1
|
Militi S, Nibhani R, Jalali M, Pauklin S. RBL2-E2F-GCN5 guide cell fate decisions during tissue specification by regulating cell-cycle-dependent fluctuations of non-cell-autonomous signaling. Cell Rep 2023; 42:113146. [PMID: 37725511 DOI: 10.1016/j.celrep.2023.113146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 09/21/2023] Open
Abstract
The retinoblastoma family proteins (RBs) and E2F transcription factors are cell-autonomous regulators of cell-cycle progression, but they also impact fate choice in addition to tumor suppression. The range of mechanisms involved remains to be uncovered. Here, we show that RBs, particularly RBL2/p130, repress WNT ligands such as WNT4 and WNT8A, thereby directing ectoderm specification between neural crest to neuroepithelium. RBL2 achieves this function through cell-cycle-dependent cooperation with E2Fs and GCN5 on the regulatory regions of WNT loci, which direct neuroepithelial versus neural crest specification by temporal fluctuations of WNT/β-catenin and DLL/NOTCH signaling activity. Thus, the RB-E2F bona fide cell-autonomous axis controls cell fate decisions, and RBL2 regulates field effects via WNT ligands. This reveals a non-cell-autonomous function of RBL2-E2F in stem cell and tissue progenitor differentiation that has broader implications for cell-cycle-dependent cell fate specification in organogenesis, adult stem cells, tissue homeostasis, and tumorigenesis.
Collapse
Affiliation(s)
- Stefania Militi
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Reshma Nibhani
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK
| | - Morteza Jalali
- Anne McLaren Laboratory for Regenerative Medicine, Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
| | - Siim Pauklin
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Old Road, Headington, Oxford OX3 7LD, UK.
| |
Collapse
|
2
|
Pavlenko E, Ruengeler T, Engel P, Poepsel S. Functions and Interactions of Mammalian KDM5 Demethylases. Front Genet 2022; 13:906662. [PMID: 35899196 PMCID: PMC9309374 DOI: 10.3389/fgene.2022.906662] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/06/2022] [Indexed: 12/26/2022] Open
Abstract
Mammalian histone demethylases of the KDM5 family are mediators of gene expression dynamics during developmental, cellular differentiation, and other nuclear processes. They belong to the large group of JmjC domain containing, 2-oxoglutarate (2-OG) dependent oxygenases and target methylated lysine 4 of histone H3 (H3K4me1/2/3), an epigenetic mark associated with active transcription. In recent years, KDM5 demethylases have gained increasing attention due to their misregulation in many cancer entities and are intensively explored as therapeutic targets. Despite these implications, the molecular basis of KDM5 function has so far remained only poorly understood. Little is known about mechanisms of nucleosome recognition, the recruitment to genomic targets, as well as the local regulation of demethylase activity. Experimental evidence suggests close physical and functional interactions with epigenetic regulators such as histone deacetylase (HDAC) containing complexes, as well as the retinoblastoma protein (RB). To understand the regulation of KDM5 proteins in the context of chromatin, these interactions have to be taken into account. Here, we review the current state of knowledge on KDM5 function, with a particular emphasis on molecular interactions and their potential implications. We will discuss and outline open questions that need to be addressed to better understand histone demethylation and potential demethylation-independent functions of KDM5s. Addressing these questions will increase our understanding of histone demethylation and allow us to develop strategies to target individual KDM5 enzymes in specific biological and disease contexts.
Collapse
Affiliation(s)
- Egor Pavlenko
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Till Ruengeler
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Paulina Engel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
| | - Simon Poepsel
- University of Cologne, Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- *Correspondence: Simon Poepsel,
| |
Collapse
|
3
|
Roßwag S, Sleeman JP, Thaler S. RASSF1A-Mediated Suppression of Estrogen Receptor Alpha (ERα)-Driven Breast Cancer Cell Growth Depends on the Hippo-Kinases LATS1 and 2. Cells 2021; 10:cells10112868. [PMID: 34831091 PMCID: PMC8616147 DOI: 10.3390/cells10112868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Around 70% of breast cancers express the estrogen receptor alpha (ERα). This receptor is of central importance for breast cancer development and estrogen-dependent tumor growth. However, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast carcinogenesis are complex and not fully understood. In previous work, we have demonstrated that the tumor suppressor RASSF1A suppresses estrogen-dependent growth of breast cancer cells through a complex network that keeps ERα expression and function under control. We observed that RASSF1A mediates the suppression of ERα expression through modulation of the Hippo effector Yes-associated protein 1 (YAP1) activity. Here we report that RASSF1A-mediated alteration of YAP1 depends on the Hippo-kinases LATS1 and LATS2. Based on these results, we conclude that inactivation of RASSF1A causes changes in the function of the Hippo signaling pathway and altered activation of YAP1, and as a consequence, increased expression and function of ERα. Thus, the inactivation of RASSF1A might constitute a fundamental event that supports the initiation of ERα-dependent breast cancer. Furthermore, our results support the notion that the Hippo pathway is important for the suppression of luminal breast cancers, and that the tumor-suppressor function of RASSF1A depends on LATS1 and LATS2.
Collapse
Affiliation(s)
- Sven Roßwag
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (J.P.S.)
| | - Jonathan P. Sleeman
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (J.P.S.)
- Institute of Biological and Chemical Systems-Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leupoldshafen, Germany
| | - Sonja Thaler
- Department of Microvascular Biology and Pathobiology, European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany; (S.R.); (J.P.S.)
- Correspondence: ; Tel.: +49-621-383-71599; Fax: +49-621-383-71451
| |
Collapse
|
4
|
Shao L, Sheng Z, Zhu Y, Li J, Meng R. Effect of miR-215 on the Expression of Tumor Suppressor Gene Rb1 in Retinoblastoma Cell Lines. IRANIAN JOURNAL OF PUBLIC HEALTH 2020; 49:1298-1306. [PMID: 33083296 PMCID: PMC7548482 DOI: 10.18502/ijph.v49i7.3583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background: Effect of miR-215 on the expression of tumor suppressor gene retinoblastoma (Rb)1 in Rb cell lines was investigated. Methods: A total of 128 patients were selected. The expression of miR-215 in cancer and adjacent healthy tissues of the 128 patients was detected by reverse transcription-quantitative PCR (RT-qPCR). HXO-Rb44 and Y79 cell lines were transfected with miR-215 analogs or miR-215 inhibitors, and the expression of Rb1 protein in the cell lines was detected by western blotting. Results: The expression of miR-215 in the adjacent healthy tissues of patients was significantly lower than that in cancer tissues (P<0.001). The expression of miR-215 in Y79 and HXO-Rb44 cells was significantly higher than that in APRE-19 cells (P<0.001). The expression of miR-215 in HXO-Rb44 cells was significantly higher than that in Y79 cells (P<0.001). The expression of miR-215 was statistically different from the degree of differentiation and nerve infiltration (P<0.05). The expression of Rb1 in cancer tissues was significantly lower than that in adjacent tissues (P<0.001), the expression of APRE-19 was significantly higher than that in Y79 and HXO-Rb44 cells (P<0.001), and the expression of Rb1 in HXO-Rb44 cells was significantly higher than that in Y79 cells (P<0.05). There was a negative correlation between miR-215 and Rb1 in the tissues of patients, and Rb1 expression decreased with the increase of miR-215 (r=-0.576, P<0.001). Conclusion: miR-215 is highly expressed in Rb cell lines, and is related to the clinicopathological features of this disease.
Collapse
Affiliation(s)
- Liqin Shao
- Department of Ophthalmology, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Zhangxing Sheng
- Department of Ophthalmology, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Yuefeng Zhu
- Department of Ophthalmology, Affiliated Hospital of Shaoxing University, Shaoxing, Zhejiang 312000, China
| | - Jianchao Li
- Department of Ophthalmology, Xi'an Traditional Chinese Medicine Hospital, Xi'an, Shaanxi 710020, China
| | - Rufa Meng
- Department of Ophthalmology, The Fifth Hospital of Shaoxing, Shaoxing, Zhejiang 312000, China
| |
Collapse
|
5
|
Abstract
We review and discuss data on the genetic alterations documented in human breast carcinomas at the molecular level. These alterations may result in: 1) deletion of genetic material (chromosome 11p, 13q, 3p, 1q, 17p); 2) amplification of genes or entire chromosomal segments (c-myc, c-erb-B2, locus DF3/PUM, loci on 11q13); 3) rearrangements (c-myc); 4) point mutations (c-ras). Presently available informations do not allow the development of cohesive pathogenetic models but indicate that the molecular basis of human breast cancer is heterogeneous.
Collapse
Affiliation(s)
- R Mariani-Costantini
- Istituto di Patologia Umana e Medicina Sociale, Università G. D'Annunzio, Chieti, Italy
| | | | | |
Collapse
|
6
|
Villegas SL, Darb-Esfahani S, von Minckwitz G, Huober J, Weber K, Marmé F, Furlanetto J, Schem C, Pfitzner BM, Lederer B, Engels K, Kümmel S, Müller V, Mehta K, Denkert C, Loibl S. Expression of Cyclin D1 protein in residual tumor after neoadjuvant chemotherapy for breast cancer. Breast Cancer Res Treat 2017; 168:179-187. [PMID: 29177689 DOI: 10.1007/s10549-017-4581-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/15/2017] [Indexed: 10/18/2022]
Abstract
PURPOSE Hormone receptor (HR)-positive breast cancer (BC) shows a poor response to neoadjuvant chemotherapy (NACT). New treatment targets like the Cyclin D1-CDK4/CDK6 complex are promising adjuvant/post-neoadjuvant therapeutic strategies. Evaluating Cyclin D1 overexpression in residual tumor could recognize those patients that benefit most from such post-neoadjuvant treatment. In this study, we determined Cyclin D1 expression in residual BC after NACT. Secondary aims were to correlate Cyclin D1 expression levels with clinicopathological parameters and to assess its prognostic value after NACT. METHODS We retrospectively assessed the nuclear expression of Cyclin D1 on tissue microarrays with residual tumor from 284 patients treated in the neoadjuvant GeparTrio (n = 186) and GeparQuattro (n = 98) trials. Evaluation was performed with a standardized immunoreactive score (IRS) after selecting a cut-off value. RESULTS A high expression level (IRS ≥ 6) of Cyclin D1 was found in 37.3% of the assessed specimens. An increased Cyclin D1 expression was observed in HR-positive tumors, compared to HR-negative tumors (p = 0.02). Low Cyclin D1 levels correlated with clinical tumor stage 1-3 (p = 0.03). Among patients with HR-positive/Her2-negative tumors and high Cyclin D1 expression, a better disease-free survival (DFS) was graphically suggested, but not significant (p = 0.21). CONCLUSION Our study demonstrates a measurable nuclear expression of Cyclin D1 in post-neoadjuvant residual tumor tissue of HR-positive BC. Cyclin D1 expression was not prognostic for DFS after NACT. Our results and defined cut-off suggest that the marker can be used to stratify tumors according to protein expression levels. Based on this, a prospective evaluation is currently performed in the ongoing Penelope-B trial.
