1
|
Islam S, Moni MA, Urmi UL, Tanaka A, Hoshino H. C-C Chemokine receptor-like 2 (CCRL2) acts as coreceptor for human immunodeficiency virus-2. Brief Bioinform 2020; 22:6012867. [PMID: 33253374 DOI: 10.1093/bib/bbaa333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/25/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Most of the typical chemokine receptors (CKRs) have been identified as coreceptors for a variety of human and simian immunodeficiency viruses (HIVs and SIVs). This study evaluated CCRL2 to examine if it was an HIV/SIV coreceptor. METHODS The Human glioma cell line, NP-2, is normally resistant to infection by HIV and SIV. The cell was transduced with amplified cluster of differentiation 4 (CD4) as a receptor and CCR5, CXCR4 and CCRL2 as coreceptor candidates to produce NP-2/CD4/coreceptor cells (). The cells were infected with multiplicity of infection (MOI) 1.0. Infected cells were detected by indirect immunofluorescence assay (IFA). Multinucleated giant cells (MGC) in syncytia were quantified by Giemsa staining. Proviral DNA was detected by polymerase chain reaction (PCR), and reverse transcriptase (RT) activity was measured. RESULTS IFA detected viral antigens of the primary isolates, HIV-1HAN2 and HIV-2MIR in infected NP-2/CD4/CCRL2 cells, indicated CCRL2 as a functional coreceptor. IFA results were confirmed by the detection of proviral DNA and measurement of RT-activity in the spent cell supernatants. Additionally, MGC was detected in HIV-2MIR-infected NP-2/CD4/CCCRL2 cells. HIV-2MIR were found more potent users of CCRL2 than HIV-1HAN2. Moreover, GWAS studies, gene ontology and cell signaling pathways of the HIV-associated genes show interaction of CCRL2 with HIV/SIV envelope protein. CONCLUSIONS In vitro experiments showed CCRL2 to function as a newly identified coreceptor for primary HIV-2 isolates conveniently. The findings contribute additional insights into HIV/SIV transmission and pathogenesis. However, its in vivo relevance still needs to be evaluated. Confirming in vivo relevance, ligands of CCRL2 can be investigated as potential targets for HIV entry-inhibitor drugs.
Collapse
Affiliation(s)
- Salequl Islam
- Department of Microbiology, Jahangirnagar University (JU), Bangladesh
| | | | | | - Atsushi Tanaka
- Research Institute for Microbial Diseases, Osaka University, Japan
| | | |
Collapse
|
2
|
Francella N, Elliott STC, Yi Y, Gwyn SE, Ortiz AM, Li B, Silvestri G, Paiardini M, Derdeyn CA, Collman RG. Decreased plasticity of coreceptor use by CD4-independent SIV Envs that emerge in vivo. Retrovirology 2013; 10:133. [PMID: 24219995 PMCID: PMC3833851 DOI: 10.1186/1742-4690-10-133] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/31/2013] [Indexed: 12/02/2022] Open
Abstract
Background HIV and SIV generally require CD4 binding prior to coreceptor engagement, but Env can acquire the ability to use CCR5 independently of CD4 under various circumstances. The ability to use CCR5 coupled with low-to-absent CD4 levels is associated with enhanced macrophage infection and increased neutralization sensitivity, but the additional features of these Envs that may affect cell targeting is not known. Results Here we report that CD4-independent SIV variants that emerged in vivo in a CD4+ T cell-depleted rhesus macaque model display markedly decreased plasticity of co-receptor use. While CD4-dependent Envs can use low levels of macaque CCR5 for efficient entry, CD4-independent variants required high levels of CCR5 even in the presence of CD4. CD4-independent Envs were also more sensitive to the CCR5 antagonist Maraviroc. CD4-dependent variants mediated efficient entry using human CCR5, whereas CD4-independent variants had impaired use of human CCR5. Similarly, CD4-independent Envs used the alternative coreceptors GPR15 and CXCR6 less efficiently than CD4-dependent variants. Env amino acids D470N and E84K that confer the CD4-independent phenotype also regulated entry through low CCR5 levels and GPR15, indicating a common structural basis. Treatment of CD4-dependent Envs with soluble CD4 enhanced entry through CCR5 but reduced entry through GPR15, suggesting that induction of CD4-induced conformational changes by non-cell surface-associated CD4 impairs use of this alternative co-receptor. Conclusions CD4 independence is associated with more restricted coreceptor interactions. While the ability to enter target cells through CCR5 independently of CD4 may enable infection of CD4 low-to-negative cells such as macrophages, this phenotype may conversely reduce the potential range of targets such as cells expressing low levels of CCR5, conformational variants of CCR5, or possibly even alternative coreceptors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ronald G Collman
- Department of Medicine, University of Pennsylvania Perelman School of Medicine, 522 Johnson Pavilion, 36th & Hamilton Walk, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Abstract
The human immunodeficiency virus (HIV) enters cells through a series of molecular interactions between the HIV envelope protein and cellular receptors, thus providing many opportunities to block infection. Entry inhibitors are currently being used in the clinic, and many more are under development. Unfortunately, as is the case for other classes of antiretroviral drugs that target later steps in the viral life cycle, HIV can become resistant to entry inhibitors. In contrast to inhibitors that block viral enzymes in intracellular compartments, entry inhibitors interfere with the function of the highly variable envelope glycoprotein as it continuously adapts to changing immune pressure and available target cells in the extracellular environment. Consequently, pathways and mechanisms of resistance for entry inhibitors are varied and often involve mutations across the envelope gene. This review provides a broad overview of entry inhibitor resistance mechanisms that inform our understanding of HIV entry and the design of new inhibitors and vaccines.
Collapse
Affiliation(s)
- Christopher J De Feo
- Office of Vaccine Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, 8800 Rockville Pike, Bethesda, MD 20892, USA.
| | | |
Collapse
|
4
|
Lu L, Pan C, Li Y, Lu H, He W, Jiang S. A bivalent recombinant protein inactivates HIV-1 by targeting the gp41 prehairpin fusion intermediate induced by CD4 D1D2 domains. Retrovirology 2012; 9:104. [PMID: 23217195 PMCID: PMC3531269 DOI: 10.1186/1742-4690-9-104] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 11/11/2012] [Indexed: 02/03/2023] Open
Abstract
Background Most currently approved anti-HIV drugs (e.g., reverse transcriptase inhibitors, protease inhibitors and fusion/entry inhibitors) must act inside or on surface of the target cell to inhibit HIV infection, but none can directly inactivate virions away from cells. Although soluble CD4 (sCD4) can inactivate laboratory-adapted HIV-1 strains, it fails to reduce the viral loads in clinical trials because of its low potency against primary isolates and tendency to enhance HIV-1 infection at low concentration. Thus, it is essential to design a better HIV inactivator with improved potency for developing new anti-HIV therapeutics that can actively attack the virus in the circulation before it attaches to and enter into the target cell. Results We engineered a bivalent HIV-1 inactivator, designated 2DLT, by linking the D1D2 domain of CD4 to T1144, the next generation HIV fusion inhibitor, with a 35-mer linker. The D1D2 domain in this soluble 2DLT protein could bind to the CD4-binding site and induce the formation of the gp41 prehairpin fusion-intermediate (PFI), but showed no sCD4-mediated enhancement of HIV-1 infection. The T1144 domain in 2DLT then bound to the exposed PFI, resulting in rapid inactivation of HIV-1 virions in the absence of the target cell. Beside, 2DLT could also inhibit fusion of the virus with the target cell if the virion escapes the first attack of 2DLT. Conclusion This bivalent molecule can serve as a dual barrier against HIV infection by first inactivating HIV-1 virions away from cells and then blocking HIV-1 entry on the target cell surface, indicating its potential for development as a new class of anti-HIV drug.
Collapse
Affiliation(s)
- Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Shanghai Medical College, Institute of Medical Microbiology, Fudan University, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
5
|
Xue B, Mizianty MJ, Kurgan L, Uversky VN. Protein intrinsic disorder as a flexible armor and a weapon of HIV-1. Cell Mol Life Sci 2012; 69:1211-59. [PMID: 22033837 PMCID: PMC11114566 DOI: 10.1007/s00018-011-0859-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Revised: 09/28/2011] [Accepted: 10/03/2011] [Indexed: 01/19/2023]
Abstract
Many proteins and protein regions are disordered in their native, biologically active states. These proteins/regions are abundant in different organisms and carry out important biological functions that complement the functional repertoire of ordered proteins. Viruses, with their highly compact genomes, small proteomes, and high adaptability for fast change in their biological and physical environment utilize many of the advantages of intrinsic disorder. In fact, viral proteins are generally rich in intrinsic disorder, and intrinsically disordered regions are commonly used by viruses to invade the host organisms, to hijack various host systems, and to help viruses in accommodation to their hostile habitats and to manage their economic usage of genetic material. In this review, we focus on the structural peculiarities of HIV-1 proteins, on the abundance of intrinsic disorder in viral proteins, and on the role of intrinsic disorder in their functions.
Collapse
Affiliation(s)
- Bin Xue
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
| | - Marcin J. Mizianty
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 2V4 Canada
| | - Vladimir N. Uversky
- Department of Molecular Medicine, University of South Florida, College of Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612 USA
- Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Moscow Region Russia
| |
Collapse
|
6
|
White TA, Bartesaghi A, Borgnia MJ, de la Cruz MJV, Nandwani R, Hoxie JA, Bess JW, Lifson JD, Milne JLS, Subramaniam S. Three-dimensional structures of soluble CD4-bound states of trimeric simian immunodeficiency virus envelope glycoproteins determined by using cryo-electron tomography. J Virol 2011; 85:12114-23. [PMID: 21937655 PMCID: PMC3209358 DOI: 10.1128/jvi.05297-11] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 09/08/2011] [Indexed: 12/19/2022] Open
Abstract
The trimeric envelope glycoprotein (Env) spikes displayed on the surfaces of simian immunodeficiency virus (SIV) and human immunodeficiency virus type 1 (HIV-1) virions are composed of three heterodimers of the viral glycoproteins gp120 and gp41. Although binding of gp120 to cell surface CD4 and a chemokine receptor is known to elicit conformational changes in gp120 and gp41, changes in quaternary structure of the trimer have only recently been elucidated. For the HIV-1 BaL isolate, CD4 attachment results in a striking rearrangement of the trimer from a "closed" to an "open" conformation. The effect of CD4 on SIV trimers, however, has not been described. Using cryo-electron tomography, we have now determined molecular architectures of the soluble CD4 (sCD4)-bound states of SIV Env trimers for three different strains (SIVmneE11S, SIVmac239, and SIV CP-MAC). In marked contrast to HIV-1 BaL, SIVmneE11S and SIVmac239 Env showed only minor conformational changes following sCD4 binding. In SIV CP-MAC, where trimeric Env displays a constitutively "open" conformation similar to that seen for HIV-1 BaL Env in the sCD4-complexed state, we show that there are no significant further changes in conformation upon the binding of either sCD4 or 7D3 antibody. The density maps also show that 7D3 and 17b antibodies target epitopes on gp120 that are on opposites sides of the coreceptor binding site. These results provide new insights into the structural diversity of SIV Env and show that there are strain-dependent variations in the orientation of sCD4 bound to trimeric SIV Env.
