1
|
Chriqui LE, Cavin S, Perentes JY. Dual implication of endothelial adhesion molecules in tumor progression and cancer immunity. Cell Adh Migr 2025; 19:2472308. [PMID: 40071851 PMCID: PMC11913389 DOI: 10.1080/19336918.2025.2472308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 10/16/2024] [Accepted: 01/19/2025] [Indexed: 03/19/2025] Open
Abstract
Adhesion molecules are proteins expressed at the surface of various cell types. Their main contribution to immunity is to allow the infiltration of immune cells in an inflamed site. In cancer, adhesion molecules have been shown to promote tumor dissemination favoring the development of metastasis. While adhesion molecule inhibition approaches were unsuccessful for cancer control, their importance for the generation of an immune response alone or in combination with immunotherapies has gained interest over the past years. Currently, the balance of adhesion molecules for tumor promotion/inhibition is unclear. Here we review the role of selectins, intercellular adhesion molecules (ICAM) and vascular cell adhesion molecules (VCAM) from the perspective of the dual contribution of adhesion molecules in tumor progression and immunity.
Collapse
Affiliation(s)
- Louis-Emmanuel Chriqui
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Sabrina Cavin
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| | - Jean Yannis Perentes
- Division of Thoracic Surgery, Department of Surgery, CHUV, Lausanne University Hospital, Lausanne, Switzerland
- Agora Cancer Research Center Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
3
|
Lou J, Pandžić E, Böcking T, Deng Q, Rossy J, Gaus K. Step-Wise Assembly of LAT Signaling Clusters Immediately After T Cell Receptor Triggering Contributes to Signal Propagation. Int J Mol Sci 2025; 26:4076. [PMID: 40362315 PMCID: PMC12071625 DOI: 10.3390/ijms26094076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2025] [Revised: 04/18/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Linker for activation of T cells (LAT) is an essential adaptor protein in early T cell receptor (TCR) signaling that propagates multiple signaling pathways. However, how LAT spatial organization facilitates signal initiation and propagation after TCR triggering is not clear. To differentiate de novo assembly in the plasma membrane from pre-existing LAT vesicles and clusters, we developed imaging protocols and analyses to capture the organization and dynamics of single LAT molecules immediately after TCR engagement. We could observe individual LAT molecules in the plasma membrane that assembled into immobile signaling entities requiring LAT phosphorylation. This step-wise assembly process was temporally highly coordinated via the zeta-chain-associated protein kinase 70 (Zap70)-LAT-growth factor receptor-bound protein 2 (Grb2) pathway. While multiple spatial organization co-existed even within the plasma membrane, our data suggest that de novo plasma membrane assemblies facilitated signal propagation.
Collapse
Affiliation(s)
- Jieqiong Lou
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
- School of Physics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Elvis Pandžić
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Till Böcking
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Qiji Deng
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jérémie Rossy
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- Biotechnology Institute Thurgau, University of Konstanz, 78464 Konstanz, Germany
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Biomedical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Arp AB, Abel Gutierrez A, ter Beest M, Franken GA, Warner H, Rodgers Furones A, Kenyon AN, Jäger F, Cabrera-Orefice A, Kläsener K, van Deventer S, Droesen L, Dunlock VME, Classens R, Staniek J, Borst J, Reth M, Brandt U, Gros P, Kuijpers TW, Heemskerk MHM, Rizzi M, Querol Cano L, van Spriel AB. CD70 recruitment to the immunological synapse is dependent on CD20 in B cells. Proc Natl Acad Sci U S A 2025; 122:e2414002122. [PMID: 40232798 PMCID: PMC12037035 DOI: 10.1073/pnas.2414002122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 03/14/2025] [Indexed: 04/16/2025] Open
Abstract
CD20 is a four-transmembrane protein expressed at the surface of B cells from late pro-B cells to memory B cells, with the exception of plasma cells. Its expression pattern makes it an attractive therapeutic target for different B cell malignancies and autoimmune diseases. Despite the clinical success of CD20-targeting antibodies, the biology of the CD20 protein is still not well understood. We investigated CD20 binding partners in the membrane of human B cells using immunoprecipitation followed by mass spectrometry analysis. We identified a molecular interaction between CD70 and CD20, and confirmed this using proximity ligation assays. CD20-CD70 spatiotemporal colocalization was validated at the plasma membrane of B cells using high-resolution microscopy. Cell surface expression of CD70 was found to be enhanced upon CD20 overexpression, suggesting a role for CD20 in stabilizing CD70 at the B cell membrane. Moreover, we observed impaired B-T cell synapse formation and defective recruitment of CD70 to the immunological synapse in the absence of CD20. Impaired synapse formation was confirmed by deleting CD20 in primary B cells, and analysis of B cells from a CD20-deficient patient. Finally, CD20-deletion resulted in diminished T cell activation and cytokine secretion. Together, this study demonstrates that CD20 interacts with CD70 at the B cell membrane, and that CD20 is required for immune synapse formation between B and T cells and consequent T cell activation.
Collapse
Affiliation(s)
- Abbey B. Arp
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andrea Abel Gutierrez
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Martin ter Beest
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Guus A. Franken
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Harry Warner
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Andrea Rodgers Furones
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Angelique N. Kenyon
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Franziska Jäger
- Department of Chemistry, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht UniversityUtrecht3584 CH, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Kathrin Kläsener
- Department of Molecular Immunology, Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, Centre for Biological Signalling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg79104, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
| | - Sjoerd van Deventer
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Lenny Droesen
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Vera Marie E. Dunlock
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - René Classens
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Julian Staniek
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
| | - Jannie Borst
- Department of Immunology, Leiden University Medical Center, Leiden2333 ZG, The Netherlands
- Oncode Institute, Leiden University Medical Center, Leiden2333 ZG, The Netherlands
| | - Michael Reth
- Department of Molecular Immunology, Centre for Biological Signalling Studies and Centre for Integrative Biological Signalling Studies, Centre for Biological Signalling Studies, Biology III, Faculty of Biology, University of Freiburg, Freiburg79104, Germany
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
| | - Ulrich Brandt
- Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Piet Gros
- Department of Chemistry, Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht UniversityUtrecht3584 CH, The Netherlands
| | - Taco W. Kuijpers
- Department of Pediatric Immunology, Rheumatology and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam1105 AZ, The Netherlands
| | - Mirjam H. M. Heemskerk
- Department of Hematology, Leiden University Medical Center, Leiden2333 ZG, The Netherlands
| | - Marta Rizzi
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg79106, Germany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna1090, Austria
- Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg79104, Germany
| | - Laia Querol Cano
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| | - Annemiek B. van Spriel
- Department of Medical BioSciences, Radboud Institute for Medical Innovation, Radboud University Medical Center, Nijmegen6525 GA, The Netherlands
| |
Collapse
|
5
|
Shi X, He X, Xu C. Charge-based immunoreceptor signalling in health and disease. Nat Rev Immunol 2025; 25:298-311. [PMID: 39528837 DOI: 10.1038/s41577-024-01105-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Immunoreceptors have crucial roles in sensing environmental signals and initiating immune responses to protect the host. Dysregulation of immunoreceptor signalling can therefore lead to a range of diseases, making immunoreceptor-based therapies a promising frontier in biomedicine. A common feature of various immunoreceptors is the basic-residue-rich sequence (BRS), which is a largely unexplored aspect of immunoreceptor signalling. The BRS is typically located in the cytoplasmic juxtamembrane region of immunoreceptors, where it forms dynamic interactions with neighbouring charged molecules to regulate signalling. Loss or gain of the basic residues in an immunoreceptor BRS has been linked to severe human diseases, such as immunodeficiency and autoimmunity. In this Perspective, we describe the role of BRSs in various immunoreceptors, elucidating their signalling mechanisms and biological functions. Furthermore, we highlight pathogenic mutations in immunoreceptor BRSs and discuss the potential of leveraging BRS signalling in engineered T cell-based therapies.
Collapse
Affiliation(s)
- Xiaoshan Shi
- Key Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Xing He
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- Key Laboratory of Multi-Cell Systems, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
6
|
Castellote-Borrell M, Domingo M, Merlina F, Lu H, Colell S, Bachiller M, Juan M, Guedan S, Faraudo J, Guasch J. Lymph-Node Inspired Hydrogels Enhance CAR Expression and Proliferation of CAR T Cells. ACS APPLIED MATERIALS & INTERFACES 2025; 17:16548-16560. [PMID: 40042178 PMCID: PMC11931490 DOI: 10.1021/acsami.4c19942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 01/20/2025] [Indexed: 03/21/2025]
Abstract
Chimeric antigen receptor (CAR) T therapy has shown unprecedented results in clinical practice, including long-term complete responses. One of the current challenges of CAR T therapy is to optimize its production in order to lower its cost. Currently, the in vivo activation of T cells by dendritic cells is replicated ex vivo using polymeric magnetic beads coated with antibodies to induce polyclonal T cell activation. However, current practice overlooks the importance of the complex environment that constitutes the lymph nodes, in which T cells activate and proliferate in vivo. Hydrogels are an ideal candidate material for mimicking the properties of natural tissues such as lymph nodes. In this study, key conditions of the composition, stiffness, and microarchitecture of hydrogels were experimentally and theoretically investigated to optimize primary human CAR T cell culture, focusing on CAR expression and proliferation. Poly(ethylene glycol)-heparin hydrogels featuring interconnected pores of 120 μm and an intermediate stiffness of 3.1 kPa were identified as the most suitable conditions for promoting CAR T cell expression and expansion. Specifically, these hydrogels increased the percentage of CAR+ cells by 50% and doubled the replication index compared to suspension cultures. In conclusion, these newly engineered hydrogels are an interesting tool to help improve CAR T cell manufacture and ultimately advance toward a broader clinical implementation of CAR T cell therapy.
Collapse
Affiliation(s)
- Miquel Castellote-Borrell
- Dynamic
Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, Institut de Ciència de Materials de Barcelona
(ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Marc Domingo
- Soft
Matter Theory Group, Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Francesca Merlina
- Dynamic
Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, Institut de Ciència de Materials de Barcelona
(ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Huixia Lu
- Soft
Matter Theory Group, Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
- Department
of Physics, Universitat Politècnica
de Catalunya-Barcelona Tech (UPC), Barcelona 08034, Spain
| | - Salut Colell
- Department
of Hematology, Hospital Clinic, Institut
d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Mireia Bachiller
- Department
of Hematology, Hospital Clinic, Institut
d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Manel Juan
- Department
of Hematology, Hospital Clinic, Institut
d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Sonia Guedan
- Department
of Hematology, Hospital Clinic, Institut
d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona 08036, Spain
| | - Jordi Faraudo
- Soft
Matter Theory Group, Institut de Ciència
de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| | - Judith Guasch
- Dynamic
Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, Institut de Ciència de Materials de Barcelona
(ICMAB-CSIC), Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
7
|
Zhou X, Xu T, Li C, He Y, Hu Y, Gong H, Li J, Jiang H, Wen L, Fu Y, Zeng Z, Pan D. Potentiating anti-tumor immunity by re-engaging immune synapse molecules. Cell Rep Med 2025; 6:101975. [PMID: 39999838 PMCID: PMC11970328 DOI: 10.1016/j.xcrm.2025.101975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
The formation of immune synapses (ISs) between cytotoxic T cells and tumor cells is crucial for effective tumor elimination. However, the role of ISs in immune evasion and resistance to immune checkpoint blockades (ICBs) remains unclear. We demonstrate that ICAM-1, a key IS molecule activating LFA-1 signaling in T and natural killer (NK) cells, is often expressed at low levels in cancers. The absence of ICAM-1 leads to significant resistance to T and NK cell-mediated anti-tumor immunity. Using a CRISPR screen, we show that ICAM-1 is epigenetically regulated by the DNA methylation pathway involving UHRF1 and DNMT1. Furthermore, we engineer an antibody-based therapeutic agent, "LFA-1 engager," to enhance T cell-mediated anti-tumor immunity by reconstituting LFA-1 signaling. Treatment with LFA-1 engagers substantially enhances immune-mediated cytotoxicity, potentiates anti-tumor immunity, and synergizes with ICB in mouse models of ICAM-1-deficient tumors. Our data provide promising therapeutic strategies for re-engaging immune stimulatory signals in cancer immunotherapy.
