1
|
Coblentz KE, Novak M, DeLong JP. Simple, Universal Rules Predict Trophic Interaction Strengths. Ecol Lett 2025; 28:e70126. [PMID: 40304048 PMCID: PMC12042070 DOI: 10.1111/ele.70126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Many drivers of ecological systems exhibit regular scaling relationships, yet the mechanisms explaining these relationships are often unknown. Trophic interaction strengths are no exception, exhibiting scaling relationships with predator and prey traits that lack evolutionary explanations. We propose two rules to explain the scaling of trophic interaction strengths through the relationship between a predator's feeding rate and its prey's density-the so-called predator functional response. First, functional responses allow predators to meet their energetic demands when prey are rare. Second, functional responses approach their maxima near the highest prey densities predators experience. We show that equations derived from these rules predict functional response parameters across over 2100 functional response experiments and make additional predictions such as their allometric scaling. The two rules thereby offer a potential ultimate explanation for the determinants of trophic interaction strengths, revealing ecologically realised constraints to the complex, adaptive nature of functional response evolution.
Collapse
Affiliation(s)
- Kyle E. Coblentz
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| | - Mark Novak
- Department of Integrative BiologyOregon State UniversityCorvallisOregonUSA
| | - John P. DeLong
- School of Biological SciencesUniversity of Nebraska‐LincolnLincolnNebraskaUSA
| |
Collapse
|
2
|
Yi H, Ferlian O, Gauzens B, Rebollo R, Scheu S, Amyntas A, Ciobanu M, Potapov A, Salamon JA, Eisenhauer N. Belowground energy fluxes determine tree diversity effects on above- and belowground food webs. Curr Biol 2025; 35:1870-1882.e6. [PMID: 40209707 DOI: 10.1016/j.cub.2025.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
Worldwide tree diversity loss raises concerns about functional and energetic declines across trophic levels. In this study, we coupled 160 above- and belowground food webs, quantifying energy fluxes to microorganisms and invertebrates in a tree-mycorrhiza diversity experiment, to test how tree diversity affects fluxes of energy above and below the ground. The experiment differentiates three mycorrhizal type treatments: only AM tree species (with arbuscular mycorrhizae), only EcM tree species (with ectomycorrhizae; one, two, and four tree species), or mixtures of both AM and EcM tree species (AM+EcM; two and four tree species). Our results indicate that most energy initially flowed through belowground communities, with soil microorganisms contributing 97.7% of total energy and belowground fauna accounting for 60.9% of energy to animals. Consequently, belowground fauna fueled surface (62.3% of predation) and aboveground (30.5% of predation) predators. Tree diversity increased ecosystem multifunctionality (indicated by total and averaged energy fluxes) by ∼30% and energy across most trophic levels in EcM tree communities, while it shifted food webs from fast (such as bacterial-dominated) to slow (such as fungal-dominated) channels in AM tree communities. Tree diversity primarily impacted energy fluxes through belowground communities and strengthened the coupling of above- and belowground food webs, with increasing importance of belowground prey for predators at the soil surface and above the ground. These findings highlight that tree diversity and mycorrhizal types drive above- and belowground ecosystem functioning via belowground energy fluxes.
Collapse
Affiliation(s)
- Huimin Yi
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße, Leipzig 04103, Germany; Institute of Biology, Leipzig University, Puschstraße, Leipzig 04103, Germany.
| | - Olga Ferlian
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße, Leipzig 04103, Germany; Institute of Biology, Leipzig University, Puschstraße, Leipzig 04103, Germany
| | - Benoit Gauzens
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße, Leipzig 04103, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Hans-Knöll-Straße, Jena 07745, Germany
| | - Roberto Rebollo
- Department of Environmental Systems Science, ETH Zürich, Schmelzbergstraße, Zurich 8092, Switzerland
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Untere Karspüle, Göttingen 37073, Germany; Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Büsgenweg, Göttingen 37077, Germany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße, Leipzig 04103, Germany; Institute of Biodiversity, Friedrich Schiller University Jena, Hans-Knöll-Straße, Jena 07745, Germany
| | - Marcel Ciobanu
- Institute of Biological Research, National Institute for Research and Development for Biological Sciences, Republicii Street, Cluj-Napoca 400015, Romania
| | - Anton Potapov
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße, Leipzig 04103, Germany; Senckenberg Museum of Natural History Görlitz, Am Museum, Görlitz 02826, Germany; International Institute Zittau, TUD Dresden University of Technology, Markt, Zittau 02763, Germany
| | - Jörg-Alfred Salamon
- Institute of Ecology and Evolution & Field Station Schapen, University of Veterinary Medicine Hannover, Bünteweg, Hannover 30559, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße, Leipzig 04103, Germany; Institute of Biology, Leipzig University, Puschstraße, Leipzig 04103, Germany
| |
Collapse
|
3
|
Brose U, Hirt MR, Ryser R, Rosenbaum B, Berti E, Gauzens B, Hein AM, Pawar S, Schmidt K, Wootton K, Kéfi S. Embedding information flows within ecological networks. Nat Ecol Evol 2025; 9:547-558. [PMID: 40186056 DOI: 10.1038/s41559-025-02670-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/25/2025] [Indexed: 04/07/2025]
Abstract
Natural communities form networks of species linked by interactions. Understanding the structure and dynamics of these ecological networks is pivotal to predicting species extinction risks, community stability and ecosystem functioning under global change. Traditionally, ecological network research has focused on interactions involving the flow of matter and energy, such as feeding or pollination. In nature, however, species also interact by intentionally or unintentionally exchanging information signals and cues that influence their behaviour and movement. Here we argue that this exchange of information between species constitutes an information network of nature-a crucial but largely neglected aspect of community organization. We propose to integrate information with matter flow interactions in multilayer networks. This integration reveals a novel classification of information links based on how the senders and receivers of information are embedded in food web motifs. We show that synthesizing information and matter flow interactions in multilayer networks can lead to shorter pathways connecting species and a denser aggregation of species in fewer modules. Ultimately, this tighter interconnectedness of species increases the risk of perturbation spread in natural communities, which undermines their stability. Understanding the information network of nature is thus crucial for predicting community dynamics in the era of global change.
Collapse
Affiliation(s)
- Ulrich Brose
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Myriam R Hirt
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Remo Ryser
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benjamin Rosenbaum
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Emilio Berti
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Benoit Gauzens
- Institute of Biodiversity, Friedrich Schiller University Jena, Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Andrew M Hein
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Samraat Pawar
- Department of Life Sciences, Imperial College London, London, UK
| | | | - Kate Wootton
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sonia Kéfi
- ISEM, CNRS, Université de Montpellier, IRD, Montpellier, France
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
4
|
Wang MQ, Guo SK, Guo PF, Yang JJ, Chen GA, Chesters D, Orr MC, Niu ZQ, Staab M, Chen JT, Li Y, Zhou QS, Fornoff F, Shi X, Li S, Martini M, Klein AM, Schuldt A, Liu X, Ma K, Bruelheide H, Luo A, Zhu CD. Multidimensionality of tree communities structure host-parasitoid networks and their phylogenetic composition. eLife 2025; 13:RP100202. [PMID: 39996600 PMCID: PMC11856933 DOI: 10.7554/elife.100202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2025] Open
Abstract
Environmental factors can influence ecological networks, but these effects are poorly understood in the realm of the phylogeny of host-parasitoid interactions. Especially, we lack a comprehensive understanding of the ways that biotic factors, including plant species richness, overall community phylogenetic and functional composition of consumers, and abiotic factors such as microclimate, determine host-parasitoid network structure and host-parasitoid community dynamics. To address this, we leveraged a 5-year dataset of trap-nesting bees and wasps and their parasitoids collected in a highly controlled, large-scale subtropical tree biodiversity experiment. We tested for effects of tree species richness, tree phylogenetic, and functional diversity, and species and phylogenetic composition on species and phylogenetic diversity of both host and parasitoid communities and the composition of their interaction networks. We show that multiple components of tree diversity and canopy cover impacted both, species and phylogenetic composition of hosts and parasitoids. Generally, phylogenetic associations between hosts and parasitoids reflected nonrandomly structured interactions between phylogenetic trees of hosts and parasitoids. Further, host-parasitoid network structure was influenced by tree species richness, tree phylogenetic diversity, and canopy cover. Our study indicates that the composition of higher trophic levels and corresponding interaction networks are determined by plant diversity and canopy cover, especially via trophic links in species-rich ecosystems.
Collapse
Affiliation(s)
- Ming-Qiang Wang
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of SciencesChengduChina
| | - Shi-Kun Guo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Peng-Fei Guo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Pharmacy, Guizhou University of Traditional Chinese MedicineGuiyangChina
| | - Juan-Juan Yang
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Guo-Ai Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Douglas Chesters
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
| | - Michael C Orr
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Entomologie, Staatliches Museum für Naturkunde StuttgartStuttgartGermany
| | - Ze-Qing Niu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Michael Staab
- Ecological Networks, Technical University DarmstadtDarmstadtGermany
| | - Jing-Ting Chen
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
| | - Yi Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Qing-Song Zhou
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
| | - Felix Fornoff
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University FreiburgFreiburgGermany
| | - Xiaoyu Shi
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Shan Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Massimo Martini
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University FreiburgFreiburgGermany
| | - Alexandra-Maria Klein
- Department of Nature Conservation and Landscape Ecology, Albert-Ludwigs-University FreiburgFreiburgGermany
| | - Andreas Schuldt
- Forest Nature Conservation, University of GöttingenGöttingenGermany
| | - Xiaojuan Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Keping Ma
- International College, University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of SciencesBeijingChina
| | - Helge Bruelheide
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-WittenbergHalleGermany
| | - Arong Luo
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
- National Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chao-Dong Zhu
- CAS Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- College of Biological Sciences, University of Chinese Academy of SciencesBeijingChina
- International College, University of Chinese Academy of SciencesBeijingChina
- National Key Laboratory of Animal Biodiversity Conservation and Integrated Pest Management, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Integrated Pest Management, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Li X, Yang W, Novak M, Zhao L, de Ruiter PC, Yang Z, Guill C. Body Mass-Biomass Scaling Modulates Species Keystone-Ness to Press Perturbations. Ecol Lett 2025; 28:e70086. [PMID: 39964095 DOI: 10.1111/ele.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/04/2024] [Accepted: 01/30/2025] [Indexed: 05/10/2025]
Abstract
Identifying species with disproportionate effects on other species under press perturbations is essential, yet how species traits and community context drive their 'keystone-ness' remain unclear. We quantified keystone-ness as linearly approximated per capita net effect derived from normalised inverse community matrices and as non-linear per capita community biomass change from simulated perturbations in food webs with varying biomass structure. In bottom-heavy webs (negative relationship between species' body mass and their biomass within the web), larger species at higher trophic levels tended to be keystone species, whereas in top-heavy webs (positive body mass to biomass relationship), the opposite was true and the relationships between species' energetic traits and keystone-ness were weakened or reversed compared to bottom-heavy webs. Linear approximations aligned well with non-linear responses in bottom-heavy webs, but were less consistent in top-heavy webs. These findings highlight the importance of community context in shaping species' keystone-ness and informing effective conservation actions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Mark Novak
- Department of Integrative Biology, Oregon State University, Corvallis, Oregon, USA
| | - Lei Zhao
- Beijing Key Laboratory of Biodiversity and Organic Farming, College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Peter C de Ruiter
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
- Biometris, Wageningen University, Wageningen, the Netherlands
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands
| | - Zhifeng Yang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Christian Guill
- Department of Ecology and Ecosystem Modelling, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
6
|
Gaedke U, Li X, Guill C, Hemerik L, de Ruiter PC. Seasonal Shifts in Trophic Interaction Strength Drive Stability of Natural Food Webs. Ecol Lett 2025; 28:e70075. [PMID: 39891499 PMCID: PMC11786205 DOI: 10.1111/ele.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 02/03/2025]
Abstract
It remains challenging to understand why natural food webs are remarkably stable despite highly variable environmental factors and population densities. We investigated the dynamics in the structure and stability of Lake Constance's pelagic food web using 7 years of high-frequency observations of biomasses and production, leading to 59 seasonally resolved quantitative food web descriptions. We assessed the dynamics in asymptotic food web stability through maximum loop weight, which revealed underlying stability mechanisms. Maximum loop weight showed a recurrent seasonal pattern with a consistently high stability despite pronounced dynamics in biomasses, fluxes and productivity. This stability resulted from seasonal rewiring of the food web, driven by energetic constraints within loops and their embedding into food web structure. The stabilising restructuring emerged from counter-acting effects of metabolic activity and competitiveness/susceptibility to predation within a diverse grazer community on loop weight. This underscores the role of functional diversity in promoting food web stability.
