1
|
Sosnovtseva AO, Le TH, Karpov DS, Vorobyev PO, Gumennaya YD, Alekseeva ON, Chumakov PM, Lipatova AV. Establishment of a Panel of Human Cell Lines to Identify Cellular Receptors Used by Enteroviruses to Infect Cells. Int J Mol Sci 2025; 26:923. [PMID: 39940693 PMCID: PMC11817244 DOI: 10.3390/ijms26030923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
Non-pathogenic natural and recombinant strains of human Enteroviruses are the subject of ongoing study with some strains having been approved for use as anticancer agents. The efficacy of oncolytic virotherapy depends upon identifying the receptor utilized by a specific strain for cell entry, and the presence of this receptor on the surface of cancer cells. Accordingly, a rapid and straightforward approach to determining the enteroviral receptors is necessary for developing an effective patient-specific, virus-based cancer therapy. To this end, we created a panel of seven lines with double knockouts on the background of the HEK293T cell line, which lacks the IFNAR1 gene. In these lines, the main viral receptor genes, including PVR, CXADR, CD55, ITGA2, SCARB2, ICAM1, and FCGRT, were knocked out using the CRISPR/Cas9 system. The panel of lines was validated on twelve different Enteroviruses types, providing a basis for studying the molecular mechanisms of enterovirus entry into cells, and for developing new therapeutic strains.
Collapse
Affiliation(s)
- Anastasiia O. Sosnovtseva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Thi Hoa Le
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
| | - Dmitry S. Karpov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Yana D. Gumennaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Olga N. Alekseeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| | - Anastasia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (D.S.K.); (P.O.V.); (P.M.C.); (A.V.L.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (Y.D.G.); (O.N.A.)
| |
Collapse
|
2
|
Li J, Zong Y, Sun T, Liu Y, Wang R, Zhou J, Sun Q, Zhang Y. Inflammatory damage caused by Echovirus 30 in the suckling mouse brain and HMC3 cells. Virol J 2024; 21:165. [PMID: 39075520 PMCID: PMC11285461 DOI: 10.1186/s12985-024-02437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024] Open
Abstract
Echovirus 30 (E30), a member of the species B Enterovirus family, is a primary pathogen responsible for aseptic meningitis and encephalitis. E30 is associated with severe nervous system diseases and is a primary cause of child illness, disability, and even mortality. However, the mechanisms underlying E30-induced brain injury remain poorly understood. In this study, we used a neonatal mouse model of E30 to investigate the possible mechanisms of brain injury. E30 infection triggered the activation of microglia in the mouse brain and efficiently replicated within HMC3 cells. Subsequent transcriptomic analysis revealed inflammatory activation of microglia in response to E30 infection. We also detected a significant upregulation of polo-like kinase 1 (PLK1) and found that its inhibition could limit E30 infection in a sucking mouse model. Collectively, E30 infection led to brain injury in a neonatal mouse model, which may be related to excessive inflammatory responses. Our findings highlight the intricate interplay between E30 infection and neurological damage, providing crucial insights that could guide the development of interventions and strategies to address the severe clinical manifestations associated with this pathogen.
Collapse
Affiliation(s)
- Jichen Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Yanjun Zong
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Tiantian Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Rui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China
| | - Jianfang Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qiang Sun
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| | - Yong Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- WHO WPRO Regional Polio Reference Laboratory, National Health Commission Key Laboratory for Biosafety, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, 155 Changbai Road, Beijing, 102206, China.
| |
Collapse
|
3
|
Nemerow GR. Integrin-Targeting Strategies for Adenovirus Gene Therapy. Viruses 2024; 16:770. [PMID: 38793651 PMCID: PMC11125847 DOI: 10.3390/v16050770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Numerous human adenovirus (AdV) types are endowed with arginine-glycine-aspartic acid (RGD) sequences that enable them to recognize vitronectin-binding (αv) integrins. These RGD-binding cell receptors mediate AdV entry into host cells, a crucial early step in virus infection. Integrin interactions with adenoviruses not only initiate receptor-mediated endocytosis but also facilitate AdV capsid disassembly, a prerequisite for membrane penetration by AdV protein VI. This review discusses fundamental aspects of AdV-host interactions mediated by integrins. Recent efforts to re-engineer AdV vectors and non-viral nanoparticles to target αv integrins for bioimaging and the eradication of cancer cells will also be discussed.
Collapse
Affiliation(s)
- Glen R Nemerow
- Department of Immunology, The Scripps Research Institute, 10666 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
4
|
Tvaroška I, Kozmon S, Kóňa J. Molecular Modeling Insights into the Structure and Behavior of Integrins: A Review. Cells 2023; 12:cells12020324. [PMID: 36672259 PMCID: PMC9856412 DOI: 10.3390/cells12020324] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Integrins are heterodimeric glycoproteins crucial to the physiology and pathology of many biological functions. As adhesion molecules, they mediate immune cell trafficking, migration, and immunological synapse formation during inflammation and cancer. The recognition of the vital roles of integrins in various diseases revealed their therapeutic potential. Despite the great effort in the last thirty years, up to now, only seven integrin-based drugs have entered the market. Recent progress in deciphering integrin functions, signaling, and interactions with ligands, along with advancement in rational drug design strategies, provide an opportunity to exploit their therapeutic potential and discover novel agents. This review will discuss the molecular modeling methods used in determining integrins' dynamic properties and in providing information toward understanding their properties and function at the atomic level. Then, we will survey the relevant contributions and the current understanding of integrin structure, activation, the binding of essential ligands, and the role of molecular modeling methods in the rational design of antagonists. We will emphasize the role played by molecular modeling methods in progress in these areas and the designing of integrin antagonists.
Collapse
Affiliation(s)
- Igor Tvaroška
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Correspondence:
| | - Stanislav Kozmon
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| | - Juraj Kóňa
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravska cesta 9, 845 38 Bratislava, Slovakia
- Medical Vision o. z., Záhradnícka 4837/55, 821 08 Bratislava, Slovakia
| |
Collapse
|
5
|
Dunai C, Ames E, Ochoa MC, Fernandez-Sendin M, Melero I, Simonetta F, Baker J, Alvarez M. Killers on the loose: Immunotherapeutic strategies to improve NK cell-based therapy for cancer treatment. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 370:65-122. [PMID: 35798507 DOI: 10.1016/bs.ircmb.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes that control tumor progression by not only directly killing cancer cells, but also by regulating other immune cells, helping to orchestrate a coordinated anti-tumor response. However, despite the tremendous potential that this cell type has, the clinical results obtained from diverse NK cell-based immunotherapeutic strategies have been, until recent years, rather modest. The intrinsic regulatory mechanisms that are involved in the control of their activation as well as the multiple mechanisms that tumor cells have developed to escape NK cell-mediated cytotoxicity likely account for the unsatisfactory clinical outcomes. The current approaches to improve long-term NK cell function are centered on modulating different molecules involved in both the activation and inhibition of NK cells, and the latest data seems to advocate for combining strategies that target multiple aspects of NK cell regulation. In this review, we summarize the different strategies (such as engineered NK cells, CAR-NK, NK cell immune engagers) that are currently being used to take advantage of this potent and complex immune cell.
Collapse
Affiliation(s)
- Cordelia Dunai
- Department of Clinical Infection, Microbiology and Immunology, University of Liverpool, Liverpool, United Kingdom
| | - Erik Ames
- Department of Pathology, Stanford University, Stanford, CA, United States
| | - Maria C Ochoa
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Myriam Fernandez-Sendin
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Ignacio Melero
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain; Department of Immunology and Immunotherapy, Clínica Universidad de Navarra, Pamplona, Spain
| | - Federico Simonetta
- Division of Hematology, Department of Oncology, Geneva University Hospitals, Geneva, Switzerland; Translational Research Centre in Onco-Haematology, Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Jeanette Baker
- Blood and Marrow Transplantation, Stanford University School of Medicine, Stanford, CA, United States
| | - Maite Alvarez
- Program for Immunology and Immunotherapy, CIMA, Universidad de Navarra, Pamplona, Spain; Navarra Institute for Health Research (IdiSNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| |
Collapse
|
6
|
De Gaetano GV, Coppolino F, Lentini G, Famà A, Cullotta C, Raffaele I, Motta C, Teti G, Speziale P, Pietrocola G, Beninati C. Streptococcus pneumoniae
binds collagens and C1q
via
the SSURE repeats of the PfbB adhesin. Mol Microbiol 2022; 117:1479-1492. [PMID: 35570359 PMCID: PMC9328315 DOI: 10.1111/mmi.14920] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/17/2022] [Accepted: 05/12/2022] [Indexed: 11/29/2022]
Abstract
The binding of Streptococcus pneumoniae to collagen is likely an important step in the pathogenesis of pneumococcal infections, but little is known of the underlying molecular mechanisms. Streptococcal surface repeats (SSURE) are highly conserved protein domains present in cell wall adhesins from different Streptococcus species. We find here that SSURE repeats of the pneumococcal adhesin plasminogen and fibronectin binding protein B (PfbB) bind to various types of collagen. Moreover, deletion of the pfbB gene resulted in a significant impairment of the ability of encapsulated or unencapsulated pneumococci to bind collagen. Notably, a PfbB SSURE domain is also bound to the complement component C1q that bears a collagen‐like domain and promotes adherence of pneumococci to host cells by acting as a bridge between bacteria and epithelial cells. Accordingly, deletion of PfbB or pre‐treatment with anti‐SSURE antibodies markedly decreased pneumococcal binding to C1q as well as C1q‐dependent adherence to epithelial and endothelial cells. Further data indicated that C1q promotes pneumococcal adherence by binding to integrin α2β1. In conclusion, our results indicate that the SSURE domains of the PfbB protein promote interactions of pneumococci with various types of collagen and with C1q. These repeats may be useful targets in strategies to control S. pneumoniae infections.