Collapse
Affiliation(s)
- Xindi Zhou
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Tian Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Changhe Li
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Yufeng He
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yuanzhi Hu
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Hao Gong
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Jiahui Li
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Haitao Jiang
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Liang Wen
- Chinese People's Liberation Army (PLA) Medical School, Beijing 100850, China
| | - Yangxin Fu
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
| | - Zexian Zeng
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Deng Pan
- State Key Laboratory of Molecular Oncology, School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Science (CLS), Beijing 100084, China.
| |
Collapse
|
8
|
Su X. CAR-T Entering a New "Phase": Improving CAR-T Function by Harnessing Phase Separation. Cancer Res 2025; 85:1011-1012. [PMID: 39879116 PMCID: PMC11910263 DOI: 10.1158/0008-5472.can-25-0357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 01/31/2025]
Abstract
Biomolecular condensation has emerged as a general principle in organizing biological processes, including immune response. Xu and colleagues recently reported that the cytoplasmic tail of the CD3ε subunit of the T-cell receptor complex, when fused to a chimeric antigen receptor (CAR), can promote CAR condensation by liquid-liquid phase separation. Through sequence engineering, the authors identified modified CD3ε sequences that enhance the maturation of the immunologic synapse and coreceptor signaling, leading to an improvement in cytotoxicity in vitro and antitumor effects in mouse xenograft models. These results demonstrated that biomolecular condensation could be exploited to improve the function of CAR-T cells, highlighting an exciting strategy for developing next-generation cell therapies.
Collapse
Affiliation(s)
- Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
9
|
Isozaki A, Kita K, Tiffany Ishii N, Oka Y, Herbig M, Yamagishi M, Wakamiya T, Araki T, Matsumura H, Harmon J, Shirasaki Y, Huang K, Zhao Y, Yuan D, Hayashi M, Ding T, Okamoto Y, Kishimoto A, Ishii M, Yanagida M, Goda K. Investigating T-Cell Receptor Dynamics Under In Vitro Antibody-Based Stimulation Using Imaging Flow Cytometry. Cytometry A 2025; 107:88-97. [PMID: 39982013 DOI: 10.1002/cyto.a.24916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/14/2024] [Accepted: 02/05/2025] [Indexed: 02/22/2025]
Abstract
T cells play a pivotal role in the immune system's response to various conditions. They are activated by antigen-presenting cells (APCs) via T-cell surface receptors, resulting in cytokine production and T-cell proliferation. These interactions occur through the formation of immunological synapses. The advent of imaging flow cytometry has enabled detailed statistical analyses of these cellular interactions. However, the dynamics of T-cell receptors in response to in vitro stimulation are yet to receive attention, despite it being a crucial aspect of understanding T-cell behavior. In this article, we explore the responses of T cells to in vitro antibody-based stimulation without APCs. Specifically, we established a Th1 cell clone, subjected it to a combination of centrifugation-induced mechanical stress and anti-human CD3 and anti-human CD28 antibody stimulation as the in vitro antibody-based stimulation, and captured and analyzed bright-field and fluorescence images of single cells various hours after stimulation using an imaging flow cytometer. Our results indicate distinct temporal dynamics of CD3 and CD28. Notably, CD3 and CD28 relocated on the T-cell surface immediately after stimulation, with CD3 receptors dispersing after 3.5 h, whereas CD28 remained clustered for 7.5 h. These receptor morphological changes precede cytokine production, suggesting their potential as early indicators of T-cell activation.
Collapse
Affiliation(s)
- Akihiro Isozaki
- Department of Mechanical Engineering, Ritsumeikan University, Kusatsu, Shiga, Japan
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Kazuma Kita
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | | | - Yuma Oka
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Maik Herbig
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | | | | | - Taketo Araki
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | | | - Jeffrey Harmon
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yoshitaka Shirasaki
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Kangrui Huang
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yaqi Zhao
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Dan Yuan
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Mika Hayashi
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Tianben Ding
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
| | - Yuji Okamoto
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Ayuko Kishimoto
- Central Research Laboratories, Sysmex Corporation, Kobe, Japan
| | - Masaru Ishii
- Department of Immunology and Cell Biology, Osaka University, Osaka, Japan
| | | | - Keisuke Goda
- Department of Chemistry, The University of Tokyo, Tokyo, Japan
- CYBO, Tokyo, Japan
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Institute of Technological Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
10
|
Mikhajlov O, Adar RM, Tătulea-Codrean M, Macé AS, Manzi J, Tabarin F, Battistella A, di Federico F, Joanny JF, Tran van Nhieu G, Bassereau P. Cell adhesion and spreading on fluid membranes through microtubules-dependent mechanotransduction. Nat Commun 2025; 16:1201. [PMID: 39885125 PMCID: PMC11782702 DOI: 10.1038/s41467-025-56343-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/16/2025] [Indexed: 02/01/2025] Open
Abstract
Integrin clusters facilitate mechanical force transmission (mechanotransduction) and regulate biochemical signaling during cell adhesion. However, most studies have focused on rigid substrates. On fluid substrates like supported lipid bilayers (SLBs), integrin ligands are mobile, and adhesive complexes are traditionally thought unable to anchor for cell spreading. Here, we demonstrate that cells spread on SLBs coated with Invasin, a high-affinity integrin ligand. Unlike SLBs functionalized with RGD peptides, integrin clusters on Invasin-SLBs grow in size and complexity comparable to those on glass. While actomyosin contraction dominates adhesion maturation on stiff substrates, we find that on fluid SLBs, integrin mechanotransduction and cell spreading rely on dynein pulling forces along microtubules perpendicular to the membranes and microtubules pushing on adhesive complexes, respectively. These forces, potentially present on non-deformable surfaces, are revealed in fluid substrate systems. Supported by a theoretical model, our findings demonstrate a mechanical role for microtubules in integrin clustering.
Collapse
Affiliation(s)
- Oleg Mikhajlov
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France.
- Laboratory of Biophysics and Cell Biology of Signaling, Biochemistry department, University of Geneva, 30 quai Ernest-Ansermet, 1211, Geneva, Switzerland.
| | - Ram M Adar
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Physics, Technion - Israel Institute of Technology, Haifa, 32000, Israel
| | - Maria Tătulea-Codrean
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, CB3 0WA, UK
| | - Anne-Sophie Macé
- Institut Curie, Université PSL, CNRS UMR144, Paris, France
- Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, Université PSL, CNRS, Paris, France
| | - John Manzi
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fanny Tabarin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Aude Battistella
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Fahima di Federico
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
| | - Jean-François Joanny
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France
- Collège de France, 11 place Marcelin Berthelot, 75005, Paris, France
| | - Guy Tran van Nhieu
- Institute for Integrative Biology of the Cell (I2BC), CNRS UMR9198, Inserm U1280, 1 Avenue de la Terrasse, 91190, Gif-sur-Yvette, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico-Chimie Curie, 75005, Paris, France.
| |
Collapse
|
11
|
Putnam GL, Maitta RW. Alpha synuclein and inflammaging. Heliyon 2025; 11:e41981. [PMID: 39897785 PMCID: PMC11786851 DOI: 10.1016/j.heliyon.2025.e41981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 02/04/2025] Open
Abstract
The α-synuclein protein is an established molecule in Lewy body pathology, especially Parkinson's disease (PD). While the pathological role of α-synuclein (α-syn) in PD has been well described, novel evidence may suggest that α-syn interacts with inflammasomes in response to aging. As age is an inevitable physiological state and is also considered the greatest risk factor for PD, this calls for investigation into how α-syn, aging, and PD could be linked. There is a growing amount of data regarding α-syn normal function in the body that includes involvement in cellular transport such as protein complexes assembly, vesicular trafficking, neurotransmitter release, as well as immune cell maturation. Regarding abnormal α-syn, a number of autosomal dominant mutations have been identified as causes of familial PD, however, symptomatology may not become apparent until later in life due to compensatory mechanisms in the dopaminergic response. This potentially links age-related physiological changes not only as a risk factor for PD, but for the concept of "inflammaging ". This is defined as chronic inflammation that accompanies aging observed in many neurodegenerative pathologies, that include α-syn's ability to form oligomers and toxic fibrils seen in PD. This oligomeric α-syn stimulates pro-inflammatory signals, which may worsen PD symptoms and propagate chronic inflammation. Thus, this review will explore a potential link between α-syn's role in the immune system, inflammaging, and PD.
Collapse
Affiliation(s)
| | - Robert W. Maitta
- University Hospitals Cleveland Medical Center, Cleveland, OH, USA
- Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
12
|
Goldberg BS, Ackerman ME. Underappreciated layers of antibody-mediated immune synapse architecture and dynamics. mBio 2025; 16:e0190024. [PMID: 39660921 PMCID: PMC11708040 DOI: 10.1128/mbio.01900-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
The biologic activities of antibody drugs are dictated by structure-function relationships-emerging from the kind, composition, and degree of interactions with a target antigen and with soluble and cellular antibody receptors of the innate immune system. These activities are canonically understood to be both modular: antigen recognition is driven by the heterodimeric antigen-binding fragment, and innate immune recruitment by the homodimeric constant/crystallizable fragment. The model that treats these domains with a high degree of independence has served the field well but is not without limitations. Here, we consider how new insights, particularly from structural studies, complicate the model of neat biophysical separation between these domains and shape our understanding of antibody effector functions. The emerging model endeavors to explain the phenotypic impact of both antibody intrinsic characteristics and extrinsic features-fitting them within a spatiotemporal paradigm that better accounts for observed antibody activities. In this review, we will use insights from recent models of classical complement complexes and T cell immune synapse formation to explore how structural differences in antibody-mediated immune synapses may relate to their functional diversity.
Collapse
Affiliation(s)
| | - Margaret E. Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, USA
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| |
Collapse
|
13
|
de Castro Sampaio SS, Ramalho MCC, de Souza CS, de Almeida Rodrigues B, de Mendonça GRS, Lazarini M. RHO subfamily of small GTPases in the development and function of hematopoietic cells. J Cell Physiol 2025; 240:e31469. [PMID: 39434451 DOI: 10.1002/jcp.31469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
RHOA, RHOB, and RHOC comprise a subfamily of RHO GTPase proteins famed for controlling cytoskeletal dynamics. RHO proteins operate downstream of multiple signals emerging from the microenvironment, leading to diverse cell responses, such as proliferation, adhesion, and migration. Therefore, RHO signaling has been centrally placed in the regulation of blood cells. Despite their high homology, unique roles of RHOA, RHOB, and RHOC have been described in hematopoietic cells. In this article, we overview the contribution of RHO proteins in the development and function of each blood cell lineage. Additionally, we highlight the aberrations of the RHO signaling pathways found in hematological malignancies, providing clues for the identification of new therapeutic targets.