Collapse
Affiliation(s)
- Tommi A. White
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Alberto Bartesaghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Mario J. Borgnia
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - M. Jason V. de la Cruz
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Rachna Nandwani
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - James A. Hoxie
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Julian W. Bess
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, SAIC-Frederick, Inc., National Cancer Institute-Frederick, Frederick, Maryland
| | - Jacqueline L. S. Milne
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| | - Sriram Subramaniam
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland
| |
Collapse
|
7
|
Haim H, Strack B, Kassa A, Madani N, Wang L, Courter JR, Princiotto A, McGee K, Pacheco B, Seaman MS, Smith AB, Sodroski J. Contribution of intrinsic reactivity of the HIV-1 envelope glycoproteins to CD4-independent infection and global inhibitor sensitivity. PLoS Pathog 2011; 7:e1002101. [PMID: 21731494 PMCID: PMC3121797 DOI: 10.1371/journal.ppat.1002101] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/18/2011] [Indexed: 12/23/2022] Open
Abstract
Human immunodeficiency virus (HIV-1) enters cells following sequential activation of the high-potential-energy viral envelope glycoprotein trimer by target cell CD4 and coreceptor. HIV-1 variants differ in their requirements for CD4; viruses that can infect coreceptor-expressing cells that lack CD4 have been generated in the laboratory. These CD4-independent HIV-1 variants are sensitive to neutralization by multiple antibodies that recognize different envelope glycoprotein epitopes. The mechanisms underlying CD4 independence, global sensitivity to neutralization and the association between them are still unclear. By studying HIV-1 variants that differ in requirements for CD4, we investigated the contribution of CD4 binding to virus entry. CD4 engagement exposes the coreceptor-binding site and increases the "intrinsic reactivity" of the envelope glycoproteins; intrinsic reactivity describes the propensity of the envelope glycoproteins to negotiate transitions to lower-energy states upon stimulation. Coreceptor-binding site exposure and increased intrinsic reactivity promote formation/exposure of the HR1 coiled coil on the gp41 transmembrane glycoprotein and allow virus entry upon coreceptor binding. Intrinsic reactivity also dictates the global sensitivity of HIV-1 to perturbations such as exposure to cold and the binding of antibodies and small molecules. Accordingly, CD4 independence of HIV-1 was accompanied by increased susceptibility to inactivation by these factors. We investigated the role of intrinsic reactivity in determining the sensitivity of primary HIV-1 isolates to inhibition. Relative to the more common neutralization-resistant ("Tier 2-like") viruses, globally sensitive ("Tier 1") viruses exhibited increased intrinsic reactivity, i.e., were inactivated more efficiently by cold exposure or by a given level of antibody binding to the envelope glycoprotein trimer. Virus sensitivity to neutralization was dictated both by the efficiency of inhibitor/antibody binding to the envelope glycoprotein trimer and by envelope glycoprotein reactivity to the inhibitor/antibody binding event. Quantitative differences in intrinsic reactivity contribute to HIV-1 strain variability in global susceptibility to neutralization and explain the long-observed relationship between increased inhibitor sensitivity and decreased entry requirements for target cell CD4.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Bettina Strack
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Princiotto
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathleen McGee
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana–Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, Unites States of America
- * E-mail:
| |
Collapse
|
8
|
|
9
|
Binley JM, Ban YEA, Crooks ET, Eggink D, Osawa K, Schief WR, Sanders RW. Role of complex carbohydrates in human immunodeficiency virus type 1 infection and resistance to antibody neutralization. J Virol 2010; 84:5637-55. [PMID: 20335257 PMCID: PMC2876609 DOI: 10.1128/jvi.00105-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 03/15/2010] [Indexed: 11/20/2022] Open
Abstract
Complex N-glycans flank the receptor binding sites of the outer domain of HIV-1 gp120, ostensibly forming a protective "fence" against antibodies. Here, we investigated the effects of rebuilding this fence with smaller glycoforms by expressing HIV-1 pseudovirions from a primary isolate in a human cell line lacking N-acetylglucosamine transferase I (GnTI), the enzyme that initiates the conversion of oligomannose N-glycans into complex N-glycans. Thus, complex glycans, including those that surround the receptor binding sites, are replaced by fully trimmed oligomannose stumps. Conversely, the untrimmed oligomannoses of the silent domain of gp120 are likely to remain unchanged. For comparison, we produced a mutant virus lacking a complex N-glycan of the V3 loop (N301Q). Both variants exhibited increased sensitivities to V3 loop-specific monoclonal antibodies (MAbs) and soluble CD4. The N301Q virus was also sensitive to "nonneutralizing" MAbs targeting the primary and secondary receptor binding sites. Endoglycosidase H treatment resulted in the removal of outer domain glycans from the GnTI- but not the parent Env trimers, and this was associated with a rapid and complete loss in infectivity. Nevertheless, the glycan-depleted trimers could still bind to soluble receptor and coreceptor analogs, suggesting a block in post-receptor binding conformational changes necessary for fusion. Collectively, our data show that the antennae of complex N-glycans serve to protect the V3 loop and CD4 binding site, while N-glycan stems regulate native trimer conformation, such that their removal can lead to global changes in neutralization sensitivity and, in extreme cases, an inability to complete the conformational rearrangements necessary for infection.
Collapse
Affiliation(s)
- James M Binley
- Torrey Pines Institute for Molecular Studies, 3550 General Atomics Court, San Diego, CA 92121, USA.
| | | | | | | | | | | | | |
Collapse
|
10
|
Finzi A, Xiang SH, Pacheco B, Wang L, Haight J, Kassa A, Danek B, Pancera M, Kwong PD, Sodroski J. Topological layers in the HIV-1 gp120 inner domain regulate gp41 interaction and CD4-triggered conformational transitions. Mol Cell 2010; 37:656-67. [PMID: 20227370 PMCID: PMC2854584 DOI: 10.1016/j.molcel.2010.02.012] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 01/14/2010] [Accepted: 02/13/2010] [Indexed: 11/18/2022]
Abstract
The entry of human immunodeficiency virus (HIV-1) into cells is initiated by binding of the gp120 exterior envelope glycoprotein to the receptor, CD4. How does CD4 binding trigger conformational changes in gp120 that allow the gp41 transmembrane envelope glycoprotein to mediate viral-cell membrane fusion? The transition from the unliganded to the CD4-bound state is regulated by two potentially flexible topological layers (layers 1 and 2) in the gp120 inner domain. Both layers apparently contribute to the noncovalent association of unliganded gp120 with gp41. After CD4 makes initial contact with the gp120 outer domain, layer 1-layer 2 interactions strengthen gp120-CD4 binding by reducing the off rate. Layer 1-layer 2 interactions also destabilize the activated state induced on HIV-1 by treatment with soluble CD4. Thus, despite lack of contact with CD4, the gp120 inner-domain layers govern CD4 triggering by participating in conformational transitions within gp120 and regulating the interaction with gp41.
Collapse
Affiliation(s)
- Andrés Finzi
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Shi-Hua Xiang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Beatriz Pacheco
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Jessica Haight
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Brenda Danek
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
| | - Marie Pancera
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, U.S.A
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Department of Pathology, Division of AIDS, Harvard Medical School, Boston, MA 02115, U.S.A
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, U.S.A
| |
Collapse
|
11
|
Gaufin T, Pattison M, Gautam R, Stoulig C, Dufour J, MacFarland J, Mandell D, Tatum C, Marx MH, Ribeiro RM, Montefiori D, Apetrei C, Pandrea I. Effect of B-cell depletion on viral replication and clinical outcome of simian immunodeficiency virus infection in a natural host. J Virol 2009; 83:10347-57. [PMID: 19656874 PMCID: PMC2753117 DOI: 10.1128/jvi.00880-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/30/2009] [Indexed: 12/21/2022] Open
Abstract
Simian immunodeficiency virus (SIV)-infected African nonhuman primates do not progress to AIDS in spite of high and persistent viral loads (VLs). Some authors consider the high viral replication observed in chronic natural SIV infections to be due to lower anti-SIV antibody titers than those in rhesus macaques, suggesting a role of antibodies in controlling viral replication. We therefore investigated the impact of antibody responses on the outcome of acute and chronic SIVagm replication in African green monkeys (AGMs). Nine AGMs were infected with SIVagm.sab. Four AGMs were infused with 50 mg/kg of body weight anti-CD20 (rituximab; a gift from Genentech) every 21 days, starting from day -7 postinfection up to 184 days. The remaining AGMs were used as controls and received SIVagm only. Rituximab-treated AGMs were successfully depleted of CD20 cells in peripheral blood, lymph nodes (LNs), and intestine, as shown by the dynamics of CD20+ and CD79a+ cells. There was no significant difference in VLs between CD20-depleted AGMs and control monkeys: peak VLs ranged from 10(7) to 10(8) copies/ml; set-point values were 10(4) to 10(5) SIV RNA copies/ml. Levels of acute mucosal CD4+ T-cell depletion were similar for treated and nontreated animals. SIVagm seroconversion was delayed for the CD20-depleted AGMs compared to results for the controls. There was a significant difference in both the timing and magnitude of neutralizing antibody responses for CD20-depleted AGMs compared to results for controls. CD20 depletion significantly altered the histological structure of the germinal centers in the LNs and Peyer's patches. Our results, although obtained with a limited number of animals, suggest that humoral immune responses play only a minor role in the control of SIV viral replication during acute and chronic SIV infection in natural hosts.
Collapse
Affiliation(s)
- Thaidra Gaufin
- Division of Microbiology, Tulane National Primate Research Center, Covington, Louisiana 70433, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Transitions to and from the CD4-bound conformation are modulated by a single-residue change in the human immunodeficiency virus type 1 gp120 inner domain. J Virol 2009; 83:8364-78. [PMID: 19535453 DOI: 10.1128/jvi.00594-09] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Binding to the primary receptor CD4 induces conformational changes in the human immunodeficiency virus type 1 (HIV-1) gp120 envelope glycoprotein that allow binding to the coreceptor (CCR5 or CXCR4) and ultimately trigger viral membrane-cell membrane fusion mediated by the gp41 transmembrane envelope glycoprotein. Here we report the derivation of an HIV-1 gp120 variant, H66N, that confers envelope glycoprotein resistance to temperature extremes. The H66N change decreases the spontaneous sampling of the CD4-bound conformation by the HIV-1 envelope glycoproteins, thus diminishing CD4-independent infection. The H66N change also stabilizes the HIV-1 envelope glycoprotein complex once the CD4-bound state is achieved, decreasing the probability of CD4-induced inactivation and revealing the enhancing effects of soluble CD4 binding on HIV-1 infection. In the CD4-bound conformation, the highly conserved histidine 66 is located between the receptor-binding and gp41-interactive surfaces of gp120. Thus, a single amino acid change in this strategically positioned gp120 inner domain residue influences the propensity of the HIV-1 envelope glycoproteins to negotiate conformational transitions to and from the CD4-bound state.