Collapse
Affiliation(s)
- Ursula Gaedke
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Xiaoxiao Li
- School of Ecology, Environment and ResourcesGuangdong University of TechnologyGuangzhouChina
| | - Christian Guill
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Lia Hemerik
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
| | - Peter C. de Ruiter
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
- Biometris, Department of Mathematical and Statistical MethodsWageningen UniversityWageningenThe Netherlands
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
7
|
Jiang Z, Wan X, Bai X, Chen Z, Zhu L, Feng J. Cd indirectly affects the structure and function of plankton ecosystems by affecting trophic interactions at environmental concentrations. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136242. [PMID: 39442296 DOI: 10.1016/j.jhazmat.2024.136242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/08/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The toxic effects of potentially toxic elements have been observed at low concentrations; however, many studies have focused on single-species toxicity testing. Consequently, it is imperative to quantify toxicity at the community level at environmental concentrations. A microcosm approach was employed in conjunction with the Lotka-Volterra model to ascertain the impact of environmentally relevant concentrations of cadmium (Cd) on plankton abundance, community function, and stability. The results demonstrated that Cd led to a reduction in the abundance of Daphnia magna, yet unexpectedly resulted in an increase in the abundance of Brachionus calyciflorus and Paramecium caudatum. Additionally, Cd was observed to impede primary productivity, metabolic capacity and the stability of the planktonic community. Further model analyses revealed that the environmental concentration of Cd directly reduced intrinsic growth rates and intraspecific interactions. In particular, we found that the predation effects of Daphnia magna on Brachionus calyciflorus were significantly weakened. The findings of this study offer quantitative evidence that Cd exposure exerts an indirect influence on the structure and functioning of plankton ecosystems, mediated by alterations in trophic interactions. The findings indicate that the impact of environmental concentrations of potentially toxic elements may be underestimated in single-species experiments.
Collapse
Affiliation(s)
- Zhendong Jiang
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xuhao Wan
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xue Bai
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zhongzhi Chen
- InnoTech Alberta, Hwy 16A & 75 Street, P.O. Box 4000, Vegreville, AB T9C 1T4, Canada
| | - Lin Zhu
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jianfeng Feng
- Key Laboratory of Pollution Process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
DeLong JP, Coblentz KE, La Sorte FA, Uiterwaal SF. The global diet diversity spectrum in avian apex predators. Proc Biol Sci 2024; 291:20242156. [PMID: 39657802 PMCID: PMC11631488 DOI: 10.1098/rspb.2024.2156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Some predators depend heavily on one or a few prey types, and others have exceptionally broad diets. It is unclear how this diet variation arises. Here, we demonstrate a strong link between diet species richness and Shannon entropy of prey frequencies (a diet diversity spectrum) for a globally distributed group of apex predators-raptors. For many raptors, diet entropy is consistent with random sampling expectations given a lognormal distribution of abundances among prey species. Yet most species-rich diets often approach the maximum possible diet entropy, indicating an unexpected level of diet evenness that is not predicted by theory. Positioning along this diet diversity spectrum is linked to evolutionary history, the types of prey that are acceptable and the role of raptors as food web integrators through cross-habitat sampling. These results suggest that raptors may have a highly stabilizing effect on terrestrial food webs and play an important role in maintaining biodiversity.
Collapse
Affiliation(s)
- John P. DeLong
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Kyle E. Coblentz
- School of Biological Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Frank A. La Sorte
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, USA
- Center for Biodiversity and Global Change, Yale University, New Haven, CT, USA
| | - Stella F. Uiterwaal
- Living Earth Collaborative, Washington University in St Louis, St Louis, MO, USA
- Department of Biology, Saint Louis University, St Louis, MO, USA
- Institute for Conservation Medicine, Saint Louis Zoo, St Louis, MO, USA
- National Great Rivers Research and Education Center, East Alton, IL, USA
| |
Collapse
|
9
|
Rodriguez I, Saravia L. Potter Cove's Heavyweights: Estimation of Species' Interaction Strength of an Antarctic Food Web. Ecol Evol 2024; 14:e70389. [PMID: 39493615 PMCID: PMC11531876 DOI: 10.1002/ece3.70389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/16/2024] [Indexed: 11/05/2024] Open
Abstract
In the West Antarctic Peninsula, global warming has led to severe alterations in community composition, species distribution, and abundance over the last decades. Understanding the complex interplay between structure and stability of marine food webs is crucial for assessing ecosystem resilience, particularly in the context of ongoing environmental changes. In this study, we estimate the interaction strength within the Potter Cove (South Shetland Islands, Antarctica) food web to elucidate the roles of species in its structure and functioning. We use these estimates to calculate food web stability in response to perturbations, conducting sequential extinctions to quantify the importance of individual species based on changes in stability and food web fragmentation. We explore connections between interaction strength and key topological properties of the food web. Our findings reveal an asymmetric distribution of interaction strengths, with a prevalence of weak interactions and a few strong ones. Species exerting greater influence within the food web displayed higher degree and trophic similarity but occupied lower trophic levels and displayed lower omnivory levels (e.g., macroalgae and detritus). Extinction simulations revealed the key role of certain species, particularly amphipods and the black rockcod Notothenia coriiceps, as their removal led to significant changes in food web stability and network fragmentation. This study highlights the importance of considering species interaction strengths in assessing the stability of polar marine ecosystems. These insights have crucial implications for guiding monitoring and conservation strategies aimed at preserving the integrity of Antarctic marine ecosystems.
Collapse
Affiliation(s)
- Iara Diamela Rodriguez
- Instituto de Ciencias (ICI), Universidad Nacional de General Sarmiento (UNGS)Buenos AiresArgentina
| | | |
Collapse
|
10
|
Gutgesell M, McCann K, O'Connor R, Kc K, Fraser EDG, Moore JC, McMeans B, Donohue I, Bieg C, Ward C, Pauli B, Scott A, Gillam W, Gedalof Z, Hanner RH, Tunney T, Rooney N. The productivity-stability trade-off in global food systems. Nat Ecol Evol 2024; 8:2135-2149. [PMID: 39227681 DOI: 10.1038/s41559-024-02529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 07/29/2024] [Indexed: 09/05/2024]
Abstract
Historically, humans have managed food systems to maximize productivity. This pursuit has drastically modified terrestrial and aquatic ecosystems globally by reducing species diversity and body size while creating very productive, yet homogenized, environments. Such changes alter the structure and function of ecosystems in ways that ultimately erode their stability. This productivity-stability trade-off has largely been ignored in discussions around global food security. Here, we synthesize empirical and theoretical literature to demonstrate the existence of the productivity-stability trade-off and argue the need for its explicit incorporation in the sustainable management of food systems. We first explore the history of human management of food systems, its impacts on average body size within and across species and food web stability. We then demonstrate how reductions in body size are symptomatic of a broader biotic homogenization and rewiring of food webs. We show how this biotic homogenization decompartmentalizes interactions among energy channels and increases energy flux within the food web in ways that threaten their stability. We end by synthesizing large-scale ecological studies to demonstrate the prevalence of the productivity-stability trade-off. We conclude that management strategies promoting landscape heterogeneity and maintenance of key food web structures are critical to sustainable food production.
Collapse
Affiliation(s)
| | | | | | - Krishna Kc
- University of Guelph, Guelph, Ontario, Canada
| | | | - John C Moore
- Colorado State University, Fort Collins, CO, USA
| | - Bailey McMeans
- University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | | | | | - Brett Pauli
- University of Guelph, Guelph, Ontario, Canada
| | - Alexa Scott
- University of Guelph, Guelph, Ontario, Canada
| | | | | | | | - Tyler Tunney
- Fisheries and Oceans Canada, Moncton, New Brunswick, Canada
| | - Neil Rooney
- University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
11
|
Chen C, Wang XW, Liu YY. Stability of Ecological Systems: A Theoretical Review. PHYSICS REPORTS 2024; 1088:1-41. [PMID: 40017996 PMCID: PMC11864804 DOI: 10.1016/j.physrep.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The stability of ecological systems is a fundamental concept in ecology, which offers profound insights into species coexistence, biodiversity, and community persistence. In this article, we provide a systematic and comprehensive review on the theoretical frameworks for analyzing the stability of ecological systems. Notably, we survey various stability notions, including linear stability, sign stability, diagonal stability, D-stability, total stability, sector stability, and structural stability. For each of these stability notions, we examine necessary or sufficient conditions for achieving such stability and demonstrate the intricate interplay of these conditions on the network structures of ecological systems. We further discuss the stability of ecological systems with higher-order interactions.
Collapse
Affiliation(s)
- Can Chen
- School of Data Science and Society and Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Xu-Wen Wang
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA
- Carl R. Woese Institute for Genomic Biology, Center for Artificial Intelligence and Modeling, University of Illinois at Urbana-Champaign, Champaign, 61801, IL, USA
| |
Collapse
|
12
|
Mougi A. Ecosystem engineering and food web stability. Sci Rep 2024; 14:19400. [PMID: 39169231 PMCID: PMC11339392 DOI: 10.1038/s41598-024-70626-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024] Open
Abstract
Ecosystem engineering, which involves organism-triggered physical modification of the environment, is a widespread phenomenon. Despite this, the role of engineering in ecological communities remains poorly understood. This study employs a food web model to uncover the key roles of ecosystem engineering in maintaining food webs. While engineers facilitating population growth and suppressing consumers' foraging activity can help maintain complex communities with diverse species, engineering effects that suppress population growth and facilitate consumers' foraging activity can largely destabilize community dynamics. Furthermore, in the middle levels of engineering-related species within a community, an increase in species richness can increase community stability, contrary to classical ecological prediction. The study findings suggest that ecosystem engineering can explain biodiversity persistence in nature, but it depends on the proportion of engineering-related species and how engineering affects organisms.