Collapse
Affiliation(s)
| | | | - Caroline Santos de Souza
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | - Mariana Lazarini
- Department of Clinical and Experimental Oncology, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
14
|
Raychaudhuri K, Rangu R, Ma A, Alvinez N, Tran AD, Pallikkuth S, McIntire KM, Garvey JA, Yi J, Samelson LE. CD28 shapes T cell receptor signaling by regulating Lck dynamics and ZAP70 activation. Front Immunol 2024; 15:1503018. [PMID: 39776902 PMCID: PMC11703918 DOI: 10.3389/fimmu.2024.1503018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Introduction T cell activation requires T cell receptor (TCR) engagement by its specific ligand. This interaction initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response. Currently we lack a full understanding of the molecular mechanism of CD28 activation. Methods We employed TIRF microscopy to establish detailed spatial and kinetic relationships among these molecules in live Jurkat and murine primary T cells. We used anti-TCR (CD3) antibodies to trigger formation of TCR microclusters (MC), which are submicron-sized basic signaling units formed during T cell activation. Using this model, we aimed to delineate how the CD28 co-stimulatory signal alters the kinetics and molecular stoichiometry of TCR proximal signaling events, and how these effects could affect the immune response. Results Our results show that CD28 co-stimulation specifically accelerated recruitment of ZAP70 to the TCRζ chain in MCs and increased ZAP70 activation. CD28-mediated acceleration of ZAP70 recruitment was driven by enhanced Lck recruitment to the MCs. A greater spatial separation between active and inactive species of Lck was also observed in the MCs as a consequence of CD28 co-stimulation. Conclusion These results suggest that CD28 co- stimulation may lower the TCR activation threshold by enhancing the activated form of Lck in the TCR MCs.
Collapse
Affiliation(s)
- Kumarkrishna Raychaudhuri
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rohita Rangu
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Alison Ma
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Neriah Alvinez
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Andy D. Tran
- CCR Confocal Microscopy Core Facility, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Sandeep Pallikkuth
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katherine M. McIntire
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Joseph A. Garvey
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jason Yi
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Lawrence E. Samelson
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
15
|
Ariail E, Garcia Espinoza N, Stephenson AC, Spangler JB. Emerging approaches for T cell-stimulating platform development. Cell Syst 2024; 15:1198-1208. [PMID: 39701036 DOI: 10.1016/j.cels.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/03/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
T cells are key mediators of the adaptive immune response, playing both direct and supporting roles in the destruction of foreign pathogenic threats as well as pathologically transformed host cells. The natural process through which T cells are activated requires coordinated molecular interactions between antigen-presenting cells and T cells. Promising advances in biomaterial design have catalyzed the development of artificial platforms that mimic the natural process of T cell stimulation, both to bolster the performance of cell therapies by activating T cells ex vivo prior to adoptive cell transfer and to directly activate T cells in vivo as off-the-shelf treatments. This review focuses on innovative strategies in T cell-stimulating platform design for applications in cancer therapy. We specifically highlight progress in bead-based artificial antigen-presenting cell engineering, hydrogel-based scaffolds, DNA-based systems, alternative polymeric strategies, and soluble activation approaches. Collectively, these advances are expanding the repertoire of tools for targeted immune activation.
Collapse
Affiliation(s)
- Emily Ariail
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Nikol Garcia Espinoza
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - A Carson Stephenson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
16
|
Moskovljevic M, Dragoni F, Board NL, Wu F, Lai J, Zhang H, White JR, Hoh R, Lynn K, Tebas P, Mounzer K, Deeks SG, Montaner LJ, Siliciano JD, Siliciano RF, Simonetti FR. Cognate antigen engagement induces HIV-1 expression in latently infected CD4 + T cells from people on long-term antiretroviral therapy. Immunity 2024; 57:2928-2944.e6. [PMID: 39612916 PMCID: PMC11896817 DOI: 10.1016/j.immuni.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/25/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Despite antiretroviral therapy (ART), HIV-1 persists in latently infected CD4+ T cells, preventing a cure. Antigens drive the proliferation of infected cells, precluding latent reservoir decay. However, the relationship between antigen recognition and HIV-1 gene expression is poorly understood because most studies of latency reversal use agents that induce non-specific global T cell activation. Here, we isolated rare CD4+ T cells responding to cytomegalovirus (CMV) or HIV-1 Gag antigens from people living with HIV-1 on long-term ART and assessed T cell activation and HIV-1 RNA expression upon coculture with autologous dendritic cells (DCs) presenting cognate antigens. Presentation of cognate antigens ex vivo induced broad T cell activation (median 42-fold increase in CD154+CD69+ cells) and significantly increased HIV-1 transcription (median 4-fold), mostly through the induction of rare cells with higher viral expression. Thus, despite low proviral inducibility, antigen recognition can promote HIV-1 expression, potentially contributing to spontaneous reservoir activity and viral rebound upon ART interruption.
Collapse
Affiliation(s)
- Milica Moskovljevic
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Filippo Dragoni
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Nathan L Board
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Fengting Wu
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jun Lai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Hao Zhang
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Rebecca Hoh
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Kenneth Lynn
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pablo Tebas
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karam Mounzer
- Jonathan Lax Treatment Center, Philadelphia FIGHT, Philadelphia, PA 19107, USA
| | - Steven G Deeks
- Division of HIV, School of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | | | - Janet D Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| | - Francesco R Simonetti
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins University, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Zhao Q, Li W, Li W, Lu Y, Zeng T, Zhang W, Zhang M, Zhou L, An Y, Song W, Shu Z, Zhao X. Wiskott-Aldrich syndrome protein maintains regulatory T cell tolerance by modulating their surface IL-2 receptor levels. J Autoimmun 2024; 149:103336. [PMID: 39549486 DOI: 10.1016/j.jaut.2024.103336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 09/13/2024] [Accepted: 11/03/2024] [Indexed: 11/18/2024]
Abstract
Wiskott-Aldrich syndrome (WAS) is an X-linked immunodeficiency condition caused by ablation of functional WAS protein (WASP) expression, and associated with susceptibility to infections, eczema, and autoimmunity. Regulatory T cell (Treg) defects are an important cause of autoimmunity in WAS. Currently, the mechanisms underlying cytoskeleton involvement in Treg-regulated autoimmunity remain unclear, and WAS is an excellent model for investigation of this question. Here, we examined patients with WAS and WASP knockout (WASp-/-) mice to uncover a new mechanism involving the actin nucleation promoting factor, WASP, in regulating Treg tolerance by modulating their surface IL-2 receptor (IL-2R) levels. Surface expression levels of IL-2R and its downstream signaling molecules, phosphoinositide 3-kinase/pSTAT5, are decreased in WASp-/- Tregs. Low dosage IL-2 combined with anti-IL-2 monoclonal antibody (IL2 complex) treatment can compensate for Treg deficiency in WAS in vitro and in vivo. Moreover, IL2 complex treatment relieved autoimmune colitis in WASp-/- mice. Reduced surface IL-2R is primarily caused by elevated IL-2R internalization and degradation, and lysosomal and endosomal genes associated with these processes are upregulated in WASp-/- Tregs. Finally, spatiotemporal analysis of dynamin and Neural Wiskott Aldrich Syndrome Protein (N-WASP) recruitment, by generating lipid bilayers and total internal reflection fluorescence microscopy, showed that WASP deficiency promoted IL-2R internalization and degradation by enhancing N-WASP activation. Consistently, N-WASP inhibition in Tregs using wiskostatin reduced IL-2R internalization. Together, our results reveal a novel intrinsic role of WASP in regulation of surface IL-2R dynamics in Tregs, highlighting a potential new therapeutic approach for autoimmune diseases.
Collapse
Affiliation(s)
- Qin Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenhui Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenyan Li
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yang Lu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Ting Zeng
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Min Zhang
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Zhou Shu
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China; Division of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
18
|
Natarajan A, Velmurugu Y, Becerra Flores M, Dibba F, Beesam S, Kikvadze S, Wang X, Wang W, Li T, Shin HW, Cardozo T, Krogsgaard M. In situ cell-surface conformation of the TCR-CD3 signaling complex. EMBO Rep 2024; 25:5719-5742. [PMID: 39511422 PMCID: PMC11624261 DOI: 10.1038/s44319-024-00314-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024] Open
Abstract
The extracellular molecular organization of the individual CD3 subunits around the αβ T cell receptor (TCR) is critical for initiating T cell signaling. In this study, we incorporate photo-crosslinkers at specific sites within the TCRα, TCRβ, CD3δ, and CD3γ subunits. Through crosslinking and docking, we identify a CD3ε'-CD3γ-CD3ε-CD3δ arrangement situated around the αβTCR in situ within the cell surface environment. We demonstrate the importance of cholesterol in maintaining the stability of the complex and that the 'in situ' complex structure mirrors the structure from 'detergent-purified' complexes. In addition, mutations aimed at stabilizing extracellular TCR-CD3 interfaces lead to poor signaling, suggesting that subunit fluidity is indispensable for signaling. Finally, employing photo-crosslinking and CD3 tetramer assays, we show that the TCR-CD3 complex undergoes minimal subunit movements or reorientations upon interaction with activating antibodies and pMHC tetramers. This suggests an absence of 'inactive-active' conformational states in the TCR constant regions and the extracellular CD3 subunits, unlike the transmembrane regions of the complex. This study contributes a nuanced understanding of TCR signaling, which may inform the development of therapeutics for immune-related disorders.
Collapse
MESH Headings
- Signal Transduction
- CD3 Complex/chemistry
- CD3 Complex/metabolism
- Humans
- Receptor-CD3 Complex, Antigen, T-Cell/chemistry
- Receptor-CD3 Complex, Antigen, T-Cell/metabolism
- Receptor-CD3 Complex, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell, alpha-beta/chemistry
- Receptors, Antigen, T-Cell, alpha-beta/metabolism
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Protein Conformation
- Cell Membrane/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Cholesterol/metabolism
- Cholesterol/chemistry
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Protein Subunits/chemistry
- Protein Subunits/metabolism
- Models, Molecular
- Cross-Linking Reagents/chemistry
Collapse
Affiliation(s)
- Aswin Natarajan
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Yogambigai Velmurugu
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Manuel Becerra Flores
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Fatoumatta Dibba
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Saikiran Beesam
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Sally Kikvadze
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Xiaotian Wang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Wenjuan Wang
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Tianqi Li
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Hye Won Shin
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Timothy Cardozo
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Michelle Krogsgaard
- Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
19
|
Zhu E, Yu J, Li YR, Ma F, Wang YC, Liu Y, Li M, Kim YJ, Zhu Y, Hahn Z, Zhou Y, Brown J, Zhang Y, Pelegrini M, Hsiai T, Yang L, Huang Y. Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies. NATURE NANOTECHNOLOGY 2024; 19:1914-1922. [PMID: 39313679 DOI: 10.1038/s41565-024-01781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells represent a front-line therapy for cancers. However, the current CAR T cell manufacturing protocols do not adequately reproduce immunological synapse formation. Here, in response to this limitation, we have developed a flexible graphene oxide antigen-presenting platform (GO-APP) that anchors antibodies onto graphene oxide. By decorating anti-CD3 (αCD3) and anti-CD28 (αCD28) on graphene oxide (GO-APP3/28), we achieved remarkable T cell proliferation. In vitro interactions between GO-APP3/28 and T cells closely mimic the in vivo immunological synapses between antigen-presenting cells and T cells. This immunological synapse mimicry shows a high capacity for stimulating T cell proliferation while preserving their multifunctionality and high potency. Meanwhile, it enhances CAR gene-engineering efficiency, yielding a more than fivefold increase in CAR T cell production compared with the standard protocol. Notably, GO-APP3/28 stimulated appropriate autocrine interleukin-2 (IL-2) in T cells and overcame the in vitro reliance on external IL-2 supplementation, offering an opportunity to culture T cell-based products independent of IL-2 supplementation.