Collapse
|
13
|
Haim H, Si Z, Madani N, Wang L, Courter JR, Princiotto A, Kassa A, DeGrace M, McGee-Estrada K, Mefford M, Gabuzda D, Smith AB, Sodroski J. Soluble CD4 and CD4-mimetic compounds inhibit HIV-1 infection by induction of a short-lived activated state. PLoS Pathog 2009; 5:e1000360. [PMID: 19343205 PMCID: PMC2655723 DOI: 10.1371/journal.ppat.1000360] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 03/02/2009] [Indexed: 11/19/2022] Open
Abstract
Binding to the CD4 receptor induces conformational changes in the human immunodeficiency virus (HIV-1) gp120 exterior envelope glycoprotein. These changes allow gp120 to bind the coreceptor, either CCR5 or CXCR4, and prime the gp41 transmembrane envelope glycoprotein to mediate virus-cell membrane fusion and virus entry. Soluble forms of CD4 (sCD4) and small-molecule CD4 mimics (here exemplified by JRC-II-191) also induce these conformational changes in the HIV-1 envelope glycoproteins, but typically inhibit HIV-1 entry into CD4-expressing cells. To investigate the mechanism of inhibition, we monitored at high temporal resolution inhibitor-induced changes in the conformation and functional competence of the HIV-1 envelope glycoproteins that immediately follow engagement of the soluble CD4 mimics. Both sCD4 and JRC-II-191 efficiently activated the envelope glycoproteins to mediate infection of cells lacking CD4, in a manner dependent on coreceptor affinity and density. This activated state, however, was transient and was followed by spontaneous and apparently irreversible changes of conformation and by loss of functional competence. The longevity of the activated intermediate depended on temperature and the particular HIV-1 strain, but was indistinguishable for sCD4 and JRC-II-191; by contrast, the activated intermediate induced by cell-surface CD4 was relatively long-lived. The inactivating effects of these activation-based inhibitors predominantly affected cell-free virus, whereas virus that was prebound to the target cell surface was mainly activated, infecting the cells even at high concentrations of the CD4 analogue. These results demonstrate the ability of soluble CD4 mimics to inactivate HIV-1 by prematurely triggering active but transient intermediate states of the envelope glycoproteins. This novel strategy for inhibition may be generally applicable to high-potential-energy viral entry machines that are normally activated by receptor binding.
Collapse
Affiliation(s)
- Hillel Haim
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Zhihai Si
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Navid Madani
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Liping Wang
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Joel R. Courter
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Amy Princiotto
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aemro Kassa
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Marciella DeGrace
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Kathleen McGee-Estrada
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Megan Mefford
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Dana Gabuzda
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Amos B. Smith
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Joseph Sodroski
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Division of AIDS, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
14
|
Majumdar S, Hajduczki A, Mendez AS, Weiss GA. Phage display of functional, full-length human and viral membrane proteins. Bioorg Med Chem Lett 2008; 18:5937-40. [PMID: 18667306 PMCID: PMC2597205 DOI: 10.1016/j.bmcl.2008.07.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 07/10/2008] [Accepted: 07/14/2008] [Indexed: 11/26/2022]
Abstract
Phage display of protein and peptide libraries offers a powerful technology for the selection and isolation of ligands and receptors. To date, the technique has been considered limited to soluble, non-membrane proteins. We report two examples of phage display of full-length, folded and functional membrane proteins. Consistent display required the recently reported KO7(+) helper phage. The two proteins, full-length caveolin-1 and HIV gp41, display well on the surface of the phage, and maintain their binding activities as shown by in vitro assays.
Collapse
Affiliation(s)
- Sudipta Majumdar
- Department of Chemistry, University of California, Irvine, CA 92697, USA
| | | | | | | |
Collapse
|
15
|
Tiwari V, O'Donnell C, Copeland RJ, Scarlett T, Liu J, Shukla D. Soluble 3-O-sulfated heparan sulfate can trigger herpes simplex virus type 1 entry into resistant Chinese hamster ovary (CHO-K1) cells. J Gen Virol 2007; 88:1075-1079. [PMID: 17374750 DOI: 10.1099/vir.0.82476-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) interaction with glycoprotein D (gD) receptors facilitates virus entry into cells. Chinese hamster ovary (CHO-K1) cells lacking cellular receptors allow virus to attach, but not to enter, implying a role for receptors during the post-attachment (entry) phase of HSV-1 infection. Here, it is shown that the presence of soluble heparan sulfate (HS) modified by 3-O-sulfotransferase-3 (3-OST-3), but not by 3-OST-1, triggered HSV-1 entry into resistant CHO-K1 cells. It was further demonstrated that a CHO-K1 mutant deficient in glycosaminoglycan synthesis became susceptible to entry when spinoculated in the presence of 3-OST-3-modified soluble HS, indicating that the role of the gD receptor is to trigger entry rather than cell attachment. In separate experiments, 3-OST-3-modified soluble HS also triggered fusion of HSV-1 glycoprotein-expressing cells with CHO-K1 cells. Taken together, these results show that association of gD with cell surface-bound receptor is not essential for HSV-1 entry and spread.
Collapse
Affiliation(s)
- Vaibhav Tiwari
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Christopher O'Donnell
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ronald J Copeland
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tanya Scarlett
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jian Liu
- Division of Medicinal Chemistry and Natural Products, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Deepak Shukla
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Ophthalmology and Visual Sciences, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
16
|
VandeWoude S, Apetrei C. Going wild: lessons from naturally occurring T-lymphotropic lentiviruses. Clin Microbiol Rev 2006; 19:728-62. [PMID: 17041142 PMCID: PMC1592692 DOI: 10.1128/cmr.00009-06] [Citation(s) in RCA: 182] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Over 40 nonhuman primate (NHP) species harbor species-specific simian immunodeficiency viruses (SIVs). Similarly, more than 20 species of nondomestic felids and African hyenids demonstrate seroreactivity against feline immunodeficiency virus (FIV) antigens. While it has been challenging to study the biological implications of nonfatal infections in natural populations, epidemiologic and clinical studies performed thus far have only rarely detected increased morbidity or impaired fecundity/survival of naturally infected SIV- or FIV-seropositive versus -seronegative animals. Cross-species transmissions of these agents are rare in nature but have been used to develop experimental systems to evaluate mechanisms of pathogenicity and to develop animal models of HIV/AIDS. Given that felids and primates are substantially evolutionarily removed yet demonstrate the same pattern of apparently nonpathogenic lentiviral infections, comparison of the biological behaviors of these viruses can yield important implications for host-lentiviral adaptation which are relevant to human HIV/AIDS infection. This review therefore evaluates similarities in epidemiology, lentiviral genotyping, pathogenicity, host immune responses, and cross-species transmission of FIVs and factors associated with the establishment of lentiviral infections in new species. This comparison of consistent patterns in lentivirus biology will expose new directions for scientific inquiry for understanding the basis for virulence versus avirulence.
Collapse
Affiliation(s)
- Sue VandeWoude
- Department of Microbiology, Immunology and Pathology, College of Veterinary and Biomedical Sciences, Colorado State University, Fort Collins, CO 80538-1619, USA
| | | |
Collapse
|
17
|
Kwon H, Bai Q, Baek HJ, Felmet K, Burton EA, Goins WF, Cohen JB, Glorioso JC. Soluble V domain of Nectin-1/HveC enables entry of herpes simplex virus type 1 (HSV-1) into HSV-resistant cells by binding to viral glycoprotein D. J Virol 2006; 80:138-48. [PMID: 16352538 PMCID: PMC1317534 DOI: 10.1128/jvi.80.1.138-148.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2005] [Accepted: 09/21/2005] [Indexed: 11/20/2022] Open
Abstract
Interaction of herpes simplex virus (HSV) glycoprotein D (gD) with specific cellular receptors is essential for HSV infection of susceptible cells. Virus mutants that lack gD can bind to the cell surface (attachment) but do not enter, implying that interaction of gD with its receptor(s) initiates the postattachment (entry) phase of HSV infection. In this report, we have studied HSV entry in the presence of the gD-binding variable (V) domain of the common gD receptor nectin-1/HveC to determine whether cell association of the gD receptor is required for HSV infection. In the presence of increasing amounts of the soluble nectin-1 V domain (sNec1(123)), increasing viral entry into HSV-resistant CHO-K1 cells was observed. At a multiplicity of 3 in the presence of optimal amounts of sNec1(123), approximately 90% of the cells were infected. The soluble V domain of nectin-2, a strain-specific HSV entry receptor, promoted entry of the HSV type 1 (HSV-1) Rid-1 mutant strain, but not of wild-type HSV-1. Preincubation and immunofluorescence studies indicated that free or gD-bound sNec1(123) did not associate with the cell surface. sNec1(123)-mediated entry was highly impaired by interference with the cell-binding activities of viral glycoproteins B and C. While gD has at least two functions, virus attachment to the cell and initiation of the virus entry process, our results demonstrate that the attachment function of gD is dispensable for entry provided that other means of attachment are available, such as gB and gC binding to cell surface glycosaminoglycans.
Collapse
Affiliation(s)
- Heechung Kwon
- University of Pittsburgh, School of Medicine, Department of Molecular Genetics and Biochemistry, E1246 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Bonavia A, Bullock B, Gisselman K, Margulies B, Clements J. A single amino acid change and truncated TM are sufficient for simian immunodeficiency virus to enter cells using CCR5 in a CD4-independent pathway. Virology 2005; 341:12-23. [PMID: 16061266 PMCID: PMC2676328 DOI: 10.1016/j.virol.2005.07.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/01/2005] [Accepted: 07/01/2005] [Indexed: 10/25/2022]
Abstract
Entry of HIV and SIV into susceptible cells is mediated by CD4 and chemokine receptors, which act as coreceptors. To study cell entry of SIV, we constructed a cell line, xKLuSIV, derived from non-susceptible human K562 cells, that express the firefly luciferase reporter gene under control of a minimal SIV long terminal repeat (LTR). Using these susceptible cells, we studied the entry of a well-characterized molecularly cloned macrophage-tropic SIV. xKLuSIV cells that express rhesus macaque CD4 and/or the rhesus chemokine receptor CCR5 are susceptible to infection with the macrophage-tropic, neurovirulent strain SIV/17E-Fr, but only xKLuSIV cells expressing both CCR5 and CD4 were susceptible to infection by the macrophage-tropic, non-neurovirulent strain SIV/17E-Cl. CCR5-dependent, CD4-independent infection by SIV/17E-Fr was abrogated by pre-incubation of the cells with AOP-RANTES, a ligand for CCR5. In addition to viral entry occurring by a CD4-independent mechanism, neutralization of SIV/17E-Fr with rhesus mAbs from 3 different neutralization groups blocked entry into x KLuSIV cells by both CD4-dependent and -independent mechanisms. Triggering the env glycoprotein of SIV-17 EFr with soluble CD4 had no significant effect in infectivity, but triggering of the same glycoprotein of SIV/17E-Cl allowed it to enter cells in a CD4-independent fashion. Using mutant molecular clones, we studied the determinants for CD4 independence, all of which are confined to the env gene. We report here that truncation of the TM at amino acid 764 and changing a single amino acid (R751G) in the SIV envelope transmembrane protein (TM) conferred the observed CD4-independent phenotype. Our data suggest that the envelope from the neurovirulent SIV/17E-Fr interacts with CCR5 in a CD4-independent manner, and changes in the TM protein of this virus are important components that contribute to neurovirulence in SIV.
