1
|
Madhvapathy SR, Cho S, Gessaroli E, Forte E, Xiong Y, Gallon L, Rogers JA. Implantable bioelectronics and wearable sensors for kidney health and disease. Nat Rev Nephrol 2025:10.1038/s41581-025-00961-2. [PMID: 40301646 DOI: 10.1038/s41581-025-00961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2025] [Indexed: 05/01/2025]
Abstract
Established clinical practices for monitoring kidney health and disease - including biopsy and serum biomarker analysis - suffer from practical limitations in monitoring frequency and lack adequate sensitivity for early disease detection. Engineering advances in biosensors have led to the development of wearable and implantable systems for monitoring of kidney health. Non-invasive microfluidic systems have demonstrated utility in the detection of kidney-relevant biomarkers, such as creatinine, urea and electrolytes in peripheral body fluids such as sweat, interstitial fluid, tears and saliva. Implantable systems may aid the identification of early transplant rejection through analysis of organ temperature and perfusion, and enable real-time assessment of inflammation through the use of thermal sensors. These technologies enable continuous, real-time monitoring of kidney health, offering complementary information to standard clinical procedures to alert physicians of changes in kidney health for early intervention. In this Review, we explore devices for monitoring renal biomarkers in peripheral biofluids and discuss developments in implantable sensors for the direct measurement of the local, biophysical properties of kidney tissue. We also describe potential clinical applications, including monitoring of chronic kidney disease, acute kidney injury and allograft health.
Collapse
Affiliation(s)
- Surabhi R Madhvapathy
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Soongwon Cho
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Elisa Gessaroli
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum - University of Bologna, Bologna, Italy
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Eleonora Forte
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yirui Xiong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Lorenzo Gallon
- Department of Medicine, Division of Nephrology, University of Illinois College of Medicine, Chicago, IL, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
2
|
Quirion NT, Madrid M, Chang J, Fehr A, Rytkin E, Shields N, Burke B, Elekeokwuri A, Efimov IR, Lu L. A soft multimodal optoelectronic array interface for multiparametric mapping of heart function in vivo. SCIENCE ADVANCES 2025; 11:eads8608. [PMID: 39919178 PMCID: PMC11804930 DOI: 10.1126/sciadv.ads8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 01/08/2025] [Indexed: 02/09/2025]
Abstract
Multiparametric investigation of cardiac physiology is crucial for the diagnosis and therapy of heart disease. However, no method exists to simultaneously map multiple parameters that govern cardiac (patho)physiology from beating hearts in vivo. Here, we present a cardiac sensing platform that addresses this challenge, functioning with a wireless interface. Advanced fabrication and assembling strategies enable the heterogeneous integration of transparent microelectrodes, light-emitting diodes, photodiodes, and optical filters into a multilayer array structure on soft substrates. The microelectrodes exhibit superior electrochemical performance for measuring electrical potentials and excellent transparency for co-localized fluorescence measurement. The device shows excellent biocompatibility and records the fluorescence of calcium reporter with performance comparable to imaging cameras. Multiparametric in vivo mapping of electrical excitation, calcium dynamics, and their combined effects on cardiac excitation-contraction coupling is demonstrated during normal rhythm, arrhythmia, and treatment. This technology offers potential widespread use in cardiac research to support scientific discoveries and advance clinical life-saving diagnostics and therapies.
Collapse
Affiliation(s)
- Nathaniel T. Quirion
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Micah Madrid
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Jialin Chang
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Amy Fehr
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Eric Rytkin
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Nora Shields
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Bridget Burke
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Amarachi Elekeokwuri
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| | - Igor R. Efimov
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Medicine (Cardiology), Northwestern University, Chicago, IL 60611, USA
| | - Luyao Lu
- Department of Biomedical Engineering, The George Washington University, Washington, DC 20052, USA
| |
Collapse
|
3
|
Wang J, Zhao C, Yang P, He H, Yang Y, Lan Z, Guo W, Qin Y, Zhang Q, Li S. A multifunctional electronic dressing with textile-like structure for wound pressure monitoring and treatment. J Colloid Interface Sci 2025; 679:737-747. [PMID: 39476627 DOI: 10.1016/j.jcis.2024.10.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/01/2024] [Accepted: 10/19/2024] [Indexed: 11/20/2024]
Abstract
In the treatment of infected wounds in bedridden or lying chair patients with mobility problems, improper wound care can lead to wound deterioration, prolong disease pain, increase treatment and care costs, and bring heavier psychological, physical, and economic burdens to patients. In the process of wound recovery, patients with mobility problems mainly face the comprehensive problems of poor air permeability, wound pressure could not be monitored, wound infection and slow healing. Therefore, in the process of wound care for such patients, it is imperative to develop a gas permeable dressing that can monitor the patient's wound compression status in real time and promote wound healing. Here, we developed a textile-shaped gel dressing with pressure-responsive properties. Polydopamine (PDA)-silver coated calcium phosphate nanoparticles (CPNPs)and vascular endothelial growth factor (VEGF) were introduced into the gel to give the gel good antibacterial and therapeutic effects, while enhancing the pressure resistance of the gel to meet the needs of wound pressure monitoring. The textured gel morphology greatly improves the gas permeability of the gel and further improves the pressure sensitivity of the gel. This multifunctional textile-like gel dressing provides a new strategy for the development of treatment monitoring integrated dressing and has broad application prospects.
Collapse
Affiliation(s)
- Junju Wang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Chaoshan Zhao
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Yang
- Institute of Burn Research, State Key Laboratory of Trauma Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China
| | - Hong He
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yuping Yang
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; Chongqing College of Electronic Engineering, Chongqing 401331, China
| | - Zhaoqing Lan
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Wei Guo
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China
| | - Yiming Qin
- Department of Dermatology and Laboratory of Dermatology, Clinical Institute of Inflammation and Immunology, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zhang
- Institute of Burn Research, State Key Laboratory of Trauma Burn and Combined Injury, Southwest Hospital, Third Military Medical University, Chongqing 400038, China.
| | - Shunbo Li
- Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education & Key Disciplines Laboratory of Novel Micro-Nano Devices and System Technology, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
4
|
Song R, Cho S, Khan S, Park I, Gao W. Lighting the Path to Precision Healthcare: Advances and Applications of Wearable Photonic Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419161. [PMID: 39865847 DOI: 10.1002/adma.202419161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/13/2025] [Indexed: 01/28/2025]
Abstract
Recent advancements in wearable photonic sensors have marked a transformative era in healthcare, enabling non-invasive, real-time, portable, and personalized medical monitoring. These sensors leverage the unique properties of light toward high-performance sensing in form factors optimized for real-world use. Their ability to offer solutions to a broad spectrum of medical challenges - from routine health monitoring to managing chronic conditions, inspires a rapidly growing translational market. This review explores the design and development of wearable photonic sensors toward various healthcare applications. The photonic sensing strategies that power these technologies are first presented, alongside a discussion of the factors that define optimal use-cases for each approach. The means by which these mechanisms are integrated into wearable formats are then discussed, with considerations toward material selection for comfort and functionality, component fabrication, and power management. Recent developments in the space are detailed, accounting for both physical and chemical stimuli detection through various non-invasive biofluids. Finally, a comprehensive situational overview identifies critical challenges toward translation, alongside promising solutions. Associated future outlooks detail emerging trends and mechanisms that stand to enable the integration of these technologies into mainstream healthcare practice, toward advancing personalized medicine and improving patient outcomes.
Collapse
Affiliation(s)
- Ruihao Song
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Seokjoo Cho
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shadman Khan
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Inkyu Park
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| |
Collapse
|
5
|
Kim MS, Almuslem AS, Babatain W, Bahabry RR, Das UK, El-Atab N, Ghoneim M, Hussain AM, Kutbee AT, Nassar J, Qaiser N, Rojas JP, Shaikh SF, Torres Sevilla GA, Hussain MM. Beyond Flexible: Unveiling the Next Era of Flexible Electronic Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406424. [PMID: 39390819 DOI: 10.1002/adma.202406424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/31/2024] [Indexed: 10/12/2024]
Abstract
Flexible electronics are integral in numerous domains such as wearables, healthcare, physiological monitoring, human-machine interface, and environmental sensing, owing to their inherent flexibility, stretchability, lightweight construction, and low profile. These systems seamlessly conform to curvilinear surfaces, including skin, organs, plants, robots, and marine species, facilitating optimal contact. This capability enables flexible electronic systems to enhance or even supplant the utilization of cumbersome instrumentation across a broad range of monitoring and actuation tasks. Consequently, significant progress has been realized in the development of flexible electronic systems. This study begins by examining the key components of standalone flexible electronic systems-sensors, front-end circuitry, data management, power management and actuators. The next section explores different integration strategies for flexible electronic systems as well as their recent advancements. Flexible hybrid electronics, which is currently the most widely used strategy, is first reviewed to assess their characteristics and applications. Subsequently, transformational electronics, which achieves compact and high-density system integration by leveraging heterogeneous integration of bare-die components, is highlighted as the next era of flexible electronic systems. Finally, the study concludes by suggesting future research directions and outlining critical considerations and challenges for developing and miniaturizing fully integrated standalone flexible electronic systems.
Collapse
Affiliation(s)
- Min Sung Kim
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| | - Amani S Almuslem
- Department of Physics, College of Science, King Faisal University, Prince Faisal bin Fahd bin Abdulaziz Street, Al-Ahsa, 31982, Saudi Arabia
| | - Wedyan Babatain
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Rabab R Bahabry
- Department of Physical Sciences, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Uttam K Das
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nazek El-Atab
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Mohamed Ghoneim
- Logic Technology Development Quality and Reliability, Intel Corporation, Hillsboro, OR, 97124, USA
| | - Aftab M Hussain
- International Institute of Information Technology (IIIT) Hyderabad, Gachibowli, Hyderabad, 500 032, India
| | - Arwa T Kutbee
- Department of Physics, College of Science, King AbdulAziz University, Jeddah, 21589, Saudi Arabia
| | - Joanna Nassar
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Nadeem Qaiser
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Jhonathan P Rojas
- Electrical Engineering Department & Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals, Academic Belt Road, Dhahran, 31261, Saudi Arabia
| | | | - Galo A Torres Sevilla
- Department of Electrical and Computer Engineering, Computer Electrical Mathematical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
| | - Muhammad M Hussain
- mmh Labs (DREAM), Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
6
|
Jung S, Hoffmann M, Winkler D, Güresir E, Kropla F, Scholz S, Grunert R. Influence of the orientation of constructed blood vessels during the 3D printing on the measurement of the pseudo-oxygen saturation of an artificial blood substitute using conventional oxygen sensors: a test series. 3D Print Med 2024; 10:40. [PMID: 39592528 PMCID: PMC11600587 DOI: 10.1186/s41205-024-00246-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND The development of phantoms to reduce animal testing or to validate new instruments or operation techniques is of increasing importance. For this reason, a blood circulation phantom was developed to test a newly designed retractor system with an integrated oxygen sensor. This phantom was used to evaluate the impact of the 3D printed blood vessel on the measurement of the oxygen saturation. METHODS A solution of nickel sulfate and copper sulfate was prepared as a substitute for real blood. The absorption spectra of these solutions were recorded and compared with those of blood. Subsequently, the oxygen sensor used was calibrated to the blood substitute. Additionally, blood vessels with a simplified geometry were designed and manufactured using inverted vat polymerization and an elastic material (Formlabs Elastic 50 A). To determine the orientation during the printing process, various vessels were printed. Measurements to assess the effects of disturbance (rotation of the vessels during measurements) on the sensor readouts were prepared. RESULTS The impact of disturbances was verified through the rotation of the 3D printed vessels. It was demonstrated that a direct measurement on the disturbances led to outliers and higher values. An optimal orientation was determined to be a lateral placement (90° or 270°) of the sensor. Regarding the orientation of the vessels within the printing space, an orientation of 45° yielded the best results, as the individual layers had the least impact on the light emitted and received by the oxygen sensor. CONCLUSION The achieved results demonstrate the influence of the orientation of the vessel during 3D printing as well as the influence of the position of the vessel during the measurement using a conventional oxygen sensor.
