1
|
Pusterla N, Lawton K, Barnum S. Investigation of the seroprevalence to equine coronavirus and SARS-CoV-2 in healthy adult horses recently imported to the United States. Vet Q 2024; 44:1-6. [PMID: 38010292 PMCID: PMC10949836 DOI: 10.1080/01652176.2023.2288876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023] Open
Abstract
Adult horses are susceptible to equine coronavirus (ECoV) and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), although, only ECoV has been linked to clinical disease. Little information is available regarding the seroprevalence against ECoV and SARS-CoV-2 in adult healthy horses. The goal of the present study was to determine the seroprevalence against two coronaviruses known to infect horses using convenience samples collected from horses recently imported from Europe to the United States from 2019 to 2023. A total of 385 banked serum samples were tested against ECoV and SARS-CoV-2 using previously validated ELISA assays. Prevalence factors including date of arrival in the United States, signalment and country of origin were available for the majority of the horses. A total of 9/385 (2.3%) and 4/385 (1.0%) horses tested seropositive for ECoV and SARS-CoV-2, respectively. The ECoV seropositive horses were all mares, ages 4 to 26 years (median 9 years) and originated from Germany, the Netherlands, Ireland, Belgium and Italy. These mares were predominantly imported during the summer and fall months. All SARS-CoV-2 seropositive horses were mares ages 5 to 10 years (median 7.5 years) imported from the Netherlands and the United Kingdom. The majority of the SARS-CoV-2 seropositive horses were imported during the colder months of the year. The study results support the presence of ECoV in Europe and report on the first SARS-CoV-2 seropositive healthy adult horses outside the United States. Commingling for movements by air and close contact to humans may predispose transmission with ECoV and SARS-CoV-2, respectively.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kaila Lawton
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
2
|
Kuhn J, Marti I, Ryser-Degiorgis MP, Wernike K, Jones S, Tyson G, Delalay G, Scherrer P, Borel S, Hosie MJ, Kipar A, Kuhlmeier E, Chan T, Hofmann-Lehmann R, Meli ML. Investigations on the Potential Role of Free-Ranging Wildlife as a Reservoir of SARS-CoV-2 in Switzerland. Viruses 2024; 16:1407. [PMID: 39339883 PMCID: PMC11437421 DOI: 10.3390/v16091407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/25/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024] Open
Abstract
Amid the SARS-CoV-2 pandemic, concerns surfaced regarding the spread of the virus to wildlife. Switzerland lacked data concerning the exposure of free-ranging animals to SARS-CoV-2 during this period. This study aimed to investigate the potential exposure of Swiss free-ranging wildlife to SARS-CoV-2. From 2020 to 2023, opportunistically collected samples from 712 shot or found dead wild mustelids (64 European stone and pine martens, 13 European badgers, 10 European polecats), canids (449 red foxes, 41 gray wolves, one golden jackal) and felids (56 Eurasian lynx, 18 European wildcats), as well as from 45 captured animals (39 Eurasian lynx, 6 European wildcats) were tested. A multi-step serological approach detecting antibodies to the spike protein receptor binding domain (RBD) and N-terminal S1 subunit followed by surrogate virus neutralization (sVNT) and pseudotype-based virus neutralization assays against different SARS-CoV-2 variants was performed. Additionally, viral RNA loads were quantified in lung tissues and in oronasal, oropharyngeal, and rectal swabs by reverse transcription polymerase chain reactions (RT-qPCRs). Serologically, SARS-CoV-2 exposure was confirmed in 14 free-ranging Swiss red foxes (prevalence 3.1%, 95% CI: 1.9-5.2%), two Eurasian lynx (2.2%, 95% CI: 0.6-7.7%), and one European wildcat (4.2%, 95% CI: 0.2-20.2%). Two positive foxes exhibited neutralization activity against the BA.2 and BA.1 Omicron variants. No active infection (viral RNA) was detected in any animal tested. This is the first report of SARS-CoV-2 antibodies in free-ranging red foxes, Eurasian lynx, and European wildcats worldwide. It confirms the spread of SARS-CoV-2 to free-ranging wildlife in Switzerland but does not provide evidence of reservoir formation. Our results underscore the susceptibility of wildlife populations to SARS-CoV-2 and the importance of understanding diseases in a One Health Concept.
Collapse
Affiliation(s)
- Juliette Kuhn
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Iris Marti
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Marie-Pierre Ryser-Degiorgis
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut (FLI), Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Sarah Jones
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Grace Tyson
- School of Biodiversity, One Health, and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bearsden Road, Glasgow G61 1QH, UK
| | - Gary Delalay
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Patrick Scherrer
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Stéphanie Borel
- Institute for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Länggassstrasse 122, 3012 Bern, Switzerland
| | - Margaret J Hosie
- MRC-University of Glasgow Centre for Virus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Garscube Campus, Bearsden Road, Glasgow G61 1QH, UK
| | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland
| | - Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| | - Marina L Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland
| |
Collapse
|
3
|
Abay Z, Sadikaliyeva S, Nurpeisova A, Jekebekov K, Shorayeva K, Yespembetov B, Nurabayev S, Kerimbayev A, Khairullin B, Yoo H, Kutumbetov L, Kassenov M, Zakarya K. Breaking the Barrier: SARS-CoV-2 Infections in Wild and Companion Animals and Their Implications for Public Health. Viruses 2024; 16:956. [PMID: 38932248 PMCID: PMC11209598 DOI: 10.3390/v16060956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The emergence of the novel coronavirus SARS-CoV-2 has led to significant interest in its potential transmission between animals and humans, especially pets. This review article summarises the literature on coronavirus infections in domestic animals, emphasising epidemiology, transmission dynamics, clinical manifestations, and public health implications. This article highlights current understandings of the relationship between infections in companion animals and humans, identifies research gaps, and suggests directions for future research. Cases of disease in cats, dogs, and other domestic animals, often occurring through close contact with infected owners, are reviewed, raising concerns about possible zoonotic and reverse zoonotic transmission. Precautions and recommendations for pet owners and healthcare workers are also discussed. The scientific evidence presented in the article highlights the need for a One Health approach that considers the health of people, animals, and the environment to combat future pandemics.
Collapse
Affiliation(s)
- Zhandos Abay
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | | | - Ainur Nurpeisova
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kuanysh Jekebekov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kamshat Shorayeva
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Bolat Yespembetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Sergazy Nurabayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Aslan Kerimbayev
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Berik Khairullin
- MVA Group Scientific-Research Production Center Ltd., Almaty 050046, Kazakhstan
| | - Hansang Yoo
- College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Lespek Kutumbetov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Markhabat Kassenov
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| | - Kunsulu Zakarya
- Research Institute for Biological Safety Problems, Guardeyskiy uts 080409, Kazakhstan
| |
Collapse
|
4
|
Adnane M, de Almeida AM, Chapwanya A. Unveiling the power of proteomics in advancing tropical animal health and production. Trop Anim Health Prod 2024; 56:182. [PMID: 38825622 DOI: 10.1007/s11250-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/04/2024]
Abstract
Proteomics, the large-scale study of proteins in biological systems has emerged as a pivotal tool in the field of animal and veterinary sciences, mainly for investigating local and rustic breeds. Proteomics provides valuable insights into biological processes underlying animal growth, reproduction, health, and disease. In this review, we highlight the key proteomics technologies, methodologies, and their applications in domestic animals, particularly in the tropical context. We also discuss advances in proteomics research, including integration of multi-omics data, single-cell proteomics, and proteogenomics, all of which are promising for improving animal health, adaptation, welfare, and productivity. However, proteomics research in domestic animals faces challenges, such as sample preparation variation, data quality control, privacy and ethical considerations relating to animal welfare. We also provide recommendations for overcoming these challenges, emphasizing the importance of following best practices in sample preparation, data quality control, and ethical compliance. We therefore aim for this review to harness the full potential of proteomics in advancing our understanding of animal biology and ultimately improve animal health and productivity in local breeds of diverse animal species in a tropical context.
Collapse
Affiliation(s)
- Mounir Adnane
- Department of Biomedicine, Institute of Veterinary Sciences, University of Tiaret, Tiaret, 14000, Algeria.
| | - André M de Almeida
- LEAF-Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa, 1349-017, Portugal
| | - Aspinas Chapwanya
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre, 00265, Saint Kitts and Nevis
| |
Collapse
|
5
|
Chan T, Ginders J, Kuhlmeier E, Meli ML, Bönzli E, Meili T, Hüttl J, Hatt JM, Hindenlang Clerc K, Kipar A, Wyss F, Wenker C, Ryser-Degiorgis MP, Valenzuela Agüí C, Urban C, Beisel C, Stadler T, Hofmann-Lehmann R. Detection of SARS-CoV-2 RNA in a Zoo-Kept Red Fox ( Vulpes vulpes). Viruses 2024; 16:521. [PMID: 38675864 PMCID: PMC11054100 DOI: 10.3390/v16040521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Many different animal species are susceptible to SARS-CoV-2, including a few Canidae (domestic dog and raccoon dog). So far, only experimental evidence is available concerning SARS-CoV-2 infections in red foxes (Vulpes vulpes). This is the first report of SARS-CoV-2 RNA detection in a sample from a red fox. The RT-qPCR-positive fox was zoo-kept together with another fox and two bears in the Swiss Canton of Zurich. Combined material from a conjunctival and nasal swab collected for canine distemper virus diagnostics tested positive for SARS-CoV-2 RNA with Ct values of 36.9 (E gene assay) and 35.7 (RdRp gene assay). The sample was analysed for SARS-CoV-2 within a research project testing residual routine diagnostic samples from different animal species submitted between spring 2020 and December 2022 to improve knowledge on SARS-CoV-2 infections within different animal species and investigate their potential role in a One Health context. Within this project, 246 samples from 153 different animals from Swiss zoos and other wild animal species all tested SARS-CoV-2 RT-qPCR and/or serologically negative so far, except for the reported fox. The source of SARS-CoV-2 in the fox is unknown. The fox disappeared within the naturally structured enclosure, and the cadaver was not found. No further control measures were undertaken.
Collapse
Affiliation(s)
- Tatjana Chan
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Julia Ginders
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Evelyn Kuhlmeier
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Marina L. Meli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Eva Bönzli
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Theres Meili
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Julia Hüttl
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Department of Small Animals, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland;
| | | | - Anja Kipar
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 268, 8057 Zurich, Switzerland;
| | - Fabia Wyss
- Zoologischer Garten Basel AG, Binningerstrasse 40, 4054 Basel, Switzerland; (F.W.); (C.W.)
| | - Christian Wenker
- Zoologischer Garten Basel AG, Binningerstrasse 40, 4054 Basel, Switzerland; (F.W.); (C.W.)
| | | | - Cecilia Valenzuela Agüí
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Postfach, 4009 Basel, Switzerland; (C.V.A.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Christian Urban
- Functional Genomics Center, ETH Zurich and University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland;
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Postfach, 4009 Basel, Switzerland; (C.V.A.); (C.B.); (T.S.)
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zurich, Schanzenstrasse 44, Postfach, 4009 Basel, Switzerland; (C.V.A.); (C.B.); (T.S.)
- SIB Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Regina Hofmann-Lehmann
- Clinical Laboratory, Department of Clinical Diagnostics and Services, and Center for Clinical Studies, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 260, 8057 Zurich, Switzerland; (T.C.); (J.G.); (E.K.); (M.L.M.); (J.H.)
| |
Collapse
|
6
|
Nederlof RA, de la Garza MA, Bakker J. Perspectives on SARS-CoV-2 Cases in Zoological Institutions. Vet Sci 2024; 11:78. [PMID: 38393096 PMCID: PMC10893009 DOI: 10.3390/vetsci11020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in a zoological institution were initially reported in March 2020. Since then, at least 94 peer-reviewed cases have been reported in zoos worldwide. Among the affected animals, nonhuman primates, carnivores, and artiodactyls appear to be most susceptible to infection, with the Felidae family accounting for the largest number of reported cases. Clinical symptoms tend to be mild across taxa; although, certain species exhibit increased susceptibility to disease. A variety of diagnostic tools are available, allowing for initial diagnostics and for the monitoring of infectious risk. Whilst supportive therapy proves sufficient in most cases, monoclonal antibody therapy has emerged as a promising additional treatment option. Effective transmission of SARS-CoV-2 in some species raises concerns over potential spillover and the formation of reservoirs. The occurrence of SARS-CoV-2 in a variety of animal species may contribute to the emergence of variants of concern due to altered viral evolutionary constraints. Consequently, this review emphasizes the need for effective biosecurity measures and surveillance strategies to prevent and control SARS-CoV-2 infections in zoological institutions.