Collapse
Affiliation(s)
| | - Francesco Coppolino
- Department of BiomedicalDental and Imaging SciencesUniversity of MessinaMessinaItaly
| | - Germana Lentini
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Agata Famà
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Cullotta
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Ivana Raffaele
- Department of Human PathologyUniversity of MessinaMessinaItaly
| | - Chiara Motta
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Pietro Speziale
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | | | - Concetta Beninati
- Department of Human PathologyUniversity of MessinaMessinaItaly
- Scylla Biotech SrlMessinaItaly
| |
Collapse
|
7
|
Rahman MM, McFadden G. Oncolytic Viruses: Newest Frontier for Cancer Immunotherapy. Cancers (Basel) 2021; 13:5452. [PMID: 34771615 PMCID: PMC8582515 DOI: 10.3390/cancers13215452] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer remains a leading cause of death worldwide. Despite many signs of progress, currently available cancer treatments often do not provide desired outcomes for too many cancers. Therefore, newer and more effective therapeutic approaches are needed. Oncolytic viruses (OVs) have emerged as a novel cancer treatment modality, which selectively targets and kills cancer cells while sparing normal ones. In the past several decades, many different OV candidates have been developed and tested in both laboratory settings as well as in cancer patient clinical trials. Many approaches have been taken to overcome the limitations of OVs, including engineering OVs to selectively activate anti-tumor immune responses. However, newer approaches like the combination of OVs with current immunotherapies to convert "immune-cold" tumors to "immune-hot" will almost certainly improve the potency of OVs. Here, we discuss strategies that are explored to further improve oncolytic virotherapy.
Collapse
Affiliation(s)
- Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA;
| | | |
Collapse
|
8
|
Koehler M, Petitjean SJL, Yang J, Aravamudhan P, Somoulay X, Lo Giudice C, Poncin MA, Dumitru AC, Dermody TS, Alsteens D. Reovirus directly engages integrin to recruit clathrin for entry into host cells. Nat Commun 2021; 12:2149. [PMID: 33846319 PMCID: PMC8041799 DOI: 10.1038/s41467-021-22380-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 03/09/2021] [Indexed: 02/01/2023] Open
Abstract
Reovirus infection requires the concerted action of viral and host factors to promote cell entry. After interaction of reovirus attachment protein σ1 with cell-surface carbohydrates and proteinaceous receptors, additional host factors mediate virus internalization. In particular, β1 integrin is required for endocytosis of reovirus virions following junctional adhesion molecule A (JAM-A) binding. While integrin-binding motifs in the surface-exposed region of reovirus capsid protein λ2 are thought to mediate integrin interaction, evidence for direct β1 integrin-reovirus interactions and knowledge of how integrins function to mediate reovirus entry is lacking. Here, we use single-virus force spectroscopy and confocal microscopy to discover a direct interaction between reovirus and β1 integrins. Comparison of interactions between reovirus disassembly intermediates as well as mutants and β1 integrin show that λ2 is the integrin ligand. Finally, using fluidic force microscopy, we demonstrate a functional role for β1 integrin interaction in promoting clathrin recruitment to cell-bound reovirus. Our study demonstrates a direct interaction between reovirus and β1 integrins and offers insights into the mechanism of reovirus cell entry. These results provide new perspectives for the development of efficacious antiviral therapeutics and the engineering of improved viral gene delivery and oncolytic vectors.
Collapse
Affiliation(s)
- Melanie Koehler
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Simon J. L. Petitjean
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jinsung Yang
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Pavithra Aravamudhan
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Xayathed Somoulay
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA
| | - Cristina Lo Giudice
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Mégane A. Poncin
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Andra C. Dumitru
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Terence S. Dermody
- grid.21925.3d0000 0004 1936 9000Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA ,grid.239553.b0000 0000 9753 0008Institute of Infection, Inflammation and Immunity, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA USA ,grid.21925.3d0000 0004 1936 9000Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - David Alsteens
- grid.7942.80000 0001 2294 713XLouvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Louvain-la-Neuve, Belgium ,grid.509491.0Walloon Excellence in Life sciences and Biotechnology (WELBIO), Wavre, Belgium
| |
Collapse
|
9
|
Wells AI, Grimes KA, Kim K, Branche E, Bakkenist CJ, DePas WH, Shresta S, Coyne CB. Human FcRn expression and Type I Interferon signaling control Echovirus 11 pathogenesis in mice. PLoS Pathog 2021; 17:e1009252. [PMID: 33513208 PMCID: PMC7875378 DOI: 10.1371/journal.ppat.1009252] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/10/2021] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Neonatal echovirus infections are characterized by severe hepatitis and neurological complications that can be fatal. Here, we show that expression of the human homologue of the neonatal Fc receptor (hFcRn), the primary receptor for echoviruses, and ablation of type I interferon (IFN) signaling are key host determinants involved in echovirus pathogenesis. We show that expression of hFcRn alone is insufficient to confer susceptibility to echovirus infections in mice. However, expression of hFcRn in mice deficient in type I interferon (IFN) signaling, hFcRn-IFNAR-/-, recapitulate the echovirus pathogenesis observed in humans. Luminex-based multianalyte profiling from E11 infected hFcRn-IFNAR-/- mice revealed a robust systemic immune response to infection, including the induction of type I IFNs. Furthermore, similar to the severe hepatitis observed in humans, E11 infection in hFcRn-IFNAR-/- mice caused profound liver damage. Our findings define the host factors involved in echovirus pathogenesis and establish in vivo models that recapitulate echovirus disease in humans.
Collapse
Affiliation(s)
- Alexandra I. Wells
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kalena A. Grimes
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kenneth Kim
- Kord Animal Health Diagnostic Laboratory, Nashville, Tennessee, United States of America
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology La Jolla, California, United States of America
| | - Emilie Branche
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology La Jolla, California, United States of America
| | - Christopher J. Bakkenist
- Department of Radiation Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology La Jolla, California, United States of America
| | - Carolyn B. Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Microbial Pathogenesis, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
10
|
Jayawardena N, Poirier JT, Burga LN, Bostina M. Virus-Receptor Interactions and Virus Neutralization: Insights for Oncolytic Virus Development. Oncolytic Virother 2020; 9:1-15. [PMID: 32185149 PMCID: PMC7064293 DOI: 10.2147/ov.s186337] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 02/09/2020] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) are replication competent agents that selectively target cancer cells. After penetrating the tumor cell, viruses replicate and eventually trigger cell lysis, releasing the new viral progeny, which at their turn will attack and kill neighbouring cells. The ability of OVs to self-amplify within the tumor while sparing normal cells can provide several advantages including the capacity to encode and locally produce therapeutic protein payloads, and to prime the host immune system. OVs targeting of cancer cells is mediated by host factors that are differentially expressed between normal tissue and tumors, including viral receptors and internalization factors. In this review article, we will discuss the evolution of oncolytic viruses that have reached the stage of clinical trials, their mechanisms of oncolysis, cellular receptors, strategies for targeting cancers, viral neutralization and developments to bypass virus neutralization.
Collapse
Affiliation(s)
- Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - John T Poirier
- Department of Medicine and Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Otago Micro and Nano Imaging, University of Otago, Dunedin, New Zealand
| |
Collapse
|
11
|
Wang S, Zhang Q, Tiwari SK, Lichinchi G, Yau EH, Hui H, Li W, Furnari F, Rana TM. Integrin αvβ5 Internalizes Zika Virus during Neural Stem Cells Infection and Provides a Promising Target for Antiviral Therapy. Cell Rep 2020; 30:969-983.e4. [PMID: 31956073 PMCID: PMC7293422 DOI: 10.1016/j.celrep.2019.11.020] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 10/17/2019] [Accepted: 11/06/2019] [Indexed: 12/22/2022] Open
Abstract
We perform a CRISPR-Cas9 genome-wide screen in glioblastoma stem cells and identify integrin αvβ5 as an internalization factor for Zika virus (ZIKV). Expression of αvβ5 is correlated with ZIKV susceptibility in various cells and tropism in developing human cerebral cortex. A blocking antibody against integrin αvβ5, but not αvβ3, efficiently inhibits ZIKV infection. ZIKV binds to cells but fails to internalize when treated with integrin αvβ5-blocking antibody. αvβ5 directly binds to ZIKV virions and activates focal adhesion kinase, which is required for ZIKV infection. Finally, αvβ5 blocking antibody or two inhibitors, SB273005 and cilengitide, reduces ZIKV infection and alleviates ZIKV-induced pathology in human neural stem cells and in mouse brain. Altogether, our findings identify integrin αvβ5 as an internalization factor for ZIKV, providing a promising therapeutic target, as well as two drug candidates for prophylactic use or treatments for ZIKV infections. Wang et al. show that Zika virus (ZIKV) uses integrin αvβ5 to infect neural stem cells. ZIKV infection can be inhibited by αvβ5 blocking antibody or inhibitors, SB273005 and cilengitide, in human neural stem cells and in mouse brain, providing drug candidates for prophylactic use or treatments for ZIKV infections.