Collapse
Affiliation(s)
- S L Villegas
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - S Darb-Esfahani
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.,Institute of Pathology Spandau, Evangelisches Waldkrankenhaus, Stadtrandstr. 555, 13589, Berlin, Germany
| | - G von Minckwitz
- German Breast Group (GBG Forschungs GmbH), Martin-Behaim-Str. 12, 63263, Neu-Isenburg, Germany
| | - J Huober
- Department of Obstetrics and Gynecology, Ulm University, Ulm, Germany
| | - K Weber
- German Breast Group (GBG Forschungs GmbH), Martin-Behaim-Str. 12, 63263, Neu-Isenburg, Germany
| | - F Marmé
- National Center for Tumor Diseases, University-Hospital Heidelberg, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - J Furlanetto
- German Breast Group (GBG Forschungs GmbH), Martin-Behaim-Str. 12, 63263, Neu-Isenburg, Germany
| | - C Schem
- Department of Gynecology and Obstetrics, University Hospital Schleswig-Hostein, Kiel, Germany
| | - B M Pfitzner
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - B Lederer
- German Breast Group (GBG Forschungs GmbH), Martin-Behaim-Str. 12, 63263, Neu-Isenburg, Germany
| | - K Engels
- Zentrum für Pathologie, Zytologie und Molekularpathologie Neuss, Neuss, Germany
| | - S Kümmel
- Breast Unit Kliniken Essen-Mitte, Essen, Germany
| | - V Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - K Mehta
- German Breast Group (GBG Forschungs GmbH), Martin-Behaim-Str. 12, 63263, Neu-Isenburg, Germany
| | - C Denkert
- Institute of Pathology, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany. .,German Cancer Consortium (DKTK), Partner Site Charité, Berlin, Germany.
| | - S Loibl
- German Breast Group (GBG Forschungs GmbH), Martin-Behaim-Str. 12, 63263, Neu-Isenburg, Germany
| |
Collapse
|
7
|
Abstract
Proper cellular functionality and homeostasis are maintained by the convergent integration of various signaling cascades, which enable cells to respond to internal and external changes. The Dbf2-related kinases LATS1 and LATS2 (LATS) have emerged as central regulators of cell fate, by modulating the functions of numerous oncogenic or tumor suppressive effectors, including the canonical Hippo effectors YAP/TAZ, the Aurora mitotic kinase family, estrogen signaling and the tumor suppressive transcription factor p53. While the basic functions of the LATS kinase module are strongly conserved over evolution, the genomic duplication event leading to the emergence of two closely related kinases in higher organisms has increased the complexity of this signaling network. Here, we review the LATS1 and LATS2 intrinsic features as well as their reported cellular activities, emphasizing unique characteristics of each kinase. While differential activities between the two paralogous kinases have been reported, many converge to similar pathways and outcomes. Interestingly, the regulatory networks controlling the mRNA expression pattern of LATS1 and LATS2 differ strongly, and may contribute to the differences in protein binding partners of each kinase and in the subcellular locations in which each kinase exerts its functions.
Collapse
Affiliation(s)
- Noa Furth
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| | - Yael Aylon
- Department of Molecular Cell Biology, The Weizmann Institute of Science, POB 26, 234 Herzl St., Rehovot 7610001, Israel
| |
Collapse
|
8
|
Vilas JM, Ferreirós A, Carneiro C, Morey L, Da Silva-Álvarez S, Fernandes T, Abad M, Di Croce L, García-Caballero T, Serrano M, Rivas C, Vidal A, Collado M. Transcriptional regulation of Sox2 by the retinoblastoma family of pocket proteins. Oncotarget 2015; 6:2992-3002. [PMID: 25576924 PMCID: PMC4413632 DOI: 10.18632/oncotarget.2996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 12/14/2014] [Indexed: 11/25/2022] Open
Abstract
Cellular reprogramming to iPSCs has uncovered unsuspected links between tumor suppressors and pluripotency factors. Using this system, it was possible to identify tumor suppressor p27 as a repressor of Sox2 during differentiation. This led to the demonstration that defects in the repression of Sox2 can contribute to tumor development. The members of the retinoblastoma family of pocket proteins, pRb, p107 and p130, are negative regulators of the cell cycle with tumor suppressor activity and with roles in differentiation. In this work we studied the relative contribution of the retinoblastoma family members to the regulation of Sox2 expression. We found that deletion of Rb or p130 leads to impaired repression of Sox2, a deffect amplified by inactivation of p53. We also identified binding of pRb and p130 to an enhancer with crucial regulatory activity on Sox2 expression. Using cellular reprogramming we tested the impact of the defective repression of Sox2 and confirmed that Rb deficiency allows the generation of iPSCs in the absence of exogenous Sox2. Finally, partial depletion of Sox2 positive cells reduced the pituitary tumor development initiated by Rb loss in vivo. In summary, our results show that Sox2 repression by pRb is a relevant mechanism of tumor suppression.
Collapse
Affiliation(s)
- Jéssica M Vilas
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| | - Alba Ferreirós
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| | - Carmen Carneiro
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain
| | - Lluis Morey
- Centre for Genomic Regulation and UPF, E08003 Barcelona, Spain
| | - Sabela Da Silva-Álvarez
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| | - Tânia Fernandes
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain
| | - María Abad
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), E28029 Madrid, Spain
| | - Luciano Di Croce
- Centre for Genomic Regulation and UPF, E08003 Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), E08010 Barcelona, Spain
| | - Tomás García-Caballero
- Departamento de Ciencias Morfológicas, Facultad de Medicina. USC. Complejo Hospitalario de Santiago (CHUS), SERGAS, E15706, Santiago de Compostela, Spain
| | - Manuel Serrano
- Tumor Suppression Group, Spanish National Cancer Research Centre (CNIO), E28029 Madrid, Spain
| | - Carmen Rivas
- Departamento de Biología Molecular y Celular, Centro Nacional de Biotecnología-CSIC, E28049 Madrid, Spain.,Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15706 Santiago de Compostela, Spain
| | - Anxo Vidal
- Departamento de Fisioloxía and Centro de Investigación en Medicina Molecular (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias de Santiago de Compostela (IDIS), E15782 Santiago de Compostela, Spain
| | - Manuel Collado
- Instituto de Investigación Sanitaria de Santiago de Compostela (IDIS), Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), SERGAS, E15706 Santiago de Compostela, Spain
| |
Collapse
|
9
|
Caruso JA, Campana R, Wei C, Su CH, Hanks AM, Bornmann WG, Keyomarsi K. Indole-3-carbinol and its N-alkoxy derivatives preferentially target ERα-positive breast cancer cells. Cell Cycle 2015; 13:2587-99. [PMID: 25486199 DOI: 10.4161/15384101.2015.942210] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Indole-3-carbinol (I3C) is a natural anti-carcinogenic compound found at high concentrations in Brassica vegetables. I3C was recently reported to inhibit neutrophil elastase (NE) activity, while consequently limiting the proteolytic processing of full length cyclin E into pro-tumorigenic low molecular weight cyclin E (LMW-E). In this study, we hypothesized that inhibition of NE activity and resultant LMW-E generation is critical to the anti-tumor effects of I3C. LMW-E was predominately expressed by ERα-negative breast cancer cell lines. However, ERα-positive cell lines demonstrated the greatest sensitivity to the anti-tumor effects of I3C and its more potent N-alkoxy derivatives. We found that I3C was incapable of inhibiting NE activity or the generation of LMW-E. Therefore, this pathway did not contribute to the anti-tumor activity of I3C. Gene expression analyzes identified ligand-activated aryl hydrocarbon receptor (AhR), which mediated sensitivity to the anti-tumor effects of I3C in ERα-positive MCF-7 cells. In this model system, the reactive oxygen species (ROS)-induced upregulation of ATF-3 and pro-apoptotic BH3-only proteins (e.g. NOXA) contributed to the sensitivity of ERα-positive breast cancer cells to the anti-tumor effects of I3C. Overexpression of ERα in MDA-MB-231 cells, which normally lack ERα expression, increased sensitivity to the anti-tumor effects of I3C, demonstrating a direct role for ERα in mediating the sensitivity of breast cancer cell lines to I3C. Our results suggest that ERα signaling amplified the pro-apoptotic effect of I3C-induced AhR signaling in luminal breast cancer cell lines, which was mediated in part through oxidative stress induced upregulation of ATF-3 and downstream BH3-only proteins.
Collapse
Key Words
- AhR, aryl hydrocarbon receptor
- CYP, cytochrome p450 oxidases
- DIM, 3,3-diindoylmethane
- ERα, estrogen receptor α
- HMECs, human mammary epithelial cells
- I3C, indole-3-carbinol
- LMW-E, low molecular weight cyclin E
- NE, neutrophil elastase
- ROS, reactive oxygen species
- RPPA, reverse phase protein array
- TNBC, triple-receptor negative breast cancer
- aryl hydrocarbon receptor
- estrogen receptor α
- indole-3-carbinol
- neutrophil elastase
Collapse
Affiliation(s)
- Joseph A Caruso
- a Department of Experimental Radiation Oncology ; University of Texas MD Anderson Cancer Center ; Houston , TX USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Thoompumkal IJ, Subba Rao MRK, Kumaraswamy A, Krishnan R, Mahalingam S. GNL3L Is a Nucleo-Cytoplasmic Shuttling Protein: Role in Cell Cycle Regulation. PLoS One 2015; 10:e0135845. [PMID: 26274615 PMCID: PMC4537249 DOI: 10.1371/journal.pone.0135845] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/27/2015] [Indexed: 01/01/2023] Open
Abstract
GNL3L is an evolutionarily conserved high molecular weight GTP binding nucleolar protein belonging to HSR1-MMR1 subfamily of GTPases. The present investigation reveals that GNL3L is a nucleo-cytoplasmic shuttling protein and its export from the nucleus is sensitive to Leptomycin B. Deletion mutagenesis reveals that the C-terminal domain (amino acids 501–582) is necessary and sufficient for the export of GNL3L from the nucleus and the exchange of hydrophobic residues (M567, L570 and 572) within the C-terminal domain impairs this process. Results from the protein-protein interaction analysis indicate that GNL3L interaction with CRM1 is critical for its export from the nucleus. Ectopic expression of GNL3L leads to lesser accumulation of cells in the ‘G2/M’ phase of cell cycle whereas depletion of endogenous GNL3L results in ‘G2/M’ arrest. Interestingly, cell cycle analysis followed by BrdU labeling assay indicates that significantly increased DNA synthesis occurs in cells expressing nuclear export defective mutant (GNL3L∆NES) compared to the wild type or nuclear import defective GNL3L. Furthermore, increased hyperphosphorylation of Rb at Serine 780 and the upregulation of E2F1, cyclins A2 and E1 upon ectopic expression of GNL3L∆NES results in faster ‘S’ phase progression. Collectively, the present study provides evidence that GNL3L is exported from the nucleus in CRM1 dependent manner and the nuclear localization of GNL3L is important to promote ‘S’ phase progression during cell proliferation.
