1
|
Son SU, Suh HJ, Shin KS. Effects of novel sulfated-rhamnoglucuronan isolated from Korean seaweed Ulva pertusa on IgA-mediated intestinal-immune system activation in naïve C3H/HeN mice. Int J Biol Macromol 2025; 314:144170. [PMID: 40373895 DOI: 10.1016/j.ijbiomac.2025.144170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/01/2025] [Accepted: 05/11/2025] [Indexed: 05/17/2025]
Abstract
A previous study identified a novel sulfated-rhamnoglucuronan structure in Ulva pertusa polysaccharide (UPP). The present study evaluates the intestinal immunostimulatory effects of UPP in naïve C3H/HeN mice. Oral administration of UPP significantly enhanced the secretion of IgA and associated cytokines, including interleukin (IL)-6, IL-10, and transforming growth factor (TGF)-β, from Peyer's patch (PP) cells in vivo. Additionally, the supernatant from PP cell cultures stimulated the proliferation of bone marrow cells. Histological analysis revealed strong stimulation of PP by UPP, as evidenced by hematoxylin and eosin staining. Serum analysis indicated that UPP triggered TGF-β secretion, which subsequently promoted IgA production. Furthermore, UPP administration enhanced IgA-related cytokine production in ileum tissues and was linked to the activation of the mitogen-activated protein kinase and nuclear factor kappa B signaling pathways. The secretion of A proliferation-inducing ligand (tumor necrosis factor superfamily member 13; TNFSF13) and B-cell activating factor (TNFSF13B) was also upregulated in the ileum. Additionally, fecal analysis demonstrated an increase in short-chain fatty acids, including acetic, propionic, and butyric acids, in a dose- and administration period-dependent manner. These findings suggest that UPP administration contributes IgA-related immune responses and intestinal immune system modulation via PP cells.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Precision Nutrition Research Group, Korea Food Research Institute, Wanju-gun 55365, Republic of Korea.
| | - Hyung Joo Suh
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
2
|
Gill T. Exploring the Mucosal Immune Response in Axial Spondyloarthritis Through Immunoglobulin A-Coated Microbiota. Rheum Dis Clin North Am 2025; 51:283-293. [PMID: 40246441 DOI: 10.1016/j.rdc.2025.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
In this review, we focus on the mucosal immune response through Immunoglobulin A (IgA)-coated microbes and their role in gut dysbiosis in axial spondyloarthritis (axSpA) and associated inflammatory bowel disease. IgA-coated microbes contribute significantly to the microbial dysbiosis observed in axSpA, potentially driving gut inflammation and translocating outside of the gut and initiating systemic immune activation, thus contributing to disease pathogenesis. These insights will provide new avenues for understanding and treating axSpA and other immune-mediated inflammatory disorders by targeting specific host immune-microbe interactions.
Collapse
Affiliation(s)
- Tejpal Gill
- Division of Arthritis and Rheumatic Diseases, Casey Eye Insitute, Oregon Science & Health University, 3181 Southwest Sam Jackson Park Road, Portland, OR 97229, USA.
| |
Collapse
|
3
|
Lu J, Wang Y, Wu J, Duan Y, Zhang H, Du H. Linking microbial communities to rheumatoid arthritis: focus on gut, oral microbiome and their extracellular vesicles. Front Immunol 2025; 16:1503474. [PMID: 40308573 PMCID: PMC12040682 DOI: 10.3389/fimmu.2025.1503474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Rheumatoid arthritis (RA) is a severe, chronic autoimmune disease affecting approximately 1% of the global population. Research has demonstrated that microorganisms play a crucial role in the onset and progression of RA. This indicates that the disruption of immune homeostasis may originate from mucosal sites, such as the gut and oral cavity. In the intestines of patients in the preclinical stage of RA, an increased abundance of Prevotella species with a strong association to the disease was observed. In the oral cavity, infections by Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans can mediate the production of anti-citrullinated protein antibodies (ACPAs), potentially contributing to RA pathogenesis. Nevertheless, no single bacterial species has been consistently identified as the primary driver of RA. This review will discuss the connection between gut and oral bacteria in the development of arthritis. Additionally, it explores the role of bacterial extracellular vesicles (bEVs) in inducing inflammation and their potential pathogenic roles in RA.
Collapse
Affiliation(s)
- Jian Lu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yi Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jing Wu
- Department of Laboratory Medicine, The Affiliated Guangji Hospital of Soochow University, Suzhou Mental Health Center, Suzhou, Jiangsu, China
| | - Yusi Duan
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haifang Zhang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
4
|
Castañeda J, Poblete L, Rosemblatt MV, Sauma D, Rosemblatt M, Bono MR, Nuñez S. Early-life homeostatic differentiation of thymus-resident B cells into memory B cells. Front Immunol 2025; 16:1567788. [PMID: 40226628 PMCID: PMC11985456 DOI: 10.3389/fimmu.2025.1567788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 03/12/2025] [Indexed: 04/15/2025] Open
Abstract
The thymus contains various antigen-presenting cells, including B cells, which remain activated even under steady-state conditions, suggesting ongoing local stimulation. In this study, we identify class-switched memory B cells in the thymus. Some of these cells switch their immunoglobulin to IgG2b and IgA, and express typical memory markers CD73 and PD-L2. Memory B cell differentiation in the thymus begins in neonatal mice, preceding the appearance of class-switched B cells in other peripheral lymphoid organs. Notably, exposure to environmental antigens does not influence their differentiation. Additionally, cognate interaction with CD4+ positive thymocytes is crucial for the development of memory B cells in the thymus. Our findings demonstrate that the thymus supports the local differentiation of memory B cells through a steady-state process, independent of foreign antigen stimulation and driven by interactions with developing T cells.
