1
|
Etori H, Asoshina R, Obita T, Okumura F. Spermidine reduces ISGylation and enhances ISG15-USP18 interaction. Sci Rep 2025; 15:17913. [PMID: 40410283 PMCID: PMC12102389 DOI: 10.1038/s41598-025-01425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 05/06/2025] [Indexed: 05/25/2025] Open
Abstract
The expression of ubiquitin-like molecule interferon-stimulated gene 15 kDa (ISG15) and its post-translational modification (ISGylation) are significantly activated by interferons or pathogen infections, highlighting their roles in innate immune responses. Over 1100 proteins have been identified as ISGylated. ISG15 is removed from substrates by interferon-induced ubiquitin-specific peptidase 18 (USP18) or severe acute respiratory syndrome coronavirus 2-derived papain-like protease. High ISGylation levels may help prevent the spread of coronavirus disease 2019 (COVID-19). Polyamines (spermidine and spermine) exhibit anti-inflammatory, antioxidant, and mitochondrial functions. However, the relationship between nutrients and ISGylation remains unclear. This study assessed the effects of spermine and spermidine on ISGylation. MCF10A and A549 cells were treated with interferon-alpha, spermine, or spermidine, and the expression levels of various proteins and ISGylation were measured. Spermine and spermidine dose-dependently reduced ISGylation. Additionally, spermidine directly interacted with ISG15 and USP18, enhancing their interaction and potentially reducing ISGylation. Therefore, spermidine may prevent ISGylation-related immune responses.
Collapse
Affiliation(s)
- Haruka Etori
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8582, Japan
| | - Riko Asoshina
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8582, Japan
| | - Takayuki Obita
- Faculty of Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Fumihiko Okumura
- Department of Food and Health Sciences, International College of Arts and Sciences, Fukuoka Women's University, Fukuoka, 813-8582, Japan.
| |
Collapse
|
2
|
Li R, Zheng W, Xiao Y, Yu X, Sheng J, Zhang H, Chen C, Ma Z, Wang Y. Mycoplasma hyopneumoniae nuclease Mhp597 negatively regulates TBK1-IRF3-IFN-I pathway by targeting vimentin to facilitate infection. Int J Biol Macromol 2025; 306:141351. [PMID: 39988178 DOI: 10.1016/j.ijbiomac.2025.141351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Infection with Mycoplasma hyopneumoniae (M. hyopneumoniae) leads to chronic infectious pneumonia in pigs, resulting in significant distress and economic losses in the global pig industry. The pathogen secretes various proteins, including toxins, adhesins, and virulence-related enzymes, which facilitate adhesion, invasion, and immune evasion processes between bacteria and the host. However, the effector proteins of M. hyopneumoniae are predominantly uncharacterized. In this study, we demonstrate that the nuclease Mhp597 functions as a potential effector protein of M. hyopneumoniae, and we elucidate its mechanism of action in facilitating immune evasion. Our findings indicate that Mhp597 exhibits high expression efficiency in host cells and significantly inhibits IFN-α and IFN-β protein expression. Using yeast two-hybrid and co-immunoprecipitation experiments, we established that Mhp597 interacts with porcine alveolar macrophage vimentin (Vim) via specific amino acid residues (Arg 232, Lys 256, Phe 263, and Lys 317). Further analysis revealed that Mhp597 inhibited the phosphorylation of TBK1 and IRF3 via Vim, thereby suppressing type I interferon (IFN-I) production and promoting the proliferation of M. hyopneumoniae within host cells. In conclusion, this study provides the first detailed account of the molecular mechanism by which Mhp597 negatively regulates the TBK1-IRF3-IFN-I signaling pathway through Vim, thus facilitating immune evasion and proliferation of M. hyopneumoniae within host cells. These findings enhance our understanding of the pathogenic mechanisms of M. hyopneumoniae and suggest potential molecular targets for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ruirui Li
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China
| | - Wei Zheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China
| | - Yangyang Xiao
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China
| | - Xiaojiao Yu
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China
| | - Jinliang Sheng
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China
| | - Hui Zhang
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China
| | - Chuangfu Chen
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China.
| | - Zhongchen Ma
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China.
| | - Yong Wang
- College of Animal Science and Technology, Shihezi University, Shihezi, China; Collaborative Innovation Center for Sheep Health Breeding and Zoonotic Disease Prevention and Control, Shihezi, Xinjiang, China; International Joint Research Center for Animal Health, Shihezi, Xinjiang, China.
| |
Collapse
|
3
|
Miller LC, Anderson SJ, Buckley AC, Schirtzinger EE, Hasan M, Sarlo Davila KM, Fleming DS, Lager KM, Li J, Sang Y. Vaccine Efficacy of a Replication-Competent Interferon-Expressing Porcine Reproductive and Respiratory Syndrome (PRRS) Virus Against NADC-34 Challenge. Vaccines (Basel) 2025; 13:413. [PMID: 40333342 PMCID: PMC12030877 DOI: 10.3390/vaccines13040413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 05/09/2025] Open
Abstract
Background/Objectives: Porcine reproductive and respiratory syndrome virus (PRRSV) significantly impedes swine production due to rapid genetic variation and suppression of antiviral interferon (IFN) responses, leading to ineffective immunity. To address this, we developed IFNmix, a replication-competent PRRSV modified live vaccine (MLV) candidate co-expressing three Type I IFN subclasses (IFNα, IFNβ, IFNδ) to enhance antiviral immunity. Methods: In two independent in vivo experiments, we compared the protection of IFNmix and a commercial PRRSV MLV vaccine during challenge with a virulent PRRSV strain. Clinical signs, antibody and cytokine production, viral replication, and lung pathology in IFNmix-vaccinated pigs were compared to those of commercial PRRSV vaccines and controls. Results: Pigs vaccinated with IFNmix exhibited similar anti-PRRSV antibody development, serum viral loads, lung lesions, and cytokine responses post-challenge with the virulent NADC34 strain, with comparable or lower body temperatures and weight gain, to pigs vaccinated with the commercial vaccines. While IFNmix showed early viral load reduction compared to the commercial vaccine (Days 7-14 post-challenge), it demonstrated similar efficacy in controlling PRRSV replication and lung pathology. Conclusions: These findings suggest that IFNmix, by expressing multiple IFNs, can potentially enhance innate and adaptive immune responses, offering a promising approach to improving PRRSV vaccine efficacy. Further studies are needed to evaluate IFNmix against a broader range of PRRSV strains and to optimize its attenuation and immunogenicity.
Collapse
Affiliation(s)
- Laura C. Miller
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (E.E.S.); (M.H.)
| | - Sarah J. Anderson
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA; (S.J.A.); (A.C.B.); (K.M.L.)
| | - Alexandra C. Buckley
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA; (S.J.A.); (A.C.B.); (K.M.L.)
| | - Erin E. Schirtzinger
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (E.E.S.); (M.H.)
| | - Mahamudul Hasan
- Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Ave, Manhattan, KS 66506, USA; (E.E.S.); (M.H.)
| | - Kaitlyn M. Sarlo Davila
- Ruminant Diseases and Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA;
| | - Damarius S. Fleming
- Animal Parasitic Diseases Laboratory, Beltsville Agricultural Research Center, United States Department of Agriculture-Agricultural Research Service, 10300 Baltimore Ave, Beltsville, MD 20705, USA;
| | - Kelly M. Lager
- Virus and Prion Research Unit, National Animal Disease Center, United States Department of Agriculture-Agricultural Research Service, 1920 Dayton Ave, Ames, IA 50010, USA; (S.J.A.); (A.C.B.); (K.M.L.)
| | - Jiuyi Li
- Department of Food and Animal Sciences, College of Agriculture, 3500 John A. Merritt Blvd, Tennessee State University, Nashville, TN 37209, USA;
| | - Yongming Sang
- Department of Food and Animal Sciences, College of Agriculture, 3500 John A. Merritt Blvd, Tennessee State University, Nashville, TN 37209, USA;
| |
Collapse
|
4
|
Levy E, Gilliaux G, Sarlet M, Desmecht D, Van Laere AS. Host-Strain-Specific Responses to Pneumonia Virus of Mice Infection: A Study of Lesions, Viral Load, and Cytokine Expression. Viruses 2025; 17:548. [PMID: 40284991 PMCID: PMC12031304 DOI: 10.3390/v17040548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Pneumonia virus of mice (PVM) infection is a reference animal model for human respiratory syncytial virus (hRSV), a leading cause of lower respiratory tract disease in children under 5 years of age and in the elderly. This longitudinal study employed necropsy to examine macroscopic lesions, histological slides to assess microscopic lesions, and qRT-PCR to measure lung viral load and cytokine expression in PVM-infected mice from three different genetic backgrounds, spanning from day 1 to day 6 post-infection. Our analysis reveals a strong correlation between viral load and microscopic lesions across the 129/Sv, BALB/c, and SJL/J mouse lines, indicating that PVM pathogenicity is partially driven by the virus itself. Additionally, a significant correlation between cytokine levels and lesion severity was observed in 129/Sv and BALB/c mice, suggesting an important role of cytokines in disease progression. This study emphasizes the interplay between viral load and cytokine-driven tissue damage, with genetic background significantly influencing disease outcomes.
Collapse
|
5
|
Huang Z, Gao C, Huang S, Lin S, Zhang W, You J, Chen X, Zhou P, Zhang G, Gong L. The alpha-coronavirus E protein inhibits the JAK-STAT pathway signaling by triggering STAT2 degradation through OPTN- and NBR1-mediated selective autophagy. Autophagy 2025:1-18. [PMID: 40091174 DOI: 10.1080/15548627.2025.2479671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/27/2025] [Accepted: 03/11/2025] [Indexed: 03/19/2025] Open
Abstract
The zoonotic transmission of coronaviruses continues to pose a considerable threat to humans. Swine acute diarrhea syndrome coronavirus (SADS-CoV), a bat coronavirus related to HKU2, causes severe economic losses in the pig industry and has the potential to trigger outbreaks in humans. However, our understanding of how SADS-CoV evades the host's innate immunity remains limited, hindering effective responses to potential human outbreaks. In this study, we demonstrate that the SADS-CoV envelope protein (E) inhibits type I interferon (IFN-I) signaling by inducing the degradation of STAT2 via the macroautophagy/autophagy-lysosome pathway. Mechanistically, the E protein evades host innate immunity by promoting STAT2 degradation through autophagy, mediated by the NBR1 and OPTN receptors. Notably, ubiquitination of E protein is required for the autophagic degradation of STAT2. Additionally, lysine residue K61 of the E protein is crucial for its stable expression; however, it is not involved in its ubiquitination. In conclusion, our study reveals a novel mechanism by which the E protein disrupts IFN-I signaling by targeting STAT2 via autophagy, enhancing our understanding of SADS-CoV's immune evasion strategies and providing potential drug targets for controlling viral infections.Abbreviations: 3-MA: 3-methyladenine; ATG: autophagy related; BafA1: bafilomycin A1; BSA: bovine serum albumin; CALCOCO2/NDP52: calcium binding and coiled-coil domain 2; CC: coiled-coil; CHX: cycloheximide; Co-IP: co-immunoprecipitation; DAPI: 4',6-diamidino-2-phenylindole; DBD: DNA-binding domain; DMEM: Dulbecco's Modified Eagle's medium; DMSO: dimethyl sulfoxide; E, Envelope. FW: four-tryptophan; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HA: hemagglutinin; hpt: hours post-treatment; IF: indirect immunofluorescence; IFNB/IFN-β: interferon beta; IgG: immunoglobulin G; ISG: IFN-stimulated genes; ISRE: interferon-stimulated response element; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MOI: multiplicity of infection; NBR1: NBR1 autophagy cargo receptor; OPTN: optineurin; PBS: phosphate-buffered saline; PRRs: pattern recognition receptors; qPCR: quantitative polymerase chain reaction; SAR: selective autophagy receptor; SQSTM1/p62: sequestosome 1; STAT: signal transduction and activator of transcription; TBS-T: Tris-buffered saline with Tween 20; TCID50: 50% tissue culture infective dose; TOLLIP: toll interacting protein; Ub: ubiquitin; UBA: C-terminal ubiquitin-associated; VSV: vesicular stomatitis virus; WB: western blotting. WT: wild type.