Collapse
Affiliation(s)
| | | | | | | | - J.E. Clements
- Corresponding author. Fax: +1 410 955 9823., E-mail address: (J.E. Clements)
| |
Collapse
|
19
|
Nakano K, Asano R, Tsumoto K, Kwon H, Goins WF, Kumagai I, Cohen JB, Glorioso JC. Herpes Simplex Virus Targeting to the EGF Receptor by a gD-Specific Soluble Bridging Molecule. Mol Ther 2005; 11:617-26. [PMID: 15771964 DOI: 10.1016/j.ymthe.2004.12.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 12/03/2004] [Accepted: 12/07/2004] [Indexed: 10/25/2022] Open
Abstract
Herpes simplex virus 1 (HSV-1) enters cells via initial binding of envelope glycoproteins (g) C and B to cell-surface glycosaminoglycans (GAGs) and subsequent membrane fusion involving envelope gD, gB, and gH/gL. Current insights suggest that the fusion process is initiated by interaction of gD with a cognate cellular receptor, such as the widely distributed cell adhesion molecule nectin-1. To redirect the tropism of HSV-1, we have generated a soluble adapter protein (P-V528LH) comprising the gD-binding variable domain of nectin-1 fused to a single-chain antibody (528LH) recognizing the EGF receptor. The adapter molecule enabled HSV-1 entry into naturally nonpermissive CHO cells expressing the human EGF receptor, but not into CHO cells lacking the receptor, and entry was not observed when the antibody portion of the adapter was replaced with an antibody of different specificity. Adapter-mediated entry increased with the viral dose and was nearly as efficient as direct viral entry into nectin-1-bearing CHO cells. Entry depended on viral gD and was diminished in the absence of cellular GAGs. These experiments represent the first demonstration that a soluble molecule can direct HSV infection via a new receptor, supporting the possible utility of this approach for HSV retargeting.
Collapse
Affiliation(s)
- Kenji Nakano
- Department of Molecular Genetics and Biochemistry, University of Pittsburgh School of Medicine, E1246 Biomedical Science Tower, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Fass D. Conformational changes in enveloped virus surface proteins during cell entry. ADVANCES IN PROTEIN CHEMISTRY 2003; 64:325-62. [PMID: 13677052 DOI: 10.1016/s0065-3233(03)01009-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
21
|
Lauring AS, Cheng HH, Eiden MV, Overbaugh J. Genetic and biochemical analyses of receptor and cofactor determinants for T-cell-tropic feline leukemia virus infection. J Virol 2002; 76:8069-78. [PMID: 12134012 PMCID: PMC155116 DOI: 10.1128/jvi.76.16.8069-8078.2002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Entry by retroviruses is mediated through interactions between the viral envelope glycoprotein and the host cell receptor(s). We recently identified two host cell proteins, FeLIX and Pit1, that are necessary for infection by cytopathic, T-cell-tropic feline leukemia viruses (FeLV-T). Pit1 is a classic multiple transmembrane protein used as a receptor by several other simple retroviruses, including subgroup B FeLV (FeLV-B), and FeLIX is a secreted cellular protein expressed from endogenous FeLV-related sequences (enFeLV). FeLIX is nearly identical to FeLV-B envelope sequences that encode the N-terminal half of the viral surface unit (SU), because these FeLV-B sequences are acquired by recombination with enFeLV. FeLV-B SUs can functionally substitute for FeLIX in mediating FeLV-T infection. Both of these enFeLV-derived cofactors can efficiently facilitate FeLV-T infection only of cells expressing Pit1, not of cells expressing the related transport protein Pit2. We therefore have used chimeric Pit1/Pit2 receptors to map the determinants for cofactor binding and FeLV-T infection. Three distinct determinants appear to be required for cofactor-dependent infection by FeLV-T. We also found that Pit1 sequences within these same domains were required for binding by FeLIX to the Pit receptor. In contrast, these determinants were not all required for receptor binding by the FeLV-B SU cofactors used in this study. These data indicate that cofactor binding is not sufficient for FeLV-T infection and suggest that there may be a direct interaction between FeLV-T and the Pit1 receptor.
Collapse
Affiliation(s)
- Adam S Lauring
- Program in Molecular and Cellular Biology, University of Washington, Seattle, USA
| | | | | | | |
Collapse
|
22
|
Arthos J, Cicala C, Steenbeke TD, Chun TW, Dela Cruz C, Hanback DB, Khazanie P, Nam D, Schuck P, Selig SM, Van Ryk D, Chaikin MA, Fauci AS. Biochemical and biological characterization of a dodecameric CD4-Ig fusion protein: implications for therapeutic and vaccine strategies. J Biol Chem 2002; 277:11456-64. [PMID: 11805109 DOI: 10.1074/jbc.m111191200] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Drug toxicities associated with HAART lend urgency to the development of new anti-HIV therapies. Inhibition of viral replication at the entry stage of the viral life cycle is an attractive strategy because it prevents de novo infection. Soluble CD4 (sCD4), the first drug in this class, failed to suppress viral replication in vivo. At least three factors contributed to this failure: sCD4 demonstrated poor neutralizing activity against most primary isolates of HIV in vitro; it demonstrated an intrinsic capacity to enhance viral replication at low concentrations; and it exhibited a relatively short half-life in vivo. Many anti-gp120 monoclonal antibodies, including neutralizing monoclonal antibodies also enhance viral replication at suboptimal concentrations. Advances in our understanding of the events leading up to viral entry suggest strategies by which this activity can be diminished. We hypothesized that by constructing a sCD4-based molecule that is large, binds multiple gp120s simultaneously, and is highly avid toward gp120, we could remove its capacity to enhance viral entry. Here we describe the construction of a polymeric CD4-IgG1 fusion protein. The hydrodynamic radius of this molecule is approximately 12 nm. It can bind at least 10 gp120 subunits with binding kinetics that suggest a highly avid interaction toward virion-associated envelope. This protein does not enhance viral replication at suboptimal concentrations. These observations may aid in the design of new therapeutics and vaccines.
Collapse
Affiliation(s)
- James Arthos
- Laboratory of Immunoregulation, NIAID, and the Molecular Interactions Resource Division of Bioengineering and Physical Science, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Taguchi F, Matsuyama S. Soluble receptor potentiates receptor-independent infection by murine coronavirus. J Virol 2002; 76:950-8. [PMID: 11773370 PMCID: PMC135807 DOI: 10.1128/jvi.76.3.950-958.2002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mouse hepatitis virus (MHV) infection spreads from MHV-infected DBT cells, which express the MHV receptor CEACAM1 (MHVR), to BHK cells, which are devoid of the receptor, by intercellular membrane fusion (MHVR-independent fusion). This mode of infection is a property of wild-type (wt) JHMV cl-2 virus but is not seen in cultures infected with the mutant virus JHMV srr7. In this study, we show that soluble MHVR (soMHVR) potentiates MHVR-independent fusion in JHMV srr7-infected cultures. Thus, in the presence of soMHVR, JHMV srr7-infected DBT cells overlaid onto BHK cells induce BHK cell syncytia and the spread of JHMV srr7 infection. This does not occur in the absence of soMHVR. soMHVR also enhanced wt virus MHVR-independent fusion. These effects were dependent on the concentration of soMHVR in the culture and were specifically blocked by the anti-MHVR monoclonal antibody CC1. Together with these observations, direct binding of soMHVR to the virus spike (S) glycoprotein as revealed by coimmunoprecipitation demonstrated that the effect is mediated by the binding of soMHVR to the S protein. Furthermore, fusion of BHK cells expressing the JHMV srr7 S protein was also induced by soMHVR. These results indicated that the binding of soMHVR to the S protein expressed on the DBT cell surface potentiates the fusion of MHV-infected DBT cells with nonpermissive BHK cells. We conclude that the binding of soMHVR to the S protein converts the S protein to a fusion-active form competent to mediate cell-cell fusion, in a fashion similar to the fusion of virus and cell membranes.
Collapse
Affiliation(s)
- Fumihiro Taguchi
- National Institute of Neuroscience, NCNP, Ogawahigashi, Kodaira, Tokyo 187-8502, Japan.
| | | |
Collapse
|
24
|
Haddrick M, Brown CR, Plishka R, Buckler-White A, Hirsch VM, Ginsberg H. Biologic studies of chimeras of highly and moderately virulent molecular clones of simian immunodeficiency virus SIVsmPBj suggest a critical role for envelope in acute AIDS virus pathogenesis. J Virol 2001; 75:6645-59. [PMID: 11413332 PMCID: PMC114388 DOI: 10.1128/jvi.75.14.6645-6659.2001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies identified three molecular clones of the acutely pathogenic SIVsmPBj strain that varied in terms of relative in vivo pathogenicity. One clone, SIVsmPBj6.6, reproducibly induced a rapidly fatal disease in pigtailed macaques. In contrast, a highly related clone (SIVsmPBj6.9) was only minimally pathogenic in macaques. PBj6.6 and PBj6.9 shared a tyrosine substitution at position 17 in the Nef protein that is a major determinant of virulence but differed at one residue in Vpx (C89R), three residues within the envelope (D119G, R871G, G872R), and a single residue in Nef (F252L). SIVsmPBj6.9 was less efficient in inducing proliferation of resting macaque peripheral blood mononuclear cells in vitro than SIVsmPBj6.6 and exhibited a marked reduction in infectivity relative to SIVsmPBj6.6. Chimeric viruses for each of these variable residues were constructed, and their biologic properties were compared to those of the parental strains. Differences in Vpx and Nef did not alter the basic biologic phenotype of the chimeras. However, the D119G substitution in the envelope of SIVsmPBj6.9 was associated with a marked reduction in the infectivity of this virus relative to SIVsmPBj6.6. An associated processing defect in gp160 of SIVsmPBj6.9 and chimeras expressing the D119G substitution suggests that a reduction in virion envelope incorporation is the mechanistic basis for reduced virion infectivity. In vivo studies revealed that substitution of the PBj6.9 amino acid into PBj6.6 (D119) abrogated the pathogenicity of this previously pathogenic virus. Introduction of the PBj6.9 G119, however, did not confer full virulence to the parental PBj6.9 virus, implicating one or all of the other four substitutions in the virulence of SIVsmPBj6.6.