Collapse
Affiliation(s)
- Justine Castañeda
- Escuela de Postgrado, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Lilian Poblete
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Mariana V. Rosemblatt
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
| | - Daniela Sauma
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro Ciencia & Vida, Santiago, Chile
| | - Mario Rosemblatt
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
- Centro Ciencia & Vida, Santiago, Chile
| | - María Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
- Centro Ciencia & Vida, Santiago, Chile
| | - Sarah Nuñez
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Sede Los Leones, Santiago, Chile
- Centro Ciencia & Vida, Santiago, Chile
| |
Collapse
|
5
|
Wang K, Farrell A, Zhou E, Qin H, Zeng Z, Zhou K, Cunha E Rocha K, Zhang D, Wang G, Atakilit A, Sheppard D, Lu LF, Jin C, Ying W. ATF4 drives regulatory T cell functional specification in homeostasis and obesity. Sci Immunol 2025; 10:eadp7193. [PMID: 40085690 DOI: 10.1126/sciimmunol.adp7193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/19/2024] [Accepted: 02/06/2025] [Indexed: 03/16/2025]
Abstract
Regulatory T cells (Tregs) have diverse functional specification in homeostasis and disease. However, how liver Tregs function and are transcriptionally regulated in obesity is not well understood. Here, we identified that effector Tregs expressing activating transcription factor 4 (ATF4) were enriched in the livers of obese mice. ATF4 was critical for driving an effector Treg transcriptional program, and ATF4-expressing Tregs promoted the development of obesity-induced liver fibrosis by enhancing transforming growth factor-β activation via integrin αvβ8. Treg-specific deletion of Atf4 resulted in reduced liver Tregs and attenuation of obesity-induced liver abnormalities. Furthermore, ATF4 was required to promote the differentiation of nonlymphoid tissue Treg precursors under steady state. These findings demonstrate that ATF4 is important for regulating Treg functional specification in homeostasis and obesity.
Collapse
Affiliation(s)
- Ke Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Andrea Farrell
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Enchen Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Houji Qin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Zixuan Zeng
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kailun Zhou
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Karina Cunha E Rocha
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Dinghong Zhang
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Gaowei Wang
- Institute of Modern Biology, Nanjing University, Nanjing, China
| | - Amha Atakilit
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Dean Sheppard
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Li-Fan Lu
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Chunyu Jin
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Wei Ying
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
6
|
Zhou Y, Hubscher CH. Biomarker expression level changes within rectal gut-associated lymphoid tissues in spinal cord-injured rats. Immunohorizons 2025; 9:vlaf002. [PMID: 40048710 PMCID: PMC11884801 DOI: 10.1093/immhor/vlaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 01/31/2025] [Indexed: 03/09/2025] Open
Abstract
Neurogenic bowel dysfunction (NBD) is common after spinal cord injury (SCI). Gut-associated lymphoid tissue (GALT), an organized structure within the mucosal immune system, is important for the maintenance of gut homeostasis and body health and serves as the first line barrier/defense against diet antigens, commensal microbiota, pathogens, and toxins in mucosal areas. The current study examined gene expression levels along six segments of anorectal tissue using real-time polymerase chain reaction (RT-PCR) in uninjured rats (28-day sham surgical controls) and at both 28- and 42-days post-T9 contusion injury. Consistent with our previous report of functional regional differences in the ano-rectum, we demonstrate the existence of GALTs located primarily within the segment at 3-4.5 cm from the rectal dentate line (termed rectal GALTs-rGALTs) in shams with upregulated gene expression levels of multiple biomarkers, including B cell and T cell-related genes, major histocompatibility complex (MHC) class II molecules, and germinal center (GC)-related genes, which was further confirmed by histologic examination. In the same rectal tissue segment following T9 SCI, inflammation-related genes were upregulated at 28 days post-injury (DPI) indicating that microbial infection and inflammation of rGALTs modified structure and function of rGALTs, while at 42 DPI rGALTs exhibited resolution of inflammation and impaired structure/function for extrafollicular B cell responses. Taken together, our data suggest that rGALTs exists in rat rectum for homeostasis of gut microbiota/barrier. SCI induces microbial infection and inflammation in rectal tissues containing rGALTs, which could contribute to development of SCI-related gut microbiome dysbiosis, NBD, and systemic diseases.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, KY, United States
- Kentucky Spinal Cord Injury Research Center, Louisville, KY, United States
| |
Collapse
|
7
|