Collapse
Affiliation(s)
- Shaobo Wang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Qiong Zhang
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Shashi Kant Tiwari
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Gianluigi Lichinchi
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA
| | - Edwin H Yau
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Division of Hematology-Oncology, Department of Internal Medicine, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Hui Hui
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Wanyu Li
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Frank Furnari
- Ludwig Institute for Cancer Research, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pathology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Tariq M Rana
- Division of Genetics, Department of Pediatrics, Institute for Genomic Medicine, Program in Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive MC 0762, La Jolla, CA 92093, USA; Department of Biology, Bioinformatics Program, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA; Moores Cancer Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
12
|
Sridhar A, Karelehto E, Brouwer L, Pajkrt D, Wolthers KC. Parechovirus A Pathogenesis and the Enigma of Genotype A-3. Viruses 2019; 11:v11111062. [PMID: 31739613 PMCID: PMC6893760 DOI: 10.3390/v11111062] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/12/2019] [Accepted: 11/12/2019] [Indexed: 12/16/2022] Open
Abstract
Parechovirus A is a species in the Parechovirus genus within the Picornaviridae family that can cause severe disease in children. Relatively little is known on Parechovirus A epidemiology and pathogenesis. This review aims to explore the Parechovirus A literature and highlight the differences between Parechovirus A genotypes from a pathogenesis standpoint. In particular, the curious case of Parechovirus-A3 and the genotype-specific disease association will be discussed. Finally, a brief outlook on Parechovirus A research is provided.
Collapse
Affiliation(s)
- Adithya Sridhar
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
- Correspondence:
| | - Eveliina Karelehto
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
| | - Lieke Brouwer
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
| | - Dasja Pajkrt
- Department of Pediatrics, Emma Children’s Hospital, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands;
| | - Katja C. Wolthers
- Laboratory of Clinical Virology, Department of Medical Microbiology, Amsterdam UMC, location Academic Medical Center, University of Amsterdam, 1100 AZ Amsterdam, The Netherlands; (E.K.); (L.B.); (K.C.W.)
| |
Collapse
|
13
|
Abstract
Integrins are heterodimeric cell surface receptors ensuring the mechanical connection between cells and the extracellular matrix. In addition to the anchorage of cells to the extracellular matrix, these receptors have critical functions in intracellular signaling, but are also taking center stage in many physiological and pathological conditions. In this review, we provide some historical, structural, and physiological notes so that the diverse functions of these receptors can be appreciated and put into the context of the emerging field of mechanobiology. We propose that the exciting journey of the exploration of these receptors will continue for at least another new generation of researchers.
Collapse
Affiliation(s)
- Michael Bachmann
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Sampo Kukkurainen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Vesa P Hytönen
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| | - Bernhard Wehrle-Haller
- Department of Cell Physiology and Metabolism, University of Geneva, Centre Médical Universitaire , Geneva , Switzerland ; and Faculty of Medicine and Health Technology, Tampere University, and Fimlab Laboratories , Tampere , Finland
| |
Collapse
|
14
|
Sadeuh-Mba SA, Joffret ML, Mazitchi A, Endegue-Zanga MC, Njouom R, Delpeyroux F, Gouandjika-Vasilache I, Bessaud M. Genetic and phenotypic characterization of recently discovered enterovirus D type 111. PLoS Negl Trop Dis 2019; 13:e0007797. [PMID: 31622358 PMCID: PMC6818792 DOI: 10.1371/journal.pntd.0007797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 10/29/2019] [Accepted: 09/18/2019] [Indexed: 01/08/2023] Open
Abstract
Members of the species Enterovirus D (EV-D) remain poorly studied. The two first EV-D types (EV-D68 and EV-D70) have regularly caused outbreaks in humans since their discovery five decades ago but have been neglected until the recent occurrence of severe respiratory diseases due to EV-D68. The three other known EV-D types (EV-D94, EV-D111 and EV-D120) were discovered in the 2000s-2010s in Africa and have never been observed elsewhere. One strain of EV-D111 and all known EV-D120s were detected in stool samples of wild non-human primates, suggesting that these viruses could be zoonotic viruses. To date, EV-D111s are only known through partial genetic sequences of the few strains that have been identified so far. In an attempt to bring new pieces to the puzzle, we genetically characterized four EV-D111 strains (among the seven that have been reported until now). We observed that the EV-D111 strains from human samples and the unique simian EV-D111 strain were not phylogenetically distinct, thus suggesting a recent zoonotic transmission. We also discovered evidences of probable intertypic genetic recombination events between EV-D111s and EV-D94s. As recombination can only happen in co-infected cells, this suggests that EV-D94s and EV-D111s share common replication sites in the infected hosts. These sites could be located in the gut since the phenotypic analysis we performed showed that, contrary to EV-D68s and like EV-D94s, EV-D111s are resistant to acid pHs. We also found that EV-D111s induce strong cytopathic effects on L20B cells, a cell line routinely used to specifically detect polioviruses. An active circulation of EV-D111s among humans could then induce a high number of false-positive detection of polioviruses, which could be particularly problematic in Central Africa, where EV-D111 circulates and which is a key region for poliovirus eradication.
Collapse
Affiliation(s)
| | - Marie-Line Joffret
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | - Arthur Mazitchi
- Enteric Viruses and Measles Laboratory—Institut Pasteur de Bangui—Bangui, Central African Republic
| | | | - Richard Njouom
- Virology Service—Centre Pasteur of Cameroon–Yaounde, Cameroon
| | - Francis Delpeyroux
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| | | | - Maël Bessaud
- Institut Pasteur—Unité de biologie des virus entériques—Paris, France
- WHO Collaborating Centre for Enteroviruses and Viral Vaccines—Paris, France
| |
Collapse
|
15
|
Abstract
The genus Enterovirus (EV) of the family Picornaviridae includes poliovirus, coxsackieviruses, echoviruses, numbered enteroviruses and rhinoviruses. These diverse viruses cause a variety of diseases, including non-specific febrile illness, hand-foot-and-mouth disease, neonatal sepsis-like disease, encephalitis, paralysis and respiratory diseases. In recent years, several non-polio enteroviruses (NPEVs) have emerged as serious public health concerns. These include EV-A71, which has caused epidemics of hand-foot-and-mouth disease in Southeast Asia, and EV-D68, which recently caused a large outbreak of severe lower respiratory tract disease in North America. Infections with these viruses are associated with severe neurological complications. For decades, most research has focused on poliovirus, but in recent years, our knowledge of NPEVs has increased considerably. In this Review, we summarize recent insights from enterovirus research with a special emphasis on NPEVs. We discuss virion structures, host-receptor interactions, viral uncoating and the recent discovery of a universal enterovirus host factor that is involved in viral genome release. Moreover, we briefly explain the mechanisms of viral genome replication, virion assembly and virion release, and describe potential targets for antiviral therapy. We reflect on how these recent discoveries may help the development of antiviral therapies and vaccines.
Collapse
|
16
|
Cifuente JO, Moratorio G. Evolutionary and Structural Overview of Human Picornavirus Capsid Antibody Evasion. Front Cell Infect Microbiol 2019; 9:283. [PMID: 31482072 PMCID: PMC6710328 DOI: 10.3389/fcimb.2019.00283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
Picornaviruses constitute one of the most relevant viral groups according to their impact on human and animal health. Etiologic agents of a broad spectrum of illnesses with a clinical presentation that ranges from asymptomatic to fatal disease, they have been the cause of uncountable epidemics throughout history. Picornaviruses are small naked RNA-positive single-stranded viruses that include some of the most important pillars in the development of virology, comprising poliovirus, rhinovirus, and hepatitis A virus. Picornavirus infectious particles use the fecal-oral or respiratory routes as primary modes of transmission. In this regard, successful viral spread relies on the capability of viral capsids to (i) shelter the viral genome, (ii) display molecular determinants for cell receptor recognition, (iii) facilitate efficient genome delivery, and (iv) escape from the immune system. Importantly, picornaviruses display a substantial amount of genetic variability driven by both mutation and recombination. Therefore, the outcome of their replication results in the emergence of a genetically diverse cloud of individuals presenting phenotypic variance. The host humoral response against the capsid protein represents the most active immune pressure and primary weapon to control the infection. Since the preservation of the capsid function is deeply rooted in the virus evolutionary dynamics, here we review the current structural evidence focused on capsid antibody evasion mechanisms from that perspective.
Collapse
Affiliation(s)
| | - Gonzalo Moratorio
- Laboratorio de Virología Molecular, Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.,Laboratorio de Inmunovirología, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
17
|
Wells AI, Coyne CB. Enteroviruses: A Gut-Wrenching Game of Entry, Detection, and Evasion. Viruses 2019; 11:E460. [PMID: 31117206 PMCID: PMC6563291 DOI: 10.3390/v11050460] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/08/2019] [Accepted: 05/19/2019] [Indexed: 12/13/2022] Open
Abstract
Enteroviruses are a major source of human disease, particularly in neonates and young children where infections can range from acute, self-limited febrile illness to meningitis, endocarditis, hepatitis, and acute flaccid myelitis. The enterovirus genus includes poliovirus, coxsackieviruses, echoviruses, enterovirus 71, and enterovirus D68. Enteroviruses primarily infect by the fecal-oral route and target the gastrointestinal epithelium early during their life cycles. In addition, spread via the respiratory tract is possible and some enteroviruses such as enterovirus D68 are preferentially spread via this route. Once internalized, enteroviruses are detected by intracellular proteins that recognize common viral features and trigger antiviral innate immune signaling. However, co-evolution of enteroviruses with humans has allowed them to develop strategies to evade detection or disrupt signaling. In this review, we will discuss how enteroviruses infect the gastrointestinal tract, the mechanisms by which cells detect enterovirus infections, and the strategies enteroviruses use to escape this detection.