Collapse
Affiliation(s)
- M Haddrick
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Twinbrook II Facility, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | |
Collapse
|
25
|
Kolchinsky P, Kiprilov E, Bartley P, Rubinstein R, Sodroski J. Loss of a single N-linked glycan allows CD4-independent human immunodeficiency virus type 1 infection by altering the position of the gp120 V1/V2 variable loops. J Virol 2001; 75:3435-43. [PMID: 11238869 PMCID: PMC114136 DOI: 10.1128/jvi.75.7.3435-3443.2001] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gp120 envelope glycoprotein of primary human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and the CCR5 chemokine receptor on the target cell. Previously, we adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for CD4-independent replication were limited to the V2 loop-V1/V2 stem. Here we show that elimination of a single glycosylation site at asparagine 197 in the V1/V2 stem is sufficient for CD4-independent gp120 binding to CCR5 and for HIV-1 entry into CD4-negative cells expressing CCR5. Deletion of the V1/V2 loops also allowed CD4-independent viral entry and gp120 binding to CCR5. The binding of the wild-type ADA gp120 to CCR5 was less dependent upon CD4 at 4 degrees C than at 37 degrees C. In the absence of the V1/V2 loops, neither removal of the N-linked carbohydrate at asparagine 197 nor lowering of the temperature increased the CD4-independent phenotypes. A CCR5-binding conformation of gp120, achieved by CD4 interaction or by modification of temperature, glycosylation, or variable loops, was preferentially recognized by the monoclonal antibody 48d. These results suggest that the CCR5-binding region of gp120 is occluded by the V1/V2 variable loops, the position of which can be modulated by temperature, CD4 binding, or an N-linked glycan in the V1/V2 stem.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, and Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
26
|
Broussard SR, Staprans SI, White R, Whitehead EM, Feinberg MB, Allan JS. Simian immunodeficiency virus replicates to high levels in naturally infected African green monkeys without inducing immunologic or neurologic disease. J Virol 2001; 75:2262-75. [PMID: 11160730 PMCID: PMC114810 DOI: 10.1128/jvi.75.5.2262-2275.2001] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
African green monkeys can maintain long-term persistent infection with simian immunodeficiency viruses (SIVagm) without developing AIDS and thus provide an important model for understanding mechanisms of natural host resistance to disease. This study assessed the levels and anatomic distribution of SIVagm in healthy, naturally infected monkeys. Quantitative competitive reverse transcriptase PCR assays developed to measure SIVagm from two African green monkey subspecies demonstrated high levels of SIV RNA in plasma (>6 x 10(6) RNA copies/ml) in sabaeus and vervet monkeys. Infectious virus was readily recovered from plasma and peripheral blood mononuclear cells and shown to be highly cytopathic in human cell lines and macrophages. SIVagm DNA levels were highest in the gastrointestinal tract, suggesting that the gut is a major site for SIVagm replication in vivo. Appreciable levels of virus were also found within the brain parenchyma and the cerebrospinal fluid (CSF), with lower levels detected in peripheral blood cells and lymph nodes. Virus isolates from the CSF and brain parenchyma readily infected macrophages in culture, whereas lymph node isolates were more restricted to growth in human T-cell lines. Comparison of env V2-C4 sequences showed extensive amino acid diversity between SIVagm recovered from the central nervous system and that recovered from lymphoid tissues. Homology between brain and CSF viruses, macrophage tropism, and active replication suggest compartmentalization in the central nervous system without associated neuropathology in naturally infected monkeys. These studies provide evidence that the nonpathogenic nature of SIVagm in the natural host can be attributed neither to more effective host control over viral replication nor to differences in the tissue and cell tropism from those for human immunodeficiency virus type 1-infected humans or SIV-infected macaques.
Collapse
Affiliation(s)
- S R Broussard
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| | | | | | | | | | | |
Collapse
|
27
|
Kolchinsky P, Kiprilov E, Sodroski J. Increased neutralization sensitivity of CD4-independent human immunodeficiency virus variants. J Virol 2001; 75:2041-50. [PMID: 11160708 PMCID: PMC114788 DOI: 10.1128/jvi.75.5.2041-2050.2001] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Naturally occurring human immunodeficiency virus (HIV-1) variants require the presence of CD4 and specific chemokine receptors to enter a cell. In the laboratory, HIV-1 variants that are capable of bypassing CD4 and utilizing only the CCR5 chemokine receptor for virus entry have been generated. Here we report that these CD4-independent viruses are significantly more sensitive to neutralization by soluble CD4 and a variety of antibodies. The same amino acid changes in the HIV-1 gp120 envelope glycoprotein determined CD4 independence and neutralization sensitivity. The CD4-independent envelope glycoproteins exhibited higher affinity for antibodies against CD4-induced gp120 epitopes but not other neutralizing ligands. The CD4-independent envelope glycoproteins did not exhibit increased lability relative to the wild-type envelope glycoproteins. The utilization of two receptors apparently allows HIV-1 to maintain a more neutralization-resistant state prior to engaging CD4 on the target cell, explaining the rarity of CD4 independence in wild-type HIV-1.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
28
|
Esser U, Speck RF, Deen KC, Atchison RE, Sweet R, Goldsmith MA. Molecular function of the CD4 D1 domain in coreceptor-mediated entry by HIV type 1. AIDS Res Hum Retroviruses 2000; 16:1845-54. [PMID: 11118070 DOI: 10.1089/08892220050195801] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The surface molecule CD4 plays a key role in initiating cellular entry by the human immunodeficiency virus type 1 (HIV-1), and it is now recognized as acting synergistically with select chemokine receptors (coreceptors) in the infection process. The present study was undertaken to determine whether the extracellular region of CD4 is sufficient to induce fusion of HIV-1 virions with target cells in the absence of its anchoring function. Using pseudotype reporter viruses to quantitate infection, soluble CD4 (sCD4) was tested for its ability to induce fusion by viruses utilizing CCR5 as their coreceptor. We found that sCD4 was competent to replace membrane-bound CD4 to trigger infection mediated by several HIV-1 envelopes. Furthermore, in a comparison of the envelopes of HIV-1 NL4-3 and a chimera containing the gp120 V3 loop of Ba-L, the V3 region was found to be one factor affecting susceptibility to induction by sCD4. In addition, using truncated and mutant derivatives of sCD4, the amino-terminal D1 domain of CD4 was found to be necessary and sufficient for induction of fusion and to require an intact gp120-binding site for this activity. These results delineate determinants on CD4 and gp120 required for fusion induction in collaboration with a coreceptor, and suggest a mechanism whereby CD4 may contribute to viral infection in trans.
Collapse
Affiliation(s)
- U Esser
- Gladstone Institute of Virology and Immunology, San Francisco, California 94141, USA
| | | | | | | | | | | |
Collapse
|
29
|
Damico R, Bates P. Soluble receptor-induced retroviral infection of receptor-deficient cells. J Virol 2000; 74:6469-75. [PMID: 10864659 PMCID: PMC112155 DOI: 10.1128/jvi.74.14.6469-6475.2000] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2000] [Accepted: 04/19/2000] [Indexed: 11/20/2022] Open
Abstract
Current models of retroviral entry hypothesize that interactions between the host cell receptor(s) and viral envelope protein induce structural changes in the envelope protein that convert it to an active conformation, allowing it to mediate fusion with the membrane. Recent evidence supporting this hypothesis is the demonstration that Tva, the receptor for subgroup A avian sarcoma and leukosis virus (ASLV-A), induces conformational changes in the viral envelope protein. These changes include conversion of the envelope protein to an active, membrane-binding state likely representing a fusogenic conformation. To determine whether binding of the soluble Tva (sTva) receptor was sufficient to activate fully the fusogenic potential of the ASLV-A envelope protein, we have evaluated the ability of ASLV-A to infect receptor-deficient cell lines in the presence of sTva. Soluble receptor efficiently mediated infection of cells devoid of endogenous Tva in a dose-dependent manner, and this infection was dependent absolutely on the addition of sTva. The infectivity of the virus was enhanced dramatically in the presence of the polycationic polymer Polybrene or when centrifugal forces were applied during inoculation, resulting in viral titers comparable to those achieved on cells expressing endogenous receptor. sTva functioned to mediate infection at low concentrations, approaching the estimated binding constant of the receptor and viral envelope protein. These results demonstrate that receptor binding can activate the ASLV-A envelope protein and convert it to a fusogenic conformation competent to mediate the fusion of the viral and cellular membranes.
Collapse
Affiliation(s)
- R Damico
- Department of Microbiology, Graduate Program in Cellular and Molecular Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6076, USA
| | | |
Collapse
|
30
|
Maerz AL, Center RJ, Kemp BE, Kobe B, Poumbourios P. Functional implications of the human T-lymphotropic virus type 1 transmembrane glycoprotein helical hairpin structure. J Virol 2000; 74:6614-21. [PMID: 10864675 PMCID: PMC112171 DOI: 10.1128/jvi.74.14.6614-6621.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retrovirus entry into cells follows receptor binding by the surface-exposed envelope glycoprotein (Env) subunit (SU), which triggers the membrane fusion activity of the transmembrane (TM) protein. TM protein fragments expressed in the absence of SU adopt helical hairpin structures comprising a central coiled coil, a region of chain reversal containing a disulfide-bonded loop, and a C-terminal segment that packs onto the exterior of the coiled coil in an antiparallel manner. Here we used in vitro mutagenesis to test the functional role of structural elements observed in a model helical hairpin, gp21 of human T-lymphotropic virus type 1. Membrane fusion activity requires the stabilization of the N and C termini of the central coiled coil by a hydrophobic N cap and a small hydrophobic core, respectively. A conserved Gly-Gly hinge motif preceding the disulfide-bonded loop, a salt bridge that stabilizes the chain reversal region, and interactions between the C-terminal segment and the coiled coil are also critical for fusion activity. Our data support a model whereby the chain reversal region transmits a conformational signal from receptor-bound SU to induce the fusion-activated helical hairpin conformation of the TM protein.
