1
|
Su J, Zhang J, Wang Q, Liu X, Wang S, Ruan Y, Li D. Multiparametric Immune Profiles and Their Potential Role in HIV-1 Disease Progression and Treatment. Pathogens 2025; 14:347. [PMID: 40333129 PMCID: PMC12030533 DOI: 10.3390/pathogens14040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 03/31/2025] [Indexed: 05/09/2025] Open
Abstract
Backgrounds: The rapid initiation of highly active anti-retroviral therapy (HAART) can control HIV-1 viremia and stabilize the long-term health of people living with HIV-1 (PLWH). Despite this, individuals who are diagnosed late and exhibit poor therapeutic efficacy still pose a great challenge to global HIV management. To address this, we conducted comprehensive multiparametric immune profiling and analyzed its association with disease progression and therapeutic efficacy. Methods: Multicolor flow cytometry was used to characterize the circulating immune cell composition and cellular phenotypes in 40 treatment-naive individuals (16 chronic, 24 newly diagnosed), 26 HAART-treated individuals, and 18 healthy controls. Comparative analyses of T cell subsets, immune activation markers, and viral load signatures were performed, followed by network construction. We carried out principal component analysis and displayed the data by dimensionality reduction. Results: Persistent immune activation, dysregulated regulatory immunity, and aberrant memory differentiation markers were identified in T cells of HIV-1-infected individuals and were associated with disease progression. Additionally, HAART-treated patients which did not fully restore CD4 T cells exhibited higher levels of activated markers, suggesting possible biomarkers of therapeutic efficacy. Conclusions: This study describes changes in immune cell profiles throughout HIV-1 disease progression and explores suitable laboratory predictors for future clinical and therapeutic settings by monitoring pathological immune cell events.
Collapse
Affiliation(s)
- Junwei Su
- The Department of Infectious Diseases, State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China;
| | - Junjie Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Qianying Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Xiaojing Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Yuhua Ruan
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China; (J.Z.); (Q.W.); (X.L.); (S.W.); (Y.R.)
| |
Collapse
|
2
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Heredia A, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. EBioMedicine 2024; 109:105410. [PMID: 39427414 PMCID: PMC11533037 DOI: 10.1016/j.ebiom.2024.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/08/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
BACKGROUND Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, virus detection and characterization were not at the earliest stages of acute infection. METHODS We identified an X4-tropic T/F HIV-1 in a participant (40700) in the RV217 acute infection cohort. Coreceptor usage was determined in TZM-bl cell line, NP-2 cell lines, and primary CD4+ T cells using pseudovirus and infectious molecular clones. CD4 subset dynamics were analyzed using flow cytometry. Viral load in each CD4 subset was quantified using cell-associated HIV RNA assay and total and integrated HIV DNA assay. FINDINGS Participant 40700 was infected by an X4 tropic HIV-1 without CCR5 using ability. This participant experienced significantly faster CD4 depletion compared to R5 virus infected individuals in the same cohort. Naïve and central memory (CM) CD4 subsets declined faster than effector memory (EM) and transitional memory (TM) subsets. All CD4 subsets, including the naïve, were productively infected. Increased CD4+ T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions, while most of the R5 T/F viruses in the same cohort are sensitive to the same panel of bNAbs. INTERPRETATION X4-tropic HIV-1 is transmissible through mucosal route in people with wild-type CCR5 genotype. The CD4 subset tropism of HIV-1 may be an important determinant for HIV-1 transmissibility and virulence. FUNDING Institute of Human Virology, National Institutes of Health, Henry M. Jackson Foundation for the Advancement of Military Medicine.
Collapse
Affiliation(s)
| | - Saini Setua
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Meera Bose
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Eric Sanders-Buell
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Felisa Diaz-Mendez
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montréal, Canada
| | - Rasmi Thomas
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Victoria R Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Sodsai Tovanabutra
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yutaka Tagaya
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nelson L Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc, Bethesda, MD, USA
| | - Hongshuo Song
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
3
|
Reid MC, Mittler JE, Murphy JT, Stansfield SE, Goodreau SM, Abernethy N, Herbeck JT. Evolution of HIV virulence in response to disease-modifying vaccines: A modeling study. Vaccine 2023; 41:6461-6469. [PMID: 37714749 PMCID: PMC10721209 DOI: 10.1016/j.vaccine.2023.08.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/24/2023] [Accepted: 08/25/2023] [Indexed: 09/17/2023]
Abstract
Pathogens face a tradeoff with respect to virulence; while more virulent strains often have higher per-contact transmission rates, they are also more likely to kill their hosts earlier. Because virulence is a heritable trait, there is concern that a disease-modifying vaccine, which reduces the disease severity of an infected vaccinee without changing the underlying pathogen genotype, may result in the evolution of higher pathogen virulence. We explored the potential for such virulence evolution with a disease-modifying HIV-1 vaccine in an agent-based stochastic epidemic model of HIV in United States men who have sex with men (MSM). In the model, vaccinated agents received no protection against infection, but experienced lower viral loads and slower disease progression. We compared the genotypic set point viral load (SPVL), a measure of HIV virulence, in populations given vaccines that varied in the degree of SPVL reduction they induce. Sensitivity analyses were conducted under varying vaccine coverage scenarios. With continual vaccination rollout under ideal circumstances of 90 % coverage over thirty years, the genotypic SPVL of vaccinated individuals evolved to become greater than the genotypic SPVL of unvaccinated individuals. This virulence evolution in turn diminished the public health benefit of the vaccine, and in some scenarios resulted in an accelerated epidemic. These findings demonstrate the complexity of viral evolution and have important implications for the design and development of HIV vaccines.
Collapse
Affiliation(s)
- Molly C Reid
- Department of Epidemiology, 1959 NE Pacific Street, Magnuson Health Sciences Center, Room F-262, Seattle, WA 98195, United States.
| | - John E Mittler
- Department of Microbiology, 750 Republican St., Building F, Seattle, WA 98109, United States
| | - James T Murphy
- Washington State Department of Ecology, P.O. Box 47600, Olympia, WA 98504, United States
| | - Sarah E Stansfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Steven M Goodreau
- Department of Epidemiology, 1959 NE Pacific Street, Magnuson Health Sciences Center, Room F-262, Seattle, WA 98195, United States; Department of Anthropology, Box 353100, University of Washington, Seattle, WA 98195, United States
| | - Neil Abernethy
- Department of Biomedical Informatics and Medical Education, University of Washington, Box 358047, Seattle, WA 98195, United States; Department of Health Systems and Population Health, 1959 NE Pacific St, Magnuson Health Sciences Center, Room H-680, Seattle, WA 98195-7660, United States
| | - Joshua T Herbeck
- Department of Global Health, Hans Rosling Center, 3980 15th Ave NE, UW Box #351620, Seattle, WA 98195, United States
| |
Collapse
|
4
|
Song H, Marichannegowda M, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis V, Tovanabutra S, Tagaya Y, Michael N, Robb M. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. RESEARCH SQUARE 2023:rs.3.rs-3359209. [PMID: 37841838 PMCID: PMC10571614 DOI: 10.21203/rs.3.rs-3359209/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, detection was not at the earliest stages of acute infection. Here, we identified an X4-tropic T/F HIV-1 in a participant in acute infection cohort. Coreceptor assays demonstrated that this T/F virus is strictly CXCR4 tropic. The participant experienced significantly faster CD4 depletion compared with R5 virus infected participants in the same cohort. Naïve and central memory CD4 subsets declined faster than effector and transitional memory subsets. All CD4 subsets, including naïve, were productively infected. Increased CD4+ T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions. These findings demonstrate that X4-tropic HIV-1 is transmissible through the mucosal route in people with the wild-type CCR5 genotype and have implications for understanding the transmissibility and immunopathogenesis of X4-tropic HIV-1.
Collapse
Affiliation(s)
- Hongshuo Song
- University of Maryland School of Medicine, Baltimore
| | | | - Saini Setua
- University of Maryland School of Medicine, Baltimore
| | | | | | - David King
- The Henry M. Jackson Foundation for the Advancement of Military Medicine
| | - Michelle Zemil
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Lindsay Wieczorek
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | | | - Nicolas Chomont
- Université de Montréal, Department of Microbiology, Infectiology and Immunology
| | - Rasmi Thomas
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Leilani Francisco
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | - Victoria Polonis
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research
| | | | - Yutaka Tagaya
- University of Maryland School of Medicine, Baltimore
| | - Nelson Michael
- Center for Infectious Diseases Research, Walter Reed Army Institute of Research
| | - Merlin Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research; The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc
| |
Collapse
|
5
|
Marichannegowda MH, Setua S, Bose M, Sanders-Buell E, King D, Zemil M, Wieczorek L, Diaz-Mendez F, Chomont N, Thomas R, Francisco L, Eller LA, Polonis VR, Tovanabutra S, Tagaya Y, Michael NL, Robb ML, Song H. Transmission of highly virulent CXCR4 tropic HIV-1 through the mucosal route in an individual with a wild-type CCR5 genotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.15.557832. [PMID: 37745406 PMCID: PMC10515894 DOI: 10.1101/2023.09.15.557832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Nearly all transmitted/founder (T/F) HIV-1 are CCR5 (R5)-tropic. While previous evidence suggested that CXCR4 (X4)-tropic HIV-1 are transmissible, detection was not at the earliest stages of acute infection. Here, we identified an X4-tropic T/F HIV-1 in a participant in acute infection cohort. Coreceptor assays demonstrated that this T/F virus is strictly CXCR4 tropic. The participant experienced significantly faster CD4 depletion compared with R5 virus infected participants in the same cohort. Naïve and central memory CD4 subsets declined faster than effector and transitional memory subsets. All CD4 subsets, including naïve, were productively infected. Increased CD4 + T cell activation was observed over time. This X4-tropic T/F virus is resistant to broadly neutralizing antibodies (bNAbs) targeting V1/V2 and V3 regions. These findings demonstrate that X4-tropic HIV-1 is transmissible through the mucosal route in people with the wild-type CCR5 genotype and have implications for understanding the transmissibility and immunopathogenesis of X4-tropic HIV-1.
Collapse
|
6
|
Liu G, Qin L, Li Y, Zhao S, Shugay M, Yan Y, Ye Y, Chen Y, Huang C, Bayaer N, Adah D, Zhang H, Su Z, Chen X. Subsequent malaria enhances virus-specific T cell immunity in SIV-infected Chinese rhesus macaques. Cell Commun Signal 2022; 20:101. [PMID: 35778766 PMCID: PMC9248186 DOI: 10.1186/s12964-022-00910-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 05/29/2022] [Indexed: 11/16/2022] Open
Abstract
Background Coinfection with HIV and Plasmodium parasites is fairly common, but the sequence of infection with these two pathogens and their impact on disease progression are poorly understood. Methods A Chinese rhesus macaque HIV and Plasmodium coinfection model was established to compare the impact of pre-existing and subsequent malaria on the progression of SIV infection. Results We found that a pre-existing malaria caused animals to produce a greater number of CD4+CCR5+ T cells for SIV replication, resulting in higher viral loads. Conversely, subsequent malaria induced a substantially larger proportion of CD4+CD28highCD95high central memory T cells and a stronger SIV-specific T cell response, maintained the repertoire diversity of SIV-specific T cell receptors, and generated new SIV-specific T cell clonotypes to trace SIV antigenic variation, resulting in improved survival of SIV-infected animals. Conclusion The complex outcomes of this study may have important implications for research on human HIV and malaria coinfection. The infection order of the two pathogens (HIV and malaria parasites) should be emphasized. Video abstract
Supplementary Information The online version contains supplementary material available at 10.1186/s12964-022-00910-7.