Collapse
Affiliation(s)
| | - Melissa A. de la Garza
- Michale E. Keeling Center for Comparative Medicine and Research, University of Texas MD Anderson Cancer Center, Bastrop, TX 78602, USA
| | - Jaco Bakker
- Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands
| |
Collapse
|
7
|
Ahmed-Hassan H, Farouk MM, Ali ME, Elsafiee EA, Hagag N, Abdelkader F. SARS-CoV-2 seroprevalence determination in pets and camels in Egypt using multispecies enzyme-linked immunosorbent assay. Vet Immunol Immunopathol 2024; 267:110683. [PMID: 38061231 DOI: 10.1016/j.vetimm.2023.110683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has translated into a worldwide economic recession and public health crisis. Bats have been incriminated as the main natural host for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is the causative agent of the COVID-19 pandemic. However, the reservoir and carrier hosts of the virus remain unknown. Therefore, a cross sectional serosurvey study was performed to estimate antibodies to SARS-CoV-2. To assess IgM antibodies to SARS-CoV-2 nucleocapsid protein (NP), a SARS-CoV-2 Double Antigen Multispecies diagnostic enzyme-linked immunosorbent assay kit was used. The seropositive samples were confirmed and validated by measuring IgG antibody titers in sera. The enrolled animals were from different locations in the Giza governorate, Egypt, and were sampled at the time of the pandemic; they comprised 92 companion animals and 92 domestic camels. The study established that 4.76% (1/21 clinical samples) of dogs, 7.69% of cats (1/13 shelter samples) and 1.08% (1/92) of camels, had measurable SARS-CoV-2 NP IgM antibodies. All IgM-seropositive samples were IgG positive with a measurable titer of 34.5, 28.6, and 25.8 UI/mL for dog, cat, and camels, respectively. According to our best knowledge, this study was the first to assess SARS-CoV-2 seroprevalence in the specific animals investigated in Egypt. These results may herald a promising epidemiological role for pet animals and camels in SARS-CoV-2 virus maintenance. Thus, our study's results ought to be confirmed with a nationwide seroprevalence study, and further studies are required to clarify whether these animals act as active or passive carriers.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Manar M Farouk
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary medicine, Cairo University, Giza 12211, Egypt
| | - M E Ali
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary medicine, Cairo University, Giza 12211, Egypt
| | - Esraa A Elsafiee
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt.
| | - Naglaa Hagag
- Genome Research Unit, Animal Health Research Institute, Dokki 12618, Egypt; Gene Analysis Unit in National Laboratory for Veterinary Quality Control on Poultry Production (NLQP), Animal Health Research Institute, Dokki 12618, Egypt
| | - Fatma Abdelkader
- Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| |
Collapse
|
8
|
Musoles-Cuenca B, Aguiló-Gisbert J, Lorenzo-Bermejo T, Canales R, Ballester B, Romani-Cremaschi U, Martínez-Valverde R, Maiques E, Marteles D, Rueda P, Rubio V, Villanueva-Saz S, Rubio-Guerri C. Molecular and Serological Studies on Potential SARS-CoV-2 Infection among 43 Lemurs under Human Care-Evidence for Past Infection in at Least One Individual. Animals (Basel) 2023; 14:140. [PMID: 38200871 PMCID: PMC10778278 DOI: 10.3390/ani14010140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/24/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
In the setting of the recent COVID-19 pandemic, transmission of SARS-CoV-2 to animals has been reported in both domestic and wild animals and is a matter of concern. Given the genetic and functional similarities to humans, non-human primates merit particular attention. In the case of lemurs, generally considered endangered, they are believed to be susceptible to SARS-CoV-2 infection. We have conducted a study for evidence of SARS-CoV-2 infection among the 43 lemurs of Mundomar, a zoological park in Benidorm, Spain. They belong to two endangered lemur species, 23 black-and-white ruffed lemurs (Varecia variegata) and 20 ring-tailed lemurs (Lemur catta). Health assessments conducted in 2022 and 2023 included molecular analyses for SARS-CoV-2 RNA of oral and rectal swabs using two different RT-qPCR assays, always with negative results for SARS-CoV-2 in all animals. The assessment also included serological testing for antibodies against the receptor-binding domain (RBD) of the spike protein (S) of SARS-CoV-2, which again yielded negative results in all animals except one black-and-white ruffed lemur, supporting prior infection of that animal with SARS-CoV-2. Our data, while not indicating a high susceptibility of lemurs to SARS-CoV-2 infection, show that they can be infected, adding to the existing information body on potential ways for SARS-CoV-2 virus spreading in zoos, highlighting the need for animal surveillance for the virus.
Collapse
Affiliation(s)
- Beatriz Musoles-Cuenca
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | - Jordi Aguiló-Gisbert
- Servicio de Análisis, Investigación, Gestión de Animales Silvestres (SAIGAS), Veterinary Faculty, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain;
| | - Teresa Lorenzo-Bermejo
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | - Rocío Canales
- Veterinary Department, Mundomar Benidorm, 03503 Alicante, Spain; (R.C.); (U.R.-C.)
| | - Beatriz Ballester
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | | | | | - Elisa Maiques
- Department of Biomedical Sciences, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain; (B.M.-C.); (T.L.-B.); (B.B.); (E.M.)
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (D.M.); (P.R.)
| | - Pablo Rueda
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (D.M.); (P.R.)
| | - Vicente Rubio
- Department of Genomics and Proteomics, Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
- Group 739, IBV-CSIC, Centre for Biomedical Network Research, Instituto de Salud Carlos III (CIBERER-ISCIII), 46010 Valencia, Spain
| | - Sergio Villanueva-Saz
- Clinical Immunology Laboratory, Veterinary Faculty, University of Zaragoza, 50013 Zaragoza, Spain; (D.M.); (P.R.)
| | - Consuelo Rubio-Guerri
- Department of Pharmacy, Faculty of Health Sciences, Universidad Cardenal Herrera-CEU, 46113 Valencia, Spain
| |
Collapse
|
9
|
Callewaert C, Pezavant M, Vandaele R, Meeus B, Vankrunkelsven E, Van Goethem P, Plumacker A, Misset B, Darcis G, Piret S, De Vleeschouwer L, Staelens F, Van Varenbergh K, Tombeur S, Ottevaere A, Montag I, Vandecandelaere P, Jonckheere S, Vandekerckhove L, Tobback E, Wieers G, Marot JC, Anseeuw K, D’Hoore L, Tuyls S, De Tavernier B, Catteeuw J, Lotfi A, Melnik A, Aksenov A, Grandjean D, Stevens M, Gasthuys F, Guyot H. Sniffing out safety: canine detection and identification of SARS-CoV-2 infection from armpit sweat. Front Med (Lausanne) 2023; 10:1185779. [PMID: 37822474 PMCID: PMC10563588 DOI: 10.3389/fmed.2023.1185779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/14/2023] [Indexed: 10/13/2023] Open
Abstract
Detection dogs were trained to detect SARS-CoV-2 infection based on armpit sweat odor. Sweat samples were collected using cotton pads under the armpits of negative and positive human patients, confirmed by qPCR, for periods of 15-30 min. Multiple hospitals and organizations throughout Belgium participated in this study. The sweat samples were stored at -20°C prior to being used for training purposes. Six dogs were trained under controlled atmosphere conditions for 2-3 months. After training, a 7-day validation period was conducted to assess the dogs' performances. The detection dogs exhibited an overall sensitivity of 81%, specificity of 98%, and an accuracy of 95%. After validation, training continued for 3 months, during which the dogs' performances remained the same. Gas chromatography/mass spectrometry (GC/MS) analysis revealed a unique sweat scent associated with SARS-CoV-2 positive sweat samples. This scent consisted of a wide variety of volatiles, including breakdown compounds of antiviral fatty acids, skin proteins and neurotransmitters/hormones. An acceptability survey conducted in Belgium demonstrated an overall high acceptability and enthusiasm toward the use of detection dogs for SARS-CoV-2 detection. Compared to qPCR and previous canine studies, the detection dogs have good performances in detecting SARS-CoV-2 infection in humans, using frozen sweat samples from the armpits. As a result, they can be used as an accurate pre-screening tool in various field settings alongside the PCR test.
Collapse
Affiliation(s)
- Chris Callewaert
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Maria Pezavant
- Faculty of Veterinary Medicine, Clinique Vétérinaire Universitaire (CVU), University of Liège, Liège, Belgium
| | | | | | | | | | | | - Benoit Misset
- CHU-Sart-Tilman, Intensive Care Unit, University of Liège, Liège, Belgium
| | - Gilles Darcis
- CHU-Sart-Tilman, Infectious Diseases – Internal Medicine, Public Health Sciences, University of Liège, Liège, Belgium
| | - Sonia Piret
- CHU-Bruyères, Intensive Care Unit, University of Liège, Liège, Belgium
| | | | | | | | | | | | | | | | - Stijn Jonckheere
- Laboratory of Clinical Microbiology, Jan Yperman Hospital, Ypres, Belgium
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent University, Ghent, Belgium
| | - Els Tobback
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Ghent, Belgium
| | - Gregoire Wieers
- General Internal Medicine, Clinique Saint-Pierre Ottignies, Ottignies, Belgium
- Namur Research Institute for Life Sciences (Narilis) and Department of Medicine, University of Namur, Namur, Belgium
| | | | - Kurt Anseeuw
- Department of Emergency Medicine, ZNA, Antwerp, Belgium
| | - Leen D’Hoore
- Belgian Defence, Brussels, Belgium
- Department of Emergency Medicine, ZNA, Antwerp, Belgium
| | - Sebastiaan Tuyls
- Respiratory Medicine, GasthuisZusters (GZA) Hospital Group, Antwerp, Belgium
| | - Brecht De Tavernier
- Emergency Medicine and Intensive Care, GasthuisZusters (GZA) Hospital Group, Antwerp, Belgium
| | | | - Ali Lotfi
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| | - Alexey Melnik
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| | - Alexander Aksenov
- Department of Chemistry, University of Connecticut, Storrs, CT, United States
| | - Dominique Grandjean
- Nosaïs Program, Ecole Nationale Vétérinaire d’Alfort (Alfort School of Veterinary Medicine), University Paris-Est, Maisons-Alfort, France
| | | | - Frank Gasthuys
- Department of Surgery, Anesthesiology and Orthopedics of Large Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hugues Guyot
- Faculty of Veterinary Medicine, Clinique Vétérinaire Universitaire (CVU), University of Liège, Liège, Belgium
| |
Collapse
|
10
|
Cui X, Wang Y, Zhai J, Xue M, Zheng C, Yu L. Future trajectory of SARS-CoV-2: Constant spillover back and forth between humans and animals. Virus Res 2023; 328:199075. [PMID: 36805410 PMCID: PMC9972147 DOI: 10.1016/j.virusres.2023.199075] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/05/2023] [Accepted: 02/14/2023] [Indexed: 02/23/2023]
Abstract
SARS-CoV-2, known as severe acute respiratory syndrome coronavirus 2, is causing a massive global public health dilemma. In particular, the outbreak of the Omicron variants of SARS-CoV-2 in several countries has aroused the great attention of the World Health Organization (WHO). As of February 1st, 2023, the WHO had counted 671,016,135 confirmed cases and 6,835,595 deaths worldwide. Despite effective vaccines and drug treatments, there is currently no way to completely and directly eliminate SARS-CoV-2. Moreover, frequent cases of SARS-CoV-2 infection in animals have also been reported. In this review, we suggest that SARS-CoV-2, as a zoonotic virus, may be frequently transmitted between animals and humans in the future, which provides a reference and warning for rational prevention and control of COVID-19.
Collapse
Affiliation(s)
- Xinhua Cui
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Yang Wang
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China
| | - Jingbo Zhai
- Medical College, Inner Mongolia Minzu University, Tongliao, China; Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Tongliao, China
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Chunfu Zheng
- Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Scientific Observation and Experiment Station of Veterinary Drugs and Diagnostic Techniques of Guangdong Province, Ministry of Agriculture and Rural Affairs, Guangzhou, China; Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Lu Yu
- State Key Laboratory of Human-Animal Zoonotic infectious Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Center of Infectious Diseases and Pathogen Biology, Department of Infectious Diseases, First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
11
|
Pusterla N. Equine Coronaviruses. Vet Clin North Am Equine Pract 2023; 39:55-71. [PMID: 36737293 DOI: 10.1016/j.cveq.2022.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In equids, equine coronavirus has been associated with diarrhea in foals and lethargy, fever, anorexia, and occasional gastrointestinal signs in adult horses. Although horses seem to be susceptible to the human severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) based on the high homology to the ACE-2 receptor, they seem to be incidental hosts because of occasional SARS-CoV-2 spillover from humans. However, until more clinical and seroepidemiological data are available, it remains important to monitor equids for possible transmission from humans with clinical or asymptomatic COVID-19.