Collapse
Affiliation(s)
- Svenja Jung
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany.
| | - Martin Hoffmann
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany
| | - Dirk Winkler
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany
| | - Erdem Güresir
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany
| | - Fabian Kropla
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany
| | - Sebastian Scholz
- Fraunhofer-Institute for Machine Tools and Forming Technology, 02763, Zittau, Germany
| | - Ronny Grunert
- Department of Neurosurgery, University of Leipzig Medical Center, Liebigstr.20, 04103, Leipzig, Germany
- Fraunhofer-Institute for Machine Tools and Forming Technology, 02763, Zittau, Germany
| |
Collapse
|
7
|
Ciatti JL, Vázquez-Guardado A, Brings VE, Park J, Ruyle B, Ober RA, McLuckie AJ, Talcott MR, Carter EA, Burrell AR, Sponenburg RA, Trueb J, Gupta P, Kim J, Avila R, Seong M, Slivicki RA, Kaplan MA, Villalpando-Hernandez B, Massaly N, Montana MC, Pet M, Huang Y, Morón JA, Gereau RW, Rogers JA. An autonomous implantable device for the prevention of death from opioid overdose. SCIENCE ADVANCES 2024; 10:eadr3567. [PMID: 39441938 PMCID: PMC11498215 DOI: 10.1126/sciadv.adr3567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, now a leading cause of mortality among young people aged 18 to 45 years. At overdose levels, opioid-induced respiratory depression becomes fatal without the administration of naloxone within minutes. Currently, overdose survival relies on bystander intervention, requiring a nearby person to find the overdosed individual and have immediate access to naloxone to administer. To circumvent the bystander requirement, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose while simultaneously contacting first responders. We present three Naloximeter platforms, for fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that can broadly benefit a susceptible population recovering from opioid use disorder.
Collapse
Affiliation(s)
- Joanna L. Ciatti
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Abraham Vázquez-Guardado
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27606, USA
| | - Victoria E. Brings
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jihun Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Brian Ruyle
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Rebecca A. Ober
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alicia J. McLuckie
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Michael R. Talcott
- Division of Cardiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Emily A. Carter
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Amy R. Burrell
- Center for Comparative Medicine, Northwestern University, Evanston, IL 60208, USA
| | - Rebecca A. Sponenburg
- Chemistry of Life Processes Institute (Quantitative Bio-element Imaging Center), Northwestern University, Evanston, IL 60208, USA
| | - Jacob Trueb
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Prashant Gupta
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Minho Seong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Richard A. Slivicki
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Melanie A. Kaplan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Bryan Villalpando-Hernandez
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Nicolas Massaly
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael C. Montana
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mitchell Pet
- Division of Plastic and Reconstructive Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jose A. Morón
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
| | - Robert W. Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University, St. Louis, MO 63110, USA
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63110, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Ciatti JL, Vazquez-Guardado A, Brings VE, Park J, Ruyle B, Ober RA, McLuckie AJ, Talcott MR, Carter EA, Burrell AR, Sponenburg RA, Trueb J, Gupta P, Kim J, Avila R, Seong M, Slivicki RA, Kaplan MA, Villalpando-Hernandez B, Massaly N, Montana MC, Pet M, Huang Y, Morón JA, Gereau RW, Rogers JA. An Autonomous Implantable Device for the Prevention of Death from Opioid Overdose. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.600919. [PMID: 39005313 PMCID: PMC11244915 DOI: 10.1101/2024.06.27.600919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Opioid overdose accounts for nearly 75,000 deaths per year in the United States, representing a leading cause of mortality amongst the prime working age population (25-54 years). At overdose levels, opioid-induced respiratory depression becomes fatal without timely administration of the rescue drug naloxone. Currently, overdose survival relies entirely on bystander intervention, requiring a nearby person to discover and identify the overdosed individual, and have immediate access to naloxone to administer. Government efforts have focused on providing naloxone in abundance but do not address the equally critical component for overdose rescue: a willing and informed bystander. To address this unmet need, we developed the Naloximeter: a class of life-saving implantable devices that autonomously detect and treat overdose, with the ability to simultaneously contact first-responders. We present three Naloximeter platforms, for both fundamental research and clinical translation, all equipped with optical sensors, drug delivery mechanisms, and a supporting ecosystem of technology to counteract opioid-induced respiratory depression. In small and large animal studies, the Naloximeter rescues from otherwise fatal opioid overdose within minutes. This work introduces life-changing, clinically translatable technologies that broadly benefit a susceptible population recovering from opioid use disorder.
Collapse
|
9
|
Jakešová M, Kunovský O, Gablech I, Khodagholy D, Gelinas J, Głowacki ED. Coupling of photovoltaics with neurostimulation electrodes-optical to electrolytic transduction. J Neural Eng 2024; 21:046003. [PMID: 38885680 DOI: 10.1088/1741-2552/ad593d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Objective.The wireless transfer of power for driving implantable neural stimulation devices has garnered significant attention in the bioelectronics field. This study explores the potential of photovoltaic (PV) power transfer, utilizing tissue-penetrating deep-red light-a novel and promising approach that has received less attention compared to traditional induction or ultrasound techniques. Our objective is to critically assess key parameters for directly powering neurostimulation electrodes with PVs, converting light impulses into neurostimulation currents.Approach.We systematically investigate varying PV cell size, optional series configurations, and coupling with microelectrodes fabricated from a range of materials such as Pt, TiN, IrOx, Ti, W, PtOx, Au, or poly(3,4 ethylenedioxythiophene):poly(styrene sulfonate). Additionally, two types of PVs, ultrathin organic PVs and monocrystalline silicon PVs, are compared. These combinations are employed to drive pairs of electrodes with different sizes and impedances. The readout method involves measuring electrolytic current using a straightforward amplifier circuit.Main results.Optimal PV selection is crucial, necessitating sufficiently large PV cells to generate the desired photocurrent. Arranging PVs in series is essential to produce the appropriate voltage for driving current across electrode/electrolyte impedances. By carefully choosing the PV arrangement and electrode type, it becomes possible to emulate electrical stimulation protocols in terms of charge and frequency. An important consideration is whether the circuit is photovoltage-limited or photocurrent-limited. High charge-injection capacity electrodes made from pseudo-faradaic materials impose a photocurrent limit, while more capacitive materials like Pt are photovoltage-limited. Although organic PVs exhibit lower efficiency than silicon PVs, in many practical scenarios, stimulation current is primarily limited by the electrodes rather than the PV driver, leading to potential parity between the two types.Significance.This study provides a foundational guide for designing a PV-powered neurostimulation circuit. The insights gained are applicable to bothin vitroandin vivoapplications, offering a resource to the neural engineering community.
Collapse
Affiliation(s)
- Marie Jakešová
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Ondřej Kunovský
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Imrich Gablech
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027, United States of America
| | - Jennifer Gelinas
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, United States of America
- Department of Neurology, Columbia University, New York, NY 10032, United States of America
| | - Eric Daniel Głowacki
- Bioelectronics Materials and Devices Laboratory, Central European Institute of Technology CEITEC, Brno University of Technology, Purkyňova 123, 61200 Brno, Czech Republic
| |
Collapse
|
10
|
Han L, Si J, Guo M, Wang R, Wang K, Yang J, Wang Z, Yang X. An Untethered Soft Crawling Robot Driven by Wireless Power Transfer Technology. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309661. [PMID: 38268235 DOI: 10.1002/smll.202309661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Indexed: 01/26/2024]
Abstract
Soft robots based on flexible materials have attracted the attention due to high flexibility and great environmental adaptability. Among the common driving modes, electricity, light, and magnetism have the limitations of wiring, poor penetration capability, and sophisticated equipment, respectively. Here, an emerging wireless driving mode is proposed for the soft crawling robot based on wireless power transfer (WPT) technology. The receiving coil at the robot's tail, as an energy transfer station, receives energy from the transmitting coil and supplies the electrothermal responsiveness to drive the robot's crawling. By regulating the WPT's duration to control the friction between the robot and the ground, bidirectional crawling is realized. Furthermore, the receiving coil is also employed as a sensory organ to equip the robot with localization, ID recognition, and sensing capabilities based on electromagnetic coupling. This work provides an innovative and promising strategy for the design and integration of soft crawling robots, exhibiting great potential in the field of intelligent robots.
Collapse
Affiliation(s)
- Lei Han
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jiawei Si
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Miaomiao Guo
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Rui Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Kai Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Jin Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Ziyuan Wang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| | - Xiaohan Yang
- Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing, 210096, China
| |
Collapse
|
11
|
Kwon YW, Ahn DB, Park YG, Kim E, Lee DH, Kim SW, Lee KH, Kim WY, Hong YM, Koh CS, Jung HH, Chang JW, Lee SY, Park JU. Power-integrated, wireless neural recording systems on the cranium using a direct printing method for deep-brain analysis. SCIENCE ADVANCES 2024; 10:eadn3784. [PMID: 38569040 PMCID: PMC10990281 DOI: 10.1126/sciadv.adn3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Conventional power-integrated wireless neural recording devices suffer from bulky, rigid batteries in head-mounted configurations, hindering the precise interpretation of the subject's natural behaviors. These power sources also pose risks of material leakage and overheating. We present the direct printing of a power-integrated wireless neural recording system that seamlessly conforms to the cranium. A quasi-solid-state Zn-ion microbattery was 3D-printed as a built-in power source geometrically synchronized to the shape of a mouse skull. Soft deep-brain neural probes, interconnections, and auxiliary electronics were also printed using liquid metals on the cranium with high resolutions. In vivo studies using mice demonstrated the reliability and biocompatibility of this wireless neural recording system, enabling the monitoring of neural activities across extensive brain regions without notable heat generation. This all-printed neural interface system revolutionizes brain research, providing bio-conformable, customizable configurations for improved data quality and naturalistic experimentation.
Collapse
Affiliation(s)
- Yong Won Kwon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - David B. Ahn
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Young-Geun Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Enji Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Dong Ha Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwon-Hyung Lee
- Ulsan Advanced Energy Technology R&D Center, Korea Institute of Energy Research (KIER), Ulsan 44776, Republic of Korea
| | - Won-Yeong Kim
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03772, Republic of Korea
| | - Yeon-Mi Hong
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
| | - Chin Su Koh
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Jin Woo Chang
- Department of Neurosurgery, Korea University Anam Hospital, Seoul 02841, Republic of Korea
| | - Sang-Young Lee
- Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul 03772, Republic of Korea
| | - Jang-Ung Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul 03722, Republic of Korea
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (NanoBME), Advanced Science Institute, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
12
|
Bhatia A, Hanna J, Stuart T, Kasper KA, Clausen DM, Gutruf P. Wireless Battery-free and Fully Implantable Organ Interfaces. Chem Rev 2024; 124:2205-2280. [PMID: 38382030 DOI: 10.1021/acs.chemrev.3c00425] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Advances in soft materials, miniaturized electronics, sensors, stimulators, radios, and battery-free power supplies are resulting in a new generation of fully implantable organ interfaces that leverage volumetric reduction and soft mechanics by eliminating electrochemical power storage. This device class offers the ability to provide high-fidelity readouts of physiological processes, enables stimulation, and allows control over organs to realize new therapeutic and diagnostic paradigms. Driven by seamless integration with connected infrastructure, these devices enable personalized digital medicine. Key to advances are carefully designed material, electrophysical, electrochemical, and electromagnetic systems that form implantables with mechanical properties closely matched to the target organ to deliver functionality that supports high-fidelity sensors and stimulators. The elimination of electrochemical power supplies enables control over device operation, anywhere from acute, to lifetimes matching the target subject with physical dimensions that supports imperceptible operation. This review provides a comprehensive overview of the basic building blocks of battery-free organ interfaces and related topics such as implantation, delivery, sterilization, and user acceptance. State of the art examples categorized by organ system and an outlook of interconnection and advanced strategies for computation leveraging the consistent power influx to elevate functionality of this device class over current battery-powered strategies is highlighted.