Collapse
Affiliation(s)
- Zhao Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Chenyang Gao
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Shaohong Huang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Sizhan Lin
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - WenBo Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jianyi You
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Xiongnan Chen
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| | - Pei Zhou
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Guihong Zhang
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Lang Gong
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
6
|
Phan T, Ribeiro RM, Edelstein GE, Boucau J, Uddin R, Marino C, Liew MY, Barry M, Choudhary MC, Tien D, Su K, Reynolds Z, Li Y, Sagar S, Vyas TD, Kawano Y, Sparks JA, Hammond SP, Wallace Z, Vyas JM, Li JZ, Siedner MJ, Barczak AK, Lemieux JE, Perelson AS. Modeling suggests SARS-CoV-2 rebound after nirmatrelvir-ritonavir treatment is driven by target cell preservation coupled with incomplete viral clearance. J Virol 2025; 99:e0162324. [PMID: 39902924 PMCID: PMC11915799 DOI: 10.1128/jvi.01623-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 12/22/2024] [Indexed: 02/06/2025] Open
Abstract
In a subset of SARS-CoV-2-infected individuals treated with the antiviral nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving this rebound are not well understood. We used a mathematical model to describe the longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir, 20 of whom rebounded. Target cell preservation, either by a robust innate immune response or initiation of N-R near the time of symptom onset, coupled with incomplete viral clearance, appears to be the main factor leading to viral rebound. Moreover, the occurrence of viral rebound is likely influenced by the time of treatment initiation relative to the progression of the infection, with earlier treatments leading to a higher chance of rebound. A comparison with an untreated cohort suggests that early treatments with nirmatrelvir-ritonavir may be associated with a delay in the onset of an adaptive immune response. Nevertheless, our model demonstrates that extending the course of nirmatrelvir-ritonavir treatment to a 10-day regimen may greatly diminish the chance of rebound in people with mild-to-moderate COVID-19 and who are at high risk of progression to severe disease. Altogether, our results suggest that in some individuals, a standard 5-day course of nirmatrelvir-ritonavir starting around the time of symptom onset may not completely eliminate the virus. Thus, after treatment ends, the virus can rebound if an effective adaptive immune response has not fully developed. These findings on the role of target cell preservation and incomplete viral clearance also offer a possible explanation for viral rebounds following other antiviral treatments for SARS-CoV-2. IMPORTANCE Nirmatrelvir-ritonavir is an effective treatment for SARS-CoV-2. In a subset of individuals treated with nirmatrelvir-ritonavir, the initial reduction in viral load is followed by viral rebound once treatment is stopped. We show that the timing of treatment initiation with nirmatrelvir-ritonavir may influence the risk of viral rebound. Nirmatrelvir-ritonavir stops viral growth and preserves target cells but may not lead to full clearance of the virus. Thus, once treatment ends, if an effective adaptive immune response has not adequately developed, the remaining virus can lead to rebound. Our results provide insights into the mechanisms of rebound and can help develop better treatment strategies to minimize this possibility.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
| | - Gregory E. Edelstein
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Rockib Uddin
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - May Y. Liew
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mamadou Barry
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manish C. Choudhary
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Dessie Tien
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Karry Su
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahra Reynolds
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yijia Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Shruti Sagar
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tammy D. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yumeko Kawano
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey A. Sparks
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Sarah P. Hammond
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Zachary Wallace
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jatin M. Vyas
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Amy K. Barczak
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute, Cambridge, Massachusetts, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, USA
- Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
7
|
Zhang C, Xu P, Wang Y, Chen X, Pan Y, Ma Z, Wang C, Xu H, Zhou G, Zhu F, Xia H. STK39 inhibits antiviral immune response by inhibiting DCAF1-mediated PP2A degradation. Acta Pharm Sin B 2025; 15:1535-1551. [PMID: 40370558 PMCID: PMC12069245 DOI: 10.1016/j.apsb.2024.12.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 11/25/2024] [Accepted: 12/27/2024] [Indexed: 05/16/2025] Open
Abstract
Evading host immunity killing is a critical step for virus survival. Inhibiting viral immune escape is crucial for the treatment of viral diseases. Serine/threonine kinase 39 (STK39) was reported to play an essential role in ion homeostasis. However, its potential role and mechanism in viral infection remain unknown. In this study, we found that viral infection promoted STK39 expression. Consequently, overexpressed STK39 inhibited the phosphorylation of interferon regulatory factor 3 (IRF3) and the production of type I interferon, which led to viral replication and immune escape. Genetic ablation or pharmacological inhibition of STK39 significantly protected mice from viral infection. Mechanistically, mass spectrometry and immunoprecipitation assays identified that STK39 interacted with PPP2R1A (a scaffold subunit of protein phosphatase 2A (PP2A)) in a kinase activity-dependent manner. This interaction inhibited DDB1 and CUL4 associated factor 1 (DCAF1)-mediated PPP2R1A degradation, maintained the stabilization and phosphatase activity of PP2A, which, in turn, suppressed the phosphorylation of IRF3, decreased the production of type I interferon, and then strengthened viral replication. Thus, our study provides a novel theoretical basis for viral immune escape, and STK39 may be a potential therapeutic target for viral infectious diseases.
Collapse
Affiliation(s)
- Chengfei Zhang
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- The Second Hospital Affiliated Wannan Medical College, Wuhu 241000, China
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
- National Health Commission Key Laboratory of Antibody Techniques & Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Ping Xu
- The Second Hospital Affiliated Wannan Medical College, Wuhu 241000, China
| | - Yongsheng Wang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Xin Chen
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yue Pan
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Zhijie Ma
- Department of Pathology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou 310020, China
| | - Cheng Wang
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
| | - Haojun Xu
- National Health Commission Key Laboratory of Antibody Techniques & Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Guoren Zhou
- Jiangsu Cancer Hospital, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - Feng Zhu
- Department of General Surgery, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Hongping Xia
- Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing 210009, China
- The Second Hospital Affiliated Wannan Medical College, Wuhu 241000, China
- Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210009, China
- National Health Commission Key Laboratory of Antibody Techniques & Department of Pathology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
8
|
Greene TT, Jo Y, Chiale C, Macal M, Fang Z, Khatri FS, Codrington AL, Kazane KR, Akbulut E, Swaminathan S, Fujita Y, Fitzgerald-Bocarsly P, Cordes T, Metallo C, Scott DA, Zúñiga EI. Metabolic deficiencies underlie reduced plasmacytoid dendritic cell IFN-I production following viral infection. Nat Commun 2025; 16:1460. [PMID: 39920132 PMCID: PMC11805920 DOI: 10.1038/s41467-025-56603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Type I Interferons (IFN-I) are central to host protection against viral infections, with plasmacytoid dendritic cells (pDC) being the most significant source, yet pDCs lose their IFN-I production capacity following an initial burst of IFN-I, resulting in susceptibility to secondary infections. The underlying mechanisms of these dynamics are not well understood. Here we find that viral infection reduces the capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a positive regulator of pDC IFN-I production in mice and humans; meanwhile, LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following infection. In addition, preservation of LDHB expression is sufficient to partially retain the function of otherwise exhausted pDCs, both in vitro and in vivo. Furthermore, restoring LDHB in vivo in pDCs from infected mice increases IFNAR-dependent, infection-associated pathology. Our work thus identifies a mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved infection-driven pDC inhibition.
Collapse
Affiliation(s)
- Trever T Greene
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Yeara Jo
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Carolina Chiale
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Monica Macal
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ziyan Fang
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Fawziyah S Khatri
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Alicia L Codrington
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Katelynn R Kazane
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Elizabeth Akbulut
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Shobha Swaminathan
- Department of Medicine, Division of Infectious Disease, The State University of New Jersey, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Yu Fujita
- Division of Next-Generation Drug Development, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Thekla Cordes
- Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - Christian Metallo
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Sciences, La Jolla, CA, USA
| | - David A Scott
- Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Elina I Zúñiga
- Department of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
9
|
Van Goethem MW, Bezuidt OKI, Pierneef R, Vikram S, Hopkins DW, Aspray T, Hall G, Woodborne S, Hogg ID, Northen TR, Kong W, Daffonchio D, Cowan DA, Van de Peer Y, Delgado-Baquerizo M, Makhalanyane TP. Novel adaptive immune systems in pristine Antarctic soils. Sci Rep 2025; 15:2368. [PMID: 39827180 PMCID: PMC11742911 DOI: 10.1038/s41598-024-83942-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/18/2024] [Indexed: 01/22/2025] Open
Abstract
Antarctic environments are dominated by microorganisms, which are vulnerable to viral infection. Although several studies have investigated the phylogenetic repertoire of bacteria and viruses in these poly-extreme environments with freezing temperatures, high ultra violet irradiation levels, low moisture availability and hyper-oligotrophy, the evolutionary mechanisms governing microbial immunity remain poorly understood. Using genome-resolved metagenomics, we test the hypothesis that Antarctic poly-extreme high-latitude microbiomes harbour diverse adaptive immune systems. Our analysis reveals the prevalence of prophages in bacterial genomes (Bacteroidota and Verrucomicrobiota), suggesting the significance of lysogenic infection strategies in Antarctic soils. Furthermore, we demonstrate the presence of diverse CRISPR-Cas arrays, including Class 1 arrays (Types I-B, I-C, and I-E), alongside systems exhibiting novel gene architecture among their effector cas genes. Notably, a Class 2 system featuring type V variants lacks CRISPR arrays, encodes Cas1 and Cas2 adaptation module genes. Phylogenetic analysis of Cas12 effector proteins hints at divergent evolutionary histories compared to classified type V effectors and indicates that TnpB is likely the ancestor of Cas12 nucleases. Our findings suggest substantial novelty in Antarctic cas sequences, likely driven by strong selective pressures. These results underscore the role of viral infection as a key evolutionary driver shaping polar microbiomes.
Collapse
Affiliation(s)
- Marc W Van Goethem
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
| | - Oliver K I Bezuidt
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, DSI/NRF SARChI in Marine Microbiomics, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Rian Pierneef
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, DSI/NRF SARChI in Marine Microbiomics, University of Pretoria, Hatfield, Pretoria, 0028, South Africa
| | - Surendra Vikram
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - David W Hopkins
- Scotland's Rural College, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Thomas Aspray
- School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Grant Hall
- Mammal Research Institute, University of Pretoria, Private Bag X20, Hatfield, 0028, South Africa
| | | | - Ian D Hogg
- Canadian High Arctic Research Station, Polar Knowledge Canada; and School of Science, University of Waikato, Waitkato, New Zealand
| | - Trent R Northen
- Molecular EcoSystems Biology Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Daniele Daffonchio
- Biological and Environmental Sciences and Engineering Division (BESE), King Abdullah University of Science and Technology, 23955-6900, Thuwal, Saudi Arabia
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
| | - Yves Van de Peer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0028, South Africa
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Seville, Spain
- Unidad Asociada CSIC-UPO (BioFun), Universidad Pablo de Olavide, Seville, Spain
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
- Department of Microbiology, Faculty of Science, Stellenbosch University, Stellenbosch, 7600, South Africa.