Suresh R, Olaitan Comfort S, Dolatyabi S, Schrock J, Singh M, Renukaradhya GJ. Evaluation of mucosal adjuvants to chitosan-nanoparticle-based oral subunit vaccine for controlling salmonellosis in broilers. Front Immunol 2025; 16:1509990. [PMID: 39981235 PMCID: PMC11840259 DOI: 10.3389/fimmu.2025.1509990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Salmonellosis, a gastrointestinal disease, continues to be one of the major public health concerns worldwide. Poultry meat and eggs are recognized as the major source of Salmonella food poisoning in humans. Our study evaluated the protective efficacy of mannose-conjugated chitosan-nanoparticle (mChitosan-NP)-based subunit vaccine, consisting of immunogenic outer membrane proteins and flagella of Salmonella Enteritidis [mChitosan (OMP+FLA)/FLA-NP], coadministered orally with potent mucosal adjuvants to reduce the colonization of S. Enteritidis in the intestines of broiler chickens. We evaluated the adjuvant effects of three different doses of two well-known mucosal adjuvants, c-di-GMP (stimulator of interferon gene agonist) and whole cell lysate (WCL) of Mycobacterium smegmatis, to improve the efficacy of mChitosan (OMP+FLA)/FLA-NP vaccine. Our data reaffirmed the potent adjuvanticity of both of these adjuvants and identified their optimal dose when entrapped in mChitosan-NP to potentiate the immunogenicity and efficacy of orally delivered mChitosan (OMP+FLA)/FLA-NP vaccine. The physical characteristics of mChitosan (OMP+FLA)/FLA-NP, mChitosan-GMP/FLA-NP, and mChitosan-WCL/FLA-NP formulations revealed a high positive charge (Zeta potential +20-25 mV), size 235-260 nm, and polydispersity index 0.35-0.52, which are conducive for oral delivery. The efficacy in chickens that received oral administration with a combination of the vaccine-adjuvant formulations was evaluated by challenging with Salmonella Enteritidis. Our data showed that mChitosan (OMP+FLA)/FLA-NP WCL at 10 µg/dose formulation consistently reduced the S. Enteritidis load by over 0.5 log10 comparable to a commercial live vaccine at post-challenge days 4 and 10. Immunologically, we observed enhanced systemic and mucosal antibody and cellular (B cells and T-helper cells) immune responses as well as upregulation of expression of immune cytokine genes IFN-γ, TGF-β, and IL-17 in the cecal tonsils of adjuvanted mChitosan-NP Salmonella-subunit-vaccinated birds. Overall, particularly the mucosal adjuvant WCL consistently enhanced the efficacy of mChitosan (OMP+FLA)/FLA-NP vaccine by inducing effective immune responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
8
|
Kanaya T, Jinnohara T, Sakakibara S, Tachibana N, Sasaki T, Kato T, Riemann M, Jin J, Shiroguchi K, Kawakami E, Ohno H. RelB and C/EBPα critically regulate the development of Peyer's patch mononuclear phagocytes. Mucosal Immunol 2025; 18:151-161. [PMID: 39413971 DOI: 10.1016/j.mucimm.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 09/30/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
To establish protection against harmful foreign antigens, the small intestine harbors guardian sites called Peyer's patches (PPs). PPs take up antigens through microfold (M) cells and transfer them to the sub-epithelial dome (SED), which contains a high density of mononuclear phagocytes (MPs), for T cell-priming. Accumulating evidence indicates that SED-MPs have unique functions other than T cell-priming to facilitate mucosal immune responses; however, the crucial factors regulating the functions of SED-MPs have not been determined. Here we performed transcriptome analysis, and identified the gene signatures of SED-MPs. Further data interpretation with transcription factor (TF) enrichment analysis estimated TFs responsible for the functions of SED-MPs. Among them, we found that RelB and C/EBPα were preferentially activated in SED-MPs. RelB-deficiency silenced the expression of IL-22BP and S100A4 by SED-MPs. On the other hand, C/EBPα-deficiency decreased the expression of lysozyme by SED-MPs, resulting the increased invasion of orally administered pathogenic bacteria into PPs and mesenteric lymph nodes. Our findings thus demonstrate that RelB and C/EBPα are essential to regulate the functions of SED-MPs.
Collapse
Affiliation(s)
- Takashi Kanaya
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| | - Toshi Jinnohara
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Sayuri Sakakibara
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Naoko Tachibana
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Takaharu Sasaki
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan
| | - Tamotsu Kato
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan
| | - Marc Riemann
- Leibniz Institute on Aging - Fritz Lipmann Institute, Jena, Germany
| | - Jianshi Jin
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan
| | - Eiryo Kawakami
- Advanced Data Science Project, RIKEN Information R&D and Strategy Headquarters, RIKEN, Yokohama, Kanagawa, Japan; Department of Artificial intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa, Japan; Division of Immunobiology, Department of Medical Life Science, Graduate School of Medical Life Science, Yokohama City University, Kanagawa, Japan.
| |
Collapse
|
9
|
Villablanca EJ. Organismal mucosal immunology: A perspective through the eyes of game theory. Mucosal Immunol 2025; 18:16-25. [PMID: 39672543 DOI: 10.1016/j.mucimm.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/03/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
In complex organisms, functional units must interact cohesively to maintain homeostasis, especially within mucosal barriers that house diverse, specialized cell exposed to constant environmental challenges. Understanding how homeostasis at mucosal barriers is maintained and how its disruption can lead to autoimmune diseases or cancer, requires a holistic view. Although omics approaches and systems immunology have become powerful tools, they are not without limitations; interpretations may reflect researchers' assumptions, even if other explanations exist. In this perspective, I propose that applying game theory concepts to mucosal immunology could help interpret complex data, offering fresh perspectives and supporting the exploration of alternative scenarios. By framing the mucosal immune system as a network of strategic interactions with multiple possible outcomes, game theory, which analyzes strategic interactions and decision-making processes, could illuminate novel cell types and functions, cell interactions, and responses to pathogens and commensals, leading to a more comprehensive understanding of immune homeostasis and diseases. In addition, game theory might encourage researchers to consider a broader range of possibilities, reduce the risk of myopic thinking, and ultimately enable a more refined and comprehensive understanding of the complexity of the immune system at mucosal barriers. This perspective aims to introduce game theory as a complementary framework for mucosal immunologists, encouraging them to incorporate these concepts into data interpretation and system modeling.