Collapse
Affiliation(s)
- Guangjie Liu
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,Graduate School, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China.,The Fist Affiliated Hospital of Shenzhen University, Shenzhen, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Li Qin
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Lamvac Biotech Co., Ltd, Guangzhou, China
| | - Youjia Li
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,The Fist Affiliated Hospital of Shenzhen University, Shenzhen, China.,Integrated Chinese and Western Medicine Postdoctoral Research Station, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China.,Shenzhen Institute of Geriatrics, Shenzhen, China
| | - Siting Zhao
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.,CAS Lamvac Biotech Co., Ltd, Guangzhou, China
| | - Mikhail Shugay
- Genomics of Adaptive Immunity Laboratory, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences (RAS), Moscow, Russia
| | - Yongxiang Yan
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yijian Ye
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yue Chen
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Cuizhu Huang
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Nashun Bayaer
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Dickson Adah
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhong Su
- Laboratory of Immunobiology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Xiaoping Chen
- Laboratory of Pathogen Biology, State Key Laboratory of Respiratory Disease, Center for Infection and Immunity, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China. .,CAS Lamvac Biotech Co., Ltd, Guangzhou, China.
| |
Collapse
|
7
|
Kumar Singh A, Padwal V, Palav H, Velhal S, Nagar V, Patil P, Patel V. Highly dampened HIV-specific cytolytic effector T cell responses define viremic non-progression. Immunobiology 2022; 227:152234. [PMID: 35671626 DOI: 10.1016/j.imbio.2022.152234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/30/2022] [Indexed: 11/05/2022]
Abstract
This study reports on HIV-specific T cell responses in HIV-1 infected Viremic Non-Progressors (VNPs), a rare group of people living with HIV that exhibit asymptomatic infection over several years accompanied by stable CD4+ T cell counts in spite of ongoing viral replication. We attempted to identify key virus-specific functional attributes that could underlie the apparently paradoxical virus-host equilibrium observed in VNPs. Our results revealed modulation of HIV-specific CD4+ and CD8+ effector T cell responses in VNPs towards a dominant non-cytolytic profile with concomitantly diminished degranulation (CD107a+) ability. Further, the HIV specific CD8+ effector T cell response was primarily enriched for MIP-1β producing cells. As expected, concordant with better viral suppression, VCs exhibit a robust cytolytic T cell response. Interestingly, PuPs shared features common to both these responses but did not exhibit a CD4+ central memory IFN-γ producing Gag-specific response that was shared by both non-progressor (VC and VNP) groups, suggesting CD4 helper response is critical for non-progression. Our study also revealed that cytolytic response in VNPs is primarily limited to polyfunctional cells while both monofunctional and polyfunctional cells significantly contribute to cytolytic responses in VCs. To further understand mechanisms underlying the unique HIV-specific effector T cell response described here in VNPs we also evaluated and demonstrated a possible role for altered gut homing in these individuals. Our findings inform immunotherapeutic interventions to achieve functional cures in the context of ART resistance and serious non AIDS events.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Varsha Padwal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Harsha Palav
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Shilpa Velhal
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, Maharashtra, India
| | - Vainav Patel
- Viral Immunopathogenesis Laboratory, ICMR-National Institute for Research in Reproductive Health, Mumbai, Maharashtra, India.
| |
Collapse
|
8
|
Boodhoo N, Behboudi S. Differential Virus-Specific IFN-Gamma Producing T Cell Responses to Marek's Disease Virus in Chickens With B19 and B21 MHC Haplotypes. Front Immunol 2022; 12:784359. [PMID: 35095857 PMCID: PMC8792850 DOI: 10.3389/fimmu.2021.784359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/15/2021] [Indexed: 11/22/2022] Open
Abstract
Marek’s disease virus (MDV), the etiologic agent for Marek’s disease (MD), causes a deadly lymphoproliferative disease in chickens. Causes of the well-documented association between genetically defined lines of chicken and resistance to MD remain unknown. Here, the frequencies of IFN-gamma producing pp38 and MEQ-specific T cell responses were determined in line N (B21 haplotype; MD-resistant) and line P2a (B19 haplotype, MD-susceptible) chickens after infection with vaccine and/or virulent (RB1B) strains of MDV using both standard ex vivo and cultured chIFN-gamma ELISPOT assays. Notably, MDV infection of naïve and vaccinated MD-resistant chickens induced higher frequencies of IFN-gamma producing MDV-specific T cell responses using the cultured and ex vivo ELISPOT assay, respectively. Remarkably, vaccination did not induce or boost MEQ-specific effector T cells in the susceptible chickens, while it boosted both pp38-and MEQ-specific response in resistant line. Taken together, our results revealed that there is a direct association between the magnitude of T cell responses to pp38 and MEQ of MDV antigens and resistance to the disease.
Collapse
Affiliation(s)
| | - Shahriar Behboudi
- The Pirbright Institute, Woking, United Kingdom.,Faculty of Health and Medical Sciences, School of Veterinary Medicine, University of Surrey, Guilford, United Kingdom
| |
Collapse
|
9
|
Interests of the Non-Human Primate Models for HIV Cure Research. Vaccines (Basel) 2021; 9:vaccines9090958. [PMID: 34579195 PMCID: PMC8472852 DOI: 10.3390/vaccines9090958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/24/2021] [Indexed: 12/17/2022] Open
Abstract
Non-human primate (NHP) models are important for vaccine development and also contribute to HIV cure research. Although none of the animal models are perfect, NHPs enable the exploration of important questions about tissue viral reservoirs and the development of intervention strategies. In this review, we describe recent advances in the use of these models for HIV cure research and highlight the progress that has been made as well as limitations using these models. The main NHP models used are (i) the macaque, in which simian immunodeficiency virus (SIVmac) infection displays similar replication profiles as to HIV in humans, and (ii) the macaque infected by a recombinant virus (SHIV) consisting of SIVmac expressing the HIV envelope gene serving for studies analyzing the impact of anti-HIV Env broadly neutralizing antibodies. Lessons for HIV cure that can be learned from studying the natural host of SIV are also presented here. An overview of the most promising and less well explored HIV cure strategies tested in NHP models will be given.
Collapse
|
10
|
Pino M, Pereira Ribeiro S, Pagliuzza A, Ghneim K, Khan A, Ryan E, Harper JL, King CT, Welbourn S, Micci L, Aldrete S, Delman KA, Stuart T, Lowe M, Brenchley JM, Derdeyn CA, Easley K, Sekaly RP, Chomont N, Paiardini M, Marconi VC. Increased homeostatic cytokines and stability of HIV-infected memory CD4 T-cells identify individuals with suboptimal CD4 T-cell recovery on-ART. PLoS Pathog 2021; 17:e1009825. [PMID: 34449812 PMCID: PMC8397407 DOI: 10.1371/journal.ppat.1009825] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/23/2021] [Indexed: 01/12/2023] Open
Abstract
Clinical outcomes are inferior for individuals with HIV having suboptimal CD4 T-cell recovery during antiretroviral therapy (ART). We investigated if the levels of infection and the response to homeostatic cytokines of CD4 T-cell subsets contributed to divergent CD4 T-cell recovery and HIV reservoir during ART by studying virologically-suppressed immunologic responders (IR, achieving a CD4 cell count >500 cells/μL on or before two years after ART initiation), and virologically-suppressed suboptimal responders (ISR, did not achieve a CD4 cell count >500 cells/μL in the first two years after ART initiation). Compared to IR, ISR demonstrated higher levels of HIV-DNA in naïve, central (CM), transitional (TM), and effector (EM) memory CD4 T-cells in blood, both pre- and on-ART, and specifically in CM CD4 T-cells in LN on-ART. Furthermore, ISR had higher pre-ART plasma levels of IL-7 and IL-15, cytokines regulating T-cell homeostasis. Notably, pre-ART PD-1 and TIGIT expression levels were higher in blood CM and TM CD4 T-cells for ISR; this was associated with a significantly lower fold-changes in HIV-DNA levels between pre- and on-ART time points exclusively on CM and TM T-cell subsets, but not naïve or EM T-cells. Finally, the frequency of CM CD4 T-cells expressing PD-1 or TIGIT pre-ART as well as plasma levels of IL-7 and IL-15 predicted HIV-DNA content on-ART. Our results establish the association between infection, T-cell homeostasis, and expression of PD-1 and TIGIT in long-lived CD4 T-cell subsets prior to ART with CD4 T-cell recovery and HIV persistence on-ART.
Collapse
Affiliation(s)
- Maria Pino
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Susan Pereira Ribeiro
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Amélie Pagliuzza
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Khader Ghneim
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Anum Khan
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Emily Ryan
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Justin L. Harper
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Colin T. King
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sarah Welbourn
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Luca Micci
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
| | - Sol Aldrete
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Keith A. Delman
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Theron Stuart
- Emory Vaccine Center, Emory University, Hope Clinic, Decatur, Georgia, United States of America
| | - Michael Lowe
- Division of Surgical Oncology, Department of Surgery, Winship Cancer Institute, Emory University, Atlanta, Georgia, United States of America
| | - Jason M. Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, United States of America
| | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirk Easley
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia, United States of America
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Nicolas Chomont
- Centre de Recherche du CHUM and Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, QC, Canada
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Vincent C. Marconi
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Division of Infectious Diseases, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Atlanta Veterans Affairs Medical Center, Atlanta, Georgia, United States of America
| |
Collapse
|
11
|
Effects of persistent modulation of intestinal microbiota on SIV/HIV vaccination in rhesus macaques. NPJ Vaccines 2021; 6:34. [PMID: 33707443 PMCID: PMC7952719 DOI: 10.1038/s41541-021-00298-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
An effective vaccine to prevent HIV transmission has not yet been achieved. Modulation of the microbiome via probiotic therapy has been suggested to result in enhanced mucosal immunity. Here, we evaluated whether probiotic therapy could improve the immunogenicity and protective efficacy of SIV/HIV vaccination. Rhesus macaques were co-immunized with an SIV/HIV DNA vaccine via particle-mediated epidermal delivery and an HIV protein vaccine administered intramuscularly with Adjuplex™ adjuvant, while receiving daily oral Visbiome® probiotics. Probiotic therapy alone led to reduced frequencies of colonic CCR5+ and CCR6+ CD4+ T cells. Probiotics with SIV/HIV vaccination led to similar reductions in colonic CCR5+ CD4+ T cell frequencies. SIV/HIV-specific T cell and antibody responses were readily detected in the periphery of vaccinated animals but were not enhanced with probiotic treatment. Combination probiotics and vaccination did not impact rectal SIV/HIV target populations or reduce the rate of heterologous SHIV acquisition during the intrarectal challenge. Finally, post-infection viral kinetics were similar between all groups. Thus, although probiotics were well-tolerated when administered with SIV/HIV vaccination, vaccine-specific responses were not significantly enhanced. Additional work will be necessary to develop more effective strategies of microbiome modulation in order to enhance mucosal vaccine immunogenicity and improve protective immune responses.