Collapse
Affiliation(s)
- Alexandra I Wells
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| | - Carolyn B Coyne
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.
- Center for Microbial Pathogenesis, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
- Richard K. Mellon Institute for Pediatric Research, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA 15224, USA.
| |
Collapse
|
18
|
McCarthy C, Jayawardena N, Burga LN, Bostina M. Developing Picornaviruses for Cancer Therapy. Cancers (Basel) 2019; 11:E685. [PMID: 31100962 PMCID: PMC6562951 DOI: 10.3390/cancers11050685] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 05/02/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Oncolytic viruses (OVs) form a group of novel anticancer therapeutic agents which selectively infect and lyse cancer cells. Members of several viral families, including Picornaviridae, have been shown to have anticancer activity. Picornaviruses are small icosahedral non-enveloped, positive-sense, single-stranded RNA viruses infecting a wide range of hosts. They possess several advantages for development for cancer therapy: Their genomes do not integrate into host chromosomes, do not encode oncogenes, and are easily manipulated as cDNA. This review focuses on the picornaviruses investigated for anticancer potential and the mechanisms that underpin this specificity.
Collapse
Affiliation(s)
- Cormac McCarthy
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Nadishka Jayawardena
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin 9016, New Zealand.
- Otago Micro and Nano Imaging, University of Otago, Dunedin 9016, New Zealand.
| |
Collapse
|
19
|
Abstract
Echoviruses are amongst the most common causative agents of aseptic meningitis worldwide and are particularly devastating in the neonatal population, where they are associated with severe hepatitis, neurological disease, including meningitis and encephalitis, and even death. Here, we identify the neonatal Fc receptor (FcRn) as a pan-echovirus receptor. We show that loss of expression of FcRn or its binding partner beta 2 microglobulin (β2M) renders cells resistant to infection by a panel of echoviruses at the stage of virus attachment, and that a blocking antibody to β2M inhibits echovirus infection in cell lines and in primary human intestinal epithelial cells. We also show that expression of human, but not mouse, FcRn renders nonpermissive human and mouse cells sensitive to echovirus infection and that the extracellular domain of human FcRn directly binds echovirus particles and neutralizes infection. Lastly, we show that neonatal mice expressing human FcRn are more susceptible to echovirus infection by the enteral route. Our findings thus identify FcRn as a pan-echovirus receptor, which may explain the enhanced susceptibility of neonates to echovirus infections.
Collapse
|
20
|
Niu GJ, Wang S, Xu JD, Yang MC, Sun JJ, He ZH, Zhao XF, Wang JX. The polymeric immunoglobulin receptor-like protein from Marsupenaeus japonicus is a receptor for white spot syndrome virus infection. PLoS Pathog 2019; 15:e1007558. [PMID: 30726286 PMCID: PMC6380602 DOI: 10.1371/journal.ppat.1007558] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 02/19/2019] [Accepted: 01/03/2019] [Indexed: 12/03/2022] Open
Abstract
Viral entry into the host cell is the first step towards successful infection. Viral entry starts with virion attachment, and binding to receptors. Receptor binding viruses either directly release their genome into the cell, or enter cells through endocytosis. For DNA viruses and a few RNA viruses, the endocytosed viruses will transport from cytoplasm into the nucleus followed by gene expression. Receptors on the cell membrane play a crucial role in viral infection. Although several attachment factors, or candidate receptors, for the infection of white spot syndrome virus (WSSV) were identified in shrimp, the authentic entry receptors for WSSV infection and the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a receptor for WSSV infection in kuruma shrimp, Marsupenaeus japonicus, was identified. It is a member of the immunoglobulin superfamily (IgSF) with a transmembrane region, and is similar to the vertebrate polymeric immunoglobulin receptor (pIgR); therefore, it was designated as a pIgR-like protein (MjpIgR for short). MjpIgR was detected in all tissues tested, and its expression was significantly induced by WSSV infection at the mRNA and protein levels. Knockdown of MjpIgR, and blocking MjpIgR with its antibody inhibited WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further analyses indicated that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis. Knockdown of Mjclathrin and its adaptor protein AP-2 also inhibited WSSV internalization. All the results indicated that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. White Spot Syndrome Virus (WSSV) is one of the most virulent pathogens in shrimp farming. Several viral candidate receptors, or attachment factors were reported in previous studies, however, most of them are not authentic transmembrane proteins. In particular, the protein receptor(s) required the intracellular signaling triggering by interaction of WSSV with receptors remain unclear. In the present study, a polymeric immunoglobulin receptor (pIgR) like protein, a bona fide transmembrane receptor, was identified in kuruma shrimp, Marsupenaeus japonicus (MjpIgR for short). Knockdown of MjpIgR by RNA interference, and blocking it by its antibody prevented WSSV infection in shrimp and overexpression of MjpIgR facilitated the invasion of WSSV. Further study found that MjpIgR could independently render non-permissive cells susceptible to WSSV infection. The extracellular cellular domain of MjpIgR interacts with envelope protein VP24 of WSSV and the intracellular domain interacts with calmodulin (MjCaM). MjpIgR was oligomerized and internalized following WSSV infection and the internalization was associated with endocytosis of WSSV. The viral internalization facilitating ability of MjpIgR could be blocked using chlorpromazine, an inhibitor of clathrin dependent endocytosis, indicating that MjpIgR-mediated WSSV endocytosis was clathrin dependent. The results suggested that MjpIgR is a WSSV receptor, and that WSSV enters shrimp cells via the pIgR-CaM-Clathrin endocytosis pathway. This study provides a new target for WSSV control in shrimp aquaculture.
Collapse
Affiliation(s)
- Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Shuai Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, Jiangsu, China
| | - Ji-Dong Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Zhong-Hua He
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, Shandong, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
- * E-mail:
| |
Collapse
|
21
|
Abstract
Sialic acid-based glycoconjugates cover the surfaces of many different cell types, defining key properties of the cell surface such as overall charge or likely interaction partners. Because of this prominence, sialic acids play prominent roles in mediating attachment and entry to viruses belonging to many different families. In this review, we first describe how interactions between viruses and sialic acid-based glycan structures can be identified and characterized using a range of techniques. We then highlight interactions between sialic acids and virus capsid proteins in four different viruses, and discuss what these interactions have taught us about sialic acid engagement and opportunities to interfere with binding.
Collapse
Affiliation(s)
- Bärbel S Blaum
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany; Vanderbilt University School of Medicine, Nashville, TN, United States
| |
Collapse
|
22
|
Wen YH, Chen DP. Human platelet antigens in disease. Clin Chim Acta 2018; 484:87-90. [PMID: 29802830 DOI: 10.1016/j.cca.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/05/2018] [Accepted: 05/07/2018] [Indexed: 12/16/2022]
Abstract
Platelets have various functions and participate in primary hemostasis, inflammation, and immune responses. Human platelet antigens (HPAs) are alloantigens expressed on the platelet membrane. Each HPA represent one of six platelet glycoproteins GPIIb, GPIIIa, GPIa, GPIbα, GPIbβ, and CD109, and six biallelic systems are grouped. A single nucleotide polymorphism (SNP) in the gene sequence causes a single amino acid substitution of relevant platelet glycoprotein with the exception of HPA-14bw. High-throughput next-generation sequencing-based method has been developed, which enable accurately identification of HPA polymorphisms. The roles of HPA in disease were reviewed. HPAs mediate platelet-microorganism and platelet-malignant cell interactions, and they also participate in pathogenesis of hemorrhagic fever with renal syndrome and infective endocarditis. The exploration of HPA polymorphisms in association with disease susceptibility of individuals will benefit prevention or management of disease.
Collapse
Affiliation(s)
- Ying-Hao Wen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ding-Ping Chen
- Department of Laboratory Medicine, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
23
|
Fountzilas C, Patel S, Mahalingam D. Review: Oncolytic virotherapy, updates and future directions. Oncotarget 2017; 8:102617-102639. [PMID: 29254276 PMCID: PMC5731986 DOI: 10.18632/oncotarget.18309] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 05/03/2017] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses (OVs) are viral strains that can infect and kill malignant cells while spare their normal counterparts. OVs can access cells through binding to receptors on their surface or through fusion with the plasma membrane and establish a lytic cycle in tumors, while leaving normal tissue essentially unharmed. Multiple viruses have been investigated in humans for the past century. IMLYGIC™ (T-VEC/Talimogene Laherparepvec), a genetically engineered Herpes Simplex Virus, is the first OV approved for use in the United States and the European Union for patients with locally advanced or non-resectable melanoma. Although OVs have a favorable toxicity profile and are impressively active anticancer agents in vitro and in vivo the majority of OVs have limited clinical efficacy as a single agent. While a virus-induced antitumor immune response can enhance oncolysis, when OVs are used systemically, the antiviral immune response can prevent the virus reaching the tumor tissue and having a therapeutic effect. Intratumoral administration can provide direct access to tumor tissue and be beneficial in reducing side effects. Immune checkpoint stimulation in tumor tissue has been noted after OV therapy and can be a natural response to viral-induced oncolysis. Also for immune checkpoint inhibition to be effective in treating cancer, an immune response to tumor neoantigens and an inflamed tumor microenvironment are required, both of which treatment with an OV may provide. Therefore, direct and indirect mechanisms of tumor killing provide rationale for clinical trials investigating the combination of OVs other forms of cancer therapy, including immune checkpoint inhibition.