Collapse
Affiliation(s)
- Indu Jose Thoompumkal
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Malireddi Rama Krishna Subba Rao
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Anbarasu Kumaraswamy
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
- National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Rehna Krishnan
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
| | - Sundarasamy Mahalingam
- Laboratory of Molecular Virology and Cell Biology, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
- National Cancer Tissue Biobank, Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology-Madras, Chennai, 600 036, India
- * E-mail:
| |
Collapse
|
11
|
Ling L, Tan SK, Goh TH, Cheung E, Nurcombe V, van Wijnen AJ, Cool SM. Targeting the heparin-binding domain of fibroblast growth factor receptor 1 as a potential cancer therapy. Mol Cancer 2015. [PMID: 26201468 PMCID: PMC4511971 DOI: 10.1186/s12943-015-0391-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Background Aberrant activation of fibroblast growth factor receptors (FGFRs) deregulates cell proliferation and promotes cell survival, and may predispose to tumorigenesis. Therefore, selective inactivation of FGFRs is an important strategy for cancer therapy. Here as a proof-of-concept study, we developed a FGFR1 neutralizing antisera, IMB-R1, employing a novel strategy aimed at preventing the access of essential heparan sulfate (HS) co-receptors to the heparin-binding domain on FGFR1. Methods The mRNA and protein expression level of FGFR1 and other FGFRs were examined in several lines of breast cancer and osteosarcoma cells and corresponding normal cells using Taqman real-time quantitative PCR and Western blot analysis. The specificity of IMB-R1 against FGFR1 was assessed with various ELISA-based approaches and Receptor Tyrosine Kinase array. Proliferation assay and apoptosis analysis were performed to assess the effect of IMB-R1 on cancer cell growth and apoptosis, respectively, in comparison with known FGFR1 inhibitors. The IMB-R1 induced alteration of intracellular signaling and gene expression were analysed using Western blot and microarray approaches. Immunohistochemical staining of FGFR1 using IMB-R1 were carried out in different cancer tissues from clinical patients. Throughout the study, statistical differences were determined by Student’s t test where appropriate and reported when a p value was less than 0.05. Results We demonstrate that IMB-R1 is minimally cross-reactive for other FGFRs, and that it potently and specifically inhibits binding of heparin to FGFR1. Furthermore, IMB-R1 blocks the interaction of FGF2 with FGFR1, the kinase activity of FGFR1 and activation of intracellular FGFR signaling. Cancer cells treated with IMB-R1 displayed impaired FGF2 signaling, were unable to grow and instead underwent apoptosis. IMB-R1-induced cell death correlated with a disruption of antioxidative defense networks and increased expression of several tumor suppressors and apoptotic proteins, including p53. Immunostaining with IMB-R1 was stronger in human cancer tissues in which the FGFR1 gene is amplified. Conclusion Our study suggests that blocking HS interaction with the heparin-binding domains of FGFR1 inhibited cancer cell growth, which can be an attractive strategy to inactivate cancer-related heparin-binding proteins. Electronic supplementary material The online version of this article (doi:10.1186/s12943-015-0391-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Ling
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Si Kee Tan
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore
| | - Ting Hwee Goh
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore
| | - Edwin Cheung
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Singapore.,Faculty of Health Sciences, University of Macau, E12 Avenida da Universidade, Taipa, Macau, China
| | - Victor Nurcombe
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore.,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Andre J van Wijnen
- Department of Orthopedic Surgery & Biochemistry and Molecular Biology, Mayo Clinic, 200 First Street SW, MedSci 3-69, Rochester, MN, 55905, USA.
| | - Simon M Cool
- Institute of Medical Biology, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #06-06 Immunos, Singapore, 138648, Singapore. .,Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
| |
Collapse
|
12
|
The expression of tumour suppressors and proto-oncogenes in tissues susceptible to their hereditary cancers. Br J Cancer 2015; 113:345-53. [PMID: 26079304 PMCID: PMC4506389 DOI: 10.1038/bjc.2015.205] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 03/05/2014] [Accepted: 05/15/2015] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Studies of familial cancers have found that only a small subset of tissues are affected by inherited mutations in a given tumour suppressor gene (TSG) or proto-oncogene (POG), even though the mutation is present in all tissues. Previous tests have shown that tissue specificity is not due to the presence vs absence of gene expression, as TSGs and POGs are expressed in nearly every type of normal human tissue. Using published microarray expression data we tested the related hypothesis that tissue-specific expression of a TSG or POG is highest in tissue where it is of oncogenic importance. METHODS We tested this hypothesis by examining whether individual TSGs and POGs had higher expression in the normal (noncancerous) tissues where they are implicated in familial cancers relative to those tissues where they are not. We examined data for 15 TSGs and 8 POGs implicated in familial cancer across 12 human tissue types. RESULTS We found a significant difference between expression levels in susceptible vs nonsusceptible tissues. It was found that 9 (60%, P<0.001) of the TSGs and 5 (63%, P<0.001) of the POGs had their highest expression level in the tissue type susceptible to their oncogenic effect. CONCLUSIONS This highly significant association supports the hypothesis that mutation of a specific TSG or POG is likely to be most oncogenic in the tissue where the gene has its highest level of expression. This suggests that high expression in normal tissues is a potential marker for linking cancer-related genes with their susceptible tissues.
Collapse
|
13
|
Chen KH, He J, Wang DL, Cao JJ, Li MC, Zhao XM, Sheng X, Li WB, Liu WJ. Methylation‑associated inactivation of LATS1 and its effect on demethylation or overexpression on YAP and cell biological function in human renal cell carcinoma. Int J Oncol 2014; 45:2511-21. [PMID: 25270913 DOI: 10.3892/ijo.2014.2687] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Accepted: 09/16/2014] [Indexed: 11/05/2022] Open
Abstract
Large tumor suppressor 1 (LATS1) gene is one of the key factors in Hippo signaling pathway. Inactivation of LATS1 by promoter methylation was found in colorectal cancer (CRC), head and neck squamous cell carcinoma (HNSCC), astrocytoma, breast cancer and it was proved to be a tumor suppressor. However, its role is unclear in renal cell carcinoma (RCC). In this study, the expression of LATS1 was determined by reverse transcription polymerase chain reaction (RT‑PCR) and immunohistochemistry in 30 pairs of RCC tissues and matched normal kidney tissues and RCC cells. We found that the expression of LATS1 was markedly reduced in RCC tissues and cells, in the RCC tissue in 46.7% (14/30), while in the normal kidney tissues in 76.7% (23/30), and was associated with pathological grade and clinical stage of RCC. We detected methylation status of LATS1 by bisulfite sequence-PCR (BSP) in renal cancer cell line 786-O which lowers expression of LATS1, and we found it hypermethy-lated (in 97.5%). In addition, pharmacological demethylation using 5-Aza-2'-deoxycytidine (5-Aza) restored the expression of LATS1 mRNA and protein in 786-O cells, both LATS1 demethylation and overexpression of LATS1 downregulated the expression of Yes-associated protein (YAP), inhibited cell proliferation, induced cell apoptosis and cell cycle G1 arrest in 786-O cells. Thus, this report for the first time demonstrates the inactivation of LATS1 by promoter methy-lation and it is a tumor suppressor in kidney cancer. LATS1 may serve as a biomarker for possible early diagnosis and as a potential therapeutic target for human RCC.
Collapse
Affiliation(s)
- Ke-Hong Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jiang He
- Gastroenterology and Neurology Center, University‑Town Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - De-Lin Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Jian-Jia Cao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Mei-Cai Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xiu-Min Zhao
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Xia Sheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wen-Bin Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, P.R. China
| | - Wu-Jiang Liu
- Institute of Urology, Peking University First Hospital, Beijing, P.R. China
| |
Collapse
|
14
|
Guo XE, Ngo B, Modrek AS, Lee WH. Targeting tumor suppressor networks for cancer therapeutics. Curr Drug Targets 2014; 15:2-16. [PMID: 24387338 DOI: 10.2174/1389450114666140106095151] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/17/2013] [Accepted: 11/03/2013] [Indexed: 01/07/2023]
Abstract
Cancer is a consequence of mutations in genes that control cell proliferation, differentiation and cellular homeostasis. These genes are classified into two categories: oncogenes and tumor suppressor genes. Together, overexpression of oncogenes and loss of tumor suppressors are the dominant driving forces for tumorigenesis. Hence, targeting oncogenes and tumor suppressors hold tremendous therapeutic potential for cancer treatment. In the last decade, the predominant cancer drug discovery strategy has relied on a traditional reductionist approach of dissecting molecular signaling pathways and designing inhibitors for the selected oncogenic targets. Remarkable therapies have been developed using this approach; however, targeting oncogenes is only part of the picture. Our understanding of the importance of tumor suppressors in preventing tumorigenesis has also advanced significantly and provides a new therapeutic window of opportunity. Given that tumor suppressors are frequently mutated, deleted, or silenced with loss-of-function, restoring their normal functions to treat cancer holds tremendous therapeutic potential. With the rapid expansion in our knowledge of cancer over the last several decades, developing effective anticancer regimens against tumor suppressor pathways has never been more promising. In this article, we will review the concept of tumor suppression, and outline the major therapeutic strategies and challenges of targeting tumor suppressor networks for cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - Wen-Hwa Lee
- Department of Biological Chemistry, School of Medicine, University of California, Irvine. 240 Med Sci D, Irvine, CA 92697, USA.
| |
Collapse
|
15
|
Jung HM, Phillips BL, Chan EK. miR-375 activates p21 and suppresses telomerase activity by coordinately regulating HPV E6/E7, E6AP, CIP2A, and 14-3-3ζ. Mol Cancer 2014; 13:80. [PMID: 24708873 PMCID: PMC4021670 DOI: 10.1186/1476-4598-13-80] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/31/2014] [Indexed: 12/19/2022] Open
Abstract
Background While microRNAs (miRNAs) are extensively studied in post-transcriptional regulation of gene expressions in many biological processes, cellular miRNA-mediated regulation of viral genes remains unclear. In particular, the interplay between human papillomavirus (HPV) genes and miRNAs and how these interactions contribute to HPV-associated cancers remain elusive. Methods Transient transfection of miR-375-mimic was used to compensate the loss-of-function of miR-375 in HPV-positive cancer. Regulation of oncogenic molecules and their downstream molecules via miR-375 in HPV-positive cancer was investigated using qRT-PCR, western blot, dual luciferase assay, indirect immunofluorescence analysis. All experiments were conducted at least three times to achieve statistical significance determined by Student t-test. Results In this study, we demonstrated how miR-375 negatively regulates HPV16 and 18 transcripts. We also found a cellular protein, E6-associated protein (E6AP), directly regulated by miR-375. miR-375-mediated repression of HPV transcripts and E6AP elevated major tumor suppressors p53, p21, and retinoblastoma protein 1 (RB). Cooperative regulation of miR-375 targets along with the increase of tumor suppressors led to ~60% reduction of telomerase reverse transcriptase (TERT) transcription followed by ~35% decrease of telomerase activity. Furthermore, miR-375-mediated regulation of 14-3-3ζ contributes to decrease telomerase activity by altering nuclear translocation of TERT. Conclusion Taken together, miR-375-mediated suppression of multiple oncogenic components in HPV-associated carcinogenesis generates a cumulative biological response to rescue key tumor suppressors and diminish telomerase activity, which results in cell cycle arrest and cell proliferation inhibition.