Collapse
Affiliation(s)
- Aman Bhatia
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Jessica Hanna
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Tucker Stuart
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Kevin Albert Kasper
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - David Marshall Clausen
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, The University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, The University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience Graduate Interdisciplinary Program (GIDP), The University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
13
|
Liu J, Liu N, Xu Y, Wu M, Zhang H, Wang Y, Yan Y, Hill A, Song R, Xu Z, Park M, Wu Y, Ciatti JL, Gu J, Luan H, Zhang Y, Yang T, Ahn HY, Li S, Ray WZ, Franz CK, MacEwan MR, Huang Y, Hammill CW, Wang H, Rogers JA. Bioresorbable shape-adaptive structures for ultrasonic monitoring of deep-tissue homeostasis. Science 2024; 383:1096-1103. [PMID: 38452063 DOI: 10.1126/science.adk9880] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024]
Abstract
Monitoring homeostasis is an essential aspect of obtaining pathophysiological insights for treating patients. Accurate, timely assessments of homeostatic dysregulation in deep tissues typically require expensive imaging techniques or invasive biopsies. We introduce a bioresorbable shape-adaptive materials structure that enables real-time monitoring of deep-tissue homeostasis using conventional ultrasound instruments. Collections of small bioresorbable metal disks distributed within thin, pH-responsive hydrogels, deployed by surgical implantation or syringe injection, allow ultrasound-based measurements of spatiotemporal changes in pH for early assessments of anastomotic leaks after gastrointestinal surgeries, and their bioresorption after a recovery period eliminates the need for surgical extraction. Demonstrations in small and large animal models illustrate capabilities in monitoring leakage from the small intestine, the stomach, and the pancreas.
Collapse
Affiliation(s)
- Jiaqi Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Naijia Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yameng Xu
- The Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mingzheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Haohui Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Yue Wang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ying Yan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Angela Hill
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ruihao Song
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Zijie Xu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Minsu Park
- Department of Polymer Science and Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Joanna L Ciatti
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Jianyu Gu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Tianyu Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Hak-Young Ahn
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
| | - Shupeng Li
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wilson Z Ray
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Colin K Franz
- Regenerative Neurorehabilitation Laboratory, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- The Ken and Ruth Davee Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Chet W Hammill
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Heling Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Institute of Flexible Electronics Technology of THU Zhejiang, Jiaxing 314000, China
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
14
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
15
|
Xu M, Liu Y, Yang K, Li S, Wang M, Wang J, Yang D, Shkunov M, Silva SRP, Castro FA, Zhao Y. Minimally invasive power sources for implantable electronics. EXPLORATION (BEIJING, CHINA) 2024; 4:20220106. [PMID: 38854488 PMCID: PMC10867386 DOI: 10.1002/exp.20220106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/08/2023] [Indexed: 06/11/2024]
Abstract
As implantable medical electronics (IMEs) developed for healthcare monitoring and biomedical therapy are extensively explored and deployed clinically, the demand for non-invasive implantable biomedical electronics is rapidly surging. Current rigid and bulky implantable microelectronic power sources are prone to immune rejection and incision, or cannot provide enough energy for long-term use, which greatly limits the development of miniaturized implantable medical devices. Herein, a comprehensive review of the historical development of IMEs and the applicable miniaturized power sources along with their advantages and limitations is given. Despite recent advances in microfabrication techniques, biocompatible materials have facilitated the development of IMEs system toward non-invasive, ultra-flexible, bioresorbable, wireless and multifunctional, progress in the development of minimally invasive power sources in implantable systems has remained limited. Here three promising minimally invasive power sources summarized, including energy storage devices (biodegradable primary batteries, rechargeable batteries and supercapacitors), human body energy harvesters (nanogenerators and biofuel cells) and wireless power transfer (far-field radiofrequency radiation, near-field wireless power transfer, ultrasonic and photovoltaic power transfer). The energy storage and energy harvesting mechanism, configurational design, material selection, output power and in vivo applications are also discussed. It is expected to give a comprehensive understanding of the minimally invasive power sources driven IMEs system for painless health monitoring and biomedical therapy with long-term stable functions.
Collapse
Affiliation(s)
- Ming Xu
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Yuheng Liu
- Department of Chemical and Process EngineeringUniversity of SurreyGuildfordSurreyUK
| | - Kai Yang
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Shaoyin Li
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Manman Wang
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Jianan Wang
- Department of Environmental Science and EngineeringXi'an Jiaotong UniversityXi'anChina
| | - Dong Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'anChina
| | - Maxim Shkunov
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - S. Ravi P. Silva
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
| | - Fernando A. Castro
- Advanced Technology InstituteUniversity of SurreyGuildfordSurreyUK
- National Physical LaboratoryTeddingtonMiddlesexUK
| | - Yunlong Zhao
- National Physical LaboratoryTeddingtonMiddlesexUK
- Dyson School of Design EngineeringImperial College LondonLondonUK
| |
Collapse
|
16
|
Jain R, Ajenu EO, Hafiz EOA, Romfh P, Tessier SN. Real-time monitoring of mitochondrial oxygenation during machine perfusion using resonance Raman spectroscopy predicts organ function. RESEARCH SQUARE 2023:rs.3.rs-3740098. [PMID: 38196624 PMCID: PMC10775389 DOI: 10.21203/rs.3.rs-3740098/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Organ transplantation is a life-saving procedure affecting over 100,000 people on the transplant waitlist. Ischemia reperfusion injury is a major challenge in the field as it can cause post-transplantation complications and limits the use of organs from extended criteria donors. Machine perfusion technology is used to repair organs before transplant, however, currently fails to achieve its full potential due to a lack of highly sensitive and specific assays to predict organ quality during perfusion. We developed a real-time and non-invasive method of assessing organ function and injury based on mitochondrial oxygenation using resonance Raman spectroscopy. It uses a 441 nm laser and a high-resolution spectrometer to predict the oxidation state of mitochondrial cytochromes during perfusion, which vary due to differences in storage compositions and perfusate compositions. This index of mitochondrial oxidation, or 3RMR, was found to predict organ health based on clinically utilized markers of perfusion quality, tissue metabolism, and organ injury. It also revealed differences in oxygenation with perfusates that may or may not be supplemented with packed red blood cells as oxygen carriers. This study emphasizes the need for further refinement of a reoxygenation strategy during machine perfusion that is based on a gradual recovery from storage. Thus, we present a novel platform that provides a real-time and quantitative assessment of mitochondrial health during machine perfusion of livers, which is easy to translate to the clinic.
Collapse
Affiliation(s)
- Rohil Jain
- Harvard Medical School & Massachusetts General Hospital
| | | | | | | | | |
Collapse
|
17
|
Dong K, Liu WC, Su Y, Lyu Y, Huang H, Zheng N, Rogers JA, Nan K. Scalable Electrophysiology of Millimeter-Scale Animals with Electrode Devices. BME FRONTIERS 2023; 4:0034. [PMID: 38435343 PMCID: PMC10907027 DOI: 10.34133/bmef.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/08/2023] [Indexed: 03/05/2024] Open
Abstract
Millimeter-scale animals such as Caenorhabditis elegans, Drosophila larvae, zebrafish, and bees serve as powerful model organisms in the fields of neurobiology and neuroethology. Various methods exist for recording large-scale electrophysiological signals from these animals. Existing approaches often lack, however, real-time, uninterrupted investigations due to their rigid constructs, geometric constraints, and mechanical mismatch in integration with soft organisms. The recent research establishes the foundations for 3-dimensional flexible bioelectronic interfaces that incorporate microfabricated components and nanoelectronic function with adjustable mechanical properties and multidimensional variability, offering unique capabilities for chronic, stable interrogation and stimulation of millimeter-scale animals and miniature tissue constructs. This review summarizes the most advanced technologies for electrophysiological studies, based on methods of 3-dimensional flexible bioelectronics. A concluding section addresses the challenges of these devices in achieving freestanding, robust, and multifunctional biointerfaces.
Collapse
Affiliation(s)
- Kairu Dong
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering & Instrument Science,
Zhejiang University, Hangzhou, 310027, China
| | - Wen-Che Liu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
| | - Yuyan Su
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- Department of Gastroenterology, Brigham and Women’s Hospital,
Harvard Medical School, Boston, MA 02115, USA
| | - Yidan Lyu
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
| | - Hao Huang
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- College of Chemical and Biological Engineering,
Zhejiang University, Hangzhou 310058, China
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies,
Zhejiang University, Hangzhou 310027, China
- College of Computer Science and Technology,
Zhejiang University, Hangzhou 310027, China
- State Key Lab of Brain-Machine Intelligence,
Zhejiang University, Hangzhou 310058, China
- CCAI by MOE and Zhejiang Provincial Government (ZJU), Hangzhou 310027, China
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics,
Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering,
Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering,
Northwestern University, Evanston, IL 60208, USA
| | - Kewang Nan
- College of Pharmaceutical Sciences,
Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems,
Zhejiang University, Hangzhou 310058, China
- Jinhua Institute of Zhejiang University, Jinhua 321299, China
| |
Collapse
|
18
|
Lou Z, Tao J, Wei B, Jiang X, Cheng S, Wang Z, Qin C, Liang R, Guo H, Zhu L, Müller‐Buschbaum P, Cheng H, Xu X. Near-Infrared Organic Photodetectors toward Skin-Integrated Photoplethysmography-Electrocardiography Multimodal Sensing System. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304174. [PMID: 37991135 PMCID: PMC10754100 DOI: 10.1002/advs.202304174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/05/2023] [Indexed: 11/23/2023]
Abstract
In the fast-evolving landscape of decentralized and personalized healthcare, the need for multimodal biosensing systems that integrate seamlessly with the human body is growing rapidly. This presents a significant challenge in devising ultraflexible configurations that can accommodate multiple sensors and designing high-performance sensing components that remain stable over long periods. To overcome these challenges, ultraflexible organic photodetectors (OPDs) that exhibit exceptional performance under near-infrared illumination while maintaining long-term stability are developed. These ultraflexible OPDs demonstrate a photoresponsivity of 0.53 A W-1 under 940 nm, shot-noise-limited specific detectivity of 3.4 × 1013 Jones, and cut-off response frequency beyond 1 MHz at -3 dB. As a result, the flexible photoplethysmography sensor boasts a high signal-to-noise ratio and stable peak-to-peak amplitude under hypoxic and hypoperfusion conditions, outperforming commercial finger pulse oximeters. This ensures precise extraction of blood oxygen saturation in dynamic working conditions. Ultraflexible OPDs are further integrated with conductive polymer electrodes on an ultrathin hydrogel substrate, allowing for direct interface with soft and dynamic skin. This skin-integrated sensing platform provides accurate measurement of photoelectric and biopotential signals in a time-synchronized manner, reproducing the functionality of conventional technologies without their inherent limitations.