Collapse
Affiliation(s)
- Christos Fountzilas
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sukeshi Patel
- The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | | |
Collapse
|
24
|
Integrin α2β1 in nonactivated conformation can induce focal adhesion kinase signaling. Sci Rep 2017; 7:3414. [PMID: 28611383 PMCID: PMC5469853 DOI: 10.1038/s41598-017-03640-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/02/2017] [Indexed: 12/22/2022] Open
Abstract
Conformational activation of integrins is generally required for ligand binding and cellular signalling. However, we have previously reported that the nonactivated conformation of α2β1 integrin can also bind to large ligands, such as human echovirus 1. In this study, we show that the interaction between the nonactivated integrin and a ligand resulted in the activation of focal adhesion kinase (FAK) in a protein kinase C dependent manner. A loss-of-function mutation, α2E336A, in the α2-integrin did not prevent the activation of FAK, nor did EDTA-mediated inactivation of the integrin. Full FAK activation was observed, since phosphorylation was not only confirmed in residue Y397, but also in residues Y576/7. Furthermore, initiation of downstream signaling by paxillin phosphorylation in residue Y118 was evident, even though this activation was transient by nature, probably due to the lack of talin involvement in FAK activation and the absence of vinculin in the adhesion complexes formed by the nonactivated integrins. Altogether these results indicate that the nonactivated integrins can induce cellular signaling, but the outcome of the signaling differs from conventional integrin signaling.
Collapse
|
25
|
Huttunen M, Turkki P, Mäki A, Paavolainen L, Ruusuvuori P, Marjomäki V. Echovirus 1 internalization negatively regulates epidermal growth factor receptor downregulation. Cell Microbiol 2016; 19. [DOI: 10.1111/cmi.12671] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 08/29/2016] [Accepted: 09/20/2016] [Indexed: 01/09/2023]
Affiliation(s)
- Moona Huttunen
- Department of Biological and Environmental Science/NanoScience Center; University of Jyväskylä; Jyväskylä Finland
| | - Paula Turkki
- Department of Biological and Environmental Science/NanoScience Center; University of Jyväskylä; Jyväskylä Finland
| | - Anita Mäki
- Department of Biological and Environmental Science/NanoScience Center; University of Jyväskylä; Jyväskylä Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland; University of Helsinki; Helsinki Finland
| | - Pekka Ruusuvuori
- Institute of Biosciences and Medical Technology; Tampere University of Technology, Pori-University of Tampere; Tampere Finland
| | - Varpu Marjomäki
- Department of Biological and Environmental Science/NanoScience Center; University of Jyväskylä; Jyväskylä Finland
| |
Collapse
|
26
|
Riikonen R, Matilainen H, Rajala N, Pentikainen O, Johnson M, Heino J, Oker-Blom C. Functional Display of an α2 Integrin-Specific Motif (RKK) on the Surface of Baculovirus Particles. Technol Cancer Res Treat 2016; 4:437-45. [PMID: 16029062 DOI: 10.1177/153303460500400411] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The use of baculovirus vectors shows promise as a tool for gene delivery into mammalian cells. These insect viruses have been shown to transduce a variety of mammalian cell lines, and gene transfer has also been demonstrated in vivo. In this study, we generated two recombinant baculovirus vectors displaying an integrin-specific motif, RKK, as a part of two different loops of the green fluorescent protein (GFP) fused with the major envelope protein gp64 of Autographa californica M nucleopolyhedrovirus. By enzyme linked immunosorbent assays, these viruses were shown to bind a peptide representing the receptor binding site of an α2 integrin, the α2I-domain. However, the interaction was not strong enough to overcome binding of wild type gp64 to the unknown cellular receptor(s) on the surface of α2 integrin-expressing cells (CHO-α2β1) or enhance the viral uptake. After treatment of these cells with phospholipase C, internalization of all viruses was blocked or decreased significantly. However, one of the RKK displaying viruses, AcGFP(K)gp64, was still able to internalize into CHO-α2β1 cells, although at a lower level as compared to non-treated cells. This may indicate the possible utilization of a PLC independent alternative route via, in this case, the α2β1 integrin.
Collapse
Affiliation(s)
- Reetta Riikonen
- University of Jyvaskyla, Dept. of Biological and Environmental Science, PO Box 35, FIN-40351 Jyvaskyla, Finland
| | | | | | | | | | | | | |
Collapse
|
27
|
Royston L, Tapparel C. Rhinoviruses and Respiratory Enteroviruses: Not as Simple as ABC. Viruses 2016; 8:E16. [PMID: 26761027 PMCID: PMC4728576 DOI: 10.3390/v8010016] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/09/2015] [Accepted: 12/28/2015] [Indexed: 12/21/2022] Open
Abstract
Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper respiratory tract infections and among the most frequent infectious agents in humans worldwide. Both are classified in the Enterovirus genus within the Picornaviridae family and they have been assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health significance, they represent an important financial burden on health systems worldwide. However, the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents an effective management of RV-related diseases. Current advances in molecular diagnostic techniques have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is increasingly reported. In addition to an established etiological role in the common cold, these viruses demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered RV-C species. This review provides an update of the latest findings on clinical and fundamental aspects of RV and respiratory EV, including a summary of basic knowledge of their biology.
Collapse
Affiliation(s)
- Léna Royston
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| | - Caroline Tapparel
- University of Geneva Faculty of Medicine, 1 Rue Michel-Servet, 1205 Geneva, Switzerland.
- Laboratory of Virology, Division of Infectious Diseases, University of Geneva Hospitals, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva 14, Switzerland.
| |
Collapse
|
28
|
Kankaanpää P, Tiitta S, Bergman L, Puranen AB, von Haartman E, Lindén M, Heino J. Cellular recognition and macropinocytosis-like internalization of nanoparticles targeted to integrin α2β1. NANOSCALE 2015; 7:17889-17901. [PMID: 26462719 DOI: 10.1039/c5nr06218g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Targeting nanoparticles to desired intracellular compartments is a major challenge. Integrin-type adhesion receptors are connected to different endocytosis routes in a receptor-specific manner. According to our previous observations, the internalization of an α2β1-integrin-echovirus-1 complex takes place via a macropinocytosis-like mechanism, suggesting that the receptor could be used to target nanoparticles to this specific entry route. Here, silica-based nanoparticles, carrying monoclonal antibodies against the α2β1 integrin as address labels, were synthesized. Studies with flow cytometry, atomic force microscopy and confocal microscopy showed the particles to attach to the cell surface via the α2β1 integrin. Furthermore, quantitative analysis of nanoparticle trafficking inside the cell performed with the BioImageXD software indicated that the particles enter cells via a macropinocytosis-like process and end up in caveolin-1 positive structures. Thus, we suggest that different integrins can guide particles to distinct endocytosis routes and, subsequently, also to specific intracellular compartments. In addition, we show that with the BioImageXD software it is possible to conduct sensitive and complex analyses of the behavior of small fluorescent particles inside cells, using basic confocal microscopy images.
Collapse
Affiliation(s)
- P Kankaanpää
- Department of Biochemistry, FI-20014 University of Turku, Turku, Finland.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hussein HAM, Walker LR, Abdel-Raouf UM, Desouky SA, Montasser AKM, Akula SM. Beyond RGD: virus interactions with integrins. Arch Virol 2015; 160:2669-81. [PMID: 26321473 PMCID: PMC7086847 DOI: 10.1007/s00705-015-2579-8] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
Viruses successfully infect host cells by initially binding to the surfaces of the cells, followed by an intricate entry process. As multifunctional heterodimeric cell-surface receptor molecules, integrins have been shown to usefully serve as entry receptors for a plethora of viruses. However, the exact role(s) of integrins in viral pathogen internalization has yet to be elaborately described. Notably, several viruses harbor integrin-recognition motifs displayed on viral envelope/capsid-associated proteins. The most common of these motifs is the minimal peptide sequence for binding integrins, RGD (Arg-Gly-Asp), which is known for its role in virus infection via its ability to interact with over half of the more than 20 known integrins. Not all virus-integrin interactions are RGD-dependent, however. Non-RGD-binding integrins have also been shown to effectively promote virus entry and infection as well. Such virus-integrin binding is shown to facilitate adhesion, cytoskeleton rearrangement, integrin activation, and increased intracellular signaling. Also, we have attempted to discuss the role of carbohydrate moieties in virus interactions with receptor-like host cell surface integrins that drive the process of internalization. As much as possible, this article examines the published literature regarding the role of integrins in terms of virus infection and virus-encoded glycosylated proteins that mediate interactions with integrins, and it explores the idea of targeting these receptors as a therapeutic treatment option.