Collapse
|
12
|
Singh AK, Salwe S, Padwal V, Velhal S, Sutar J, Bhowmick S, Mukherjee S, Nagar V, Patil P, Patel V. Delineation of Homeostatic Immune Signatures Defining Viremic Non-progression in HIV-1 Infection. Front Immunol 2020; 11:182. [PMID: 32194543 PMCID: PMC7066316 DOI: 10.3389/fimmu.2020.00182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 01/23/2020] [Indexed: 01/07/2023] Open
Abstract
Viremic non-progressors (VNPs), a distinct group of HIV-1-infected individuals, exhibit no signs of disease progression and maintain persistently elevated CD4+ T cell counts for several years despite high viral replication. Comprehensive characterization of homeostatic cellular immune signatures in VNPs can provide unique insights into mechanisms responsible for coping with viral pathogenesis as well as identifying strategies for immune restoration under clinically relevant settings such as antiretroviral therapy (ART) failure. We report a novel homeostatic signature in VNPs, the preservation of the central memory CD4+ T cell (CD4+ TCM) compartment. In addition, CD4+ TCM preservation was supported by ongoing interleukin-7 (IL-7)-mediated thymic repopulation of naive CD4+ T cells leading to intact CD4+ T cell homeostasis in VNPs. Regulatory T cell (Treg) expansion was found to be a function of preserved CD4+ T cell count and CD4+ T cell activation independent of disease status. However, in light of continual depletion of CD4+ T cell count in progressors but not in VNPs, Tregs appear to be involved in lack of disease progression despite high viremia. In addition to these homeostatic mechanisms resisting CD4+ T cell depletion in VNPs, a relative diminution of terminally differentiated effector subset was observed exclusively in these individuals that might ameliorate consequences of high viral replication. VNPs also shared signatures of impaired CD8+ T cell cytotoxic function with progressors evidenced by increased exhaustion (PD-1 upregulation) and CD127 (IL-7Rα) downregulation contributing to persistent viremia. Thus, the homeostatic immune signatures reported in our study suggest a complex multifactorial mechanism accounting for non-progression in VNPs.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Sukeshani Salwe
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Varsha Padwal
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Velhal
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Jyoti Sutar
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Shilpa Bhowmick
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Srabani Mukherjee
- Department of Molecular Endocrinology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Vidya Nagar
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Priya Patil
- Department of Medicine, Grant Medical College & Sir J. J. Group of Hospitals, Mumbai, India
| | - Vainav Patel
- Department of Biochemistry and Virology, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
13
|
Dagenais-Lussier X, Loucif H, Cadorel H, Blumberger J, Isnard S, Bego MG, Cohen ÉA, Routy JP, van Grevenynghe J. USP18 is a significant driver of memory CD4 T-cell reduced viability caused by type I IFN signaling during primary HIV-1 infection. PLoS Pathog 2019; 15:e1008060. [PMID: 31658294 PMCID: PMC6837632 DOI: 10.1371/journal.ppat.1008060] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 11/07/2019] [Accepted: 08/31/2019] [Indexed: 02/07/2023] Open
Abstract
The loss of Memory CD4 T-cells (Mem) is a major hallmark of HIV-1 immuno-pathogenesis and occurs early during the first months of primary infection. A lot of effort has been put into understanding the molecular mechanisms behind this loss, yet they still have not been fully identified. In this study, we unveil the unreported role of USP18 in the deleterious effects of sustained type I IFN signaling on Mem, including HIV-1-specific CD4 T-cells. We find that interfering with IFN-I signaling pathway in infected patients, notably by targeting the interferon-stimulated gene USP18, resulted in reduced PTEN expression similar to those observed in uninfected control donors. We show that AKT activation in response to cytokine treatment, T-cell receptor (TcR) triggering, as well as HIV-1 Gag stimulation was significantly improved in infected patients when PTEN or USP18 were inhibited. Finally, our data demonstrate that higher USP18 in Mem from infected patients prevent proper cell survival and long-lasting maintenance in an AKT-dependent manner. Altogether, we establish a direct role for type I IFN/USP18 signaling in the maintenance of total and virus-specific Mem and provide a new mechanism for the reduced survival of these populations during primary HIV-1 infection. In this study, we expend our knowledge of how type I interferons (IFN-I) leads to memory CD4 T-cell defective survival by unveiling the molecular mechanism behind such impairments, placing USP18 at its center. Our data further deciphers the specific USP18-related mechanism that is responsible for such impairments by implicating AKT inhibition in a PTEN-dependent manner. Our findings also point to a potential use of neutralizing anti-interferon α/β receptor antibodies to rescue the defective memory CD4 T-cell survival during HIV-1 infection, even in HIV-1 specific CD4 T-cell. To conclude, our findings provide the characterization of the molecular pathway leading to disturbances caused by sustained IFN-I signaling which occurs early during primary HIV-1 infection, complementing current knowledge which placed sustained IFN-I signaling as detrimental to the host during this infection.
Collapse
Affiliation(s)
- Xavier Dagenais-Lussier
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hamza Loucif
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Hugo Cadorel
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Juliette Blumberger
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
| | - Stéphane Isnard
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Mariana Gé Bego
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
| | - Éric A. Cohen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada
- Department of Microbiology, Infectiology and Immunology, Université de Montréal, Montreal, QC, Canada
| | - Jean-Pierre Routy
- Chronic Viral Illness Service and Division of Hematology, McGill University Health Centre, Glen site, Montréal, Québec, Canada
| | - Julien van Grevenynghe
- Institut national de la recherche scientifique (INRS)-Institut Armand-Frappier, 531 boulevard des Prairies, Laval, QC, Canada
- * E-mail:
| | | |
Collapse
|
14
|
Chaudhary O, Narayan V, Lelis F, Linz B, Watkins M, Veazey R, Aldovini A. Inhibition of p38 MAPK in combination with ART reduces SIV-induced immune activation and provides additional protection from immune system deterioration. PLoS Pathog 2018; 14:e1007268. [PMID: 30161247 PMCID: PMC6135519 DOI: 10.1371/journal.ppat.1007268] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 09/12/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022] Open
Abstract
Differences in immune activation were identified as the most significant difference between AIDS-susceptible and resistant species. p38 MAPK, activated in HIV infection, is key to induction of interferon-stimulated genes and cytokine-mediated inflammation and is associated with some of the pathology produced by HIV or SIV infection in AIDS-susceptible primates. As small molecule p38 MAPK inhibitors are being tested in human trials for inflammatory diseases, we evaluated the effects of treating SIV-infected macaques with the p38 MAPK inhibitor PH-797804 in conjunction with ART. PH-797804 had no side effects, did not impact negatively the antiviral immune response and, used alone, had no significant effect on levels of immune activation and did not reduced the viremia. When administered with ART, it significantly reduced numerous immune activation markers compared to ART alone. CD38+/HLA-DR+ and Ki-67+ T-cell percentages in blood, lymph node and rectal CD4+ and CD8+ T cells, PD-1 expression in CD8+ T cells and plasma levels of IFNα, IFNγ, TNFα, IL-6, IP-10, sCD163 and C-reactive protein were all significantly reduced. Significant preservation of CD4+, CD4+ central memory, CD4+/IL-22+ and CD4+/IL-17+ T-cell percentages and improvement of Th17/Treg ratio in blood and rectal mucosa were also observed. Importantly, the addition of PH-797804 to ART initiated during chronic SIV infection reduced immune activation and restored immune system parameters to the levels observed when ART was initiated on week 1 after infection. After ART interruption, viremia rebounded in a similar fashion in all groups, regardless of when ART was initiated. We concluded that the inhibitor PH-797804 significantly reduced, even if did not normalized, the immune activation parameters evaluated during ART treatment, improved preservation of critical populations of the immune system targeted by SIV, and increased the efficacy of ART treatment initiated in chronic infection to levels similar to those observed when initiated in acute infection but did not affect positively or negatively viral reservoirs. The hallmark of Human Immunodeficiency Virus and Simian Immunodeficiency Virus infection in disease-susceptible species is the progressive decline of the CD4+ T cell population and heightened immune activation, which by itself can contribute to CD4+ T-cell death. The cellular pathway regulated by p38 MAPK, which is activated in HIV and SIV infection, can contribute significantly to immune activation. We tested in SIV-infected macaques a p38 MAPK inhibitor in combination with anti-retroviral therapy. This drug is already being evaluated in humans for treatment of immune activation associated with other diseases. We found that, when combined with antiretroviral therapy, the inhibitor PH-797804 significantly reduced a few parameters of SIV-induced immune activation and improved preservation of critical populations of the immune system targeted by SIV, but did not modulate viral reservoirs. Importantly, the addition of the inhibitor to anti-retroviral therapy during the chronic phase of the infection, which is the time when most HIV-infected individuals initiate treatment, permitted a more significant preservation of the immune system compared to antiretroviral therapy alone that was similar to that observed when anti-retroviral therapy was initiated in the acute phase of the infection, which rarely occurs in HIV infection.
Collapse
Affiliation(s)
- Omkar Chaudhary
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Vivek Narayan
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Felipe Lelis
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Brandon Linz
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
| | - Meagan Watkins
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington LA, United States of America
| | - Ronald Veazey
- Tulane National Primate Research Center, Division of Comparative Pathology, Covington LA, United States of America
| | - Anna Aldovini
- Boston Children’s Hospital, Department of Medicine, and Harvard Medical School, Department of Pediatrics, Boston MA, United States of America
- * E-mail:
| |
Collapse
|
15
|
Vaccination with the Conserved Caveolin-1 Binding Motif in Human Immunodeficiency Virus Type 1 Glycoprotein gp41 Delays the Onset of Viral Infection and Provides Partial Protection in Simian/Human Immunodeficiency Virus-Challenged Cynomolgus Macaques. J Virol 2018; 92:JVI.00370-18. [PMID: 29976675 DOI: 10.1128/jvi.00370-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/22/2018] [Indexed: 11/20/2022] Open
Abstract
We have previously reported that the CBD1 peptide (SLEQIWNNMTWMQWDK), corresponding to the consensus caveolin-1 binding domain in human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41, elicits peptide-specific antibodies. Here, we have investigated the cellular immune response and the protective efficacy against a simian/human immunodeficiency virus (SHIV162P3) challenge. In addition to the CBD1 peptide, peptides overlapping the caveolin-binding-motif (CBM) (622IWNNMTWMQW631 or 622IWNNMTW628) were fused to a Gag-p24 T helper epitope for vaccination. All immunized cynomolgus macaques responded to a cocktail peptide immunization by inducing specific T cells and the production of high-titer CBD1/CBM peptide-specific antibodies. Six months after the fourth vaccine boost, six control and five vaccinated animals were challenged weekly by repeated exposure to SHIV162P3 via the mucosal rectal route. All control animals were infected after 1 to 3 challenges with SHIV, while among the five vaccinated monkeys, three became infected after a delay compared to control; one was infected after the eighth viral challenge, and one remained uninfected even after the ninth SHIV challenge. Immunized animals maintained a CD4 T cell count, and their central memory CD4 T cells were less depleted than in the control group. Furthermore, SHIV challenge stimulates antigen-specific memory T cell response in vaccinated macaques. Our results indicate that peptides derived from the CBM region can be immunogenic and provide protection against SHIV infection in cynomolgus monkeys.IMPORTANCE In HIV-1-producing cells, gp41 exists in a complexed form with caveolin-1, an interaction most probably mediated by the caveolin-1 binding motif. This sequence is highly conserved in every single HIV-1 isolate, thus suggesting that there is constant selective pressure to preserve this sequence for a specific function in the HIV infectious cycle. Consequently, the CBM sequence may represent the "Achilles' heel" of HIV-1 in the development of an efficient vaccine. Our results demonstrate that macaques immunized with the CBM-based peptides displayed a delay in the onset of viral infection and CD4 depletion, as well as a significant induction of antigen-specific memory T cell response, which is essential for the control of HIV/SIV infections. Finally, as HIV-infected individuals lack anti-CBM immune responses, CBM-based vaccines could have applications as a therapeutic vaccine in AIDS patients.
Collapse
|
16
|
Kononchik J, Ireland J, Zou Z, Segura J, Holzapfel G, Chastain A, Wang R, Spencer M, He B, Stutzman N, Kano D, Arthos J, Fischer E, Chun TW, Moir S, Sun P. HIV-1 targets L-selectin for adhesion and induces its shedding for viral release. Nat Commun 2018; 9:2825. [PMID: 30026537 PMCID: PMC6053365 DOI: 10.1038/s41467-018-05197-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 05/23/2018] [Indexed: 12/12/2022] Open
Abstract
CD4 and chemokine receptors mediate HIV-1 attachment and entry. They are, however, insufficient to explain the preferential viral infection of central memory T cells. Here, we identify L-selectin (CD62L) as a viral adhesion receptor on CD4+ T cells. The binding of viral envelope glycans to L-selectin facilitates HIV entry and infection, and L-selectin expression on central memory CD4+ T cells supports their preferential infection by HIV. Upon infection, the virus downregulates L-selectin expression through shedding, resulting in an apparent loss of central memory CD4+ T cells. Infected effector memory CD4+ T cells, however, remain competent in cytokine production. Surprisingly, inhibition of L-selectin shedding markedly reduces HIV-1 infection and suppresses viral release, suggesting that L-selectin shedding is required for HIV-1 release. These findings highlight a critical role for cell surface sheddase in HIV-1 pathogenesis and reveal new antiretroviral strategies based on small molecular inhibitors targeted at metalloproteinases for viral release. HIV binding is mediated via CD4 and chemokine co-receptors, but this does not explain the preferential infection of central memory CD4+ T cells. Here the authors show HIV targets L-selectin, induces shedding from the infected cell, and inhibition of L-selectin reduces HIV infection and release.