Collapse
Affiliation(s)
- Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, One Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
12
|
AboElkhair MA, Ahmed MM, Moustapha AEDH, Zaki AM, El Naggar RF, Elhamouly M, Anis A. Monitoring SARS-CoV-2 infection in different animal species and human in Egypt during 2020-2021. Biologia (Bratisl) 2023; 78:1-7. [PMID: 37363642 PMCID: PMC10021047 DOI: 10.1007/s11756-023-01362-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 02/17/2023] [Indexed: 03/28/2023]
Abstract
Coronaviruses cause respiratory and intestinal infections in animals and humans. By the end of 2019, there was an epidemic of novel coronavirus (COVID-19), which is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Coronaviruses have a highly mutable genome that makes them genetically and phenotypically modifiable with a potential transmission to new host species. Based on current sequence databases, all human coronaviruses have animal origins, so animals have important roles in virus spillover to humans. The aim of this study is to investigate the role of different animal species in the epidemiology of SARS-CoV-2 in Egypt. A pan-coronaviruses RT-PCR has been used for detection of possible coronaviruses infection in different species including bats, humans, birds, and dogs in Egypt during the period of November 2020 till June 2021. Ninety-two samples (46 from Rousettus aegyptiacus bats, 10 from human, 26 from wild birds, and 10 from dogs) were screened for SARS-CoV-2. Our results revealed that only human samples were SARS-CoV-2 positive for SARS-CoV-2 while all other animal and bird samples were negative. To recapitulate, our results suggest that animals may not actively transmit SARS-CoV-2 among people in Egypt during the current COVID-19 pandemic. Further structural surveillance and follow up screening for SARS-CoV-2 among domestic and wild animal populations in Egypt is crucially needed.
Collapse
Affiliation(s)
- Mohammed A. AboElkhair
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897 Egypt
| | - Mohamed M. Ahmed
- Department of Biochemistry and Chemistry of Nutrition, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897 Egypt
| | - Alaa El Din H. Moustapha
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897 Egypt
| | - Ali Mohammed Zaki
- Department of Microbiology and Immunology, Faculty of Medicine, University of Ain-Shams, Cairo, 11591 Egypt
| | - Rania F. El Naggar
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897 Egypt
| | - Moustafa Elhamouly
- Department of Histology and Cytology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897 Egypt
| | - Anis Anis
- Department of Pathology, Faculty of Veterinary Medicine, University of Sadat City, Sadat City, 32897 Egypt
| |
Collapse
|
13
|
Dunowska M. Cross-species transmission of coronaviruses with a focus on severe acute respiratory syndrome coronavirus 2 infection in animals: a review for the veterinary practitioner. N Z Vet J 2023:1-13. [PMID: 36927253 DOI: 10.1080/00480169.2023.2191349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
AbstractIn 2019 a novel coronavirus termed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged from an unidentified source and spread rapidly among humans worldwide. While many human infections are mild, some result in severe clinical disease that in a small proportion of infected people is fatal. The pandemic spread of SARS-CoV-2 has been facilitated by efficient human-to-human transmission of the virus, with no data to indicate that animals contributed to this global health crisis. However, a range of domesticated and wild animals are also susceptible to SARS-CoV-2 infection under both experimental and natural conditions. Humans are presumed to be the source of most animal infections thus far, although natural transmission between mink and between free-ranging deer has occurred, and occasional natural transmission between cats cannot be fully excluded. Considering the ongoing circulation of the virus among people, together with its capacity to evolve through mutation and recombination, the risk of the emergence of animal-adapted variants is not negligible. If such variants remain infectious to humans, this could lead to the establishment of an animal reservoir for the virus, which would complicate control efforts. As such, minimising human-to-animal transmission of SARS-CoV-2 should be considered as part of infection control efforts. The aim of this review is to summarise what is currently known about the species specificity of animal coronaviruses, with an emphasis on SARS-CoV-2, in the broader context of factors that facilitate cross-species transmission of viruses.
Collapse
Affiliation(s)
- M Dunowska
- Tāwharau Ora - School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
14
|
Interactions between Humans and Dogs during the COVID-19 Pandemic: Recent Updates and Future Perspectives. Animals (Basel) 2023; 13:ani13030524. [PMID: 36766413 PMCID: PMC9913536 DOI: 10.3390/ani13030524] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is one of the deadliest epidemics. This pandemic is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), but the role of dogs in spreading the disease in human society is poorly understood. This review sheds light on the limited susceptibility of dogs to COVID-19 infections which is likely attributed to the relatively low levels of angiotensin-converting enzyme 2 (ACE2) in the respiratory tract and the phylogenetic distance of ACE2 in dogs from the human ACE2 receptor. The low levels of ACE2 affect the binding affinity between spike and ACE2 proteins resulting in it being uncommon for dogs to spread the disease. To demonstrate the role of dogs in spreading COVID-19, we reviewed the epidemiological studies and prevalence of SARS-CoV-2 in dogs. Additionally, we discussed the use of detection dogs as a rapid and reliable method for effectively discriminating between SARS-CoV-2 infected and non-infected individuals using different types of samples (secretions, saliva, and sweat). We considered the available information on COVID-19 in the human-dog interfaces involving the possibility of transmission of COVID-19 to dogs by infected individuals and vice versa, the human-dog behavior changes, and the importance of preventive measures because the risk of transmission by domestic dogs remains a concern.
Collapse
|
15
|
Nielsen SS, Alvarez J, Bicout DJ, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Gonzales Rojas JL, Gortázar C, Herskin M, Michel V, Miranda Chueca MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Velarde A, Viltrop A, Winckler C, Adlhoch C, Aznar I, Baldinelli F, Boklund A, Broglia A, Gerhards N, Mur L, Nannapaneni P, Ståhl K. SARS-CoV-2 in animals: susceptibility of animal species, risk for animal and public health, monitoring, prevention and control. EFSA J 2023; 21:e07822. [PMID: 36860662 PMCID: PMC9968901 DOI: 10.2903/j.efsa.2023.7822] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The epidemiological situation of SARS-CoV-2 in humans and animals is continually evolving. To date, animal species known to transmit SARS-CoV-2 are American mink, raccoon dog, cat, ferret, hamster, house mouse, Egyptian fruit bat, deer mouse and white-tailed deer. Among farmed animals, American mink have the highest likelihood to become infected from humans or animals and further transmit SARS-CoV-2. In the EU, 44 outbreaks were reported in 2021 in mink farms in seven MSs, while only six in 2022 in two MSs, thus representing a decreasing trend. The introduction of SARS-CoV-2 into mink farms is usually via infected humans; this can be controlled by systematically testing people entering farms and adequate biosecurity. The current most appropriate monitoring approach for mink is the outbreak confirmation based on suspicion, testing dead or clinically sick animals in case of increased mortality or positive farm personnel and the genomic surveillance of virus variants. The genomic analysis of SARS-CoV-2 showed mink-specific clusters with a potential to spill back into the human population. Among companion animals, cats, ferrets and hamsters are those at highest risk of SARS-CoV-2 infection, which most likely originates from an infected human, and which has no or very low impact on virus circulation in the human population. Among wild animals (including zoo animals), mostly carnivores, great apes and white-tailed deer have been reported to be naturally infected by SARS-CoV-2. In the EU, no cases of infected wildlife have been reported so far. Proper disposal of human waste is advised to reduce the risks of spill-over of SARS-CoV-2 to wildlife. Furthermore, contact with wildlife, especially if sick or dead, should be minimised. No specific monitoring for wildlife is recommended apart from testing hunter-harvested animals with clinical signs or found-dead. Bats should be monitored as a natural host of many coronaviruses.
Collapse
|
16
|
LÉCU ALEXIS. SARS-Cov-2 Coronavirus Infection in Wild Animals. FOWLER' S ZOO AND WILD ANIMAL MEDICINE CURRENT THERAPY, VOLUME 10 2023:113-120. [DOI: 10.1016/b978-0-323-82852-9.00018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
17
|
Sing A, Berger A. Cats – Revered and Reviled – and Associated Zoonoses. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:837-914. [DOI: 10.1007/978-3-031-27164-9_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
18
|
Rao SS, Parthasarathy K, Sounderrajan V, Neelagandan K, Anbazhagan P, Chandramouli V. Susceptibility of SARS Coronavirus-2 infection in domestic and wild animals: a systematic review. 3 Biotech 2023; 13:5. [PMID: 36514483 PMCID: PMC9741861 DOI: 10.1007/s13205-022-03416-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 11/26/2022] [Indexed: 12/14/2022] Open
Abstract
Animals and viruses have constantly been co-evolving under natural circumstances and pandemic like situations. They harbour harmful viruses which can spread easily. In the recent times we have seen pandemic like situations being created as a result of the spread of deadly and fatal viruses. Coronaviruses (CoVs) are one of the wellrecognized groups of viruses. There are four known genera of Coronavirus family namely, alpha (α), beta (β), gamma (γ), and delta (δ). Animals have been infected with CoVs belonging to all four genera. In the last few decades the world has witnessed an emergence of severe acute respiratory syndromes which had created a pandemic like situation such as SARS CoV, MERS-CoV. We are currently in another pandemic like situation created due to the uncontrolled spread of a similar coronavirus namely SARSCoV-2. These findings are based on a small number of animals and do not indicate whether animals can transmit disease to humans. Several mammals, including cats, dogs, bank voles, ferrets, fruit bats, hamsters, mink, pigs, rabbits, racoon dogs, and white-tailed deer, have been found to be infected naturally by the virus. Certain laboratory discoveries revealed that animals such as cats, ferrets, fruit bats, hamsters, racoon dogs, and white-tailed deer can spread the illness to other animals of the same species. This review article gives insights on the current knowledge about SARS-CoV-2 infection and development in animals on the farm and in domestic community and their impact on society.
Collapse
Affiliation(s)
- Sudhanarayani S. Rao
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Krupakar Parthasarathy
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - Vignesh Sounderrajan
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600119 India
| | - K. Neelagandan
- Centre for Chemical Biology and Therapeutics, Institute for Stem Cell Science and Regenerative Medicine, Bengaluru, India
| | | | | |
Collapse
|
19
|
Pourbagher-Shahri AM, Mohammadi G, Ghazavi H, Forouzanfar F. Susceptibility of domestic and companion animals to SARS-CoV-2: a comprehensive review. Trop Anim Health Prod 2023; 55:60. [PMID: 36725815 PMCID: PMC9891761 DOI: 10.1007/s11250-023-03470-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 01/17/2023] [Indexed: 02/03/2023]
Abstract
The ongoing coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a large global outbreak. The reports of domestic animals' infection with SARS-CoV-2 raise concerns about the virus's longer-lasting spread, the establishment of a new host reservoir, or even the evolution of a new virus, as seen with COVID-19. In this review, we focus on the susceptibility of domestic animals, especially companion animals, towards SARS-CoV-2 in light of existing studies of natural infection, experimental infection, and serological surveys. Susceptibility of domestic and companion animals to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Mohammadi
- Department of Clinical Science, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamed Ghazavi
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran ,Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
20
|
Lawton K, Keller SM, Barnum S, Arredondo-Lopez C, Spann K, Pusterla N. Seroprevalence of SARS-CoV-2 in 1186 Equids Presented to a Veterinary Medical Teaching Hospital in California from 2020 to 2022. Viruses 2022; 14:v14112497. [PMID: 36423106 PMCID: PMC9696554 DOI: 10.3390/v14112497] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
While some companion animals have been shown to be susceptible to SARS-CoV-2, their role in the COVID-19 pandemic has remained poorly investigated. Equids are susceptible to SARS-CoV-2 based on the similarity of the human ACE-2 receptor and reports of infection. Clinical disease and prevalence factors associated with SARS-CoV-2 infection in equids have not yet been investigated. The aim of this study was to determine the seroprevalence of SARS-CoV-2 and selected prevalence factors in 1186 equids presented for various conditions to a Veterinary Medical Teaching Hospital over a two-year period. Blood samples were tested for SARS-CoV-2 antibodies using an ELISA targeting the receptor binding domain (RBD) of the SARS-CoV-2 spike protein. Further, selected prevalence factors (season, age, breed, sex, presenting complaint) were retrieved from the medical records. No information was available on whether the horses had come into contact with COVID-19-positive individuals. Among the study animals, 42/1186 (3.5%) horses had detectable SARS-CoV-2 antibodies. Amongst the prevalence factors investigated, only seasonality (spring) was associated with a greater frequency of seropositivity to SARS-CoV-2. Horses with medical and surgical complaints were more likely to test seropositive to SARS-CoV-2 compared to horses presented for routine health care procedures, suggesting more frequent and/or longer interactions with individuals with COVID-19. While horses can become infected with SARS-CoV-2 via the occasional spillover from COVID-19 individuals, clinical disease expression remains subclinical, making horses an unlikely contributor to the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Kaila Lawton
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Stefan M. Keller
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Christina Arredondo-Lopez
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Kennedy Spann
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
- Correspondence:
| |
Collapse
|
21
|
Porter SM, Hartwig AE, Bielefeldt-Ohmann H, Bosco-Lauth AM, Root JJ. Susceptibility of Wild Canids to SARS-CoV-2. Emerg Infect Dis 2022; 28:1852-1855. [PMID: 35830965 PMCID: PMC9423904 DOI: 10.3201/eid2809.220223] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We assessed 2 wild canid species, red foxes (Vulpes vulpes) and coyotes (Canis latrans), for susceptibility to SARS-CoV-2. After experimental inoculation, red foxes became infected and shed infectious virus. Conversely, experimentally challenged coyotes did not become infected; therefore, coyotes are unlikely to be competent hosts for SARS-CoV-2.