Collapse
MESH Headings
- Cell Line
- Cell Membrane/chemistry
- Cell Membrane/metabolism
- Gene Products, env/chemistry
- Gene Products, env/genetics
- Gene Products, env/metabolism
- Gene Products, env/physiology
- HeLa Cells
- Human T-lymphotropic virus 1/chemistry
- Human T-lymphotropic virus 1/metabolism
- Human T-lymphotropic virus 1/physiology
- Humans
- Membrane Fusion
- Models, Molecular
- Mutagenesis, Site-Directed
- Protein Conformation
- Protein Structure, Tertiary
- Recombinant Fusion Proteins/chemistry
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/physiology
- Retroviridae Proteins, Oncogenic/chemistry
- Retroviridae Proteins, Oncogenic/genetics
- Retroviridae Proteins, Oncogenic/metabolism
- Retroviridae Proteins, Oncogenic/physiology
- env Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- A L Maerz
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | | | |
Collapse
|
31
|
Platt EJ, Kozak SL, Kabat D. Critical role of enhanced CD4 affinity in laboratory adaptation of human immunodeficiency virus type 1. AIDS Res Hum Retroviruses 2000; 16:871-82. [PMID: 10875613 DOI: 10.1089/08892220050042819] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Strains of human immunodeficiency virus type 1 (HIV-1) that use the coreceptor CXCR4 (X4 strains) become laboratory adapted (LA) when selected for ability to replicate in leukemic T cell lines such as H9. Compared with patient X4 viruses, the gp120-gp41 complexes of LA viruses have a constellation of common properties including enhanced affinities for CD4, greater sensitivities to inactivations by diverse antibodies and by soluble CD4, increased shedding of gp120, and improved abilities to infect HeLa-CD4 cell clones that contain only trace quantities of CD4. These common characteristics, which may result from a concerted structural rearrangement of the gp120-gp41 complexes, have made it difficult to identify a specific feature that is critical for laboratory adaptation. To test the hypothesis that replication of patient X4 HIV-1 is limited by the low CD4 concentration in H9 cells (7.0 x 10(3) CD4/cell), we constructed H9 derivatives that express at least 10 times more of this receptor. Interestingly, most patient X4 isolates readily grew in these derivative cells, and the resulting virus preparations retained the characteristics of primary viruses throughout multiple passages. In contrast, selection of the same viruses in the parental H9 cells resulted in outgrowth of LA derivatives. We conclude that a weak interaction of patient X4 HIV-1 isolates with CD4 is the primary factor that limits their replication in leukemic T cell lines.
Collapse
Affiliation(s)
- E J Platt
- Department of Biochemistry and Molecular Biology, Oregon Health Sciences University, Portland 97201, USA
| | | | | |
Collapse
|
32
|
Affiliation(s)
- J Schneider-Schaulies
- Institut für Virologie und Immunbiologie, Universität Würzburg, Verbacher Str. 7, 97078 Würzburg, Germany.
| |
Collapse
|
33
|
Anderson MM, Lauring AS, Burns CC, Overbaugh J. Identification of a cellular cofactor required for infection by feline leukemia virus. Science 2000; 287:1828-30. [PMID: 10710311 DOI: 10.1126/science.287.5459.1828] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Retroviral infection involves continued genetic variation, leading to phenotypic and immunological selection for more fit virus variants in the host. For retroviruses that cause immunodeficiency, pathogenesis is linked to the emergence of T cell-tropic, cytopathic viruses. Here we show that an immunodeficiency-inducing, T cell-tropic feline leukemia virus (FeLV) has evolved such that it cannot infect cells unless both a classic multiple membrane-spanning receptor molecule (Pit1) and a second coreceptor or entry factor are present. This second receptor component, which we call FeLIX, was identified as an endogenously expressed protein that is similar to a portion of the FeLV envelope protein. This cellular protein can function either as a transmembrane protein or as a soluble component to facilitate infection.
Collapse
Affiliation(s)
- M M Anderson
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | |
Collapse
|
34
|
Ikeda H, Kato K, Suzuki T, Kitani H, Matsubara Y, Takase-Yoden S, Watanabe R, Kitagawa M, Aizawa S. Properties of the naturally occurring soluble surface glycoprotein of ecotropic murine leukemia virus: binding specificity and possible conformational change after binding to receptor. J Virol 2000; 74:1815-26. [PMID: 10644355 PMCID: PMC111660 DOI: 10.1128/jvi.74.4.1815-1826.2000] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Ecotropic murine leukemia virus (MuLV) infection is initiated by the interaction between the surface glycoprotein (SU) of the virus and its cell-surface receptor mCAT-1. We investigated the SU-receptor interaction by using a naturally occurring soluble SU which was encoded by the envelope (env) gene of a defective endogenous MuLV, Fv-4(r). Binding of the SU to mCAT-1-positive mouse cells was completed by 1 min at 37 degrees C. The SU could not bind to mouse cells that were persistently infected by ecotropic MuLVs (but not amphotropic or dualtropic MuLVs) or transfected with wild-type ecotropic env genes or a mutant env gene which can express only precursor Env protein that is restricted to retention in the endoplasmic reticulum. These cells were also resistant to superinfection by ecotropic MuLVs. Thus, superinfection resistance correlated with the lack of SU-binding capacity. After binding to the cells, the SU appeared to undergo some conformational changes within 1 min in a temperature-dependent manner. This was suggested by the different properties of two monoclonal antibodies (MAbs) reactive with the same C-terminal half of the Fv-4(r) SU domain, including a proline-rich motif which was shown to be important for conformation of the SU and interaction between the SU and the transmembrane protein. One MAb reacting with the soluble SU bound to cells was dissociated by a temperature shift from 4 to 37 degrees C. Such dissociation was not observed in cells synthesizing the SU or when another MAb was used, indicating that the dissociation was not due to a temperature-dependent release of the MAb but to possible conformational changes in the SU.
Collapse
Affiliation(s)
- H Ikeda
- National Institute of Animal Health, Tsukuba, Chiba, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Salzwedel K, Smith ED, Dey B, Berger EA. Sequential CD4-coreceptor interactions in human immunodeficiency virus type 1 Env function: soluble CD4 activates Env for coreceptor-dependent fusion and reveals blocking activities of antibodies against cryptic conserved epitopes on gp120. J Virol 2000; 74:326-33. [PMID: 10590121 PMCID: PMC111543 DOI: 10.1128/jvi.74.1.326-333.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1999] [Accepted: 09/27/1999] [Indexed: 11/20/2022] Open
Abstract
We devised an experimental system to examine sequential events by which the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein (Env) interacts with CD4 and coreceptor to induce membrane fusion. Recombinant soluble CD4 (sCD4) activated fusion between effector cells expressing Env and target cells expressing coreceptor (CCR5 or CXCR4) but lacking CD4. sCD4-activated fusion was dose dependent, occurred comparably with two- and four-domain proteins, and demonstrated Env-coreceptor specificities parallel to those reported in conventional fusion and infectivity systems. Fusion activation occurred upon sCD4 preincubation and washing of the Env-expressing effector cells but not the coreceptor-bearing target cells, thereby demonstrating that sCD4 exerts its effects by acting on Env. These findings provide direct functional evidence for a sequential two-step model of Env-receptor interactions, whereby gp120 binds first to CD4 and becomes activated for subsequent functional interaction with coreceptor, leading to membrane fusion. We used the sCD4-activated system to explore neutralization by the anti-gp120 human monoclonal antibodies 17b and 48d. These antibodies reportedly bind conserved CD4-induced epitopes involved in coreceptor interactions but neutralize HIV-1 infection only weakly. We found that 17b and 48d had minimal effects in the standard cell fusion system using target cells expressing both CD4 and coreceptor but potently blocked sCD4-activated fusion with target cells expressing coreceptor alone. Both antibodies strongly inhibited sCD4-activated fusion by Envs from genetically diverse HIV-1 isolates. Thus, the sCD4-activated system reveals conserved Env-blocking epitopes that are masked in native Env and hence not readily detected by conventional systems.
Collapse
Affiliation(s)
- K Salzwedel
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
36
|
Kolchinsky P, Mirzabekov T, Farzan M, Kiprilov E, Cayabyab M, Mooney LJ, Choe H, Sodroski J. Adaptation of a CCR5-using, primary human immunodeficiency virus type 1 isolate for CD4-independent replication. J Virol 1999; 73:8120-6. [PMID: 10482561 PMCID: PMC112828 DOI: 10.1128/jvi.73.10.8120-8126.1999] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gp120 envelope glycoprotein of the human immunodeficiency virus type 1 (HIV-1) promotes virus entry by sequentially binding CD4 and chemokine receptors on the target cell. Primary, clinical HIV-1 isolates require interaction with CD4 to allow gp120 to bind the CCR5 chemokine receptor efficiently. We adapted a primary HIV-1 isolate, ADA, to replicate in CD4-negative canine cells expressing human CCR5. The gp120 changes responsible for the adaptation were limited to alteration of glycosylation addition sites in the V2 loop-V1-V2 stem. The gp120 glycoproteins of the adapted viruses bound CCR5 directly, without prior interaction with CD4. Thus, a major function of CD4 binding in the entry of primary HIV-1 isolates can be bypassed by changes in the gp120 V1-V2 elements, which allow the envelope glycoproteins to assume a conformation competent for CCR5 binding.
Collapse
Affiliation(s)
- P Kolchinsky
- Department of Cancer, Dana-Farber Cancer Institute, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Beer BE, Bailes E, Goeken R, Dapolito G, Coulibaly C, Norley SG, Kurth R, Gautier JP, Gautier-Hion A, Vallet D, Sharp PM, Hirsch VM. Simian immunodeficiency virus (SIV) from sun-tailed monkeys (Cercopithecus solatus): evidence for host-dependent evolution of SIV within the C. lhoesti superspecies. J Virol 1999; 73:7734-44. [PMID: 10438863 PMCID: PMC104300 DOI: 10.1128/jvi.73.9.7734-7744.1999] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/1999] [Accepted: 05/27/1999] [Indexed: 11/20/2022] Open
Abstract
Recently we reported the characterization of simian immunodeficiency virus (SIVlhoest) from a central African l'hoest monkey (Cercopithecus lhoesti lhoesti) that revealed a distant relationship to SIV isolated from a mandrill (SIVmnd). The present report describes a novel SIV (SIVsun) isolated from a healthy, wild-caught sun-tailed monkey (Cercopithecus lhoesti solatus), another member of the l'hoest superspecies. SIVsun replicated in a variety of human T-cell lines and in peripheral blood mononuclear cells of macaques (Macaca spp.) and patas monkeys (Erythrocebus patas). A full-length infectious clone of SIVsun was derived, and genetic analysis revealed that SIVsun was most closely related to SIVlhoest, with an amino acid identity of 71% in Gag, 73% in Pol, and 67% in Env. This degree of similarity is reminiscent of that observed between SIVagm isolates from vervet, grivet, and tantalus species of African green monkeys. The close relationship between SIVsun and SIVlhoest, despite their geographically distinct habitats, is consistent with evolution from a common ancestor, providing further evidence for the ancient nature of the primate lentivirus family. In addition, this observation leads us to suggest that the SIVmnd lineage should be designated the SIVlhoest lineage.