Collapse
Affiliation(s)
| | | | - Edward Kl Chan
- Department of Oral Biology, University of Florida, 1395 Center Drive, Gainesville, FL 32610, USA.
| |
Collapse
|
16
|
Robinson TJW, Liu JC, Vizeacoumar F, Sun T, Maclean N, Egan SE, Schimmer AD, Datti A, Zacksenhaus E. RB1 status in triple negative breast cancer cells dictates response to radiation treatment and selective therapeutic drugs. PLoS One 2013; 8:e78641. [PMID: 24265703 PMCID: PMC3827056 DOI: 10.1371/journal.pone.0078641] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Accepted: 09/20/2013] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) includes basal-like and claudin-low subtypes for which only chemotherapy and radiation therapy are currently available. The retinoblastoma (RB1) tumor suppressor is frequently lost in human TNBC. Knockdown of RB1 in luminal BC cells was shown to affect response to endocrine, radiation and several antineoplastic drugs. However, the effect of RB1 status on radiation and chemo-sensitivity in TNBC cells and whether RB1 status affects response to divergent or specific treatment are unknown. Using multiple basal-like and claudin-low cell lines, we hereby demonstrate that RB-negative TNBC cell lines are highly sensitive to gamma-irradiation, and moderately more sensitive to doxorubicin and methotrexate compared to RB-positive TNBC cell lines. In contrast, RB1 status did not affect sensitivity of TNBC cells to multiple other drugs including cisplatin (CDDP), 5-fluorouracil, idarubicin, epirubicin, PRIMA-1met, fludarabine and PD-0332991, some of which are used to treat TNBC patients. Moreover, a non-biased screen of ∼3400 compounds, including FDA-approved drugs, revealed similar sensitivity of RB-proficient and -deficient TNBC cells. Finally, ESA+/CD24−/low/CD44+ cancer stem cells from RB-negative TNBC lines were consistently more sensitive to gamma-irradiation than RB-positive lines, whereas the effect of chemotherapy on the cancer stem cell fraction varied irrespective of RB1 expression. Our results suggest that patients carrying RB-deficient TNBCs would benefit from gamma-irradiation as well as doxorubicin and methotrexate therapy, but not necessarily from many other anti-neoplastic drugs.
Collapse
Affiliation(s)
- Tyler J. W. Robinson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail: (TJWR); (EZ)
| | - Jeff C. Liu
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Frederick Vizeacoumar
- S.M.A.R.T. High Throughput Facility, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Thomas Sun
- S.M.A.R.T. High Throughput Facility, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | - Neil Maclean
- Clinical Studies Resource Centre, OCI, University Health Network, Toronto, Ontario, Canada
| | - Sean E. Egan
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Aaron D. Schimmer
- Clinical Studies Resource Centre, OCI, University Health Network, Toronto, Ontario, Canada
| | - Alessandro Datti
- S.M.A.R.T. High Throughput Facility, Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, Perugia, Italy
| | - Eldad Zacksenhaus
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Division of Advanced Diagnostics, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
- * E-mail: (TJWR); (EZ)
| |
Collapse
|
17
|
Soria-Bretones I, Sáez C, Ruíz-Borrego M, Japón MA, Huertas P. Prognostic value of CtIP/RBBP8 expression in breast cancer. Cancer Med 2013; 2:774-83. [PMID: 24403251 PMCID: PMC3892382 DOI: 10.1002/cam4.141] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 08/29/2013] [Accepted: 09/02/2013] [Indexed: 12/17/2022] Open
Abstract
CtIP/RBBP8 is a multifunctional protein involved in transcription, DNA replication, DNA repair by homologous recombination and the G1 and G2 checkpoints. Its multiple roles are controlled by its interaction with several specific factors, including the tumor suppressor proteins BRCA1 and retinoblastoma. Both its functions and interactors point to a putative oncogenic potential of CtIP/RBBP8 loss. However, CtIP/RBBP8 relevance in breast tumor appearance, development, and prognosis has yet to be established. We performed a retrospective analysis of CtIP/RBBP8 and RB1 levels by immunohistochemistry using 384 paraffin-embedded breast cancer biopsies obtained during tumor removal surgery. We have observed that low or no expression of CtIP/RBBP8 correlates with high-grade breast cancer and with nodal metastasis. Reduction on CtIP/RBBP8 is most common in hormone receptor (HR)-negative, HER2-positive, and basal-like tumors. We observed lower levels of RB1 on those tumors with reduced CtIP/RBBP8 levels. On luminal tumors, decreased but not absence of CtIP/RBBP8 levels correlate with increased disease-free survival when treated with a combination of hormone, radio, and chemo therapies.
Collapse
Affiliation(s)
- Isabel Soria-Bretones
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Av. Americo Vespucio s/n, Sevilla, 41092, Spain
| | | | | | | | | |
Collapse
|
18
|
Ruchirawat M, Cebulska-Wasilewska A, Au WW. Evidence for exposure-induced DNA repair abnormality is indicative of health and genetic risk. Int J Hyg Environ Health 2013; 216:566-73. [PMID: 23545294 DOI: 10.1016/j.ijheh.2013.03.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 03/03/2013] [Accepted: 03/07/2013] [Indexed: 01/06/2023]
Abstract
A recent focus has been targeted toward the development of functional biomarkers that can be used to predict disease more reliably. One such biomarker is the challenge assay for DNA repair deficiency. Briefly, the assay involves challenging lymphocytes in culture to a DNA damaging agent in vitro and determining the repair outcome in chromosome aberrations and/or DNA strand breaks. The aim is to show that individuals who have chronic exposure to toxic substances will develop exposure-induced DNA repair deficiencies. Many studies around the world have shown that the assay detects DNA repair deficiency in environmentally/occupationally exposed populations and with significant exposure dose-response relationship. The prediction of health risk was also validated. In addition, exposure-induced repair deficiency which was apparently passed through the germ cells had caused genetic consequences in a 3-generation population. The assay is simple to conduct and is more sensitive than some traditional biomarker assays. Together with the functional significance of the assay, the challenge assay can be used with confidence in population studies for health risk assessment.
Collapse
|
19
|
Indovina P, Marcelli E, Casini N, Rizzo V, Giordano A. Emerging roles of RB family: new defense mechanisms against tumor progression. J Cell Physiol 2013; 228:525-35. [PMID: 22886479 DOI: 10.1002/jcp.24170] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 07/31/2012] [Indexed: 12/14/2022]
Abstract
The retinoblastoma (RB) family of proteins, including RB1/p105, retinoblastoma-like 1 (RBL1/p107), and retinoblastoma-like 2 (RBL2/p130), is principally known for its central role on cell cycle regulation. The inactivation of RB proteins confers a growth advantage and underlies multiple types of tumors. Recently, it has been shown that RB proteins have other important roles, such as preservation of chromosomal stability, induction and maintenance of senescence and regulation of apoptosis, cellular differentiation, and angiogenesis. RB proteins are involved in many cellular pathways and act as transcriptional regulators able to bind several transcription factors, thus antagonizing or potentiating their functions. Furthermore, RB proteins might control the expression of specific target genes by recruiting chromatin remodeling enzymes. Although many efforts have been made to dissect the different functions of RB proteins, it remains still unclear which are necessary for cancer suppression and the role they play at distinct steps of carcinogenesis. Moreover, RB proteins can behave differently in various cell types or cell states. Elucidating the intricate RB protein network in regulating cell fate might provide the knowledge necessary to explain their potent tumor suppressor activity and to design novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | |
Collapse
|
20
|
Lee TC, Gombos DS, Harbour JW, Mansfield NC, Murphree AL. Retinoblastoma. Retina 2013. [DOI: 10.1016/b978-1-4557-0737-9.00128-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Discrete phosphorylated retinoblastoma protein isoform expression in mouse tooth development. J Mol Histol 2012; 43:281-8. [PMID: 22476877 DOI: 10.1007/s10735-012-9404-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 03/11/2012] [Indexed: 12/27/2022]
Abstract
Retinoblastoma protein (pRb) phosphorylation plays a central role in mediating cell cycle G1/S stage transition, together with E2F transcription factors. The binding of pRb to E2F is thought to be controlled by the sequential and cumulative phosphorylation of pRb at various amino acids. In addition to well characterized roles as a tumor suppressor, pRb has more recently been implicated in osteoprogenitor and other types of stem cell maintenance, proliferation and differentiation, thereby influencing the morphogenesis of developing organs. In this study, we present data characterizing the expression of pRb and three phosphorylated pRb (ppRb) isoforms-ppRbS780, ppRbS795, ppRbS807/811-in developmentally staged mouse molar and incisor teeth. Our results reveal distinct developmental expression patterns for individual ppRb isoforms in dental epithelial and dental mesenchymal cell differentiation, suggesting discrete functions in tooth development.
Collapse
|
22
|
Xiong S, Parker-Thornburg J, Lozano G. Developing genetically engineered mouse models to study tumor suppression. CURRENT PROTOCOLS IN MOUSE BIOLOGY 2012; 2:9-24. [PMID: 22582146 DOI: 10.1002/9780470942390.mo110159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Since the late 1980s, the tools to generate mice with deletions of tumor suppressors have made it possible to study such deletions in the context of a whole animal. Deletion of some tumor suppressors results in viable mice while deletion of others yield embryo lethal phenotypes cementing the concept that genes that often go awry in cancer are also of developmental importance. More sophisticated mouse models were subsequently developed to delete a gene in a specific cell type at a specific time point. Additionally, incorporation of point mutations in a specific gene as observed in human tumors has also revealed their contributions to tumorigenesis. On the other hand, some models never develop cancer unless combined with other deletions suggesting a modifying role in tumorigenesis. This review will describe the technical aspects of generating these mice and provide examples of the outcomes obtained from alterations of different tumor suppressors.