Collapse
Affiliation(s)
- Eduardo J Villablanca
- Division of Immunology and Respiratory Medicine, Department of Medicine Solna, Karolinska Institute and University Hospital, Stockholm, Sweden; Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden; Center of Molecular Medicine, Stockholm, Sweden.
| |
Collapse
|
10
|
Chen S, Shen C, Zeng X, Sun L, Luo F, Wan R, Zhang Y, Chen X, Hou Y, Wang W, Zheng Q, Li Y. Energy metabolism and the intestinal barrier: implications for understanding and managing intestinal diseases. Front Microbiol 2025; 16:1515364. [PMID: 39959156 PMCID: PMC11826063 DOI: 10.3389/fmicb.2025.1515364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
The interplay between energy metabolism and the gut barrier is crucial for maintaining intestinal physiological homeostasis. Energy metabolism and the intestinal barrier perform distinct yet complementary roles that uphold intestinal ecological equilibrium. Disruptions in energy metabolism can compromise the integrity of the intestinal barrier; for example, inactivation of the AMPK pathway may lead to reduced expression of proteins associated with tight junctions. Conversely, impairment of the intestinal barrier can result in metabolic dysregulation, such as alterations in the gut microbiota that impede the production of short-chain fatty acids (SCFAs), which are essential substrates for energy metabolism. This disruption can affect energy production and modify the gut's hypoxic environment. Imbalances in these systems have been associated with the onset of various intestinal diseases. Research indicates that dietary interventions, such as a low FODMAP diet, can enhance the colonization of probiotics and improve the fermentation metabolism of SCFAs. Pharmacological strategies to elevate SCFA levels can activate the AMPK pathway and rectify abnormalities in energy metabolism. This review provides a comprehensive summary of recent advancements in elucidating the interactions between energy metabolism and the intestinal barrier.
Collapse
Affiliation(s)
- Shuai Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Caifei Shen
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaorui Zeng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Luqiang Sun
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Fangli Luo
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Renhong Wan
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yupeng Zhang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinyun Chen
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yujun Hou
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wen Wang
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Qianhua Zheng
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Ying Li
- Acupuncture and Tuina College, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Kabrani E, Rahjouei A, Berruezo-Llacuna M, Ebeling S, Saha T, Altwasser R, Delgado-Benito V, Pavri R, Di Virgilio M. RIF1 integrates DNA repair and transcriptional requirements during the establishment of humoral immune responses. Nat Commun 2025; 16:777. [PMID: 39824820 PMCID: PMC11742068 DOI: 10.1038/s41467-025-56166-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/09/2025] [Indexed: 01/20/2025] Open
Abstract
The establishment of protective immune responses relies on the ability of terminally differentiated B cells to secrete a broad variety of antigen-specific antibodies with different effector functions. RIF1 is a multifunctional protein that promotes antibody isotype diversification via its DNA end protection activity during class switch recombination. In this study, we showed that RIF1 ablation resulted in increased plasmablast formation ex vivo and enhanced terminal differentiation into plasma cells upon immunization. Mechanistically, this phenotype is independent from RIF1's role in DNA repair and class switch recombination, and reflects its ability to modulate the transcriptional status of a subset of BLIMP1 target genes. Therefore, here we show that, in addition to promoting antibody diversification, RIF1 fine-tunes the kinetics of late B cell differentiation, thus providing an additional layer of control in the establishment of humoral immunity.
Collapse
Affiliation(s)
- Eleni Kabrani
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Ali Rahjouei
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Anesthesiology and Intensive Care Medicine, and Experimental and Clinical Research Center, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Maria Berruezo-Llacuna
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Humboldt-Universität zu Berlin, 10117, Berlin, Germany
| | - Svenja Ebeling
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Tannishtha Saha
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Freie Universität Berlin, 14195, Berlin, Germany
| | - Robert Altwasser
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
- Department of Hematology, Oncology, and Cancer Immunology, Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Veronica Delgado-Benito
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany
| | - Rushad Pavri
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Michela Di Virgilio
- Laboratory of Genome Diversification & Integrity, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125, Berlin, Germany.
- Charité-Universitätsmedizin Berlin, 10117, Berlin, Germany.
| |
Collapse
|
12
|
Musa I, Ardalani F, Yang N, Maleki SJ, Li XM. Murine model of cross-IgE sensitization and cross-anaphylactic reactions among multiple group food allergens. Front Immunol 2025; 15:1497368. [PMID: 39845964 PMCID: PMC11753245 DOI: 10.3389/fimmu.2024.1497368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/05/2024] [Indexed: 01/24/2025] Open
Abstract
Rationale Approximately 32 million people in the United States suffer from food allergies. Some food groups, such as legumes - peanuts, tree nuts, fish, and shellfish, have a high risk of cross-reactivity. However, the murine model of multiple food group cross-reactivity is limited. Objective We sought to develop a murine model that can be used to investigate novel therapeutics for the treatment of multiple food allergies. Methods C3H/HeJ mice were sensitized intraperitoneally (i.p.) once a week for three weeks with a mixture of 500µg of protein from peanut, cashew, walnut, shrimp, cod, and 2 mg Alum. The control group consisted of naïve mice. IgE levels against the sensitized allergens and their cross-reactive allergens were measured by ELISA at baseline and 3 weeks after sensitization. In weeks 4 and 5, the mice were given intragastric challenges with 200mg/mouse of each food: peanut, chickpea, lentil, cashew, almond, pistachio, hazelnut, brazil nut, walnut, pecan, shrimp, lobster, cod, salmon, and mackerel. After each challenge, anaphylactic symptoms, rectal temperatures, and plasma histamine were measured. Results There was a significant elevation of IgE against sensitized antigens (peanut cashew, walnut, shrimp, and cod) as well as cross-reactive allergens used for oral food challenge from legumes including peanut, chickpea, and lentil, as well as tree nuts such as cashew, almond, pistachio, hazelnut, brazil nut, walnut, and pecan. Furthermore, there was a significant increase in crustaceans such as shrimp, lobster and fish like cod, salmon, and mackerel (p<0.01). Consistently, significantly increased anaphylactic symptom scores (p<0.05), decreased rectal temperature (p<0.001), and increased plasma histamine (p<0.05) compared to the naïve mice occurred following each challenge with sensitized foods and unsensitized, but cross-reactive foods. Conclusion We generated a comprehensive murine model of IgE-mediated multiple food groups of cross-reactive anaphylaxes. This will provide an essential tool for developing novel therapies for cross-reactivity multiple food allergies.