Collapse
Affiliation(s)
- Akihiko Mougi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu-cho, Matsue, 690-8504, Japan.
| |
Collapse
|
13
|
Kuppels A, Bayat HS, Gillmann SM, Schäfer RB, Vos M. Putting the Asymmetric Response Concept to the test: Modeling multiple stressor exposure and release in a stream food web. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174722. [PMID: 39004358 DOI: 10.1016/j.scitotenv.2024.174722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Communities in stream ecosystems often respond asymmetrically to increase and release of stressors, as indicated by slow and incomplete recovery. The Asymmetric Response Concept (ARC) posits that this is due to a shift in the relative importance of three mechanisms: tolerance, dispersal, and biotic interactions. In complex natural communities, these mechanisms may produce alternative outcomes through poorly understood indirect effects. To understand how the three mechanisms respond to different temporal stressor scenarios, we studied multiple scenarios using a stream food web model. We asked the following questions: Do groups of species decline as expected on the basis of individual tolerance rankings derived from laboratory experiments when they are embedded in a complex dynamic food web? Does the response of ecosystem function match that of communities? To address these questions, we aggregated data on individual tolerances at the level of functional groups and studied how single and multiple stressors affect food web dynamics and nutrient cycling. Multiple stressor scenarios involved different intensities of salt and temperature increase. Functional groups exhibited a different relative tolerance ranking between the laboratory and dynamic food web contexts. Salt as a single stressor had only minor and transient effects at low level but led to the loss of one or more functional groups at high level. In contrast, high temperature, alone or in combination with salt, caused the loss of functional groups at all tested levels. Patterns often differed between the response of communities and ecosystem function. We discuss our findings with respect to the ARC.
Collapse
Affiliation(s)
- Annabel Kuppels
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany
| | - Helena S Bayat
- Institute for Environmental Sciences, RPTU Kaiserslautern-Landau, Landau, Germany; Research Center One Health Ruhr, University Alliance Ruhr & Faculty for Biology, University of Duisburg-Essen, Essen, Germany
| | - Svenja M Gillmann
- Department of Aquatic Ecology, University of Duisburg-Essen, Essen, Germany
| | - Ralf B Schäfer
- Research Center One Health Ruhr, University Alliance Ruhr & Faculty for Biology, University of Duisburg-Essen, Essen, Germany
| | - Matthijs Vos
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Theoretical and Applied Biodiversity Research, Bochum, Germany.
| |
Collapse
|
14
|
Junker JR, Cross WF, Hood JM, Benstead JP, Huryn AD, Nelson D, Ólafsson JS, Gíslason GM. Environmental warming increases the importance of high-turnover energy channels in stream food webs. Ecology 2024; 105:e4314. [PMID: 38710667 DOI: 10.1002/ecy.4314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/03/2024] [Accepted: 03/14/2024] [Indexed: 05/08/2024]
Abstract
Warming temperatures are altering communities and trophic networks across Earth's ecosystems. While the overall influence of warming on food webs is often context-dependent, increasing temperatures are predicted to change communities in two fundamental ways: (1) by reducing average body size and (2) by increasing individual metabolic rates. These warming-induced changes have the potential to influence the distribution of food web fluxes, food web stability, and the relative importance of deterministic and stochastic ecological processes shaping community assembly. Here, we quantified patterns and the relative distribution of organic matter fluxes through stream food webs spanning a broad natural temperature gradient (5-27°C). We then related these patterns to species and community trait distributions of mean body size and population biomass turnover (P:B) within and across streams. We predicted that (1) communities in warmer streams would exhibit smaller body size and higher P:B and (2) organic matter fluxes within warmer communities would increasingly skew toward smaller, higher P:B populations. Across the temperature gradient, warmer communities were characterized by smaller body size (~9% per °C) and higher P:B (~7% faster turnover per °C) populations on average. Additionally, organic matter fluxes within warmer streams were increasingly skewed toward higher P:B populations, demonstrating that warming can restructure organic matter fluxes in both an absolute and relative sense. With warming, the relative distribution of organic matter fluxes was decreasingly likely to arise through the random sorting of species, suggesting stronger selection for traits driving high turnover with increasing temperature. Our study suggests that a warming world will favor energy fluxes through "smaller and faster" populations, and that these changes may be more predictable than previously thought.
Collapse
Affiliation(s)
- James R Junker
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - James M Hood
- The Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Biology, The Ohio State University, Columbus, Ohio, USA
- Translational Data Analytics Institute, The Ohio State University, Columbus, Ohio, USA
| | - Jonathan P Benstead
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Alexander D Huryn
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama, USA
| | - Daniel Nelson
- National Aquatic Monitoring Center, Department of Watershed Sciences, Utah State University, Logan, Utah, USA
| | - Jón S Ólafsson
- Marine and Freshwater Research Institute, Hafnarfjördur, Iceland
| | - Gísli M Gíslason
- University of Iceland, Institute of Life and Environmental Sciences, Reykjavík, Iceland
| |
Collapse
|
15
|
Arancibia PA. The topology of spatial networks affects stability in experimental metacommunities. Proc Biol Sci 2024; 291:20240567. [PMID: 38864323 PMCID: PMC11338566 DOI: 10.1098/rspb.2024.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/23/2024] [Indexed: 06/13/2024] Open
Abstract
Understanding the drivers of community stability has been a central goal in ecology. Traditionally, emphasis has been placed on studying the effects of biotic interactions on community variability, and less is understood about how the spatial configuration of habitats promotes or hinders metacommunity stability. To test the effects of contrasting spatial configurations on metacommunity stability, I designed metacommunities with patches connected as random or scale-free networks. In these microcosms, two prey and one protist predator dispersed, and I evaluated community persistence, tracked biomass variations, and measured synchrony between local communities and the whole metacommunity. After 30 generations, scale-free metacommunities had lower global biomass variability and higher persistence, suggesting higher stability. Synchrony between patches was lower in scale-free metacommunities. Patches in scale-free metacommunities showed a positive relationship between variability and patch connectivity, indicating higher stability in isolated communities. No clear relationship between variability and patch connectivity was observed in random networks. These results suggest the increased heterogeneity in connectivity of scale-free networks favours the prevalence of isolated patches of the metacommunity, which likely act as refugia against competition-the dominant interaction in this system-resulting in higher global stability. These results highlight the importance of accounting for network topology in the study of spatial dynamics.
Collapse
Affiliation(s)
- Paulina A. Arancibia
- Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ, USA
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
16
|
Berlinches de Gea A, Geisen S, Grootjans F, Wilschut RA, Schwelm A. Species-specific predation determines the feeding impacts of six soil protist species on bacterial and eukaryotic prey. Eur J Protistol 2024; 94:126090. [PMID: 38795654 DOI: 10.1016/j.ejop.2024.126090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/28/2024]
Abstract
Predatory protists play a central role in nutrient cycling and are involved in other ecosystem functions by predating the microbiome. While most soil predatory protist species arguably are bacterivorous, some protist species can prey on eukaryotes. However, studies about soil protist feeding mainly focused on bacteria as prey and rarely tested both bacteria and eukaryotes as potential prey. In this study, we aimed to decipher soil predator-prey interactions of three amoebozoan and three heterolobosean soil protists and potential bacterial (Escherichia coli; 0.5-1.5 µm), fungal (Saccharomyces cerevisiae; 5-7 µm) and protist (Plasmodiophora brassicae; 3-5 µm) prey, either as individual prey or in all their combinations. We related protist performance (relative abundance) and prey consumption (qPCR) to the protist phylogenetic group and volume. We showed that for the six soil protist predators, the most suitable prey was E. coli, but some species also grew on P. brassicae or S. cerevisiae. While protist relative abundances and growth rates depended on prey type in a protist species-specific manner, phylogenetic groups and volume affected prey consumption. Yet we conclude that protist feeding patterns are mainly species-specific and that some known bacterivores might be more generalist than expected, even preying on eukaryotic plant pathogens such as P. brassicae.
Collapse
Affiliation(s)
- Alejandro Berlinches de Gea
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands.
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Franka Grootjans
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Rutger A Wilschut
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Wageningen University & Research, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands; TEAGASC - The Agriculture and Food Development Authority Department of Crops, Environment & Land Use, Wexford, Ireland.
| |
Collapse
|
17
|
Silliman BR, Hensel MJS, Gibert JP, Daleo P, Smith CS, Wieczynski DJ, Angelini C, Paxton AB, Adler AM, Zhang YS, Altieri AH, Palmer TM, Jones HP, Gittman RK, Griffin JN, O'Connor MI, van de Koppel J, Poulsen JR, Rietkerk M, He Q, Bertness MD, van der Heide T, Valdez SR. Harnessing ecological theory to enhance ecosystem restoration. Curr Biol 2024; 34:R418-R434. [PMID: 38714175 DOI: 10.1016/j.cub.2024.03.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Ecosystem restoration can increase the health and resilience of nature and humanity. As a result, the international community is championing habitat restoration as a primary solution to address the dual climate and biodiversity crises. Yet most ecosystem restoration efforts to date have underperformed, failed, or been burdened by high costs that prevent upscaling. To become a primary, scalable conservation strategy, restoration efficiency and success must increase dramatically. Here, we outline how integrating ten foundational ecological theories that have not previously received much attention - from hierarchical facilitation to macroecology - into ecosystem restoration planning and management can markedly enhance restoration success. We propose a simple, systematic approach to determining which theories best align with restoration goals and are most likely to bolster their success. Armed with a century of advances in ecological theory, restoration practitioners will be better positioned to more cost-efficiently and effectively rebuild the world's ecosystems and support the resilience of our natural resources.
Collapse
Affiliation(s)
- Brian R Silliman
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA.
| | - Marc J S Hensel
- Biological Sciences Department, Virginia Institute of Marine Science, Gloucester Point, VA 23062, USA; Nature Coast Biological Station, Institute of Food and Agricultural Sciences, University of Florida, Cedar Key, FL 32625, USA
| | - Jean P Gibert
- Department of Biology, Duke University, Durham, NC, USA
| | - Pedro Daleo
- Instituto de Investigaciones Marinas y Costeras (IIMyC), FCEyN, UNMdP-CONICET, CC 1260 Correo Central, B7600WAG, Mar del Plata, Argentina
| | - Carter S Smith
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | | | - Christine Angelini
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Avery B Paxton
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 101 Pivers Island Road, Beaufort, NC 28516, USA
| | - Alyssa M Adler
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| | - Y Stacy Zhang
- Department of Marine, Earth and Atmospheric Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Andrew H Altieri
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Todd M Palmer
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Holly P Jones
- Department of Biological Sciences and Institute for the Study of the Environment, Sustainability, and Energy, Northern Illinois University, DeKalb, IL 60115, USA
| | - Rachel K Gittman
- Department of Biology and Coastal Studies Institute, East Carolina University, Greenville, NC, USA
| | - John N Griffin
- Department of Biosciences, Swansea University, Swansea SA2 8PP, Wales, UK
| | - Mary I O'Connor
- Department of Zoology and Biodiversity Research Centre, The University of British Columbia, Vancouver, BC V6R 1W4, Canada
| | - Johan van de Koppel
- Department of Estuarine and Delta Systems, NIOZ Royal Netherlands Institute for Sea Research, Yerseke, The Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - John R Poulsen
- The Nature Conservancy, 2424 Spruce Street, Boulder, CO 80302, USA; Nicholas School of the Environment, Duke University, PO Box 90328, Durham, NC 27708, USA
| | - Max Rietkerk
- Department Environmental Sciences, Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands
| | - Qiang He
- Coastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Mark D Bertness
- Department of Ecology and Evolutionary Biology, Brown University, 90 Witman Street, Providence, RI, USA
| | - Tjisse van der Heide
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands; Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Stephanie R Valdez
- Nicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC 28516, USA
| |
Collapse
|
18
|
Hu Z, Delgado-Baquerizo M, Fanin N, Chen X, Zhou Y, Du G, Hu F, Jiang L, Hu S, Liu M. Nutrient-induced acidification modulates soil biodiversity-function relationships. Nat Commun 2024; 15:2858. [PMID: 38570522 PMCID: PMC10991381 DOI: 10.1038/s41467-024-47323-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
Nutrient enrichment is a major global change component that often disrupts the relationship between aboveground biodiversity and ecosystem functions by promoting species dominance, altering trophic interactions, and reducing ecosystem stability. Emerging evidence indicates that nutrient enrichment also reduces soil biodiversity and weakens the relationship between belowground biodiversity and ecosystem functions, but the underlying mechanisms remain largely unclear. Here, we explore the effects of nutrient enrichment on soil properties, soil biodiversity, and multiple ecosystem functions through a 13-year field experiment. We show that soil acidification induced by nutrient enrichment, rather than changes in mineral nutrient and carbon (C) availability, is the primary factor negatively affecting the relationship between soil diversity and ecosystem multifunctionality. Nitrogen and phosphorus additions significantly reduce soil pH, diversity of bacteria, fungi and nematodes, as well as an array of ecosystem functions related to C and nutrient cycling. Effects of nutrient enrichment on microbial diversity also have negative consequences at higher trophic levels on the diversity of microbivorous nematodes. These results indicate that nutrient-induced acidification can cascade up its impacts along the soil food webs and influence ecosystem functioning, providing novel insight into the mechanisms through which nutrient enrichment influences soil community and ecosystem properties.