Collapse
Affiliation(s)
- Joseph Kononchik
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Joanna Ireland
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Zhongcheng Zou
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Jason Segura
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Genevieve Holzapfel
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Ashley Chastain
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Ruipeng Wang
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Matthew Spencer
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Biao He
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Nicole Stutzman
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - Daiji Kano
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Elizabeth Fischer
- Research Technology Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT, 59840, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD, 20892, USA
| | - Peter Sun
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 12441 Parklawn Drive, Rockville, MD, 20852, USA.
| |
Collapse
|
17
|
|
18
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
19
|
Pankrac J, Klein K, Mann JFS. Eradication of HIV-1 latent reservoirs through therapeutic vaccination. AIDS Res Ther 2017; 14:45. [PMID: 28893280 PMCID: PMC5594457 DOI: 10.1186/s12981-017-0177-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 08/11/2017] [Indexed: 02/04/2023] Open
Abstract
Despite the significant success of combination anti-retroviral therapy to reduce HIV viremia and save lives, HIV-1 infection remains a lifelong infection that must be appropriately managed. Advances in the understanding of the HIV infection process and insights from vaccine development in other biomedical fields such as cancer, imaging, and genetic engineering have fueled rapid advancements in HIV cure research. In the last few years, several studies have focused on the development of “Kick and Kill” therapies to reverse HIV latency and kick start viral translational activity. This has been done with the aim that concomitant anti-retroviral treatment and the elicited immune responses will prevent de novo infections while eradicating productively infected cells. In this review, we describe our perspective on HIV cure and the new approaches we are undertaking to eradicate the established pro-viral reservoir.
Collapse
|
20
|
The TRIMendous Role of TRIMs in Virus-Host Interactions. Vaccines (Basel) 2017; 5:vaccines5030023. [PMID: 28829373 PMCID: PMC5620554 DOI: 10.3390/vaccines5030023] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 08/09/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022] Open
Abstract
The innate antiviral response is integral in protecting the host against virus infection. Many proteins regulate these signaling pathways including ubiquitin enzymes. The ubiquitin-activating (E1), -conjugating (E2), and -ligating (E3) enzymes work together to link ubiquitin, a small protein, onto other ubiquitin molecules or target proteins to mediate various effector functions. The tripartite motif (TRIM) protein family is a group of E3 ligases implicated in the regulation of a variety of cellular functions including cell cycle progression, autophagy, and innate immunity. Many antiviral signaling pathways, including type-I interferon and NF-κB, are TRIM-regulated, thus influencing the course of infection. Additionally, several TRIMs directly restrict viral replication either through proteasome-mediated degradation of viral proteins or by interfering with different steps of the viral replication cycle. In addition, new studies suggest that TRIMs can exert their effector functions via the synthesis of unconventional polyubiquitin chains, including unanchored (non-covalently attached) polyubiquitin chains. TRIM-conferred viral inhibition has selected for viruses that encode direct and indirect TRIM antagonists. Furthermore, new evidence suggests that the same antagonists encoded by viruses may hijack TRIM proteins to directly promote virus replication. Here, we describe numerous virus–TRIM interactions and novel roles of TRIMs during virus infections.
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
22
|
Mucosal IgA and IFN-γ + CD8 T cell immunity are important in the efficacy of live Salmonella enteria serovar Choleraesuis vaccines. Sci Rep 2017; 7:46408. [PMID: 28406162 PMCID: PMC5390296 DOI: 10.1038/srep46408] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 03/17/2017] [Indexed: 01/13/2023] Open
Abstract
Salmonellosis, a disease caused by non-typhoidal Salmonella strains which can be transmitted from swine to humans, is one of the leading public health problems around the world. Paratyphoid of swine is controlled by vaccinating swine with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) live vaccine strain C500 in China. Although the vaccine has good prophylactic efficacy, the mechanism of immunogenicity is unclear. Using a C500-derived paratyphoid thermo-stable live vaccine (PTSL vaccine), we demonstrated that the PTSL vaccine induces strong primary and memory immune responses in piglets. Mucosal IgA and IFN-γ+/CD8+ T cells induced by the PTSL vaccine play key roles in the protection of the host from Salmonella infection. Our findings have important implications on the development of new and improved vaccines against salmonellosis and using live-attenuated Salmonella as vaccine carriers.
Collapse
|
23
|
Araínga M, Edagwa B, Mosley RL, Poluektova LY, Gorantla S, Gendelman HE. A mature macrophage is a principal HIV-1 cellular reservoir in humanized mice after treatment with long acting antiretroviral therapy. Retrovirology 2017; 14:17. [PMID: 28279181 PMCID: PMC5345240 DOI: 10.1186/s12977-017-0344-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/06/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Despite improved clinical outcomes seen following antiretroviral therapy (ART), resting CD4+ T cells continue to harbor latent human immunodeficiency virus type one (HIV-1). However, such cells are not likely the solitary viral reservoir and as such defining where and how others harbor virus is imperative for eradication measures. To such ends, we used HIV-1ADA-infected NOD.Cg-Prkdc scid Il2rg tm1Wjl /SzJ mice reconstituted with a human immune system to explore two long-acting ART regimens investigating their abilities to affect viral cell infection and latency. At 6 weeks of infection animals were divided into four groups. One received long-acting (LA) cabotegravir (CAB) and rilpivirine (RVP) (2ART), a second received LA CAB, lamivudine, abacavir and RVP (4ART), a third were left untreated and a fourth served as an uninfected control. After 4 weeks of LA ART treatment, blood, spleen and bone marrow (BM) cells were collected then phenotypically characterized. CD4+ T cell subsets, macrophages and hematopoietic progenitor cells were analyzed for HIV-1 nucleic acids by droplet digital PCR. RESULTS Plasma viral loads were reduced by two log10 or to undetectable levels in the 2 and 4ART regimens, respectively. Numbers and distributions of CD4+ memory and regulatory T cells, macrophages and hematopoietic progenitor cells were significantly altered by HIV-1 infection and by both ART regimens. ART reduced viral DNA and RNA in all cell and tissue compartments. While memory cells were the dominant T cell reservoir, integrated HIV-1 DNA was also detected in the BM and spleen macrophages in both regimen-treated mice. CONCLUSION Despite vigorous ART regimens, HIV-1 DNA and RNA were easily detected in mature macrophages supporting their potential role as an infectious viral reservoir.
Collapse
Affiliation(s)
- Mariluz Araínga
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Benson Edagwa
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Larisa Y Poluektova
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Santhi Gorantla
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, 985880 Nebraska Medical Center, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
24
|
Zulfiqar HF, Javed A, Sumbal, Afroze B, Ali Q, Akbar K, Nadeem T, Rana MA, Nazar ZA, Nasir IA, Husnain T. HIV Diagnosis and Treatment through Advanced Technologies. Front Public Health 2017; 5:32. [PMID: 28326304 PMCID: PMC5339269 DOI: 10.3389/fpubh.2017.00032] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022] Open
Abstract
Human immunodeficiency virus (HIV) is the chief contributor to global burden of disease. In 2010, HIV was the fifth leading cause of disability-adjusted life years in people of all ages and leading cause for people aged 30-44 years. It is classified as a member of the family Retroviridae and genus Lentivirus based on the biological, morphological, and genetic properties. It infects different cells of the immune system, such as CD4+ T cells (T-helper cells), dendritic cells, and macrophages. HIV has two subtypes: HIV-1 and HIV-2. Among these strains, HIV-1 is the most virulent and pathogenic. Advanced diagnostic methods are exploring new ways of treatment and contributing in the reduction of HIV cases. The diagnostic techniques like PCR, rapid test, EIA, p24 antigen, and western blot have markedly upgraded the diagnosis of HIV. Antiretroviral therapy and vaccines are promising candidates in providing therapeutic and preventive regimes, respectively. Invention of CRISPR/Cas9 is a breakthrough in the field of HIV disease management.
Collapse
Affiliation(s)
| | - Aneeqa Javed
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Sumbal
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Bakht Afroze
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Qurban Ali
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Khadija Akbar
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Tariq Nadeem
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | | | - Zaheer Ahmad Nazar
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Idrees Ahmad Nasir
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| | - Tayyab Husnain
- Centre of Excellence in Molecular Biology, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
25
|
Sun M, Zheng H, Xie Y, Li B, Long H, Guo G, Guo L, Wang J, Ning R, Li Y, Liu L. Functional effector memory T cells contribute to protection from superinfection with heterologous simian immunodeficiency virus or simian-human immunodeficiency virus isolates in Chinese rhesus macaques. Arch Virol 2017; 162:1211-1221. [PMID: 28110425 DOI: 10.1007/s00705-017-3222-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Many studies have revealed a protective effect of infection of an individual with an immunodeficiency virus against subsequent infection with a heterologous strain. However, the extent of protection against superinfection conferred by the first infection and the biological consequences of superinfection are not well understood. Here, we report that a rhesus monkey model of mucosal superinfection was established to investigate the protective immune response. Protection against superinfection was shown to correlate with the extent of the polyfunctionality of CD4+ effector memory T cells, whereas neutralizing antibody responses did not protect against superinfection in this model. Notably, immunodeficiency-virus-associated effector memory T-cell responses might significantly contribute to the suppression of virus superinfection. This provides a potential theoretical basis for the development of an HIV/AIDS vaccine.
Collapse
Affiliation(s)
- Ming Sun
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Huiwen Zheng
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yingpeng Xie
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Bingxiang Li
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Haiting Long
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ge Guo
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Lei Guo
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Jingjing Wang
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Ruotong Ning
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China
| | - Yue Li
- Key Laboratory of Molecular Microbiology and Technology, College of Life Sciences, Ministry of Education, Nankai University, Tianjin, 300071, China.
| | - Longding Liu
- Institute of Medical Biology, Peking Union Medical College, Chinese Academy of Medical Sciences, Kunming, China.
| |
Collapse
|
26
|
Okamura T, Tsujimura Y, Soma S, Takahashi I, Matsuo K, Yasutomi Y. Simian immunodeficiency virus SIVmac239 infection and simian human immunodeficiency virus SHIV89.6P infection result in progression to AIDS in cynomolgus macaques of Asian origin. J Gen Virol 2016; 97:3413-3426. [PMID: 27902330 DOI: 10.1099/jgv.0.000641] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Simian immunodeficiency virus (SIV) infection models in cynomolgus macaques are important for analysis of the pathogenesis of immunodeficiency virus and for studies on the efficacy of new vaccine candidates. However, very little is known about the pathogenesis of SIV or simian human immunodeficiency virus (SHIV) in cynomolgus macaques from different Asian countries. In the present study, we analysed the infectivity and pathogenicity of CCR5-tropic SIVmac and those of dual-tropic SHIV89.6P inoculated into cynomolgus macaques in Indonesian, Malaysian or Philippine origin. The plasma viral loads in macaques infected with either SIVmac239 or SHIV89.6P were maintained at high levels. CD4+ T cell levels in macaques infected with SIVmac239 gradually decreased. All of the macaques infected with SHIV89.6P showed greatly reduced CD4+ T-cell numbers within 6 weeks of infection. Eight of the 11 macaques infected with SIVmac239 were killed due to AIDS symptoms after 2-4.5 years, while four of the five macaques infected with SHIV89.6P were killed due to AIDS symptoms after 1-3.5 years. We also analysed cynomolgus macaques infected intrarectally with repeated low, medium or high doses of SIVmac239, SIVmac251 or SHIV89.6P. Infection was confirmed by quantitative RT-PCR at more than 5000, 300 and 500 TCID50 for SIVmac239, SIVmac251 and SHIV89.6P, respectively. The present study indicates that cynomolgus macaques of Asian origin are highly susceptible to SIVmac and SHIV infection by both intravenous and mucosal routes. These models will be useful for studies on virus pathogenesis, vaccination and therapeutics against human immunodeficiency virus/AIDS.