Collapse
Affiliation(s)
- Ibrahim Musa
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Fariba Ardalani
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
| | - Nan Yang
- General Nutraceutical Technology LLC, Elmsford, NY, United States
| | - Soheila J. Maleki
- United States (U.S.) Department of Agriculture, Agriculture Research Service, Southern Regional Research Center, New Orleans, LA, United States
| | - Xiu-Min Li
- Department of Pathology, Microbiology & Immunology, New York Medical College, Valhalla, NY, United States
- Department of Otolaryngology, School of Medicine, New York Medical College, Valhalla, NY, United States
- Department of Dermatology, School of Medicine, New York Medical College, Valhalla, NY, United States
| |
Collapse
|
13
|
Lei C, Luo C, Xu Z, Ding S, Sriwastva MK, Dryden G, Wang T, Xu M, Tan Y, Wang Q, Yang X, McClain CJ, Deng Z. Bacterial and host fucosylation maintain IgA homeostasis to limit intestinal inflammation in mice. Nat Microbiol 2025; 10:126-143. [PMID: 39690194 DOI: 10.1038/s41564-024-01873-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/31/2024] [Indexed: 12/19/2024]
Abstract
Inflammatory bowel disease is associated with several genetic risk loci. Loss-of-function mutation in the α1,2-fucosyltransferase (fut2) gene, which alters fucosylation on the surface of intestinal epithelial cells, is one example. However, whether bacterial fucosylation can contribute to gut inflammation is unclear. Here we show that host fucosylation status influences fucosylation biosynthesis by gut commensal bacteria. Mice colonized with faecal microbiota of Fut2 knockout mice or Bacteroides fragilis with lower surface fucosylation are predisposed to colitis. This was supported by human cohort data showing that bacterial fucosylation levels decrease in patients with inflammatory bowel disease and correlate with intestinal inflammation. Using a mouse model for Bacteroides fragilis to explore the role of fucosylation in gut immunity, we show that the fucosylation status of epithelial cells and bacteria is critical for maintaining B cell responses in the gut. Host-derived and dietary fucose mediate immunoglobulin A (IgA) recognition of gut microbiota, and this interaction facilitates the translocation of commensals to Peyer's patches and alters the immune landscape of Peyer's patches with increased germinal centre B cells and IgA-secreting antigen-specific B cells. Finally, dietary fucose enhances the IgA response against Salmonella and protects against systemic bacterial dissemination. This highlights the role of host and bacterial fucosylation in maintaining IgA homeostasis and immune escape mechanisms.
Collapse
Affiliation(s)
- Chao Lei
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA.
- Brown Cancer Center, University of Louisville, Louisville, KY, USA.
| | - Chao Luo
- Department of Central Laboratory, the Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
- Digestive Disease Center, the Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Zhishan Xu
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Shu Ding
- Department of Central Laboratory, the Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Mukesh K Sriwastva
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Gerald Dryden
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Ting Wang
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA
- Brown Cancer Center, University of Louisville, Louisville, KY, USA
| | - Manman Xu
- Department of Medicine, University of Louisville, Louisville, KY, USA
| | - Yi Tan
- Pediatric Research Institute, Department of Pediatrics, University of Louisville, Louisville, KY, USA
| | - Qilong Wang
- Department of Central Laboratory, the Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
- Digestive Disease Center, the Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Xiaozhong Yang
- Digestive Disease Center, the Affiliated Huaian No. 1 People's Hospital, Nanjing Medical University, Huaian, China
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY, USA
- Alcohol Research Center, University of Louisville, Louisville, KY, USA
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA
- Robley Rex VA Medical Center, Louisville, KY, USA
| | - Zhongbin Deng
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY, USA.
- Brown Cancer Center, University of Louisville, Louisville, KY, USA.
- Alcohol Research Center, University of Louisville, Louisville, KY, USA.
- Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
14
|
Meng X, Asadi-Asadabad S, Cao S, Song R, Lin Z, Safhi M, Qin Y, Tcheumi Tactoum E, Taudte V, Ekici A, Mielenz D, Wirtz S, Schett G, Bozec A. Metabolic rewiring controlled by HIF-1α tunes IgA-producing B-cell differentiation and intestinal inflammation. Cell Mol Immunol 2025; 22:54-67. [PMID: 39543372 PMCID: PMC11686098 DOI: 10.1038/s41423-024-01233-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 10/18/2024] [Indexed: 11/17/2024] Open
Abstract
Germinal centers where B cells undergo clonal expansion and antibody affinity maturation are hypoxic microenvironments. However, the function of hypoxia-inducible factor (HIF)-1α in immunoglobulin production remains incompletely characterized. Here, we demonstrated that B cells lacking HIF-1α exhibited significantly lower glycolytic metabolism and impaired IgA production. Loss of HIF-1α in B cells affects IgA-producing B-cell differentiation and exacerbates dextran sodium sulfate (DSS)-induced colitis. Conversely, promoting HIF-1α stabilization via a PHD inhibitor roxadustat enhances IgA class switching and alleviates intestinal inflammation. Mechanistically, HIF-1α facilitates IgA class switching through acetyl-coenzyme A (acetyl-CoA) accumulation, which is essential for histone H3K27 acetylation at the Sα region. Consequently, supplementation with acetyl-CoA improved defective IgA production in Hif1a-deficient B cells and limited experimental colitis. Collectively, these findings highlight the critical importance of HIF-1α in IgA class switching and the potential for targeting the HIF-1α-dependent metabolic‒epigenetic axis to treat inflammatory bowel diseases and other inflammatory disorders.