Collapse
Affiliation(s)
- Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pelegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
20
|
Luu N, Liao J, Fang Y, Chen W. Advances in ligand-based surface engineering strategies for fine-tuning T cell mechanotransduction toward efficient immunotherapy. Biophys J 2024:S0006-3495(24)02240-9. [PMID: 39600091 DOI: 10.1016/j.bpj.2024.11.1512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 10/16/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
T cell-based immunotherapy has recently emerged as a promising strategy to treat cancer, requiring the activation of antigen-directed cytotoxicity to eliminate cancer cells. Mechanical signaling, although often overshadowed by its biochemical counterpart, plays a crucial role in T cell anticancer responses, from activation to cytolytic killing. Rapid advancements in the fields of chemistry, biomaterials, and micro/nanoengineering offer an interdisciplinary approach to incorporating mechano- and immunomodulatory ligands, including but not limited to synthetic peptides, small molecules, cytokines, and artificial antigens, onto the biomaterial-based platforms to modulate mechanotransducive processes in T cells. The surface engineering of these immunomodulatory ligands with optimization of ligand density, geometrical arrangement, and mobility has been proven to better mimic the natural ligation between immunoreceptors and ligands to directly enhance or inhibit mechanotransduction pathways in T cells, through triggering upstream mechanosensitive channels, adhesion molecules, cytoskeletal components, or downstream mechanoimmunological regulators. Despite its tremendous potential, current research on this new biomaterial surface engineering approach for mechanomodulatory T cell activation and effector functions remains in a nascent stage. This review highlights the recent progress in this new direction, focusing on achievements in mechanomodulatory ligand-based surface engineering strategies and underlying principles, and outlooks the further research in the rapidly evolving field of T cell mechanotransduction engineering for efficient immunotherapy.
Collapse
Affiliation(s)
- Ngoc Luu
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Junru Liao
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Yifei Fang
- Department of Biomedical Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Biomedical Engineering, New York University, Brooklyn, New York; Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, New York; Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York.
| |
Collapse
|
21
|
Raychaudhuri K, Rangu R, Ma A, Alvinez N, Tran AD, Pallikkuth S, McIntire KM, Garvey JA, Yi J, Samelson LE. CD28 Shapes T Cell Receptor Signaling by Regulating ZAP70 Activation and Lck Dynamics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.601067. [PMID: 39372746 PMCID: PMC11451590 DOI: 10.1101/2024.06.27.601067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
T cell activation requires T cell receptor (TCR) engagement, which initiates a series of proximal events including tyrosine phosphorylation of the CD3 and TCRζ chains, recruitment, and activation of the protein tyrosine kinases Lck and ZAP70, followed by recruitment of adapter and signaling proteins. CD28 co-stimulation is also required to generate a functional immune response. Currently we lack a full understanding of the molecular mechanism of CD28 activation. TCR microclusters (MC) are submicron-sized molecular condensates and basic signaling units that form immediately after TCR ligation. Our results show that CD28 co-stimulation specifically accelerated recruitment of ZAP70 to the TCRζ chain in MCs and increased ZAP70 activation. This CD28-mediated acceleration of ZAP70 recruitment was driven by enhanced Lck recruitment to the MCs. A greater spatial separation between active and inactive species of Lck was also observed in the MCs as a consequence of CD28 co-stimulation. These results suggest that CD28 co-stimulation may lower the TCR activation threshold by enhancing the activated form of Lck in the TCR MCs.
Collapse
|
22
|
Hu Y, Rogers J, Duan Y, Velusamy A, Narum S, Al Abdullatif S, Salaita K. Quantifying T cell receptor mechanics at membrane junctions using DNA origami tension sensors. NATURE NANOTECHNOLOGY 2024; 19:1674-1685. [PMID: 39103452 DOI: 10.1038/s41565-024-01723-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 06/21/2024] [Indexed: 08/07/2024]
Abstract
The T cell receptor (TCR) is thought to be a mechanosensor, meaning that it transmits mechanical force to its antigen and leverages the force to amplify the specificity and magnitude of TCR signalling. Although a variety of molecular probes have been proposed to quantify TCR mechanics, these probes are immobilized on hard substrates, and thus fail to reveal fluid TCR-antigen interactions in the physiological context of cell membranes. Here we developed DNA origami tension sensors (DOTS) which bear force sensors on a DNA origami breadboard and allow mapping of TCR mechanotransduction at dynamic intermembrane junctions. We quantified the mechanical forces at fluid TCR-antigen bonds and observed their dependence on cell state, antigen mobility, antigen potency, antigen height and F-actin activity. The programmability of DOTS allows us to tether these to microparticles to mechanically screen antigens in high throughput using flow cytometry. Additionally, DOTS were anchored onto live B cells, allowing quantification of TCR mechanics at immune cell-cell junctions.
Collapse
Affiliation(s)
- Yuesong Hu
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | - Yuxin Duan
- Department of Chemistry, Emory University, Atlanta, GA, USA
| | | | - Steven Narum
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
| |
Collapse
|
23
|
Sánchez MF, Faria S, Frühschulz S, Werkmann L, Winter C, Karimian T, Lanzerstorfer P, Plochberger B, Weghuber J, Tampé R. Engineering Mesoscale T Cell Receptor Clustering by Plug-and-Play Nanotools. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310407. [PMID: 38924642 DOI: 10.1002/adma.202310407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 06/10/2024] [Indexed: 06/28/2024]
Abstract
T cell receptor (TCR) clustering and formation of an immune synapse are crucial for TCR signaling. However, limited information is available about these dynamic assemblies and their connection to transmembrane signaling. In this work, TCR clustering is controlled via plug-and-play nanotools based on an engineered irreversible conjugation pair and a peptide-loaded major histocompatibility complex (pMHC) molecule to compare receptor assembly in a ligand (pMHC)-induced or ligand-independent manner. A streptavidin-binding peptide displayed in both tools enabled their anchoring in streptavidin-pre-structured matrices. Strikingly, pMHC-induced clustering in the confined regions exhibit higher density and dynamics than the ligand-free approach, indicating that the size and architecture of the pMHC ligand influences TCR assembly. This approach enables the control of membrane receptor clustering with high specificity and provides the possibility to explore different modalities of receptor activation.
Collapse
Affiliation(s)
- M Florencia Sánchez
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Sevi Faria
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Stefan Frühschulz
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Lars Werkmann
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Christian Winter
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| | - Tina Karimian
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, 4600, Austria
| | - Peter Lanzerstorfer
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, 4600, Austria
| | - Birgit Plochberger
- University of Applied Sciences Upper Austria, Campus Linz, Linz, 4020, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Donaueschingenstr. 13, Vienna, 1200, Austria
| | - Julian Weghuber
- Center of Excellence Food Technology and Nutrition, University of Applied Sciences Upper Austria, Wels, 4600, Austria
- FFoQSI - Austrian Competence Centre for Feed and Food Quality, Safety & Innovation, FFoQSI GmbH, Technopark 1D, Tulln an der Donau, 3430, Austria
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
24
|
Marcano-García LF, Zaza C, Dalby OPL, Joseph MD, Cappellari MV, Simoncelli S, Aramendía PF. Quantitative Analysis of Protein-Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy. NANO LETTERS 2024; 24:13834-13842. [PMID: 39432814 PMCID: PMC11528428 DOI: 10.1021/acs.nanolett.4c04394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Current methods for determining equilibrium constants often operate in three-dimensional environments, which may not accurately reflect interactions with membrane-bound proteins. With our technique, based on single-molecule localization microscopy (SMLM), we directly determine protein-protein association (Ka) and dissociation (Kd) constants in cellular environments by quantifying associated and isolated molecules and their interaction area. We introduce Kernel Surface Density (ks-density,) a novel method for determining the accessible area for interacting molecules, eliminating the need for user-defined parameters. Simulation studies validate our method's accuracy across various density and affinity conditions. Applying this technique to T cell signaling proteins, we determine the 2D association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments, advancing our knowledge of complex biological processes.
Collapse
Affiliation(s)
- Luis F. Marcano-García
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Cecilia Zaza
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
| | - Olivia P. L. Dalby
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Megan D. Joseph
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - M. Victoria Cappellari
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Sabrina Simoncelli
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Pedro F. Aramendía
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
25
|
Neve-Oz Y, Sherman E, Raveh B. Bayesian metamodeling of early T-cell antigen receptor signaling accounts for its nanoscale activation patterns. Front Immunol 2024; 15:1412221. [PMID: 39524449 PMCID: PMC11543436 DOI: 10.3389/fimmu.2024.1412221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024] Open
Abstract
T cells respond swiftly, specifically, sensitively, and robustly to cognate antigens presented on the surface of antigen presenting cells. Existing microscopic models capture various aspects of early T-cell antigen receptor (TCR) signaling at the molecular level. However, none of these models account for the totality of the data, impeding our understanding of early T-cell activation. Here, we study early TCR signaling using Bayesian metamodeling, an approach for systematically integrating multiple partial models into a metamodel of a complex system. We inform the partial models using multiple published super-resolution microscopy datasets. Collectively, these datasets describe the spatiotemporal organization, activity, interactions, and dynamics of TCR, CD45 and Lck signaling molecules in the early-forming immune synapse, and the concurrent membrane alterations. The resulting metamodel accounts for a distinct nanoscale dynamic pattern that could not be accounted for by any of the partial models on their own: a ring of phosphorylated TCR molecules, enriched at the periphery of early T cell contacts and confined by a proximal ring of CD45 molecules. The metamodel suggests this pattern results from limited activity range for the Lck molecules, acting as signaling messengers between kinetically-segregated TCR and CD45 molecules. We assessed the potential effect of Lck activity range on TCR phosphorylation and robust T cell activation for various pMHC:TCR association strengths, in the specific setting of an initial contact. We also inspected the impact of localized Lck inhibition via Csk recruitment to pTCRs, and that of splicing isoforms of CD45 on kinetic segregation. Due to the inherent scalability and adaptability of integrating independent partial models via Bayesian metamodeling, this approach can elucidate additional aspects of cell signaling and decision making.
Collapse
Affiliation(s)
- Yair Neve-Oz
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eilon Sherman
- Racah Institute of Physics, The Hebrew University, Jerusalem, Israel
| | - Barak Raveh
- School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
26
|
Kabakibo TS, Arnold E, Padhan K, Lemieux A, Ortega-Delgado GG, Routy JP, Shoukry N, Dubé M, Kaufmann DE. Artificial antigen-presenting cell system reveals CD28's role in modulating T cell functions during human immunodeficiency virus infection. iScience 2024; 27:110947. [PMID: 39381752 PMCID: PMC11460474 DOI: 10.1016/j.isci.2024.110947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/16/2024] [Accepted: 09/10/2024] [Indexed: 10/10/2024] Open
Abstract
T cell immune dysfunction is a prominent feature of chronic HIV infection. To evaluate non-specific dysfunction, a method involving both generic activation and T cell receptor (TCR) stimulation is necessary. We created a tunable artificial antigen-presenting cell (aAPC) system. This system consists of lipid bilayers on cytometry-compatible silica microbeads (5 μm). When only anti-CD3 is incorporated, T cell activation is limited. Introducing anti-CD28 agonists significantly elevates the cytokine expression and upregulation of activation-induced markers. CD28 co-stimulation modulates the response profile, preferentially promoting IL-2 expression relative to other cytokines. aAPCs-stimulated CD4+ and CD8+ T cells from untreated HIV-infected individuals exhibit altered effector functions and diminished CD28 dependence. These functions are skewed toward TNFα, IFNγ and CD107a, with reduced IL-2. Antiretroviral therapy partially normalizes this distorted profile in CD4+ T cells, but not in CD8+ T cells. Our findings show T cell intrinsic biases that may contribute to persistent systemic T cell dysfunction associated with HIV pathogenesis.