Collapse
Affiliation(s)
- Tomotaka Okamura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Yusuke Tsujimura
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Shogo Soma
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| | - Ichiro Takahashi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan
| | - Kazuhiro Matsuo
- Research and Development Department, Japan BCG Laboratory, Kiyose, Tokyo 204-0022, Japan
| | - Yasuhiro Yasutomi
- Laboratory of Immunoregulation and Vaccine Research, Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Tsukuba, Ibaraki 305-0843, Japan.,Division of Immunoregulation, Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan
| |
Collapse
|
27
|
Xu W, Li J, Wu Y, Zhou J, Zhong J, Lv Q, Shao H, Rao H. CD127 Expression in Naive and Memory T Cells in HIV Patients Who Have Undergone Long-Term HAART. Lab Med 2016; 48:57-64. [PMID: 27760802 DOI: 10.1093/labmed/lmw053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE To evaluate cluster of differentiation (CD)127 expression in T cells of patients with HIV-1 and the relationship of CD127 expression with disease progression. METHODS We divided 139 patients infected with human immunodeficiency virus type 1 (HIV-1) who had undergone highly active antiretroviral therapy (HAART) into 3 groups: patients with poor recovery (CD4+T < 350/μ;L, patients with general recovery (CD4+T = 350 - ∼600/μL) and patients with good recovery (CD4+T > 600/μL). Counts and percentages of naïve (CD45RA+) and memory (CD45RO+) T cells and CD127 expression were determined using flow cytometry. RESULTS CD4+CD45RO+, CD4+CD45RA+, CD4+ CD45RO+ CD127+, and CD4+CD45RA+CD127+T-cell counts in patients with good recovery were higher than in patients with poor recovery and those with general recovery patients (P <.05). Percentages of CD45RO+ were increased, and percentages of CD45RA+ and CD127 in T cells were decreased in patients with poor and general recovery (P <.05). CD127 values were positively correlated with CD4+T-cell counts and percentages of CD45RA+ subsets (P <.05). CONCLUSION CD127 expression in T cells is decreased in patients with HIV-1 and is related to recovery of CD4+T-cell counts and to naïve subsets.
Collapse
Affiliation(s)
- Wenfang Xu
- Clinical Laboratory, Shao Xing Municipal Hospital, Shaoxing, China
| | - Jie Li
- Department of Infectious Diseases, Shao Xing Municipal Hospital, Shaoxing, China
| | - Yong Wu
- Department of Infectious Diseases, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jiankang Zhou
- Department of Infectious Diseases, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jianping Zhong
- Department of Infectious Diseases, Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Qiuqiong Lv
- Clinical Laboratory, Shao Xing Municipal Hospital, Shaoxing, China
| | - Hui Shao
- Department of Infectious Diseases, Taizhou Hospital Affiliated with Wenzhou Medical College, Linhai, China,
| | - Heping Rao
- Department of Nursing, School of Medicine, Quzhou College of Technology, Quzhou, China
| |
Collapse
|
28
|
Hodara VL, Parodi LM, Keckler MS, Giavedoni LD. Increases in NKG2C Expression on T Cells and Higher Levels of Circulating CD8 + B Cells Are Associated with Sterilizing Immunity Provided by a Live Attenuated SIV Vaccine. AIDS Res Hum Retroviruses 2016; 32:1125-1134. [PMID: 26986800 DOI: 10.1089/aid.2015.0300] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Vaccines based on live attenuated viruses are highly effective immunogens in the simian immunodeficiency virus (SIV)/rhesus macaque animal model and offer the possibility of studying correlates of protection against infection with virulent virus. We utilized a tether system for studying, in naive macaques and animals vaccinated with a live-attenuated vaccine, the acute events after challenge with pathogenic SIV. This approach allowed for the frequent sampling of small blood volumes without sedation or restraining of the animals, thus reducing the confounding effect of sampling stress. Before challenge, vaccinated animals presented significantly higher levels of proliferating and activated B cells than naive macaques, which were manifested by high expression of CD8 on B cells. After SIV challenge, the only changes observed in protected vaccinated macaques were significant increases in expression of the NK marker NKG2C on CD4 and CD8 T cells. We also identified that infection of naive macaques with SIV resulted in a transient peak of expression of CD20 on CD8 T cells and a constant rise in the number of B cells expressing CD8. Finally, analysis of a larger cohort of vaccinated animals identified that, even when circulating levels of vaccine virus are below the limit of detection, live attenuated vaccines induce systemic increases of IP-10 and perforin. These studies indicate that components of both the innate and adaptive immune systems of animals inoculated with a live-attenuated SIV vaccine respond to and control infection with virulent virus. Persistence of the vaccine virus in tissues may explain the elevated cytokine and B-cell activation levels. In addition, our report underpins the utility of the tether system for the intensive study of acute immune responses to viral infections.
Collapse
Affiliation(s)
- Vida L. Hodara
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| | - Laura M. Parodi
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
| | - M. Shannon Keckler
- Division of Healthcare Quality Promotion, Centers for Diseases Control and Prevention, Atlanta, Georgia
| | - Luis D. Giavedoni
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, Texas
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas
| |
Collapse
|
29
|
Storcksdieck genannt Bonsmann M, Niezold T, Hannaman D, Überla K, Tenbusch M. The improved antibody response against HIV-1 after a vaccination based on intrastructural help is complemented by functional CD8+ T cell responses. Vaccine 2016; 34:1744-51. [PMID: 26945099 DOI: 10.1016/j.vaccine.2016.02.059] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 02/03/2016] [Accepted: 02/24/2016] [Indexed: 12/23/2022]
Abstract
Despite more than three decades of intense research, a prophylactic HIV-1 vaccine remains elusive. Four vaccine modalities have been evaluated in clinical efficacy studies, but only one demonstrated at least modest efficacy, which correlated with polyfunctional antibody responses to the HIV surface protein Env. To be most effective, a HIV-1 vaccine probably has to induce both, functional antibody and CD8(+) T cell responses. We therefore analyzed DNA/DNA and DNA/virus-like particle (VLP) regimens for their ability to induce humoral and cellular immune responses. Here, DNA vaccination of mice induced strong CD8(+) responses against Env and Gag. However, the humoral response to Env was dominated by IgG1, a subclass known for its low functionality. In contrast, priming only with the Gag-encoding plasmid followed by a boost with VLPs consisting of Gag and Env improved the quality of the anti-Env antibody response via intrastructural help (ISH) provided by Gag-specific T cells to Env-specific B cells. Furthermore, the Gag-specific CD8(+) T cells induced by the DNA prime immunization could still protect from a lethal infection with recombinant vaccinia virus encoding HIV Gag. Therefore, this immunization regimen represents a promising approach to combine functional antibody responses toward HIV Env with strong CD8(+) responses controlling early viral replication.
Collapse
Affiliation(s)
| | - Thomas Niezold
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany
| | | | - Klaus Überla
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany; Universitätsklinikum Erlangen, Institute of Clinical and Molecular Virology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Germany.
| |
Collapse
|
30
|
Ishida Y, Yoneda M, Otsuki H, Watanabe Y, Kato F, Matsuura K, Kikukawa M, Matsushita S, Hishiki T, Igarashi T, Miura T. Generation of a neutralization-resistant CCR5 tropic simian/human immunodeficiency virus (SHIV-MK38) molecular clone, a derivative of SHIV-89.6. J Gen Virol 2016; 97:1249-1260. [PMID: 26850058 DOI: 10.1099/jgv.0.000421] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously, we reported that a new genetically diverse CCR5 (R5) tropic simian/human immunodeficiency virus (SHIV-MK38) adapted to rhesus monkeys became more neutralization resistant to SHIV-infected plasma than did the parental SHIV-KS661 clone. Here, to clarify the significance of the neutralization-resistant phenotype of SHIV in a macaque model, we initially investigated the precise neutralization phenotype of the SHIVs, including SHIV-MK38 molecular clones, using SHIV-MK38-infected plasma, a pooled plasma of human immunodeficiency virus (HIV)-infected individuals, soluble CD4 and anti-HIV-1 neutralizing mAbs, the epitopes of which were known. The results show that SHIV-KS661 had tier 1 neutralization sensitivity, but monkey-adapted R5 tropic SHIV-MK38 acquired neutralization resistance similar to that of tier 2 or 3 as a clone virus. Sequence analysis of the env gene suggested that the neutralization-resistant phenotype of SHIV-MK38 was acquired by conformational changes in Env associated with the net charge and potential N-linked glycosylation sites. To examine the relationship between neutralization phenotype and stably persistent infection in monkeys, we performed in vivo rectal inoculation experiments using a SHIV-MK38 molecular clone. The results showed that one of three rhesus monkeys exhibited durable infection with a plasma viral load of 105 copies ml- 1 despite the high antibody responses that occurred in the host. Whilst further improvements are required in the development of a challenge virus, it will be useful to generate a neutralization-resistant R5 tropic molecular clone of the SHIV-89.6 lineage commonly used for vaccine development - a result that can be used to explore the foundation of AIDS pathogenesis.
Collapse
Affiliation(s)
- Yuki Ishida
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Mai Yoneda
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Hiroyuki Otsuki
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Yuji Watanabe
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Fumihiro Kato
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Kanako Matsuura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Minako Kikukawa
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Shuzo Matsushita
- Division of Clinical Retrovirology and Infectious Diseases, Center for AIDS Research,Kumamoto University, Kumamoto 860-0811,Japan
| | - Takayuki Hishiki
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Tatsuhiko Igarashi
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| | - Tomoyuki Miura
- Laboratory of Primate Model, Experimental Research Center for Infectious Diseases, Institute for Virus Research,Kyoto University, 53 Shogoinkawaharacho, Sakyo-ku, Kyoto 606-8507,Japan
| |
Collapse
|
31
|
Dinges W, Girard PM, Podzamczer D, Brockmeyer NH, García F, Harrer T, Lelievre JD, Frank I, Colin De Verdière N, Yeni GP, Ortega Gonzalez E, Rubio R, Clotet Sala B, DeJesus E, Pérez-Elias MJ, Launay O, Pialoux G, Slim J, Weiss L, Bouchaud O, Felizarta F, Meurer A, Raffi F, Esser S, Katlama C, Koletar SL, Mounzer K, Swindells S, Baxter JD, Schneider S, Chas J, Molina JM, Koutsoukos M, Collard A, Bourguignon P, Roman F. The F4/AS01B HIV-1 Vaccine Candidate Is Safe and Immunogenic, But Does Not Show Viral Efficacy in Antiretroviral Therapy-Naive, HIV-1-Infected Adults: A Randomized Controlled Trial. Medicine (Baltimore) 2016; 95:e2673. [PMID: 26871794 PMCID: PMC4753889 DOI: 10.1097/md.0000000000002673] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The impact of the investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01B vaccine on HIV-1 viral load (VL) was evaluated in antiretroviral therapy (ART)-naive HIV-1 infected adults.This phase IIb, observer-blind study (NCT01218113), included ART-naive HIV-1 infected adults aged 18 to 55 years. Participants were randomized to receive 2 (F4/AS01B_2 group, N = 64) or 3 (F4/AS01B_3 group, N = 62) doses of F4/AS01B or placebo (control group, N = 64) at weeks 0, 4, and 28. Efficacy (HIV-1 VL, CD4 T-cell count, ART initiation, and HIV-related clinical events), safety, and immunogenicity (antibody and T-cell responses) were evaluated during 48 weeks.At week 48, based on a mixed model, no statistically significant difference in HIV-1 VL change from baseline was demonstrated between F4/AS01B_2 and control group (0.073 log10 copies/mL [97.5% confidence interval (CI): -0.088; 0.235]), or F4/AS01B_3 and control group (-0.096 log10 copies/mL [97.5% CI: -0.257; 0.065]). No differences between groups were observed in HIV-1 VL change, CD4 T-cell count, ART initiation, or HIV-related clinical events at intermediate timepoints. Among F4/AS01B recipients, the most frequent solicited symptoms were pain at injection site (252/300 doses), fatigue (137/300 doses), myalgia (105/300 doses), and headache (90/300 doses). Twelve serious adverse events were reported in 6 participants; 1 was considered vaccine-related (F4/AS01B_2 group: angioedema). F4/AS01B induced polyfunctional F4-specific CD4 T-cells, but had no significant impact on F4-specific CD8 T-cell and anti-F4 antibody levels.F4/AS01B had a clinically acceptable safety profile, induced F4-specific CD4 T-cell responses, but did not reduce HIV-1 VL, impact CD4 T-cells count, delay ART initiation, or prevent HIV-1 related clinical events.