Collapse
Affiliation(s)
- Zirui Lou
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
- School of Advanced MaterialsPeking University Shenzhen Graduate SchoolShenzhen518055China
| | - Jun Tao
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Binbin Wei
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Xinyu Jiang
- Lehrstuhl für Funktionelle MaterialienPhysik DepartmentTechnische Universität MünchenJames‐Franck‐Str. 185748GarchingGermany
| | - Simin Cheng
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Zehao Wang
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Chao Qin
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Rong Liang
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Haotian Guo
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| | - Liping Zhu
- State Key Laboratory of Silicon and Advanced Semiconductor MaterialsSchool of Materials Science and EngineeringZhejiang UniversityHangzhou310027China
| | - Peter Müller‐Buschbaum
- Lehrstuhl für Funktionelle MaterialienPhysik DepartmentTechnische Universität MünchenJames‐Franck‐Str. 185748GarchingGermany
- Heinz Maier‐Leibnitz‐Zentrum (MLZ)Technische Universität MünchenLichtenbergstr. 185748GarchingGermany
| | - Hui‐Ming Cheng
- Institute of Technology for Carbon Neutrality & Faculty of Materials Science and Energy EngineeringShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Shenyang National Laboratory for Materials ScienceInstitute of Metal ResearchChinese Academy of SciencesShenyang110016China
| | - Xiaomin Xu
- Shenzhen International Graduate School & Tsinghua‐Berkeley Shenzhen InstituteTsinghua UniversityShenzhen518055China
| |
Collapse
|
19
|
Wu G, Zhang ET, Qiang Y, Esmonde C, Chen X, Wei Z, Song Y, Zhang X, Schneider MJ, Li H, Sun H, Weng Z, Santaniello S, He J, Lai RY, Li Y, Bruchas MR, Zhang Y. Long-Term In Vivo Molecular Monitoring Using Aptamer-Graphene Microtransistors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.18.562080. [PMID: 37905115 PMCID: PMC10614860 DOI: 10.1101/2023.10.18.562080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Long-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors in vivo is limited to a few hours. Here, we report a first-generation long-term in vivo molecular monitoring platform, named aptamer-graphene microtransistors (AGMs). The AGM incorporates a layer of pyrene-(polyethylene glycol)5-alcohol and DNase inhibitor-doped polyacrylamide hydrogel coating to reduce biofouling and aptamer degradation. As a demonstration of function and generalizability, the AGM achieves the detection of biomolecules such as dopamine and serotonin in undiluted whole blood at 37 °C for 11 days. Furthermore, the AGM successfully captures optically evoked dopamine release in vivo in mice for over one week and demonstrates the capability to monitor behaviorally-induced endogenous dopamine release even after eight days of implantation in freely moving mice. The results reported in this work establish the potential for chronic aptamer-based molecular monitoring platforms, and thus serve as a new benchmark for molecular monitoring using aptamer-based technology.
Collapse
Affiliation(s)
- Guangfu Wu
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Eric T. Zhang
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
| | - Yingqi Qiang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Colin Esmonde
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Xingchi Chen
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Yang Song
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Xincheng Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Michael J. Schneider
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Huijie Li
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - He Sun
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Zhengyan Weng
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| | - Sabato Santaniello
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, USA
| | - Rebecca Y. Lai
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32306, USA
| | - Michael R. Bruchas
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA
- Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Yi Zhang
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269, USA
- Institute of Materials Science, University of Connecticut, Storrs, CT 06269, USA
| |
Collapse
|
20
|
Kang M, Lee DM, Hyun I, Rubab N, Kim SH, Kim SW. Advances in Bioresorbable Triboelectric Nanogenerators. Chem Rev 2023; 123:11559-11618. [PMID: 37756249 PMCID: PMC10571046 DOI: 10.1021/acs.chemrev.3c00301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Indexed: 09/29/2023]
Abstract
With the growing demand for next-generation health care, the integration of electronic components into implantable medical devices (IMDs) has become a vital factor in achieving sophisticated healthcare functionalities such as electrophysiological monitoring and electroceuticals worldwide. However, these devices confront technological challenges concerning a noninvasive power supply and biosafe device removal. Addressing these challenges is crucial to ensure continuous operation and patient comfort and minimize the physical and economic burden on the patient and the healthcare system. This Review highlights the promising capabilities of bioresorbable triboelectric nanogenerators (B-TENGs) as temporary self-clearing power sources and self-powered IMDs. First, we present an overview of and progress in bioresorbable triboelectric energy harvesting devices, focusing on their working principles, materials development, and biodegradation mechanisms. Next, we examine the current state of on-demand transient implants and their biomedical applications. Finally, we address the current challenges and future perspectives of B-TENGs, aimed at expanding their technological scope and developing innovative solutions. This Review discusses advancements in materials science, chemistry, and microfabrication that can advance the scope of energy solutions available for IMDs. These innovations can potentially change the current health paradigm, contribute to enhanced longevity, and reshape the healthcare landscape soon.
Collapse
Affiliation(s)
- Minki Kang
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Dong-Min Lee
- School
of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 16419, Republic
of Korea
| | - Inah Hyun
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Najaf Rubab
- Department
of Materials Science and Engineering, Gachon
University, Seongnam 13120, Republic
of Korea
| | - So-Hee Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Woo Kim
- Department
of Materials Science and Engineering, Center for Human-oriented Triboelectric
Energy Harvesting, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
21
|
Ouyang W, Lu W, Zhang Y, Liu Y, Kim JU, Shen H, Wu Y, Luan H, Kilner K, Lee SP, Lu Y, Yang Y, Wang J, Yu Y, Wegener AJ, Moreno JA, Xie Z, Wu Y, Won SM, Kwon K, Wu C, Bai W, Guo H, Liu TL, Bai H, Monti G, Zhu J, Madhvapathy SR, Trueb J, Stanslaski M, Higbee-Dempsey EM, Stepien I, Ghoreishi-Haack N, Haney CR, Kim TI, Huang Y, Ghaffari R, Banks AR, Jhou TC, Good CH, Rogers JA. A wireless and battery-less implant for multimodal closed-loop neuromodulation in small animals. Nat Biomed Eng 2023; 7:1252-1269. [PMID: 37106153 DOI: 10.1038/s41551-023-01029-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/26/2023] [Indexed: 04/29/2023]
Abstract
Fully implantable wireless systems for the recording and modulation of neural circuits that do not require physical tethers or batteries allow for studies that demand the use of unconstrained and freely behaving animals in isolation or in social groups. Moreover, feedback-control algorithms that can be executed within such devices without the need for remote computing eliminate virtual tethers and any associated latencies. Here we report a wireless and battery-less technology of this type, implanted subdermally along the back of freely moving small animals, for the autonomous recording of electroencephalograms, electromyograms and body temperature, and for closed-loop neuromodulation via optogenetics and pharmacology. The device incorporates a system-on-a-chip with Bluetooth Low Energy for data transmission and a compressed deep-learning module for autonomous operation, that offers neurorecording capabilities matching those of gold-standard wired systems. We also show the use of the implant in studies of sleep-wake regulation and for the programmable closed-loop pharmacological suppression of epileptic seizures via feedback from electroencephalography. The technology can support a broader range of applications in neuroscience and in biomedical research with small animals.
Collapse
Affiliation(s)
- Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Wei Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yamin Zhang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Yiming Liu
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Haixu Shen
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yunyun Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | | | - Stephen P Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc., Northfield, IL, USA
| | - Yinsheng Lu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Yiyuan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Jin Wang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | | | - Amy J Wegener
- US Army Research Laboratory, Aberdeen Proving Ground, MD, USA
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Justin A Moreno
- US Army Research Laboratory, Aberdeen Proving Ground, MD, USA
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
- SURVICE Engineering, Belcamp, MD, USA
| | - Zhaoqian Xie
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Yixin Wu
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Kyeongha Kwon
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Wubin Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Tzu-Li Liu
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
| | - Hedan Bai
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | - Giuditta Monti
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Jason Zhu
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Surabhi R Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
| | - Jacob Trueb
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
| | | | | | - Iwona Stepien
- Developmental Therapeutics Core, Northwestern University, Evanston, IL, USA
| | | | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA
| | - Tae-Il Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon, Republic of Korea
| | - Yonggang Huang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, USA
| | - Roozbeh Ghaffari
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc., Northfield, IL, USA
| | - Anthony R Banks
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA
- Neurolux Inc., Northfield, IL, USA
| | - Thomas C Jhou
- Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA.
| | - Cameron H Good
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Neurolux Inc., Northfield, IL, USA.
- US Army Research Laboratory, Aberdeen Proving Ground, MD, USA.
- US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA.
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
22
|
Cea C, Zhao Z, Wisniewski DJ, Spyropoulos GD, Polyravas A, Gelinas JN, Khodagholy D. Integrated internal ion-gated organic electrochemical transistors for stand-alone conformable bioelectronics. NATURE MATERIALS 2023; 22:1227-1235. [PMID: 37429941 PMCID: PMC10533388 DOI: 10.1038/s41563-023-01599-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/04/2023] [Indexed: 07/12/2023]
Abstract
Organic electronics can be biocompatible and conformable, enhancing the ability to interface with tissue. However, the limitations of speed and integration have, thus far, necessitated reliance on silicon-based technologies for advanced processing, data transmission and device powering. Here we create a stand-alone, conformable, fully organic bioelectronic device capable of realizing these functions. This device, vertical internal ion-gated organic electrochemical transistor (vIGT), is based on a transistor architecture that incorporates a vertical channel and a miniaturized hydration access conduit to enable megahertz-signal-range operation within densely packed integrated arrays in the absence of crosstalk. These transistors demonstrated long-term stability in physiologic media, and were used to generate high-performance integrated circuits. We leveraged the high-speed and low-voltage operation of vertical internal ion-gated organic electrochemical transistors to develop alternating-current-powered conformable circuitry to acquire and wirelessly communicate signals. The resultant stand-alone device was implanted in freely moving rodents to acquire, process and transmit neurophysiologic brain signals. Such fully organic devices have the potential to expand the utility and accessibility of bioelectronics to a wide range of clinical and societal applications.
Collapse
Affiliation(s)
- Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Duncan J Wisniewski
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - George D Spyropoulos
- Department of Electrical Engineering, Columbia University, New York, NY, USA
- Department Information Technology, Waves, UGhent, Technology Campus, iGhent, Zwijnaarde, Belgium
| | | | - Jennifer N Gelinas
- Department of Neurology, Columbia University Medical Center, New York, NY, USA.
- Institute for Genomic Medicine, Columbia University Medical Center, New York, NY, USA.
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY, USA.
| |
Collapse
|
23
|
Vital D, Bhushan P, Gaire P, Islam MK, Lahade S, Pozdin V, Volakis JL, Bhansali S, Bhardwaj S. SkinAid: A Wirelessly Powered Smart Dressing Solution for Continuous Wound-Tracking Using Textile-Based Frequency Modulation. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2023; 17:985-998. [PMID: 37440381 DOI: 10.1109/tbcas.2023.3294916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/15/2023]
Abstract
In this article, SkinAid, a battery-free, low-cost, robust, and user-friendly smart bandage for electrochemical monitoring and sensing of chronic wounds is proposed. The working principle of the bandage is based on direct frequency modulation of a tri-electrode electrochemical sensing of wound data. The electronics and biotelemetry links were realized using low-cost manufacturing process of textile embroidery onto fabric substrate. The transmitter was represented by a bedsheet with novel corrugated crossed-dipole made of Elektrisola-7 embroidered onto gauze fabric. An input RF signal of 1 W was transmitted at 462 MHz from the bedsheet to the all-textile bandage featuring a rectifying circuit, a voltage-controlled oscillator (VCO), an electrochemical sensor, and a 915-MHz dipole for re-transmission of the modulated wound data. We demonstrate that for wound fluid emulated by various uric acid concentrations from 0.2 mM to 1.2 mM, corresponding modulated frequency varies from 1090 MHz to 1145 MHz for signals captured at 25 cm away from the bandage. For pH modulation ranging from 2 to 10, the corresponding modulated frequency was between 800 MHz and 830 MHz for signals received at more than 6 feet away from the bandage. For quick and reliable assessment, two empirical models were developed for the direct frequency modulation as a function of uric acid and pH. To the best of our knowledge, this is the first time an all-textile (fabric-integrated), battery-free and wirelessly powered smart bandage have been proposed for wound monitoring. This result can be used as a first step in developing RFID-type, battery-free, and low-cost 5G/6G smart bandages using millimeterwave and terahertz frequencies where the bedsheet can be host to a MIMO-aided beamforming.
Collapse
|
24
|
Park J, Kim K, Kim Y, Kim TS, Min IS, Li B, Cho YU, Lee C, Lee JY, Gao Y, Kang K, Kim DH, Choi WJ, Shin HB, Kang HK, Song YM, Cheng H, Cho IJ, Yu KJ. A wireless, solar-powered, optoelectronic system for spatial restriction-free long-term optogenetic neuromodulations. SCIENCE ADVANCES 2023; 9:eadi8918. [PMID: 37756405 PMCID: PMC10530225 DOI: 10.1126/sciadv.adi8918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023]
Abstract
Numerous wireless optogenetic systems have been reported for practical tether-free optogenetics in freely moving animals. However, most devices rely on battery-powered or coil-powered systems requiring periodic battery replacement or bulky, high-cost charging equipment with delicate antenna design. This leads to spatiotemporal constraints, such as limited experimental duration due to battery life or animals' restricted movement within specific areas to maintain wireless power transmission. In this study, we present a wireless, solar-powered, flexible optoelectronic device for neuromodulation of the complete freely behaving subject. This device provides chronic operation without battery replacement or other external settings including impedance matching technique and radio frequency generators. Our device uses high-efficiency, thin InGaP/GaAs tandem flexible photovoltaics to harvest energy from various light sources, which powers Bluetooth system to facilitate long-term, on-demand use. Observation of sustained locomotion behaviors for a month in mice via secondary motor cortex area stimulation demonstrates the notable capabilities of our device, highlighting its potential for space-free neuromodulating applications.