Collapse
|
22
|
Rutherford C, Kafle P, Soos C, Epp T, Bradford L, Jenkins E. Investigating SARS-CoV-2 Susceptibility in Animal Species: A Scoping Review. ENVIRONMENTAL HEALTH INSIGHTS 2022; 16:11786302221107786. [PMID: 35782319 PMCID: PMC9247998 DOI: 10.1177/11786302221107786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
In the early stages of response to the SARS-CoV-2 pandemic, it was imperative for researchers to rapidly determine what animal species may be susceptible to the virus, under low knowledge and high uncertainty conditions. In this scoping review, the animal species being evaluated for SARS-CoV-2 susceptibility, the methods used to evaluate susceptibility, and comparing the evaluations between different studies were conducted. Using the PRISMA-ScR methodology, publications and reports from peer-reviewed and gray literature sources were collected from databases, Google Scholar, the World Organization for Animal Health (OIE), snowballing, and recommendations from experts. Inclusion and relevance criteria were applied, and information was subsequently extracted, categorized, summarized, and analyzed. Ninety seven sources (publications and reports) were identified which investigated 649 animal species from eight different classes: Mammalia, Aves, Actinopterygii, Reptilia, Amphibia, Insecta, Chondrichthyes, and Coelacanthimorpha. Sources used four different methods to evaluate susceptibility, in silico, in vitro, in vivo, and epidemiological analysis. Along with the different methods, how each source described "susceptibility" and evaluated the susceptibility of different animal species to SARS-CoV-2 varied, with conflicting susceptibility evaluations evident between different sources. Early in the pandemic, in silico methods were used the most to predict animal species susceptibility to SARS-CoV-2 and helped guide more costly and intensive studies using in vivo or epidemiological analyses. However, the limitations of all methods must be recognized, and evaluations made by in silico and in vitro should be re-evaluated when more information becomes available, such as demonstrated susceptibility through in vivo and epidemiological analysis.
Collapse
Affiliation(s)
- Connor Rutherford
- School of Public Health, University of
Saskatchewan, Saskatoon, SK, Canada
| | - Pratap Kafle
- Department of Veterinary Microbiology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
- Department of Veterinary Biomedical
Sciences, Long Island University Post Campus, Brookville, NY, USA
| | - Catherine Soos
- Ecotoxicology and Wildlife Health
Division, Science & Technology Branch, Environment and Climate Change Canada,
Saskatoon, SK, Canada
- Department of Veterinary Pathology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
| | - Tasha Epp
- Department of Large Animal Clinical
Sciences, Western College of Veterinary Medicine, University of Saskatchewan,
Saskatoon, SK, Canada
| | - Lori Bradford
- Ron and Jane Graham School of
Professional Development, College of Engineering, and School of Environment and
Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
| | - Emily Jenkins
- Department of Veterinary Microbiology,
Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK,
Canada
| |
Collapse
|
23
|
Doliff R, Martens P. Cats and SARS-CoV-2: A Scoping Review. Animals (Basel) 2022; 12:1413. [PMID: 35681877 PMCID: PMC9179433 DOI: 10.3390/ani12111413] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/22/2022] Open
Abstract
Since the beginning of the COVID-19 pandemic, various animal species were found to be susceptible to SARS-CoV-2 infection. The close contact that exists between humans and cats warrants special attention to the role of this species. Therefore, a scoping review was performed to obtain a comprehensive overview of the existing literature, and to map key concepts, types of research, and possible gaps in the research. A systematic search of the databases PubMed, Google Scholar, and Scopus and the preprint servers medRxiv and bioRxiv was performed. After a two-step screening process, 27 peer-reviewed articles, 8 scientific communication items, and 2 unpublished pre-prints were included. The main themes discussed were susceptibility to SARS-CoV-2, induced immunity, prevalence of infection, manifestation of infection, interspecies transmission between humans and cats, and lastly, intraspecies transmission between cats. The main gaps in the research identified were a lack of large-scale studies, underrepresentation of stray, feral, and shelter cat populations, lack of investigation into cat-to-cat transmissions under non-experimental conditions, and the relation of cats to other animal species regarding SARS-CoV-2. Overall, cats seemingly play a limited role in the spread of SARS-CoV-2. While cats are susceptible to the virus and reverse zoonotic transmission from humans to cats happens regularly, there is currently no evidence of SARS-CoV-2 circulation among cats.
Collapse
Affiliation(s)
| | - Pim Martens
- University College Venlo, Maastricht University, Nassaustraat 36, 5911 BV Venlo, The Netherlands;
| |
Collapse
|
24
|
SARS-CoV-2 Seroconversion in an Adult Horse with Direct Contact to a COVID-19 Individual. Viruses 2022; 14:v14051047. [PMID: 35632788 PMCID: PMC9145940 DOI: 10.3390/v14051047] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 12/23/2022] Open
Abstract
The authors report on a possible direct exposure to SARS-CoV-2 from a COVID-19-positive individual to an adult horse. The individual, diagnosed with COVID-19 (Delta B.1.617.2), had daily contact to her two horses prior to and during the development of clinical disease. None of the two horses developed abnormal clinical signs or had detectable SARS-CoV-2 in blood, nasal secretion, or feces via RT-qPCR. However, one of the two horses showed close temporal seroconversion to SARS-CoV-2 using a protein-based ELISA and the plaque reduction neutralization test. The results suggest that horses can become silently infected with SARS-CoV-2 following close contact with humans infected with SARS-CoV-2. As a precautionary measure, humans infected with SARS-CoV-2 should avoid close contact with equids and other companion animals during the time of their illness to prevent viral transmission.
Collapse
|
25
|
Villanueva‐Saz S, Giner J, Tobajas AP, Pérez MD, González‐Ramírez AM, Macías‐León J, González A, Verde M, Yzuel A, Hurtado‐Guerrero R, Pardo J, Santiago L, Paño‐Pardo JR, Ruíz H, Lacasta DM, Sánchez L, Marteles D, Gracia AP, Fernández A. Serological evidence of SARS-CoV-2 and co-infections in stray cats in Spain. Transbound Emerg Dis 2022; 69:1056-1064. [PMID: 33686768 PMCID: PMC8250530 DOI: 10.1111/tbed.14062] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/09/2021] [Accepted: 03/05/2021] [Indexed: 12/12/2022]
Abstract
A new coronavirus known as SARS-CoV-2 emerged in Wuhan in 2019 and spread rapidly to the rest of the world causing the pandemic disease named coronavirus disease of 2019 (COVID-19). Little information is known about the impact this virus can cause upon domestic and stray animals. The potential impact of SARS-CoV-2 has become of great interest in cats due to transmission among domestic cats and the severe phenotypes described recently in a domestic cat. In this context, there is a public health warning that needs to be investigated in relation with the epidemiological role of this virus in stray cats. Consequently, in order to know the impact of the possible transmission chain, blood samples were obtained from 114 stray cats in the city of Zaragoza (Spain) and tested for SARS-CoV-2 and other selected pathogens susceptible to immunosuppression including Toxoplasma gondii, Leishmania infantum, feline leukaemia virus (FeLV) and feline immunodeficiency virus (FIV) from January to October 2020. Four cats (3.51%), based on enzyme-linked immunosorbent assay (ELISA) using the receptor binding domain (RBD) of Spike antigen, were seroreactive to SARS-CoV-2. T. gondii, L. infantum, FeLV and FIV seroprevalence was 12.28%, 16.67%, 4.39% and 19.30%, respectively. Among seropositive cats to SARS-CoV-2, three cats were also seropositive to other pathogens including antibodies detected against T. gondii and FIV (n = 1); T. gondii (n = 1); and FIV and L. infantum (n = 1). The subjects giving positive for SARS-CoV-2 were captured in urban areas of the city in different months: January 2020 (2/4), February 2020 (1/4) and July 2020 (1/4). This study revealed, for the first time, the exposure of stray cats to SARS-CoV-2 in Spain and the existence of concomitant infections with other pathogens including T. gondii, L. infantum and FIV, suggesting that immunosuppressed animals might be especially susceptible to SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sergio Villanueva‐Saz
- Clinical Immunology Laboratory, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
- Department of Pharmacology and PhysiologyVeterinary FacultyUniversity of ZaragozaZaragozaSpain
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
| | - Jacobo Giner
- Clinical Immunology Laboratory, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
- Deparment of Animal Pathology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Ana Pilar Tobajas
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Department of Animal Production and Sciences of the Food, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - María Dolores Pérez
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Department of Animal Production and Sciences of the Food, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Andrés Manuel González‐Ramírez
- Institute for Biocomputation and Physics of Complex Systems (BIFI)Edificio I+DCampus Rio EbroUniversity of ZaragozaZaragozaSpain
| | - Javier Macías‐León
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
| | - Ana González
- Deparment of Animal Pathology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Maite Verde
- Clinical Immunology Laboratory, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Deparment of Animal Pathology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Andrés Yzuel
- Clinical Immunology Laboratory, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Ramón Hurtado‐Guerrero
- Institute for Biocomputation and Physics of Complex Systems (BIFI)Edificio I+DCampus Rio EbroUniversity of ZaragozaZaragozaSpain
- Aragon I+D Foundation (ARAID)ZaragozaSpain
- Laboratorio de Microscopías Avanzada (LMA)Edificio I+D, Campus Rio EbroUniversity of ZaragozaZaragozaSpain
- Copenhagen Center for GlycomicsCopenhagenDenmark
- Department of Cellular and Molecular MedicineSchool of DentistryUniversity of CopenhagenCopenhagenDenmark
| | - Julián Pardo
- Aragon I+D Foundation (ARAID)ZaragozaSpain
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
- Department of MicrobiologyPediatrics, Radiology and Public HealthZaragoza University of ZaragozaZaragozaSpain
| | | | - José Ramón Paño‐Pardo
- Aragon Health Research Institute (IIS Aragón)ZaragozaSpain
- Infectious Disease DepartmentUniversity Hospital Lozano BlesaZaragozaSpain
| | - Héctor Ruíz
- Deparment of Animal Pathology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Delia María Lacasta
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Deparment of Animal Pathology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Lourdes Sánchez
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Department of Animal Production and Sciences of the Food, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Diana Marteles
- Clinical Immunology Laboratory, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Ana Pilar Gracia
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Department of Animal Production and Sciences of the Food, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| | - Antonio Fernández
- Clinical Immunology Laboratory, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
- Instituto Agroalimentario de Aragón‐IA2 (Universidad de Zaragoza‐CITA)ZaragozaSpain
- Deparment of Animal Pathology, Veterinary FacultyUniversity of ZaragozaZaragozaSpain
| |
Collapse
|
26
|
Hancock TJ, Hickman P, Kazerooni N, Kennedy M, Kania SA, Dennis M, Szafranski N, Gerhold R, Su C, Masi T, Smith S, Sparer TE. Possible Cross-Reactivity of Feline and White-Tailed Deer Antibodies against the SARS-CoV-2 Receptor Binding Domain. J Virol 2022; 96:e0025022. [PMID: 35352999 PMCID: PMC9044950 DOI: 10.1128/jvi.00250-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/17/2022] [Indexed: 02/07/2023] Open
Abstract
In late 2019, a novel coronavirus began circulating within humans in central China. It was designated SARS-CoV-2 because of its genetic similarities to the 2003 SARS coronavirus (SARS-CoV). Now that SARS-CoV-2 has spread worldwide, there is a risk of it establishing new animal reservoirs and recombination with native circulating coronaviruses. To screen local animal populations in the United States for exposure to SARS-like coronaviruses, we developed a serological assay using the receptor binding domain (RBD) from SARS-CoV-2. SARS-CoV-2's RBD is antigenically distinct from common human and animal coronaviruses, allowing us to identify animals previously infected with SARS-CoV or SARS-CoV-2. Using an indirect enzyme-linked immunosorbent assay (ELISA) for SARS-CoV-2's RBD, we screened serum from wild and domestic animals for the presence of antibodies against SARS-CoV-2's RBD. Surprisingly prepandemic feline serum samples submitted to the University of Tennessee Veterinary Hospital were ∼50% positive for anti-SARS RBD antibodies. Some of these samples were serologically negative for feline coronavirus (FCoV), raising the question of the etiological agent generating anti-SARS-CoV-2 RBD cross-reactivity. We also identified several white-tailed deer from South Carolina with anti-SARS-CoV-2 antibodies. These results are intriguing, as cross-reactive antibodies toward SARS-CoV-2 RBD have not been reported to date. The etiological agent responsible for seropositivity was not readily apparent, but finding seropositive cats prior to the current SARS-CoV-2 pandemic highlights our lack of information about circulating coronaviruses in other species. IMPORTANCE We report cross-reactive antibodies from prepandemic cats and postpandemic South Carolina white-tailed deer that are specific for that SARS-CoV RBD. There are several potential explanations for this cross-reactivity, each with important implications to coronavirus disease surveillance. Perhaps the most intriguing possibility is the existence and transmission of an etiological agent (such as another coronavirus) with similarity to SARS-CoV-2's RBD region. However, we lack conclusive evidence of prepandemic transmission of a SARS-like virus. Our findings provide impetus for the adoption of a One Health Initiative focusing on infectious disease surveillance of multiple animal species to predict the next zoonotic transmission to humans and future pandemics.