Collapse
Affiliation(s)
- Warren Dinges
- From the Seattle Travel and Preventive Medicine, Seattle Infectious Disease Clinic, Seattle, WA, USA (WD); Service des Maladies Infectieuses, Hôpital Saint Antoine, Assistance Publique Hôpitaux de Paris; and INSERM, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Paris, France (P-MG); HIV Unit, Infectious Disease Service, Hospital Universitari de Bellvitge, L'Hospitalet, 08907 Barcelona, Spain (DP); Department of Dermatology, Venerology, and Allergology, St. Josef-Hospital, Ruhr-Universität Bochum, Bochum, Germany (NHB); Hospital Clínic, IDIBAPS, University of Barcelona, Barcelona, Spain (FG); Department of Internal Medicine 3, Universitätsklinikum Erlangen, Friedrich-Alexander-University Erlangen-Nuremberg, Germany (TH); Service d'Immunologie Clinique, Hôpital Henri Mondor, Créteil, France (J-DL); University of Pennsylvania, Philadelphia, PA, USA (IF); Service des Maladies Infectieuses et Tropicales, Hôpital Saint Louis, University of Paris Diderot Paris 7, Sorbonne Paris Cité and INSERM U941 (NCDV, J-MM); Hôpital Bichat Claude Bernard, Service des Maladies Infectieuses et Tropicales A, Paris, France (G-PY); Servicio de Enfermedades Infecciosas, Hospital General Universitario de Valencia, Valencia (EOG); Servicio de Enfermedades Infecciosas, Hospital 12 De Octubre, Madrid, Spain (RR); IrsiCaixa AIDS Research Institute, Hospital Germans Trias i Pujol, Uvic-UCC, Barcelona, Spain (BCS); Orlando Immunology Center, Orlando, FL, USA (EDS); Servicio de Enfermedades Infecciosas, Hospital Ramón Y Cajal, IRYCIS Madrid, Spain (MJPE); Université Paris Descartes, Sorbonne Paris Cité, Inserm, CIC 1417 and F-CRIN, Innovative Clinical Research Network in Vaccinology (I-REIVAC); and Assistance Publique Hôpitaux de Paris, Hôpital Cochin (OL); Maladies Infectieuses et Tropicales Co-infections, Hôpital Tenon, Paris, France (GP, JC); Saint Michael's Medical Center, Newark, NJ, USA (JS); Service d'immunologie Clinique, Hôpital Européen Georges Pompidou, Paris, France (LW); Service des Maladie Infectieuses et Tropicales, Hôpital Avicenne, Bobigny, France (OB); Private practice, Bakersfield, CA, USA (FF); Zentrum für Innere Medizin und Infektiologie, Praxis, München, Germany (AM); CMIT, 46 Rue Henri Huchard, Paris, France (FR); HIV Ambulanz, Klinik für Dermatologie, Uniklinikum Essen, Essen, Germany (SE); Service des Maladies Infectieuses et Tropicales, Hôpital de la Pitié-Salpêtrière, Paris, France (CK); The Ohio State University, Division of Infectious Diseases, Columbus, OH (SLK); Philadelphia FIGHT, Philadelphia, PA (KM); University of Nebraska Medical Center, Omaha, NE (SS); Cooper University Hospital, Cooper Medical School of Rowan University, Camden, NJ (JDB); Living Hope Clinical Foundation, Long Beach, CA, USA (SS); and GSK Vaccines, Wavre/Rixensart, Belgium (MK, AC, PB, FR)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gopalakrishnan A, Dietzold J, Salgame P. Vaccine-mediated immunity to experimental Mycobacterium tuberculosis is not impaired in the absence of Toll-like receptor 9. Cell Immunol 2015; 302:11-18. [PMID: 26748860 DOI: 10.1016/j.cellimm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022]
Abstract
Accumulating evidence indicates that inflammatory signals required for maximizing effector T cell generation have opposing effects on the development of memory T cell precursors. Toll-like receptor (TLR)2, and TLR9 significantly contribute to the inflammatory milieu and therefore in this study we examined whether the absence of TLR9 alone or the combined absence of TLR2 and TLR9 would affect vaccine-mediated immunity to Mtb. We found that TLR9KO and TLR2/9DKO mice vaccinated with a live Mtb auxotroph, akin to vaccinated WT mice, exhibited early control of Mtb growth in the lungs compared to their naïve counterparts. The granulomatous response, IFNγ production and cellular recruitment to the lungs were also similar in all the vaccinated groups of mice. These findings indicate that there is minimal contribution from TLR2 and TLR9 in generating memory immunity to Mtb with live vaccines. Defining the innate milieu that can drive maximal memory T cell generation with a tuberculosis vaccine needs further inquiry.
Collapse
Affiliation(s)
- Archana Gopalakrishnan
- Department of Medicine, Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ, USA; Rutgers-Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Jillian Dietzold
- Department of Medicine, Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ, USA; Rutgers-Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
33
|
Savic M, Dembinski JL, Kim Y, Tunheim G, Cox RJ, Oftung F, Peters B, Mjaaland S. Epitope specific T-cell responses against influenza A in a healthy population. Immunology 2015; 147:165-77. [PMID: 26489873 DOI: 10.1111/imm.12548] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/15/2015] [Accepted: 10/13/2015] [Indexed: 12/25/2022] Open
Abstract
Pre-existing human CD4(+) and CD8(+) T-cell-mediated immunity may be a useful correlate of protection against severe influenza disease. Identification and evaluation of common epitopes recognized by T cells with broad cross-reactivity is therefore important to guide universal influenza vaccine development, and to monitor immunological preparedness against pandemics. We have retrieved an optimal combination of MHC class I and class II restricted epitopes from the Immune Epitope Database (www.iedb.org), by defining a fitness score function depending on prevalence, sequence conservancy and HLA super-type coverage. Optimized libraries of CD4(+) and CD8(+) T-cell epitopes were selected from influenza antigens commonly present in seasonal and pandemic influenza strains from 1934 to 2009. These epitope pools were used to characterize human T-cell responses in healthy donors using interferon-γ ELISPOT assays. Upon stimulation, significant CD4(+) and CD8(+) T-cell responses were induced, primarily recognizing epitopes from the conserved viral core proteins. Furthermore, the CD4(+) and CD8(+) T cells were phenotypically characterized regarding functionality, cytotoxic potential and memory phenotype using flow cytometry. Optimized sets of T-cell peptide epitopes may be a useful tool to monitor the efficacy of clinical trials, the immune status of a population to predict immunological preparedness against pandemics, as well as being candidates for universal influenza vaccines.
Collapse
Affiliation(s)
- Miloje Savic
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.,K. G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Oslo, Norway
| | - Jennifer L Dembinski
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.,K. G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Oslo, Norway
| | - Yohan Kim
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Gro Tunheim
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.,K. G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Oslo, Norway
| | - Rebecca J Cox
- K. G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Oslo, Norway.,The Influenza Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Fredrik Oftung
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.,K. G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Oslo, Norway
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, CA, USA
| | - Siri Mjaaland
- Department of Bacteriology and Immunology, Division of Infectious Disease Control, Norwegian Institute of Public Health, Oslo, Norway.,K. G. Jebsen Centre for Influenza Vaccine Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
34
|
Ramirez LA, Arango T, Boyer J. Therapeutic and prophylactic DNA vaccines for HIV-1. Expert Opin Biol Ther 2015; 13:563-73. [PMID: 23477730 DOI: 10.1517/14712598.2013.758709] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION DNA vaccines have moved into clinical trials in several fields and their success will be important for licensure of this vaccine modality. An effective vaccine for HIV-1 remains elusive and the development of one is troubled by safety and efficacy issues. Additionally, the ability for an HIV-1 vaccine to induce both the cellular and humoral arms of the immune system is needed. DNA vaccines not only offer a safe approach for the development of an HIV-1 vaccine but they have also been shown to elicit both arms of the immune system. AREAS COVERED This review explores how DNA vaccine design including the regimen, genetic adjuvants used, targeting, and mode of delivery continues to undergo improvements, thereby providing a potential option for an immunogenic vaccine for HIV-1. EXPERT OPINION Continued improvements in delivery technology, in particular electroporation, and the use of prime-boost vaccine strategies will aid in boosting the immunogenicity of DNA vaccines. Basic immunology research will also help discover new potential adjuvant targets that can be combined with DNA vaccination, such as inhibitors of inhibitory receptors.
Collapse
Affiliation(s)
- Lorenzo Antonio Ramirez
- University of Pennsylvania, Pathology, Stellar Chance Labs, 422 Curie Blvd, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
35
|
Maggioli MF, Palmer MV, Vordermeier HM, Whelan AO, Fosse JM, Nonnecke BJ, Waters WR. Application of Long-term cultured Interferon-γ Enzyme-linked Immunospot Assay for Assessing Effector and Memory T Cell Responses in Cattle. J Vis Exp 2015:e52833. [PMID: 26275095 PMCID: PMC4544920 DOI: 10.3791/52833] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Effector and memory T cells are generated through developmental programing of naïve cells following antigen recognition. If the infection is controlled up to 95 % of the T cells generated during the expansion phase are eliminated (i.e., contraction phase) and memory T cells remain, sometimes for a lifetime. In humans, two functionally distinct subsets of memory T cells have been described based on the expression of lymph node homing receptors. Central memory T cells express C-C chemokine receptor 7 and CD45RO and are mainly located in T-cell areas of secondary lymphoid organs. Effector memory T cells express CD45RO, lack CCR7 and display receptors associated with lymphocyte homing to peripheral or inflamed tissues. Effector T cells do not express either CCR7 or CD45RO but upon encounter with antigen produce effector cytokines, such as interferon-γ. Interferon-γ release assays are used for the diagnosis of bovine and human tuberculosis and detect primarily effector and effector memory T cell responses. Central memory T cell responses by CD4(+) T cells to vaccination, on the other hand, may be used to predict vaccine efficacy, as demonstrated with simian immunodeficiency virus infection of non-human primates, tuberculosis in mice, and malaria in humans. Several studies with mice and humans as well as unpublished data on cattle, have demonstrated that interferon-γ ELISPOT assays measure central memory T cell responses. With this assay, peripheral blood mononuclear cells are cultured in decreasing concentration of antigen for 10 to 14 days (long-term culture), allowing effector responses to peak and wane; facilitating central memory T cells to differentiate and expand within the culture.
Collapse
Affiliation(s)
- Mayara F Maggioli
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture; Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University;
| | - Mitchell V Palmer
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture
| | | | | | - James M Fosse
- Visual Services, National Centers for Animal Health, Animal and Plant Health Inspection Service, United States Department of Agriculture
| | - Brian J Nonnecke
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture
| | - W Ray Waters
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture
| |
Collapse
|
36
|
Cong Z, Xue J, Xiong J, Yao N, Wang W, Jiang H, Chen T, Chen Z, Wei Q, Qin C. Correlation of central memory CD4+ T-Cell decrease in the peripheral blood with disease progression in SIVmac251-infected Chinese rhesus macaques. J Med Primatol 2015; 44:175-82. [PMID: 25945411 DOI: 10.1111/jmp.12171] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2015] [Indexed: 11/30/2022]
Abstract
BACKGROUND Correlation of CD4(+) Tcm cells in the peripheral blood to disease progression in SIVmac251 infection was examined in Chinese rhesus macaques. METHODS Plasma viral RNA loads were measured by a quantitative real-time reverse transcription-PCR (qRT-PCR) assay for SIV gag. Disease progression was determined based on time of survival. Phenotyping of CD4(+) T-cell subsets in the peripheral blood was longitudinally performed by flow cytometry. RESULTS Although CD4(+) T-cell decrease and low CD4(+)/CD8(+) T-cell ratio in the peripheral blood after SIVmac251 infection did not correlate with disease progression, CD4(+) Tcm cell decrease was observed to be correlated to disease progression in the SIVmac251-infected Chinese rhesus macaques. CONCLUSIONS Our findings suggest that CD4(+) Tcm cell decrease could be used as a predictive marker for defining the pathogenesis of the SIV disease and consequently HIV/SIV vaccine efficacy in Chinese rhesus macaques.