Collapse
Affiliation(s)
- Jaejin Park
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Kyubeen Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yujin Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Tae Soo Kim
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - In Sik Min
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Bowen Li
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Young Uk Cho
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Chanwoo Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Ju Young Lee
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Yuyan Gao
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
| | - Kyowon Kang
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
| | - Do Hyeon Kim
- School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Won Jun Choi
- Center for Opto-Electronic Materials and Devices, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Hyun-Beom Shin
- Korea Advanced Nano Fab Center (KANC), Suwon 443-270, Korea
| | - Ho Kwan Kang
- Korea Advanced Nano Fab Center (KANC), Suwon 443-270, Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science (EECS), Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Il-Joo Cho
- Department of Biomedical Sciences, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Anatomy, College of Medicine, Korea University, 73 Goryeodae-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ki Jun Yu
- Functional Bio-integrated Electronics and Energy Management Lab, School of Electrical and Electronic Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Electrical and Electronic Engineering, YU-Korea Institute of Science and Technology (KIST) Institute, Yonsei University, 50, Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
25
|
Ghanim R, Kaushik A, Park J, Abramson A. Communication Protocols Integrating Wearables, Ingestibles, and Implantables for Closed-Loop Therapies. DEVICE 2023; 1:100092. [PMID: 38465200 PMCID: PMC10923538 DOI: 10.1016/j.device.2023.100092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Body-conformal sensors and tissue interfacing robotic therapeutics enable the real-time monitoring and treatment of diabetes, wound healing, and other critical conditions. By integrating sensors and drug delivery devices, scientists and engineers have developed closed-loop drug delivery systems with on-demand therapeutic capabilities to provide just-in-time treatments that correspond to chemical, electrical, and physical signals of a target morbidity. To enable closed-loop functionality in vivo, engineers utilize various low-power means of communication that reduce the size of implants by orders of magnitude, increase device lifetime from hours to months, and ensure the secure high-speed transfer of data. In this review, we highlight how communication protocols used to integrate sensors and drug delivery devices, such as radio frequency communication (e.g., Bluetooth, near-field communication), in-body communication, and ultrasound, enable improved treatment outcomes.
Collapse
Affiliation(s)
- Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Anika Kaushik
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
26
|
Wang X, Fu J, Jiang C, Liao X, Chen Y, Jia T, Chen G, Feng X. Specific and Long-Term Luminescent Monitoring of Hydrogen Peroxide in Tumor Metastasis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210948. [PMID: 36848628 DOI: 10.1002/adma.202210948] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/06/2023] [Indexed: 05/19/2023]
Abstract
Luminescent monitoring of endogenous hydrogen peroxide (H2 O2 ) in tumors is conducive to understanding metastasis and developing novel therapeutics. The clinical transformation is obstructed by the limited light penetration depth, toxicity of nano-probes, and lack of long-term monitoring modes of up to days or months. New monitoring modes are introduced via specific probes and implantable devices, which can achieve real-time monitoring with a readout frequency of 0.01 s or long-term monitoring for months to years. Near-infrared dye-sensitized upconversion nanoparticles (UCNPs) are fabricated as the luminescent probes, and the specificity to reactive oxygen species is subtly regulated by the self-assembled monolayers on the surfaces of UCNPs. Combined with the passive implanted system, a 20-day monitoring of H2 O2 in the rat model of ovarian cancer with peritoneal metastasis is achieved, in which the limited light penetration depth and toxicity of nano-probes are circumvented. The developed monitoring modes show great potential in accelerating the clinical transformation of nano-probes and biochemical detection methods.
Collapse
Affiliation(s)
- Xindong Wang
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
- Jiaxing Key Laboratory of Flexible Electronics based Intelligent Sensing and Advanced Manufacturing Technology, Jiaxing, 314006, P. R. China
| | - Ji Fu
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Chang Jiang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xiaohui Liao
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Yiju Chen
- Institute of Flexible Electronics Technology of THU, No. 906, YaTai Road, Jiaxing, 314006, P. R. China
| | - Tao Jia
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Guanying Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering & Key Laboratory of Micro-systems and Micro-structures, Ministry of Education, Harbin Institute of Technology, No. 92 Xidazhi Street, Harbin, 150001, P. R. China
| | - Xue Feng
- Center for Flexible Electronics Technology, Tsinghua University, No. 30 Shuangqing Road, Beijing, 100084, P. R. China
| |
Collapse
|
27
|
Won SM, Cai L, Gutruf P, Rogers JA. Wireless and battery-free technologies for neuroengineering. Nat Biomed Eng 2023; 7:405-423. [PMID: 33686282 PMCID: PMC8423863 DOI: 10.1038/s41551-021-00683-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 12/28/2020] [Indexed: 12/16/2022]
Abstract
Tethered and battery-powered devices that interface with neural tissues can restrict natural motions and prevent social interactions in animal models, thereby limiting the utility of these devices in behavioural neuroscience research. In this Review Article, we discuss recent progress in the development of miniaturized and ultralightweight devices as neuroengineering platforms that are wireless, battery-free and fully implantable, with capabilities that match or exceed those of wired or battery-powered alternatives. Such classes of advanced neural interfaces with optical, electrical or fluidic functionality can also combine recording and stimulation modalities for closed-loop applications in basic studies or in the practical treatment of abnormal physiological processes.
Collapse
Affiliation(s)
- Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Le Cai
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA
| | - Philipp Gutruf
- Biomedical Engineering, College of Engineering, The University of Arizona, Tucson, AZ, USA.
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ, USA.
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, USA.
- Department of Neurological Surgery, Northwestern University, Evanston, IL, USA.
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
28
|
Sabrin S, Karmokar DK, Karmakar NC, Hong SH, Habibullah H, Szili EJ. Opportunities of Electronic and Optical Sensors in Autonomous Medical Plasma Technologies. ACS Sens 2023; 8:974-993. [PMID: 36897225 DOI: 10.1021/acssensors.2c02579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Low temperature plasma technology is proving to be at the frontier of emerging medical technologies with real potential to overcome escalating healthcare challenges including antimicrobial and anticancer resistance. However, significant improvements in efficacy, safety, and reproducibility of plasma treatments need to be addressed to realize the full clinical potential of the technology. To improve plasma treatments recent research has focused on integrating automated feedback control systems into medical plasma technologies to maintain optimal performance and safety. However, more advanced diagnostic systems are still needed to provide data into feedback control systems with sufficient levels of sensitivity, accuracy, and reproducibility. These diagnostic systems need to be compatible with the biological target and to also not perturb the plasma treatment. This paper reviews the state-of-the-art electronic and optical sensors that might be suitable to address this unmet technological need, and the steps needed to integrate these sensors into autonomous plasma systems. Realizing this technological gap could facilitate the development of next-generation medical plasma technologies with strong potential to yield superior healthcare outcomes.
Collapse
Affiliation(s)
- Sumyea Sabrin
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Debabrata K Karmokar
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Nemai C Karmakar
- Electrical and Computer Systems Engineering Department, Monash University, Clayton, Victoria 3800, Australia
| | - Sung-Ha Hong
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Habibullah Habibullah
- UniSA STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| | - Endre J Szili
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia
| |
Collapse
|
29
|
Kim HJ, Sritandi W, Xiong Z, Ho JS. Bioelectronic devices for light-based diagnostics and therapies. BIOPHYSICS REVIEWS 2023; 4:011304. [PMID: 38505817 PMCID: PMC10903427 DOI: 10.1063/5.0102811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 12/28/2022] [Indexed: 03/21/2024]
Abstract
Light has broad applications in medicine as a tool for diagnosis and therapy. Recent advances in optical technology and bioelectronics have opened opportunities for wearable, ingestible, and implantable devices that use light to continuously monitor health and precisely treat diseases. In this review, we discuss recent progress in the development and application of light-based bioelectronic devices. We summarize the key features of the technologies underlying these devices, including light sources, light detectors, energy storage and harvesting, and wireless power and communications. We investigate the current state of bioelectronic devices for the continuous measurement of health and on-demand delivery of therapy. Finally, we highlight major challenges and opportunities associated with light-based bioelectronic devices and discuss their promise for enabling digital forms of health care.
Collapse
Affiliation(s)
| | - Weni Sritandi
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | | | - John S. Ho
- Author to whom correspondence should be addressed:
| |
Collapse
|
30
|
Stuart T, Jeang WJ, Slivicki RA, Brown BJ, Burton A, Brings VE, Alarcón-Segovia LC, Agyare P, Ruiz S, Tyree A, Pruitt L, Madhvapathy S, Niemiec M, Zhuang J, Krishnan S, Copits BA, Rogers JA, Gereau RW, Samineni VK, Bandodkar AJ, Gutruf P. Wireless, Battery-Free Implants for Electrochemical Catecholamine Sensing and Optogenetic Stimulation. ACS NANO 2023; 17:561-574. [PMID: 36548126 PMCID: PMC11801802 DOI: 10.1021/acsnano.2c09475] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Neurotransmitters and neuromodulators mediate communication between neurons and other cell types; knowledge of release dynamics is critical to understanding their physiological role in normal and pathological brain function. Investigation into transient neurotransmitter dynamics has largely been hindered due to electrical and material requirements for electrochemical stimulation and recording. Current systems require complex electronics for biasing and amplification and rely on materials that offer limited sensor selectivity and sensitivity. These restrictions result in bulky, tethered, or battery-powered systems impacting behavior and that require constant care of subjects. To overcome these challenges, we demonstrate a fully implantable, wireless, and battery-free platform that enables optogenetic stimulation and electrochemical recording of catecholamine dynamics in real time. The device is nearly 1/10th the size of previously reported examples and includes a probe that relies on a multilayer electrode architecture featuring a microscale light emitting diode (μ-LED) and a carbon nanotube (CNT)-based sensor with sensitivities among the highest recorded in the literature (1264.1 nA μM-1 cm-2). High sensitivity of the probe combined with a center tapped antenna design enables the realization of miniaturized, low power circuits suitable for subdermal implantation even in small animal models such as mice. A series of in vitro and in vivo experiments highlight the sensitivity and selectivity of the platform and demonstrate its capabilities in freely moving, untethered subjects. Specifically, a demonstration of changes in dopamine concentration after optogenetic stimulation of the nucleus accumbens and real-time readout of dopamine levels after opioid and naloxone exposure in freely behaving subjects highlight the experimental paradigms enabled by the platform.