Collapse
Affiliation(s)
- Trevor J. Hancock
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Peyton Hickman
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Niloo Kazerooni
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Melissa Kennedy
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Stephen A. Kania
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Michelle Dennis
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Nicole Szafranski
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Richard Gerhold
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, Tennessee, USA
| | - Chunlei Su
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Tom Masi
- Graduate School of Medicine, University of Tennessee Medical Center, Knoxville, Tennessee, USA
| | - Stephen Smith
- MEDIC Regional Blood Center, Knoxville, Tennessee, USA
| | - Tim E. Sparer
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
27
|
COVID-19: A Veterinary and One Health Perspective. J Indian Inst Sci 2022; 102:689-709. [PMID: 35968231 PMCID: PMC9364302 DOI: 10.1007/s41745-022-00318-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/21/2022] [Indexed: 10/30/2022]
Abstract
Interface with animals has been responsible for the occurrence of a major proportion of human diseases for the past several decades. Recent outbreaks of respiratory, haemorrhagic, encephalitic, arthropod-borne and other viral diseases have underlined the role of animals in the transmission of pathogens to humans. The on-going coronavirus disease-2019 (COVID-19) pandemic is one among them and is thought to have originated from bats and jumped to humans through an intermediate animal host. Indeed, the aetiology, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can infect and cause disease in cats, ferrets and minks, as well as be transmitted from one animal to another. The seriousness of the pandemic along with the zoonotic origin of the virus has been a red alert on the critical need for collaboration and cooperation among human and animal health professionals, as well as stakeholders from various other disciplines that study planetary health parameters and the well-being of the biosphere. It is therefore imminent that One Health principles are applied across the board for human infectious diseases so that we can be better prepared for future zoonotic disease outbreaks and pandemics.
Collapse
|
28
|
Pecora A, Malacari DA, Mozgovoj MV, Díaz MDLÁ, Peralta AV, Cacciabue M, Puebla AF, Carusso C, Mundo SL, Gonzalez Lopez Ledesma MM, Gamarnik AV, Rinaldi O, Vidal O, Mas J, Dus Santos MJ. Anthropogenic Infection of Domestic Cats With SARS-CoV-2 Alpha Variant B.1.1.7 Lineage in Buenos Aires. Front Vet Sci 2022; 9:790058. [PMID: 35310416 PMCID: PMC8925007 DOI: 10.3389/fvets.2022.790058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/04/2022] [Indexed: 12/11/2022] Open
Abstract
SARS-CoV-2 reverse zoonosis, particularly to domestic animals, and the potential role of infected animals in perpetuating the spread of the virus is an issue of increasing concern. In this case report, we identified the natural infection of two cats by SARS-CoV-2, in Argentina, whose owner had been previously infected by SARS-CoV-2. Viral genetic material was detected in feline oropharyngeal (OP) and rectal (R) swab by RT-qPCR, and sequence analysis revealed that the virus infecting the owner and one cat were genetically similar. The alpha variant (B.1.1.7 lineage) was identified with a unique additional mutation, strongly suggesting human-to-cat route of transmission. This study reinforces the One Health concept and the importance of integrating human, animal, and environmental perspectives to promptly address relevant health issues.
Collapse
Affiliation(s)
- Andrea Pecora
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Marina Valeria Mozgovoj
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
- Centro de Agroindustria, Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | | | - Andrea Verónica Peralta
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marco Cacciabue
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Andrea Fabiana Puebla
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Agrobiotecnología y Biología Molecular, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristian Carusso
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Silvia Leonor Mundo
- Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Andrea Vanesa Gamarnik
- Instituto de Investigaciones Bioquímicas de Buenos Aires (IIBBA, CONICET-Fundación Instituto Leloir), Buenos Aires, Argentina
| | | | | | - Javier Mas
- Diagnogen S.A., Buenos Aires, Argentina
- Diagnotest SRL, Buenos Aires, Argentina
| | - María José Dus Santos
- Centro de Investigaciones en Ciencias Veterinarias y Agronómicas, Instituto de Virología e Innovaciones Tecnológicas, Instituto Nacional de Tecnología Agropecuaria (INTA)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Biotecnología, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
29
|
Lawton KOY, Arthur RM, Moeller BC, Barnum S, Pusterla N. Investigation of the Role of Healthy and Sick Equids in the COVID-19 Pandemic through Serological and Molecular Testing. Animals (Basel) 2022; 12:ani12050614. [PMID: 35268183 PMCID: PMC8909032 DOI: 10.3390/ani12050614] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 12/03/2022] Open
Abstract
Simple Summary The objective of the present study was to determine if horses are susceptible to SARS-CoV-2. Nasal swabs from 667 equids with acute onset of fever and respiratory signs were tested by qPCR for SARS-CoV-2. Further, 633 serum samples collected from a cohort of 587 healthy racing Thoroughbreds with possible exposure to humans with SARS-CoV-2 infection were tested for antibodies to SARS-CoV-2 using an ELISA targeting the receptor-binding domain of the spike protein. All 667 horses with fever and respiratory signs tested qPCR-negative for SARS-CoV-2. A total of 35/587 (5.9%) Thoroughbred racing horses had detectable IgG antibodies to SARS-CoV-2. While horses appear to be susceptible to SARS-CoV-2 when in close contact with humans with SARS-CoV-2 infection, clinical disease was not observed in the study horses. Experimental challenge studies using pure inocula are needed in order to study the clinical, hematological, molecular, and serological features of adult horses infected with SARS-CoV-2. Abstract More and more studies are reporting on the natural transmission of SARS-CoV-2 between humans with COVID-19 and their companion animals (dogs and cats). While horses are apparently susceptible to SARS-CoV-2 infection based on the homology between the human and the equine ACE-2 receptor, no clinical or subclinical infection has yet been reported in the equine species. To investigate the possible clinical role of SARS-CoV-2 in equids, nasal secretions from 667 horses with acute onset of fever and respiratory signs were tested for the presence of SARS-CoV-2 by qPCR. The samples were collected from January to December of 2020 and submitted to a commercial molecular diagnostic laboratory for the detection of common respiratory pathogens (equine influenza virus, equine herpesvirus-1/-4, equine rhinitis A and B virus, Streptococcus equi subspecies equi). An additional 633 serum samples were tested for antibodies to SARS-CoV-2 using an ELISA targeting the receptor-binding domain of the spike protein. The serum samples were collected from a cohort of 587 healthy racing Thoroughbreds in California after track personnel tested qPCR-positive for SARS-CoV-2. While 241/667 (36%) equids with fever and respiratory signs tested qPCR-positive for at least one of the common respiratory pathogens, not a single horse tested qPCR-positive for SARS-CoV-2. Amongst the racing Thoroughbreds, 35/587 (5.9%) horses had detectable antibodies to SARS-CoV-2. Similar to dogs and cats, horses do not seem to develop clinical SARS-CoV-2 infection. However, horses can act as incidental hosts and experience silent infection following spillover from humans with COVID-19. SARS-CoV-2-infected humans should avoid close contact with equids during the time of their illness.
Collapse
Affiliation(s)
- Kaila O. Y. Lawton
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (K.O.Y.L.); (S.B.)
| | - Rick M. Arthur
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Benjamin C. Moeller
- KL Maddy Equine Analytical Chemistry Laboratory, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Samantha Barnum
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (K.O.Y.L.); (S.B.)
| | - Nicola Pusterla
- Department of Medicine and Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (K.O.Y.L.); (S.B.)
- Correspondence: ; Tel.: +1-530-752-1039
| |
Collapse
|
30
|
Cong Y, Li J, Sun Y, Wang F, Zhao L, Xue H, Guo L, Wang Y, Li X, Liu X, Zhao J. Comment on: Rabies-infected dogs at slaughterhouses: A potential risk of rabies transmission via dog trading and butchering activities in Vietnam. Zoonoses Public Health 2022; 69:254-255. [PMID: 35146938 DOI: 10.1111/zph.12917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/02/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Yanlong Cong
- Laboratory of Infectious Diseases, College of Veterinary Medicine, Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Junfeng Li
- Jilin Agricultural University, Changchun, China
| | - Yixue Sun
- Jilin Research & Development Center of Biomedical Engineering, Changchun University, Changchun, China
| | | | - Lifeng Zhao
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Honghong Xue
- People's Government of Huanxi Township, Chuanying District, Jilin, China
| | - Li Guo
- College of Animal Science and Technology, Jilin Agricultural Science and Technology University, Jilin, China
| | - Yongzhi Wang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Xiaocheng Li
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN), Beijing, China
| | - Xuelian Liu
- Jilin DaBeiNong Agriculture and Animal, Husbandry Technology Co., Ltd, Changchun, China
| | - Jinghui Zhao
- State Key Laboratory of Direct-Fed Microbial Engineering, Beijing DaBeiNong Science and Technology Group Co., Ltd. (DBN), Beijing, China.,Jilin DaBeiNong Agriculture and Animal, Husbandry Technology Co., Ltd, Changchun, China
| |
Collapse
|
31
|
Zepeda-Cervantes J, Martínez-Flores D, Ramírez-Jarquín JO, Tecalco-Cruz ÁC, Alavez-Pérez NS, Vaca L, Sarmiento-Silva RE. Implications of the Immune Polymorphisms of the Host and the Genetic Variability of SARS-CoV-2 in the Development of COVID-19. Viruses 2022; 14:94. [PMID: 35062298 PMCID: PMC8778858 DOI: 10.3390/v14010094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 01/08/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current pandemic affecting almost all countries in the world. SARS-CoV-2 is the agent responsible for coronavirus disease 19 (COVID-19), which has claimed millions of lives around the world. In most patients, SARS-CoV-2 infection does not cause clinical signs. However, some infected people develop symptoms, which include loss of smell or taste, fever, dry cough, headache, severe pneumonia, as well as coagulation disorders. The aim of this work is to report genetic factors of SARS-CoV-2 and host-associated to severe COVID-19, placing special emphasis on the viral entry and molecules of the immune system involved with viral infection. Besides this, we analyze SARS-CoV-2 variants and their structural characteristics related to the binding to polymorphic angiotensin-converting enzyme type 2 (ACE2). Additionally, we also review other polymorphisms as well as some epigenetic factors involved in the immunopathogenesis of COVID-19. These factors and viral variability could explain the increment of infection rate and/or in the development of severe COVID-19.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Daniel Martínez-Flores
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Ángeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City 06720, Mexico;
| | - Noé Santiago Alavez-Pérez
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, Mexico City 07340, Mexico;
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Rosa Elena Sarmiento-Silva
- Departamento de Microbiología e Inmunología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
32
|
Lalchhandama K. A history of coronaviruses. WIKIJOURNAL OF MEDICINE 2022. [DOI: 10.15347/wjm/2022.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The history of coronaviruses is an account of the discovery of coronaviruses and the diseases they cause. It starts with a report of a new type of upper-respiratory tract disease among chickens in North Dakota, US, in 1931. The causative agent was identified as a virus in 1933. By 1936, the disease and the virus were recognised as unique from other viral diseases. The virus became known as infectious bronchitis virus (IBV), but later officially renamed as Avian coronavirus. A new brain disease of mice (murine encephalomyelitis) was discovered in 1947 at Harvard Medical School in Boston. The virus was called JHM (after Harvard pathologist John Howard Mueller). Three years later a new mouse hepatitis was reported from the National Institute for Medical Research in London. The causative virus was identified as mouse hepatitis virus (MHV), later renamed Murine coronavirus. In 1961, a virus was obtained from a school boy in Epsom, England, who was suffering from common cold. The sample, designated B814, was confirmed as novel virus in 1965. New common cold viruses (assigned 229E) collected from medical students at the University of Chicago were also reported in 1966. Structural analyses of IBV, MHV, B18 and 229E using transmission electron microscopy revealed that they all belong to the same group of viruses. Making a crucial comparison in 1967, June Almeida and David Tyrrell invented the collective name coronavirus, as all those viruses were characterised by solar corona-like projections (called spikes) on their surfaces. Other coronaviruses have been discovered from pigs, dogs, cats, rodents, cows, horses, camels, Beluga whales, birds and bats. As of 2022, 52 species are described. Bats are found to be the richest source of different species of coronaviruses. All coronaviruses originated from a common ancestor about 293 million years ago. Zoonotic species such as Severe acute respiratory syndrome-related coronavirus (SARS-CoV), Middle East respiratory syndrome-related coronavirus (MERS-CoV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a variant of SARS-CoV, emerged during the past two decades and caused the first pandemics of the 21st century.