Collapse
Affiliation(s)
- Zhe Cong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Jing Xue
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Jing Xiong
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Nan Yao
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Wei Wang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Hong Jiang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Ting Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Zhiwei Chen
- AIDS Institute, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Qiang Wei
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences (CAMS) and Comparative Medicine Center, Peking Union Medical College (PUMC), Key Laboratory of Human Disease Comparative Medicine, Beijing, China
| |
Collapse
|
37
|
Chin'ombe N, Ruhanya V. HIV/AIDS vaccines for Africa: scientific opportunities, challenges and strategies. Pan Afr Med J 2015; 20:386. [PMID: 26185576 PMCID: PMC4499268 DOI: 10.11604/pamj.2015.20.386.4660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 04/13/2015] [Indexed: 01/01/2023] Open
Abstract
More than decades have already elapsed since human immunodeficiency virus (HIV) was identified as the causative agent of acquired immunodeficiency syndrome (AIDS). The HIV has since spread to all parts of the world with devastating effects. In sub-saharan Africa, the HIV/AIDS epidemic has reached unprecedented proportions. Safe, effective and affordable HIV/AIDS vaccines for Africans are therefore urgently needed to contain this public health problem. Although, there are challenges, there are also scientific opportunities and strategies that can be exploited in the development of HIV/AIDS vaccines for Africa. The recent RV144 Phase III trial in Thailand has demonstrated that it is possible to develop a vaccine that can potentially elicit modest protective immunity against HIV infection. The main objective of this review is to outline the key scientific opportunities, challenges and strategies in HIV/AIDS vaccine development in Africa.
Collapse
Affiliation(s)
- Nyasha Chin'ombe
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| | - Vurayai Ruhanya
- Department of Medical Microbiology, College of Health Sciences, University of Zimbabwe, P O Box A178, Avondale, Harare, Zimbabwe
| |
Collapse
|
38
|
Voellmy R, Bloom DC, Vilaboa N. A novel approach for addressing diseases not yielding to effective vaccination? Immunization by replication-competent controlled virus. Expert Rev Vaccines 2015; 14:637-51. [PMID: 25676927 DOI: 10.1586/14760584.2015.1013941] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vaccination involves inoculation of a subject with a disabled disease-causing microbe or parts thereof. While vaccination has been highly successful, we still lack sufficiently effective vaccines for important infectious diseases. We propose that a more complete immune response than that elicited from a vaccine may be obtained from immunization with a disease-causing virus modified to subject replication-essential genes to the control of a gene switch activated by non-lethal heat in the presence of a drug-like compound. Upon inoculation, strictly localized replication of the virus would be triggered by a heat dose administered to the inoculation site. Activated virus would transiently replicate with an efficiency approaching that of the disease-causing virus and express all viral antigens. It may also vector heterologous antigens or control co-infecting microbes.
Collapse
Affiliation(s)
- Richard Voellmy
- Department of Physiological Sciences, University of Florida College of Veterinary Sciences, Gainesville, FL, USA
| | | | | |
Collapse
|
39
|
Klasse PJ. Molecular determinants of the ratio of inert to infectious virus particles. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 129:285-326. [PMID: 25595808 DOI: 10.1016/bs.pmbts.2014.10.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ratio of virus particles to infectious units is a classic measurement in virology and ranges widely from several million to below 10 for different viruses. Much evidence suggests a distinction be made between infectious and infecting particles or virions: out of many potentially infectious virions, few infect under regular experimental conditions, largely because of diffusion barriers. Still, some virions are inert from the start; others become defective through decay. And with increasing cell- and molecular-biological knowledge of each step in the replicative cycle for different viruses, it emerges that many processes entail considerable losses of potential viral infectivity. Furthermore, all-or-nothing assumptions about virion infectivity are flawed and should be replaced by descriptions that allow for spectra of infectious propensities. A more realistic understanding of the infectivity of individual virions has both practical and theoretical implications for virus neutralization, vaccine research, antiviral therapy, and the use of viral vectors.
Collapse
Affiliation(s)
- P J Klasse
- Department of Microbiology and Immunology, Weill Cornell Medical College, Cornell University, New York, USA.
| |
Collapse
|
40
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
41
|
Vaccine-induced CD107a+ CD4+ T cells are resistant to depletion following AIDS virus infection. J Virol 2014; 88:14232-40. [PMID: 25275131 DOI: 10.1128/jvi.02032-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED CD4(+) T-cell responses are crucial for effective antibody and CD8(+) T-cell induction following virus infection. However, virus-specific CD4(+) T cells can be preferential targets for human immunodeficiency virus (HIV) infection. HIV-specific CD4(+) T-cell induction by vaccination may thus result in enhancement of virus replication following infection. In the present study, we show that vaccine-elicited CD4(+) T cells expressing CD107a are relatively resistant to depletion in a macaque AIDS model. Comparison of virus-specific CD107a, macrophage inflammatory protein-1β, gamma interferon, tumor necrosis factor alpha, and interleukin-2 responses in CD4(+) T cells of vaccinated macaques prechallenge and 1 week postchallenge showed a significant reduction in the CD107a(-) but not the CD107a(+) subset after virus exposure. Those vaccinees that failed to control viremia showed a more marked reduction and exhibited significantly higher viral loads at week 1 than unvaccinated animals. Our results indicate that vaccine-induced CD107a(-) CD4(+) T cells are depleted following virus infection, suggesting a rationale for avoiding virus-specific CD107a(-) CD4(+) T-cell induction in HIV vaccine design. IMPORTANCE Induction of effective antibody and/or CD8(+) T-cell responses is a principal vaccine strategy against human immunodeficiency virus (HIV) infection. CD4(+) T-cell responses are crucial for effective antibody and CD8(+) T-cell induction. However, virus-specific CD4(+) T cells can be preferential targets for HIV infection. Here, we show that vaccine-induced virus-specific CD107a(-) CD4(+) T cells are largely depleted following infection in a macaque AIDS model. While CD4(+) T-cell responses are important in viral control, our results indicate that virus-specific CD107a(-) CD4(+) T-cell induction by vaccination may not lead to efficient CD4(+) T-cell responses following infection but rather be detrimental and accelerate viral replication in the acute phase. This suggests that HIV vaccine design should avoid virus-specific CD107a(-) CD4(+) T-cell induction. Conversely, this study found that vaccine-induced CD107a(+) CD4(+) T cells are relatively resistant to depletion following virus challenge, implying that induction of these cells may be an alternative approach toward HIV control.
Collapse
|
42
|
Apoptosis of antigen-specific CTLs contributes to low immune response in gut-associated lymphoid tissue post vaccination. Vaccine 2014; 32:5198-205. [PMID: 25066739 DOI: 10.1016/j.vaccine.2014.07.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/26/2014] [Accepted: 07/15/2014] [Indexed: 01/15/2023]
Abstract
The gut-associated lymphoid tissue (GALT) represents a major reservoir of HIV in infected individuals. Vaccines can induce strong systemic immune responses but these have less impact on CD4 T cells activity and numbers in GALT. In this study, we vaccinated mice with an adenovirus vector that expressed the envelope gene from HIV and observed immune responses in the peripheral blood, spleen, liver, mesenteric lymph nodes, and Peyer's patches. We found that (1) the number of HIV-specific CD8 T cells was dramatically lower in GALT than in other tissues; (2) the programmed cell death protein-1 (PD-1) was expressed at high levels in HIV-specific CD8 T cells including memory T cells in GALT; and (3) high levels of HIV-specific CD8 T cell apoptosis were occurring in GALT. These results suggest that contributing to GALT becoming an HIV reservoir during infection is a combination of exhaustion and/or dysfunction of HIV-specific CTLs at that site. These results emphasize the importance of developing of an effective mucosal vaccine against HIV.
Collapse
|
43
|
Nomura T, Yamamoto H, Takahashi N, Naruse TK, Kimura A, Matano T. Identification of SIV Nef CD8(+) T cell epitopes restricted by a MHC class I haplotype associated with lower viral loads in a macaque AIDS model. Biochem Biophys Res Commun 2014; 450:942-7. [PMID: 24971540 DOI: 10.1016/j.bbrc.2014.06.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 11/18/2022]
Abstract
Virus-specific CD8(+) T-cell responses are crucial for the control of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. Multiple studies on HIV-infected individuals and SIV-infected macaques have indicated association of several major histocompatibility complex class I (MHC-I) genotypes with lower viral loads and delayed AIDS progression. Understanding of the viral control mechanism associated with these MHC-I genotypes would contribute to the development of intervention strategy for HIV control. We have previously reported a rhesus MHC-I haplotype, 90-120-Ia, associated with lower viral loads after SIVmac239 infection. Gag206-216 and Gag241-249 epitope-specific CD8(+) T-cell responses have been shown to play a central role in the reduction of viral loads, whereas the effect of Nef-specific CD8(+) T-cell responses induced in all the 90-120-Ia(+) macaques on SIV replication remains unknown. Here, we identified three CD8(+) T-cell epitopes, Nef9-19, Nef89-97, and Nef193-203, associated with 90-120-Ia. Nef9-19 and Nef193-203 epitope-specific CD8(+) T-cell responses frequently selected for mutations resulting in viral escape from recognition by these CD8(+) T cells, indicating that these CD8(+) T cells exert strong suppressive pressure on SIV replication. Results would be useful for elucidation of the viral control mechanism associated with 90-120-Ia.
Collapse
Affiliation(s)
- Takushi Nomura
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan.
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Naofumi Takahashi
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Taeko K Naruse
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, 2-3-10 Kandasurugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
44
|
Godinho RMDC, Matassoli FL, Lucas CGDO, Rigato PO, Gonçalves JLS, Sato MN, Maciel M, Peçanha LMT, August JT, Marques ETDA, de Arruda LB. Regulation of HIV-Gag expression and targeting to the endolysosomal/secretory pathway by the luminal domain of lysosomal-associated membrane protein (LAMP-1) enhance Gag-specific immune response. PLoS One 2014; 9:e99887. [PMID: 24932692 PMCID: PMC4059647 DOI: 10.1371/journal.pone.0099887] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 05/19/2014] [Indexed: 12/17/2022] Open
Abstract
We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field.
Collapse
Affiliation(s)
- Rodrigo Maciel da Costa Godinho
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavio Lemos Matassoli
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Paula Ordonhez Rigato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Jorge Luiz Santos Gonçalves
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria Notomi Sato
- Laboratorio de Dermatologia e Imunodeficiencias, LIM-56, Departamento de Dermatologia, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Milton Maciel
- Enteric Diseases Department, Infectious Diseases Directorate, Naval Medical Research Center, Silver Spring, Maryland, United States of America; Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ligia Maria Torres Peçanha
- Departamento de Imunologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - J Thomas August
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Ernesto Torres de Azevedo Marques
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America; Department of Infectious Diseases and Microbiology, Center for Vaccine Research, Pittsburgh, Pennsylvania, United States of America; Departamento de Virologia, Fiocruz - Pernambuco, Recife, Brazil
| | - Luciana Barros de Arruda
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Wang W, Cong Z, Jiang H, Chen T, Jin G, Xiong J, Qin C, Wei Q. Comparison of viral burden and disease progression in Chinese-origin rhesus macaques infected with common experimentally applied chimeric virus: SHIV-1157ipd3N4, SHIV-162P3, or SHIV-KB9. J Med Primatol 2014; 43:247-57. [PMID: 24783944 DOI: 10.1111/jmp.12117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Little is known about the comparative susceptibility and differential pathogenic characteristics of Chinese-origin rhesus macaques upon infection with the chimeric SHIVs most commonly applied in experimental research. METHODS In vivo infectivity, viral replication, and disease progression related to SHIV-1157ipd3N4, SHIV-162P3, and SHIV-KB9 infections were assessed after intravenous inoculation of Chinese-origin rhesus macaques (n = 10 each). RESULTS SHIV-KB9-infected monkeys had higher plasma viral loads than those infected with SHIV-1157ipd3N4 or SHIV-162P3 (P < 0.05). The SHIV-KB9 group had a member that progressed rapidly to simian acquired immunodeficiency syndrome and was moribund at 155 days post-inoculation. SHIV-KB9 and SHIV-162P3 showed reverse trends in the effects on levels of memory T-cell subpopulations. CONCLUSIONS This study provides foundational data for future efficacy testing of candidate vaccine and antiviral therapy using a Chinese-origin rhesus macaque system.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Chaoyang District, Beijing, China; Key Laboratory of Human Diseases Animal Models, State Administration of Traditional Chinese Medicine, Chaoyang District, Beijing, China; Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Chaoyang District, Beijing, China; Comparative Medical Center, Peking Union Medical College, Chaoyang District, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Cartwright EK, McGary CS, Cervasi B, Micci L, Lawson B, Elliott STC, Collman RG, Bosinger SE, Paiardini M, Vanderford TH, Chahroudi A, Silvestri G. Divergent CD4+ T memory stem cell dynamics in pathogenic and nonpathogenic simian immunodeficiency virus infections. THE JOURNAL OF IMMUNOLOGY 2014; 192:4666-73. [PMID: 24729621 DOI: 10.4049/jimmunol.1303193] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recent studies have identified a subset of memory T cells with stem cell-like properties (T(SCM)) that include increased longevity and proliferative potential. In this study, we examined the dynamics of CD4(+) T(SCM) during pathogenic SIV infection of rhesus macaques (RM) and nonpathogenic SIV infection of sooty mangabeys (SM). Whereas SIV-infected RM show selective numeric preservation of CD4(+) T(SCM), SIV infection induced a complex perturbation of these cells defined by depletion of CD4(+)CCR5(+) T(SCM), increased rates of CD4(+) T(SCM) proliferation, and high levels of direct virus infection. The increased rates of CD4(+) T(SCM) proliferation in SIV-infected RM correlated inversely with the levels of central memory CD4(+) T cells. In contrast, nonpathogenic SIV infection of SM evidenced preservation of both CD4(+) T(SCM) and CD4(+) central memory T cells, with normal levels of CD4(+) T(SCM) proliferation, and lack of selective depletion of CD4(+)CCR5(+) T(SCM). Importantly, SIV DNA was below the detectable limit in CD4(+) T(SCM) from 8 of 10 SIV-infected SM. We propose that increased proliferation and infection of CD4(+) T(SCM) may contribute to the pathogenesis of SIV infection in RM.