- The School for Data Science and Computational Thinking, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
10
|
Claeys M, Delva J, Jacqmotte C, Waesberghe CV, Favoreel HW. Deletion of gE in Herpes Simplex Virus 1 Leads to Increased Extracellular Virus Production and Augmented Interferon Alpha Production by Peripheral Blood Mononuclear Cells. Pathogens 2024; 13:1138. [PMID: 39770397 PMCID: PMC11678400 DOI: 10.3390/pathogens13121138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/05/2024] [Accepted: 12/21/2024] [Indexed: 01/11/2025] Open
Abstract
Herpes simplex virus (HSV) in humans and pseudorabies virus (PRV) in pigs are both alphaherpesviruses. Plasmacytoid dendritic cells (pDCs) make part of the peripheral blood mononuclear cells (PBMCs) and are specialized in producing large amounts of antiviral type I interferon (IFN-I). IFN-I production by PBMCs in response to both HSV-1 and PRV can be virtually exclusively attributed to pDCs. Recently, we discovered that cells infected with gEnull PRV trigger increased production of IFNalpha by porcine PBMCs/pDCs compared with cells infected with wild-type (WT) PRV. This increased IFNalpha response correlates with increased extracellular virus production triggered by gEnull PRV compared with WT PRV. The gE protein and some of its currently described functions are conserved in different alphaherpesviruses, including PRV and HSV-1. In the current study, we report that cells infected with gEnull HSV-1 trigger increased IFNalpha production by human PBMCs and increased extracellular virus production compared with WT HSV-1. Hence, these recently described functions of PRV gE are conserved in HSV-1 gE. Since the increased extracellular virus production and IFNalpha response have also been reported for successful (gEnull) PRV vaccines, the current findings may have important consequences for the rational design of HSV vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Herman W. Favoreel
- Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium; (M.C.); (J.D.); (C.J.); (C.V.W.)
| |
Collapse
|
11
|
De Silva M, Wickramasingha D, Abayalath N, Alexander B, Wijayagunawardane M, Lee KF, Kodithuwakku S. Early pregnancy diagnosis in cows using corpus luteum blood flow analysis based on colour Doppler ultrasonography and mRNA analysis. BMC Vet Res 2024; 20:572. [PMID: 39707361 DOI: 10.1186/s12917-024-04438-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/09/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Reproductive efficiency is paramount in the dairy industry, where early pregnancy detection of dairy cows will allow to detect the non-pregnant animals early, thus enabling to re-synchronize them and getting them pregnant leading to decrease in calving interval, which, in turn, is critical for maximizing productivity and economic gain. The objective of this study was to evaluate the colour Doppler ultrasonography (CDUS) and peripheral blood leukocytes (PBLs)-based pregnancy-associated biomarker mRNAs expression for the earliest detection of pregnancy status in the dairy cows at post insemination. Intensively managed animals were ovulation synchronized and subjected to timed artificial insemination (TAI). On day 20, corpus luteum blood flow (CLBF) was evaluated using CDUS in 30 cows. The percentage of the incoming blood flow (as an area) of the corpus luteum (CL) was determined using an image analysis software. On day 35, the same operator performed a final pregnancy diagnosis using transrectal ultrasonography to confirm the pregnancy. Blood samples were collected on day 20 and 28 after TAI for biomarkers analysis. The mRNA expression levels of ISG15, MX1, MX2, and PAG9 genes in PBLs were determined by quantitative polymerase chain reaction (qPCR). RESULTS The identified CLBF cutoff point resulted 100% sensitivity and negative predictive value (NPV) in determining non-pregnant status on day 20 in the cows. Overall, MX2 and ISG15 mRNAs showed the most significant (P < 0.05) expression levels in pregnant animals on day 20 and 28 compared to non-pregnant animals. Among them, MX2 showed the highest expression levels on both days, ascertaining it as the better candidate biomarker for the earliest identification of pregnancy. CONCLUSIONS The CDUS-based CLBF analysis on day 20 after TAI can be potentially used for the early identification of non-pregnancy status in dairy cows and MX2 could be a potential mRNA candidate for the identification of pregnancy in cows. Further studies should be conducted in large scale to validate these findings due to the small sample number used in the current study.
Collapse
Affiliation(s)
- Malshani De Silva
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
- Department of Pharmacy, Faculty of Allied Health Sciences, University of Ruhuna, Galle, 80000, Sri Lanka
| | - Devinda Wickramasingha
- Department of Farm Animal Production and Health, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Nirodha Abayalath
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Basil Alexander
- Department of Farm Animal Production and Health, Faculty of Veterinary Medicine and Animal Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Missaka Wijayagunawardane
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Kai Fai Lee
- Department of Obstetrics and Gynaecology, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, SAR, China
| | - Suranga Kodithuwakku
- Department of Animal Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400, Sri Lanka.
| |
Collapse
|
12
|
Hahm B. Exploring the Mechanisms for Virus Invasion at the Barrier of Host Defense Involving Signaling Pathways. Viruses 2024; 16:1939. [PMID: 39772245 PMCID: PMC11680288 DOI: 10.3390/v16121939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Pathogenic viruses trigger or disrupt multiple signaling networks to establish an environment optimized for their own replication and productive infection [...].
Collapse
Affiliation(s)
- Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
13
|
Iyaniwura SA, Ribeiro RM, Zitzmann C, Phan T, Ke R, Perelson AS. The kinetics of SARS-CoV-2 infection based on a human challenge study. Proc Natl Acad Sci U S A 2024; 121:e2406303121. [PMID: 39508770 PMCID: PMC11573497 DOI: 10.1073/pnas.2406303121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/09/2024] [Indexed: 11/15/2024] Open
Abstract
Studying the early events that occur after viral infection in humans is difficult unless one intentionally infects volunteers in a human challenge study. Here, we use data about severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in such a study in combination with mathematical modeling to gain insights into the relationship between the amount of virus in the upper respiratory tract and the immune response it generates. We propose a set of dynamic models of increasing complexity to dissect the roles of target cell limitation, innate immunity, and adaptive immunity in determining the observed viral kinetics. We introduce an approach for modeling the effect of humoral immunity that describes a decline in infectious virus after immune activation. We fit our models to viral load and infectious titer data from all the untreated infected participants in the study simultaneously. We found that a power-law with a power h < 1 describes the relationship between infectious virus and viral load. Viral replication at the early stage of infection is rapid, with a doubling time of ~2 h for viral RNA and ~3 h for infectious virus. We estimate that adaptive immunity is initiated ~7 to 10 d postinfection and appears to contribute to a multiphasic viral decline experienced by some participants; the viral rebound experienced by other participants is consistent with a decline in the interferon response. Altogether, we quantified the kinetics of SARS-CoV-2 infection, shedding light on the early dynamics of the virus and the potential role of innate and adaptive immunity in promoting viral decline during infection.
Collapse
Affiliation(s)
- Sarafa A Iyaniwura
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Ruy M Ribeiro
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Carolin Zitzmann
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Tin Phan
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Ruian Ke
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| | - Alan S Perelson
- Theoretical Division, Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545
| |
Collapse
|
14
|
Noffel Z, Dobrovolny HM. Modeling the bystander effect during viral coinfection. J Theor Biol 2024; 594:111928. [PMID: 39168369 DOI: 10.1016/j.jtbi.2024.111928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/07/2024] [Accepted: 08/15/2024] [Indexed: 08/23/2024]
Abstract
Viral coinfections are responsible for a significant portion of cases of patients hospitalized with influenza-like illness. As our awareness of viral coinfections has increased, researchers have started to experimentally examine some of the virus-virus interactions underlying these infections. One mechanism of interaction between viruses is through the innate immune response. This seems to occur primarily through the interferon response, which generates an antiviral state in nearby uninfected cells, a phenomenon know as the bystander effect. Here, we develop a mathematical model of two viruses interacting through the bystander effect. We find that when the rate of removal of cells to the protected state is high, growth of the first virus is suppressed, while the second virus enjoys sole access to the protected cells, enhancing its growth. Conversely, growth of the second virus can be fully suppressed if its ability to infect the protected cells is limited.
Collapse
Affiliation(s)
- Zakarya Noffel
- University of Texas at Austin, Department of Computer Science, Asutin, TX, United States
| | - Hana M Dobrovolny
- Texas Christian University, Department of Physics & Astronomy, Fort Worth, 76129, TX, United States.
| |
Collapse
|
15
|
Lin CH, Lin HY, Yang CC, Hsu HW, Hsieh FC, Yang CY, Wu HY. Preferential cleavage of the coronavirus defective viral genome by cellular endoribonuclease with characteristics of RNase L. Virol J 2024; 21:273. [PMID: 39487538 PMCID: PMC11529150 DOI: 10.1186/s12985-024-02549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
In testing whether coronavirus defective viral genome 12.7 (DVG12.7) with transcription regulating sequence (TRS) can synthesize subgenomic mRNA (sgmRNA) in coronavirus-infected cells, it was unexpectedly found by Northern blot assay that not only sgmRNA (designated sgmDVG 12.7) but also an RNA fragment with a size less than sgmDVG 12.7 was identified. A subsequent study demonstrated that the identified RNA fragment (designated clvDVG) was a cleaved RNA product originating from DVG12.7, and the cleaved sites were located in the loop region of stem‒loop structure and after UU and UA dinucleotides. clvDVG was also identified in mock-infected HRT-18 cells transfected with DVG12.7 transcript, indicating that cellular endoribonuclease is responsible for the cleavage. In addition, the sequence and structure surrounding the cleavage sites can affect the cleavage efficiency of DVG12.7. The cleavage features are therefore consistent with the general criteria for RNA cleavage by cellular RNase L. Furthermore, both the cleavage of rRNA and the synthesis of clvDVG were also identified in A549 cells. Because (i) the cleavage sites occurred predominantly after single-stranded UA and UU dinucleotides, (ii) the sequence and structure surrounding the cleavage sites affected the cleavage efficiency, (iii) the cleavage of rRNA is an index of the activation of RNase L, and (iv) the cleavage of both rRNA and DVG12.7 was identified in A549 cells, the results together indicated that the preferential cleavage of DVG12.7 is correlated with cellular endoribonuclease with the characteristics of RNase L and such cleavage features have not been previously characterized in coronaviruses.
Collapse
Affiliation(s)
- Ching-Hung Lin
- Department of Veterinary Medicine, National Pingtung University of Science and Technology, Neipu, 91201, Pingtung, Taiwan
| | - Hsuan-Yung Lin
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Chun-Chun Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hsuan-Wei Hsu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Feng-Cheng Hsieh
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Cheng-Yao Yang
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan
| | - Hung-Yi Wu
- Graduate Institute of Veterinary Pathobiology, College of Veterinary Medicine, National Chung Hsing University, Taichung, 40227, Taiwan.
| |
Collapse
|
16
|
Zhong X, Lyu C, Lai D, Shu Q. [Advances on physiology and pathology of subpopulations of macrophages in the lung tissue]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:650-658. [PMID: 39343742 PMCID: PMC11528147 DOI: 10.3724/zdxbyxb-2024-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/23/2024] [Indexed: 10/01/2024]
Abstract
Macrophages are vital in maintaining tissue homeostasis in the lungs by modulating and regulating immune responses. Based on different origins and anatomical locations, macrophages in the lungs are categorized into alveolar macrophages, interstitial macrophages, perivascular macrophages, and inflammatory macrophages. Alveolar macrophages are located in the alveolar spaces and are primarily responsible for maintaining alveolar surfactant homeostasis, defending against pathogens and regulating immune responses. Interstitial macrophages can maintain homeostasis, regulate immunity and anti-inflammation in the lung tissue. Perivascular macrophages play a crucial role in inhibiting lung inflammation, improving pulmonary fibrosis, and regulating lung tumor progression due to antigen-presenting and immunomodulatory effects. Inflammatory macrophages, which are differentiated from monocytes during inflammation, regulate the inflammatory process. This article reviews the origins of various subpopulations of macro-phages in the lung tissue and their physiological and pathological functions as well as discusses the underlying mechanisms and potential therapeutic targets.
Collapse
Affiliation(s)
- Xiaohui Zhong
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China.
| | - Chengjie Lyu
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China
| | - Dengming Lai
- Department of Neonatal Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China
- Children's Health Innovation Research Center, Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Qiang Shu
- Department of Thoracic and Cardiovascular Surgery, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Regional Medical Center for Children, Hangzhou 310052, China.
| |
Collapse
|
17
|
Holmes CM, Babasyan S, Eady N, Schnabel CL, Wagner B. Immune horses rapidly increase antileukoproteinase and lack type I interferon secretion during mucosal innate immune responses against equine herpesvirus type 1. Microbiol Spectr 2024; 12:e0109224. [PMID: 39162558 PMCID: PMC11448092 DOI: 10.1128/spectrum.01092-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/25/2024] [Indexed: 08/21/2024] Open
Abstract
Equine herpesvirus type 1 (EHV-1) is one of the most prevalent respiratory pathogens in horses with a high impact on animal health worldwide. Entry of the virus into epithelial cells of the upper respiratory tract and rapid local viral replication is followed by infection of local lymphoid tissues leading to cell-associated viremia and disease progression. Pre-existing mucosal immunity has previously been shown to reduce viral shedding and prevent viremia, consequently limiting severe disease manifestations. Here, nasopharyngeal transcriptomic profiling was used to identify differentially expressed genes following EHV-1 challenge in horses with different EHV-1 immune statuses. Immune horses (n = 4) did neither develop clinical disease nor viremia and did not shed virus after experimental infection, while non-immune horses (n = 4) did all the above. RNA sequencing was performed on nasopharyngeal samples pre- and 24 hours post-infection (24hpi). At 24hpi, 109 and 44 genes were upregulated in immune horses and non-immune horses, respectively, and three genes were explored in further detail. Antileukoproteinase (SLPI) gene expression increased 2.1-fold within 24 hours in immune horses in concert with protein secretion. Interferon (IFN)-induced proteins with tetratricopeptide repeats 2 (IFIT2) and 3 (IFIT3) were upregulated in non-immune horses, corresponding with nasal IFN-α secretion and viral replication. By contrast, neither IFIT expression nor IFN-α secretion was induced by EHV-1 infection of immune horses. Transcriptomic profiling offered a tool to identify, for the first time, the role of SLPI in innate immunity against EHV-1, and further emphasized the central role of the type I IFN response in the anti-viral defense of non-immune horses. IMPORTANCE Equine herpesvirus type 1 (EHV-1) remains a considerable concern in the equine industry, with yearly outbreaks resulting in morbidity, mortality, and economic losses. In addition to its importance in equine health, EHV-1 is a respiratory pathogen and an alphaherpesvirus, and it may serve as a model for other viruses with similar pathogenicity or phylogeny. Large animal models allow the collection of high-volume samples longitudinally, permitting in-depth investigation of immunological processes. This study was performed on bio-banked nasopharyngeal samples from an EHV-1 infection experiment, where clinical outcomes had previously been determined. Matched nucleic acid and protein samples throughout infection permitted longitudinal quantification of the protein or related proteins of selected differentially expressed genes detected during the transcriptomic screen. The results of this manuscript identified novel innate immune pathways of the upper respiratory tract during the first 24 hours of EHV-1 infection, offering a first look at the components of early mucosal immunity that are indicative of protection.