Collapse
Affiliation(s)
- Hosni A M Hussein
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Lia R Walker
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA
| | - Usama M Abdel-Raouf
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Sayed A Desouky
- Faculty of Science, Al Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | | | - Shaw M Akula
- Department of Microbiology and Immunology, Brody School of Medicine, East Carolina University, Greenville, NC, 27834, USA.
| |
Collapse
|
30
|
Shaheen ZR, Corbett JA. Macrophage Expression of Inflammatory Genes in Response to EMCV Infection. Biomolecules 2015; 5:1938-54. [PMID: 26295266 PMCID: PMC4598781 DOI: 10.3390/biom5031938] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/06/2015] [Accepted: 08/08/2015] [Indexed: 12/24/2022] Open
Abstract
The expression and production of type 1 interferon is the classic cellular response to virus infection. In addition to this antiviral response, virus infection also stimulates the production of proinflammatory mediators. In this review, the pathways controlling the induction of inflammatory genes and the roles that these inflammatory mediators contribute to host defense against viral pathogens will be discussed. Specific focus will be on the role of the chemokine receptor CCR5, as a signaling receptor controlling the activation of pathways leading to virus-induced inflammatory gene expression.
Collapse
Affiliation(s)
- Zachary R Shaheen
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI 53226, USA.
| | - John A Corbett
- Department of Biochemistry, Medical College of Wisconsin, 8701 W. Watertown Plank Rd, Milwaukee, WI 53226, USA.
| |
Collapse
|
31
|
Grotto RMT, Picelli N, de Souza LDR, Silva GF, Ferrasi AC, Silveira LVDA, Pardini MIDMC. Human Platelet Polymorphism can be a genetic marker associated with HIV/HCV coinfection. J Med Virol 2015; 87:1677-81. [PMID: 25976501 DOI: 10.1002/jmv.24233] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2015] [Indexed: 11/10/2022]
Abstract
To evaluate the associations of HPA polymorphisms -1, -3, and -5 with HIV/HCV coinfection were included in this study 60 HIV/HCV-coinfected patients from the Sao Paulo State health service centers. Data reported by Verdichio-Moraes et al. (2009: J. Med Virol 81:757-759) were used as the non-infected and HCV monoinfected groups. Human Platelet Polymorphism genotyping was performed in 60 Patients co-infected with HIV/HCV by PCR-SSP or PCR-RFLP. HIV subtyping and HCV genotyping was performed by RT-PCR followed sequencing. The data analyses were performed using the χ2 test or Fisher's Exact Test and the logistic regression model. Patients coinfected with HIV/HCV presented HCV either genotype 1 (78.3%) or non-1 (21.7%) and HIV either subtype B (85.0%) or non-B (15%). The Human Platelet Polymorphism-1a/1b genotype was more frequent (P < 0.05) in HIV/HCV coinfection than in HCV monoinfection and the allelic frequency of Human Platelet Polymorphism-5b in the Patients coinfected with HIV/HCV was higher (P < 0.05) than in HCV monoinfected cases and non-infected individuals. These data suggest that the presence of specific HPA allele on platelets could favor the existence of coinfection. On the other hand, Human Platelet Polymorphism-5a/5b was more frequent (P < 0.05) in HIV/HCV coinfected and HCV monoinfected groups than in the non-infected individuals, suggesting that this platelet genotype is related to HCV infection, regardless of HIV presence. Results suggest that the Human Platelet Polymorphism profile in HIV/HCV coinfected individuals differs from the one of both HCV monoinfected and non-infected population. So, the Human Platelet Polymorphism can be a genetic marker associated with HIV/HCV coinfection.
Collapse
Affiliation(s)
- Rejane Maria Tommasini Grotto
- Molecular Biology Laboratory, Blood Transfusion Center, Botucatu Medical School, Sao Paulo State University, UNESP, São Paulo, Brazil.,Department of Bioprocess and Biotechnology, School of Agricultural Sciences, Lageado Experiment Station. Sao Paulo State University, UNESP, Botucatu-SP, Brazil
| | - Natália Picelli
- Molecular Biology Laboratory, Blood Transfusion Center, Botucatu Medical School, Sao Paulo State University, UNESP, São Paulo, Brazil
| | - Lenice do Rosário de Souza
- Tropical Diseases Department, Botucatu Medical School, Sao Paulo State University UNESP, São Paulo, Brazil
| | - Giovanni Faria Silva
- Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University UNESP, São Paulo, Brazil
| | - Adriana Camargo Ferrasi
- Molecular Biology Laboratory, Blood Transfusion Center, Botucatu Medical School, Sao Paulo State University, UNESP, São Paulo, Brazil.,Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University UNESP, São Paulo, Brazil
| | | | - Maria Inês de Moura Campos Pardini
- Molecular Biology Laboratory, Blood Transfusion Center, Botucatu Medical School, Sao Paulo State University, UNESP, São Paulo, Brazil.,Department of Internal Medicine, Botucatu Medical School, Sao Paulo State University UNESP, São Paulo, Brazil
| |
Collapse
|
32
|
Biology of Viruses and Viral Diseases. MANDELL, DOUGLAS, AND BENNETT'S PRINCIPLES AND PRACTICE OF INFECTIOUS DISEASES 2015. [PMCID: PMC7152303 DOI: 10.1016/b978-1-4557-4801-3.00134-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
33
|
Maier HJ, Bickerton E, Britton P. Identification of protein receptors for coronaviruses by mass spectrometry. Methods Mol Biol 2015; 1282:165-82. [PMID: 25720480 PMCID: PMC7121102 DOI: 10.1007/978-1-4939-2438-7_15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
As obligate intracellular parasites, viruses need to cross the plasma membrane and deliver their genome inside the cell. This step is initiated by the recognition of receptors present on the host cell surface. Receptors can be major determinants of tropism, host range, and pathogenesis. Identifying virus receptors can give clues to these aspects and can lead to the design of intervention strategies. Interfering with receptor recognition is an attractive antiviral therapy, since it occurs before the viral genome has reached the relative safe haven within the cell. This chapter describes the use of an immunoprecipitation approach with Fc-tagged viral spike proteins followed by mass spectrometry to identify and characterize the receptor for the Middle East respiratory syndrome coronavirus. This technique can be adapted to identify other viral receptors.
Collapse
Affiliation(s)
| | | | - Paul Britton
- The Pirbright Institute, Compton, United Kingdom
| |
Collapse
|
34
|
Abstract
ABSTRACT Viruses are a diverse class of nanoparticles. However, they have evolved a few common mechanisms that enable successful infection of their host cells. The first stage of this process involves entry into the cell. For enveloped viruses this process has been well characterized. For nonenveloped viruses, the focus of this review, the entry mechanisms are less well understood. For these viruses, a typical pathway involves receptor attachment followed by internalization into cellular vesicles and subsequent viral escape to the cytosol and transport to the site of genome replication. Significantly, these viruses have evolved numerous mechanisms to fulfill this seemingly simple infection scheme. We focus on the latest observations for several families of nonenveloped viruses and highlight specific members for eukaryotic families: Adenoviridae, Papillomaviridae, Parvoviridae, Picornaviridae, Polyomaviridae and Reoviridae; and prokaryotic families: Microviridae, Myoviridae, Podoviridae and Siphoviridae.
Collapse
Affiliation(s)
- Bridget Lins
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mavis Agbandje-McKenna
- Department of Biochemistry & Molecular Biology, College of Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
35
|
Borrajo E, Vidal A, Alonso MJ, Garcia‐Fuentes M. How Regenerative Medicine Can Benefit from Nucleic Acids Delivery Nanocarriers? POLYMERS IN REGENERATIVE MEDICINE 2014:285-336. [DOI: 10.1002/9781118356692.ch9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
|
36
|
Abstract
The picornaviruses coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) cause continued outbreaks and pandemics of acute hemorrhagic conjunctivitis (AHC), a highly contagious eye disease against which neither vaccines nor antiviral drugs are currently available. Moreover, these viruses can cause symptoms in the cornea, upper respiratory tract, and neurological impairments such as acute flaccid paralysis. EV70 and CVA24v are both known to use 5-N-acetylneuraminic acid (Neu5Ac) for cell attachment, thus providing a putative link between the glycan receptor specificity and cell tropism and disease. We report the structures of an intact human picornavirus in complex with a range of glycans terminating in Neu5Ac. We determined the structure of the CVA24v to 1.40 Å resolution, screened different glycans bearing Neu5Ac for CVA24v binding, and structurally characterized interactions with candidate glycan receptors. Biochemical studies verified the relevance of the binding site and demonstrated a preference of CVA24v for α2,6-linked glycans. This preference can be rationalized by molecular dynamics simulations that show that α2,6-linked glycans can establish more contacts with the viral capsid. Our results form an excellent platform for the design of antiviral compounds to prevent AHC. Coxsackievirus A24 variant (CVA24v) and enterovirus 70 (EV70) are responsible for several outbreaks of a highly contagious eye disease called acute hemorrhagic conjunctivitis (AHC). These viruses represent a limited set of human picornaviruses that use glycan receptors for cell attachment. Until now no data has been available about the binding site of these glycan receptors. We therefore determined the structure of the entire virus capsid in its unbound state and also together with several glycan receptor mimics and could establish the structure of the receptor binding site. CVA24v recognizes the receptor at a solvent exposed site on the virus shell by interactions with a single capsid protein VP1. Moreover, we identified a glycan motif favoured for CVA24v binding and confirmed this preference biochemically and by in silico simulations. Our results form a solid basis for structure-based development of drugs to treat CVA24v-caused AHC.