Collapse
Affiliation(s)
- Zhengkun Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro‑Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Manuel Delgado-Baquerizo
- Laboratorio de Biodiversidad y Funcionamiento Ecosistémico. Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), CSIC, Av. Reina Mercedes 10, E-41012, Sevilla, Spain
| | - Nicolas Fanin
- INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, Villenave-d'Ornon, France
| | - Xiaoyun Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yan Zhou
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Du
- College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Feng Hu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuijin Hu
- Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC, USA
| | - Manqiang Liu
- Centre for Grassland Microbiome, State Key Laboratory of Herbage Improvement and Grassland Agro‑Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
19
|
Lourenço L, Ellegaard Bager S, Ng DYK, Sheikh S, Lunding Kindtler N, Broman Nielsen I, Guldberg Frøslev T, Ekelund F. DNA metabarcoding reveals the impact of Cu 2+ on soil cercozoan diversity. Protist 2024; 175:126016. [PMID: 38350284 DOI: 10.1016/j.protis.2024.126016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 01/12/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Although copper (Cu2+) is a micronutrient, the metal may be toxic if present in high concentrations in soil ecosystems and subsequently affect various organisms, ranging from microorganisms to earthworms. We performed a microcosm study with an array of Cu2+ concentrations, with a specific focus on Cercozoa, an important protozoan group in most soil food webs. Research on Cercozoa is still scarce in terms of both diversity and ecology; hence, to explore this group in more depth, we used high-throughput sequencing to detect Cu2+ induced community changes. Increased levels of Cu2+ caused a shift in the cercozoan community, and we observed decreased cercozoan relative abundance across the majority of orders, families and genera. Due to their key role in soil food webs, especially as bacterial predators and providers of nutrients to plants, the reduction of cercozoan abundance and diversity may seriously affect soil functionality. Our results indicate that the increase of Cu2+ concentrations in the soil could potentially have this effect and the consequences need exploration.
Collapse
Affiliation(s)
- Leah Lourenço
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark.
| | - Sara Ellegaard Bager
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Duncan Y K Ng
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Sanea Sheikh
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Nikolaj Lunding Kindtler
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Ida Broman Nielsen
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Øster Farimagsgade 5, 1353 Copenhagen K, Denmark
| | - Tobias Guldberg Frøslev
- Section for Geogenetics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Flemming Ekelund
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| |
Collapse
|
20
|
Aguadé-Gorgorió G, Arnoldi JF, Barbier M, Kéfi S. A taxonomy of multiple stable states in complex ecological communities. Ecol Lett 2024; 27:e14413. [PMID: 38584579 DOI: 10.1111/ele.14413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 04/09/2024]
Abstract
Natural systems are built from multiple interconnected units, making their dynamics, functioning and fragility notoriously hard to predict. A fragility scenario of particular relevance concerns so-called regime shifts: abrupt transitions from healthy to degraded ecosystem states. An explanation for these shifts is that they arise as transitions between alternative stable states, a process that is well-understood in few-species models. However, how multistability upscales with system complexity remains a debated question. Here, we identify that four different multistability regimes generically emerge in models of species-rich communities and other archetypical complex biological systems assuming random interactions. Across the studied models, each regime consistently emerges under a specific interaction scheme and leaves a distinct set of fingerprints in terms of the number of observed states, their species richness and their response to perturbations. Our results help clarify the conditions and types of multistability that can be expected to occur in complex ecological communities.
Collapse
Affiliation(s)
| | - Jean-François Arnoldi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France
| | - Matthieu Barbier
- PHIM Plant Health Institute, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Sonia Kéfi
- ISEM, Univ Montpellier, CNRS, IRD, Montpellier, France
- France Santa Fe Institute, Santa Fe, New Mexico, USA
| |
Collapse
|
21
|
Zeng Y, Li J, Zhao Y, Yang W. Community ecological response to polycyclic aromatic hydrocarbons in Baiyangdian Lake based on an ecological model. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:34-46. [PMID: 38182933 PMCID: PMC10830818 DOI: 10.1007/s10646-023-02722-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/07/2024]
Abstract
The dynamic response of a single population to chemicals can be represented by a Weibull function. However, it is unclear whether the overall response can still be represented in this manner when scaled up to the community level. In this study, we investigated the responses of biological communities to polycyclic aromatic hydrocarbons by using an ecological model of Baiyangdian Lake in northern China. The community dynamics process was divided into the following three stages. In the first stage, toxicity, played a dominant role and strong, medium, and weak species responses were observed according to the toxicity sensitivity. In the second stage, the dynamic process was dominated by the interaction strength with three alternative dynamic pathways comprising of direct response, no response, or inverse response. In the third stage, the toxicity was again dominant, and the biomasses of all species decreased to extinction. The toxicological dynamics were far more complex at the community level than those at the single species level and they were also influenced by the interaction strength as well as toxicity. The toxicological dynamic process in the community was constantly driven by the competing effects of these two forces. In addition to the total biomass, the interaction strength was identified as a suitable community-level signal because it exhibited good indicator properties regarding ecosystem steady-state transitions. However, we found that food web stability indicators were not suitable for use as community-level signals because they were not sensitive to changes in the ecosystem state. Some ecological management suggestions have been proposed, including medium to long-term monitoring, and reduction of external pollution loads and bioindicators. The results obtained in this study increase our understanding of how chemicals interfere with community dynamics, and the interaction strength and total biomass were identified as useful holistic indicators.
Collapse
Affiliation(s)
- Yong Zeng
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China.
| | - Jiaxin Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Laboratory of Oil & Gas Pollution Control, College of Chemical Engineering and Environment, China University of Petroleum, Beijing, 102249, China
| | - Yanwei Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
22
|
Dyer A, Ryser R, Brose U, Amyntas A, Bodnar N, Boy T, Franziska Bucher S, Cesarz S, Eisenhauer N, Gebler A, Hines J, Kyba CCM, Menz MHM, Rackwitz K, Shatwell T, Terlau JF, Hirt MR. Insect communities under skyglow: diffuse night-time illuminance induces spatio-temporal shifts in movement and predation. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220359. [PMID: 37899019 PMCID: PMC10613549 DOI: 10.1098/rstb.2022.0359] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/19/2023] [Indexed: 10/31/2023] Open
Abstract
Artificial light at night (ALAN) is predicted to have far-reaching consequences for natural ecosystems given its influence on organismal physiology and behaviour, species interactions and community composition. Movement and predation are fundamental ecological processes that are of critical importance to ecosystem functioning. The natural movements and foraging behaviours of nocturnal invertebrates may be particularly sensitive to the presence of ALAN. However, we still lack evidence of how these processes respond to ALAN within a community context. We assembled insect communities to quantify their movement activity and predation rates during simulated Moon cycles across a gradient of diffuse night-time illuminance including the full range of observed skyglow intensities. Using radio frequency identification, we tracked the movements of insects within a fragmented grassland Ecotron experiment. We additionally quantified predation rates using prey dummies. Our results reveal that even low-intensity skyglow causes a temporal shift in movement activity from day to night, and a spatial shift towards open habitats at night. Changes in movement activity are associated with indirect shifts in predation rates. Spatio-temporal shifts in movement and predation have important implications for ecological networks and ecosystem functioning, highlighting the disruptive potential of ALAN for global biodiversity and the provision of ecosystem services. This article is part of the theme issue 'Light pollution in complex ecological systems'.
Collapse
Affiliation(s)
- Alexander Dyer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Remo Ryser
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Ulrich Brose
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Angelos Amyntas
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Nora Bodnar
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Thomas Boy
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Solveig Franziska Bucher
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Ecology and Evolution with Herbarium Haussknecht and Botanical Garden, Department of Plant Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Simone Cesarz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Alban Gebler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biology, Leipzig University, 04103 Leipzig, Germany
| | - Christopher C. M. Kyba
- Remote Sensing and Geoinformatics, Deutsches GeoForschungsZentrum Potsdam, 14473 Potsdam, Germany
- Geographisches Institut, Ruhr-Universität Bochum, 44780 Bochum, Germany
| | - Myles H. M. Menz
- College of Science and Engineering, James Cook University, 4811 Townsville, Australia
- Department of Migration, Max Planck Institute of Animal Behaviour, 78315 Radolfzell, Germany
| | - Karl Rackwitz
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Tom Shatwell
- Department of Lake Research, Helmholtz Centre for Environmental Research (UFZ), 39114 Magdeburg, Germany
| | - Jördis F. Terlau
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Myriam R. Hirt
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| |
Collapse
|
23
|
Schulz G, Camenzind T, Sánchez-Galindo LM, Schneider D, Scheu S, Krashevska V. Response of protists to nitrogen addition, arbuscular mycorrhizal fungi manipulation, and mesofauna reduction in a tropical montane rainforest in southern Ecuador. J Eukaryot Microbiol 2023; 70:e12996. [PMID: 37577763 DOI: 10.1111/jeu.12996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
The tropical Andes are a species-rich and nitrogen-limited system, susceptible to increased nitrogen (N) inputs from the atmosphere. However, our understanding of the impacts of increased N input on belowground systems, in particular on protists and their role in nutrient cycling, remains limited. We explored how increased N affects protists in tropical montane rainforests in Ecuador using high-throughput sequencing (HTS) of environmental DNA from two litter layers. In addition, we manipulated the amount of arbuscular mycorrhizal fungi (AMF) and mesofauna, both playing a significant role in N cycling and interacting in complex ways with protist communities. We found that N strongly affected protist community composition in both layers, while mesofauna reduction had a stronger effect on the lower layer. Changes in concentration of the AMF marker lipid had little effect on protists. In both layers, the addition of N increased phagotrophs and animal parasites and decreased plant parasites, while mixotrophs decreased in the upper layer but increased in the lower layer. In the upper layer with higher AMF concentration, mixotrophs decreased, while in the lower layer, photoautotrophs increased and plant parasites decreased. With reduced mesofauna, phagotrophs increased and animal parasites decreased in both layers, while plant parasites increased only in the upper layer. The findings indicate that to understand the intricate response of protist communities to environmental changes, it is critical to thoroughly analyze these communities across litter and soil layers, and to include HTS.