Collapse
Affiliation(s)
- Shunbin Xiong
- Department of Genetics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd. Houston, TX 77030
| | | | | |
Collapse
|
23
|
Wang B, Hikosaka K, Sultana N, Sharkar MTK, Noritake H, Kimura W, Wu YX, Kobayashi Y, Uezato T, Miura N. Liver tumor formation by a mutant retinoblastoma protein in the transgenic mice is caused by an upregulation of c-Myc target genes. Biochem Biophys Res Commun 2012; 417:601-6. [DOI: 10.1016/j.bbrc.2011.12.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Accepted: 12/05/2011] [Indexed: 12/29/2022]
|
24
|
Abstract
Breast cancer progression involves multiple genetic events, which can activate dominant-acting oncogenes and disrupt the function of specific tumor suppressor genes. This article describes several key oncogene and tumor suppressor signaling networks that have been implicated in breast cancer progression. Among the tumor suppressors, the article emphasizes BRCA1/2 and p53 tumor suppressors. In addition to these well characterized tumor suppressors, the article highlights the importance of PTEN tumor suppressor in counteracting PI3K signaling from activated oncogenes such as ErbB2. This article discusses the use of mouse models of human breast that recapitulate the key genetic events involved in the initiation and progression of breast cancer. Finally, the therapeutic potential of targeting these key tumor suppressor and oncogene signaling networks is discussed.
Collapse
Affiliation(s)
- Eva Y H P Lee
- Department of Biological Chemistry and Department of Developmental and Cell Biology, University of California, Irvine, California 92697-4037, USA
| | | |
Collapse
|
25
|
Jiang Z, Deng T, Jones R, Li H, Herschkowitz JI, Liu JC, Weigman VJ, Tsao MS, Lane TF, Perou CM, Zacksenhaus E. Rb deletion in mouse mammary progenitors induces luminal-B or basal-like/EMT tumor subtypes depending on p53 status. J Clin Invest 2010; 120:3296-309. [PMID: 20679727 DOI: 10.1172/jci41490] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Accepted: 06/09/2010] [Indexed: 12/23/2022] Open
Abstract
Breast cancer is a highly heterogeneous disease, with several different subtypes being characterized by distinct histology, gene expression patterns, and genetic alterations. The tumor suppressor gene retinoblastoma 1 (RB1) is frequently lost in both luminal-B and triple-negative tumor (TNT; i.e., estrogen receptor-, progesterone receptor-, and human epidermal growth factor receptor 2-negative) breast cancer subtypes. However, a causal role for RB1 loss in different subtypes remains undefined. Here we report that deletion of Rb alone or together with its relative p107 in mouse mammary stem/bipotent progenitor cells induced focal acinar hyperplasia with squamous metaplasia. These lesions progressed into histologically diverse, transplantable mammary tumors with features of either luminal-B or TNT subtypes. The TNTs included basal-like tumors as well as tumors that exhibited epithelial-to-mesenchymal transition (EMT). The EMT-type tumors and a subset of the basal-like tumors, but not luminal-B-like tumors, expressed mutant forms of the tumor suppressor p53. Accordingly, targeted deletion of both Rb and p53 in stem/bipotent progenitors led to histologically uniform, aggressive, EMT-type tumors. Reintroduction of Rb into these tumor cells suppressed growth in vitro and tumor formation in vivo. These results establish a causal role for Rb loss in breast cancer in mice and demonstrate that cooperating oncogenic events, such as mutations in p53, dictate tumor subtype after Rb inactivation.
Collapse
Affiliation(s)
- Zhe Jiang
- Division of Cell and Molecular Biology, Toronto General Research Institute-University Health Network, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- A S Leong
- Division of Tissue Pathology, Institute of Medical and Veterinary Science and Department of Pathology, University of Adelaide, Adelaide, South Australia
| | | |
Collapse
|
27
|
Indovina P, Acquaviva A, De Falco G, Rizzo V, Onnis A, Luzzi A, Giorgi F, Hadjistilianou T, Toti P, Tomei V, Pentimalli F, Carugi A, Giordano A. Downregulation and aberrant promoter methylation of p16INK4A: a possible novel heritable susceptibility marker to retinoblastoma. J Cell Physiol 2010; 223:143-50. [PMID: 20039270 DOI: 10.1002/jcp.22019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
RB loss has long been recognized as the causative genetic alteration underlying retinoblastoma but it is increasingly evident that other alterations are required for the tumor to develop. Therefore, we set out to identify additional inheritable susceptibility markers and new potential preventive and therapeutic targets for retinoblastoma. We focused on the p16INK4A tumor suppressor gene because of its possible role in retinoblastoma pathogenesis and its involvement in predisposition to familial cancer. p16INK4A expression was analyzed in tumor samples from retinoblastoma patients by immunohistochemistry and in peripheral blood cells from both patients and their parents by real-time quantitative reverse transcription-PCR (qRT-PCR). Since promoter methylation is a common mechanism regulating p16INK4A expression, the methylation status of its promoter was also analyzed in blood samples from patients and their parents by methylation-specific PCR. A downregulation of p16INK4A was observed in 55% of retinoblastoma patients. Interestingly, in 56% of the cases showing p16INK4A downregulation at least one of the patients' parents bore the same alteration in blood cells. Analysis of p16INK4A promoter methylation showed hypermethylation in most patients with p16INK4A downregulation and in the parents with the same alteration in p16INK4A expression. The finding that p16INK4A was downregulated both in patients and their parents suggests that this alteration could be a novel inheritable susceptibility marker to retinoblastoma. The observation that p16INK4A downregulation seems to be due to its promoter hypermethylation opens the way for the development of new preventive and therapeutic strategies using demethylating agents.
Collapse
Affiliation(s)
- Paola Indovina
- Department of Human Pathology and Oncology, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Ellis PE, MacLean AB, Crow JC, Wong Te Fong LF, Rolfe KJ, Perrett CW. Expression of cyclin D1 and retinoblastoma protein in Pagetâs disease of the vulva and breast: an immunohistochemical study of 108 cases. Histopathology 2009; 55:709-15. [DOI: 10.1111/j.1365-2559.2009.03434.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Modeling the effect of the RB tumor suppressor on disease progression: dependence on oncogene network and cellular context. Oncogene 2009; 29:68-80. [DOI: 10.1038/onc.2009.313] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
30
|
MicroRNA-373 (miR-373) post-transcriptionally regulates large tumor suppressor, homolog 2 (LATS2) and stimulates proliferation in human esophageal cancer. Exp Cell Res 2009; 315:2529-38. [DOI: 10.1016/j.yexcr.2009.06.001] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/19/2009] [Accepted: 06/02/2009] [Indexed: 12/21/2022]
|
31
|
Su LN, Little JB. Transformation and Radiosensitivity of Human Diploid Skin Fibroblasts Transfected with SV40 T-antigen Mutants Defective in RB and P53 Binding Domains. Int J Radiat Biol 2009; 62:461-8. [PMID: 1357059 DOI: 10.1080/09553009214552341] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A series of human diploid fibroblast cell clones were developed by DNA transfection with either wild-type SV40 T-antigen (SV40 T) or T-antigen mutants defective in its various functional domains. Cell clones expressing the wild-type SV40 T were significantly radioresistant as compared with clones transfected with the neo gene only (D0 = 192 +/- 13 vs 127 +/- 19). This radioresistance persisted in post-crisis, immortalized cell lines. A series of mutants with point or deletion mutations within each functionally active domain of SV40 T were also examined for their ability to alter radiosensitivity and induce morphological transformation. Cell clones transfected with T-antigen mutants defective in nuclear localization or origin binding showed increased radioresistance similar to clones transfected with wild-type T-antigen, and expressed morphological changes characteristic of SV40 T-transfected cells. A retinoblastoma susceptibility gene (RB) binding defective mutant showed moderately increased radioresistance (D0 = 174 +/- 10). However, cell clones transfected with three different p53 binding defective mutants showed no change in radiosensitivity (D0 = 132 +/- 5) as compared with neo gene transfected controls. Transfection with T-antigen mutants defective in either the RB or p53 binding domain yielded no morphological alterations characteristic of transformation. These data suggest that the SV40 T/p53 complex may be of importance in the radioresistance phenotype.
Collapse
Affiliation(s)
- L N Su
- Laboratory of Radiobiology, Harvard School of Public Health, Boston, Massachusetts 02115
| | | |
Collapse
|
32
|
Abstract
The cyclin-dependent kinase (Cdk)-cyclin D/retinoblastoma (pRb)/E2F cascade, which controls the G1/S transition of cell cycle, has been found to be altered in many neoplasias. Inhibition of this pathway by using, for example, selective Cdk4 inhibitors has been suggested to be a promising approach for cancer therapy. We hypothesized that appropriately radiolabeled Cdk4 inhibitors are suitable probes for tumor imaging and may be helpful studying cell proliferation processes in vivo by positron emission tomography. Herein, we report the synthesis and biological, biochemical, and radiopharmacological characterizations of two 124I-labeled small molecule Cdk4 inhibitors (8-cyclopentyl-6-iodo-5-methyl-2-(4-piperazin-1-yl-phenylamino)-8H-pyrido[2,3-d]-pyrimidin-7-one (CKIA) and 8-cyclopentyl-6-iodo-5-methyl-2-(5-(piperazin-1-yl)-pyridin-2-yl-amino)-8H-pyrido[2,3-d]pyrimidin-7-one (CKIB)). Our data demonstrate a defined and specific inhibition of tumor cell proliferation through CKIA and CKIB by inhibition of the Cdk4/pRb/E2F pathway emphasizing potential therapeutic benefit of CKIA and CKIB. Furthermore, radiopharmacological properties of [124I]CKIA and [124I]CKIB observed in human tumor cells are promising prerequisites for in vivo biodistribution and imaging studies.
Collapse
|
33
|
Schmidt EV, Ravitz MJ, Chen L, Lynch M. Growth controls connect: interactions between c-myc and the tuberous sclerosis complex-mTOR pathway. Cell Cycle 2009; 8:1344-51. [PMID: 19342893 PMCID: PMC2865178 DOI: 10.4161/cc.8.9.8215] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Among other signals, cell growth is particularly controlled by the target of rapamycin (TOR) pathway that includes the tuberous sclerosis complex genes (TSC1/2), and through transcriptional effects regulated by c-myc. Overexpression of Drosophila Myc and TSC1/2 cause opposing growth and proliferation defects. Despite this relationship, direct regulatory connections between Myc and the TSC have only recently been evaluated. Other than studies of p53 regulation, little consideration has been given to transcriptional regulation of the TSC genes. Here we review evidence that transcriptional controls are potentially important regulators of TSC2 expression, and that Myc is a direct repressor of its expression. Since tuberin loss de-represses Myc protein, the connection between these two growth regulators is positioned to act as a feed-forward loop that would amplify the oncogenic effects of decreased tuberin or increased Myc. Further experiments will be needed to clarify the mechanisms underlying this important connection, and evaluate its overall contribution to cancers caused by TSC loss or Myc gain.