Collapse
Affiliation(s)
- Xianyi Meng
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Sahar Asadi-Asadabad
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Shan Cao
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Rui Song
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Zhen Lin
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Mohammed Safhi
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Yi Qin
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Estelle Tcheumi Tactoum
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Verena Taudte
- Institute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, 91054, Germany
- Insitute of Laboratory Medicine, Philipps University of Marburg, Marburg, 35043, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Stefan Wirtz
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 90154, Germany
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany
| | - Aline Bozec
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, 91054, Germany.
| |
Collapse
|
15
|
Tejedor Vaquero S, Neuman H, Comerma L, Marcos-Fa X, Corral-Vazquez C, Uzzan M, Pybus M, Segura-Garzón D, Guerra J, Perruzza L, Tachó-Piñot R, Sintes J, Rosenstein A, Grasset EK, Iglesias M, Gonzalez Farré M, Lop J, Patriaca-Amiano ME, Larrubia-Loring M, Santiago-Diaz P, Perera-Bel J, Berenguer-Molins P, Martinez Gallo M, Martin-Nalda A, Varela E, Garrido-Pontnou M, Grassi F, Guarner F, Mehandru S, Márquez-Mosquera L, Mehr R, Cerutti A, Magri G. Immunomolecular and reactivity landscapes of gut IgA subclasses in homeostasis and inflammatory bowel disease. J Exp Med 2024; 221:e20230079. [PMID: 39560666 PMCID: PMC11577441 DOI: 10.1084/jem.20230079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 11/20/2024] Open
Abstract
The human gut includes plasma cells (PCs) expressing immunoglobulin A1 (IgA1) or IgA2, two structurally distinct IgA subclasses with elusive regulation, function, and reactivity. We show here that intestinal IgA1+ and IgA2+ PCs co-emerged early in life, comparably accumulated somatic mutations, and were enriched within short-lived CD19+ and long-lived CD19- PC subsets, respectively. IgA2+ PCs were extensively clonally related to IgA1+ PCs and a subset of them presumably emerged from IgA1+ precursors. Of note, secretory IgA1 (SIgA1) and SIgA2 dually coated a large fraction of mucus-embedded bacteria, including Akkermansia muciniphila. Disruption of homeostasis by inflammatory bowel disease (IBD) was associated with an increase in actively proliferating IgA1+ plasmablasts, a depletion in long-lived IgA2+ PCs, and increased SIgA1+SIgA2+ gut microbiota. Such increase featured enhanced IgA1 reactivity to pathobionts, including Escherichia coli, combined with depletion of beneficial A. muciniphila. Thus, gut IgA1 and IgA2 emerge from clonally related PCs and show unique changes in both frequency and reactivity in IBD.
Collapse
Affiliation(s)
- Sonia Tejedor Vaquero
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Hadas Neuman
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Laura Comerma
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | - Xavi Marcos-Fa
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Celia Corral-Vazquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Mathieu Uzzan
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Marc Pybus
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Daniel Segura-Garzón
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Joana Guerra
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Lisa Perruzza
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Roser Tachó-Piñot
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Jordi Sintes
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Adam Rosenstein
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Emilie K. Grasset
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Mar Iglesias
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | - Joan Lop
- Pathology Department, Hospital del Mar, Barcelona, Spain
| | | | | | | | - Júlia Perera-Bel
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Pau Berenguer-Molins
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| | - Monica Martinez Gallo
- Immunology Division, Vall d’Hebron University Hospital and Translational Immunology Research Group, Vall d’Hebron Research Institute (VHIR), Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona (UAB), Barcelona, Spain
| | - Andrea Martin-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d’Hebron University Hospital, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Encarna Varela
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | | | - Fabio Grassi
- Institute for Research in Biomedicine, Faculty of Biomedical Sciences, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Francisco Guarner
- Department of Gastroenterology, Vall d’Hebron Research Institute, Barcelona, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases, Instituto Carlos III, Madrid, Spain
| | - Saurabh Mehandru
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
| | - Lucia Márquez-Mosquera
- Department of Gastroenterology, Hospital del Mar Medical Research Institute Barcelona, Barcelona, Spain
| | - Ramit Mehr
- Computational Immunology Laboratory, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Andrea Cerutti
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Immunology Institute, New York, NY, USA
- Catalan Institute for Research and Advanced Studies, Barcelona, Spain
| | - Giuliana Magri
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
16
|
Wu S, Hu L, Fu Y, Chen Y, Hu Z, Li H, Liu Z. Effects of Intestinal M Cells on Intestinal Barrier and Neuropathological Properties in an AD Mouse Model. Mol Neurobiol 2024; 61:10006-10022. [PMID: 38066398 DOI: 10.1007/s12035-023-03807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2024]
Abstract
Intestinal microfold cells (M cells) play a critical role in the immune response of the intestinal mucosa by actively taking up antigens, facilitating antigen presentation to immune cells, and promoting the production of secretory immunoglobulin A by B cells. Despite their known important functions in the gut, the effect of M cells on the central nervous system remains unclear. We investigated the expression of M cell-related factor genes and protein levels in Peyer's patches (PPs) of 3-month-old and 9-month-old APP/PS1 mice, as well as the expression of intestinal barrier proteins in the ileum and colon of these mice. Furthermore, we employed intestinal M cell conditional ablation mice (i.e., RankΔIEC mice) to assess the influence of M cells on the intestinal barrier and Alzheimer's disease (AD)-like behavioral and pathological features. Our findings revealed that compared to wild-type mice, APP/PS1 mice showed altered M cell-related genes and disrupted intestinal barriers. In addition, there is a significant decrease in glycoprotein 2 (GP2) mRNA levels in the PPs of 3-month-old APP/PS1 mice, with the relative expression of GP2 mRNA tending to zero. Parameters related to the intestinal barrier (IgA, MUC2, Claudin-5, ZO-1) were significantly downregulated in both 3-month-old and 9-month-old APP/PS1 mice compared to wild-type controls, and the differences were more pronounced in the 9-month-old mice. Moreover, M cell ablation in APP/PS1 mice (i.e., APP/PS1ΔMC mice) resulted in more severe intestinal barrier destruction. Notably, we observed through water maze experiments that APP/PS1ΔMC mice at 6 months of age exhibited significantly poorer spatial learning memory compared to APP/PS1 mice. And the neuropathological alterations were also observed in APP/PS1ΔMC mice at 6 months of age that when intestinal M cells are damaged in APP/PS1 mice, brain microglia are activated, Tau phosphorylation is exacerbated, and the number of neurons is reduced. Our results suggest for the first time that the absence of intestinal M cells might further aggravate intestinal leakage, lead to neuropathological damage, and subsequently cause the impairment of learning memory ability in AD mice. Our research highlights the impact of intestinal M cells on the intestinal barrier and AD neuropathogenesis in AD mouse model.