Collapse
Affiliation(s)
- B E Beer
- Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Martin I, Ruysschaert J, Epand RM. Role of the N-terminal peptides of viral envelope proteins in membrane fusion. Adv Drug Deliv Rev 1999; 38:233-255. [PMID: 10837759 DOI: 10.1016/s0169-409x(99)00031-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane fusion is an important biological process that is observed in a wide variety of intra and intercellular events. In this review, work done in the last few years on the molecular mechanism of viral membrane fusion is highlighted, focusing in particular on the role of the fusion peptide and the modification of the lipid bilayer structure. While the Influenza hemagglutinin is currently the best understand fusion protein, there is still much to be learned about the key events in enveloped virus fusion reactions. This review compares our current understanding of the membrane fusion activity of Influenza and retrovirus viruses. We shall be concerned especially with the studies that lead to interpretations at the molecular level, so we shall concentrate on model membrane systems where the molecular components of the membrane and the environment are strictly controlled.
Collapse
Affiliation(s)
- I Martin
- Laboratoire de Chimie-Physique des Macromolécules aux Interfaces (LCPMI) CP206/2, Université Libre de Bruxelles. 1050, Brussels, Belgium
| | | | | |
Collapse
|
39
|
Schenten D, Marcon L, Karlsson GB, Parolin C, Kodama T, Gerard N, Sodroski J. Effects of soluble CD4 on simian immunodeficiency virus infection of CD4-positive and CD4-negative cells. J Virol 1999; 73:5373-80. [PMID: 10364284 PMCID: PMC112593 DOI: 10.1128/jvi.73.7.5373-5380.1999] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A soluble form of the CD4 receptor (sCD4) can either enhance or inhibit the infection of cells by simian immunodeficiency virus (SIV) and human immunodeficiency virus. We investigated the basis for these varying effects by studying the entry of three SIV isolates into CD4-positive and CD4-negative cells expressing different chemokine receptors. Infection of CD4-negative cells depended upon the viral envelope glycoproteins and upon the chemokine receptor, with CCR5 and gpr15 being more efficient than STRL33. Likewise, enhancement of infection by sCD4 was observed when CCR5- and gpr15-expressing target cells were used but not when those expressing STRL33 were used. The sCD4-mediated enhancement of virus infection of CD4-negative, CCR5-positive cells was related to the sCD4-induced increase in binding of the viral gp120 envelope glycoprotein to CCR5. Inhibitory effects of sCD4 could largely be explained by competition for virus attachment to cellular CD4 rather than other detrimental effects on virus infectivity (e.g., disruption of the envelope glycoprotein spike). Consistent with this, the sCD4-activated SIV envelope glycoprotein intermediate on the virus was long-lived. Thus, the net effect of sCD4 on SIV infectivity appears to depend upon the degree of enhancement of chemokine receptor binding and upon the efficiency of competition for cellular CD4.
Collapse
Affiliation(s)
- D Schenten
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Korte T, Ludwig K, Booy FP, Blumenthal R, Herrmann A. Conformational intermediates and fusion activity of influenza virus hemagglutinin. J Virol 1999; 73:4567-74. [PMID: 10233915 PMCID: PMC112497 DOI: 10.1128/jvi.73.6.4567-4574.1999] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three strains of influenza virus (H1, H2, and H3) exhibited similar characteristics in the ability of their hemagglutinin (HA) to induce membrane fusion, but the HAs differed in their susceptibility to inactivation. The extent of inactivation depended on the pH of preincubation and was lowest for A/Japan (H2 subtype), in agreement with previous studies (A. Puri, F. Booy, R. W. Doms, J. M. White, and R. Blumenthal, J. Virol. 64:3824-3832, 1990). While significant inactivation of X31 (H3 subtype) was observed at 37 degrees C at pH values corresponding to the maximum of fusion (about pH 5.0), no inactivation was seen at preincubation pH values 0.2 to 0.4 pH units higher. Surprisingly, low-pH preincubation under those conditions enhanced the fusion rates and extents of A/Japan as well as those of X31. For A/PR 8/34 (H1 subtype), neither a shift of the pH (to >5.0) nor a decrease of the temperature to 20 degrees C was sufficient to prevent inactivation. We provide evidence that the activated HA is a conformational intermediate distinct from the native structure and from the final structure associated with the conformational change of HA, which is implicated by the high-resolution structure of the soluble trimeric fragment TBHA2 (P. A. Bullough, F. M. Hughson, J. J. Skehel, and D. C. Wiley, Nature 371:37-43, 1994).
Collapse
Affiliation(s)
- T Korte
- Laboratory of Experimental and Computational Biology, National Cancer Institute-Frederick Cancer Research & Development Center, National Institutes of Health, Frederick, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
41
|
Edinger AL, Blanpain C, Kunstman KJ, Wolinsky SM, Parmentier M, Doms RW. Functional dissection of CCR5 coreceptor function through the use of CD4-independent simian immunodeficiency virus strains. J Virol 1999; 73:4062-73. [PMID: 10196302 PMCID: PMC104185 DOI: 10.1128/jvi.73.5.4062-4073.1999] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1998] [Accepted: 02/01/1999] [Indexed: 11/20/2022] Open
Abstract
With rare exceptions, all simian immunodeficiency virus (SIV) strains can use CCR5 as a coreceptor along with CD4 for viral infection. In addition, many SIV strains are capable of using CCR5 as a primary receptor to infect CD4-negative cells such as rhesus brain capillary endothelial cells. By using coupled fluorescence-activated cell sorter (FACS) and infection assays, we found that even very low levels of CCR5 expression could support CD4-independent virus infection. CD4-independent viruses represent valuable tools for finely dissecting interactions between Env and CCR5 which may otherwise be masked due to the stabilization of these contacts by Env-CD4 binding. Based on the ability of SIV Env to bind to and mediate infection of cells expressing CCR5 chimeras and mutants, we identified the N terminus of CCR5 as a critical domain for direct Env binding and for supporting CD4-independent virus infection. However, the activity of N-terminal domain CCR5 mutants could be rescued by the presence of CD4, indicating that other regions of CCR5 are important for post-binding events that lead to viral entry. Rhesus CCR5 supported CD4-independent infection and direct Env binding more efficiently than did human CCR5 due to a single amino acid difference in the N terminus. Interestingly, uncleaved, oligomeric SIV Env protein bound to both CD4 and CCR5 less efficiently than did monomeric gp120. Finally, several mutations present in chronically infected monkey populations are shown to decrease the ability of CCR5 to serve as a primary viral receptor for the SIV isolates examined.
Collapse
Affiliation(s)
- A L Edinger
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
42
|
Sullivan N, Sun Y, Binley J, Lee J, Barbas CF, Parren PW, Burton DR, Sodroski J. Determinants of human immunodeficiency virus type 1 envelope glycoprotein activation by soluble CD4 and monoclonal antibodies. J Virol 1998; 72:6332-8. [PMID: 9658072 PMCID: PMC109776 DOI: 10.1128/jvi.72.8.6332-6338.1998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Infection by some human immunodeficiency virus type 1 (HIV-1) isolates is enhanced by the binding of subneutralizing concentrations of soluble receptor, soluble CD4 (sCD4), or monoclonal antibodies directed against the viral envelope glycoproteins. In this work, we studied the abilities of different antibodies to mediate activation of the envelope glycoproteins of a primary HIV-1 isolate, YU2, and identified the regions of gp120 envelope glycoprotein contributing to activation. Binding of antibodies to a variety of epitopes on gp120, including the CD4 binding site, the third variable (V3) loop, and CD4-induced epitopes, enhanced the entry of viruses containing YU2 envelope glycoproteins. Fab fragments of antibodies directed against either the CD4 binding site or V3 loop also activated YU2 virus infection. The activation phenotype was conferred on the envelope glycoproteins of a laboratory-adapted HIV-1 isolate (HXBc2) by replacing the gp120 V3 loop or V1/V2 and V3 loops with those of the YU2 virus. Infection by the YU2 virus in the presence of activating antibodies remained inhibitable by macrophage inhibitory protein 1beta, indicating dependence on the CCR5 coreceptor on the target cells. Thus, antibody enhancement of YU2 entry involves neither Fc receptor binding nor envelope glycoprotein cross-linking, is determined by the same variable loops that dictate enhancement by sCD4, and probably proceeds by a process fundamentally similar to the receptor-activated virus entry pathway.
Collapse
Affiliation(s)
- N Sullivan
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Sullivan N, Sun Y, Sattentau Q, Thali M, Wu D, Denisova G, Gershoni J, Robinson J, Moore J, Sodroski J. CD4-Induced conformational changes in the human immunodeficiency virus type 1 gp120 glycoprotein: consequences for virus entry and neutralization. J Virol 1998; 72:4694-703. [PMID: 9573233 PMCID: PMC109994 DOI: 10.1128/jvi.72.6.4694-4703.1998] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) entry into target cells involves sequential binding of the gp120 exterior envelope glycoprotein to CD4 and to specific chemokine receptors. Soluble CD4 (sCD4) is thought to mimic membrane-anchored CD4, and its binding alters the conformation of the HIV-1 envelope glycoproteins. Two cross-competing monoclonal antibodies, 17b and CG10, that recognize CD4-inducible gp120 epitopes and that block gp120-chemokine receptor binding were used to investigate the nature and functional significance of gp120 conformational changes initiated by CD4 binding. Envelope glycoproteins derived from both T-cell line-adapted and primary HIV-1 isolates exhibited increased binding of the 17b antibody in the presence of sCD4. CD4-induced exposure of the 17b epitope on the oligomeric envelope glycoprotein complex occurred over a wide range of temperatures and involved movement of the gp120 V1/V2 variable loops. Amino acid changes that reduced the efficiency of 17b epitope exposure following CD4 binding invariably compromised the ability of the HIV-1 envelope glycoproteins to form syncytia or to support virus entry. Comparison of the CD4 dependence and neutralization efficiencies of the 17b and CG10 antibodies suggested that the epitopes for these antibodies are minimally accessible following attachment of gp120 to cell surface CD4. These results underscore the functional importance of these CD4-induced changes in gp120 conformation and illustrate viral strategies for sequestering chemokine receptor-binding regions from the humoral immune response.
Collapse
Affiliation(s)
- N Sullivan
- Division of Human Retrovirology, Dana-Farber Cancer Institute, Department of Pathology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Fouts TR, Trkola A, Fung MS, Moore JP. Interactions of polyclonal and monoclonal anti-glycoprotein 120 antibodies with oligomeric glycoprotein 120-glycoprotein 41 complexes of a primary HIV type 1 isolate: relationship to neutralization. AIDS Res Hum Retroviruses 1998; 14:591-7. [PMID: 9591713 DOI: 10.1089/aid.1998.14.591] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have studied antibody reactivity with monomeric and oligomeric forms of the gp120 envelope glycoprotein from the macrophage-tropic primary virus, HIV-1 JR-FL. We find that the correlation between oligomer reactivity and virus neutralization is not absolute for MAbs to epitopes overlapping the CD4-binding site on gp120. An MAb (205-46-9) with very limited neutralizing ability for JR-FL binds about as avidly to oligomeric JR-FL envelope glycoproteins as the strongly neutralizing IgG1b12 MAb does. In addition, neutralizing and nonneutralizing sera from HIV-1-infected people are similar in their reactivities to oligomeric JR-FL envelope glycoproteins; the correlation between oligomer reactivity and virus neutralization is weak. Although oligomer reactivity of an anti-gp120 antibody is necessary for virus neutralization, it is not always sufficient to cause it.