Collapse
Affiliation(s)
- Emily K Cartwright
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Berezhnoy A, Castro I, Levay A, Malek TR, Gilboa E. Aptamer-targeted inhibition of mTOR in T cells enhances antitumor immunity. J Clin Invest 2014; 124:188-97. [PMID: 24292708 DOI: 10.1172/jci69856] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 09/19/2013] [Indexed: 01/18/2023] Open
Abstract
Recent studies have underscored the importance of memory T cells in mediating protective immunity against pathogens and cancer. Pharmacological inhibition of regulators that mediate T cell differentiation promotes the differentiation of activated CD8(+) T cells into memory cells. Nonetheless, pharmacological agents have broad targets and can induce undesirable immunosuppressive effects. Here, we tested the hypothesis that aptamer-targeted siRNA inhibition of mTOR complex 1 (mTORC1) function in CD8(+) T cells can enhance their differentiation into memory T cells and potentiate antitumor immunity more effectively than the pharmacologic inhibitor rapamycin. To specifically target activated cells, we conjugated an siRNA targeting the mTORC1 component raptor to an aptamer that binds 4-1BB, a costimulatory molecule that is expressed on CD8(+) T cells following TCR stimulation. We found that systemic administration of the 4-1BB aptamer-raptor siRNA to mice downregulated mTORC1 activity in the majority of CD8(+) T cells, leading to the generation of a potent memory response that exhibited cytotoxic effector functions and enhanced vaccine-induced protective immunity in tumor-bearing mice. In contrast, while treatment with the general mTORC1 inhibitor rapamycin also enhanced antigen-activated CD8(+) T cell persistence, the cytotoxic effector functions of the reactivated memory cells were reduced and the alloreactivity of DCs was diminished. Consistent with the immunological findings, mice treated with rapamycin, but not with 4-1BB aptamer-raptor siRNA, failed to reject a subsequent tumor challenge.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Aptamers, Nucleotide/genetics
- CD8-Positive T-Lymphocytes/enzymology
- CD8-Positive T-Lymphocytes/immunology
- Cancer Vaccines/immunology
- Cell Proliferation
- Cells, Cultured
- Cytotoxicity, Immunologic
- Female
- Gene Knockdown Techniques
- Immunologic Memory
- Immunotherapy, Adoptive
- Mechanistic Target of Rapamycin Complex 1
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Multiprotein Complexes/genetics
- Multiprotein Complexes/metabolism
- Neoplasm Transplantation
- RNA, Small Interfering/genetics
- Regulatory-Associated Protein of mTOR
- TOR Serine-Threonine Kinases/genetics
- TOR Serine-Threonine Kinases/metabolism
Collapse
|
48
|
Leroux-Roels G, Bourguignon P, Willekens J, Janssens M, Clement F, Didierlaurent AM, Fissette L, Roman F, Boutriau D. Immunogenicity and safety of a booster dose of an investigational adjuvanted polyprotein HIV-1 vaccine in healthy adults and effect of administration of chloroquine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:302-11. [PMID: 24391139 PMCID: PMC3957681 DOI: 10.1128/cvi.00617-13] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/21/2013] [Indexed: 11/20/2022]
Abstract
This phase II study evaluated the effect of chloroquine on the specific CD8(+) T-cell responses to and the safety of a booster dose of investigational human immunodeficiency virus type 1 (HIV-1) F4/AS01(B) vaccine containing 10 μg of recombinant fusion protein (F4) adjuvanted with the AS01(B) adjuvant system. Healthy adults aged 21 to 41 years, primed 3 years before with two F4/AS01(B) doses containing 10 or 30 μg of F4 (ClinicalTrials.gov registration number NCT00434512), were randomized (1:1) to receive the F4/AS01(B) booster administered alone or 2 days after chloroquine (300 mg). F4-specific CD8(+)/CD4(+) T-cell responses were characterized by intracellular cytokine staining and lymphoproliferation assays and anti-F4 antibodies by enzyme-linked immunosorbent assays (ELISAs). No effect of chloroquine on CD4(+)/CD8(+) T-cell and antibody responses and no vaccine effect on CD8(+) T-cell responses (cytokine secretion or proliferation) were detected following F4/AS01(B) booster administration. In vitro, chloroquine had a direct inhibitory effect on AS01(B) adjuvant properties; AS01-induced cytokine production decreased upon coincubation of cells with chloroquine. In the pooled group of participants primed with F4/AS01(B) containing 10 μg of F4, CD4(+) T-cell and antibody responses induced by primary vaccination persisted for at least 3 years. The F4/AS01(B) booster induced strong F4-specific CD4(+) T-cell responses, which persisted for at least 6 months with similar frequencies and polyfunctional phenotypes as following primary vaccination, and high anti-F4 antibody concentrations, reaching higher levels than those following primary vaccination. The F4/AS01(B) booster had a clinically acceptable safety and reactogenicity profile. An F4/AS01(B) booster dose, administered alone or after chloroquine, induced robust antibody and F4-specific CD4(+) T-cell responses but no significant CD8(+) T-cell responses (cytokine secretion or proliferation) in healthy adults. (This study has been registered at ClinicalTrials.gov under registration number NCT00972725).
Collapse
|
49
|
Increased stability and limited proliferation of CD4+ central memory T cells differentiate nonprogressive simian immunodeficiency virus (SIV) infection of sooty mangabeys from progressive SIV infection of rhesus macaques. J Virol 2014; 88:4533-42. [PMID: 24501416 DOI: 10.1128/jvi.03515-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
UNLABELLED Depletion of CD4(+) central memory T (TCM) cells dictates the tempo of progression to AIDS in simian immunodeficiency virus (SIV)-infected rhesus macaques (RMs) both in the natural history of infection and in the context of vaccination. CD4(+) TCM cells of sooty mangabeys (SMs), a natural host for SIV in which infection is nonpathogenic, are less susceptible to SIV infection than CD4(+) TCM cells of RMs. Whether this relative protection from infection translates into increased stability of CD4(+) TCM cells in natural versus nonnatural hosts has not yet been determined. Here we compared, both cross-sectionally and longitudinally, the levels of CD4(+) TCM cells in a large cohort of SMs and RMs and the association between CD4(+) TCM levels and the main virologic and immunologic markers of disease progression. Consistent with their lower susceptibility to infection, CD4(+) TCM cells of SIV-infected SMs are lost with kinetics 20 times slower than those of SIV-infected RMs. Remarkably, the estimated length of time of SIV infection needed for CD4(+) TCM cells to fall to half of their initial levels is <16 months for RMs but >17 years for SMs. Furthermore, the fraction of proliferating CD4(+) TCM cells is significantly lower in SIV-infected SMs than in SIV-infected RMs, and the extent of CD4(+) TCM cell proliferation is associated positively with CD4(+) T cell levels in SIV-infected SMs but negatively with CD4(+) T cell levels in SIV-infected RMs. Collectively, these findings identify increased stability and maintenance of the prohomeostatic role of CD4(+) TCM cells as features distinguishing nonprogressive from progressive SIV infections and support the hypothesis of a direct mechanistic link between the loss of CD4(+) TCM cells and disease progression. IMPORTANCE Comparison of the immunologic effects of simian immunodeficiency virus (SIV) infection on rhesus macaques (RMs), a species characterized by progression to AIDS, and natural host sooty mangabeys (SMs), a species which remains AIDS free, has become a useful tool for identifying mechanisms of human immunodeficiency virus (HIV) disease progression. One such distinguishing feature is that CD4(+) central memory T (TCM) cells in SIV-infected SMs are less infected than the same cells in RMs. Here we investigated whether lower levels of infection in SMs translate into a better-preserved CD4(+) TCM compartment. We found that the CD4(+) TCM compartment is significantly more stable in SIV-infected SMs. Likely to compensate for this cell loss, we also found that CD4(+) TCM cells increase their level of proliferation upon SIV infection in RMs but not in SMs, which mechanistically supports their preferential infectivity. Our study provides new insights into the importance of long-term maintenance of CD4(+) TCM homeostasis during HIV/SIV infection.
Collapse
|
50
|
Bet A, Sterret S, Sato A, Bansal A, Goepfert PA. Characterization of T-cell responses to cryptic epitopes in recipients of a noncodon-optimized HIV-1 vaccine. J Acquir Immune Defic Syndr 2014; 65:142-50. [PMID: 24442221 PMCID: PMC3896890 DOI: 10.1097/qai.0b013e3182a9917e] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Cryptic epitopes (CEs) can be encoded by any of the 5 alternative reading frames (ARFs, 2 sense and 3 antisense) of a known gene. Although CE responses are commonly detected during HIV-1 infection, it is not known whether these responses are induced after vaccination. METHODS Using a bioinformatic approach, we determined that vaccines with codon-optimized HIV inserts significantly skewed CE sequences and are not likely to induce crossreactive responses to natural HIV CE. We then evaluated the CE- and protein-specific T-cell responses using Gag, Pol, and ARF peptide pools among participants immunized with a non-codon optimized vaccine regimen of 2 pGA2/JS7 DNA primes followed by 2 MVA/HIV62 Gag-Pol-Env vector boosts or 4 saline injections. RESULTS Vaccinees had significantly more interferon gamma enzyme-linked immunosorbent spot (IFNγ ELISpot) responses toward Gag (P = 0.003) but not toward Pol protein than did placebo recipients. However, CE-specific T-cell responses were low in magnitude, and their frequencies did not differ significantly between vaccine and placebo recipients. Additionally, most positive CE responses could not be mapped to individual peptides. After expanding responses in a cultured assay, however, the frequency and the median magnitude of responses to ARF peptides were significantly greater in vaccinees (P < 0.0001), indicating that CE-specific T-cell responses are present but below an ex vivo assay's limit of detection. CONCLUSIONS Our data demonstrate that HIV-1 vaccines currently in clinical trials are poorly immunogenic with regard to CE-specific T-cell responses. Therefore, the context of HIV-1 immunogens may need to be modified as a comprehensive strategy to broaden vaccine-induced T-cell responses.
Collapse
Affiliation(s)
- Anne Bet
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA 35294
| | - Sarah Sterret
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA 35294
| | - Alicia Sato
- Statistical Center for HIV/AIDS Research & Prevention (SCHARP), Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024
| | - Anju Bansal
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA 35294
| | - Paul A. Goepfert
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL USA 35294
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL USA 35294
| |
Collapse
|