Collapse
|
37
|
Abstract
UNLABELLED Nervous necrosis virus (NNV) is a devastating pathogen of cultured marine fish and has affected more than 40 fish species. NNV belongs to the betanodaviruses of Nodaviridae and is a nonenveloped icosahedral particle with 2 single-stranded positive-sense RNAs. To date, knowledge regarding NNV entry into the host cell remains limited, and no NNV-specific receptor protein has been published. Using grouper fin cell line GF-1 and purified NNV capsid protein in a virus overlay protein binding assay (VOPBA), grouper heat shock cognate protein 70 (GHSC70) and grouper voltage-dependent anion selective channel protein 2 (GVDAC2) were investigated as NNV receptor protein candidates. We cloned and sequenced the genes for GHSC70 and GVDAC2 and expressed them in Escherichia coli for antiserum preparation. Knockdown of the expression of GHSC70 and GVDAC2 genes with specific short interfering RNAs (siRNAs) significantly downregulated viral RNA expression in NNV-infected GF-1 cells. By performing an immunoprecipitation assay, we confirmed that GHSC70 interacted with NNV capsid protein, while VDAC2 did not. Immunofluorescence staining and flow cytometry analysis revealed the presence of the GHSC70 protein on the cell surface. After a blocking assay, we detected the NNV RNA2 levels after 1 h of adsorption to GF-1 cells; the level was significantly lower in the cells pretreated with the GHSC70 antiserum than in nontreated cells. Therefore, we suggest that GHSC70 participates in the NNV entry of GF-1 cells, likely functioning as an NNV receptor or coreceptor protein. IMPORTANCE Fish nodavirus has caused mass mortality of more than 40 fish species worldwide and resulted in huge economic losses in the past 20 years. Among the four genotypes of fish nodaviruses, the red-spotted grouper nervous necrosis virus (RGNNV) genotype exhibits the widest host range. In our previous study, we developed monoclonal antibodies with high neutralizing efficiency against grouper NNV in GF-1 cells, indicating that NNV-specific receptor(s) may exist on the GF-1 cell membrane. However, no NNV receptor protein has been published. In this study, we found GHSC70 to be an NNV receptor (or coreceptor) candidate through VOBPA and provided several lines of evidence demonstrating that GHSC70 protein has a role in the NNV entry step of GF-1 cells. To the best of our knowledge, this is the first report identifying grouper HSC70 and its role in NNV entry into GF-1 cells.
Collapse
|
38
|
Eskova A, Knapp B, Matelska D, Reusing S, Arjonen A, Lisauskas T, Pepperkok R, Russell R, Eils R, Ivaska J, Kaderali L, Erfle H, Starkuviene V. An RNAi screen identifies KIF15 as a novel regulator of the endocytic trafficking of integrin. J Cell Sci 2014; 127:2433-47. [PMID: 24659801 DOI: 10.1242/jcs.137281] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
α2β1 integrin is one of the most important collagen-binding receptors, and it has been implicated in numerous thrombotic and immune diseases. α2β1 integrin is a potent tumour suppressor, and its downregulation is associated with increased metastasis and poor prognosis in breast cancer. Currently, very little is known about the mechanism that regulates the cell-surface expression and trafficking of α2β1 integrin. Here, using a quantitative fluorescence-microscopy-based RNAi assay, we investigated the impact of 386 cytoskeleton-associated or -regulatory genes on α2 integrin endocytosis and found that 122 of these affected the intracellular accumulation of α2 integrin. Of these, 83 were found to be putative regulators of α2 integrin trafficking and/or expression, with no observed effect on the internalization of epidermal growth factor (EGF) or transferrin. Further interrogation and validation of the siRNA screen revealed a role for KIF15, a microtubule-based molecular motor, as a significant inhibitor of the endocytic trafficking of α2 integrin. Our data suggest a novel role for KIF15 in mediating plasma membrane localization of the alternative clathrin adaptor Dab2, thus impinging on pathways that regulate α2 integrin internalization.
Collapse
Affiliation(s)
| | - Bettina Knapp
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Dorota Matelska
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Susanne Reusing
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Antti Arjonen
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | | | | | - Robert Russell
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | - Roland Eils
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany Integrative Bioinformatics and Systems Biology, DKFZ, BioQuant and Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, 69120 Heidelberg, Germany
| | - Johanna Ivaska
- Centre for Biotechnology, University of Turku, 20520 Turku, Finland
| | - Lars Kaderali
- Medical Faculty, Institute for Medical Informatics and Biometry (IMB), Technische Universität Dresden, 01307 Dresden, Germany
| | - Holger Erfle
- BioQuant, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
39
|
Effect of type 1 herpes simplex infection of phenotypic peculiarities of human vascular endothelial cells in culture. Bull Exp Biol Med 2014; 155:151-8. [PMID: 23667894 DOI: 10.1007/s10517-013-2101-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We studied the effect of type 1 herpes simplex infection on the production of innate immunity mediators in human vascular endothelial cells in culture. It was found that production of anti-inflammatory cytokines IL-1β, IL.6, and TNF-α in infected cultures depended on the level of their spontaneous production, while IL-8 production was suppressed irrespective of its spontaneous level. Shedding of cell adhesion molecules of early (P-selectin and E-selectin) and late (PECAM-1 and VE-cadherin) phases of leukocyte recruitment depended on individual capacity of human vascular endothelial cell cultures to maintain reproduction of type 1 herpes simples virus. The production of vasodilator NO and vasoconstrictor endothelin-1 by infected cultures also depended on spontaneous synthesis of this transmitter by non-infected cultures.
Collapse
|
40
|
Madamanchi A, Santoro SA, Zutter MM. α2β1 Integrin. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 819:41-60. [PMID: 25023166 DOI: 10.1007/978-94-017-9153-3_3] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The α2β1 integrin, also known as VLA-2, GPIa-IIa, CD49b, was first identified as an extracellular matrix receptor for collagens and/or laminins [55, 56]. It is now recognized that the α2β1 integrin serves as a receptor for many matrix and nonmatrix molecules [35, 79, 128]. Extensive analyses have clearly elucidated the α2 I domain structural motifs required for ligand binding, and also defined distinct conformations that lead to inactive, partially active or highly active ligand binding [3, 37, 66, 123, 136, 137, 140]. The mechanisms by which the α2β1 integrin plays a critical role in platelet function and homeostasis have been carefully defined via in vitro and in vivo experiments [76, 104, 117, 125]. Genetic and epidemiologic studies have confirmed human physiology and disease states mediated by this receptor in immunity, cancer, and development [6, 20, 21, 32, 43, 90]. The role of the α2β1 integrin in these multiple complex biologic processes will be discussed in the chapter.
Collapse
Affiliation(s)
- Aasakiran Madamanchi
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|
41
|
Polyak D, Eldar-Boock A, Baabur-Cohen H, Satchi-Fainaro R. Polymer conjugates for focal and targeted delivery of drugs. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3158] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Dina Polyak
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Anat Eldar-Boock
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Hemda Baabur-Cohen
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology; Sackler School of Medicine, Tel Aviv University; Tel Aviv 69978 Israel
| |
Collapse
|
42
|
Echovirus 1 entry into polarized Caco-2 cells depends on dynamin, cholesterol, and cellular factors associated with macropinocytosis. J Virol 2013; 87:8884-95. [PMID: 23740983 DOI: 10.1128/jvi.03415-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteroviruses invade their hosts by crossing the intestinal epithelium. We have examined the mechanism by which echovirus 1 (EV1) enters polarized intestinal epithelial cells (Caco-2). Virus binds to VLA-2 on the apical cell surface and moves rapidly to early endosomes. Using inhibitory drugs, dominant negative mutants, and small interfering RNAs (siRNAs) to block specific endocytic pathways, we found that virus entry requires dynamin GTPase and membrane cholesterol but is independent of both clathrin- and caveolin-mediated endocytosis. Instead, infection requires factors commonly associated with macropinocytosis, including amiloride-sensitive Na(+)/H(+) exchange, protein kinase C, and C-terminal-binding protein-1 (CtBP1); furthermore, EV1 accumulates rapidly in intracellular vesicles with dextran, a fluid-phase marker. These results suggest a role for macropinocytosis in the process by which EV1 enters polarized cells to initiate infection.
Collapse
|
43
|
Abstract
Filoviruses cause severe hemorrhagic fever in humans with high case-fatality rates. The cellular factors exploited by filoviruses for their spread constitute potential targets for intervention, but are incompletely defined. The viral glycoprotein (GP) mediates filovirus entry into host cells. Recent studies revealed important insights into the host cell molecules engaged by GP for cellular entry. The binding of GP to cellular lectins was found to concentrate virions onto susceptible cells and might contribute to the early and sustained infection of macrophages and dendritic cells, important viral targets. Tyrosine kinase receptors were shown to promote macropinocytic uptake of filoviruses into a subset of susceptible cells without binding to GP, while interactions between GP and human T cell Ig mucin 1 (TIM-1) might contribute to filovirus infection of mucosal epithelial cells. Moreover, GP engagement of the cholesterol transporter Niemann-Pick C1 was demonstrated to be essential for GP-mediated fusion of the viral envelope with a host cell membrane. Finally, mutagenic and structural analyses defined GP domains which interact with these host cell factors. Here, we will review the recent progress in elucidating the molecular interactions underlying filovirus entry and discuss their implications for our understanding of the viral cell tropism.