Collapse
|
33
|
Fritz M, Nesi N, Denolly S, Boson B, Legros V, Rosolen SG, Briend‐Marchal A, Ar Gouilh M, Leroy EM. Detection of SARS-CoV-2 in two cats during the second wave of the COVID-19 pandemic in France. Vet Med Sci 2022; 8:14-20. [PMID: 34704394 PMCID: PMC8661769 DOI: 10.1002/vms3.638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Although there are several reports in the literature of SARS-CoV-2 infection in cats, few SARS-CoV-2 sequences from infected cats have been published. In this study, SARS-CoV-2 infection was evaluated in two cats by clinical observation, molecular biology (qPCR and NGS), and serology (microsphere immunoassay and seroneutralization). Following the observation of symptomatic SARS-CoV-2 infection in two cats, infection status was confirmed by RT-qPCR and, in one cat, serological analysis for antibodies against N-protein and S-protein, as well as neutralizing antibodies. Comparative analysis of five SARS-CoV-2 sequence fragments obtained from one of the cats showed that this infection was not with one of the three recently emerged variants of SARS-CoV-2. This study provides additional information on the clinical, molecular, and serological aspects of SARS-CoV-2 infection in cats.
Collapse
Affiliation(s)
- Matthieu Fritz
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Université de MontpellierIRD 224 ‐ CNRS 5290Institut de Recherche pour le Développement (IRD)MontpellierFrance
| | - Nicolas Nesi
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0)Normandie UniversitéUNICAENUNIROUENEA2656CaenFrance
| | - Solène Denolly
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
| | - Bertrand Boson
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
| | - Vincent Legros
- CIRI – Centre International de Recherche en InfectiologieTeam EVIRUniv LyonUniversité Claude Bernard Lyon 1InsermU111CNRSUMR5308ENS LyonLyonFrance
- Campus vétérinaire de LyonVetAgro SupUniversité de LyonMarcy‐l'EtoileFrance
| | - Serge G. Rosolen
- Sorbonne UniversitéINSERMCNRSInstitut de la VisionParisFrance
- Clinique vétérinaire voltaireAsnièresFrance
| | | | - Meriadeg Ar Gouilh
- Groupe de Recherche sur l'Adaptation Microbienne (GRAM 2.0)Normandie UniversitéUNICAENUNIROUENEA2656CaenFrance
- Laboratoire de VirologieCentre Hospitalo‐UniversitaireCaenFrance
| | - Eric M. Leroy
- Maladies Infectieuses et Vecteurs: Ecologie, Génétique, Evolution et Contrôle (MIVEGEC)Université de MontpellierIRD 224 ‐ CNRS 5290Institut de Recherche pour le Développement (IRD)MontpellierFrance
| |
Collapse
|
34
|
Fernández-Bastit L, Rodon J, Pradenas E, Marfil S, Trinité B, Parera M, Roca N, Pou A, Cantero G, Lorca-Oró C, Carrillo J, Izquierdo-Useros N, Clotet B, Noguera-Julián M, Blanco J, Vergara-Alert J, Segalés J. First Detection of SARS-CoV-2 Delta (B.1.617.2) Variant of Concern in a Dog with Clinical Signs in Spain. Viruses 2021; 13:v13122526. [PMID: 34960795 PMCID: PMC8704391 DOI: 10.3390/v13122526] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/09/2021] [Accepted: 12/14/2021] [Indexed: 12/20/2022] Open
Abstract
Several cases of naturally infected dogs with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been reported despite the apparently low susceptibility of this species. Here, we document the first reported case of infection caused by the Delta (B.1.617.2) variant of concern (VOC) in a dog in Spain that lived with several household members suffering from Coronavirus Infectious Disease 2019 (COVID-19). The animal displayed mild digestive and respiratory clinical signs and had a low viral load in the oropharyngeal swab collected at the first sampling. Whole-genome sequencing indicated infection with the Delta variant, coinciding with the predominant variant during the fifth pandemic wave in Spain. The dog seroconverted, as detected 21 days after the first sampling, and developed neutralizing antibodies that cross-neutralized different SARS-CoV-2 variants. This study further emphasizes the importance of studying the susceptibility of animal species to different VOCs and their potential role as reservoirs in the context of COVID-19.
Collapse
Affiliation(s)
- Leira Fernández-Bastit
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Jordi Rodon
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Edwards Pradenas
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Silvia Marfil
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Mariona Parera
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
| | - Núria Roca
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Anna Pou
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Guillermo Cantero
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Cristina Lorca-Oró
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Nuria Izquierdo-Useros
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
| | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Barcelona, Spain
| | - Marc Noguera-Julián
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Barcelona, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, 08916 Badalona, Spain; (E.P.); (S.M.); (B.T.); (M.P.); (J.C.); (N.I.-U.); (B.C.); (M.N.-J.); (J.B.)
- IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute (IGTP), Can Ruti Campus, 08916 Badalona, Spain
- Infectious Diseases and Immunity, Faculty of Medicine, University of Vic-Central University of Catalonia (UVic-UCC), 08500 Barcelona, Spain
| | - Júlia Vergara-Alert
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la UAB, 08193 Cerdanyola del Vallès, Spain; (L.F.-B.); (J.R.); (N.R.); (A.P.); (G.C.); (C.L.-O.); (J.V.-A.)
| | - Joaquim Segalés
- Centre de Recerca en Sanitat Animal (CReSA), Institut de Recerca en Tecnologies Agroalimentaries (IRTA), Campus de la UAB, 08193 Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Facultat de Veterinaria, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain
- Correspondence:
| |
Collapse
|
35
|
Pulido J, García-Durán M, Fernández-Antonio R, Galán C, López L, Vela C, Venteo Á, Rueda P, Rivas LA. Receptor-binding domain-based immunoassays for serosurveillance differentiate efficiently between SARS-CoV2-exposed and non-exposed farmed mink. J Vet Diagn Invest 2021; 34:190-198. [PMID: 34852683 DOI: 10.1177/10406387211057859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
During the COVID-19 pandemic, infection of farmed mink has become not only an economic issue but also a widespread public health concern. International agencies have advised the use of strict molecular and serosurveillance methods for monitoring the SARS-CoV2 status on mink farms. We developed 2 ELISAs and a duplex protein microarray immunoassay (MI), all in a double-recognition format (DR), to detect SARS-CoV2 antibodies specific to the receptor-binding domain (RBD) of the spike protein and to the full-length nucleoprotein (N) in mink sera. We collected 264 mink serum samples and 126 oropharyngeal samples from 5 Spanish mink farms. In both of the ELISAs and the MI, RBD performed better than N protein for serologic differentiation of mink from SARS-CoV2-positive and -negative farms. Therefore, RBD was the optimal antigenic target for serosurveillance of mink farms.
Collapse
Affiliation(s)
- Jorge Pulido
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | | | - Ricardo Fernández-Antonio
- Department of Animal Health, Galician Mink Breeders Association (AGAVI), Santiago de Compostela, Spain
| | - Carmen Galán
- Molecular Diagnostics, Eurofins-Ingenasa, Madrid, Spain
| | | | - Carmen Vela
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | - Ángel Venteo
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | - Paloma Rueda
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| | - Luis A Rivas
- Departments of R&D, Eurofins-Ingenasa, Madrid, Spain
| |
Collapse
|
36
|
Barua S, Hoque M, Adekanmbi F, Kelly P, Jenkins-Moore M, Torchetti MK, Chenoweth K, Wood T, Wang C. Antibodies to SARS-CoV-2 in dogs and cats, USA. Emerg Microbes Infect 2021; 10:1669-1674. [PMID: 34374631 PMCID: PMC8381919 DOI: 10.1080/22221751.2021.1967101] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/17/2022]
Abstract
To provide more complete data on SARS-CoV-2 infections in dogs and cats in the U.S., we conducted a serosurvey on convenience serum samples from dogs (n=1336) and cats (n=956) collected from 48 states of the USA in 2020. An ELISA targeting the antibody against nucleocapsid identified eleven positive and two doubtful samples in cats, and five positive and five doubtful samples in dogs. A surrogate neutralization assay detecting antibodies blocking the attachment of the spike protein to ACE2 was positive with three of the ELISA positive and doubtful samples, and one of 463 randomly selected ELISA negative samples. These four positive samples were confirmed by SARS-CoV-2 virus neutralization testing. All were from cats, in New York, Florida, and New Jersey (n=2). The serosurvey results, one of the largest yet completed on dogs and cats globally, support the OIE and CDC positions that currently there is no evidence that pets play a role in the spread of SARS CoV-2 in humans.
Collapse
Affiliation(s)
- Subarna Barua
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Monirul Hoque
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | | | - Patrick Kelly
- Ross University School of Veterinary Medicine, Basseterre, St. Kitts & Nevis
| | - Melinda Jenkins-Moore
- National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Mia Kim Torchetti
- National Veterinary Services Laboratories, United States Department of Agriculture, Ames, IA, USA
| | - Kelly Chenoweth
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Theresa Wood
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| | - Chengming Wang
- College of Veterinary Medicine, Auburn University, Auburn, AL, USA
| |
Collapse
|
37
|
Embregts CW, Verstrepen B, Langermans JA, Böszörményi KP, Sikkema RS, de Vries RD, Hoffmann D, Wernike K, Smit LA, Zhao S, Rockx B, Koopmans MP, Haagmans BL, Kuiken T, GeurtsvanKessel CH. Evaluation of a multi-species SARS-CoV-2 surrogate virus neutralization test. One Health 2021; 13:100313. [PMID: 34458548 PMCID: PMC8378998 DOI: 10.1016/j.onehlt.2021.100313] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 12/23/2022] Open
Abstract
Assays to measure SARS-CoV-2-specific neutralizing antibodies are important to monitor seroprevalence, to study asymptomatic infections and to reveal (intermediate) hosts. A recently developed assay, the surrogate virus-neutralization test (sVNT) is a quick and commercially available alternative to the "gold standard" virus neutralization assay using authentic virus, and does not require processing at BSL-3 level. The assay relies on the inhibition of binding of the receptor binding domain (RBD) on the spike (S) protein to human angiotensin-converting enzyme 2 (hACE2) by antibodies present in sera. As the sVNT does not require species- or isotype-specific conjugates, it can be similarly used for antibody detection in human and animal sera. In this study, we used 298 sera from PCR-confirmed COVID-19 patients and 151 sera from patients confirmed with other coronavirus or other (respiratory) infections, to evaluate the performance of the sVNT. To analyze the use of the assay in a One Health setting, we studied the presence of RBD-binding antibodies in 154 sera from nine animal species (cynomolgus and rhesus macaques, ferrets, rabbits, hamsters, cats, cattle, mink and dromedary camels). The sVNT showed a moderate to high sensitivity and a high specificity using sera from confirmed COVID-19 patients (91.3% and 100%, respectively) and animal sera (93.9% and 100%), however it lacked sensitivity to detect low titers. Significant correlations were found between the sVNT outcomes and PRNT50 and the Wantai total Ig and IgM ELISAs. While species-specific validation will be essential, our results show that the sVNT holds promise in detecting RBD-binding antibodies in multiple species.
Collapse
Affiliation(s)
| | - Babs Verstrepen
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
| | - Jan A.M. Langermans
- Biomedical Primate Research Centre, Rijswijk, the Netherlands
- Department Population Health Sciences, Division Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | - Reina S. Sikkema
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Rory D. de Vries
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Kerstin Wernike
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institute, Insel Riems, Germany
| | - Lidwien A.M. Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| | - Shan Zhao
- Department of Biomolecular Health Sciences, Virology Division, Faculty of Veterinary Medicine, Utrecht University, the Netherlands
| | - Barry Rockx
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | | - Bart L. Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Thijs Kuiken
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | | |
Collapse
|
38
|
Teixeira AIP. SARS-CoV-2 in animals: what about the cat? Vet Q 2021; 41:226-227. [PMID: 34280074 PMCID: PMC8344248 DOI: 10.1080/01652176.2021.1958393] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/02/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
|
39
|
Laidoudi Y, Sereme Y, Medkour H, Watier-Grillot S, Scandola P, Ginesta J, Andréo V, Labarde C, Comtet L, Pourquier P, Raoult D, Marié JL, Davoust B. SARS-CoV-2 antibodies seroprevalence in dogs from France using ELISA and an automated western blotting assay. One Health 2021; 13:100293. [PMID: 34377760 PMCID: PMC8327341 DOI: 10.1016/j.onehlt.2021.100293] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/23/2022] Open
Abstract
Dogs are occasionally susceptible to SARS-CoV-2, developing few or no clinical signs. Epidemiological surveillance of SARS-CoV-2 in dogs requires testing to distinguish it from other canine coronaviruses. In the last year, significant advances have been made in the diagnosis of SARS-CoV-2, allowing its surveillance in both human and animal populations. Here, using ELISA and automated western blotting (AWB) assays, we performed a longitudinal study on 809 apparently healthy dogs from different regions of France to investigate anti-SARS-CoV-2 antibodies. There were three main groups: (i) 356 dogs sampled once before the pandemic, (ii) 235 dogs sampled once during the pandemic, and (iii) 218 dogs, including 82 dogs sampled twice (before and during the pandemic), 125 dogs sampled twice during the pandemic and 11 dogs sampled three times (once before and twice during the pandemic). Using ELISA, seroprevalence was significantly higher during the pandemic [5.5% (25/453)] than during the pre-pandemic period [1.1% (5/449)]. Among the 218 dogs sampled twice, at least 8 ELISA-seroconversions were observed. ELISA positive pre-pandemic sera were not confirmed in serial tests by AWB, indicating possible ELISA cross-reactivity, probably with other canine coronaviruses. A significant difference was observed between these two serological tests (Q = 88, p = 0.008). A clear correlation was observed between SARS-CoV-2 seroprevalence in dogs and the incidence of SARS-CoV-2 infection in human population from the same area. AWB could be used as a second line assay to confirm the doubtful and discrepant ELISA results in dogs. Our results confirm the previous experimental models regarding the susceptibility of dogs to SARS-CoV-2, suggesting that viral transmission from and between dogs is weak or absent. However, the new variants with multiple mutations could adapt to dogs; this hypothesis cannot be ruled out in the absence of genomic data on SARS-CoV-2 from dogs.