Collapse
Affiliation(s)
- Garvin Schulz
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Tessa Camenzind
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Laura M Sánchez-Galindo
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| | - Dominik Schneider
- Genomic and Applied Microbiology and Goettingen Genomics Laboratory, University of Göttingen, Göttingen, Germany
| | - Stefan Scheu
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
- Centre of Biodiversity and Sustainable Land Use, University of Göttingen, Göttingen, Germany
| | - Valentyna Krashevska
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
24
|
Hu S, Li G, Berlinches de Gea A, Teunissen J, Geisen S, Wilschut RA, Schwelm A, Wang Y. Microbiome predators in changing soils. Environ Microbiol 2023; 25:2057-2067. [PMID: 37438930 DOI: 10.1111/1462-2920.16461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/22/2023] [Indexed: 07/14/2023]
Abstract
Microbiome predators shape the soil microbiome and thereby soil functions. However, this knowledge has been obtained from small-scale observations in fundamental rather than applied settings and has focused on a few species under ambient conditions. Therefore, there are several unaddressed questions on soil microbiome predators: (1) What is the role of microbiome predators in soil functioning? (2) How does global change affect microbiome predators and their functions? (3) How can microbiome predators be applied in agriculture? We show that there is sufficient evidence for the vital role of microbiome predators in soils and stress that global changes impact their functions, something that urgently needs to be addressed to better understand soil functioning as a whole. We are convinced that there is a potential for the application of microbiome predators in agricultural settings, as they may help to sustainably increase plant growth. Therefore, we plea for more applied research on microbiome predators.
Collapse
Affiliation(s)
- Shunran Hu
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, China
| | - Guixin Li
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Ecology, Lanzhou University, Lanzhou, China
| | - Alejandro Berlinches de Gea
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Joliese Teunissen
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Stefan Geisen
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Rutger A Wilschut
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| | - Arne Schwelm
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
- Department of Environment, Soils and Landuse, Teagasc Johnstown Castle, Wexford, Ireland
| | - Yuxin Wang
- Laboratory of Nematology, Plant Science Group, Wageningen University & Research (WU), Wageningen, The Netherlands
| |
Collapse
|
25
|
Scholl EA, Cross WF, Guy CS, Dutton AJ, Junker JR. Landscape diversity promotes stable food-web architectures in large rivers. Ecol Lett 2023; 26:1740-1751. [PMID: 37497804 DOI: 10.1111/ele.14289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/28/2023]
Abstract
Uncovering relationships between landscape diversity and species interactions is crucial for predicting how ongoing land-use change and homogenization will impact the stability and persistence of communities. However, such connections have rarely been quantified in nature. We coupled high-resolution river sonar imaging with annualized energetic food webs to quantify relationships among habitat diversity, energy flux, and trophic interaction strengths in large-river food-web modules that support the endangered Pallid Sturgeon. Our results demonstrate a clear relationship between habitat diversity and species interaction strengths, with more diverse foraging landscapes containing higher production of prey and a greater proportion of weak and potentially stabilizing interactions. Additionally, rare patches of large and relatively stable river sediments intensified these effects and further reduced interaction strengths by increasing prey diversity. Our findings highlight the importance of landscape characteristics in promoting stabilizing food-web architectures and provide direct relevance for future management of imperilled species in a simplified and rapidly changing world.
Collapse
Affiliation(s)
| | - Wyatt F Cross
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Christopher S Guy
- U.S. Geological Survey, Montana Cooperative Fishery Research Unit, Department of Ecology, Montana State University, Bozeman, Montana, USA
| | - Adeline J Dutton
- Michigan Department of Natural Resources, Lansing, Michigan, USA
- Montana Cooperative Fishery Research Unit, Bozeman, Montana, USA
| | - James R Junker
- Department of Ecology, Montana State University, Bozeman, Montana, USA
- Great Lakes Research Center 100 Phoenix Drive, Houghton, Michigan, USA
| |
Collapse
|
26
|
An L, Yan YC, Tian HL, Chi CQ, Nie Y, Wu XL. Roles of sulfate-reducing bacteria in sustaining the diversity and stability of marine bacterial community. Front Microbiol 2023; 14:1218828. [PMID: 37637129 PMCID: PMC10448053 DOI: 10.3389/fmicb.2023.1218828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Microbes play central roles in ocean food webs and global biogeochemical processes. Yet, the information available regarding the highly diverse bacterial communities in these systems is not comprehensive. Here we investigated the diversity, assembly process, and species coexistence frequency of bacterial communities in seawater and sediment across ∼600 km of the eastern Chinese marginal seas using 16S rRNA gene amplicon sequencing. Our analyses showed that compared with seawater, bacterial communities in sediment possessed higher diversity and experienced tight phylogenetic distribution. Neutral model analysis showed that the relative contribution of stochastic processes to the assembly process of bacterial communities in sediment was lower than that in seawater. Functional prediction results showed that sulfate-reducing bacteria (SRB) were enriched in the core bacterial sub-communities. The bacterial diversities of both sediment and seawater were positively associated with the relative abundance of SRB. Co-occurrence analysis showed that bacteria in seawater exhibited a more complex interaction network and closer co-occurrence relationships than those in sediment. The SRB of seawater were centrally located in the network and played an essential role in sustaining the complex network. In addition, further analysis indicated that the SRB of seawater helped maintain the high stability of the bacterial network. Overall, this study provided further comprehensive information regarding the characteristics of bacterial communities in the ocean, and provides new insights into keystone taxa and their roles in sustaining microbial diversity and stability in ocean.
Collapse
Affiliation(s)
- Liyun An
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Ying-Chun Yan
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Hai-Long Tian
- College of Agriculture, Henan University, Kaifeng, China
| | - Chang-Qiao Chi
- College of Engineering, Peking University, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China
- Institute of Ocean Research, Peking University, Beijing, China
| |
Collapse
|
27
|
Polishchuk LV, Kasparson AA. Temporal resolution of birth rate analysis in zooplankton and its implications for identifying strong interactions in ecology. Ecol Evol 2023; 13:e10341. [PMID: 37496758 PMCID: PMC10366112 DOI: 10.1002/ece3.10341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023] Open
Abstract
Expanding on Haeckel's classical definition, ecology can be defined as the study of strong and weak interactions between the organism and the environment, hence the need for identifying strong interactions as major drivers of population and community dynamics. The solution to this problem is facilitated by the fact that the frequency distribution of interaction strengths is highly skewed, resulting in few or, according to Liebig's law of the minimum, just one strong interaction. However, a single strong interaction often remains elusive. One of the reasons may be that, due to the ever-present dynamics of ecological systems, a single strong interaction is likely to exist only on relatively short time intervals, so methods with sufficient temporal resolution are required. In this paper, we study the temporal resolution of contribution analysis of birth rate in zooplankton, a method to assess the relative strength of bottom-up (food) versus top-down (predation) effects. Birth rate is estimated by the Edmondson-Paloheimo model. Our test system is a population of the cladoceran Bosmina longirostris inhabiting a small northern lake with few planktivorous predators, and thus likely controlled by food. We find that the method's temporal resolution in detecting bottom-up effects corresponds well to the species' generation time, and the latter seems comparable to the lifetime of a single strong interaction. This enables one to capture a single strong interaction "on the fly," right during its time of existence. We suggest that this feature, the temporal resolution of about the lifetime of a single strong interaction, may be a generally desirable property for any method, not only the one studied here, intended to identify and assess strong interactions. Success in disentangling strong interactions in ecological communities, and thus solving one of the key issues in ecology, may critically depend on the temporal resolution of the methods used.
Collapse
Affiliation(s)
- Leonard V. Polishchuk
- Department of General Ecology and Hydrobiology, Biological FacultyLomonosov Moscow State UniversityMoscowRussia
| | - Anna A. Kasparson
- Kharkevich Institute for Information Transmission ProblemsRussian Academy of SciencesMoscowRussia
| |
Collapse
|
28
|
Martinez L, Wu S, Baur L, Patton MT, Owen-Smith P, Collins SL, Rudgers JA. Soil nematode assemblages respond to interacting environmental changes. Oecologia 2023:10.1007/s00442-023-05412-y. [PMID: 37368022 DOI: 10.1007/s00442-023-05412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Multi-factor experiments suggest that interactions among environmental changes commonly influence biodiversity and community composition. However, most field experiments manipulate only single factors. Soil food webs are critical to ecosystem health and may be particularly sensitive to interactions among environmental changes that include soil warming, eutrophication, and altered precipitation. Here, we asked how environmental changes interacted to alter soil nematode communities in a northern Chihuahuan Desert grassland. Factorial manipulations of nitrogen, winter rainfall, and nighttime warming matched predictions for regional environmental change. Warming reduced nematode diversity by 25% and genus-level richness by 32%, but declines dissipated with additional winter rain, suggesting that warming effects occurred via drying. Interactions between precipitation and nitrogen also altered nematode community composition, but only weakly affected total nematode abundance, indicating that most change involved reordering of species abundances. Specifically, under ambient precipitation, nitrogen fertilizer reduced bacterivores by 68% and herbivores by 73%, but did not affect fungivores. In contrast, under winter rain addition, nitrogen fertilization increased bacterivores by 95%, did not affect herbivores, and doubled fungivore abundance. Rain can reduce soil nitrogen availability and increase turnover in the microbial loop, potentially promoting the recovery of nematode populations overwhelmed by nitrogen eutrophication. Nematode communities were not tightly coupled to plant community composition and may instead track microbes, including biocrusts or decomposers. Our results highlight the importance of interactions among environmental change stressors for shaping the composition and function of soil food webs in drylands.
Collapse
Affiliation(s)
- Laura Martinez
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Shuqi Wu
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Lauren Baur
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Mariah T Patton
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Paul Owen-Smith
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Scott L Collins
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Jennifer A Rudgers
- Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA
| |
Collapse
|
29
|
Nie S, Zheng J, Luo M, Loreau M, Gravel D, Wang S. Will a large complex system be productive? Ecol Lett 2023. [PMID: 37190868 DOI: 10.1111/ele.14242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023]
Abstract
While the relationship between food web complexity and stability has been well documented, how complexity affects productivity remains elusive. In this study, we combine food web theory and a data set of 149 aquatic food webs to investigate the effect of complexity (i.e. species richness, connectance, and average interaction strength) on ecosystem productivity. We find that more complex ecosystems tend to be more productive, although different facets of complexity have contrasting effects. A higher species richness and/or average interaction strength increases productivity, whereas a higher connectance often decreases it. These patterns hold not only between realized complexity and productivity, but also characterize responses of productivity to simulated declines of complexity. Our model also predicts a negative association between productivity and stability along gradients of complexity. Empirical analyses support our predictions on positive complexity-productivity relationships and negative productivity-stability relationships. Our study provides a step forward towards reconciling ecosystem complexity, productivity and stability.