Collapse
|
44
|
Structural and functional analysis of coxsackievirus A9 integrin αvβ6 binding and uncoating. J Virol 2013; 87:3943-51. [PMID: 23365426 DOI: 10.1128/jvi.02989-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Coxsackievirus A9 (CVA9) is an important pathogen of the Picornaviridae family. It utilizes cellular receptors from the integrin αv family for binding to its host cells prior to entry and genome release. Among the integrins tested, it has the highest affinity for αvβ6, which recognizes the arginine-glycine-aspartic acid (RGD) loop present on the C terminus of viral capsid protein, VP1. As the atomic model of CVA9 lacks the RGD loop, we used surface plasmon resonance, electron cryo-microscopy, and image reconstruction to characterize the capsid-integrin interactions and the conformational changes on genome release. We show that the integrin binds to the capsid with nanomolar affinity and that the binding of integrin to the virion does not induce uncoating, thereby implying that further steps are required for release of the genome. Electron cryo-tomography and single-particle image reconstruction revealed variation in the number and conformation of the integrins bound to the capsid, with the integrin footprint mapping close to the predicted site for the exposed RGD loop on VP1. Comparison of empty and RNA-filled capsid reconstructions showed that the capsid undergoes conformational changes when the genome is released, so that the RNA-capsid interactions in the N termini of VP1 and VP4 are lost, VP4 is removed, and the capsid becomes more porous, as has been reported for poliovirus 1, human rhinovirus 2, enterovirus 71, and coxsackievirus A7. These results are important for understanding the structural basis of integrin binding to CVA9 and the molecular events leading to CVA9 cell entry and uncoating.
Collapse
|
45
|
Bergelson JM, Coyne CB. Picornavirus entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 790:24-41. [PMID: 23884584 DOI: 10.1007/978-1-4614-7651-1_2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The essential event in picornavirus entry is the delivery of the RNA genome to the cytoplasm of a target cell, where replication occurs. In the past several years progress has been made in understanding the structural changes in the virion important for uncoating and RNA release. In addition, for several viruses the endocytic mechanisms responsible for internalization have been identified, as have the cellular sites at which uncoating occurs. It has become clear that entry is not a passive process, and that viruses initiate specific signals required for entry. And we have begun to recognize that for a given virus, there may be multiple routes of entry, depending on the particular target cell and the receptors available on that cell.
Collapse
Affiliation(s)
- Jeffrey M Bergelson
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | | |
Collapse
|
46
|
Merilahti P, Koskinen S, Heikkilä O, Karelehto E, Susi P. Endocytosis of integrin-binding human picornaviruses. Adv Virol 2012; 2012:547530. [PMID: 23227048 PMCID: PMC3514805 DOI: 10.1155/2012/547530] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 10/21/2012] [Accepted: 11/05/2012] [Indexed: 12/13/2022] Open
Abstract
Picornaviruses that infect humans form one of the largest virus groups with almost three hundred virus types. They include significant enteroviral pathogens such as rhino-, polio-, echo-, and coxsackieviruses and human parechoviruses that cause wide range of disease symptoms. Despite the economic importance of picornaviruses, there are no antivirals. More than ten cellular receptors are known to participate in picornavirus infection, but experimental evidence of their role in cellular infection has been shown for only about twenty picornavirus types. Three enterovirus types and one parechovirus have experimentally been shown to bind and use integrin receptors in cellular infection. These include coxsackievirus A9 (CV-A9), echovirus 9, and human parechovirus 1 that are among the most common and epidemic human picornaviruses and bind to αV-integrins via RGD motif that resides on virus capsid. In contrast, echovirus 1 (E-1) has no RGD and uses integrin α2β1 as cellular receptor. Endocytosis of CV-A9 has recently been shown to occur via a novel Arf6- and dynamin-dependent pathways, while, contrary to collagen binding, E-1 binds inactive β1 integrin and enters via macropinocytosis. In this paper, we review what is known about receptors and endocytosis of integrin-binding human picornaviruses.
Collapse
Affiliation(s)
- Pirjo Merilahti
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
- Degree Program in Biotechnology and Food Technology, Turku University of Applied Sciences, Lemminkäisenkatu 30, 20520 Turku, Finland
| | - Satu Koskinen
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
| | - Outi Heikkilä
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
- Degree Program in Biotechnology and Food Technology, Turku University of Applied Sciences, Lemminkäisenkatu 30, 20520 Turku, Finland
| | - Eveliina Karelehto
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
- Joint Biotechnology Laboratory, University of Turku, Tykistökatu 6a, 20520 Turku, Finland
| | - Petri Susi
- Department of Virology, University of Turku, Kiinamyllynkatu 13, 20520 Turku, Finland
- Degree Program in Biotechnology and Food Technology, Turku University of Applied Sciences, Lemminkäisenkatu 30, 20520 Turku, Finland
| |
Collapse
|
47
|
Chumakov PM, Morozova VV, Babkin IV, Baikov IK, Netesov SV, Tikunova NV. Oncolytic enteroviruses. Mol Biol 2012. [DOI: 10.1134/s0026893312050032] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Li S, Tong J, Rahman MM, Shepherd TG, McFadden G. Oncolytic virotherapy for ovarian cancer. Oncolytic Virother 2012; 1:1-21. [PMID: 25977900 DOI: 10.2147/ov.s31626] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the past two decades, more than 20 viruses with selective tropism for tumor cells have been developed as oncolytic viruses (OVs) for treatments of a variety of malignancies. Of these viruses, eleven have been tested in human ovarian cancer models in preclinical studies. So far, nine phase I or II clinical trials have been conducted or initiated using four different types of OVs in patients with recurrent ovarian cancers. In this article, we summarize the different OVs that are being assessed as therapeutics for ovarian cancer. We also present an overview of recent advances in identification of key genetic or immune-response pathways involved in tumorigenesis of ovarian cancer, which provides a better understanding of the tumor specificities and oncolytic properties of OVs. In addition, we discuss how next-generation OVs could be genetically modified or integrated into multimodality regimens to improve clinical outcomes based on recent advances in ovarian cancer biology.
Collapse
Affiliation(s)
- Shoudong Li
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Jessica Tong
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada ; Translational Ovarian Cancer Research Program, London Health Sciences Centre, London, Ontario, Canada
| | - Masmudur M Rahman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Trevor G Shepherd
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada ; Translational Ovarian Cancer Research Program, London Health Sciences Centre, London, Ontario, Canada
| | - Grant McFadden
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
49
|
Integrin β1 mediates vaccinia virus entry through activation of PI3K/Akt signaling. J Virol 2012; 86:6677-87. [PMID: 22496232 DOI: 10.1128/jvi.06860-11] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Vaccinia virus has a broad range of infectivity in many cell lines and animals. Although it is known that the vaccinia mature virus binds to cell surface glycosaminoglycans and extracellular matrix proteins, whether additional cellular receptors are required for virus entry remains unclear. Our previous studies showed that the vaccinia mature virus enters through lipid rafts, suggesting the involvement of raft-associated cellular proteins. Here we demonstrate that one lipid raft-associated protein, integrin β1, is important for vaccinia mature virus entry into HeLa cells. Vaccinia virus associates with integrin β1 in lipid rafts on the cell surface, and the knockdown of integrin β1 in HeLa cells reduces vaccinia mature virus entry. Additionally, vaccinia mature virus infection is reduced in a mouse cell line, GD25, that is deficient in integrin β1 expression. Vaccinia mature virus infection triggers the activation of phosphatidylinositol 3-kinase (PI3K)/Akt signaling, and the treatment of cells with inhibitors to block P13K activation reduces virus entry in an integrin β1-dependent manner, suggesting that integrin β1-mediates PI3K/Akt activation induced by vaccinia virus and that this signaling pathway is essential for virus endocytosis. The inhibition of integrin β1-mediated cell adhesion results in a reduction of vaccinia virus entry and the disruption of focal adhesion and PI3K/Akt activation. In summary, our results show that the binding of vaccinia mature virus to cells mimics the outside-in activation process of integrin functions to facilitate vaccinia virus entry into HeLa cells.
Collapse
|
50
|
Glycoproteins D of equine herpesvirus type 1 (EHV-1) and EHV-4 determine cellular tropism independently of integrins. J Virol 2011; 86:2031-44. [PMID: 22171258 DOI: 10.1128/jvi.06555-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Equine herpesvirus type 1 (EHV-1) and EHV-4 are genetically and antigenically very similar, but their pathogenic potentials are strikingly different. The differences in pathogenicity between both viruses seem to be reflected in cellular host range: EHV-1 can readily be propagated in many cell types of multiple species, while EHV-4 entry and replication appear to be restricted mainly to equine cells. The clear difference in cellular tropism may well be associated with differences in the gene products involved in virus entry and/or spread from cell to cell. Here we show that (i) most of the EHV-1 permissive cell lines became resistant to EHV-1 expressing EHV-4 glycoprotein D (gD4) and the opposite was observed for EHV-4 harboring EHV-1 gD (gD1). (ii) The absence of integrins did not inhibit entry into and replication of EHV-1 in CHO-K1 or peripheral blood mononuclear cells (PBMC). Furthermore, integrin-negative K562 cells did not acquire the ability to bind to gD1 when αVβ3 integrin was overexpressed. (iii) PBMC could be infected with similar efficiencies by both EHV-1 and EHV-4 in vitro. (iv) In contrast to results for equine fibroblasts and cells of endothelial or epithelial origin, we were unable to block entry of EHV-1 or EHV-4 into PBMC with antibodies directed against major histocompatibility complex class I (MHC-I), a result that indicates that these viruses utilize a different receptor(s) to infect PBMC. Cumulatively, we provide evidence that efficient EHV-1 and EHV-4 entry is dependent mainly on gD, which can bind to multiple cell surface receptors, and that gD has a defining role with respect to cellular host range of EHV-1 and EHV-4.
Collapse
|