Collapse
Affiliation(s)
- Younes Laidoudi
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Youssouf Sereme
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Hacène Medkour
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Stéphanie Watier-Grillot
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- French Army Center for Epidemiology and Public Health, Marseille, France
| | - Pierre Scandola
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| | | | | | - Claire Labarde
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| | | | | | - Didier Raoult
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Jean-Lou Marié
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
| | - Bernard Davoust
- Aix Marseille Univ, IRD, AP-HM, MEPHI, Marseille, France
- IHU Méditerranée Infection, Marseille, France
- French Military Health Service, Animal Epidemiology Expert Group, Tours, France
- 1 Veterinary Group, Toulon, France
| |
Collapse
|
40
|
Sharun K, Dhama K, Pawde AM, Gortázar C, Tiwari R, Bonilla-Aldana DK, Rodriguez-Morales AJ, de la Fuente J, Michalak I, Attia YA. SARS-CoV-2 in animals: potential for unknown reservoir hosts and public health implications. Vet Q 2021; 41:181-201. [PMID: 33892621 PMCID: PMC8128218 DOI: 10.1080/01652176.2021.1921311] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/19/2021] [Indexed: 02/07/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, previously 2019-nCoV) is suspected of having originated in 2019 in China from a coronavirus infected bat of the genus Rhinolophus. Following the initial emergence, possibly facilitated by a mammalian bridge host, SARS-CoV-2 is currently transmitted across the globe via efficient human-to-human transmission. Results obtained from experimental studies indicate that animal species such as cats, ferrets, raccoon dogs, cynomolgus macaques, rhesus macaques, white-tailed deer, rabbits, Egyptian fruit bats, and Syrian hamsters are susceptible to SARS-CoV-2 infection, and that cat-to-cat and ferret-to-ferret transmission can take place via contact and air. However, natural infections of SARS-CoV-2 have been reported only in pet dogs and cats, tigers, lions, snow leopards, pumas, and gorillas at zoos, and farmed mink and ferrets. Even though human-to-animal spillover has been reported at several instances, SARS-CoV-2 transmission from animals-to-humans has only been reported from mink-to-humans in mink farms. Following the rapid transmission of SARS-CoV-2 within the mink population, a new mink-associated SARS-CoV-2 variant emerged that was identified in both humans and mink. The increasing reports of SARS-CoV-2 in carnivores indicate the higher susceptibility of animal species belonging to this order. The sporadic reports of SARS-CoV-2 infection in domestic and wild animal species require further investigation to determine if SARS-CoV-2 or related Betacoronaviruses can get established in kept, feral or wild animal populations, which may eventually act as viral reservoirs. This review analyzes the current evidence of SARS-CoV-2 natural infection in domestic and wild animal species and their possible implications on public health.
Collapse
Affiliation(s)
- Khan Sharun
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Abhijit M. Pawde
- Division of Surgery, ICAR-Indian Veterinary Research Institute, Bareilly, India
| | - Christian Gortázar
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
| | - Ruchi Tiwari
- Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences, Uttar Pradesh Pandit Deen Dayal Upadhyaya Pashu Chikitsa Vigyan Vishwavidyalaya Evam Go Anusandhan Sansthan (DUVASU), Mathura, India
| | - D. Katterine Bonilla-Aldana
- Semillero de Investigación en Zoonosis (SIZOO), Grupo de Investigacion BIOECOS, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
| | - Alfonso J. Rodriguez-Morales
- Faculty of Health Sciences, Public Health and Infection Research Group, Universidad Tecnologica de Pereira, Pereira, Colombia
- Faculty of Medicine, Grupo de Investigacion Biomedicina, Fundacion Universitaria Autonoma de las Americas, Pereira, Colombia
- Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19), Pereira, Colombia
- School of Medicine, Universidad Privada Franz Tamayo, (UNIFRANZ), Cochabamba, Bolivia
| | - José de la Fuente
- SaBio IREC Instituto de Investigación en Recursos Cinegéticos (CSIC-Universidad de Castilla-La Mancha), Ciudad Real, Spain
- Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, USA
| | - Izabela Michalak
- Faculty of Chemistry, Department of Advanced Material Technologies, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Youssef A. Attia
- Faculty of Environmental Sciences, Department of Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
- The Strategic Center to Kingdom Vision Realization, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Agriculture, Animal and Poultry Production Department, Damanhour University, Damanhour, Egypt
| |
Collapse
|
41
|
Neira V, Brito B, Agüero B, Berrios F, Valdés V, Gutierrez A, Ariyama N, Espinoza P, Retamal P, Holmes EC, Gonzalez-Reiche AS, Khan Z, van de Guchte A, Dutta J, Miorin L, Kehrer T, Galarce N, Almonacid LI, Levican J, van Bakel H, García-Sastre A, Medina RA. A household case evidences shorter shedding of SARS-CoV-2 in naturally infected cats compared to their human owners. Emerg Microbes Infect 2021; 10:376-383. [PMID: 33317424 PMCID: PMC7939552 DOI: 10.1080/22221751.2020.1863132] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been detected in domestic and wild cats. However, little is known about natural viral infections of domestic cats, although their importance for modelling disease spread, informing strategies for managing positive human-animal relationships and disease prevention. Here, we describe the SARS-CoV-2 infection in a household of two human adults and sibling cats (one male and two females) using real-time RT-PCR, an ELISA test, viral sequencing, and virus isolation. On May 5th, 2020, the cat-owners tested positive for SARS-CoV-2. Two days later, the male cat showed mild respiratory symptoms and tested positive. Four days after the male cat, the two female cats became positive, asymptomatically. Also, one human and one cat showed antibodies against SARS-CoV-2. All cats excreted detectable SARS-CoV-2 RNA for a shorter duration than humans and viral sequences analysis confirmed human-to-cat transmission. We could not determine if cat-to-cat transmission also occurred.
Collapse
Affiliation(s)
- Víctor Neira
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Bárbara Brito
- The three institute – University of Technology Sydney, Sydney, Australia
| | - Belén Agüero
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Felipe Berrios
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Valentina Valdés
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Alberto Gutierrez
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Naomi Ariyama
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Patricio Espinoza
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Patricio Retamal
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Edward C. Holmes
- School of Life and Environmental Sciences and School of Medical Sciences, Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Sydney, Australia
| | - Ana S. Gonzalez-Reiche
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zenab Khan
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adriana van de Guchte
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jayeeta Dutta
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas Kehrer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nicolás Galarce
- Facultad de Ciencias Veterinarias y Pecuarias, Departamento de Medicina Preventiva, Universidad de Chile, Santiago, Chile
| | - Leonardo I. Almonacid
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jorge Levican
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rafael A. Medina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Enfermedades Infecciosas e Inmunología Pediátrica, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
42
|
Terrier O, Si-Tahar M, Ducatez M, Chevalier C, Pizzorno A, Le Goffic R, Crépin T, Simon G, Naffakh N. Influenza viruses and coronaviruses: Knowns, unknowns, and common research challenges. PLoS Pathog 2021; 17:e1010106. [PMID: 34969061 PMCID: PMC8718010 DOI: 10.1371/journal.ppat.1010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The development of safe and effective vaccines in a record time after the emergence of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is a remarkable achievement, partly based on the experience gained from multiple viral outbreaks in the past decades. However, the Coronavirus Disease 2019 (COVID-19) crisis also revealed weaknesses in the global pandemic response and large gaps that remain in our knowledge of the biology of coronaviruses (CoVs) and influenza viruses, the 2 major respiratory viruses with pandemic potential. Here, we review current knowns and unknowns of influenza viruses and CoVs, and we highlight common research challenges they pose in 3 areas: the mechanisms of viral emergence and adaptation to humans, the physiological and molecular determinants of disease severity, and the development of control strategies. We outline multidisciplinary approaches and technological innovations that need to be harnessed in order to improve preparedeness to the next pandemic.
Collapse
Affiliation(s)
- Olivier Terrier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Mustapha Si-Tahar
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Inserm U1100, Research Center for Respiratory Diseases (CEPR), Université de Tours, Tours, France
| | - Mariette Ducatez
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- IHAP, UMR1225, Université de Toulouse, ENVT, INRAE, Toulouse, France
| | - Christophe Chevalier
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Andrés Pizzorno
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- CIRI, Centre International de Recherche en Infectiologie (Team VirPath), Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, ENS de Lyon, Lyon, France
| | - Ronan Le Goffic
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Université Paris-Saclay, UVSQ, INRAE, VIM, Equipe Virus Influenza, Jouy-en-Josas, France
| | - Thibaut Crépin
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gaëlle Simon
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, ANSES, Ploufragan, France
| | - Nadia Naffakh
- CNRS GDR2073 ResaFlu, Groupement de Recherche sur les Virus Influenza, France
- RNA Biology and Influenza Virus Unit, Institut Pasteur, CNRS UMR3569, Université de Paris, Paris, France
| |
Collapse
|
43
|
Nova N. Cross-Species Transmission of Coronaviruses in Humans and Domestic Mammals, What Are the Ecological Mechanisms Driving Transmission, Spillover, and Disease Emergence? Front Public Health 2021; 9:717941. [PMID: 34660513 PMCID: PMC8514784 DOI: 10.3389/fpubh.2021.717941] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022] Open
Abstract
Coronaviruses cause respiratory and digestive diseases in vertebrates. The recent pandemic, caused by the novel severe acute respiratory syndrome (SARS) coronavirus 2, is taking a heavy toll on society and planetary health, and illustrates the threat emerging coronaviruses can pose to the well-being of humans and other animals. Coronaviruses are constantly evolving, crossing host species barriers, and expanding their host range. In the last few decades, several novel coronaviruses have emerged in humans and domestic animals. Novel coronaviruses have also been discovered in captive wildlife or wild populations, raising conservation concerns. The evolution and emergence of novel viruses is enabled by frequent cross-species transmission. It is thus crucial to determine emerging coronaviruses' potential for infecting different host species, and to identify the circumstances under which cross-species transmission occurs in order to mitigate the rate of disease emergence. Here, I review (broadly across several mammalian host species) up-to-date knowledge of host range and circumstances concerning reported cross-species transmission events of emerging coronaviruses in humans and common domestic mammals. All of these coronaviruses had similar host ranges, were closely related (indicative of rapid diversification and spread), and their emergence was likely associated with high-host-density environments facilitating multi-species interactions (e.g., shelters, farms, and markets) and the health or well-being of animals as end- and/or intermediate spillover hosts. Further research is needed to identify mechanisms of the cross-species transmission events that have ultimately led to a surge of emerging coronaviruses in multiple species in a relatively short period of time in a world undergoing rapid environmental change.