Collapse
Affiliation(s)
- T R Fouts
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA
| | | | | | | |
Collapse
|
45
|
McInerney TL, El Ahmar W, Kemp BE, Poumbourios P. Mutation-directed chemical cross-linking of human immunodeficiency virus type 1 gp41 oligomers. J Virol 1998; 72:1523-33. [PMID: 9445056 PMCID: PMC124634 DOI: 10.1128/jvi.72.2.1523-1533.1998] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The human immunodeficiency virus type 1 transmembrane protein gp41 oligomer anchors the attachment protein, gp120, to the viral envelope and mediates viral envelope-cell membrane fusion following gp120-CD4 receptor-chemokine coreceptor binding. We have used mutation-directed chemical cross-linking with bis(sulfosuccinimidyl)suberate (BS3) to investigate the architecture of the gp41 oligomer. Treatment of gp41 with BS3 generates a ladder of four bands on sodium dodecyl sulfate-polyacrylamide gels, corresponding to monomers, dimers, trimers, and tetramers. By systematically replacing gp41 lysines with arginine and determining the mutant gp41 cross-linking pattern, we observed that gp41 N termini are cross-linked. Lysine 678, which is close to the transmembrane sequence, was readily cross-linked to Lys-678 on other monomers within the oligomeric structure. This arrangement appears to be facilitated by the close packing of membrane-anchoring sequences, since the efficiency of assembly of heterooligomers between wild-type and mutant Env proteins is improved more than twofold if the mutant contains the membrane-anchoring sequence. We also detected close contacts between Lys-596 and Lys-612 in the disulfide-bonded loop/glycan cluster of one monomer and lysines in the N-terminal amphipathic alpha-helical oligomerization domain (Lys-569 and Lys-583) and C-terminal alpha-helical sequence (Lys-650 and Lys-660) of adjacent monomers. Precursor-processing efficiency, gp120-gp41 association, soluble recombinant CD4-induced shedding of gp120 from cell surface gp41, and acquisition of gp41 ectodomain conformational antibody epitopes were unaffected by the substitutions. However, the syncytium-forming function was most dependent on the conserved Lys-569 in the N-terminal alpha-helix. These results indicate that gp160-derived gp41 expressed in mammalian cells is a tetramer and provide information about the juxtaposition of gp41 structural elements within the oligomer.
Collapse
Affiliation(s)
- T L McInerney
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | | | | | | |
Collapse
|
46
|
Carr CM, Chaudhry C, Kim PS. Influenza hemagglutinin is spring-loaded by a metastable native conformation. Proc Natl Acad Sci U S A 1997; 94:14306-13. [PMID: 9405608 PMCID: PMC24954 DOI: 10.1073/pnas.94.26.14306] [Citation(s) in RCA: 338] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Enveloped viruses enter cells by protein-mediated membrane fusion. For influenza virus, membrane fusion is regulated by the conformational state of the hemagglutinin (HA) protein, which switches from a native (nonfusogenic) structure to a fusion-active (fusogenic) conformation when exposed to the acidic environment of the cellular endosome. Here we demonstrate that destabilization of HA at neutral pH, with either heat or the denaturant urea, triggers a conformational change that is biochemically indistinguishable from the change triggered by low pH. In each case, the conformational change is coincident with induction of membrane-fusion activity, providing strong evidence that the fusogenic structure is formed. These results indicate that the native structure of HA is trapped in a metastable state and that the fusogenic conformation is released by destabilization of native structure. This strategy may be shared by other enveloped viruses, including those that enter the cell at neutral pH, and could have implications for understanding the membrane-fusion step of HIV infection.
Collapse
Affiliation(s)
- C M Carr
- Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, Department of Biology, Massachusetts Institute of Technology, Nine Cambridge Center, Cambridge, MA 02142, USA
| | | | | |
Collapse
|
47
|
Kaneko H, Neoh LP, Takeda N, Akimoto H, Hishikawa T, Hashimoto H, Hirose S, Karaki S, Takiguchi M, Nakauchi H, Kaneko Y, Yamamoto N, Sekigawa I. Human immunodeficiency virus type 2 envelope glycoprotein binds to CD8 as well as to CD4 molecules on human T cells. J Virol 1997; 71:8918-22. [PMID: 9343259 PMCID: PMC192365 DOI: 10.1128/jvi.71.11.8918-8922.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We report here that human immunodeficiency virus type 2 (HIV-2) envelope glycoprotein (gp105), but not HIV-1 gp120, can bind to CD8 molecules as well as to CD4 molecules on human T cells. This phenomenon may lead to differences in the life cycles of HIV-1 and HIV-2, and it may be related to the differences in disease manifestations of HIV-1 and HIV-2 infection, including longer survival of HIV-2-infected patients.
Collapse
Affiliation(s)
- H Kaneko
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Hattori T, Zhang X, Weiss C, Xu Y, Kubo T, Sato Y, Nishikawa S, Sakaida H, Uchiyama T. Triazine dyes inhibit HIV-1 entry by binding to envelope glycoproteins. Microbiol Immunol 1997; 41:717-24. [PMID: 9343823 DOI: 10.1111/j.1348-0421.1997.tb01916.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have attempted to purify envelope (Env) glycoproteins of human immunodeficiency virus (HIV) from the culture supernatants of CHO-Sec cells that secreted truncated 140-kDa precursor and mature 120-kDa Env glycoproteins. The concentrated culture supernatants were applied to a column coupled with cibacron blue 3GA (CB3GA) to separate albumin from the Env proteins because CB3GA, a triazine dye, has been known to have a high affinity to albumin. Unexpectedly, Env proteins as well as albumin bound to the column, and the bound Env proteins were eluted by increasing the ionic strength using KCl. Gp120 was eluted at 0.5-0.9 M of KCl, while a higher concentration (0.9-1.5 M) was necessary for the elution of gp140. The agarose gel coupled with reactive red 120 (RR120), another triazine dye with similar characteristics, also retained both Env proteins, and the bound Env proteins could be eluted in a similar manner. In addition, these agents inhibited syncytium formation caused by HTLV-IIIB and HTLV-IIIMN. Inhibition was also seen when a virus-free fusion assay between Env protein expressed in CHO cells and fluorescent labeled SupT1 cells were used. These findings indicate that triazine dyes bind to the functional regions of Env proteins of HIV-1 that play important role(s) for HIV infection.
Collapse
Affiliation(s)
- T Hattori
- Laboratory of AIDS Immunology, Kyoto University, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Broussard SR, Comuzzie AG, Leighton KL, Leland MM, Whitehead EM, Allan JS. Characterization of new simian foamy viruses from African nonhuman primates. Virology 1997; 237:349-59. [PMID: 9356346 DOI: 10.1006/viro.1997.8797] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Simian foamy viruses (SFV) are exogenous retroviruses present in most if not all nonhuman primate species. Baboons and other African monkey species are known to harbor SFVs, yet there is presently no data in regard to their genetic relationship. Here we studied SFVs from baboons as compared to other SFVs isolated from a Hamlyn's guenon, a patas monkey, and a vervet. By Western blot analysis, the gag precursor proteins (p74/p70) were detected from all SFVs. In addition, the envelope glycoproteins from a vervet isolate (SFV-Agm2) were comparable in size to the env precursor gp130, the exterior glycoprotein (gp70), and the transmembrane protein (gp48) as detected by lentil lectin binding and radioimmunoprecipitation (RIPA). Molecular comparison of PCR amplified products from pol and LTR regions of each SFV demonstrated a close relationship among baboon SFVs while SFVs from patas, Hamlyn's guenon, and vervet clustered together. The baboon viruses only varied by 4% among each other in the LTR region; however, as much as 26% variation was noted when compared to the other African monkey SFVs. To determine the prevalence rate of SFV-Bab in our baboon colony, we employed both Western blotting and PCR analysis. Antibodies to SFV gag precursor proteins were seen in 7 of 10 infants; however, none were positive by PCR, suggesting that these infants were virus negative and that their antibodies were maternal in origin. Only one juvenile (1/10) and all adults (38/38) were infected with SFV. Taken together these results suggest that SFVs have arisen and diverged along with the evolution of their natural hosts. Furthermore, the high prevalence rates to SFV seen in adult baboons strongly suggest a sexual or oral routes of transmission.
Collapse
Affiliation(s)
- S R Broussard
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, 7620 N.W. Loop 410 at Military Drive, San Antonio, Texas 78228, USA
| | | | | | | | | | | |
Collapse
|
50
|
Hill CM, Deng H, Unutmaz D, Kewalramani VN, Bastiani L, Gorny MK, Zolla-Pazner S, Littman DR. Envelope glycoproteins from human immunodeficiency virus types 1 and 2 and simian immunodeficiency virus can use human CCR5 as a coreceptor for viral entry and make direct CD4-dependent interactions with this chemokine receptor. J Virol 1997; 71:6296-304. [PMID: 9261346 PMCID: PMC191902 DOI: 10.1128/jvi.71.9.6296-6304.1997] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Several members of the chemokine receptor family have recently been identified as coreceptors, with CD4, for entry of human immunodeficiency virus type 1 (HIV-1) into target cells. In this report, we show that the envelope glycoproteins of several strains of HIV-2 and simian immunodeficiency virus (SIV) employ the same chemokine receptors for infection. Envelope glycoproteins from HIV-2 use CCR5 or CXCR4, while those from several strains of SIV use CCR5. Our data indicate also that some viral envelopes can use more than one coreceptor for entry and suggest that some of these coreceptors remain to be identified. To further understand how different envelope molecules use CCR5 as an entry cofactor, we show that soluble purified envelope glycoproteins (SU component) from CCR5-tropic HIV-1, HIV-2, and SIV can compete for binding of iodinated chemokine to CCR5. The competition is dependent on binding of the SU glycoprotein to cell surface CD4 and implies a direct interaction between envelope glycoproteins and CCR5. This interaction is specific since it is not observed with SU glycoprotein from a CXCR4-tropic virus or with a chemokine receptor that is not competent for viral entry (CCR1). For HIV-1, the interaction can be inhibited by antibodies specific for the V3 loop of SU. Soluble CD4 was found to potentiate binding of the HIV-2 ST and SIVmac239 envelope glycoproteins to CCR5, suggesting that a CD4-induced conformational change in SU is required for subsequent binding to CCR5. These data suggest a common fundamental mechanism by which structurally diverse HIV-1, HIV-2, and SIV envelope glycoproteins interact with CD4 and CCR5 to mediate viral entry.
Collapse
Affiliation(s)
- C M Hill
- Skirball Institute of BioMolecular Medicine, New York, New York 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|