Collapse
Affiliation(s)
- Camille M. Holmes
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Susanna Babasyan
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Naya Eady
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | | | - Bettina Wagner
- Department of Population Medicine and Diagnostic Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
18
|
Luo C, Yang Y, Jiang C, Lv A, Zuo W, Ye Y, Ke J. Influenza and the gut microbiota: A hidden therapeutic link. Heliyon 2024; 10:e37661. [PMID: 39315196 PMCID: PMC11417228 DOI: 10.1016/j.heliyon.2024.e37661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/31/2024] [Accepted: 09/07/2024] [Indexed: 09/25/2024] Open
Abstract
Background The extensive community of gut microbiota significantly influences various biological functions throughout the body, making its characterization a focal point in biomedicine research. Over the past few decades, studies have revealed a potential link between specific gut bacteria, their associated metabolic pathways, and influenza. Bacterial metabolites can communicate directly or indirectly with organs beyond the gut via the intestinal barrier, thereby impacting the physiological functions of the host. As the microbiota increasingly emerges as a 'gut signature' in influenza, gaining a deeper understanding of its role may offer new insights into its pathophysiological relevance and open avenues for novel therapeutic targets. In this Review, we explore the differences in gut microbiota between healthy individuals and those with influenza, the relationship between gut microbiota metabolites and influenza, and potential strategies for preventing and treating influenza through the regulation of gut microbiota and its metabolites, including fecal microbiota transplantation and microecological preparations. Methods We utilized PubMed and Web of Science as our search databases, employing keywords such as "influenza," "gut microbiota," "traditional Chinese medicine," "metabolites," "prebiotics," "probiotics," and "machine learning" to retrieve studies examining the potential therapeutic connections between the modulation of gut microbiota and its metabolites in the treatment of influenza. The search encompassed literature from the inception of the databases up to December 2023. Results Fecal microbiota transplantation (FMT), microbial preparations (probiotics and prebiotics), and traditional Chinese medicine have unique advantages in regulating intestinal microbiota and its metabolites to improve influenza outcomes. The primary mechanism involves increasing beneficial intestinal bacteria such as Bacteroidetes and Bifidobacterium while reducing harmful bacteria such as Proteobacteria. These interventions act directly or indirectly on metabolites such as short-chain fatty acids (SCFAs), amino acids (AAs), bile acids, and monoamines to alleviate lung inflammation, reduce viral load, and exert anti-influenza virus effects. Conclusion The gut microbiota and its metabolites have direct or indirect therapeutic effects on influenza, presenting broad research potential for providing new directions in influenza research and offering references for clinical prevention and treatment. Future research should focus on identifying key strains, specific metabolites, and immune regulation mechanisms within the gut microbiota to accurately target microbiota interventions and prevent respiratory viral infections such as influenza.
Collapse
Affiliation(s)
- Cheng Luo
- Chengdu University of Traditional Chinese Medicine, Chengdu, 610032, China
| | - Yi Yang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Cheng Jiang
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| | - Anqi Lv
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Wanzhao Zuo
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Yuanhang Ye
- College of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan, 430061, China
| | - Jia Ke
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei Academy of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, 430074, China
| |
Collapse
|
19
|
Phan T, Ribeiro RM, Edelstein GE, Boucau J, Uddin R, Marino C, Liew MY, Barry M, Choudhary MC, Tien D, Su K, Reynolds Z, Li Y, Sagar S, Vyas TD, Kawano Y, Sparks JA, Hammond SP, Wallace Z, Vyas JM, Li JZ, Siedner MJ, Barczak AK, Lemieux JE, Perelson AS. Modeling suggests SARS-CoV-2 rebound after nirmatrelvir-ritonavir treatment is driven by target cell preservation coupled with incomplete viral clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.613000. [PMID: 39345409 PMCID: PMC11429690 DOI: 10.1101/2024.09.13.613000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
In a subset of SARS-CoV-2 infected individuals treated with the oral antiviral nirmatrelvir-ritonavir, the virus rebounds following treatment. The mechanisms driving this rebound are not well understood. We used a mathematical model to describe the longitudinal viral load dynamics of 51 individuals treated with nirmatrelvir-ritonavir, 20 of whom rebounded. Target cell preservation, either by a robust innate immune response or initiation of nirmatrelvir-ritonavir near the time of symptom onset, coupled with incomplete viral clearance, appear to be the main factors leading to viral rebound. Moreover, the occurrence of viral rebound is likely influenced by time of treatment initiation relative to the progression of the infection, with earlier treatments leading to a higher chance of rebound. Finally, our model demonstrates that extending the course of nirmatrelvir-ritonavir treatment, in particular to a 10-day regimen, may greatly diminish the risk for rebound in people with mild-to-moderate COVID-19 and who are at high risk of progression to severe disease. Altogether, our results suggest that in some individuals, a standard 5-day course of nirmatrelvir-ritonavir starting around the time of symptom onset may not completely eliminate the virus. Thus, after treatment ends, the virus can rebound if an effective adaptive immune response has not fully developed. These findings on the role of target cell preservation and incomplete viral clearance also offer a possible explanation for viral rebounds following other antiviral treatments for SARS-CoV-2.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
| | - Gregory E. Edelstein
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Rockib Uddin
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Caitlin Marino
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - May Y. Liew
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Mamadou Barry
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Manish C. Choudhary
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dessie Tien
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Karry Su
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Zahra Reynolds
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Yijia Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
- University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Shruti Sagar
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Tammy D. Vyas
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Yumeko Kawano
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A. Sparks
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Sarah P. Hammond
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Zachary Wallace
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Jatin M. Vyas
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
- Africa Health Research Institute, KwaZulu-Natal, South Africa
| | - Amy K. Barczak
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Havard Medical School, Boston, MA 02114, USA
- Broad Institute, Cambridge, MA 02142, USA
| | - Alan S. Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87544, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
20
|
Rivas-Fuentes S, Salgado-Aguayo A, Santos-Mendoza T, Sevilla-Reyes E. The Role of the CX3CR1-CX3CL1 Axis in Respiratory Syncytial Virus Infection and the Triggered Immune Response. Int J Mol Sci 2024; 25:9800. [PMID: 39337288 PMCID: PMC11432029 DOI: 10.3390/ijms25189800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Respiratory syncytial virus (RSV) is a common respiratory pathogen that causes respiratory illnesses, ranging from mild symptoms to severe lower respiratory tract infections in infants and older adults. This virus is responsible for one-third of pneumonia deaths in the pediatric population; however, there are currently only a few effective vaccines. A better understanding of the RSV-host relationship at the molecular level may lead to a more effective management of RSV-related symptoms. The fractalkine (CX3CL1) receptor (CX3CR1) is a co-receptor for RSV expressed by airway epithelial cells and diverse immune cells. RSV G protein binds to the CX3CR1 receptor via a highly conserved amino acid motif (CX3C motif), which is also present in CX3CL1. The CX3CL1-CX3CR1 axis is involved in the activation and infiltration of immune cells into the infected lung. The presence of the RSV G protein alters the natural functions of the CX3CR1-CX3CL1 axis and modifies the host's immune response, an aspects that need to be considered in the development of an efficient vaccine and specific pharmacological treatment.
Collapse
Affiliation(s)
- Selma Rivas-Fuentes
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Alfonso Salgado-Aguayo
- Laboratory of Research on Rheumatic Diseases, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| | - Edgar Sevilla-Reyes
- Laboratory of Transcriptomics and Molecular Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
21
|
Mihalić A, Železnjak J, Lisnić B, Jonjić S, Juranić Lisnić V, Brizić I. Immune surveillance of cytomegalovirus in tissues. Cell Mol Immunol 2024; 21:959-981. [PMID: 39134803 PMCID: PMC11364667 DOI: 10.1038/s41423-024-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/14/2024] [Indexed: 09/01/2024] Open
Abstract
Cytomegalovirus (CMV), a representative member of the Betaherpesvirinae subfamily of herpesviruses, is common in the human population, but immunocompetent individuals are generally asymptomatic when infected with this virus. However, in immunocompromised individuals and immunologically immature fetuses and newborns, CMV can cause a wide range of often long-lasting morbidities and even death. CMV is not only widespread throughout the population but it is also widespread in its hosts, infecting and establishing latency in nearly all tissues and organs. Thus, understanding the pathogenesis of and immune responses to this virus is a prerequisite for developing effective prevention and treatment strategies. Multiple arms of the immune system are engaged to contain the infection, and general concepts of immune control of CMV are now reasonably well understood. Nonetheless, in recent years, tissue-specific immune responses have emerged as an essential factor for resolving CMV infection. As tissues differ in biology and function, so do immune responses to CMV and pathological processes during infection. This review discusses state-of-the-art knowledge of the immune response to CMV infection in tissues, with particular emphasis on several well-studied and most commonly affected organs.
Collapse
Affiliation(s)
- Andrea Mihalić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Jelena Železnjak
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Berislav Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Stipan Jonjić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Biomedical Sciences, Croatian Academy of Sciences and Arts, Rijeka, Croatia
| | - Vanda Juranić Lisnić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| | - Ilija Brizić
- Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
22
|
Huang F, Liu F, Zhen X, Gong S, Chen W, Song Z. Pathogenesis, Diagnosis, and Treatment of Infectious Rhinosinusitis. Microorganisms 2024; 12:1690. [PMID: 39203531 PMCID: PMC11357447 DOI: 10.3390/microorganisms12081690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Rhinosinusitis is a common inflammatory disease of the sinonasal mucosa and paranasal sinuses. The pathogenesis of rhinosinusitis involves a variety of factors, including genetics, nasal microbiota status, infection, and environmental influences. Pathogenic microorganisms, including viruses, bacteria, and fungi, have been proven to target the cilia and/or epithelial cells of ciliated airways, which results in the impairment of mucociliary clearance, leading to epithelial cell apoptosis and the loss of epithelial barrier integrity and immune dysregulation, thereby facilitating infection. However, the mechanisms employed by pathogenic microorganisms in rhinosinusitis remain unclear. Therefore, this review describes the types of common pathogenic microorganisms that cause rhinosinusitis, including human rhinovirus, respiratory syncytial virus, Staphylococcus aureus, Pseudomonas aeruginosa, Aspergillus species, etc. The damage of mucosal cilium clearance and epithelial barrier caused by surface proteins or secreted virulence factors are summarized in detail. In addition, the specific inflammatory response, mainly Type 1 immune responses (Th1) and Type 2 immune responses (Th2), induced by the entry of pathogens into the body is discussed. The conventional treatment of infectious sinusitis and emerging treatment methods including nanotechnology are also discussed in order to improve the current understanding of the types of microorganisms that cause rhinosinusitis and to help effectively select surgical and/or therapeutic interventions for precise and personalized treatment.
