a biologically plausible connection between rheumatoid arthritis (RA) and periodontal diseases (PD). Both disorders are characterized as multifactorial diseases potentially sharing common risk factors. Based on the inflammatory nature of RA and PD, the impact of genetic variations of genes of the immune system on both diseases was studied in this study. Materials and Methods We conducted a case-control study (n = 201) comparing 101 RA patients suffering from periodontal disease of different severities (no/mild PD vs. severe PD) with 100 systemically healthy controls without RA and severe PD. The genotype, allele, and haplotype distributions of 22 SNPs of 13 pro- and anti-inflammatory cytokines were assessed applying sequence-specific PCR. Results Evaluating the impact of cytokine SNPs in RA, we identified the G allele of rs1801275 in IL4Rα (p = 0.043) and the G allele of rs361525 in TNFα (p = 0.005) as disease-associated risk factors in bivariate analyses. In multivariate analyses, these significant associations could not be proven. The A allele of rs2430561 in IFNγ was indicative for severe periodontitis among the patients with rheumatoid arthritis (p = 0.039). Investigating the impact of rs2430561 in IFNγ on comorbidity using binary logistic regression analyses, the A allele was confirmed as an independent risk factor for severe periodontal disease and RA (p = 0.024). Conclusions These results emphasize the association of genetic variations in proinflammatory cytokines (TNFα and IFNγ) and cytokine receptor (IL4Rα) and RA and periodontal diseases. In multivariate analyses, the A allele of IFNγ was proven to be a significant marker of RA and PD comorbidities. The study broadens the knowledge about disease-specific differences in genetic composition and provides an improved understanding of a possible association of both diseases.
Collapse
|