Collapse
Affiliation(s)
- Emmett V Schmidt
- Cancer Research Center at Massachusetts General Hospital, and Harvard Medical School, Boston, MA 02114, USA.
| | | | | | | |
Collapse
|
34
|
Herschkowitz JI, He X, Fan C, Perou CM. The functional loss of the retinoblastoma tumour suppressor is a common event in basal-like and luminal B breast carcinomas. Breast Cancer Res 2008; 10:R75. [PMID: 18782450 PMCID: PMC2614508 DOI: 10.1186/bcr2142] [Citation(s) in RCA: 205] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2008] [Revised: 08/22/2008] [Accepted: 09/09/2008] [Indexed: 12/16/2022] Open
Abstract
Introduction Breast cancers can be classified using whole genome expression into distinct subtypes that show differences in prognosis. One of these groups, the basal-like subtype, is poorly differentiated, highly metastatic, genomically unstable, and contains specific genetic alterations such as the loss of tumour protein 53 (TP53). The loss of the retinoblastoma tumour suppressor encoded by the RB1 locus is a well-characterised occurrence in many tumour types; however, its role in breast cancer is less clear with many reports demonstrating a loss of heterozygosity that does not correlate with a loss of RB1 protein expression. Methods We used gene expression analysis for tumour subtyping and polymorphic markers located at the RB1 locus to assess the frequency of loss of heterozygosity in 88 primary human breast carcinomas and their normal tissue genomic DNA samples. Results RB1 loss of heterozygosity was observed at an overall frequency of 39%, with a high frequency in basal-like (72%) and luminal B (62%) tumours. These tumours also concurrently showed low expression of RB1 mRNA. p16INK4a was highly expressed in basal-like tumours, presumably due to a previously reported feedback loop caused by RB1 loss. An RB1 loss of heterozygosity signature was developed and shown to be highly prognostic, and was potentially a predictive marker of response to neoadjuvant chemotherapy. Conclusions These results suggest that the functional loss of RB1 is common in basal-like tumours, which may play a key role in dictating their aggressive biology and unique therapeutic responses.
Collapse
Affiliation(s)
- Jason I Herschkowitz
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, 27599, USA
| | | | | | | |
Collapse
|
35
|
Gorges LL, Lents NH, Baldassare JJ. The extreme COOH terminus of the retinoblastoma tumor suppressor protein pRb is required for phosphorylation on Thr-373 and activation of E2F. Am J Physiol Cell Physiol 2008; 295:C1151-60. [PMID: 18768921 DOI: 10.1152/ajpcell.00300.2008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The retinoblastoma protein pRb plays a pivotal role in G(1)- to S-phase cell cycle progression and is among the most frequently mutated gene products in human cancer. Although much focus has been placed on understanding how the A/B pocket and COOH-terminal domain of pRb cooperate to relieve transcriptional repression of E2F-responsive genes, comparatively little emphasis has been placed on the function of the NH(2)-terminal region of pRb and the interaction of the multiple domains of pRb in the full-length context. Using "reverse mutational analysis" of Rb(DeltaCDK) (a dominantly active repressive allele of Rb), we have previously shown that restoration of Thr-373 is sufficient to render Rb(DeltaCDK) sensitive to inactivation via cyclin-CDK phosphorylation. This suggests that the NH(2)-terminal region plays a more critical role in pRb regulation than previously thought. In the present study, we have expanded this analysis to include additional residues in the NH(2)-terminal region of pRb and further establish that the mechanism of pRb inactivation by Thr-373 phosphorylation is through the dissociation of E2F. Most surprisingly, we further have found that removal of the COOH-terminal domain of either RbDeltaCDK(+T373) or wild-type pRb yields a functional allele that cannot be inactivated by phosphorylation and is repressive of E2F activation and S-phase entry. Our data demonstrate a novel function for the NH(2)-terminal domain of pRb and the necessity for cooperation of multiple domains for proper pRb regulation.
Collapse
Affiliation(s)
- Laura L Gorges
- Dept. of Pharmacological Sciences at Saint Louis Univ., St. Louis, MO 63104, USA
| | | | | |
Collapse
|
36
|
Sheen V, Tucker MA, Abramson DH, Seddon JM, Kleinerman RA. Cancer screening practices of adult survivors of retinoblastoma at risk of second cancers. Cancer 2008; 113:434-41. [PMID: 18473349 PMCID: PMC4012415 DOI: 10.1002/cncr.23564] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND The aim of the current study was to investigate the pattern of cancer screening behavior in adult retinoblastoma survivors, who are at high risk of developing second cancers. METHODS Self-reported cancer screening practices were investigated in a cohort of retinoblastoma survivors to evaluate whether they were receiving adequate screening for specific cancers and compare these rates with those of other adult survivors of childhood cancer and the general population. The prevalence of breast self-examination, clinical breast examination, mammography, Papanicolaou (Pap) test, testicular self-examination, and magnetic resonance imaging (MRI) or computed tomography (CT) scanning was determined from computer-aided telephone interviews with 836 retinoblastoma survivors aged >18 years. RESULTS Among female survivors, 87% had a Pap test within the past 2 years, and 76% of females age >40 years reported having a mammogram within the past 2 years; 17.4% of male survivors had performed monthly testicular self-examinations. A significantly higher proportion of hereditary compared with nonhereditary survivors reported having undergone an MRI or CT scan in the past 5 years. Higher education, greater contact with the medical care system, and having a second cancer were found to be associated positively with most screening practices. Cancer screening practices reported by retinoblastoma survivors were similar to national screening rates for breast, cervical, and testicular cancer. CONCLUSIONS To the authors' knowledge, the current study provides the first report of cancer screening practices of retinoblastoma survivors. Survivors of hereditary retinoblastoma should be encouraged to maintain, if not increase, their current screening practices to ensure early detection of second cancers in this high-risk population.
Collapse
Affiliation(s)
- Victoria Sheen
- Division of Cancer Epidemiology and Genetics, National
Cancer Institute, National Institutes of Health, Department of Health and Human
Services, Rockville, Maryland
- School of Medicine, University of California at San Diego,
La Jolla, California
| | - Margaret A. Tucker
- Division of Cancer Epidemiology and Genetics, National
Cancer Institute, National Institutes of Health, Department of Health and Human
Services, Rockville, Maryland
| | - David H. Abramson
- Ophthalmic Oncology Service, Memorial Sloan-Kettering
Cancer Center, New York, New York
| | - Johanna M. Seddon
- Ophthalmic Epidemiology and Genetics Service, Tufts-New
England Medical Center, Boston, Massachusetts
| | - Ruth A. Kleinerman
- Division of Cancer Epidemiology and Genetics, National
Cancer Institute, National Institutes of Health, Department of Health and Human
Services, Rockville, Maryland
| |
Collapse
|
37
|
Arheden K, Tantravahi U, Tommerup N, Tranebjaerg L, Mitelman F. Localization in man of fifteen DNA sequences within the chromosome segment 13q12-q22. Hereditas 2008; 110:253-65. [PMID: 2753742 DOI: 10.1111/j.1601-5223.1989.tb00787.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Fifteen human chromosome 13 specific DNA fragments, isolated from a lambda phage genomic library, were localized within the segment 13q12-q22. One was mapped to 13q12.1-q12.2, three to 13q12.3-q13.1, one to 13q14,1-q14.2, five to 13q14.1-q21.1, one to 13q21.1-q21.2, two to 13q21.2, and one to 13q22.1, and one to 13q22. The localization was performed by hybridization to Southern blots of a panel of human cell lines with overlapping deletions in 13q, and for three probes also by in situ hybridization to metaphase chromosomes.
Collapse
|
38
|
Retinoblastoma gene abnormalities in early laryngeal cancer. Eur Arch Otorhinolaryngol 2008; 265 Suppl 1:S83-7. [PMID: 18172658 DOI: 10.1007/s00405-007-0558-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2006] [Accepted: 12/04/2007] [Indexed: 10/22/2022]
Abstract
The retinoblastoma gene (Rb) is postulated to be important in carcinoma of the larynx. Its cellular protein (pRb) is involved in regulation of the cell cycle and may be influential in the cells response to irradiation injury. From the University of Liverpool Head and Neck Database we identified 35 patients with a T2 N0 laryngeal squamous carcinoma whom received primary irradiation and had a minimum of 5 years follow up. Laser capture microdissection was performed on paired normal and tumour biopsy material to analyse for loss of heterozygosity (LOH) and microsatellite instability (MI) of the Rb gene and immunohistochemistry (IHC) was carried out to detect pRb expression. Of 35 tumours, 13 were normal, 12 had MI and 5 had LOH of the Rb gene. Abnormalities at the Rb locus did not correlate with loss of pRb expression. There was also no significant difference between the distribution of normal and abnormal gene sequences and whether or not the primary laryngeal tumour recurred after radiotherapy. Rb gene abnormalities occurred in one third of T2 N0 laryngeal carcinomas. These were not in isolation predictive of cure by radiotherapy.
Collapse
|
39
|
Kong L, Yu XP, Bai XH, Zhang WF, Zhang Y, Zhao WM, Jia JH, Tang W, Zhou YB, Liu CJ. RbAp48 is a critical mediator controlling the transforming activity of human papillomavirus type 16 in cervical cancer. J Biol Chem 2007; 282:26381-91. [PMID: 17616526 DOI: 10.1074/jbc.m702195200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Although human papillomavirus (HPV) infections are the primary cause of cervical cancer, the molecular mechanism by which HPV induces cervical cancer remains largely unclear. We used two-dimensional electrophoresis with mass spectrometry to study protein expression profiling between HPV16-positive cervical mucosa epithelial H8 cells and cervical cancer Caski cells to identify 18 differentially expressed proteins. Among them, retinoblastoma-binding protein 4 (RbAp48) was selected, and its differentiation expression was verified with both additional cervical cancer-derived cell lines and human tissues of cervical intraepithelial neoplasia and cervical cancer. Suppression of RbAp48 using small interfering RNA approach in H8 cells significantly stimulated cell proliferation and colony formation and inhibited senescence-like phenotype. Remarkably, H8 cells acquired transforming activity if RpAp48 was suppressed, because H8 cells stably transfected with RbAp48 small interfering RNA led to tumor formation in nude mice. In addition, overexpression of RbAp48 significantly inhibited cell growth and tumor formation. This RbAp48-mediated transformation of HPV16 is probably because of the regulation by RbAp48 of tumor suppressors retinoblastoma and p53, apoptosis-related enzymes caspase-3 and caspase-8, and oncogenic genes, including E6, E7, cyclin D1 (CCND1), and c-MYC. In brief, RbAp48, previously unknown in cervical carcinogenesis, was isolated in a global screen and identified as a critical mediator controlling the transforming activity of HPV16 in cervical cancer.