Collapse
Affiliation(s)
- Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Xiaofang Zhen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Shu Gong
- The Public Platform of Cell Biotechnology, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
| | - Wenbi Chen
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou 646000, China
- Hemodynamics and Medical Engineering Combination Key Laboratory of Luzhou, Luzhou 646000, China
| |
Collapse
|
23
|
Tavakoli R, Rahimi P, Fateh A, Hamidi-Fard M, Eaybpoosh S, Bahramali G, Sadeghi SA, Doroud D, Aghasadeghi M. Exploring the impression of TRIM25 gene expression on COVID-19 severity and SARS-CoV-2 viral replication. J Infect Public Health 2024; 17:102489. [PMID: 38964175 DOI: 10.1016/j.jiph.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND There are numerous human genes associated with viral infections, and their identification in specific populations can provide suitable therapeutic targets for modulating the host immune system response and better understanding the viral pathogenic mechanisms. Many antiviral signaling pathways, including Type I interferon and NF-κB, are regulated by TRIM proteins. Therefore, the identification of TRIM proteins involved in COVID-19 infection can play a significant role in understanding the innate immune response to this virus. METHODS In this study, the expression of TRIM25 gene was evaluated in a blood sample of 330 patients admitted to the hospital (142 patients with severe disease and 188 patients with mild disease) as well as in 160 healthy individuals. The relationship between its expression and the severity of COVID-19 disease was assessed and compared among the study groups by quantitative Real-time PCR technique. The statistical analysis of the results demonstrated a significant reduction in the expression of TRIM25 in the group of patients with severe infection compared to those with mild infection. Furthermore, the impact of increased expression of TRIM25 gene in HEK-293 T cell culture was investigated on the replication of attenuated SARS-CoV-2 virus. RESULTS The results of Real-time PCR, Western blot for the viral nucleocapsid gene of virus, and CCID50 test indicated a decrease in virus replication in these cells. The findings of this research indicated that the reduced expression of the TRIM25 gene was associated with increased disease severity of COVID-19 in individuals. Additionally, the results suggested the overexpression of TRIM25 gene can impress the replication of attenuated SARS-CoV-2 and the induction of beta-interferon. CONCLUSION TRIM25 plays a critical role in controlling viral replication through its direct interaction with the virus and its involvement in inducing interferon during the early stages of infection. This makes TRIM25 a promising target for potential therapeutic interventions.
Collapse
Affiliation(s)
- Rezvan Tavakoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Sana Eaybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Amir Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Department of Production, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
24
|
Pareek G, Kundu M. Physiological functions of ULK1/2. J Mol Biol 2024; 436:168472. [PMID: 38311233 PMCID: PMC11382334 DOI: 10.1016/j.jmb.2024.168472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
UNC-51-like kinases 1 and 2 (ULK1/2) are serine/threonine kinases that are best known for their evolutionarily conserved role in the autophagy pathway. Upon sensing the nutrient status of a cell, ULK1/2 integrate signals from upstream cellular energy sensors such as mTOR and AMPK and relay them to the downstream components of the autophagy machinery. ULK1/2 also play indispensable roles in the selective autophagy pathway, removing damaged mitochondria, invading pathogens, and toxic protein aggregates. Additional functions of ULK1/2 have emerged beyond autophagy, including roles in protein trafficking, RNP granule dynamics, and signaling events impacting innate immunity, axon guidance, cellular homeostasis, and cell fate. Therefore, it is no surprise that alterations in ULK1/2 expression and activity have been linked with pathophysiological processes, including cancer, neurological disorders, and cardiovascular diseases. Growing evidence suggests that ULK1/2 function as biological rheostats, tuning cellular functions to intra and extra-cellular cues. Given their broad physiological relevance, ULK1/2 are candidate targets for small molecule activators or inhibitors that may pave the way for the development of therapeutics for the treatment of diseases in humans.
Collapse
Affiliation(s)
- Gautam Pareek
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mondira Kundu
- Cell and Molecular Biology Department, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Li RR, Zhang BM, Rong SR, Li H, Shi PF, Wang YC. Fifteen acute retrobulbar optic neuritis associated with COVID-19: A case report and review of literature. World J Clin Cases 2024; 12:4827-4835. [PMID: 39070831 PMCID: PMC11235471 DOI: 10.12998/wjcc.v12.i21.4827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND A subtype of the Omicron variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is suggested to be responsible for the outbreak in Northern China since the quarantine was lifted in December 2022. The coronavirus disease 2019 virus is primarily responsible for the development of respiratory illnesses, however, it can present a plethora of symptoms affecting a myriad of body organs. This virus has been theorized to be linked to demyelinating lesions of the peripheral and central nervous system including transverse myelitis and acute retrobulbar optic neuritis (ARON). For example, magnetic resonance imaging (MRI) of the orbit and brain showed enlargement of the retrobulbar intraorbital segments of the optic nerve with high T2 signal, and no abnormalities were seen in the brain tissue. In this case series, we analyzed the connection between SARS-CoV-2 infection and the onset of ARON. CASE SUMMARY Fifteen patients, and a teenage boy who did not have any pre-existing ocular or demyelinating diseases suddenly experienced a loss of vision after SARS-CoV-2 infection. The patients expressed a central scotoma and a fever as the primary concern. The results of the fundus photography were found to be normal. However, the automated perimetry and MRI scans showed evidence of some typical signs. Out of the 15 patients diagnosed with ARON after SARS-CoV-2 infection, only one individual tested positive for the aquaporin-4 antibody. CONCLUSION Direct viral invasion of the central nervous system and an immune-related process are the two primary causes of SARS-CoV-2-related ARON.
Collapse
Affiliation(s)
- Rong-Rong Li
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Bao-Ming Zhang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Su-Ran Rong
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Huan Li
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Peng-Fei Shi
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| | - Yun-Chang Wang
- Hebei Provincial Key Laboratory of Ophthalmology, Hebei Provincial Clinical Research Center for Eye Diseases, Hebei Eye Hospital, Xingtai 054001, Hebei Province, China
| |
Collapse
|
26
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
27
|
Dong J, Su D, Zhao B, Han J, Tu M, Zhang K, Wang F, An Y. Potential Protective Factors for Allergic Rhinitis Patients Infected with COVID-19. Curr Issues Mol Biol 2024; 46:6633-6645. [PMID: 39057037 PMCID: PMC11275266 DOI: 10.3390/cimb46070395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
At the beginning of the 2019 coronavirus disease (COVID-19) pandemic, airway allergic diseases such as asthma and allergic rhinitis (AR) were considered as risk factors for COVID-19, as they would aggravate symptoms. With further research, more and more literature has shown that airway allergic disease may not be a high-risk factor, but may be a protective factor for COVID-19 infection, which is closely related to its low-level expression of the ACE2 receptor and the complex cytokines network as underlying molecular regulatory mechanisms. In addition, steroid hormones and age factors could not be ignored. In this review, we have summarized some current evidence on the relationship between COVID-19 and allergic rhinitis to highlight the underlying mechanisms of COVID-19 infection and provide novel insights for its prevention and treatment. The key findings show that allergic rhinitis and its related molecular mechanisms may have a protective effect against COVID-19 infection.
Collapse
Affiliation(s)
- Jiaoyue Dong
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Dingyuan Su
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Binbin Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Jiayang Han
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Mengjie Tu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Kaifeng Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Fengling Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| | - Yang An
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Kaifeng 475004, China
- Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, Henan University, Kaifeng 475004, China
| |
Collapse
|
28
|
Chen X, Ke H, Li W, Yin L, Chen W, Chen T, Wu Y, Qiu J, Feng W. Structural basis for the recognition of IFNAR1 by the humanized therapeutic monoclonal antibody QX006N for the treatment of systemic lupus erythematosus. Int J Biol Macromol 2024; 268:131721. [PMID: 38649079 DOI: 10.1016/j.ijbiomac.2024.131721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Interferon (IFN) alpha/beta receptor 1 (IFNAR1) is indispensable for antiviral responses and the immune regulation. Dysregulation of the IFNAR1-mediaetd signaling pathways leads to deleterious autoimmune diseases such as systemic lupus erythematosus (SLE). QX006N, a humanized therapeutic monoclonal antibody, specifically targets human IFNAR1 and is in the clinical trial phase for treating SLE, but the molecular mechanism underlying the QX006N-mediated recognition of IFNAR1 remains unclear. Here, we report the high neutralization activities of QX006N against IFNAR1-mediated signal transduction. Meanwhile, we determine the structures of the fragment antigen-binding domain (Fab) of QX006N (QX006N-Fab) and QX006N-Fab in complex with the subdomains 1-3 of IFNAR1 (IFNAR1-SD123) at 2.87 Å and 2.68 Å resolutions, respectively. In the structure of the QX006N-Fab/IFNAR1-SD123 complex, QX006N-Fab only recognizes the SD3 subdomain of IFNAR1 by the hydrophobic, hydrogen-bonding and electrostatic interactions. Compared with the structure of the IFN/IFNAR1/IFNAR2 complex, the binding of QX006N-Fab to IFNAR1-SD3 blocks its association with IFN due to steric hindrance, which inhibits the IFN/IFNAR1/IFNAR2 complex formation for signal transduction. The results of this study provide the structural evidence for the specific targeting of IFNAR1 by the therapeutic antibody QX006N and pave the way for the rational design of antibody drugs to combat IFNAR1-related autoimmune diseases.
Collapse
MESH Headings
- Receptor, Interferon alpha-beta/metabolism
- Receptor, Interferon alpha-beta/chemistry
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Humans
- Antibodies, Monoclonal, Humanized/chemistry
- Antibodies, Monoclonal, Humanized/therapeutic use
- Antibodies, Monoclonal, Humanized/pharmacology
- Protein Binding
- Models, Molecular
- Immunoglobulin Fab Fragments/chemistry
- Immunoglobulin Fab Fragments/immunology
- Signal Transduction/drug effects
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Xiaorong Chen
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Huimin Ke
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China.
| | - Wei Li
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China
| | - Lu Yin
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Wei Chen
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Tao Chen
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Yiliang Wu
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China
| | - Jiwan Qiu
- Qyuns Therapeutics Co., Ltd., Taizhou 225300, China.
| | - Wei Feng
- Key Laboratory of Biomacromolecules (CAS), National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
29
|
Li X, Tian S, Shi H, Ta N, Ni X, Bai C, Zhu Z, Chen Y, Shi D, Huang H, Chen L, Hu Z, Qu L, Fang Y, Bai C. The golden key to open mystery boxes of SMARCA4-deficient undifferentiated thoracic tumor: focusing immunotherapy, tumor microenvironment and epigenetic regulation. Cancer Gene Ther 2024; 31:687-697. [PMID: 38347129 PMCID: PMC11101339 DOI: 10.1038/s41417-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
SMARCA4-deficient undifferentiated thoracic tumor is extremely invasive. This tumor with poor prognosis is easily confused with SMARCA4-deficent non-small cell lung cancer or sarcoma. Standard and efficient treatment has not been established. In this review, we summarized the etiology, pathogenesis and diagnosis, reviewed current and proposed innovative strategies for treatment and improving prognosis. Immunotherapy, targeting tumor microenvironment and epigenetic regulator have improved the prognosis of cancer patients. We summarized clinicopathological features and immunotherapy strategies and analyzed the progression-free survival (PFS) and overall survival (OS) of patients with SMARCA4-UT who received immune checkpoint inhibitors (ICIs). In addition, we proposed the feasibility of epigenetic regulation in the treatment of SMARCA4-UT. To our knowledge, this is the first review that aims to explore innovative strategies for targeting tumor microenvironment and epigenetic regulation and identify potential benefit population for immunotherapy to improve the prognosis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Sen Tian
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| | - Na Ta
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Xiang Ni
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Chenguang Bai
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhanli Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Yilin Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Dongchen Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Longpei Chen
- Department of Oncology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhenhong Hu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Lei Qu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Yao Fang
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| |
Collapse
|
30
|
Xia C, Wang T, Hahm B. Triggering Degradation of Host Cellular Proteins for Robust Propagation of Influenza Viruses. Int J Mol Sci 2024; 25:4677. [PMID: 38731896 PMCID: PMC11083682 DOI: 10.3390/ijms25094677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Following infection, influenza viruses strive to establish a new host cellular environment optimized for efficient viral replication and propagation. Influenza viruses use or hijack numerous host factors and machinery not only to fulfill their own replication process but also to constantly evade the host's antiviral and immune response. For this purpose, influenza viruses appear to have formulated diverse strategies to manipulate the host proteins or signaling pathways. One of the most effective tactics is to specifically induce the degradation of the cellular proteins that are detrimental to the virus life cycle. Here, we summarize the cellular factors that are deemed to have been purposefully degraded by influenza virus infection. The focus is laid on the mechanisms for the protein ubiquitination and degradation in association with facilitated viral amplification. The fate of influenza viral infection of hosts is heavily reliant on the outcomes of the interplay between the virus and the host antiviral immunity. Understanding the processes of how influenza viruses instigate the protein destruction pathways could provide a foundation for the development of advanced therapeutics to target host proteins and conquer influenza.