Collapse
Affiliation(s)
- Shijing Wu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Li Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
- Department of Histology and Embryology, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yiwei Fu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Yating Chen
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Zhibin Hu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, University College London, London, WC1E 6BT, UK.
| | - Zhou Liu
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Institute of Neurology, Department of Neurology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong, China.
| |
Collapse
|
17
|
Wiarda JE, Shircliff AL, Becker SR, Stasko JB, Sivasankaran SK, Ackermann MR, Loving CL. Conserved B cell signaling, activation, and differentiation in porcine jejunal and ileal Peyer's patches despite distinct immune landscapes. Mucosal Immunol 2024; 17:1222-1241. [PMID: 39147277 DOI: 10.1016/j.mucimm.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Peyer's patches (PPs) are B cell-rich sites of intestinal immune induction, yet PP-associated B cell signaling, activation, and differentiation are poorly defined. Single-cell and spatial transcriptomics were completed to study B cells from porcine jejunum and ileum containing PPs. Intestinal locations had distinct immune landscapes, including more follicular B cells in ileum and increased MHC-II-encoding gene expression in jejunal B cells. Despite distinct landscapes, conserved B cell dynamics were detected across intestinal locations, including B cell signaling to CD4+ macrophages that are putative phagocytic, cytotoxic, effector cells and deduced routes of B cell activation/differentiation, including resting B cells migrating into follicles to replicate/divide or differentiate into antibody-secreting cells residing in intestinal crypts. A six-biomarker panel recapitulated transcriptomics findings of B cell phenotypes, frequencies, and spatial locations via ex vivo and in situ staining. Findings convey conserved B cell dynamics across intestinal locations containing PPs, despite location-specific immune environments. Results establish a benchmark of B cell dynamics for understanding intestinal immune induction important to promoting gut/overall health.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA
| | - Adrienne L Shircliff
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sage R Becker
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, USA; Immunobiology Graduate Program, Iowa State University, Ames, IA, USA
| | - Judith B Stasko
- Microscopy Services Laboratory, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Sathesh K Sivasankaran
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA; Genome Informatics Facility, Iowa State University, Ames, IA, USA
| | - Mark R Ackermann
- Office of the Director, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service, United States Department of Agriculture, Ames, IA, USA.
| |
Collapse
|
18
|
Kim SJ, Lee HK, Kang KS, Lee MG, Shin MS. Korean Red Ginseng Polysaccharides Enhance Intestinal IgA Production and Barrier Function via Peyer's Patch Activation in Mice. Nutrients 2024; 16:3816. [PMID: 39599603 PMCID: PMC11597691 DOI: 10.3390/nu16223816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Natural products are gaining attention for their potential benefits in gastrointestinal health. Plant-derived polysaccharides are essential for boosting intestinal immunity and maintaining gut homeostasis. This study investigated the effects of Korean red ginseng polysaccharides (KRG-P) on intestinal homeostasis including IgA and SCFA production and mucosal barrier integrity. Methods: Mice were orally administered KRG-P at doses of 50 mg/kg or 200 mg/kg for 10 days. Fecal IgA levels were measured on days 3, 5, and 11 and IgA from cultured Peyer's patch cells from KRG-P-treated mice were analyzed. Additionally, mRNA and protein expression levels of α-defensin, lysozyme, and E-cadherin in the small intestine were examined. Short-chain fatty acids (SCFAs) content in the cecum was also assessed. Results: KRG-P-treated groups showed a significant increase in fecal IgA levels on days 5 and 11, with no notable change on day 3. Cultured Peyer's patch cells from mice demonstrated heightened IgA production. Additionally, KRG-P administration upregulated α-defensin and lysozyme mRNA expression, along with elevated protein expression of E-cadherin, α-defensin, and lysozyme, in the small intestine. KRG-P treatment also led to increased cecal SCFA levels, including acetate, butyrate, and propionate. Conclusions: KRG-P may promote intestinal homeostasis and host defense mechanisms by activating immune cells in Peyer's patches, stimulating IgA production, enhancing antimicrobial peptide expression, and modulating gut microbiota metabolism through increased SCFA production.