Collapse
Affiliation(s)
- Tayma Shaaban Kabakibo
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Edwige Arnold
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
| | - Kartika Padhan
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Audrée Lemieux
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | | | - Jean-Pierre Routy
- Chronic Viral Illnesses Service and Division of Hematology, McGill University Health Centre, Montreal, QC H4A 3J1, Canada
- Infectious Diseases and Immunity in Global Health Program, Research Institute, McGill University Health Centre, Montreal, QC, Canada
| | - Naglaa Shoukry
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
| | - Mathieu Dubé
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Daniel E. Kaufmann
- Research Centre of the Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada
- Université de Montréal, Montréal, QC, Canada
- Département de Médecine, Université de Montréal, Montréal, QC H2X 0A9, Canada
- Division of Infectious Diseases, Department of Medicine, Lausanne University Hospital (CHUV) and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
27
|
Strazza M, Song R, Hiner S, Mor A. Changing the location of proteins on the cell surface is a promising strategy for modulating T cell functions. Immunology 2024; 173:248-257. [PMID: 38952142 PMCID: PMC11987702 DOI: 10.1111/imm.13828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Targeting immune receptors on T cells is a common strategy to treat cancer and autoimmunity. Frequently, this is accomplished through monoclonal antibodies targeting the ligand binding sites of stimulatory or inhibitory co-receptors. Blocking ligand binding prevents downstream signalling and modulates specific T cell functions. Since 1985, the FDA has approved over 100 monoclonal antibodies against immune receptors. This therapeutic approach significantly improved the care of patients with numerous immune-related conditions; however, many patients are unresponsive, and some develop immune-related adverse events. One reason for that is the lack of consideration for the localization of these receptors on the cell surface of the immune cells in the context of the immune synapse. In addition to blocking ligand binding, changing the location of these receptors on the cell surface within the different compartments of the immunological synapse could serve as an alternative, efficient, and safer approach to treating these patients. This review discusses the potential therapeutic advantages of altering proteins' localization within the immune synapse and summarizes published work in this field. It also discusses the novel use of bispecific antibodies to induce the clustering of receptors on the cell surface. It presents the rationale for developing novel antibodies, targeting the organization of signalling receptor complexes on the cell surface. This approach offers an innovative and emerging technology to treat cancer patients resistant to current immunotherapies.
Collapse
Affiliation(s)
- Marianne Strazza
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Ruijiang Song
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Shannon Hiner
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
| | - Adam Mor
- Columbia Center for Translational Immunology, Columbia University Medical Center, New York, New York, USA
- Division of Rheumatology, Department of Medicine, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
28
|
Pérez Del Río E, Rey-Vinolas S, Santos F, Castellote-Borrell M, Merlina F, Veciana J, Ratera I, Mateos-Timoneda MA, Engel E, Guasch J. 3D Printing as a Strategy to Scale-Up Biohybrid Hydrogels for T Cell Manufacture. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50139-50146. [PMID: 39285613 PMCID: PMC11440455 DOI: 10.1021/acsami.4c06183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
The emergence of cellular immunotherapy treatments is introducing more efficient strategies to combat cancer as well as autoimmune and infectious diseases. However, the cellular manufacturing procedures associated with these therapies remain costly and time-consuming, thus limiting their applicability. Recently, lymph-node-inspired PEG-heparin hydrogels have been demonstrated to improve primary human T cell culture at the laboratory scale. To go one step further in their clinical applicability, we assessed their scalability, which was successfully achieved by 3D printing. Thus, we were able to improve primary human T cell infiltration in the biohybrid PEG-heparin hydrogels, as well as increase nutrient, waste, and gas transport, resulting in higher primary human T cell proliferation rates while maintaining the phenotype. Thus, we moved one step further toward meeting the requirements needed to improve the manufacture of the cellular products used in cellular immunotherapies.
Collapse
Affiliation(s)
- Eduardo Pérez Del Río
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Sergi Rey-Vinolas
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Fabião Santos
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miquel Castellote-Borrell
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Francesca Merlina
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
| | - Miguel A Mateos-Timoneda
- Bioengineering Institute of Technology, Universitat Internacional de Catalunya (UIC), Sant Cugat del Vallès 08195, Spain
| | - Elisabeth Engel
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona 08019, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, Bellaterra 08193, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid 28029, Spain
- Dynamic Biomaterials for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, Bellaterra 08193, Spain
| |
Collapse
|
29
|
Singh KK, Ghosh S, Bhola A, Verma P, Amist AD, Sharma H, Sachdeva P, Sinha JK. Sleep and Immune System Crosstalk: Implications for Inflammatory Homeostasis and Disease Pathogenesis. Ann Neurosci 2024:09727531241275347. [PMID: 39544655 PMCID: PMC11559494 DOI: 10.1177/09727531241275347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/20/2024] [Indexed: 11/17/2024] Open
Abstract
Background Sleep and immune function are interconnected aspects of health that mutually impact each other in disease development and inflammatory homeostasis. Different aspects of immunology are regulated by different sleep characteristics, impacting on specific aspects of immune function including cytokine production and T-cell activity. Ongoing disruptions of sleep have been linked to heightened inflammation and are suspected in the pathogenesis and disease course of a range of life-style-related illnesses, including diabetes and neurodegenerative diseases. Summary This review provides a comprehensive overview of knowledge on the interaction of sleep with the immune system, its modulation of inflammatory balance, and the pathogenesis of many diseases. It emphasizes how sleep deficiency compromises immune function by means of a systemic, low-grade inflammatory response, while adequate sleep promotes intense immune responses and thus enables efficient pathogen clearance and the maintenance of immune memory. The mutual influence of sleep on the immune system underlines its critical involvement in health preservation and the course of disease. Key Message Sleep plays an indispensable role in immune health, mediating the efficiency of immune responses and the course of the regulation of inflammation. Chronic sleep deprivation can result in a low-grade inflammation that substantially contributes to the onset and exacerbation of metabolic and neurodegenerative disorders. The intimate linkage between sleep and immune function can be one strategic approach to therapy, improving health outcomes by leveraging this sleep-immune connection.
Collapse
Affiliation(s)
- Krishna Kumar Singh
- Symbiosis Centre for Information Technology (SCIT), Symbiosis International (Deemed University), Rajiv Gandhi InfoTech Park, Pune, Maharashtra, India
| | | | - Anisha Bhola
- GloNeuro, Noida, Uttar Pradesh, India
- School of Studies in Neurosciences, Jiwaji University, Gwalior, Madhya Pradesh, India
| | | | | | | | - Punya Sachdeva
- GloNeuro, Noida, Uttar Pradesh, India
- Amity University Uttar Pradesh (AUUP), Noida, Uttar Pradesh, India
| | | |
Collapse
|
30
|
Prikhodko IV, Guria GT. The method for assessing the specificity of developing CAR therapies. BIOPHYSICAL REPORTS 2024; 4:100172. [PMID: 39025235 PMCID: PMC11344002 DOI: 10.1016/j.bpr.2024.100172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
The effectiveness of antitumor chimeric antigen receptor (CAR) therapy mainly dealt with an elevated sensitivity of CAR cells to target cells. However, CAR therapies are associated with nonspecific side effects: on-target off-tumor toxicity. Sensitivity and specificity of CAR cells are the most important properties of the recognition process of target cells among other cells. Current developments are mainly concentrated on exploring molecular biology methods for designing CAR cells with the highest sensitivity, while the problem of the CAR cell specificity is rarely considered. For the assessment of CAR cell specificity, we suggest that, in addition to an elevated level of CAR-antigen affinity, the ability of CARs for clustering should be taken into account. We assume that the CAR cell cytotoxicity is determined by CAR clustering. The latter is treated within the framework of nucleation theory. The master equation for the probability of CAR cell cytotoxicity is derived. The size of a critical CAR cluster is found to be one of two most essential parameters. The conditions for necessary sensitivity and sufficient specificity are explored. Relevant parametric diagrams are derived. Possible applications of the method for assessing the specificity of developing CAR therapies are discussed.
Collapse
Affiliation(s)
- Ivan V Prikhodko
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia
| | - Georgy Th Guria
- Laboratory for Mathematical Modelling of Biological Processes, National Medical Research Center for Hematology, Moscow, Russia; Chair of the Living Systems Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
31
|
Burgstaller A, Piernitzki N, Küchler N, Koch M, Kister T, Eichler H, Kraus T, Schwarz EC, Dustin ML, Lautenschläger F, Staufer O. Soft Synthetic Cells with Mobile Membrane Ligands for Ex Vivo Expansion of Therapy-Relevant T Cell Phenotypes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401844. [PMID: 38751204 DOI: 10.1002/smll.202401844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/29/2024] [Indexed: 10/01/2024]
Abstract
The expansion of T cells ex vivo is crucial for effective immunotherapy but currently limited by a lack of expansion approaches that closely mimic in vivo T cell activation. Taking inspiration from bottom-up synthetic biology, a new synthetic cell technology is introduced based on dispersed liquid-liquid phase-separated droplet-supported lipid bilayers (dsLBs) with tunable biochemical and biophysical characteristics, as artificial antigen presenting cells (aAPCs) for ex vivo T cell expansion. These findings obtained with the dsLB technology reveal three key insights: first, introducing laterally mobile stimulatory ligands on soft aAPCs promotes expansion of IL-4/IL-10 secreting regulatory CD8+ T cells, with a PD-1 negative phenotype, less prone to immune suppression. Second, it is demonstrated that lateral ligand mobility can mask differential T cell activation observed on substrates of varying stiffness. Third, dsLBs are applied to reveal a mechanosensitive component in bispecific Her2/CD3 T cell engager-mediated T cell activation. Based on these three insights, lateral ligand mobility, alongside receptor- and mechanosignaling, is proposed to be considered as a third crucial dimension for the design of ex vivo T cell expansion technologies.
Collapse
Affiliation(s)
- Anna Burgstaller
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nils Piernitzki
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
| | - Nadja Küchler
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Marcus Koch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Thomas Kister
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Hermann Eichler
- Institute of Clinical Hemostaseology and Transfusion Medicine, Saarland University and Saarland University Medical Center, Homburg, Germany
| | - Tobias Kraus
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Saarland University, Colloid and Interface Chemistry, 66123, Saarbrücken, Germany
| | - Eva C Schwarz
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, Building 48, 66421, Homburg, Germany
| | - Michael L Dustin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
| | - Franziska Lautenschläger
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Experimental Physics, Faculty of Natural Science and Technology, Saarland University, Campus Saarbrücken, 66123, Saarbrücken, Germany
| | - Oskar Staufer
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
- Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Campus E8 1, 66123, Saarbrücken, Germany
- Center for Biophysics, Saarland University, Campus Saarland, 66123, Saarbrücken, Germany
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopedics, Rheumatology and, Musculoskeletal Sciences, University of Oxford, Oxford, UK
- Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol, BS8 1TS, UK
| |
Collapse
|
32
|
Hong Y, Kwak K. Both sides now: evolutionary traits of antigens and B cells in tolerance and activation. Front Immunol 2024; 15:1456220. [PMID: 39185403 PMCID: PMC11341355 DOI: 10.3389/fimmu.2024.1456220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 07/25/2024] [Indexed: 08/27/2024] Open
Abstract
B cells are the cornerstone of our body's defense system, producing precise antibodies and safeguarding immunological memory for future protection against pathogens. While we have a thorough understanding of how naïve B cells differentiate into plasma or memory B cells, the early B cell response to various antigens-whether self or foreign-remains a thrilling and evolving area of study. Advances in imaging have illuminated the molecular intricacies of B cell receptor (BCR) signaling, yet the dynamic nature of B cell activation continues to reveal new insights based on the nature of antigen exposure. This review explores the evolutionary journey of B cells as they adapt to the unique challenges presented by pathogens. We begin by examining the specific traits of antigens that influence their pathogenic potential, then shift our focus to the distinct characteristics of B cells that counteract these threats. From foundational discoveries to the latest cutting-edge research, we investigate how B cells are effectively activated and distinguish between self and non-self antigens, ensuring a balanced immune response that defends against pathogenic diseases but not self-antigens.