Collapse
Affiliation(s)
- Shipeng Nie
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Junjie Zheng
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
- Institute of S&T Foresight and Statistics, Chinese Academy of Science and Technology for Development, Beijing, China
| | - Mingyu Luo
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| | - Michel Loreau
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS and Paul Sabatier University, Moulis, France
| | - Dominique Gravel
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Shaopeng Wang
- Institute of Ecology, College of Urban and Environmental Sciences, and Key Laboratory for Earth Surface Processes of the Ministry of Education, Peking University, Beijing, China
| |
Collapse
|
30
|
Li X, Yang W, Ma X, Zhu Z, Sun T, Cui B, Yang Z. Invasive Spartina alterniflora habitat forms high energy fluxes but low food web stability compared to adjacent native vegetated habitats. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117487. [PMID: 36801685 DOI: 10.1016/j.jenvman.2023.117487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Invasive Spartina spp. mostly colonizes a bare tidal flat and then establishes a new vegetated habitat, where it promotes the productivity of local ecosystems. However, it was unclear whether the invasive habitat could well exhibit ecosystem functioning, e.g. how its high productivity propagates throughout the food web and whether it thereby develops a high food web stability relative to native vegetated habitats. By developing quantitative food webs for a long-established invasive Spartina alterniflora habitat and adjacent native salt marsh (Suaeda salsa) and seagrass (Zostera japonica) habitats in China's Yellow River Delta, we investigated the distributions of energy fluxes, assessed the stability of food webs, and investigated the net trophic effects between trophic groups by combining all direct and indirect trophic interactions. Results showed that the total energy flux in the invasive S. alterniflora habitat was comparable to that in the Z. japonica habitat, whereas 4.5 times higher than that in the S. salsa habitat. While, the invasive habitat had the lowest trophic transfer efficiencies. Food web stability in the invasive habitat was about 3 and 40 times lower than that in the S. salsa and Z. japonica habitats, respectively. Additionally, there were strong net effects caused by intermediate invertebrate species in the invasive habitat rather than by fish species in both native habitats. This study revealed the contradiction between the promotion of energy fluxes and the decrease of food web stability resulting from the invasion of S. alterniflora, which provides new insights into the community-based management of plant invasions.
Collapse
Affiliation(s)
- Xiaoxiao Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Wei Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China.
| | - Xu Ma
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Zhenchang Zhu
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| | - Tao Sun
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Baoshan Cui
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Yellow River Estuary Wetland Ecosystem Observation and Research Station, Ministry of Education, Shandong, 257500, China
| | - Zhifeng Yang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China; State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
31
|
Zhu L, Chen Y, Sun R, Zhang J, Hale L, Dumack K, Geisen S, Deng Y, Duan Y, Zhu B, Li Y, Liu W, Wang X, Griffiths BS, Bonkowski M, Zhou J, Sun B. Resource-dependent biodiversity and potential multi-trophic interactions determine belowground functional trait stability. MICROBIOME 2023; 11:95. [PMID: 37127665 PMCID: PMC10150482 DOI: 10.1186/s40168-023-01539-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND For achieving long-term sustainability of intensive agricultural practices, it is pivotal to understand belowground functional stability as belowground organisms play essential roles in soil biogeochemical cycling. It is commonly believed that resource availability is critical for controlling the soil biodiversity and belowground organism interactions that ultimately lead to the stabilization or collapse of terrestrial ecosystem functions, but evidence to support this belief is still limited. Here, we leveraged field experiments from the Chinese National Ecosystem Research Network (CERN) and two microcosm experiments mimicking high and low resource conditions to explore how resource availability mediates soil biodiversity and potential multi-trophic interactions to control functional trait stability. RESULTS We found that agricultural practice-induced higher resource availability increased potential cross-trophic interactions over 316% in fields, which in turn had a greater effect on functional trait stability, while low resource availability made the stability more dependent on the potential within trophic interactions and soil biodiversity. This large-scale pattern was confirmed by fine-scale microcosm systems, showing that microcosms with sufficient nutrient supply increase the proportion of potential cross-trophic interactions, which were positively associated with functional stability. Resource-driven belowground biodiversity and multi-trophic interactions ultimately feedback to the stability of plant biomass. CONCLUSIONS Our results indicated the importance of potential multi-trophic interactions in supporting belowground functional trait stability, especially when nutrients are sufficient, and also suggested the ecological benefits of fertilization programs in modern agricultural intensification. Video Abstract.
Collapse
Affiliation(s)
- Lingyue Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Ruibo Sun
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiabao Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| | - Lauren Hale
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
- United States Department of Agriculture, Agricultural Research Service (ARS), Washington, DC, 20250, USA
| | - Kenneth Dumack
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Stefan Geisen
- Laboratory of Nematology, Wageningen University & Research, Wageningen, 6708 PB, The Netherlands
- Department of Terrestrial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, 6700AB, The Netherlands
| | - Ye Deng
- CAS Key Laboratory for Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100081, China
| | - Yinghua Duan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Bo Zhu
- Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Li
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Wenzhao Liu
- Institute of Soil and Water Conservation, Chine, Academy of Sciences and Ministry of Water Resources , Yangling, 712100, China
| | - Xiaoyue Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China
| | - Bryan S Griffiths
- SRUC, Crop and Soil System Research Group, West Mains Road, Edinburgh, EH93JG, UK
| | - Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, 50674, Cologne, Germany
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, 73019, USA
| | - Bo Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Nanjing, 210008, China.
| |
Collapse
|
32
|
Zhang X, Yi Y, Cao Y, Yang Z. Disentangling the effects of phosphorus loading on food web stability in a large shallow lake. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 328:116991. [PMID: 36508976 DOI: 10.1016/j.jenvman.2022.116991] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 11/29/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Excessive nutrient loads reduce ecosystem resilience, resulting in fundamental changes in ecosystem structure and function when exceeding a certain threshold. However, quantitative analysis of the processes by which nutrient loading affects ecosystem resilience requires further exploration. Food web stability is at the heart of ecosystem resilience. In this study, we simulated the dynamics of the food web under different phosphorus loads for Lake Baiyangdian using the PCLake model and calculated the food web stability. Our results showed that there was a good correspondence between the food web stability and ecosystem state response to phosphorus loads. This relationship confirmed that food web stability could be regarded as a signal for the state transition in a real lake ecosystem. Moreover, our estimates suggested that food web stability was influenced only by several functional groups and their interaction strength. Diatoms and zooplankton were the key functional groups that affected food web stability. Phosphorus loads alter the distribution of functional group biomass, which in turn affects energy delivery and, ultimately, the stability of the food web. Corresponding to functional groups, the interactions among zooplankton, diatoms and detritus had the greatest impact, and the interaction strength of the three was positively correlated with food web stability. Overall, our study explained that food-web stability was critical to characterize ecosystem resilience response to external disturbances and can be turned into a scientific tool for lake ecosystem management.
Collapse
Affiliation(s)
- Xiaoxin Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Yujun Yi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Yuanxin Cao
- Jiangsu Engineering Laboratory for Environmental Functional Materials, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture & Environmental Protection, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, 223300, China
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, Guangdong, 510006, China.
| |
Collapse
|
33
|
Yang R, Sun W, Guo L, Li B, Wang Q, Huang D, Gao W, Xu R, Li Y. Response of soil protists to antimony and arsenic contamination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120387. [PMID: 36223853 DOI: 10.1016/j.envpol.2022.120387] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Microorganisms can mediate antimony (Sb) and arsenic (As) transformation and thus change their mobility and toxicity. Having similar geochemical behavior, Sb and As are generally considered to exert similar environmental pressure on microbiome. However, it needs further validation, especially for protists. In this study, the responses of protistan communities to Sb and As were investigated by collecting soils from Xikuangshan Sb mine and Shimen As mine in China. Antimony and As contamination taxonomically and functionally (consumer and phototroph) changed the alpha and beta diversities of protistan communities, but exerted different impacts on the parasitic community. Based on multiple statistical tools, As contamination had a greater impact on protistan communities than Sb. The ecological networks of highly contaminated sites were less complex but highly positively connected compared to less contaminated sites. High As contamination raised the ratio of consumers and decreased the ratio of phototrophs in ecological networks, while the opposite tendency was observed in Sb contaminated soils. High Sb and As contamination enriched different keystone taxa resistant to Sb and As. These results demonstrate that protistan community respond differently to Sb and As.
Collapse
Affiliation(s)
- Rui Yang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Lifang Guo
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Baoqin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Qi Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Duanyi Huang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China
| | - Wenlong Gao
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; Hainan Key Laboratory of Tropical Eco-Circular Agriculture, Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, PR China; Hainan Danzhou Tropical Agro-ecosystem National Observation and Research Station, Danzhou, 571737, PR China
| | - Rui Xu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China; Institute of Environmental Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, PR China
| | - Yongbin Li
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou, 510650, PR China.
| |
Collapse
|
34
|
Intensive grassland management disrupts below-ground multi-trophic resource transfer in response to drought. Nat Commun 2022; 13:6991. [PMID: 36385003 PMCID: PMC9668848 DOI: 10.1038/s41467-022-34449-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022] Open
Abstract
Modification of soil food webs by land management may alter the response of ecosystem processes to climate extremes, but empirical support is limited and the mechanisms involved remain unclear. Here we quantify how grassland management modifies the transfer of recent photosynthates and soil nitrogen through plants and soil food webs during a post-drought period in a controlled field experiment, using in situ 13C and 15N pulse-labelling in intensively and extensively managed fields. We show that intensive management decrease plant carbon (C) capture and its transfer through components of food webs and soil respiration compared to extensive management. We observe a legacy effect of drought on C transfer pathways mainly in intensively managed grasslands, by increasing plant C assimilation and 13C released as soil CO2 efflux but decreasing its transfer to roots, bacteria and Collembola. Our work provides insight into the interactive effects of grassland management and drought on C transfer pathways, and highlights that capture and rapid transfer of photosynthates through multi-trophic networks are key for maintaining grassland resistance to drought.
Collapse
|
35
|
Modeling Community Dynamics Through Environmental Effects, Species Interactions and Movement. JOURNAL OF AGRICULTURAL, BIOLOGICAL AND ENVIRONMENTAL STATISTICS 2022. [DOI: 10.1007/s13253-022-00520-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
36
|
Jordán F. The network perspective: Vertical connections linking organizational levels. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2022.110112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Antunes AC, Gauzens B, Brose U, Potapov AM, Jochum M, Santini L, Eisenhauer N, Ferlian O, Cesarz S, Scheu S, Hirt MR. Environmental drivers of local abundance–mass scaling in soil animal communities. OIKOS 2022. [DOI: 10.1111/oik.09735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ana Carolina Antunes
- Inst. of Biodiversity, Friedrich Schiller Univ. Jena Jena Germany
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Benoit Gauzens
- Inst. of Biodiversity, Friedrich Schiller Univ. Jena Jena Germany
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Ulrich Brose
- Inst. of Biodiversity, Friedrich Schiller Univ. Jena Jena Germany
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| | - Anton M. Potapov
- Johann Friedrich Blumenbach Inst. of Zoology and Anthropology, Univ. of Goettingen Goettingen Germany
| | - Malte Jochum
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Leipzig Univ. Leipzig Germany
| | - Luca Santini
- Dept of Biology and Biotechnologies ‘Charles Darwin', Sapienza Univ. of Rome Rome Italy
| | - Nico Eisenhauer
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Leipzig Univ. Leipzig Germany
| | - Olga Ferlian
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Leipzig Univ. Leipzig Germany
| | - Simone Cesarz
- Experimental Interaction Ecology, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
- Inst. of Biology, Leipzig Univ. Leipzig Germany
| | - Stefan Scheu
- Johann Friedrich Blumenbach Inst. of Zoology and Anthropology, Univ. of Goettingen Goettingen Germany
- Centre of Biodiversity and Sustainable Land Use Göttingen Germany
| | - Myriam R. Hirt
- Inst. of Biodiversity, Friedrich Schiller Univ. Jena Jena Germany
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐Leipzig Leipzig Germany
| |
Collapse
|
38
|
Setälä H, Szlavecz K, Pullen JD, Parker JD, Huang Y, Chang C. Acute resource pulses from periodical cicadas propagate to belowground food webs but do not affect tree performance. Ecology 2022; 103:e3773. [PMID: 35633474 PMCID: PMC9786866 DOI: 10.1002/ecy.3773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/15/2022] [Accepted: 04/18/2022] [Indexed: 12/30/2022]
Abstract
Acute resource pulses can have dramatic legacies for organismal growth, but the legacy effects of resource pulses on broader aspects of community structure and ecosystem processes are less understood. Mass emergence of periodical cicadas (Magicicada spp.) provides an excellent opportunity to shed light on the influence of resource pulses on community and ecosystem dynamics: the adults emerge every 13 or 17 years in vast numbers over much of eastern North America, with a smaller but still significant number becoming incorporated into forest food webs. To study the potential effects of such arthropod resource pulse on primary production and belowground food webs, we added adult cicada bodies to the soil surface surrounding sycamore trees and assessed soil carbon and nitrogen concentrations, plant-available nutrients, abundance and community composition of soil fauna occupying various trophic levels, decomposition rate of plant litter after 50 and 100 days, and tree performance for 4 years. Contrary to previous studies, we did not find significant cicada effects on tree performance despite observing higher plant-available nutrient levels on cicada addition plots. Cicada addition did change the community composition of soil nematodes and increased the abundance of bacterial- and fungal-feeding nematodes, while plant feeders, omnivores, and predators were not influenced. Altogether, acute resource pulses from decomposing cicadas propagated belowground to soil microbial-feeding invertebrates and stimulated nutrient mineralization in the soil, but these effects did not transfer up to affect tree performance. We conclude that, despite their influence on soil food web and processes they carry out, even massive resource pulses from arthropods do not necessarily translate to NPP, supporting the view that ephemeral nutrient pulses can be attenuated relatively quickly despite being relatively large in magnitude.