Collapse
Affiliation(s)
- Nicole Nova
- Department of Biology, Stanford University, Stanford, CA, United States
| |
Collapse
|
44
|
Wu Z, Jin Q, Wu G, Lu J, Li M, Guo D, Lan K, Feng L, Qian Z, Ren L, Tan W, Xu W, Yang W, Wang J, Wang C. SARS-CoV-2's origin should be investigated worldwide for pandemic prevention. Lancet 2021; 398:1299-1303. [PMID: 34543611 PMCID: PMC8448491 DOI: 10.1016/s0140-6736(21)02020-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/31/2021] [Indexed: 02/07/2023]
Affiliation(s)
- Zhiqiang Wu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Qi Jin
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Guizhen Wu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, PR China
| | - Mingkun Li
- Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, PR China
| | - Deyin Guo
- School of Medicine, Sun Yat-sen University, Shenzhen, PR China
| | - Ke Lan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, PR China
| | - Luzhao Feng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Zhaohui Qian
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Lili Ren
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Wenjie Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Wenbo Xu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Weizhong Yang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jianwei Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Chen Wang
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China; Chinese Academy of Engineering, Beijing, PR China
| |
Collapse
|
45
|
Prakoso YA, Rini CS, Kristianingrum YP, Hidayah N, Widhowati D, Sigit M. Severe acute respiratory syndrome-coronavirus 2 in domesticated animals and its potential of transmission: A meta-analysis. Vet World 2021; 14:2782-2792. [PMID: 34903940 PMCID: PMC8654752 DOI: 10.14202/vetworld.2021.2782-2792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND AIM The coronavirus diseases-2019 (COVID-19) pandemic has caused a global lockdown, which has limited the mobility of the public, and thus, more time is spent with their pets. Unfortunately, many social media have blamed pet animals as a reservoir of severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, triggering a panic abandonment of pets. However, no article has summarized the information regarding the role of pets as SARS-CoV-2 reservoirs. This study aimed to evaluate the role of pets as a reservoir of SARS-CoV-2 on the basis of research papers (i.e., animal model, surveillance, and case report) published in 2020. MATERIALS AND METHODS The review was conducted using articles from the PubMed database in 2020, using the keywords "COVID-19 in domesticated animals," which were screened and analyzed. Only the data from research articles were mimicked and transformed to conduct a meta-analysis. The meta-analysis was conducted regarding the effects of inhabitation and viral shedding in pets. In this study, we used 95% confidence intervals. RESULTS A total of 132 papers in PubMed were related to the keywords, whereas only 12 papers were appropriate to answer the dynamics of the role of pets as the reservoir for SARS-CoV-2. Seven studies indicated the potential of cat-cat (4/7), human-cat (2/7), and human-dog (1/7) SARS-CoV-2 transmission. No study proved the presence of cat-human transmission. Another study showed that comingling did not affect SARS-CoV-2 viral shedding among a cat and dog. Furthermore, the viral shedding of cats and dogs caused asymptomatic manifestations and generated neutralizing antibodies within a short period of time. CONCLUSION SARS-CoV-2 transmission is present in domesticated animals, especially in pet cats and dogs, and transmission occurs between animals of the same species (cat-cat). The reverse zoonosis (zooanthroponosis) was found from human to cat/dog (comingled) with asymptomatic clinical signs due to the representation of neutralizing antibodies.
Collapse
Affiliation(s)
- Yos Adi Prakoso
- Department of Pharmacology, Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| | - Chylen Setiyo Rini
- Integrated Laboratory, Faculty of Health, University of Muhammadiyah Sidoarjo, East Java, Indonesia
| | | | - Nurul Hidayah
- Department of Microbiology, Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| | - Dyah Widhowati
- Department of Microbiology, Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| | - Miarsono Sigit
- Department of Veterinary Reproduction, Faculty of Veterinary Medicine, University of Wijaya Kusuma Surabaya, East Java, Indonesia
| |
Collapse
|
46
|
El-Sayed A, Abdel-Daim MM, Kamel M. Zoonotic and anthropozoonotic potential of COVID-19 and its implications for public health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52599-52609. [PMID: 34523089 PMCID: PMC8439532 DOI: 10.1007/s11356-021-16415-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 09/05/2021] [Indexed: 05/07/2023]
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Mohamed M Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah, 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
47
|
Khan S, Hussain A, Vahdani Y, Kooshki H, Mahmud Hussen B, Haghighat S, Fatih Rasul M, Jamal Hidayat H, Hasan A, Edis Z, Haj Bloukh S, Kasravi S, Mahdi Nejadi Babadaei M, Sharifi M, Bai Q, Liu J, Hu B, Akhtari K, Falahati M. Exploring the interaction of quercetin-3-O-sophoroside with SARS-CoV-2 main proteins by theoretical studies: A probable prelude to control some variants of coronavirus including Delta. ARAB J CHEM 2021; 14:103353. [PMID: 34909059 PMCID: PMC8317451 DOI: 10.1016/j.arabjc.2021.103353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/21/2021] [Indexed: 01/18/2023] Open
Abstract
The aim of this study was to investigate the mechanism of interaction between quercetin-3-O-sophoroside and different SARS-CoV-2's proteins which can bring some useful details about the control of different variants of coronavirus including the recent case, Delta. The chemical structure of the quercetin-3-O-sophoroside was first optimized. Docking studies were performed by CoV disease-2019 (COVID-19) Docking Server. Afterwards, the molecular dynamic study was done using High Throughput Molecular Dynamics (HTMD) tool. The results showed a remarkable stability of the quercetin-3-O-sophoroside based on the calculated parameters. Docking outcomes revealed that the highest affinity of quercetin-3-O-sophoroside was related to the RdRp with RNA. Molecular dynamic studies showed that the target E protein tends to be destabilized in the presence of quercetin-3-O-sophoroside. Based on these results, quercetin-3-O-sophoroside can show promising inhibitory effects on the binding site of the different receptors and may be considered as effective inhibitor of the entry and proliferation of the SARS-CoV-2 and its different variants. Finally, it should be noted, although this paper does not directly deal with the exploring the interaction of main proteins of SARS-CoV-2 Delta variant with quercetin-3-O-sophoroside, at the time of writing, no direct theoretical investigation was reported on the interaction of ligands with the main proteins of Delta variant. Therefore, the present data may provide useful information for designing some theoretical studies in the future for studying the control of SARS-CoV-2 variants due to possible structural similarity between proteins of different variants.
Collapse
Affiliation(s)
- Suliman Khan
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Khyber Pakhtunkhwa, Pakistan
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Yasaman Vahdani
- Department of Microbiology, Faculty of Pharmaceutical Science, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamideh Kooshki
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Kurdistan Region, Erbil, Iraq
| | - Setareh Haghighat
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammed Fatih Rasul
- Department of Medical Analysis, Faculty of Science, Tishk International University-Erbil, Kurdistan Region, Iraq
| | - Hazha Jamal Hidayat
- Department of Biology, College of Education, Salahaddin University-Erbil, Erbil, Iraq
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha 2713, Qatar
- Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Zehra Edis
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Samir Haj Bloukh
- Center of Medical and Bio-allied Health Sciences Research, Ajman University, PO Box 346, Ajman, United Arab Emirates
- Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, PO Box 346, Ajman, United Arab Emirates
| | - Shahab Kasravi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Qian Bai
- Department of Anesthesiology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianbo Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bowen Hu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Keivan Akhtari
- Department of Physics, University of Kurdistan, Sanandaj, Iran
| | - Mojtaba Falahati
- Department of Medical Nanotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
48
|
Steele SG, Toribio JALML, Mor SM. Global health security must embrace a One Health approach: Contributions and experiences of veterinarians during the COVID-19 response in Australia. One Health 2021; 13:100314. [PMID: 34485671 PMCID: PMC8397892 DOI: 10.1016/j.onehlt.2021.100314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 01/03/2023] Open
Abstract
SARS-CoV-2, a betacoronavirus of likely zoonotic origin, was first reported in December 2019. Its rapid worldwide spread precipitated a range of interventions, including by veterinarians, due to impacts on human health and well-being as well as animal health and welfare. We conducted 36 key informant interviews to explore the responses of Australian veterinarians, their engagement in One Health collaboration and cooperation, and their existing and developed insights to the COVID-19 pandemic. Responses were analysed using thematic analysis. Australian veterinarians provided valuable contributions to the national COVID-19 response by protecting animal welfare, maintaining local food security, providing essential veterinary services while mitigating human health risks in clinical settings and providing both key skills and surge capacity to the human health response. This was all guided by skills in scientific literacy and evidence-based communication. Informants identified a clear and urgent need for greater One Health coordination during pandemic prevention, preparedness, and response, even in the case of a disease which largely only affects humans. Veterinarians provided key skills and surge capacity in epidemiology and laboratory analysis within the national COVID-19 response. Maintenance of veterinary services assisted pet owners, many of whom saw their pets as a source of emotional and physical support during the pandemic. Veterinarians identified an urgent need for improved One Health coordination to strengthen preparedness and response to future pandemic. Both intra- and inter-professional silos were recognised as perpetual obstacles to operationalising One Health.
Collapse
Affiliation(s)
- Sandra G Steele
- The University of Sydney, Faculty of Science, School of Veterinary Science, NSW 2006, Australia
| | - Jenny-Ann L M L Toribio
- The University of Sydney, Faculty of Science, School of Veterinary Science, NSW 2006, Australia
| | - Siobhan M Mor
- University of Liverpool, Institute of Infection, Veterinary and Ecological Sciences, Merseyside L3 5RF, United Kingdom
| |
Collapse
|
49
|
Niu S, Wang J, Bai B, Wu L, Zheng A, Chen Q, Du P, Han P, Zhang Y, Jia Y, Qiao C, Qi J, Tian W, Wang H, Wang Q, Gao GF. Molecular basis of cross-species ACE2 interactions with SARS-CoV-2-like viruses of pangolin origin. EMBO J 2021; 40:e107786. [PMID: 34018203 PMCID: PMC8209949 DOI: 10.15252/embj.2021107786] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/08/2021] [Accepted: 05/14/2021] [Indexed: 12/02/2022] Open
Abstract
Pangolins have been suggested as potential reservoir of zoonotic viruses, including SARS-CoV-2 causing the global COVID-19 outbreak. Here, we study the binding of two SARS-CoV-2-like viruses isolated from pangolins, GX/P2V/2017 and GD/1/2019, to human angiotensin-converting enzyme 2 (hACE2), the receptor of SARS-CoV-2. We find that the spike protein receptor-binding domain (RBD) of pangolin CoVs binds to hACE2 as efficiently as the SARS-CoV-2 RBD in vitro. Furthermore, incorporation of pangolin CoV RBDs allows entry of pseudotyped VSV particles into hACE2-expressing cells. A screen for binding of pangolin CoV RBDs to ACE2 orthologs from various species suggests a broader host range than that of SARS-CoV-2. Additionally, cryo-EM structures of GX/P2V/2017 and GD/1/2019 RBDs in complex with hACE2 show their molecular binding in modes similar to SARS-CoV-2 RBD. Introducing the Q498H substitution found in pangolin CoVs into the SARS-CoV-2 RBD expands its binding capacity to ACE2 homologs of mouse, rat, and European hedgehog. These findings suggest that these two pangolin CoVs may infect humans, highlighting the necessity of further surveillance of pangolin CoVs.
Collapse
Affiliation(s)
- Sheng Niu
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein SciencesTsinghua‐Peking Joint Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructuresSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Bin Bai
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Lili Wu
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Anqi Zheng
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Qian Chen
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Physical Science and InformationAnhui UniversityHefeiChina
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Pengcheng Han
- Department of biomedical engineeringEmory UniversityAtlantaGAUSA
| | - Yanfang Zhang
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Laboratory of Protein Engineering and VaccinesTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjinChina
| | - Yunfei Jia
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Chengpeng Qiao
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - Wen‐xia Tian
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
| | - Hong‐Wei Wang
- Ministry of Education Key Laboratory of Protein SciencesTsinghua‐Peking Joint Center for Life SciencesBeijing Advanced Innovation Center for Structural BiologyBeijing Frontier Research Center of Biological StructuresSchool of Life SciencesTsinghua UniversityBeijingChina
| | - Qihui Wang
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
- Institute of Physical Science and InformationAnhui UniversityHefeiChina
- Savaid Medical SchoolUniversity of Chinese Academy of SciencesBeijingChina
| | - George Fu Gao
- College of Veterinary MedicineShanxi Agricultural UniversityJinzhongChina
- CAS Key Laboratory of Pathogen Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of SciencesBeijingChina
| |
Collapse
|
50
|
Genomic evolution of the human and animal coronavirus diseases. Mol Biol Rep 2021; 48:6645-6653. [PMID: 34383242 PMCID: PMC8358252 DOI: 10.1007/s11033-021-06632-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/05/2021] [Indexed: 01/08/2023]
Abstract
Different coronaviruses have emerged due to their ability to infect, mutate and recombine multiple species and cell types, suggesting that these viruses will carry on to evolve and origin both veterinary and human diseases. So far, more than fifteen coronavirus-related diseases have been described in animals and seven in humans. Of which recently, a novel human betacoronavirus designated by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), an emerging zoonotic coronavirus is the causative agent of the coronavirus disease 2019. This virus emerged in China and spread rapidly worldwide. At the end of January 2020, the WHO declared the pandemic as a public health emergency of international concern. In this pandemic, the SARS-CoV-2 virus has infected more than 198 million people, with 4.2 million deaths worldwide (as of 2 August 2021). In the past two decades, this is the third betacoronavirus that has crossed the interspecies barrier from animals to infect humans and other animal species. The diseases caused mainly severe respiratory infections. The aim of this review is to summarize and provide an overview of the coronaviruses that can affect animals and humans and the diseases that ensue, as well as, its genomic relationship.
Collapse
|