Collapse
Affiliation(s)
- Youngjae Hong
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, College of Medicine, Yonsei University, Seoul, Republic of Korea
- Brain Korea 21 PLUS Project for Medical Science, College of Medicine, Yonsei University, Seoul, Republic of Korea
| |
Collapse
|
33
|
Sengupta K, Dillard P, Limozin L. Morphodynamics of T-lymphocytes: Scanning to spreading. Biophys J 2024; 123:2224-2233. [PMID: 38425041 PMCID: PMC11331044 DOI: 10.1016/j.bpj.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
Binding of the T cell receptor complex to its ligand, the subsequent molecular rearrangement, and the concomitant cell-scale shape changes represent the very first steps of adaptive immune recognition. The first minutes of the interaction of T cells and antigen presenting cells have been extensively scrutinized; yet, gaps remain in our understanding of how the biophysical properties of the environment may impact the sequence of events. In particular, many pioneering experiments were done on immobilized ligands and gave major insights into the process of T cell activation, whereas later experiments have indicated that ligand mobility was of paramount importance, especially to enable the formation of T cell receptor clusters. Systematic experiments to compare and reconcile the two schools are still lacking. Furthermore, recent investigations using compliant substrates have elucidated other intriguing aspects of T cell mechanics. Here we review experiments on interaction of T cells with planar artificial antigen presenting cells to explore the impact of mechanics on adhesion and actin morphodynamics during the spreading process. We enumerate a sequence tracing first contact to final spread state that is consistent with current understanding. Finally, we interpret the presented experimental results in light of a mechanical model that captures all the different morphodynamic states.
Collapse
Affiliation(s)
- Kheya Sengupta
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France.
| | - Pierre Dillard
- Aix-Marseille Université, CNRS, CINAM, Turing Centre for Living Systems, Marseille, France; Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France
| | - Laurent Limozin
- Aix-Marseille Université, CNRS, INSERM, LAI, Turing Centre for Living Systems, Marseille, France.
| |
Collapse
|
34
|
Xiong Y, Libby KA, Su X. The physical landscape of CAR-T synapse. Biophys J 2024; 123:2199-2210. [PMID: 37715447 PMCID: PMC11331049 DOI: 10.1016/j.bpj.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
Chimeric antigen receptor (CAR)-T cells form dynamic immunological synapses with their cancer cell targets. After a CAR-antigen engagement, the CAR-T synapse forms, matures, and finally disassembles, accompanied by substantial remodeling of cell surface proteins, lipids, and glycans. In this review, we provide perspectives for understanding protein distribution, membrane topology, and force transmission across the CAR-T synapse. We highlight the features of CAR-T synapses that differ from T cell receptor synapses, including the disorganized protein pattern, adjustable synapse width, diverse mechano-responding properties, and resulting signaling consequences. Through a range of examples, we illustrate how revealing the biophysical nature of the CAR-T synapse could guide the design of CAR-Ts with improved anti-tumor function.
Collapse
Affiliation(s)
- Yiwei Xiong
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut
| | - Kendra A Libby
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts; Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts
| | - Xiaolei Su
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut; Yale Cancer Center, Yale University, New Haven, Connecticut; Yale Stem Cell Center, Yale University, New Haven, Connecticut.
| |
Collapse
|
35
|
Bitar L, Puig B, Oertner TG, Dénes Á, Magnus T. Changes in Neuroimmunological Synapses During Cerebral Ischemia. Transl Stroke Res 2024:10.1007/s12975-024-01286-1. [PMID: 39103660 DOI: 10.1007/s12975-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/25/2024] [Indexed: 08/07/2024]
Abstract
The direct interplay between the immune and nervous systems is now well established. Within the brain, these interactions take place between neurons and resident glial cells, i.e., microglia and astrocytes, or infiltrating immune cells, influenced by systemic factors. A special form of physical cell-cell interactions is the so-called "neuroimmunological (NI) synapse." There is compelling evidence that the same signaling pathways that regulate inflammatory responses to injury or ischemia also play potent roles in brain development, plasticity, and function. Proper synaptic wiring is as important during development as it is during disease states, as it is necessary for activity-dependent refinement of neuronal circuits. Since the process of forming synaptic connections in the brain is highly dynamic, with constant changes in strength and connectivity, the immune component is perfectly suited for the regulatory task as it is in constant turnover. Many cellular and molecular players in this interaction remain to be uncovered, especially in pathological states. In this review, we discuss and propose possible communication hubs between components of the adaptive and innate immune systems and the synaptic element in ischemic stroke pathology.
Collapse
Affiliation(s)
- Lynn Bitar
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Berta Puig
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany
| | - Thomas G Oertner
- Institute for Synaptic Physiology, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ádám Dénes
- "Momentum" Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tim Magnus
- Neurology Department, Experimental Research in Stroke and Inflammation (ERSI) Group, University Medical Center Hamburg-Eppendorf (UKE), Martinistraße, 52, Hamburg, 20246, Germany.
| |
Collapse
|
36
|
Tang J, Liu H, Li J, Zhang Y, Yao S, Yang K, You Z, Qiao X, Song Y. Regulation of post-translational modification of PD-L1 and associated opportunities for novel small-molecule therapeutics. Future Med Chem 2024; 16:1583-1599. [PMID: 38949857 PMCID: PMC11370925 DOI: 10.1080/17568919.2024.2366146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
PD-L1 is overexpressed on the surface of tumor cells and binds to PD-1, resulting in tumor immune escape. Therapeutic strategies to target the PD-1/PD-L1 pathway involve blocking the binding. Immune checkpoint inhibitors have limited efficacy against tumors because PD-L1 is also present in the cytoplasm. PD-L1 of post-translational modifications (PTMs) have uncovered numerous mechanisms contributing to carcinogenesis and have identified potential therapeutic targets. Therefore, small molecule inhibitors can block crucial carcinogenic signaling pathways, making them a potential therapeutic option. To better develop small molecule inhibitors, we have summarized the PTMs of PD-L1. This review discusses the regulatory mechanisms of small molecule inhibitors in carcinogenesis and explore their potential applications, proposing a novel approach for tumor immunotherapy based on PD-L1 PTM.
Collapse
Affiliation(s)
- Jinglin Tang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Han Liu
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Jinze Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Yibo Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Suyang Yao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- Key Laboratory of Medicinal Chemistry & Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei071002, China
| | - Zhihao You
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
| | - Xiaoqiang Qiao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- Key Laboratory of Medicinal Chemistry & Molecular Diagnosis, Ministry of Education, Hebei University, Baoding, Hebei071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, Hebei071002, China
- State Key Laboratory of New Pharmaceutical Preparations & Excipients, Hebei University, Baoding, Hebei071002, China
| |
Collapse
|
37
|
Nishimura A, Nelke C, Huber M, Mensch A, Roth A, Oberwittler C, Zimmerlein B, Krämer HH, Neuen-Jacob E, Stenzel W, Müller-Ladner U, Ruck T, Schänzer A. Differentiating idiopathic inflammatory myopathies by automated morphometric analysis of MHC-1, MHC-2 and ICAM-1 in muscle tissue. Neuropathol Appl Neurobiol 2024; 50:e12998. [PMID: 39030945 DOI: 10.1111/nan.12998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/25/2024] [Accepted: 07/01/2024] [Indexed: 07/22/2024]
Abstract
AIMS Diagnosis of idiopathic inflammatory myopathies (IIM) is based on morphological characteristics and the evaluation of disease-related proteins. However, although broadly applied, substantial bias is imposed by the respective methods, observers and individual staining approaches. We aimed to quantify the protein levels of major histocompatibility complex (MHC)-1, (MHC)-2 and intercellular adhesion molecule (ICAM)-1 using an automated morphometric method to mitigate bias. METHODS Double immunofluorescence staining was performed on whole muscle sections to study differences in protein expression in myofibre and endomysial vessels. We analysed all IIM subtypes including dermatomyositis (DM), anti-synthetase syndrome (ASyS), inclusion body myositis (IBM), immune-mediated-necrotising myopathy (IMNM), dysferlinopathy (DYSF), SARS-CoV-2 infection and vaccination-associated myopathy. Biopsies with neurogenic atrophy (NA) and normal morphology served as controls. Bulk RNA-Sequencing (RNA-Seq) was performed on a subset of samples. RESULTS Our study highlights the significance of MHC-1, MHC-2 and ICAM-1 in diagnosing IIM subtypes and reveals distinct immunological profiles. RNASeq confirmed the precision of our method and identified specific gene pathways in the disease subtypes. Notably, ASyS, DM and SARS-CoV-2-associated myopathy showed increased ICAM-1 expression in the endomysial capillaries, indicating ICAM-1-associated vascular activation in these conditions. In addition, ICAM-1 showed high discrimination between different subgroups with high sensitivity and specificity. CONCLUSIONS Automated morphometric analysis provides precise quantitative data on immune-associated proteins that can be integrated into our pathophysiological understanding of IIM. Further, ICAM-1 holds diagnostic value for the detection of IIM pathology.
Collapse
Affiliation(s)
- Anna Nishimura
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
| | - Christopher Nelke
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Melanie Huber
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Alexander Mensch
- Department of Neurology, University Medicine Halle, Halle (Saale), Germany
| | - Angela Roth
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
| | | | | | - Heidrun H Krämer
- Department of Neurology, Justus-Liebig-University, Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| | - Eva Neuen-Jacob
- Institute of Neuropathology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Werner Stenzel
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Campus Kerckhoff, Justus-Liebig-University, Giessen, Germany
| | - Tobias Ruck
- Department of Neurology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University, Düsseldorf, Germany
| | - Anne Schänzer
- Institute of Neuropathology, Justus-Liebig University Giessen, Germany
- Translational Neuroscience Network Giessen (TNNG), Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
38
|
Morita S, O'Dair MK, Groves JT. Discrete protein condensation events govern calcium signal dynamics in T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606035. [PMID: 39211144 PMCID: PMC11360922 DOI: 10.1101/2024.07.31.606035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Calcium level variations, which occur downstream of T cell receptor (TCR) signaling, are an essential aspect of T cell antigen recognition. Although coordinated ion channel activities are known to drive calcium oscillations in other cell types, observations of nonperiodic and heterogeneous calcium patterns in T cells are inconsistent with this mechanism. Here, we track the complete ensemble of individual molecular peptide-major histocompatibility complex (pMHC) binding events to TCR, while simultaneously imaging LAT condensation events and calcium level. Individual LAT condensates induce a rapid and additive calcium response, which quickly attenuates upon condensate dissolution. No evidence of cooperativity between LAT condensates or oscillatory calcium response was detected. These results reveal stochastic LAT protein condensation events as a primary driver of calcium signal dynamics in T cells. One-Sentence Summary Ca 2+ fluctuations in T cells reflect stochastic protein condensation events triggered by single molecular antigen-TCR binding.
Collapse
|
39
|
Al Agrafi F, Gaballa A, Hahn P, Arruda LCM, Jaramillo AC, Witsen M, Lehmann S, Önfelt B, Uhlin M, Stikvoort A. Selective lysis of acute myeloid leukemia cells by CD34/CD3 bispecific antibody through the activation of γδ T-cells. Oncoimmunology 2024; 13:2379063. [PMID: 39076247 PMCID: PMC11285226 DOI: 10.1080/2162402x.2024.2379063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/31/2024] Open
Abstract
Despite the considerable progress in acute myeloid leukemia (AML) treatment, relapse after allogeneic hematopoietic stem cell transplantation (HSCT) is still frequent and associated with a poor prognosis. Relapse has been shown to be correlated with an incomplete eradication of CD34+ leukemic stem cells prior to HSCT. Previously, we have shown that a novel CD34-directed, bispecific T-cell engager (BTE) can efficiently redirect the T-cell effector function toward cancer cells, thus eliminating leukemic cells in vitro and in vivo. However, its impact on γδ T-cells is still unclear. In this study, we tested the efficacy of the CD34-specific BTE using in vitro expanded γδ T-cells as effectors. We showed that the BTEs bind to γδ T-cells and CD34+ leukemic cell lines and induce target cell killing in a dose-dependent manner. Additionally, γδ T-cell mediated killing was found to be superior to αβ T-cell mediated cytotoxicity. Furthermore, we observed that only in the presence of BTE the γδ T-cells induced primary AML blast killing in vitro. Importantly, our results show that γδ T-cells did not target the healthy CD34intermediate endothelial blood-brain barrier cell line (hCMEC/D3) nor lysed CD34+ HSCs from healthy bone marrow samples.