Collapse
Affiliation(s)
- Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Richard A Slivicki
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Bobbie J Brown
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Victoria E Brings
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Lilian C Alarcón-Segovia
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
| | - Prophecy Agyare
- Department of Neuroscience, Northwestern University, Evanston, Illinois 60201, United States
| | - Savanna Ruiz
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Amanda Tyree
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Lindsay Pruitt
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Surabhi Madhvapathy
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
| | - Martin Niemiec
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - James Zhuang
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
| | - Siddharth Krishnan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
| | - Bryan A Copits
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60201, United States
- Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60201, United States
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60201, United States
- Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Robert W Gereau
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Department of Neuroscience, Washington University, St. Louis, Missouri 63110, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri 63110, United States
| | - Vijay K Samineni
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, United States
- Washington University Pain Center, Washington University School of Medicine, St. Louis, Missouri 63110, United States
| | - Amay J Bandodkar
- Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27606, United States
- Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (ASSIST), North Carolina State University, Raleigh, North Carolina 27606, United States
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, Arizona 85721, United States
- Bio5 Institute, University of Arizona, Tucson, Arizona 85721, United States
- Neuroscience GIDP, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
31
|
Rosa BMG, Anastasova S, Yang GZ. NFC-Powered Implantable Device for On-Body Parameters Monitoring With Secure Data Exchange Link to a Medical Blockchain Type of Network. IEEE TRANSACTIONS ON CYBERNETICS 2023; 53:31-43. [PMID: 34197334 DOI: 10.1109/tcyb.2021.3088711] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Implantable devices represent the future of remote medical monitoring and administration of both chemical and physical therapies to the patients. Although some of these devices are already in the market, the security mechanisms deployed inside them to withstand deliberate external influence are still decades away from the robust digital data security schemes employed in modern distributed networks these days. Medical data theft, spoofing, and disclosure pose serious threats that can ultimately lead to individual and social stigmas or even death. In this article, we present a small-form and batteryless implantable device with acquisition channels for biopotential (30-dB gain and 16-Hz bandwidth), arterial pulse oximetry, and temperature (0.12°C accuracy) recordings, suitable for cardiovascular, neuronal, and endocrine parameters assessment. The proposed device is powered by the near-field communication (NFC) interface with an external mobile phone, with a power consumption of 0.9 mW and achieving the full operation for distances close to 1 cm under the skin. In situ encryption of the acquired physiological signals is performed by a lightweight and short-term symmetric-key distribution scheme with data stream hopping, in order to ensure secure data transference over the air between the patient and trusted entities only, complemented by data storage, processing, and recovery through a medical blockchain type of network that involves the main stakeholders inside a medical community.
Collapse
|
32
|
Sang M, Kim K, Shin J, Yu KJ. Ultra-Thin Flexible Encapsulating Materials for Soft Bio-Integrated Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202980. [PMID: 36031395 PMCID: PMC9596833 DOI: 10.1002/advs.202202980] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/22/2022] [Indexed: 05/11/2023]
Abstract
Recently, bioelectronic devices extensively researched and developed through the convergence of flexible biocompatible materials and electronics design that enables more precise diagnostics and therapeutics in human health care and opens up the potential to expand into various fields, such as clinical medicine and biomedical research. To establish an accurate and stable bidirectional bio-interface, protection against the external environment and high mechanical deformation is essential for wearable bioelectronic devices. In the case of implantable bioelectronics, special encapsulation materials and optimized mechanical designs and configurations that provide electronic stability and functionality are required for accommodating various organ properties, lifespans, and functions in the biofluid environment. Here, this study introduces recent developments of ultra-thin encapsulations with novel materials that can preserve or even improve the electrical performance of wearable and implantable bio-integrated electronics by supporting safety and stability for protection from destruction and contamination as well as optimizing the use of bioelectronic systems in physiological environments. In addition, a summary of the materials, methods, and characteristics of the most widely used encapsulation technologies is introduced, thereby providing a strategic selection of appropriate choices of recently developed flexible bioelectronics.
Collapse
Affiliation(s)
- Mingyu Sang
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Kyubeen Kim
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Jongwoon Shin
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| | - Ki Jun Yu
- School of Electrical and Electronic EngineeringYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
- YU‐KIST InstituteYonsei University50 Yonsei‐ro, SeodaemunguSeoul03722Republic of Korea
| |
Collapse
|
33
|
Liu F, Wu Y, Almarri N, Habibollahi M, Lancashire HT, Bryson B, Greensmith L, Jiang D, Demosthenous A. A Fully Implantable Opto-Electro Closed-Loop Neural Interface for Motor Neuron Disease Studies. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:752-765. [PMID: 36018872 DOI: 10.1109/tbcas.2022.3202026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This paper presents a fully implantable closed-loop device for use in freely moving rodents to investigate new treatments for motor neuron disease. The 0.18 μm CMOS integrated circuit comprises 4 stimulators, each featuring 16 channels for optical and electrical stimulation using arbitrary current waveforms at frequencies from 1.5 Hz to 50 kHz, and a bandwidth programmable front-end for neural recording. The implant uses a Qi wireless inductive link which can deliver >100 mW power at a maximum distance of 2 cm for a freely moving rodent. A backup rechargeable battery can support 10 mA continuous stimulation currents for 2.5 hours in the absence of an inductive power link. The implant is controlled by a graphic user interface with broad programmable parameters via a Bluetooth low energy bidirectional data telemetry link. The encapsulated implant is 40 mm × 20 mm × 10 mm. Measured results are presented showing the electrical performance of the electronics and the packaging method.
Collapse
|
34
|
García-Moreno A, Comerma-Montells A, Tudela-Pi M, Minguillon J, Becerra-Fajardo L, Ivorra A. Wireless networks of injectable microelectronic stimulators based on rectification of volume conducted high frequency currents. J Neural Eng 2022; 19. [PMID: 36041421 DOI: 10.1088/1741-2552/ac8dc4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Abstract
OBJECTIVE To develop and in vivo demonstrate threadlike wireless implantable neuromuscular microstimulators that are digitally addressable. APPROACH These devices perform, through its two electrodes, electronic rectification of innocuous high frequency current bursts delivered by volume conduction via epidermal textile electrodes. By avoiding the need of large components to obtain electrical energy, this approach allows the development of thin devices that can be intramuscularly implanted by minimally invasive procedures such as injection. For compliance with electrical safety standards, this approach requires a minimum distance, in the order of millimeters or a very few centimeters, between the implant electrodes. Additionally, the devices must cause minimal mechanical damage to tissues, avoid dislocation and be adequate for long-term implantation. Considering these requirements, the implants were conceived as tubular and flexible devices with two electrodes at opposite ends and, at the middle section, a hermetic metallic capsule housing the electronics. MAIN RESULTS The developed implants have a submillimetric diameter (0.97 mm diameter, 35 mm length) and consist of a microcircuit, which contains a single custom-developed integrated circuit, housed within a titanium capsule (0.7 mm diameter, 6.5 mm length), and two platinum-iridium coils that form two electrodes (3 mm length) located at opposite ends of a silicone body. These neuromuscular stimulators are addressable, allowing to establish a network of microstimulators that can be controlled independently. Their operation was demonstrated in an acute study by injecting a few of them in the hind limb of anesthetized rabbits and inducing controlled and independent contractions. SIGNIFICANCE These results show the feasibility of manufacturing threadlike wireless addressable neuromuscular stimulators by using fabrication techniques and materials well established for chronic electronic implants. Although long-term operation still must be demonstrated, the obtained results pave the way to the clinical development of advanced motor neuroprostheses formed by dense networks of such wireless devices.
Collapse
Affiliation(s)
- Aracelys García-Moreno
- Department of Information and Communications Technologies, Pompeu Fabra University Department of Information and Communication Technologies, Carrer Roc Boronat 138, Barcelona, Barcelona, 08018, SPAIN
| | - Albert Comerma-Montells
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona, Barcelona, 08018, SPAIN
| | - Marc Tudela-Pi
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona, Barcelona, 08018, SPAIN
| | - Jesus Minguillon
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona, Barcelona, 08018, SPAIN
| | - Laura Becerra-Fajardo
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona, Barcelona, 08018, SPAIN
| | - Antoni Ivorra
- Department of Information and Communications Technologies, Universitat Pompeu Fabra, Carrer Roc Boronat 138, Barcelona, Barcelona, 08018, SPAIN
| |
Collapse
|
35
|
Taylor-Williams M, Spicer G, Bale G, Bohndiek SE. Noninvasive hemoglobin sensing and imaging: optical tools for disease diagnosis. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:JBO-220074VR. [PMID: 35922891 PMCID: PMC9346606 DOI: 10.1117/1.jbo.27.8.080901] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/27/2022] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Measurement and imaging of hemoglobin oxygenation are used extensively in the detection and diagnosis of disease; however, the applied instruments vary widely in their depth of imaging, spatiotemporal resolution, sensitivity, accuracy, complexity, physical size, and cost. The wide variation in available instrumentation can make it challenging for end users to select the appropriate tools for their application and to understand the relative limitations of different methods. AIM We aim to provide a systematic overview of the field of hemoglobin imaging and sensing. APPROACH We reviewed the sensing and imaging methods used to analyze hemoglobin oxygenation, including pulse oximetry, spectral reflectance imaging, diffuse optical imaging, spectroscopic optical coherence tomography, photoacoustic imaging, and diffuse correlation spectroscopy. RESULTS We compared and contrasted the ability of different methods to determine hemoglobin biomarkers such as oxygenation while considering factors that influence their practical application. CONCLUSIONS We highlight key limitations in the current state-of-the-art and make suggestions for routes to advance the clinical use and interpretation of hemoglobin oxygenation information.
Collapse
Affiliation(s)
- Michaela Taylor-Williams
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Graham Spicer
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| | - Gemma Bale
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Electrical Division, Department of Engineering, Cambridge, United Kingdom, United Kingdom
| | - Sarah E Bohndiek
- University of Cambridge, Department of Physics, Cavendish Laboratory, Cambridge, United Kingdom, United Kingdom
- University of Cambridge, Cancer Research UK Cambridge Institute, Cambridge, United Kingdom, United Kingdom
| |
Collapse
|
36
|
Kim HJ, Ho JS. Wireless interfaces for brain neurotechnologies. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2022; 380:20210020. [PMID: 35658679 DOI: 10.1098/rsta.2021.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/13/2021] [Indexed: 06/15/2023]
Abstract
Wireless interfaces enable brain-implanted devices to remotely interact with the external world. They are critical components in modern research and clinical neurotechnologies and play a central role in determining their overall size, lifetime and functionality. Wireless interfaces use a wide range of modalities-including radio-frequency fields, acoustic waves and light-to transfer energy and data to and from an implanted device. These forms of energy interact with living tissue through distinct mechanisms and therefore lead to systems with vastly different form factors, operating characteristics, and safety considerations. This paper reviews recent advances in the development of wireless interfaces for brain neurotechnologies. We summarize the requirements that state-of-the-art brain-implanted devices impose on the wireless interface, and discuss the working principles and applications of wireless interfaces based on each modality. We also investigate challenges associated with wireless brain neurotechnologies and discuss emerging solutions permitted by recent developments in electrical engineering and materials science. This article is part of the theme issue 'Advanced neurotechnologies: translating innovation for health and well-being'.
Collapse
Affiliation(s)
- Han-Joon Kim
- Department of Electrical and Computer Engineering National University of Singapore, Queenstown, Singapore
| | - John S Ho
- Department of Electrical and Computer Engineering National University of Singapore, Queenstown, Singapore
- The N.1 Institute for Health National University of Singapore, Queenstown, Singapore
- Institute for Health Innovation and Technology, National University of Singapore, Queenstown, Singapore
| |
Collapse
|
37
|
Zhang H, Peng Y, Zhang N, Yang J, Wang Y, Ding H. Emerging Optoelectronic Devices Based on Microscale LEDs and Their Use as Implantable Biomedical Applications. MICROMACHINES 2022; 13:mi13071069. [PMID: 35888886 PMCID: PMC9323269 DOI: 10.3390/mi13071069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/05/2023]
Abstract
Thin-film microscale light-emitting diodes (LEDs) are efficient light sources and their integrated applications offer robust capabilities and potential strategies in biomedical science. By leveraging innovations in the design of optoelectronic semiconductor structures, advanced fabrication techniques, biocompatible encapsulation, remote control circuits, wireless power supply strategies, etc., these emerging applications provide implantable probes that differ from conventional tethering techniques such as optical fibers. This review introduces the recent advancements of thin-film microscale LEDs for biomedical applications, covering the device lift-off and transfer printing fabrication processes and the representative biomedical applications for light stimulation, therapy, and photometric biosensing. Wireless power delivery systems have been outlined and discussed to facilitate the operation of implantable probes. With such wireless, battery-free, and minimally invasive implantable light-source probes, these biomedical applications offer excellent opportunities and instruments for both biomedical sciences research and clinical diagnosis and therapy.