Collapse
Affiliation(s)
- Heikki Setälä
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental SciencesUniversity of HelsinkiLahtiFinland
| | - Katalin Szlavecz
- Department of Earth and Planetary SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Jamie D. Pullen
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - John D. Parker
- Smithsonian Environmental Research CenterEdgewaterMarylandUSA
| | - Yumei Huang
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Chih‐Han Chang
- Department of Life ScienceNational Taiwan UniversityTaipeiTaiwan,Institute of Ecology and Evolutionary BiologyNational Taiwan UniversityTaipeiTaiwan
| |
Collapse
|
39
|
Kéfi S, Saade C, Berlow EL, Cabral JS, Fronhofer EA. Scaling up our understanding of tipping points. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210386. [PMID: 35757874 PMCID: PMC9234815 DOI: 10.1098/rstb.2021.0386] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/01/2022] [Indexed: 11/12/2022] Open
Abstract
Anthropogenic activities are increasingly affecting ecosystems across the globe. Meanwhile, empirical and theoretical evidence suggest that natural systems can exhibit abrupt collapses in response to incremental increases in the stressors, sometimes with dramatic ecological and economic consequences. These catastrophic shifts are faster and larger than expected from the changes in the stressors and happen once a tipping point is crossed. The primary mechanisms that drive ecosystem responses to perturbations lie in their architecture of relationships, i.e. how species interact with each other and with the physical environment and the spatial structure of the environment. Nonetheless, existing theoretical work on catastrophic shifts has so far largely focused on relatively simple systems that have either few species and/or no spatial structure. This work has laid a critical foundation for understanding how abrupt responses to incremental stressors are possible, but it remains difficult to predict (let alone manage) where or when they are most likely to occur in more complex real-world settings. Here, we discuss how scaling up our investigations of catastrophic shifts from simple to more complex-species rich and spatially structured-systems could contribute to expanding our understanding of how nature works and improve our ability to anticipate the effects of global change on ecological systems. This article is part of the theme issue 'Ecological complexity and the biosphere: the next 30 years'.
Collapse
Affiliation(s)
- Sonia Kéfi
- ISEM, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
- Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA
| | - Camille Saade
- ISEM, CNRS, University of Montpellier, IRD, EPHE, Montpellier, France
| | | | - Juliano S. Cabral
- Ecosystem Modeling Group, Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
40
|
Gutgesell M, McMeans BC, Guzzo MM, de Groot V, Fisk AT, Johnson TB, McCann KS. Subsidy accessibility drives asymmetric food web responses. Ecology 2022; 103:e3817. [DOI: 10.1002/ecy.3817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/25/2022] [Indexed: 11/11/2022]
Affiliation(s)
| | - Bailey C. McMeans
- Department of Biology University of Toronto Mississauga Mississauga ON Canada
| | | | - Valesca de Groot
- Ocean Science Centre Memorial University of Newfoundland Logy Bay NL Canada
| | - Aaron T. Fisk
- School of the Environment University of Windsor Windsor ON Canada
| | - Timothy B. Johnson
- Ontario Ministry of Northern Development Mines, Natural Resources and Forestry, Glenora Fisheries Station Picton ON Canada
| | | |
Collapse
|
41
|
Abstract
AbstractTrophic transfer efficiency (TTE) is usually calculated as the ratio of production rates between two consecutive trophic levels. Although seemingly simple, TTE estimates from lakes are rare. In our review, we explore the processes and structures that must be understood for a proper lake TTE estimate. We briefly discuss measurements of production rates and trophic positions and mention how ecological efficiencies, nutrients (N, P) and other compounds (fatty acids) affect energy transfer between trophic levels and hence TTE. Furthermore, we elucidate how TTE estimates are linked with size-based approaches according to the Metabolic Theory of Ecology, and how food-web models can be applied to study TTE in lakes. Subsequently, we explore temporal and spatial heterogeneity of production and TTE in lakes, with a particular focus on the links between benthic and pelagic habitats and between the lake and the terrestrial environment. We provide an overview of TTE estimates from lakes found in the published literature. Finally, we present two alternative approaches to estimating TTE. First, TTE can be seen as a mechanistic quantity informing about the energy and matter flow between producer and consumer groups. This approach is informative with respect to food-web structure, but requires enormous amounts of data. The greatest uncertainty comes from the proper consideration of basal production to estimate TTE of omnivorous organisms. An alternative approach is estimating food-chain and food-web efficiencies, by comparing the heterotrophic production of single consumer levels or the total sum of all heterotrophic production including that of heterotrophic bacteria to the total sum of primary production. We close the review by pointing to a few research questions that would benefit from more frequent and standardized estimates of TTE in lakes.
Collapse
|
42
|
Funes M, Saravia LA, Cordone G, Iribarne OO, Galván DE. Network analysis suggests changes in food web stability produced by bottom trawl fishery in Patagonia. Sci Rep 2022; 12:10876. [PMID: 35760984 PMCID: PMC9237026 DOI: 10.1038/s41598-022-14363-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 06/06/2022] [Indexed: 11/30/2022] Open
Abstract
Demersal fisheries are one of the top anthropic stressors in marine environments. In the long term, some species are more vulnerable to fishery impacts than others, which can lead to permanent changes on the food web. The trophic relationships between predator and prey constitute the food web and it represents a network of the energy channels in an ecosystem. In turn, the network structure influences ecosystem diversity and stability. The first aim of this study was to describe for the first time the food web of the San Jorge Gulf (Patagonia Argentina) with high resolution, i.e. to the species level when information is available. The San Jorge Gulf was subject to intense fisheries thus our second aim is to analyse the food web structure with and without fishery to evaluate if the bottom-trawl industrial fishery altered the network structure and stability. We used several network metrics like: mean trophic level, omnivory, modularity and quasi-sign stability. We included these metrics because they are related to stability and can be evaluated using predator diets that can weight the links between predators and prey. The network presented 165 species organized in almost five trophic levels. The inclusion of a fishery node adds 69 new trophic links. All weighted and unweighted metrics showed differences between the two networks, reflecting a decrease in stability when fishery was included in the system. Thus, our results suggested a probable change of state of the system. The observed changes in species abundances since the fishery was established, could represent the state change predicted by network analysis. Our results suggests that changes in the stability of food webs can be used to evaluate the impacts of human activity on ecosystems.
Collapse
Affiliation(s)
- Manuela Funes
- Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Rodriguez Peña 4046 Nivel 1, B7602GSD, Mar del Plata, Buenos Aires, Argentina
| | - Leonardo A Saravia
- Centro Austral de Investigaciones Científicas del Consejo Nacional de Investigaciones Científicas y Técnicas (CADIC-CONICET), Bernardo Houssay 200, V9410CAB, Ushuaia, Tierra del Fuego, Argentina. .,Instituto de Ciencias, Universidad Nacional de General Sarmiento, J.M. Gutierrez 1159 (1613), Los Polvorines, Buenos Aires, Argentina.
| | - Georgina Cordone
- Centro para el Estudio de Sistemas Marinos-Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Bv. Almirante Brown 2915, U9120ACV, Puerto Madryn, Chubut, Argentina
| | - Oscar O Iribarne
- Instituto de Investigaciones Marinas y Costeras (IIMyC-CONICET), Rodriguez Peña 4046 Nivel 1, B7602GSD, Mar del Plata, Buenos Aires, Argentina
| | - David E Galván
- Centro para el Estudio de Sistemas Marinos-Consejo Nacional de Investigaciones Científicas y Técnicas (CESIMAR-CONICET), Bv. Almirante Brown 2915, U9120ACV, Puerto Madryn, Chubut, Argentina
| |
Collapse
|
43
|
Kuiper JJ, Kooi BW, Peterson GD, Mooij WM. Bridging Theories for Ecosystem Stability Through Structural Sensitivity Analysis of Ecological Models in Equilibrium. Acta Biotheor 2022; 70:18. [PMID: 35737146 PMCID: PMC9225980 DOI: 10.1007/s10441-022-09441-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 05/27/2022] [Indexed: 11/24/2022]
Abstract
Ecologists are challenged by the need to bridge and synthesize different approaches and theories to obtain a coherent understanding of ecosystems in a changing world. Both food web theory and regime shift theory shine light on mechanisms that confer stability to ecosystems, but from different angles. Empirical food web models are developed to analyze how equilibria in real multi-trophic ecosystems are shaped by species interactions, and often include linear functional response terms for simple estimation of interaction strengths from observations. Models of regime shifts focus on qualitative changes of equilibrium points in a slowly changing environment, and typically include non-linear functional response terms. Currently, it is unclear how the stability of an empirical food web model, expressed as the rate of system recovery after a small perturbation, relates to the vulnerability of the ecosystem to collapse. Here, we conduct structural sensitivity analyses of classical consumer-resource models in equilibrium along an environmental gradient. Specifically, we change non-proportional interaction terms into proportional ones, while maintaining the equilibrium biomass densities and material flux rates, to analyze how alternative model formulations shape the stability properties of the equilibria. The results reveal no consistent relationship between the stability of the original models and the proportionalized versions, even though they describe the same biomass values and material flows. We use these findings to critically discuss whether stability analysis of observed equilibria by empirical food web models can provide insight into regime shift dynamics, and highlight the challenge of bridging alternative modelling approaches in ecology and beyond.
Collapse
Affiliation(s)
- Jan J Kuiper
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 10691, Stockholm, Sweden.