Collapse
MESH Headings
- Antibodies, Bispecific/immunology
- Antibody Specificity
- Lymphocyte Activation
- Leukemia, Myeloid, Acute/immunology
- Leukemia, Myeloid, Acute/pathology
- Humans
- Cell Line, Tumor
- Antigens, CD34/immunology
- CD3 Complex/immunology
- Receptors, Antigen, T-Cell, gamma-delta/immunology
- Cell Proliferation
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Cytokines/immunology
- Cell Death
- T-Lymphocytes/immunology
- Cytotoxicity, Immunologic
Collapse
Affiliation(s)
- Faisal Al Agrafi
- Healthy Aging Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Kingdom of Saudi Arabia
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Ahmed Gaballa
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Biochemistry and Molecular Biology, National Liver Institute, Menoufia University, Shebeen El-Kom, Egypt
| | - Paula Hahn
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Lucas C. M. Arruda
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Adrian C. Jaramillo
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Maartje Witsen
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| | - Sören Lehmann
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Medical Sciences, Hematology, Uppsala University Hospital, Uppsala, Sweden
| | - Björn Önfelt
- Department of Applied Physics, Science for Life Laboratory, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Michael Uhlin
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
- Department of Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Arwen Stikvoort
- Department of Medicine Huddinge, Karolinska Institutet, Center for Hematology and Regenerative Medicine, Stockholm, Sweden
| |
Collapse
|
40
|
Shi J, Yin W, Chen W. Mathematical models of TCR initial triggering. Front Immunol 2024; 15:1411614. [PMID: 39091495 PMCID: PMC11291225 DOI: 10.3389/fimmu.2024.1411614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024] Open
Abstract
T cell receptors (TCRs) play crucial roles in regulating T cell response by rapidly and accurately recognizing foreign and non-self antigens. The process involves multiple molecules and regulatory mechanisms, forming a complex network to achieve effective antigen recognition. Mathematical modeling techniques can help unravel the intricate network of TCR signaling and identify key regulators that govern it. In this review, we introduce and briefly discuss relevant mathematical models of TCR initial triggering, with a focus on kinetic proofreading (KPR) models with different modified structures. We compare the topology structures, biological hypotheses, parameter choices, and simulation performance of each model, and summarize the advantages and limitations of them. Further studies on TCR modeling design, aiming for an optimized balance of specificity and sensitivity, are expected to contribute to the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Jiawei Shi
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Weiwei Yin
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou, China
| | - Wei Chen
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory for Biomedical Engineering of the Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
41
|
Pathni A, Wagh K, Rey-Suarez I, Upadhyaya A. Mechanical regulation of lymphocyte activation and function. J Cell Sci 2024; 137:jcs219030. [PMID: 38995113 PMCID: PMC11267459 DOI: 10.1242/jcs.219030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024] Open
Abstract
Mechanosensing, or how cells sense and respond to the physical environment, is crucial for many aspects of biological function, ranging from cell movement during development to cancer metastasis, the immune response and gene expression driving cell fate determination. Relevant physical stimuli include the stiffness of the extracellular matrix, contractile forces, shear flows in blood vessels, complex topography of the cellular microenvironment and membrane protein mobility. Although mechanosensing has been more widely studied in non-immune cells, it has become increasingly clear that physical cues profoundly affect the signaling function of cells of the immune system. In this Review, we summarize recent studies on mechanical regulation of immune cells, specifically lymphocytes, and explore how the force-generating cytoskeletal machinery might mediate mechanosensing. We discuss general principles governing mechanical regulation of lymphocyte function, spanning from the molecular scale of receptor activation to cellular responses to mechanical stimuli.
Collapse
Affiliation(s)
- Aashli Pathni
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
| | - Kaustubh Wagh
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ivan Rey-Suarez
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Microcore, Universidad de Los Andes, Bogota, DC 111711, USA
| | - Arpita Upadhyaya
- Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Physics, University of Maryland, College Park, MD 20742, USA
- Insitute for Physical Science and Technology, University of Maryland, College Park, MD 20742, USA
- Biophysics Program, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
42
|
Zhang X, Yuan L, Zhang W, Zhang Y, Wu Q, Li C, Wu M, Huang Y. Liquid-liquid phase separation in diseases. MedComm (Beijing) 2024; 5:e640. [PMID: 39006762 PMCID: PMC11245632 DOI: 10.1002/mco2.640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/16/2024] Open
Abstract
Liquid-liquid phase separation (LLPS), an emerging biophysical phenomenon, can sequester molecules to implement physiological and pathological functions. LLPS implements the assembly of numerous membraneless chambers, including stress granules and P-bodies, containing RNA and protein. RNA-RNA and RNA-protein interactions play a critical role in LLPS. Scaffolding proteins, through multivalent interactions and external factors, support protein-RNA interaction networks to form condensates involved in a variety of diseases, particularly neurodegenerative diseases and cancer. Modulating LLPS phenomenon in multiple pathogenic proteins for the treatment of neurodegenerative diseases and cancer could present a promising direction, though recent advances in this area are limited. Here, we summarize in detail the complexity of LLPS in constructing signaling pathways and highlight the role of LLPS in neurodegenerative diseases and cancers. We also explore RNA modifications on LLPS to alter diseases progression because these modifications can influence LLPS of certain proteins or the formation of stress granules, and discuss the possibility of proper manipulation of LLPS process to restore cellular homeostasis or develop therapeutic drugs for the eradication of diseases. This review attempts to discuss potential therapeutic opportunities by elaborating on the connection between LLPS, RNA modification, and their roles in diseases.
Collapse
Affiliation(s)
- Xinyue Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Lin Yuan
- Laboratory of Research in Parkinson's Disease and Related Disorders Health Sciences Institute China Medical University Shenyang China
| | - Wanlu Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Yi Zhang
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Qun Wu
- Department of Pediatrics Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine Shanghai China
| | - Chunting Li
- College of Life and Health Sciences Northeastern University Shenyang China
| | - Min Wu
- Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang China
- The Joint Research Center Affiliated Xiangshan Hospital of Wenzhou Medical University Ningbo China
| | - Yongye Huang
- College of Life and Health Sciences Northeastern University Shenyang China
- Key Laboratory of Bioresource Research and Development of Liaoning Province College of Life and Health Sciences Northeastern University Shenyang China
| |
Collapse
|
43
|
Griffiths G, Brügger B, Freund C. Lipid switches in the immunological synapse. J Biol Chem 2024; 300:107428. [PMID: 38823638 PMCID: PMC11259711 DOI: 10.1016/j.jbc.2024.107428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 05/07/2024] [Accepted: 05/26/2024] [Indexed: 06/03/2024] Open
Abstract
Adaptive immune responses comprise the activation of T cells by peptide antigens that are presented by proteins of the Major Histocompatibility Complex (MHC) on the surface of an antigen-presenting cell. As a consequence of the T cell receptor interacting productively with a certain peptide-MHC complex, a specialized cell-cell junction known as the immunological synapse forms and is accompanied by changes in the spatiotemporal patterning and function of intracellular signaling molecules. Key modifications occurring at the cytoplasmic leaflet of the plasma and internal membranes in activated T cells comprise lipid switches that affect the binding and distribution of proteins within or near the lipid bilayer. Here, we describe two major classes of lipid switches that act at this critical water/membrane interface. Phosphoinositides are derived from phosphatidylinositol, an amphiphilic molecule that contains two fatty acid chains and a phosphate group that bridges the glycerol backbone to the carbohydrate inositol. The inositol ring can be variably (de-)phosphorylated by dedicated kinases and phosphatases, thereby creating phosphoinositide signatures that define the composition and properties of signaling molecules, molecular complexes, or whole organelles. Palmitoylation refers to the reversible attachment of the fatty acid palmitate to a substrate protein's cysteine residue. DHHC enzymes, named after the four conserved amino acids in their active site, catalyze this post-translational modification and thereby change the distribution of proteins at, between, and within membranes. T cells utilize these two types of molecular switches to adjust their properties to an activation process that requires changes in motility, transport, secretion, and gene expression.
Collapse
Affiliation(s)
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Christian Freund
- Laboratory of Protein Biochemistry, Institute of Chemistry & Biochemistry, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
44
|
Jacobsen C, Plückebaum N, Ssebyatika G, Beyer S, Mendes-Monteiro L, Wang J, Kropp KA, González-Motos V, Steinbrück L, Ritter B, Rodríguez-González C, Böning H, Nikolouli E, Kinchington PR, Lachmann N, Depledge DP, Krey T, Viejo-Borbolla A. Viral modulation of type II interferon increases T cell adhesion and virus spread. Nat Commun 2024; 15:5318. [PMID: 38909022 PMCID: PMC11193720 DOI: 10.1038/s41467-024-49657-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/13/2024] [Indexed: 06/24/2024] Open
Abstract
During primary varicella zoster virus (VZV) infection, infected lymphocytes drive primary viremia, causing systemic dissemination throughout the host, including the skin. This results in cytokine expression, including interferons (IFNs), which partly limit infection. VZV also spreads from skin keratinocytes to lymphocytes prior to secondary viremia. It is not clear how VZV achieves this while evading the cytokine response. Here, we show that VZV glycoprotein C (gC) binds IFN-γ and modifies its activity, increasing the expression of a subset of IFN-stimulated genes (ISGs), including intercellular adhesion molecule 1 (ICAM1), chemokines and immunomodulatory genes. The higher ICAM1 protein level at the plasma membrane of keratinocytes facilitates lymphocyte function-associated antigen 1-dependent T cell adhesion and expression of gC during infection increases VZV spread to peripheral blood mononuclear cells. This constitutes the discovery of a strategy to modulate IFN-γ activity, upregulating a subset of ISGs, promoting enhanced lymphocyte adhesion and virus spread.
Collapse
Affiliation(s)
- Carina Jacobsen
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Nina Plückebaum
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - George Ssebyatika
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck, 23562, Germany
| | - Sarah Beyer
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | | | - Jiayi Wang
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Kai A Kropp
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Víctor González-Motos
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- University of Veterinary Medicine Hannover, Foundation, Hannover, 30559, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Birgit Ritter
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Claudio Rodríguez-González
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Heike Böning
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
| | - Eirini Nikolouli
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
| | - Paul R Kinchington
- Departments of Ophthalmology and of Molecular Microbiology and Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nico Lachmann
- Department for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, 30625, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Nikolai-Fuchs-Str. 1, 30625, Hannover, Germany
| | - Daniel P Depledge
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- German, Center for Infection Research (DZIF), Hannover, Germany
| | - Thomas Krey
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany
- Institute of Biochemistry, University of Lübeck, Lübeck, 23562, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany
- Centre for Structural Systems Biology (CSSB), 22607, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, 22607, Hamburg, Germany
| | - Abel Viejo-Borbolla
- Institute of Virology, Hannover Medical School, Hannover, 30625, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Straße 1, 30625, Hannover, Germany.
| |
Collapse
|
45
|
Brunner P, Kiwitz L, Li L, Thurley K. Diffusion-limited cytokine signaling in T cell populations. iScience 2024; 27:110134. [PMID: 39678490 PMCID: PMC11639737 DOI: 10.1016/j.isci.2024.110134] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/30/2024] [Accepted: 05/25/2024] [Indexed: 12/17/2024] Open
Abstract
Effective immune-cell responses depend on collective decision-making mediated by diffusible intercellular signaling proteins called cytokines. Here, we designed a three-dimensional spatiotemporal modeling framework and a precise finite-element simulation setup to systematically investigate the origin and consequences of spatially inhomogeneous cytokine distributions in lymph nodes. We found that such inhomogeneities are critical for effective paracrine signaling, and they do not arise by diffusion and uptake alone, but rather depend on properties of the cell population such as an all-or-none behavior of cytokine secreting cells. Furthermore, we assessed the regulatory properties of negative and positive feedback in combination with diffusion-limited signaling dynamics, and we derived statistical quantities to characterize the spatiotemporal signaling landscape in the context of specific tissue architectures. Overall, our simulations highlight the complex spatiotemporal dynamics imposed by cell-cell signaling with diffusible ligands, which entails a large potential for fine-tuned biological control especially if combined with feedback mechanisms.