Collapse
Affiliation(s)
- Chuan Xia
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China
| | - Ting Wang
- Department of Bioengineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, China;
| | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
31
|
Zhang J, Shi H, Zhang L, Feng T, Chen J, Zhang X, Ji Z, Jing Z, Zhu X, Liu D, Yang X, Zeng M, Shi D, Feng L. Swine acute diarrhea syndrome coronavirus nucleocapsid protein antagonizes the IFN response through inhibiting TRIM25 oligomerization and functional activation of RIG-I/TRIM25. Vet Res 2024; 55:44. [PMID: 38589930 PMCID: PMC11000385 DOI: 10.1186/s13567-024-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/20/2024] [Indexed: 04/10/2024] Open
Abstract
Swine acute diarrhea syndrome coronavirus (SADS-CoV), an emerging Alpha-coronavirus, brings huge economic loss in swine industry. Interferons (IFNs) participate in a frontline antiviral defense mechanism triggering the activation of numerous downstream antiviral genes. Here, we demonstrated that TRIM25 overexpression significantly inhibited SADS-CoV replication, whereas TRIM25 deficiency markedly increased viral yield. We found that SADS-CoV N protein suppressed interferon-beta (IFN-β) production induced by Sendai virus (SeV) or poly(I:C). Moreover, we determined that SADS-CoV N protein interacted with RIG-I N-terminal two caspase activation and recruitment domains (2CARDs) and TRIM25 coiled-coil dimerization (CCD) domain. The interaction of SADS-CoV N protein with RIG-I and TRIM25 caused TRIM25 multimerization inhibition, the RIG-I-TRIM25 interaction disruption, and consequent the IRF3 and TBK1 phosphorylation impediment. Overexpression of SADS-CoV N protein facilitated the replication of VSV-GFP by suppressing IFN-β production. Our results demonstrate that SADS-CoV N suppresses the host IFN response, thus highlighting the significant involvement of TRIM25 in regulating antiviral immune defenses.
Collapse
Affiliation(s)
- Jiyu Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Hongyan Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Liaoyuan Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Tingshuai Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Jianfei Chen
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhaoyang Ji
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Zhaoyang Jing
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xiaoyuan Zhu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Dakai Liu
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Xiaoman Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Miaomiao Zeng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China
| | - Da Shi
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| | - Li Feng
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, Haping Road 678, Harbin, 150069, China.
| |
Collapse
|
32
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS, for the ACTIV-2/A5401 Study Team. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. PLoS Pathog 2024; 20:e1011680. [PMID: 38635853 PMCID: PMC11060554 DOI: 10.1371/journal.ppat.1011680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 04/30/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
To mitigate the loss of lives during the COVID-19 pandemic, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with variants susceptible to mAb therapy. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response antiviral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, California, United States of America
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, California, United States of America
| | - Michael D. Hughes
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | | |
Collapse
|
33
|
Greene TT, Jo Y, Macal M, Fang Z, Khatri FS, Codrington AL, Kazane KR, Chiale C, Akbulut E, Swaminathan S, Fujita Y, Fitzgerald-Bocarsly P, Cordes T, Metallo C, Scott DA, Zuniga EI. Metabolic Deficiencies Underlie Plasmacytoid Dendritic Cell Exhaustion After Viral Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582551. [PMID: 38464328 PMCID: PMC10925345 DOI: 10.1101/2024.02.28.582551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Type I Interferons (IFN-I) are central to host protection against viral infections 1 . While any cell can produce IFN-I, Plasmacytoid Dendritic Cells (pDCs) make greater quantities and more varieties of these cytokines than any other cell type 2 . However, following an initial burst of IFN- I, pDCs lose their exceptional IFN-I production capacity and become "exhausted", a phenotype that associates with enhanced susceptibility to secondary infections 3-5 . Despite this apparent cost for the host, pDC exhaustion is conserved across multiple species and viral infections, but the underlying mechanisms and the potential evolutionary advantages are not well understood. Here we characterize pDC exhaustion and demonstrate that it is associated with a reduced capacity of pDCs to engage both oxidative and glycolytic metabolism. Mechanistically, we identify lactate dehydrogenase B (LDHB) as a novel positive regulator of pDC IFN-I production in mice and humans, show that LDHB deficiency is associated with suppressed IFN-I production, pDC metabolic capacity, and viral control following a viral infection, and demonstrate that preservation of LDHB expression is sufficient to partially restore exhausted pDC function in vitro and in vivo . Furthermore, restoring LDHB in vivo in exhausted pDCs increased IFNAR dependent infection- associated pathology. Therefore, our work identifies a novel and conserved mechanism for balancing immunity and pathology during viral infections, while also providing insight into the highly preserved but previously unexplained phenomenon of pDC exhaustion.
Collapse
|
34
|
Abbas H, Derkaoui DK, Jeammet L, Adicéam E, Tiollier J, Sicard H, Braun T, Poyet JL. Apoptosis Inhibitor 5: A Multifaceted Regulator of Cell Fate. Biomolecules 2024; 14:136. [PMID: 38275765 PMCID: PMC10813780 DOI: 10.3390/biom14010136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/17/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
Apoptosis, or programmed cell death, is a fundamental process that maintains tissue homeostasis, eliminates damaged or infected cells, and plays a crucial role in various biological phenomena. The deregulation of apoptosis is involved in many human diseases, including cancer. One of the emerging players in the intricate regulatory network of apoptosis is apoptosis inhibitor 5 (API5), also called AAC-11 (anti-apoptosis clone 11) or FIF (fibroblast growth factor-2 interacting factor). While it may not have yet the same level of notoriety as some other cancer-associated proteins, API5 has garnered increasing attention in the cancer field in recent years, as elevated API5 levels are often associated with aggressive tumor behavior, resistance to therapy, and poor patient prognosis. This review aims to shed light on the multifaceted functions and regulatory mechanisms of API5 in cell fate decisions as well as its interest as therapeutic target in cancer.
Collapse
Affiliation(s)
- Hafsia Abbas
- Université Oran 1, Ahmed Ben Bella, Oran 31000, Algeria; (H.A.); (D.K.D.)
| | | | - Louise Jeammet
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Emilie Adicéam
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Jérôme Tiollier
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Hélène Sicard
- Jalon Therapeutics, 75010 Paris, France; (L.J.); (J.T.); (H.S.)
| | - Thorsten Braun
- Laboratoire de Transfert des Leucémies, EA3518, Institut de Recherche Saint Louis, Hôpital Saint Louis, Université de Paris, 75010 Paris, France;
- AP-HP, Service d’Hématologie Clinique, Hôpital Avicenne, Université Paris XIII, 93000 Bobigny, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, Hôpital Saint-Louis, 75010 Paris, France
| | - Jean-Luc Poyet
- INSERM UMRS976, Institut de Recherche Saint Louis, Hôpital Saint Louis, 75010 Paris, France
- Université Paris Cité, 75015 Paris, France
| |
Collapse
|
35
|
Mihaescu G, Chifiriuc MC, Filip R, Bleotu C, Ditu LM, Constantin M, Cristian RE, Grigore R, Bertesteanu SV, Bertesteanu G, Vrancianu CO. Role of interferons in the antiviral battle: from virus-host crosstalk to prophylactic and therapeutic potential in SARS-CoV-2 infection. Front Immunol 2024; 14:1273604. [PMID: 38288121 PMCID: PMC10822962 DOI: 10.3389/fimmu.2023.1273604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Mammalians sense antigenic messages from infectious agents that penetrate the respiratory and digestive epithelium, as well as signals from damaged host cells through membrane and cytosolic receptors. The transduction of these signals triggers a personalized response, depending on the nature of the stimulus and the host's genetics, physiological condition, and comorbidities. Interferons (IFNs) are the primary effectors of the innate immune response, and their synthesis is activated in most cells within a few hours after pathogen invasion. IFNs are primarily synthesized in infected cells, but their anti-infective effect is extended to the neighboring cells by autocrine and paracrine action. The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in 2019 was a stark reminder of the potential threat posed by newly emerging viruses. This pandemic has also triggered an overwhelming influx of research studies aiming to unveil the mechanisms of protective versus pathogenic host immune responses induced by SARS-CoV-2. The purpose of this review is to describe the role of IFNs as vital players in the battle against SARS-CoV-2 infection. We will briefly characterize and classify IFNs, present the inductors of IFN synthesis, their sensors, and signaling pathways, and then discuss the role of IFNs in controlling the evolution of SARS-CoV-2 infection and its clinical outcome. Finally, we will present the perspectives and controversies regarding the prophylactic and therapeutic potential of IFNs in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Grigore Mihaescu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Life, Medical and Agricultural Sciences, Biological Sciences Section, Academy of Romanian Scientists, Bucharest, Romania
| | - Roxana Filip
- Faculty of Medicine and Biological Sciences, Stefan cel Mare University of Suceava, Suceava, Romania
- Microbiology Department, Suceava Emergency County Hospital, Suceava, Romania
| | - Coralia Bleotu
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Cellular and Molecular Pathology Department, Stefan S. Nicolau Institute of Virology, Bucharest, Romania
| | - Lia Mara Ditu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Marian Constantin
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Institute of Biology of Romanian Academy, Bucharest, Romania
| | - Roxana-Elena Cristian
- The Research Institute of the University of Bucharest, Bucharest, Romania
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Raluca Grigore
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Serban Vifor Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Gloria Bertesteanu
- ENT Department, University of Medicine and Pharmacy Carol Davila and Coltea Clinical Hospital, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology Immunology Department, Faculty of Biology, University of Bucharest, Bucharest, Romania
- The Research Institute of the University of Bucharest, Bucharest, Romania
- DANUBIUS Department, National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| |
Collapse
|
36
|
Lezcano OM, Fuhrmann L, Ramakrishnan G, Beerenwinkel N, Huynen MA, van Rij RP. Parallel evolution and enhanced virulence upon in vivo passage of an RNA virus in Drosophila melanogaster. Virus Evol 2023; 9:vead074. [PMID: 38162315 PMCID: PMC10757409 DOI: 10.1093/ve/vead074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/30/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Virus evolution is strongly affected by antagonistic co-evolution of virus and host. Host immunity positively selects for viruses that evade the immune response, which in turn may drive counter-adaptations in host immune genes. We investigated how host immune pressure shapes virus populations, using the fruit fly Drosophila melanogaster and its natural pathogen Drosophila C virus (DCV), as a model. We performed an experimental evolution study in which DCV was serially passaged for ten generations in three fly genotypes differing in their antiviral RNAi response: wild-type flies and flies in which the endonuclease gene Dicer-2 was either overexpressed or inactivated. All evolved virus populations replicated more efficiently in vivo and were more virulent than the parental stock. The number of polymorphisms increased in all three host genotypes with passage number, which was most pronounced in Dicer-2 knockout flies. Mutational analysis showed strong parallel evolution, as mutations accumulated in a specific region of the VP3 capsid protein in every lineage in a host genotype-independent manner. The parental tyrosine at position ninety-five of VP3 was substituted with either one of five different amino acids in fourteen out of fifteen lineages. However, no consistent amino acid changes were observed in the viral RNAi suppressor gene 1A, nor elsewhere in the genome in any of the host backgrounds. Our study indicates that the RNAi response restricts the sequence space that can be explored by viral populations. Moreover, our study illustrates how evolution towards higher virulence can be a highly reproducible, yet unpredictable process.