- Department of Aquatic Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands.
| | - Bob W Kooi
- Faculty of Science, VU University, de Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Garry D Peterson
- Stockholm Resilience Centre, Stockholm University, Kräftriket 2B, SE 10691, Stockholm, Sweden
| | - Wolf M Mooij
- Department of Aquatic Ecology, Netherlands Institute of Ecology, P.O. Box 50, 6700 AB, Wageningen, The Netherlands
- Aquatic Ecology and Water Quality Management Group, Department of Environmental Sciences, Wageningen University, P.O. Box 47, 6700 AA, Wageningen, The Netherlands
| |
Collapse
|
44
|
Yonatan Y, Amit G, Friedman J, Bashan A. Complexity-stability trade-off in empirical microbial ecosystems. Nat Ecol Evol 2022; 6:693-700. [PMID: 35484221 DOI: 10.1038/s41559-022-01745-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 03/22/2022] [Indexed: 12/12/2022]
Abstract
May's stability theory, which holds that large ecosystems can be stable up to a critical level of complexity, a product of the number of resident species and the intensity of their interactions, has been a central paradigm in theoretical ecology. So far, however, empirically demonstrating this theory in real ecological systems has been a long-standing challenge with inconsistent results. Especially, it is unknown whether this theory is pertinent in the rich and complex communities of natural microbiomes, mainly due to the challenge of reliably reconstructing such large ecological interaction networks. Here we introduce a computational framework for estimating an ecosystem's complexity without relying on a priori knowledge of its underlying interaction network. By applying this method to human-associated microbial communities from different body sites and sponge-associated microbial communities from different geographical locations, we found that in both cases the communities display a pronounced trade-off between the number of species and their effective connectance. These results suggest that natural microbiomes are shaped by stability constraints, which limit their complexity.
Collapse
Affiliation(s)
- Yogev Yonatan
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Guy Amit
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel
| | - Jonathan Friedman
- Department of Plant Pathology and Microbiology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Amir Bashan
- Physics Department, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
45
|
Loop analysis quantifying human impact in a river ecosystem model. ECOLOGICAL COMPLEXITY 2022. [DOI: 10.1016/j.ecocom.2022.101000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Wu C, Chao Y, Shu L, Qiu R. Interactions between soil protists and pollutants: An unsolved puzzle. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128297. [PMID: 35077968 DOI: 10.1016/j.jhazmat.2022.128297] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Soil protists are essential but often overlooked in soils, although they play crucial functional roles in the terrestrial ecosystem. While soil protists have drawn increased attention to their functional role in soils, their interaction with soil pollutants remains unresolved. This review provides a first overview of the current understanding of interactions between soil protists and major pollutants (heavy metals, organic pollutants, nanoparticles, and soil pathogens). We summarize how soil pollutants affect protists and vice versa, showing that we are just beginning to understand their complex interactions. In addition, we identify five research gaps, including hidden diversity, adaptive mechanisms, species interactions, soil bioindicators and environmental applications, and we hope that our review will help promote and build research guidelines for the future. In conclusion, a better understanding of soil pollutant-protist interactions will significantly increase our knowledge of the pollution ecology in the soil and how soil organisms respond and adapt to environmental pollution, which will contribute to the bioremediation and environmental applications of protists in soil.
Collapse
Affiliation(s)
- Chenyuan Wu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
47
|
Wang B, Zhu Y, Chen X, Chen D, Wu Y, Wu L, Liu S, Yue L, Wang Y, Bai Y. Even short‐term revegetation complicates soil food webs and strengths their links with ecosystem functions. J Appl Ecol 2022. [DOI: 10.1111/1365-2664.14180] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Bing Wang
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Yuhe Zhu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Xiang Chen
- College of Grassland, Resources and Environment Inner Mongolia Agricultural University Hohhot China
| | - Dima Chen
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Ying Wu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Liji Wu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Shengen Liu
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Linyan Yue
- Engineering Research Center of Eco‐Environment in Three Gorges Reservoir Region of Ministry of Education China Three Gorges University Yichang China
| | - Yang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
| | - Yongfei Bai
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany Chinese Academy of Sciences Beijing China
- University of Chinese Academy of Sciences Beijing China
| |
Collapse
|
48
|
Potapov AM. Multifunctionality of belowground food webs: resource, size and spatial energy channels. Biol Rev Camb Philos Soc 2022; 97:1691-1711. [PMID: 35393748 DOI: 10.1111/brv.12857] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 01/17/2023]
Abstract
The belowground compartment of terrestrial ecosystems drives nutrient cycling, the decomposition and stabilisation of organic matter, and supports aboveground life. Belowground consumers create complex food webs that regulate functioning, ensure stability and support biodiversity both below and above ground. However, existing soil food-web reconstructions do not match recently accumulated empirical evidence and there is no comprehensive reproducible approach that accounts for the complex resource, size and spatial structure of food webs in soil. Here I build on generic food-web organisation principles and use multifunctional classification of soil protists, invertebrates and vertebrates, to reconstruct a 'multichannel' food web across size classes of soil-associated consumers. I infer weighted trophic interactions among trophic guilds using feeding preferences and prey protection traits (evolutionarily inherited traits), size and spatial distributions (niche overlaps), and biomass-dependent feeding. I then use food-web reconstruction, together with assimilation efficiencies, to calculate energy fluxes assuming a steady-state energetic system. Based on energy fluxes, I propose a number of indicators, related to stability, biodiversity and multiple ecosystem-level functions such as herbivory, top-down control, translocation and transformation of organic matter. I illustrate this approach with an empirical example, comparing it with traditional resource-focused soil food-web reconstruction. The multichannel reconstruction can be used to assess 'trophic multifunctionality' (analogous to ecosystem multifunctionality), i.e. simultaneous support of multiple trophic functions by the food web, and compare it across communities and ecosystems spanning beyond the soil. With further empirical validation of the proposed functional indicators, this multichannel reconstruction approach could provide an effective tool for understanding animal diversity-ecosystem functioning relationships in soil. This tool hopefully will inspire more researchers to describe soil communities and belowground-aboveground interactions comprehensively. Such studies will provide informative indicators for including consumers as active agents in biogeochemical models, not only locally but also on regional and global scales.
Collapse
Affiliation(s)
- Anton M Potapov
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, Animal Ecology, University of Göttingen, Untere Karspüle 2, 37073, Göttingen, Germany.,A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky Prospect 33, 119071, Moscow
| |
Collapse
|
49
|
Rober AR, McCann KS, Turetsky MR, Wyatt KH. Cascading effects of predators on algal size structure. JOURNAL OF PHYCOLOGY 2022; 58:308-317. [PMID: 35032342 DOI: 10.1111/jpy.13235] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The presence of edible and inedible prey species in a food web can influence the strength that nutrients (bottom-up) or herbivores (top-down) have on primary production. In boreal peatlands, wetter more nutrient-rich conditions associated with ongoing climate change are expanding consumer access to aquatic habitat and promoting sources of primary production (i.e., algae) that are susceptible to trophic regulation. Here, we used an in situ mesocosm experiment to evaluate the consequences of enhanced nutrient availability and food-web manipulation (herbivore and predator exclusion) on algal assemblage structure in an Alaskan fen. Owing to the potential for herbivores to selectively consume edible algae (small cells) in favor of more resistant forms, we predicted that the proportion of less-edible algae (large cells) would determine the strength of top-down or bottom-up effects. Consistent with these expectations, we observed an increase in algal-cell size in the presence of herbivores (2-tiered food web) that was absent in the presence of a trophic cascade (3-tiered food web), suggesting that predators indirectly prevented morphological changes in the algal assemblage by limiting herbivory. Increases in algal-cell size with herbivory were driven by a greater proportion of filamentous green algae and nitrogen-fixing cyanobacteria, whose size and morphological characteristics mechanically minimize consumption. While consumer-driven shifts in algal assemblage structure were significant, they did not prevent top-down regulation of biofilm development by herbivores. Our findings show that increasing wet periods in northern peatlands will provide new avenues for trophic regulation of algal production, including directly through consumption and indirectly via a trophic cascade.
Collapse
Affiliation(s)
- Allison R Rober
- Department of Biology, Ball State University, Muncie, Indiana, 47306, USA
| | - Kevin S McCann
- Department of Integrative Biology, University of Guelph, Guelph, Ontario, NIG 2WI, Canada
| | - Merritt R Turetsky
- Institute of Arctic and Alpine Research and Ecology and Evolutionary Biology Department, University of Colorado Boulder, Boulder, Colorado, 80309, USA
| | - Kevin H Wyatt
- Department of Biology, Ball State University, Muncie, Indiana, 47306, USA
| |
Collapse
|
50
|
Potapov AM, Beaulieu F, Birkhofer K, Bluhm SL, Degtyarev MI, Devetter M, Goncharov AA, Gongalsky KB, Klarner B, Korobushkin DI, Liebke DF, Maraun M, Mc Donnell RJ, Pollierer MM, Schaefer I, Shrubovych J, Semenyuk II, Sendra A, Tuma J, Tůmová M, Vassilieva AB, Chen T, Geisen S, Schmidt O, Tiunov AV, Scheu S. Feeding habits and multifunctional classification of soil‐associated consumers from protists to vertebrates. Biol Rev Camb Philos Soc 2022; 97:1057-1117. [DOI: 10.1111/brv.12832] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 12/17/2022]
Affiliation(s)
- Anton M. Potapov
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Frédéric Beaulieu
- Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri‐Food Canada Ottawa ON K1A 0C6 Canada
| | - Klaus Birkhofer
- Department of Ecology Brandenburg University of Technology Karl‐Wachsmann‐Allee 6 03046 Cottbus Germany
| | - Sarah L. Bluhm
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Maxim I. Degtyarev
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Miloslav Devetter
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anton A. Goncharov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Konstantin B. Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Bernhard Klarner
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Daniil I. Korobushkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Dana F. Liebke
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Mark Maraun
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Rory J. Mc Donnell
- Department of Crop and Soil Science Oregon State University Corvallis OR 97331 U.S.A
| | - Melanie M. Pollierer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Ina Schaefer
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
| | - Julia Shrubovych
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Institute of Systematics and Evolution of Animals PAS Slawkowska 17 Pl 31‐016 Krakow Poland
- State Museum Natural History of NAS of Ukraine Teatralna 18 79008 Lviv Ukraine
| | - Irina I. Semenyuk
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
- Joint Russian‐Vietnamese Tropical Center №3 Street 3 Thang 2, Q10 Ho Chi Minh City Vietnam
| | - Alberto Sendra
- Colecciones Entomológicas Torres‐Sala, Servei de Patrimoni Històric, Ajuntament de València València Spain
- Departament de Didàctica de les Cièncias Experimentals i Socials, Facultat de Magisteri Universitat de València València Spain
| | - Jiri Tuma
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
- Biology Centre CAS, Institute of Entomology Branisovska 1160/31 370 05 Ceske Budejovice Czech Republic
| | - Michala Tůmová
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Anna B. Vassilieva
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Ting‐Wen Chen
- Biology Centre of the Czech Academy of Sciences, Institute of Soil Biology Na Sádkách 702/7 37005 České Budějovice Czech Republic
| | - Stefan Geisen
- Department of Nematology Wageningen University & Research 6700ES Wageningen The Netherlands
| | - Olaf Schmidt
- UCD School of Agriculture and Food Science University College Dublin Belfield Dublin 4 Ireland
| | - Alexei V. Tiunov
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences Leninsky Prospect 33 119071 Moscow Russia
| | - Stefan Scheu
- J.F. Blumenbach Institute of Zoology and Anthropology University of Göttingen Untere Karspüle 2 37073 Göttingen Germany
- Centre of Biodiversity and Sustainable Land Use Büsgenweg 1 37077 Göttingen Germany
| |
Collapse
|