Collapse
Affiliation(s)
- Patrick Brunner
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz-Institute, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Lukas Kiwitz
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz-Institute, Berlin, Germany
- Institute of Biology, Humboldt University, Berlin, Germany
| | - Lisa Li
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
| | - Kevin Thurley
- Biomathematics Division, Institute of Experimental Oncology, University Hospital Bonn, Bonn, Germany
- Systems Biology of Inflammation, German Rheumatism Research Center (DRFZ), a Leibniz-Institute, Berlin, Germany
| |
Collapse
|
46
|
Shah K, Leandro M, Cragg M, Kollert F, Schuler F, Klein C, Reddy V. Disrupting B and T-cell collaboration in autoimmune disease: T-cell engagers versus CAR T-cell therapy? Clin Exp Immunol 2024; 217:15-30. [PMID: 38642912 PMCID: PMC11188544 DOI: 10.1093/cei/uxae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/07/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024] Open
Abstract
B and T cells collaborate to drive autoimmune disease (AID). Historically, B- and T-cell (B-T cell) co-interaction was targeted through different pathways such as alemtuzumab, abatacept, and dapirolizumab with variable impact on B-cell depletion (BCD), whereas the majority of patients with AID including rheumatoid arthritis, systemic lupus erythematosus, multiple sclerosis, and organ transplantation benefit from targeted BCD with anti-CD20 monoclonal antibodies such as rituximab, ocrelizumab, or ofatumumab. Refractory AID is a significant problem for patients with incomplete BCD with a greater frequency of IgD-CD27+ switched memory B cells, CD19+CD20- B cells, and plasma cells that are not directly targeted by anti-CD20 antibodies, whereas most lymphoid tissue plasma cells express CD19. Furthermore, B-T-cell collaboration is predominant in lymphoid tissues and at sites of inflammation such as the joint and kidney, where BCD may be inefficient, due to limited access to key effector cells. In the treatment of cancer, chimeric antigen receptor (CAR) T-cell therapy and T-cell engagers (TCE) that recruit T cells to induce B-cell cytotoxicity have delivered promising results for anti-CD19 CAR T-cell therapies, the CD19 TCE blinatumomab and CD20 TCE such as mosunetuzumab, glofitamab, or epcoritamab. Limited evidence suggests that anti-CD19 CAR T-cell therapy may be effective in managing refractory AID whereas we await evaluation of TCE for use in non-oncological indications. Therefore, here, we discuss the potential mechanistic advantages of novel therapies that rely on T cells as effector cells to disrupt B-T-cell collaboration toward overcoming rituximab-resistant AID.
Collapse
Affiliation(s)
| | - Maria Leandro
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| | - Mark Cragg
- University of Southampton Faculty of Medicine, Antibody and Vaccine Group, Centre for Cancer Immunology, University of Southampton, Southampton, UK
| | - Florian Kollert
- Roche Innovation Center Basel, Early Development Immunology, Infectious Diseases & Ophthalmology, Basel, Switzerland
| | - Franz Schuler
- Roche Innovation Center Basel, Roche Pharma Research and Early Development, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Cancer Immunotherapy Discovery, Oncology Discovery & Translational Area, Schlieren, Switzerland
| | - Venkat Reddy
- Centre for Rheumatology, UCLH, London,UK
- Department of Rheumatology, University College London Hospital, London, UK
| |
Collapse
|
47
|
Wang X, Fernandes SM, Brown JR, Kam LC. Assaying and classifying T cell function by cell morphology. BIOMEDINFORMATICS 2024; 4:1144-1154. [PMID: 39525274 PMCID: PMC11542667 DOI: 10.3390/biomedinformatics4020063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Immune cell function varies tremendously between individuals, posing a major challenge to emerging cellular immunotherapies. This report pursues the use of cell morphology as an indicator of high-level T cell function. Short-term spreading of T cells on planar, elastic surfaces was quantified by 11 morphological parameters and analyzed to identify effects of both intrinsic and extrinsic factors. Our findings identified morphological features that varied between T cells isolated from healthy donors and those from patients being treated for Chronic Lymphocytic Leukemia (CLL). This approach also identified differences between cell responses to substrates of different elastic modulus. Combining multiple features through a machine learning approach such as Decision Tree or Random Forest provided an effective means for identifying whether T cells came from healthy or CLL donors. Further development of this approach could lead to a rapid assay of T cell function to guide cellular immunotherapy.
Collapse
Affiliation(s)
- Xin Wang
- Department of Biomedical Engineering, Columbia University, New York, NY
| | - Stacey M. Fernandes
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jennifer R. Brown
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, NY
| |
Collapse
|
48
|
Wang A, Lin X, Chau KN, Onuchic JN, Levine H, George JT. RACER-m leverages structural features for sparse T cell specificity prediction. SCIENCE ADVANCES 2024; 10:eadl0161. [PMID: 38748791 PMCID: PMC11095454 DOI: 10.1126/sciadv.adl0161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/10/2024] [Indexed: 05/19/2024]
Abstract
Reliable prediction of T cell specificity against antigenic signatures is a formidable task, complicated by the immense diversity of T cell receptor and antigen sequence space and the resulting limited availability of training sets for inferential models. Recent modeling efforts have demonstrated the advantage of incorporating structural information to overcome the need for extensive training sequence data, yet disentangling the heterogeneous TCR-antigen interface to accurately predict MHC-allele-restricted TCR-peptide interactions has remained challenging. Here, we present RACER-m, a coarse-grained structural model leveraging key biophysical information from the diversity of publicly available TCR-antigen crystal structures. Explicit inclusion of structural content substantially reduces the required number of training examples and maintains reliable predictions of TCR-recognition specificity and sensitivity across diverse biological contexts. Our model capably identifies biophysically meaningful point-mutant peptides that affect binding affinity, distinguishing its ability in predicting TCR specificity of point-mutants from alternative sequence-based methods. Its application is broadly applicable to studies involving both closely related and structurally diverse TCR-peptide pairs.
Collapse
Affiliation(s)
- Ailun Wang
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - Xingcheng Lin
- Department of Physics, North Carolina State University, Raleigh, NC, USA
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Kevin Ng Chau
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
| | - José N. Onuchic
- Departments of Physics and Astronomy, Chemistry, and Biosciences, Rice University, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA
- Department of Physics, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Jason T. George
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- Department of Biomedical Engineering, Texas A&M University, Houston, TX, USA
| |
Collapse
|
49
|
Ali FEM, Ibrahim IM, Althagafy HS, Hassanein EHM. Role of immunotherapies and stem cell therapy in the management of liver cancer: A comprehensive review. Int Immunopharmacol 2024; 132:112011. [PMID: 38581991 DOI: 10.1016/j.intimp.2024.112011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
Liver cancer (LC) is the sixth most common disease and the third most common cause of cancer-related mortality. The WHO predicts that more than 1 million deaths will occur from LC by 2030. Hepatocellular carcinoma (HCC) is a common form of primary LC. Today, the management of LC involves multiple disciplines, and multimodal therapy is typically selected on an individual basis, considering the intricate interactions between the patient's overall health, the stage of the tumor, and the degree of underlying liver disease. Currently, the treatment of cancers, including LC, has undergone a paradigm shift in the last ten years because of immuno-oncology. To treat HCC, immune therapy approaches have been developed to enhance or cause the body's natural immune response to specifically target tumor cells. In this context, immune checkpoint pathway inhibitors, engineered cytokines, adoptive cell therapy, immune cells modified with chimeric antigen receptors, and therapeutic cancer vaccines have advanced to clinical trials and offered new hope to cancer patients. The outcomes of these treatments are encouraging. Additionally, treatment using stem cells is a new approach for restoring deteriorated tissues because of their strong differentiation potential and capacity to release cytokines that encourage cell division and the formation of blood vessels. Although there is no proof that stem cell therapy works for many types of cancer, preclinical research on stem cells has shown promise in treating HCC. This review provides a recent update regarding the impact of immunotherapy and stem cells in HCC and promising outcomes.
Collapse
Affiliation(s)
- Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt; Michael Sayegh, Faculty of Pharmacy, Aqaba University of Technology, Aqaba 77110, Jordan.
| | - Islam M Ibrahim
- Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut, 71524, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| |
Collapse
|
50
|
Hamid MHBA, Cespedes PF, Jin C, Chen JL, Gileadi U, Antoun E, Liang Z, Gao F, Teague R, Manoharan N, Maldonado-Perez D, Khalid-Alham N, Cerundolo L, Ciaoca R, Hester SS, Pinto-Fernández A, Draganov SD, Vendrell I, Liu G, Yao X, Kvalvaag A, Dominey-Foy DCC, Nanayakkara C, Kanellakis N, Chen YL, Waugh C, Clark SA, Clark K, Sopp P, Rahman NM, Verrill C, Kessler BM, Ogg G, Fernandes RA, Fisher R, Peng Y, Dustin ML, Dong T. Unconventional human CD61 pairing with CD103 promotes TCR signaling and antigen-specific T cell cytotoxicity. Nat Immunol 2024; 25:834-846. [PMID: 38561495 PMCID: PMC11065694 DOI: 10.1038/s41590-024-01802-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/29/2024] [Indexed: 04/04/2024]
Abstract
Cancer remains one of the leading causes of mortality worldwide, leading to increased interest in utilizing immunotherapy strategies for better cancer treatments. In the past decade, CD103+ T cells have been associated with better clinical prognosis in patients with cancer. However, the specific immune mechanisms contributing toward CD103-mediated protective immunity remain unclear. Here, we show an unexpected and transient CD61 expression, which is paired with CD103 at the synaptic microclusters of T cells. CD61 colocalization with the T cell antigen receptor further modulates downstream T cell antigen receptor signaling, improving antitumor cytotoxicity and promoting physiological control of tumor growth. Clinically, the presence of CD61+ tumor-infiltrating T lymphocytes is associated with improved clinical outcomes, mediated through enhanced effector functions and phenotype with limited evidence of cellular exhaustion. In conclusion, this study identified an unconventional and transient CD61 expression and pairing with CD103 on human immune cells, which potentiates a new target for immune-based cellular therapies.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Antigens, CD/metabolism
- Antigens, CD/immunology
- Apyrase
- Cell Line, Tumor
- Cytotoxicity, Immunologic
- Integrin alpha Chains/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/immunology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Signal Transduction/immunology
- T-Lymphocytes, Cytotoxic/immunology
Collapse
Affiliation(s)
- Megat H B A Hamid
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Pablo F Cespedes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Chen Jin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ji-Li Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Elie Antoun
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Zhu Liang
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Fei Gao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Renuka Teague
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nikita Manoharan
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - David Maldonado-Perez
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Nasullah Khalid-Alham
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Lucia Cerundolo
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - Raul Ciaoca
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Svenja S Hester
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Adán Pinto-Fernández
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Simeon D Draganov
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Iolanda Vendrell
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Guihai Liu
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Xuan Yao
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Audun Kvalvaag
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
- Department of Molecular Cell Biology, Institute of Cancer Research, Oslo University Hospital, Oslo, Norway
| | | | - Charunya Nanayakkara
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Nikolaos Kanellakis
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Yi-Ling Chen
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Craig Waugh
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Sally-Ann Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Clark
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Paul Sopp
- Flow Cytometry Facility, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Najib M Rahman
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
- Laboratory of Pleural and Lung Cancer Translational Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford University Hospitals, Oxford, UK
| | - Clare Verrill
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
- Oxford National Institute of Health Research (NIHR) Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Benedikt M Kessler
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Graham Ogg
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Ricardo A Fernandes
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Roman Fisher
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Yanchun Peng
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Michael L Dustin
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Tao Dong
- CAMS Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- MRC Translational Immune Discovery Unity, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|