Collapse
Affiliation(s)
| | - Lara Fuhrmann
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland
| | - Gayatri Ramakrishnan
- Department of Medical BioSciences, Radboud University Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, Basel 4056, Switzerland
- SIB Swiss Institute of Bioinformatics, Quartier Sorge - Bâtiment Amphipôle, Lausanne 1015, Switzerland
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| | | | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands
| |
Collapse
|
37
|
Kim S, Lee S, Kim TY, Lee SH, Seo SU, Kweon MN. Newly isolated Lactobacillus paracasei strain modulates lung immunity and improves the capacity to cope with influenza virus infection. MICROBIOME 2023; 11:260. [PMID: 37996951 PMCID: PMC10666316 DOI: 10.1186/s40168-023-01687-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/01/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND The modulation of immune responses by probiotics is crucial for local and systemic immunity. Recent studies have suggested a correlation between gut microbiota and lung immunity, known as the gut-lung axis. However, the evidence and mechanisms underlying this axis remain elusive. RESULTS In this study, we screened various Lactobacillus (L.) strains for their ability to augment type I interferon (IFN-I) signaling using an IFN-α/β reporter cell line. We identified L. paracasei (MI29) from the feces of healthy volunteers, which showed enhanced IFN-I signaling in vitro. Oral administration of the MI29 strain to wild-type B6 mice for 2 weeks resulted in increased expression of IFN-stimulated genes and pro-inflammatory cytokines in the lungs. We found that MI29-treated mice had significantly increased numbers of CD11c+PDCA-1+ plasmacytoid dendritic cells and Ly6Chi monocytes in the lungs compared with control groups. Pre-treatment with MI29 for 2 weeks resulted in less weight loss and lower viral loads in the lung after a sub-lethal dose of influenza virus infection. Interestingly, IFNAR1-/- mice did not show enhanced viral resistance in response to oral MI29 administration. Furthermore, metabolic profiles of MI29-treated mice revealed changes in fatty acid metabolism, with MI29-derived fatty acids contributing to host defense in a Gpr40/120-dependent manner. CONCLUSIONS These findings suggest that the newly isolated MI29 strain can activate host defense immunity and prevent infections caused by the influenza virus through the gut-lung axis. Video Abstract.
Collapse
Affiliation(s)
- Seungil Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Sohyeon Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Tae-Young Kim
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Su-Hyun Lee
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, Republic of Korea.
- Digestive Diseases Research Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
38
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
39
|
Volpe S, Irish J, Palumbo S, Lee E, Herbert J, Ramadan I, Chang EH. Viral infections and chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:819-826. [PMID: 37574080 PMCID: PMC10592176 DOI: 10.1016/j.jaci.2023.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/15/2023]
Abstract
Viral infections are the most common cause of upper respiratory infections; they frequently infect adults once or twice and children 6 to 8 times annually. In most cases, these infections are self-limiting and resolve. However, many patients with chronic rhinosinusitis (CRS) relay that their initiating event began with an upper respiratory infection that progressed in both symptom severity and duration. Viruses bind to sinonasal epithelia through specific receptors, thereby entering cells and replicating within them. Viral infections stimulate interferon-mediated innate immune responses. Recent studies suggest that viral infections may also induce type 2 immune responses and stimulate the aberrant production of cytokines that can result in loss of barrier function, which is a hallmark in CRS. The main purpose of this review will be to highlight common viruses and their associated binding receptors and highlight pathophysiologic mechanisms associated with alterations in mucociliary clearance, epithelial barrier function, and dysfunctional immune responses that might lead to a further understanding of the pathogenesis of CRS.
Collapse
Affiliation(s)
- Sophia Volpe
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Joseph Irish
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Sunny Palumbo
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eric Lee
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Jacob Herbert
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Ibrahim Ramadan
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz
| | - Eugene H Chang
- Department of Otolaryngology-Head and Neck Surgery, College of Medicine, University of Arizona, Tucson, Ariz.
| |
Collapse
|
40
|
Phan T, Zitzmann C, Chew KW, Smith DM, Daar ES, Wohl DA, Eron JJ, Currier JS, Hughes MD, Choudhary MC, Deo R, Li JZ, Ribeiro RM, Ke R, Perelson AS, ACTIV-2/A5401 Study Team. Modeling the emergence of viral resistance for SARS-CoV-2 during treatment with an anti-spike monoclonal antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557679. [PMID: 37745410 PMCID: PMC10515893 DOI: 10.1101/2023.09.14.557679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The COVID-19 pandemic has led to over 760 million cases and 6.9 million deaths worldwide. To mitigate the loss of lives, emergency use authorization was given to several anti-SARS-CoV-2 monoclonal antibody (mAb) therapies for the treatment of mild-to-moderate COVID-19 in patients with a high risk of progressing to severe disease. Monoclonal antibodies used to treat SARS-CoV-2 target the spike protein of the virus and block its ability to enter and infect target cells. Monoclonal antibody therapy can thus accelerate the decline in viral load and lower hospitalization rates among high-risk patients with susceptible variants. However, viral resistance has been observed, in some cases leading to a transient viral rebound that can be as large as 3-4 orders of magnitude. As mAbs represent a proven treatment choice for SARS-CoV-2 and other viral infections, evaluation of treatment-emergent mAb resistance can help uncover underlying pathobiology of SARS-CoV-2 infection and may also help in the development of the next generation of mAb therapies. Although resistance can be expected, the large rebounds observed are much more difficult to explain. We hypothesize replenishment of target cells is necessary to generate the high transient viral rebound. Thus, we formulated two models with different mechanisms for target cell replenishment (homeostatic proliferation and return from an innate immune response anti-viral state) and fit them to data from persons with SARS-CoV-2 treated with a mAb. We showed that both models can explain the emergence of resistant virus associated with high transient viral rebounds. We found that variations in the target cell supply rate and adaptive immunity parameters have a strong impact on the magnitude or observability of the viral rebound associated with the emergence of resistant virus. Both variations in target cell supply rate and adaptive immunity parameters may explain why only some individuals develop observable transient resistant viral rebound. Our study highlights the conditions that can lead to resistance and subsequent viral rebound in mAb treatments during acute infection.
Collapse
Affiliation(s)
- Tin Phan
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Carolin Zitzmann
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Kara W. Chew
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Davey M. Smith
- Department of Medicine, University of California, San Diego, CA, USA
| | - Eric S. Daar
- Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - David A. Wohl
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA
| | - Judith S. Currier
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | | - Manish C. Choudhary
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Rinki Deo
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Jonathan Z. Li
- Department of Medicine, Division of Infectious Diseases, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Ruy M. Ribeiro
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ruian Ke
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Alan S. Perelson
- Theoretical Biology & Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | | |
Collapse
|
41
|
Jung KI, McKenna S, Vijayamahantesh V, He Y, Hahm B. Protective versus Pathogenic Type I Interferon Responses during Virus Infections. Viruses 2023; 15:1916. [PMID: 37766322 PMCID: PMC10538102 DOI: 10.3390/v15091916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Following virus infections, type I interferons are synthesized to induce the expression of antiviral molecules and interfere with virus replication. The importance of early antiviral type I IFN response against virus invasion has been emphasized during COVID-19 as well as in studies on the microbiome. Further, type I IFNs can directly act on various immune cells to enhance protective host immune responses to viral infections. However, accumulating data indicate that IFN responses can be harmful to the host by instigating inflammatory responses or inducing T cell suppression during virus infections. Also, inhibition of lymphocyte and dendritic cell development can be caused by type I IFN, which is independent of the traditional signal transducer and activator of transcription 1 signaling. Additionally, IFNs were shown to impair airway epithelial cell proliferation, which may affect late-stage lung tissue recovery from the infection. As such, type I IFN-virus interaction research is diverse, including host antiviral innate immune mechanisms in cells, viral strategies of IFN evasion, protective immunity, excessive inflammation, immune suppression, and regulation of tissue repair. In this report, these IFN activities are summarized with an emphasis placed on the functions of type I IFNs recently observed during acute or chronic virus infections.
Collapse
Affiliation(s)
| | | | | | | | - Bumsuk Hahm
- Departments of Surgery & Molecular Microbiology and Immunology, University of Missouri, Columbia, MO 65212, USA; (K.I.J.); (S.M.); (V.V.); (Y.H.)
| |
Collapse
|
42
|
Hoblos R, Kefalakes H. Immunology of hepatitis D virus infection: General concepts and present evidence. Liver Int 2023; 43 Suppl 1:47-59. [PMID: 36074070 DOI: 10.1111/liv.15424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 02/13/2023]
Abstract
Infection with the hepatitis D virus induces the most severe form of chronic viral hepatitis, affecting over 12 million people worldwide. Chronic HDV infection leads to rapid development of liver cirrhosis and hepatocellular carcinoma in ~70% of patients within 15 years of infection. Recent evidence suggests that an interplay of different components of the immune system are contributing to viral control and may even be implicated in liver disease pathogenesis. This review will describe general concepts of antiviral immune response and elicit the present evidence concerning the interplay of the hepatitis D virus with the immune system.
Collapse
Affiliation(s)
- Reem Hoblos
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Helenie Kefalakes
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
43
|
You Y, Grasso E, Alvero A, Condon J, Dimova T, Hu A, Ding J, Alexandrova M, Manchorova D, Dimitrova V, Liao A, Mor G. Twist1-IRF9 Interaction Is Necessary for IFN-Stimulated Gene Anti-Zika Viral Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1899-1912. [PMID: 37144865 PMCID: PMC10615665 DOI: 10.4049/jimmunol.2300081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
An efficient immune defense against pathogens requires sufficient basal sensing mechanisms that can deliver prompt responses. Type I IFNs are protective against acute viral infections and respond to viral and bacterial infections, but their efficacy depends on constitutive basal activity that promotes the expression of downstream genes known as IFN-stimulated genes (ISGs). Type I IFNs and ISGs are constitutively produced at low quantities and yet exert profound effects essential for numerous physiological processes beyond antiviral and antimicrobial defense, including immunomodulation, cell cycle regulation, cell survival, and cell differentiation. Although the canonical response pathway for type I IFNs has been extensively characterized, less is known regarding the transcriptional regulation of constitutive ISG expression. Zika virus (ZIKV) infection is a major risk for human pregnancy complications and fetal development and depends on an appropriate IFN-β response. However, it is poorly understood how ZIKV, despite an IFN-β response, causes miscarriages. We have uncovered a mechanism for this function specifically in the context of the early antiviral response. Our results demonstrate that IFN regulatory factor (IRF9) is critical in the early response to ZIKV infection in human trophoblast. This function is contingent on IRF9 binding to Twist1. In this signaling cascade, Twist1 was not only a required partner that promotes IRF9 binding to the IFN-stimulated response element but also an upstream regulator that controls basal levels of IRF9. The absence of Twist1 renders human trophoblast cells susceptible to ZIKV infection.
Collapse
Affiliation(s)
- Yuan You
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Esteban Grasso
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
- School of Science, University of Buenos Aires, Intendente Guiraldes 2160, Buenos Aires, 1428
| | - Ayesha Alvero
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jennifer Condon
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Tanya Dimova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Anna Hu
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Jiahui Ding
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| | - Marina Alexandrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Diana Manchorova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Violeta Dimitrova
- Institute of Biology and Immunology of Reproduction “Acad. K. Bratanov”, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Aihua Liao
- Institute of Reproductive Health, Center for Reproductive Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, PR China
| | - Gil Mor
- C. S Mott Center for Human Development, Wayne State University, 275 E Hancock St, Detroit, MI, 48093
| |
Collapse
|
44
|
Zheng J, Lin J, Ma Y, Yang C, Zhong Q, Li Y, Yang Q. Establishment of sheep nasal mucosa explant model and its application in antiviral research. Front Microbiol 2023; 14:1124936. [PMID: 37256060 PMCID: PMC10226428 DOI: 10.3389/fmicb.2023.1124936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/18/2023] [Indexed: 06/01/2023] Open
Abstract
The nasal mucosa is the first barrier to pathogen invasion through the respiratory tract. Few studies have focused on nasal resistance to invasion by respiratory pathogens due to the lack of models related to the nasal mucosa. Hence, it is necessary to construct a nasal mucosal model to study host-pathogen interactions. We established a long-term in vitro sheep nasal mucosa explant model (NMEM), which exhibited typical epithelial cilia and epithelial proliferation ability within 11 days. Moreover, to evaluate whether the NMEM was suited for in vitro pathogenic study, we used pseudorabies virus (PRV) and showed that it successfully infected and produced severe lesions in the NMEM, particularly interferon (IFN)-stimulated gene product 15 (ISG15). IFN decreased significantly after the PRV infection. Similarly, we used this NMEM model to screen several antiviral substances, such as probiotics and drugs. A previous study showed that nasal commensal bacteria, particularly Bacillus subtilis, had high antiviral activity. Then, we used the NMEM to evaluate six sheep-derived B. subtilis strains and demonstrated that it significantly induced the production of IFN and expression of ISG15. The sheep-derived B. subtilis was pretreated with the sheep NMEM before the PRV infection to evaluate the antiviral effect. The results showed that NSV2 significantly inhibited infection by PRV and reduced the viral load (p < 0.05). Furthermore, NSV2 may inhibit PRV replication by enhancing ISGylation of cells. In conclusion, we established a reliable in vitro culture model of sheep NMEM, and applied it in antiviral research.