Collapse
Affiliation(s)
- Haijian Zhang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Yanxiu Peng
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Nuohan Zhang
- GMA Optoelectronic Technology Limited, Xinyang 464000, China;
| | - Jian Yang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - Yongtian Wang
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
| | - He Ding
- Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (H.Z.); (Y.P.); (J.Y.); (Y.W.)
- Correspondence:
| |
Collapse
|
38
|
Guo H, Bai W, Ouyang W, Liu Y, Wu C, Xu Y, Weng Y, Zang H, Liu Y, Jacobson L, Hu Z, Wang Y, Arafa HM, Yang Q, Lu D, Li S, Zhang L, Xiao X, Vázquez-Guardado A, Ciatti J, Dempsey E, Ghoreishi-Haack N, Waters EA, Haney CR, Westman AM, MacEwan MR, Pet MA, Rogers JA. Wireless implantable optical probe for continuous monitoring of oxygen saturation in flaps and organ grafts. Nat Commun 2022; 13:3009. [PMID: 35637230 PMCID: PMC9151749 DOI: 10.1038/s41467-022-30594-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 05/04/2022] [Indexed: 12/24/2022] Open
Abstract
Continuous, real-time monitoring of perfusion after microsurgical free tissue transfer or solid organ allotransplantation procedures can facilitate early diagnosis of and intervention for anastomotic thrombosis. Current technologies including Doppler systems, cutaneous O2-sensing probes, and fluorine magnetic resonance imaging methods are limited by their intermittent measurements, requirements for skilled personnel, indirect interfaces, and/or their tethered connections. This paper reports a wireless, miniaturized, minimally invasive near-infrared spectroscopic system designed for uninterrupted monitoring of local-tissue oxygenation. A bioresorbable barbed structure anchors the probe stably at implantation sites for a time period matched to the clinical need, with the ability for facile removal afterward. The probe connects to a skin-interfaced electronic module for wireless access to essential physiological parameters, including local tissue oxygenation, pulse oxygenation, and heart rate. In vitro tests and in vivo studies in porcine flap and kidney models demonstrate the ability of the system to continuously measure oxygenation with high accuracy and sensitivity.
Collapse
Affiliation(s)
- Hexia Guo
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Wubin Bai
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA.
| | - Wei Ouyang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihan Liu
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Changsheng Wu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yameng Xu
- The Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Yang Weng
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hao Zang
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Yiming Liu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Lauren Jacobson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yihang Wang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Hany M Arafa
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Quansan Yang
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Di Lu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Shuo Li
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Lin Zhang
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | - Xun Xiao
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, USA
| | | | - Joanna Ciatti
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Elizabeth Dempsey
- Developmental Therapeutics Core, Northwestern University, Evanston, IL, 60208, USA
| | | | - Emily A Waters
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208, USA
| | - Chad R Haney
- Center for Advanced Molecular Imaging, Northwestern University, Evanston, IL, 60208, USA
| | - Amanda M Westman
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Matthew R MacEwan
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Mitchell A Pet
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA.
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
39
|
Trung TQ, Dang VQ, Lee NE. A stretchable ultraviolet-to-NIR broad spectral photodetector using organic-inorganic vertical multiheterojunctions. NANOSCALE 2022; 14:5102-5111. [PMID: 35297929 DOI: 10.1039/d2nr00377e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Stretchable broadband photodetectors (PDs) are attractive for applications in wearable optoelectronics and personal healthcare. However, the development of stretchable broadband PDs is limited by difficulties in obtaining materials, designing device structures, and finding reliable fabrication processes. Here, we report stretchable broadband PDs by forming organic-inorganic vertical multiheterojunctions on a three-dimensionally micro-patterned stretchable substrate (3D-MPSS). The stress-adaptable 3D-MPSS structure allows all layers of the PD coated on it to sustain tensile strains. Generation of photovoltage in the vertical hybrid structure of PbS quantum dots/ZnO nanorods as a photo-responsive material on poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) as a transport channel is considred to be the mechanism of the device response to UV-Vis-NIR. The fabricated PDs present responsivity to UV (365 nm), Vis (565 nm and 660 nm), and NIR (880 nm and 970 nm) light, as well as reliable electrical performance under applied stretching up to 30%.
Collapse
Affiliation(s)
- Tran Quang Trung
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do16419, Republic of Korea.
| | - Vinh Quang Dang
- Faculty of Materials Science and Technology, University of Science, Ho Chi Minh City, 70000, Vietnam
- Vietnam National University-Ho Chi Minh (VNU-HCM), Ho Chi Minh City, 70000, Viet Nam
| | - Nae-Eung Lee
- School of Advanced Materials Science & Engineering, Sungkyunkwan University, Suwon, Kyunggi-do16419, Republic of Korea.
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Kyunggi-do16419, Republic of Korea
- Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Suwon, Kyunggi-do16419, Republic of Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, Suwon, Kyunggi-do16419, Republic of Korea
- Institute of Quantum Biophysics (IQB), Sungkyunkwan University, Suwon, Kyunggi-do 16419, Republic of Korea
| |
Collapse
|
40
|
Kim WS, Hong S, Park SI. Robust, wireless gastric optogenetic implants for the study of peripheral pathways and applications in obesity . ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:5742-5746. [PMID: 34892424 DOI: 10.1109/embc46164.2021.9629753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Optogenetics has the potential to transform the study of organ functions in the peripheral nervous system via relatively easy access to the nerves and a direct link between the brain and organ systems. Implementation typically requires a static skeletal feature for the securement of a fiber. Unfortunately, the soft nature of peripheral nervous systems makes the wired fiber-optic approach less ideal for the study of the peripheral nervous system. Existing wireless approaches could bypass some constraints associated with optical fibers and thereby offer organ specificity. However, they suffer from durability loss due to considerable biological strains and unable to perform longitudinal experiments. Here, we propose a new class of wireless gastric optogenetic implant for identifying signaling pathways, in particular viscerosensory pathways, that can regulate food intake to treat obesity. Robust, wireless gastric optogenetic implants with a tubing-assisted U-shaped tether directly interface with nerve endings in the stomach with chronic stability in operation (> 100 kilocycles) and allows for optogenetic stimulations of vagus nerves in a freely behaving animal. We demonstrated utilities of the proposed wireless device in in vivo experiments. Results suggest the potential for identifying interventions for the treatment of obesity.Clinical Relevance - Identification of the roles of subpopulations in viscerosensory pathways would provide the platform for the development of better therapeutics for the treatment of obesity.
Collapse
|
41
|
Cho Y, Park S, Lee J, Yu KJ. Emerging Materials and Technologies with Applications in Flexible Neural Implants: A Comprehensive Review of Current Issues with Neural Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005786. [PMID: 34050691 PMCID: PMC11468537 DOI: 10.1002/adma.202005786] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Neuroscience is an essential field of investigation that reveals the identity of human beings, with a comprehensive understanding of advanced mental activities, through the study of neurobiological structures and functions. Fully understanding the neurotransmission system that allows for connectivity among neuronal circuits has paved the way for the development of treatments for neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and depression. The field of flexible implants has attracted increasing interest mainly to overcome the mechanical mismatch between rigid electrode materials and soft neural tissues, enabling precise measurements of neural signals from conformal contact. Here, the current issues of flexible neural implants (chronic device failure, non-bioresorbable electronics, low-density electrode arrays, among others are summarized) by presenting material candidates and designs to address each challenge. Furthermore, the latest investigations associated with the aforementioned issues are also introduced, including suggestions for ideal neural implants. In terms of the future direction of these advances, designing flexible devices would provide new opportunities for the study of brain-machine interfaces or brain-computer interfaces as part of locomotion through brain signals, and for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Younguk Cho
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Sanghoon Park
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Juyoung Lee
- School of Electrical EngineeringYonsei UniversitySeoul03722Korea
| | - Ki Jun Yu
- School of Electrical EngineeringYU‐KIST InstituteYonsei UniversitySeoul03722Korea
| |
Collapse
|
42
|
Yoo S, Lee J, Joo H, Sunwoo S, Kim S, Kim D. Wireless Power Transfer and Telemetry for Implantable Bioelectronics. Adv Healthc Mater 2021; 10:e2100614. [PMID: 34075721 DOI: 10.1002/adhm.202100614] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Implantable bioelectronic devices are becoming useful and prospective solutions for various diseases owing to their ability to monitor or manipulate body functions. However, conventional implantable devices (e.g., pacemaker and neurostimulator) are still bulky and rigid, which is mostly due to the energy storage component. In addition to mechanical mismatch between the bulky and rigid implantable device and the soft human tissue, another significant drawback is that the entire device should be surgically replaced once the initially stored energy is exhausted. Besides, retrieving physiological information across a closed epidermis is a tricky procedure. However, wireless interfaces for power and data transfer utilizing radio frequency (RF) microwave offer a promising solution for resolving such issues. While the RF interfacing devices for power and data transfer are extensively investigated and developed using conventional electronics, their application to implantable bioelectronics is still a challenge owing to the constraints and requirements of in vivo environments, such as mechanical softness, small module size, tissue attenuation, and biocompatibility. This work elucidates the recent advances in RF-based power transfer and telemetry for implantable bioelectronics to tackle such challenges.
Collapse
Affiliation(s)
- Seungwon Yoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Jonghun Lee
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Hyunwoo Joo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sung‐Hyuk Sunwoo
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
| | - Sanghoek Kim
- Department of Electronics and Information Convergence Engineering Kyung Hee University Yongin‐si 17104 Republic of Korea
- Institute for Wearable Convergence Electronics Kyung Hee University Yongin‐si 17104 Republic of Korea
| | - Dae‐Hyeong Kim
- Center for Nanoparticle Research Institute for Basic Science (IBS) Seoul 08826 Republic of Korea
- School of Chemical and Biological Engineering Institute of Chemical Processes Seoul National University Seoul 08826 Republic of Korea
- Department of Materials Science and Engineering Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
43
|
Burton A, Won SM, Sohrabi AK, Stuart T, Amirhossein A, Kim JU, Park Y, Gabros A, Rogers JA, Vitale F, Richardson AG, Gutruf P. Wireless, battery-free, and fully implantable electrical neurostimulation in freely moving rodents. MICROSYSTEMS & NANOENGINEERING 2021; 7:62. [PMID: 34567774 PMCID: PMC8433476 DOI: 10.1038/s41378-021-00294-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 05/04/2023]
Abstract
Implantable deep brain stimulation (DBS) systems are utilized for clinical treatment of diseases such as Parkinson's disease and chronic pain. However, long-term efficacy of DBS is limited, and chronic neuroplastic changes and associated therapeutic mechanisms are not well understood. Fundamental and mechanistic investigation, typically accomplished in small animal models, is difficult because of the need for chronic stimulators that currently require either frequent handling of test subjects to charge battery-powered systems or specialized setups to manage tethers that restrict experimental paradigms and compromise insight. To overcome these challenges, we demonstrate a fully implantable, wireless, battery-free platform that allows for chronic DBS in rodents with the capability to control stimulation parameters digitally in real time. The devices are able to provide stimulation over a wide range of frequencies with biphasic pulses and constant voltage control via low-impedance, surface-engineered platinum electrodes. The devices utilize off-the-shelf components and feature the ability to customize electrodes to enable broad utility and rapid dissemination. Efficacy of the system is demonstrated with a readout of stimulation-evoked neural activity in vivo and chronic stimulation of the medial forebrain bundle in freely moving rats to evoke characteristic head motion for over 36 days.