Collapse
MESH Headings
- Animals
- Carrier Proteins/antagonists & inhibitors
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Caspase 3/biosynthesis
- Caspase 3/genetics
- Caspase 8/biosynthesis
- Caspase 8/genetics
- Cell Line, Transformed
- Cell Line, Tumor
- Cell Transformation, Viral/drug effects
- Cellular Senescence/drug effects
- Cyclin D
- Cyclins/biosynthesis
- Cyclins/genetics
- Electrophoresis, Gel, Two-Dimensional
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- HeLa Cells
- Human papillomavirus 16/genetics
- Human papillomavirus 16/metabolism
- Humans
- Mice
- Mice, Nude
- Neoplasm Transplantation
- Nuclear Proteins/antagonists & inhibitors
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Papillomavirus E7 Proteins
- Phenotype
- Proto-Oncogene Proteins c-myc/biosynthesis
- Proto-Oncogene Proteins c-myc/genetics
- RNA, Small Interfering/pharmacology
- Repressor Proteins/biosynthesis
- Repressor Proteins/genetics
- Retinoblastoma Protein/biosynthesis
- Retinoblastoma Protein/genetics
- Retinoblastoma-Binding Protein 4
- Tumor Suppressor Protein p53/biosynthesis
- Tumor Suppressor Protein p53/genetics
- Uterine Cervical Neoplasms/genetics
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Dysplasia/genetics
- Uterine Cervical Dysplasia/metabolism
- Uterine Cervical Dysplasia/virology
Collapse
Affiliation(s)
- Li Kong
- Department of Orthopaedic Surgery, New York University Medical Center, New York, New York 10003, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Takahashi Y, Miyoshi Y, Morimoto K, Taguchi T, Tamaki Y, Noguchi S. Low LATS2 mRNA level can predict favorable response to epirubicin plus cyclophosphamide, but not to docetaxel, in breast cancers. J Cancer Res Clin Oncol 2007; 133:501-9. [PMID: 17297610 DOI: 10.1007/s00432-007-0194-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2006] [Accepted: 12/21/2006] [Indexed: 01/09/2023]
Abstract
PURPOSE Putative tumor suppressor genes LATS1 and LATS2 are implicated in the regulation of the cell cycle at the G2/M and G1/S phase, respectively. This study investigated possible correlations of intra-tumoral LATS1 and LATS2 mRNA levels with response to epirubicin plus cyclophosphamide (EC) or docetaxel (DOC) treatment. METHODS mRNA expression levels of LATS1 and LATS2 were determined by means of real-time PCR assay in 56 locally advanced breast cancers and 15 recurrent breast cancers treated with EC (n = 32) or DOC (n = 39). RESULTS Among the patients treated with EC, LATS2 mRNA levels of responders (0.72 +/- 0.11, mean +/- SE) were significantly (P < 0.05) lower than those of non-responders (1.62 +/- 0.44), and responders showed a tendency (P = 0.05) towards reduced LATS1 mRNA levels. Patients with low LATS2 mRNA levels (n = 16) showed a significantly (P < 0.05) higher response rate (75%) to EC treatment than those with high LATS2 mRNA levels (n = 16; response rate = 31%). Positive predictive value, negative predictive value, and diagnostic accuracy of LATS2 mRNA levels for prediction of response to EC were 75, 69, and 72%, respectively. On the other hand, neither LATS1 nor LATS2 mRNA levels were associated with response to DOC treatment. CONCLUSION These results suggest the possibility that intra-tumoral LATS2 mRNA levels may be clinically useful for the prediction of response to EC treatment by breast cancer patients. We speculate that disruption of the checkpoint function at the G1/S phase induced by down-regulation of LATS2 plays some part in the favorable response to EC.
Collapse
Affiliation(s)
- Yuri Takahashi
- Department of Breast and Endocrine Surgery, Osaka University Graduate School of Medicine, 2-2-E10 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Parisi T, Yuan TL, Faust AM, Caron AM, Bronson R, Lees JA. Selective requirements for E2f3 in the development and tumorigenicity of Rb-deficient chimeric tissues. Mol Cell Biol 2007; 27:2283-93. [PMID: 17210634 PMCID: PMC1820513 DOI: 10.1128/mcb.01854-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tumor suppressor function of the retinoblastoma protein pRB is largely dependent upon its capacity to inhibit the E2F transcription factors and thereby cell proliferation. Attempts to study the interplay between pRB and the E2Fs have been hampered by the prenatal death of Rb; E2f nullizygous mice. In this study, we isolated Rb; E2f3 mutant embryonic stem cells and generated Rb(-/-); E2f3(-/-) chimeric mice, thus bypassing the lethality of the Rb(-/-); E2f3(-/-) germ line mutant mice. We show that loss of E2F3 has opposing effects on two of the known developmental defects arising in Rb(-/-) chimeras; it suppresses the formation of cataracts while aggravating the retinal dysplasia. This model system also allows us to assess how E2f3 status influences tumor formation in Rb(-/-) tissues. We find that E2f3 is dispensable for the development of pRB-deficient pituitary and thyroid tumors. In contrast, E2f3 inactivation completely suppresses the pulmonary neuroendocrine hyperplasia arising in Rb(-/-) chimeric mice. This hyperproliferative state is thought to represent the preneoplastic lesion of small-cell lung carcinoma. Therefore, our observation highlights a potential role for E2F3 in the early stages of this tumor type.
Collapse
Affiliation(s)
- Tiziana Parisi
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
42
|
Bosco EE, Wang Y, Xu H, Zilfou JT, Knudsen KE, Aronow BJ, Lowe SW, Knudsen ES. The retinoblastoma tumor suppressor modifies the therapeutic response of breast cancer. J Clin Invest 2006; 117:218-28. [PMID: 17160137 PMCID: PMC1679964 DOI: 10.1172/jci28803] [Citation(s) in RCA: 153] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 10/24/2006] [Indexed: 01/24/2023] Open
Abstract
The retinoblastoma tumor suppressor (RB) protein is functionally inactivated in the majority of human cancers and is aberrant in one-third of all breast cancers. RB regulates G(1)/S-phase cell-cycle progression and is a critical mediator of antiproliferative signaling. Here the specific impact of RB deficiency on E2F-regulated gene expression, tumorigenic proliferation, and the response to 2 distinct lines of therapy was investigated in breast cancer cells. RB knockdown resulted in RB/E2F target gene deregulation and accelerated tumorigenic proliferation, thereby demonstrating that even in the context of a complex tumor cell genome, RB status exerts significant control over proliferation. Furthermore, the RB deficiency compromised the short-term cell-cycle inhibition following cisplatin, ionizing radiation, and antiestrogen therapy. In the context of DNA-damaging agents, this bypass resulted in increased sensitivity to these agents in cell culture and xenograft models. In contrast, the bypass of antiestrogen signaling resulted in continued proliferation and xenograft tumor growth in the presence of tamoxifen. These effects of aberrations in RB function were recapitulated by ectopic E2F expression, indicating that control of downstream target genes was an important determinant of the observed responses. Specific analyses of an RB gene expression signature in 60 human patients indicated that deregulation of this pathway was associated with early recurrence following tamoxifen monotherapy. Thus, because the RB pathway is a critical determinant of tumorigenic proliferation and differential therapeutic response, it may represent a critical basis for directing therapy in the treatment of breast cancer.
Collapse
Affiliation(s)
- Emily E Bosco
- Department of Cell Biology, The Vontz Center for Molecular Studies, University of Cincinnati, College of Medicine, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Gizard F, Robillard R, Gross B, Barbier O, Révillion F, Peyrat JP, Torpier G, Hum DW, Staels B. TReP-132 is a novel progesterone receptor coactivator required for the inhibition of breast cancer cell growth and enhancement of differentiation by progesterone. Mol Cell Biol 2006; 26:7632-44. [PMID: 17015480 PMCID: PMC1636875 DOI: 10.1128/mcb.00326-06] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The sex steroid progesterone is essential for the proliferation and differentiation of the mammary gland epithelium during pregnancy. In relation to this, in vitro studies using breast carcinoma T47D cells have demonstrated a biphasic progesterone response, consisting of an initial proliferative burst followed by a sustained growth arrest. However, the transcriptional factors acting with the progesterone receptor (PR) to mediate the progesterone effects on mammary cell growth and differentiation remain to be determined. Recently, it has been demonstrated that the transcriptional regulating protein of 132 kDa (TReP-132), initially identified as a regulator of steroidogenesis, is also a cell growth suppressor. Similar to progesterone-bound PR, TReP-132 acts by inducing the gene expression of the G1 cyclin-dependent kinase inhibitors p21WAF1/Cip1 (p21) and p27Kip1 (p27). The putative interaction between TReP-132 and progesterone pathways in mammary cells was therefore analyzed in the present study. Our results show that TReP-132 interacts in vitro and in T47D cells with progesterone-activated PR. TReP-132 synergizes with progesterone-bound PR to trans activate the p21 and p27 gene promoters at proximal Sp1-binding sites. Moreover, TReP-132 overexpression and knockdown, respectively, increased or prevented the induction of p21 and p27 gene expression by progesterone. As a consequence, TReP-132 knockdown also resulted in the loss of the inhibitory effects of progesterone on pRB phosphorylation, G1/S cell cycle progression, and cell proliferation. Furthermore, the knockdown of TReP-132 expression also prevented the induction of both early and terminal markers of breast cell differentiation which had been previously identified as progesterone target genes. As well, the progesterone-induced accumulation of lipid vacuoles was inhibited in the TReP-132-depleted cells. Finally, TReP-132 gene expression levels increased following progesterone treatment, indicating the existence of a positive auto-regulatory loop between PR and TReP-132. Taken together, these data identify TReP-132 as a coactivator of PR mediating the growth-inhibitory and differentiation effects of progesterone on breast cancer cells.
Collapse
Affiliation(s)
- Florence Gizard
- INSERM U545, Institut Pasteur de Lille, 1 rue Calmette, BP 245, 59019 Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Harbour JW. Eye cancer: unique insights into oncogenesis: the Cogan Lecture. Invest Ophthalmol Vis Sci 2006; 47:1736-45. [PMID: 16638975 PMCID: PMC1769553 DOI: 10.1167/iovs.05-1291] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- J William Harbour
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
45
|
Jackson JG, Pereira-Smith OM. Primary and compensatory roles for RB family members at cell cycle gene promoters that are deacetylated and downregulated in doxorubicin-induced senescence of breast cancer cells. Mol Cell Biol 2006; 26:2501-10. [PMID: 16537896 PMCID: PMC1430319 DOI: 10.1128/mcb.26.7.2501-2510.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
When treated with DNA-damaging chemotherapy agents, many cancer cells, in vivo and in vitro, undergo a terminal growth arrest and acquire a senescence-like phenotype. We investigated the molecular basis for this in breast cancer cells following a 2-hour treatment with 1 muM doxorubicin. Treated cells arrested in G1 and G2 phases of the cell cycle, with concomitant reductions in S-phase and G2-M regulatory genes. p53 and p21 protein levels increased within hours after treatment and were maintained for 5 to 6 days but were reduced 8 days posttreatment, though the cells remained growth arrested. Levels of p130 rose after drug treatment, and it was the primary RB family member recruited to the S-phase promoters cyclin A and PCNA and G2-M promoters cyclin B and cdc2, remaining present for the entire 8-day time period. In contrast, p107 protein and promoter occupancy levels declined sharply after drug treatment. RB was recruited to only the PCNA promoter. In MCF-7 cells with p130 knockdown, p107 compensated for p130 loss at all cell cycle gene promoters examined, allowing cells to retain the growth arrest phenotype. Cells with p130 and p107 knockdown similarly arrested, while cells with knockdown of all three family members failed to downregulate cyclin A and cyclin B. These results demonstrate a mechanistic role for p130 and compensatory roles for p107 and RB in the long-term senescence-like growth arrest response of breast cancer cells to DNA damage.