Collapse
|
45
|
Zhang Y, Liu G, Tao M, Ning H, Guo W, Yin G, Gao W, Feng L, Gu J, Xie Z, Huang Z. Integrated transcriptome study of the tumor microenvironment for treatment response prediction in male predominant hypopharyngeal carcinoma. Nat Commun 2023; 14:1466. [PMID: 36928331 PMCID: PMC10020474 DOI: 10.1038/s41467-023-37159-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
The efficacy of the first-line treatment for hypopharyngeal carcinoma (HPC), a predominantly male cancer, at advanced stage is only about 50% without reliable molecular indicators for its prognosis. In this study, HPC biopsy samples collected before and after the first-line treatment are classified into different groups according to treatment responses. We analyze the changes of HPC tumor microenvironment (TME) at the single-cell level in response to the treatment and identify three gene modules associated with advanced HPC prognosis. We estimate cell constitutions based on bulk RNA-seq of our HPC samples and build a binary classifier model based on non-malignant cell subtype abundance in TME, which can be used to accurately identify treatment-resistant advanced HPC patients in time and enlarge the possibility to preserve their laryngeal function. In summary, we provide a useful approach to identify gene modules and a classifier model as reliable indicators to predict treatment responses in HPC.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China.
| | - Gan Liu
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.
| | - Minzhen Tao
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Hui Ning
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Wei Guo
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Gaofei Yin
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Wen Gao
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Lifei Feng
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China
| | - Jin Gu
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China
| | - Zhen Xie
- MOE Key Laboratory of Bioinformatics and Bioinformatics Division, Center for Synthetic and System Biology, Department of Automation, Beijing National Research Center for Information Science and Technology, Tsinghua University, 100084, Beijing, China.
| | - Zhigang Huang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Key Laboratory of Otolaryngology Head and Neck Surgery (Capital Medical University), Ministry of Education, 100730, Beijing, China.
| |
Collapse
|
46
|
Agrahari AK, Srivastava M, Singh M, Asthana S. SARS-CoV-2 envelope protein attain K ac mediated dynamical interaction network to adopt 'histone mimic' at BRD4 interface. J Biomol Struct Dyn 2023; 41:15305-15319. [PMID: 36907648 DOI: 10.1080/07391102.2023.2188430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/27/2023] [Indexed: 03/13/2023]
Abstract
Interface mimicry, achieved by recognition of host-pathogen interactions, is the basis by which pathogen proteins can hijack the host machinery. The envelope (E) protein of SARS-CoV-2 is reported to mimic the histones at the BRD4 surface via establishing the structural mimicry; however, the underlying mechanism of E protein mimicking the histones is still elusive. To explore the mimics at dynamic and structural residual network level an extensive docking, and MD simulations were carried out in a comparative manner between complexes of H3-, H4-, E-, and apo-BRD4. We identified that E peptide is able to attain an 'interaction network mimicry', as its acetylated lysine (Kac) achieves orientation and residual fingerprint similar to histones, including water-mediated interactions for both the Kac positions. We identified Y59 of E, playing an anchor role to escort lysine positioning inside the binding site. Furthermore, the binding site analysis confirms that E peptide needs a higher volume, similar to the H4-BRD4 where both the lysine's (Kac5 and Kac8) can accommodate nicely, however, the position of Kac8 is mimicked by two additional water molecules other than four water-mediated bridging's, strengthening the possibility that E peptide could hijack host BRD4 surface. These molecular insights seem pivotal for mechanistic understanding and BRD4-specific therapeutic intervention. KEY POINTSMolecular mimicry is reported in hijacking and then outcompeting the host counterparts so that pathogens can rewire their cellular function by overcoming the host defense mechanism.The molecular recognition process is the basis of molecular mimicry. The E peptide of SARS-CoV-2 is reported to mimic host histone at the BRD4 surface by utilizing its C-terminally placed acetylated lysine (Kac63) to mimic the N-terminally placed acetylated lysine Kac5GGKac8 histone (H4) by interaction network mimicry identified through microsecond molecular dynamics (MD) simulations and post-processing extensive analysis.There are two steps to mimic: firstly, tyrosine residues help E to anchor at the BRD4 surface to position Kac and increase the volume of the pocket. Secondary, after positioning of Kac, a common durable interaction network N140:Kac5; Kac5:W1; W1:Y97; W1:W2; W2:W3; W3:W4; W4:P82 is established between Kac5, with key residues P82, Y97, N140, and four water molecules through water mediate bridge. Furthermore, the second acetylated lysine Kac8 position and its interaction as polar contact with Kac5 were also mimicked by E peptide through interaction network P82:W5; W5:Kac63; W5:W6; W6:Kac63.The binding event at BRD4/BD1 seems an induced-fit mechanism as a bigger binding site volume was identified at H4-BRD4 on which E peptide attains its better stability than H3-BRD4.We identified the tyrosine residue Y59 of E that acts like an anchor on the BRD4 surface to position Kac inside the pocket and attain the interaction network by using aromatic residues of the BRD4 surface.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Mitul Srivastava
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Mrityunjay Singh
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| | - Shailendra Asthana
- Translational Health Science and Technology Institute (THSTI), Haryana, India
| |
Collapse
|
47
|
Gazeau S, Deng X, Ooi HK, Mostefai F, Hussin J, Heffernan J, Jenner AL, Craig M. The race to understand immunopathology in COVID-19: Perspectives on the impact of quantitative approaches to understand within-host interactions. IMMUNOINFORMATICS (AMSTERDAM, NETHERLANDS) 2023; 9:100021. [PMID: 36643886 PMCID: PMC9826539 DOI: 10.1016/j.immuno.2023.100021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The COVID-19 pandemic has revealed the need for the increased integration of modelling and data analysis to public health, experimental, and clinical studies. Throughout the first two years of the pandemic, there has been a concerted effort to improve our understanding of the within-host immune response to the SARS-CoV-2 virus to provide better predictions of COVID-19 severity, treatment and vaccine development questions, and insights into viral evolution and the impacts of variants on immunopathology. Here we provide perspectives on what has been accomplished using quantitative methods, including predictive modelling, population genetics, machine learning, and dimensionality reduction techniques, in the first 26 months of the COVID-19 pandemic approaches, and where we go from here to improve our responses to this and future pandemics.
Collapse
Affiliation(s)
- Sonia Gazeau
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Xiaoyan Deng
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| | - Hsu Kiang Ooi
- Digital Technologies Research Centre, National Research Council Canada, Toronto, Canada
| | - Fatima Mostefai
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Julie Hussin
- Montréal Heart Institute Research Centre, Montréal, Canada
- Department of Medicine, Faculty of Medicine, Université de Montréal, Montréal, Canada
| | - Jane Heffernan
- Modelling Infection and Immunity Lab, Mathematics Statistics, York University, Toronto, Canada
- Centre for Disease Modelling (CDM), Mathematics Statistics, York University, Toronto, Canada
| | - Adrianne L Jenner
- School of Mathematical Sciences, Queensland University of Technology, Brisbane Australia
| | - Morgan Craig
- Department of Mathematics and Statistics, Université de Montréal, Montréal, Canada
- Sainte-Justine University Hospital Research Centre, Montréal, Canada
| |
Collapse
|
48
|
Liu X, Zheng F, Tian L, Li T, Zhang Z, Ren Z, Chen X, Chen W, Li K, Sheng J. Lidocaine inhibits influenza a virus replication by up-regulating IFNα4 via TBK1-IRF7 and JNK-AP1 signaling pathways. Int Immunopharmacol 2023; 115:109706. [PMID: 36638664 DOI: 10.1016/j.intimp.2023.109706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Influenza A viruses (IAV), significant respiratory pathogenic agents, cause seasonal epidemics and global pandemics in intra- and interannual cycles. Despite effective therapies targeting viral proteins, the continuous generation of drug-resistant IAV strains is challenging. Therefore, exploring novel host-specific antiviral treatment strategies is urgently needed. Here, we found that lidocaine, widely used for local anesthesia and sedation, significantly inhibited H1N1(PR8) replication in macrophages. Interestingly, its antiviral effect did not depend on the inhibition of voltage-gated sodium channels (VGSC), the main target of lidocaine for anesthesia. Lidocaine significantly upregulated early IFN-I, interferon α4 (IFNα4) mRNA, and protein levels, but not those of early IFNβ in mouse RAW 264.7 cell line and human THP-1 derived macrophages. Knocking out IFNα4 by CRISPR-Cas9 partly reversed lidocaine's inhibition of PR8 replication in macrophages. Mechanistically, lidocaine upregulated IFNα4 by activating TANK-binding kinase 1 (TBK1)-IRF7 and JNK-AP1 signaling pathways. These findings indicate that lidocaine has an incredible antiviral potential by enhancing IFN-I signaling in macrophages. In conclusion, our results indicate the potential auxiliary role of lidocaine for anti-influenza A virus therapy and even for anti-SARS-CoV-2 virus therapy, especially in the absence of a specific medicine.
Collapse
Affiliation(s)
- Xueer Liu
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Fengqing Zheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Lu Tian
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Tian Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zelin Zhang
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Zhihui Ren
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Xiaoxuan Chen
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China
| | - Weiqiang Chen
- Department of Neurosurgery, First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou 515041, Guangdong, China.
| | - Kangsheng Li
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| | - Jiangtao Sheng
- Department of Microbiology and Immunology, Guangdong Provincial Key Laboratory of Infectious Disease and Molecular Immunopathology, Shantou University Medical College, 22 Xinling Road, Shantou 515041, Guangdong, China.
| |
Collapse
|
49
|
Liu Q, Yang H, Zhao L, Huang N, Ping J. A Novel lncRNA SAAL Suppresses IAV Replication by Promoting Innate Responses. Microorganisms 2022; 10:microorganisms10122336. [PMID: 36557591 PMCID: PMC9785332 DOI: 10.3390/microorganisms10122336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/09/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Influenza A virus (IAV) infection has traditionally been a serious problem in animal husbandry and human public health security. Recently, many studies identified that long noncoding RNAs play an important role in the antiviral immune response after the infection of the influenza virus. However, there are still lots of IAV-related lncRNAs that have not been well-characterized. Using RNA sequencing analysis, we identified a lncRNA, named Serpina3i Activation Associated lncRNA (SAAL), which can be significantly upregulated in mice after IAV infection. In this study, we found that overexpression of SAAL inhibited the replication of A/WSN/33(WSN). SAAL upregulated Serpina3i with or without WSN infection. Overexpression of Serpina3i reduced influenza virus infection. Meanwhile, knockdown of Serpina3i enhanced the replication of WSN. Furthermore, knockdown of Serpina3i abolished the SAAL-mediated decrease in WSN infection. Overexpression of SAAL or Serpina3i positively regulated the transcription of interferon β (IFN-β) and several critical ISGs after WSN infection. In conclusion, we found that the novel lncRNA SAAL is a critical anti-influenza regulator by upregulating the mRNA level of Serpina3i.
Collapse
Affiliation(s)
- Qingzheng Liu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Yang
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Lingcai Zhao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jihui Ping
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Engineering Laboratory of Animal Immunity of Jiangsu Province, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Correspondence:
| |
Collapse
|
50
|
Sun H, Wang K, Yao W, Liu J, Lv L, Shi X, Chen H. Inter-Fighting between Influenza A Virus NS1 and β-TrCP: A Novel Mechanism of Anti-Influenza Virus. Viruses 2022; 14:v14112426. [PMID: 36366524 PMCID: PMC9699209 DOI: 10.3390/v14112426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) prevents innate immune signaling during infection. In our previous study, the production of pro-inflammatory cytokines was associated with Cullin-1 RING ligase (CRL1), which was related to NF-κB activation. However, the underlying mechanism is unclear. Here, an E3 ligase, β-transducin repeat-containing protein (β-TrCP), was significantly downregulated during IAV infection. Co-IP analysis revealed that non-structural 1 protein (NS1) interacts with β-TrCP. With co-transfection, an increase in NS1 expression led to a reduction in β-TrCP expression, affecting the level of IκBα and then resulting in repression of the activation of the NF-κB pathway during IAV infection. In addition, β-TrCP targets the viral NS1 protein and significantly reduces the replication level of influenza virus. Our results provide a novel mechanism for influenza to modulate its immune response during infection, and β-TrCP may be a novel target for influenza virus antagonism.
Collapse
Affiliation(s)
- Haiwei Sun
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: (H.S.); (H.C.)
| | - Kai Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Wei Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jingyi Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Lu Lv
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xinjin Shi
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Hongjun Chen
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Biosafety Research Center, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
- Correspondence: (H.S.); (H.C.)
| |
Collapse
|