Collapse
Affiliation(s)
- Alex Burton
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Sang Min Won
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon, 16419 Republic of Korea
| | - Arian Kolahi Sohrabi
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Tucker Stuart
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Amir Amirhossein
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721 USA
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208 USA
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208 USA
| | - Andrew Gabros
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - John A. Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL 60208 USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208 USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208 USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208 USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208 USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Flavia Vitale
- Department of Neurology, Bioengineering, Physical Medicine & Rehabilitation, Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Andrew G. Richardson
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Philipp Gutruf
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ 85721 USA
- Bio5 Institute and Neuroscience GIDP, University of Arizona, Tucson, AZ 85721 USA
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ 85721 USA
| |
Collapse
|
44
|
Wireless, battery-free, subdermally implantable platforms for transcranial and long-range optogenetics in freely moving animals. Proc Natl Acad Sci U S A 2021; 118:2025775118. [PMID: 34301889 DOI: 10.1073/pnas.2025775118] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Wireless, battery-free, and fully subdermally implantable optogenetic tools are poised to transform neurobiological research in freely moving animals. Current-generation wireless devices are sufficiently small, thin, and light for subdermal implantation, offering some advantages over tethered methods for naturalistic behavior. Yet current devices using wireless power delivery require invasive stimulus delivery, penetrating the skull and disrupting the blood-brain barrier. This can cause tissue displacement, neuronal damage, and scarring. Power delivery constraints also sharply curtail operational arena size. Here, we implement highly miniaturized, capacitive power storage on the platform of wireless subdermal implants. With approaches to digitally manage power delivery to optoelectronic components, we enable two classes of applications: transcranial optogenetic activation millimeters into the brain (validated using motor cortex stimulation to induce turning behaviors) and wireless optogenetics in arenas of more than 1 m2 in size. This methodology allows for previously impossible behavioral experiments leveraging the modern optogenetic toolkit.
Collapse
|
45
|
Yamagishi K, Zhou W, Ching T, Huang SY, Hashimoto M. Ultra-Deformable and Tissue-Adhesive Liquid Metal Antennas with High Wireless Powering Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008062. [PMID: 34031936 DOI: 10.1002/adma.202008062] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/22/2021] [Indexed: 06/12/2023]
Abstract
Flexible and stretchable antennas are important for wireless communication using wearable and implantable devices to address mechanical mismatch at the tissue-device interface. Emerging technologies of liquid-metal-based stretchable electronics are promising approaches to improve the flexibility and stretchability of conventional metal-based antennas. However, existing methods to encapsulate liquid metals require monolithically thick (at least 100 µm) substrates, and the resulting devices are limited in deformability and tissue-adhesiveness. To overcome this limitation, fabrication of microchannels by direct ink writing on a 7 µm-thick elastomeric substrate is demonstrated, to obtain liquid metal microfluidic antennas with unprecedented deformability. The fabricated wireless light-emitting device is powered by a standard near-field-communication system (13.56 MHz, 1 W) and retained a consistent operation under deformations including stretching (>200% uniaxial strain), twisting (180° twist), and bending (3.0 mm radius of curvature) while maintaining a high quality factor (q > 20). Suture-free conformal adhesion of the polydopamine-coated device to ex vivo animal tissues under mechanical deformations is also demonstrated. This technology offers a new capability for the design and fabrication of wireless biomedical devices requiring conformable tissue-device integration toward minimally invasive, imperceptible medical treatments.
Collapse
Affiliation(s)
- Kento Yamagishi
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Wenshen Zhou
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Terry Ching
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583, Singapore
| | - Shao Ying Huang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| | - Michinao Hashimoto
- Digital Manufacturing and Design (DManD) Centre, Singapore University of Technology and Design, Singapore, 487372, Singapore
- Pillar of Engineering Product Development, Singapore University of Technology and Design, Singapore, 487372, Singapore
| |
Collapse
|
46
|
Zhao Z, Cea C, Gelinas JN, Khodagholy D. Responsive manipulation of neural circuit pathology by fully implantable, front-end multiplexed embedded neuroelectronics. Proc Natl Acad Sci U S A 2021; 118:e2022659118. [PMID: 33972429 PMCID: PMC8157942 DOI: 10.1073/pnas.2022659118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Responsive neurostimulation is increasingly required to probe neural circuit function and treat neuropsychiatric disorders. We introduce a multiplex-then-amplify (MTA) scheme that, in contrast to current approaches (which necessitate an equal number of amplifiers as number of channels), only requires one amplifier per multiplexer, significantly reducing the number of components and the size of electronics in multichannel acquisition systems. It also enables simultaneous stimulation of arbitrary waveforms on multiple independent channels. We validated the function of MTA by developing a fully implantable, responsive embedded system that merges the ability to acquire individual neural action potentials using conformable conducting polymer-based electrodes with real-time onboard processing, low-latency arbitrary waveform stimulation, and local data storage within a miniaturized physical footprint. We verified established responsive neurostimulation protocols and developed a network intervention to suppress pathological coupling between the hippocampus and cortex during interictal epileptiform discharges. The MTA design enables effective, self-contained, chronic neural network manipulation with translational relevance to the treatment of neuropsychiatric disease.
Collapse
Affiliation(s)
- Zifang Zhao
- Department of Electrical Engineering, Columbia University, New York, NY 10027
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032
| | - Claudia Cea
- Department of Electrical Engineering, Columbia University, New York, NY 10027
| | - Jennifer N Gelinas
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032;
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032
| | - Dion Khodagholy
- Department of Electrical Engineering, Columbia University, New York, NY 10027;
| |
Collapse
|
47
|
Lim C, Hong YJ, Jung J, Shin Y, Sunwoo SH, Baik S, Park OK, Choi SH, Hyeon T, Kim JH, Lee S, Kim DH. Tissue-like skin-device interface for wearable bioelectronics by using ultrasoft, mass-permeable, and low-impedance hydrogels. SCIENCE ADVANCES 2021; 7:eabd3716. [PMID: 33962955 PMCID: PMC8104866 DOI: 10.1126/sciadv.abd3716] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/19/2021] [Indexed: 05/18/2023]
Abstract
Hydrogels consist of a cross-linked porous polymer network and water molecules occupying the interspace between the polymer chains. Therefore, hydrogels are soft and moisturized, with mechanical structures and physical properties similar to those of human tissue. Such hydrogels have a potential to turn the microscale gap between wearable devices and human skin into a tissue-like space. Here, we present material and device strategies to form a tissue-like, quasi-solid interface between wearable bioelectronics and human skin. The key material is an ultrathin type of functionalized hydrogel that shows unusual features of high mass-permeability and low impedance. The functionalized hydrogel acted as a liquid electrolyte on the skin and formed an extremely conformal and low-impedance interface for wearable electrochemical biosensors and electrical stimulators. Furthermore, its porous structure and ultrathin thickness facilitated the efficient transport of target molecules through the interface. Therefore, this functionalized hydrogel can maximize the performance of various wearable bioelectronics.
Collapse
Affiliation(s)
- Chanhyuk Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaebong Jung
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sueng Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Hoon Kim
- School of Mechanical Engineering, Pusan National University, Busan 46241, Republic of Korea.
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Yokota T, Fukuda K, Someya T. Recent Progress of Flexible Image Sensors for Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004416. [PMID: 33527511 DOI: 10.1002/adma.202004416] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/29/2020] [Indexed: 06/12/2023]
Abstract
Flexible image sensors have attracted increasing attention as new imaging devices owing to their lightness, softness, and bendability. Since light can measure inside information from outside of the body, optical-imaging-based approaches, such as X-rays, are widely used for disease diagnosis in hospitals. Unlike conventional sensors, flexible image sensors are soft and can be directly attached to a curved surface, such as the skin, for continuous measurement of biometric information with high accuracy. Therefore, they are expected to gain wide application to wearable devices, as well as home medical care. Herein, the application of such sensors to the biomedical field is introduced. First, their individual components, photosensors, and switching elements, are explained. Then, the basic parameters used to evaluate the performance of each of these elements and the image sensors are described. Finally, examples of measuring the dynamic and static biometric information using flexible image sensors, together with relevant real-world measurement cases, are presented. Furthermore, recent applications of the flexible image sensors in the biomedical field are introduced.
Collapse
Affiliation(s)
- Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Kenjiro Fukuda
- Center for Emergent Matter Science & Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Center for Emergent Matter Science & Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
49
|
Kang MH, Lee GJ, Lee JH, Kim MS, Yan Z, Jeong J, Jang K, Song YM. Outdoor-Useable, Wireless/Battery-Free Patch-Type Tissue Oximeter with Radiative Cooling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2004885. [PMID: 34026462 PMCID: PMC8132059 DOI: 10.1002/advs.202004885] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 05/23/2023]
Abstract
For wearable electronics/optoelectronics, thermal management should be provided for accurate signal acquisition as well as thermal comfort. However, outdoor solar energy gain has restricted the efficiency of some wearable devices like oximeters. Herein, wireless/battery-free and thermally regulated patch-type tissue oximeter (PTO) with radiative cooling structures are presented, which can measure tissue oxygenation under sunlight in reliable manner and will benefit athlete training. To maximize the radiative cooling performance, a nano/microvoids polymer (NMVP) is introduced by combining two perforated polymers to both reduce sunlight absorption and maximize thermal radiation. The optimized NMVP exhibits sub-ambient cooling of 6 °C in daytime under various conditions such as scattered/overcast clouds, high humidity, and clear weather. The NMVP-integrated PTO enables maintaining temperature within ≈1 °C on the skin under sunlight relative to indoor measurement, whereas the normally used, black encapsulated PTO shows over 40 °C owing to solar absorption. The heated PTO exhibits an inaccurate tissue oxygen saturation (StO2) value of ≈67% compared with StO2 in a normal state (i.e., ≈80%). However, the thermally protected PTO presents reliable StO2 of ≈80%. This successful demonstration provides a feasible strategy of thermal management in wearable devices for outdoor applications.
Collapse
Affiliation(s)
- Min Hyung Kang
- School of Electrical Engineering and Computer Science (EECS)Gwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
| | - Gil Ju Lee
- School of Electrical Engineering and Computer Science (EECS)Gwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
| | - Joong Hoon Lee
- School of Electrical Engineering and Computer Science (EECS)Gwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science (EECS)Gwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
| | - Zheng Yan
- Department of BiomedicalBiological and Chemical EngineeringUniversity of MissouriColumbiaMO65211USA
- Department of Mechanical and Aerospace EngineeringUniversity of MissouriColumbiaMO65211USA
| | - Jae‐Woong Jeong
- School of Electrical EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐ro, Yuseong‐guDaejeon34141Republic of Korea
| | - Kyung‐In Jang
- Department of Robotics EngineeringDaegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu42988Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science (EECS)Gwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
- Anti‐Viral Research CenterGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
- AI Graduate SchoolGwangju Institute of Science and Technology (GIST)123, Cheomdangwagi‐ro, BukguGwangju61005Republic of Korea
| |
Collapse
|
50
|
Yokus BMA, Daniele MA. Integrated non-invasive biochemical and biophysical sensing systems for health and performance monitoring: A systems perspective. Biosens Bioelectron 2021; 184:113249. [PMID: 33895689 DOI: 10.1016/j.bios.2021.113249] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022]
Abstract
Advances in materials, bio-recognition elements, transducers, and microfabrication techniques, as well as progress in electronics, signal processing, and wireless communication have generated a new class of skin-interfaced wearable health monitoring systems for applications in personalized medicine and digital health. In comparison to conventional medical devices, these wearable systems are at the cusp of initiating a new era of longitudinal and noninvasive sensing for the prevention, detection, diagnosis, and treatment of diseases at the molecular level. Herein, we provide a review of recent developments in wearable biochemical and biophysical systems. We survey the sweat sampling and collection methods for biochemical systems, followed by an assessment of biochemical and biophysical sensors deployed in current wearable systems with an emphasis on their hardware specifications. Specifically, we address how sweat collection and sample handling platforms may be a rate limiting technology to realizing the clinical translation of wearable health monitoring systems; moreover, we highlight the importance of achieving both longitudinal sensing and assessment of intrapersonal variation in sweat-blood correlations to have the greatest clinical impact. Lastly, we assess a snapshot of integrated wireless wearable systems with multimodal sensing capabilities, and we conclude with our perspective on the state-of-the-art and the required developments to achieve the next-generation of integrated wearable health and performance monitoring systems.
Collapse
Affiliation(s)
- By Murat A Yokus
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA
| | - Michael A Daniele
- Department of Electrical & Computer Engineering, North Carolina State University, 890 Oval Dr., Raleigh, NC, 27695, USA; Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, 911 Oval Dr., Raleigh, NC, 27695, USA.
| |
Collapse
|