Collapse
Affiliation(s)
- James G Jackson
- University of Texas Health Science Center at San Antonio, Department of Cellular and Structural Biology, Sam and Ann Barshop Institute for Longevity and Aging Studies, San Antonio, Texas 78245-3207, USA.
| | | |
Collapse
|
46
|
Kumamoto H, Ooya K. Immunohistochemical detection of retinoblastoma protein and E2 promoter-binding factor-1 in ameloblastomas. J Oral Pathol Med 2006; 35:183-9. [PMID: 16454815 DOI: 10.1111/j.1600-0714.2006.00381.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND To clarify the roles of cell cycle regulation in oncogenesis and cytodifferentiation of odontogenic tumors, expression of retinoblastoma protein (RB) and E2 promoter-binding factor-1 (E2F-1) was analyzed in ameloblastomas as well as in tooth germs. METHODS Tissue specimens of 10 tooth germs, 40 benign ameloblastomas, and five malignant ameloblastomas were examined immunohistochemically with the use of antibodies against RB, E2F-1, and phosphorylated RB. Ki-67 antigen immunostaining was made as a marker of cell proliferation. RESULTS Immunohistochemical reactivity for RB, E2F-1, phosphorylated RB, and Ki-67 was detected in the nuclei of odontogenic epithelial cells near the basement membrane in tooth germs and benign and malignant ameloblastomas. The number of cells positive for phosphorylated RB was nearly equal to or slightly less than the number of cells positive for RB or E2F-1. The number of Ki-67-positive cells was slightly more than the numbers of cell positive for RB, E2F-1, or phosphorylated RB. The levels of immunoreactivity for RB, E2F-1, phosphorylated RB, and Ki-67 were slightly higher in benign and malignant ameloblastomas than in tooth germs. Plexiform ameloblastomas showed significantly higher expression of RB than follicular ameloblastomas. Ki-67 immunoreactivity was significantly higher in ameloblastic carcinomas than in metastasizing ameloblastomas. CONCLUSION Similar immunoreactivity for RB, E2F-1, phosphorylated RB, and Ki-67 in tooth germs and ameloblastomas indicated cellular expression of phosphorylated RB and active-free E2F-1 in both normal and neoplastic odontogenic tissues. Expression of RB, E2F-1, and phosphorylated RB was considered to be involved in cell proliferation and differentiation of odontogenic epithelium via control of the cell cycle.
Collapse
Affiliation(s)
- Hiroyuki Kumamoto
- Division of Oral Pathology, Department of Oral Medicine and Surgery, Tohoku University Graduate School of Dentistry, Sendai, Japan.
| | | |
Collapse
|
47
|
Sampieri K, Hadjistilianou T, Mari F, Speciale C, Mencarelli MA, Cetta F, Manoukian S, Peissel B, Giachino D, Pasini B, Acquaviva A, Caporossi A, Frezzotti R, Renieri A, Bruttini M. Mutational screening of the RB1 gene in Italian patients with retinoblastoma reveals 11 novel mutations. J Hum Genet 2006; 51:209-216. [PMID: 16463005 DOI: 10.1007/s10038-005-0348-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Accepted: 11/06/2005] [Indexed: 01/19/2023]
Abstract
Retinoblastoma (RB, OMIM#180200) is the most common intraocular tumour in infancy and early childhood. Constituent mutations in the RB1 gene predispose individuals to RB development. We performed a mutational screening of the RB1 gene in Italian patients affected by RB referred to the Medical Genetics of the University of Siena. In 35 unrelated patients, we identified germline RB1 mutations in 6 out of 9 familial cases (66%) and in 7 out of 26 with no family history of RB (27%). Using the single-strand conformational polymorphism (SSCP) technique, 11 novel mutations were detected, including 3 nonsense, 5 frameshift and 4 splice-site mutations. Only two of these mutations (1 splice site and 1 missense) were previously reported. The mutation spectrum reflects the published literature, encompassing predominately nonsense or frameshift and splicing mutations. RB1 germline mutation was detected in 37% of our cases. Gross rearrangements outside the investigated region, altered DNA methylation, or mutations in non-coding regions, may be the cause of disease in the remainder of the patients. Some cases, e.g. a case of incomplete penetrance, or variable expressivity ranging from retinoma to multiple tumours, are discussed in detail. In addition, a case of pre-conception genetic counselling resolved by rescue of banked cordonal blood of the affected deceased child is described.
Collapse
Affiliation(s)
- Katia Sampieri
- Medical Genetics, Molecular Biology Department, University of Siena, Policlinico Le Scotte, viale Bracci 2, 53100, Siena, Italy
| | | | - Francesca Mari
- Medical Genetics, Molecular Biology Department, University of Siena, Policlinico Le Scotte, viale Bracci 2, 53100, Siena, Italy
| | - Caterina Speciale
- Medical Genetics, Molecular Biology Department, University of Siena, Policlinico Le Scotte, viale Bracci 2, 53100, Siena, Italy
| | - Maria Antonietta Mencarelli
- Medical Genetics, Molecular Biology Department, University of Siena, Policlinico Le Scotte, viale Bracci 2, 53100, Siena, Italy
| | | | - Siranoush Manoukian
- Medical Genetics, Experimental Oncology, Instituto Nazionale Tumori , Milan, Italy
| | - Bernard Peissel
- Medical Genetics, Experimental Oncology, Instituto Nazionale Tumori , Milan, Italy
| | | | - Barbara Pasini
- Genetics, Biology and Biochemistry Department, University of Torino, Turin, Italy
| | | | - Aldo Caporossi
- Ophtalmological Science and Neuroscience, Siena General Hospital, Siena, Italy
| | | | - Alessandra Renieri
- Medical Genetics, Molecular Biology Department, University of Siena, Policlinico Le Scotte, viale Bracci 2, 53100, Siena, Italy
| | - Mirella Bruttini
- Medical Genetics, Molecular Biology Department, University of Siena, Policlinico Le Scotte, viale Bracci 2, 53100, Siena, Italy.
| |
Collapse
|
48
|
Williams JP, Stewart T, Li B, Mulloy R, Dimova D, Classon M. The retinoblastoma protein is required for Ras-induced oncogenic transformation. Mol Cell Biol 2006; 26:1170-82. [PMID: 16449633 PMCID: PMC1367176 DOI: 10.1128/mcb.26.4.1170-1182.2006] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 05/23/2005] [Accepted: 10/20/2005] [Indexed: 12/24/2022] Open
Abstract
Most human cancers involve either mutational activation of the Ras oncogenic pathway and/or inactivation of the retinoblastoma tumor suppressor (RB) pathway. Paradoxically, tumors that harbor Ras mutations almost invariably retain expression of a wild-type pRB protein. We explain this phenomenon by demonstrating that Ras-induced oncogenic transformation surprisingly depends on functional pRB protein. Cells lacking pRB are less susceptible to the oncogenic actions of H-RasV12 than wild-type cells and activated Ras has an inhibitory effect on the proliferation of pRB-deficient human tumor cells. In addition, depletion of pRB from Ras-transformed murine cells or human tumor cells that harbor Ras pathway mutations inhibits their proliferation and anchorage-independent growth. In sharp contrast to pRB-/- 3T3 cells, fibroblasts deficient in other pRB family members (p107 and p130) are more susceptible to Ras-mediated transformation than wild-type 3T3 cells. Moreover, loss of pRB in tumor cells harboring a Ras mutation results in increased expression of p107, and overexpression of p107 but not pRB strongly inhibits proliferation of these tumor cells. Together, these findings suggest that pRB and p107 have distinct roles in Ras-mediated transformation and suggest a novel tumor-suppressive role for p107 in the context of activated Ras.
Collapse
Affiliation(s)
- Jonathan P Williams
- MGH Cancer Center and Harvard Medical School, Bldg. 149, 13th St., Charlestown, MA 02129, USA
| | | | | | | | | | | |
Collapse
|
49
|
Murphree AL, Samuel MA, Harbour JW, Mansfield NC. Retinoblastoma. Retina 2006. [DOI: 10.1016/b978-0-323-02598-0.50028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Guo W, Zhu H, Zhang L, Davis J, Teraishi F, Roth JA, Stephens C, Fueyo J, Jiang H, Conrad C, Fang B. Combination effect of oncolytic adenovirotherapy and TRAIL gene therapy in syngeneic murine breast cancer models. Cancer Gene Ther 2006; 13:82-90. [PMID: 16037823 PMCID: PMC1343537 DOI: 10.1038/sj.cgt.7700863] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 04/04/2005] [Accepted: 04/12/2005] [Indexed: 11/08/2022]
Abstract
Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) gene therapy and oncolytic adenovirotherapy have been investigated extensively in xenografic human tumor models established in immunocompromised nude mice. However, the effects of these therapies on syngeneic murine tumors in immunocompetent settings were not well documented. We hypothesized that TRAIL gene therapy used with an oncolytic adenovirus would overcome the weaknesses of the two therapies used individually. In this study, we evaluated the antitumor effects of an oncolytic adenovirus, Delta24, in both human and murine breast cancer cell lines. We also analyzed the effects of TRAIL gene therapy combined with oncolytic virotherapy in these cancer cells. Our results showed that Delta24 can replicate and help the E1-deleted adenovector replicate in murine cancer cells. We also found that these two therapies combined had greater antitumor activity than either one alone in both human and murine breast cancer cells lines and in the syngeneic breast cancer models established in immunocompetent mice. Moreover, Delta24 virotherapy alone and combined with TRAIL gene therapy dramatically reduced the spontaneous liver metastasis that originated in the subcutaneous 4T1 tumor established in Balb/c mice. These findings provide important considerations in the development and preclinical assessments of oncolytic virotherapy.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic and Cardiovascular Surgery
| | - Hongbo Zhu
- Department of Thoracic and Cardiovascular Surgery
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University, China
| | - Lidong Zhang
- Department of Thoracic and Cardiovascular Surgery
| | - John Davis
- Department of Thoracic and Cardiovascular Surgery
- Program in Gene Therapy and Virology, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | | | - Jack A. Roth
- Department of Thoracic and Cardiovascular Surgery
| | | | - Juan Fueyo
- Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Hong Jiang
- Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Conrad
- Neuro-Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Bingliang Fang
- Department of Thoracic and Cardiovascular Surgery
- Program in Gene Therapy and Virology, The University of Texas Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|