Collapse
Affiliation(s)
- Sung Jin Kim
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Hae-Kyung Lee
- Avison Biomedical Research Center, Yonsei University, Seoul 03722, Republic of Korea;
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| | - Mi-Gi Lee
- Bio-Center, Gyeonggi-do Business and Science Accelerator, Suwon 16229, Republic of Korea
| | - Myoung-Sook Shin
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.); (K.S.K.)
| |
Collapse
|
19
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowitz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. Sci Immunol 2024; 9:eado0090. [PMID: 39454027 PMCID: PMC11557871 DOI: 10.1126/sciimmunol.ado0090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 09/25/2024] [Indexed: 10/27/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high-resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. Immunoglobulin A-positive (IgA+) PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia.
Collapse
Affiliation(s)
- Francesca Cossarini
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joan Shang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-Taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ruixue Hou
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Tillowitz
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Louise Leyre
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Gastroenterology Department, Hôpital Henri Mondor, APHP, Créteil, France
| | - Gustavo Martinez-Delgado
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Arno R. Bourgonje
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Cruz
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'Souza
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Seunghee Kim-Schulze
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Akm
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Judith A. Aberg
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Benjamin K. Chen
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Douglas S. Kwon
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - Sacha Gnjatic
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandros D. Polydorides
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ivan Vujkovic-Cvijin
- F. Widjaja IBD Institute, Division of Gastroenterology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mayte Suarez-Fariñas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Orzuna-Orzuna JF, Lara-Bueno A, Gloria-Trujillo A, Mendoza-Martínez GD, Miranda-Romero LA, Hernández-García PA. Growth Performance, Dietary Energetics, Blood Metabolites, Carcass Traits, Meat Quality, and Gene Expression of Lambs Supplemented with a Polyherbal Phytogenic Additive. Vet Sci 2024; 11:520. [PMID: 39591294 PMCID: PMC11599106 DOI: 10.3390/vetsci11110520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to evaluate the effects of supplementation with a polyherbal phytogenic additive (PPA) on the productive performance, dietary energetics, blood metabolites, carcass traits, meat quality, and gene expression of finishing lambs. Thirty-six male Pelibuey lambs (23.61 ± 0.57 kg body weight (BW)) were housed in individual pens and assigned to four treatments (n = 9) with different doses of PPA: 0 (CON), 2.5 (PPAL), 5 (PPAM), and 7.5 (PPAH) g of PPA/kg of DM for 56 days. Average daily gain, dry matter intake, and observed dietary net energy for maintenance and weight gain increased linearly (p < 0.05) in lambs supplemented with PPAH. A linear reduction (p = 0.02) in FCR was detected in lambs fed PPAM and PPAH. The PPAH supplementation linearly increased (p < 0.001) Longissimus dorsi muscle area, but other carcass traits were not affected (p > 0.05) by PPA doses. The physicochemical characteristics of the meat and the hematological parameters of the lambs were not affected (p > 0.05) by the PPA doses. The glucose, uric acid, creatinine, and bilirubin serum concentrations decreased linearly (p < 0.05) in lambs supplemented with PPAM and PPAH. Gene ontology analyses showed that nine biological processes were modified (p < 0.05), including DNA replication, drug metabolism-cytochrome P450, oxidative phosphorylation, and chemical carcinogenesis-reactive oxygen species. In conclusion, high doses (7.5 g/kg DM) of PPA can improve growth performance and dietary energy utilization efficiency in finishing lambs. Likewise, gene expression analysis indicates that supplementation with high doses of PPA could improve energy production and antioxidant status in finishing lambs.
Collapse
Affiliation(s)
- José Felipe Orzuna-Orzuna
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (L.A.M.-R.)
| | - Alejandro Lara-Bueno
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (L.A.M.-R.)
| | - Adrián Gloria-Trujillo
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City CP 04960, Mexico; (A.G.-T.); (G.D.M.-M.)
| | - Germán David Mendoza-Martínez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Mexico City CP 04960, Mexico; (A.G.-T.); (G.D.M.-M.)
| | - Luis Alberto Miranda-Romero
- Departamento de Zootecnia, Universidad Autónoma Chapingo, Chapingo CP 56230, Mexico; (J.F.O.-O.); (L.A.M.-R.)
| | | |
Collapse
|
21
|
Zhang H, Hasegawa Y, Suzuki M, Zhang T, Leitner DR, Jackson RP, Waldor MK. Mouse enteric neurons control intestinal plasmacytoid dendritic cell function via serotonin-HTR7 signaling. Nat Commun 2024; 15:9237. [PMID: 39455564 PMCID: PMC11511829 DOI: 10.1038/s41467-024-53545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
Serotonergic neurons in the central nervous system control behavior and mood, but knowledge of the roles of serotonergic circuits in the regulation of immune homeostasis is limited. Here, we employ mouse genetics to investigate the functions of enteric serotonergic neurons in the control of immune responses and find that these circuits regulate IgA induction and boost host defense against oral, but not systemic Salmonella Typhimurium infection. Enteric serotonergic neurons promote gut-homing, retention and activation of intestinal plasmacytoid dendritic cells (pDC). Mechanistically, this neuro-immune crosstalk is achieved through a serotonin-5-HT receptor 7 (HTR7) signaling axis that ultimately facilitates the pDC-mediated differentiation of IgA+ B cells from IgD+ precursors in the gut. Single-cell RNA-seq data further reveal novel patterns of bidirectional communication between specific subsets of enteric neurons and lamina propria DC. Our findings thus reveal a close interplay between enteric serotonergic neurons and gut immune homeostasis that enhances mucosal defense.
Collapse
Affiliation(s)
- Hailong Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Yuko Hasegawa
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Masataka Suzuki
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ting Zhang
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Deborah R Leitner
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA
- Howard Hughes Medical Institute, Boston, MA, 02115, USA
| | - Ruaidhrí P Jackson
- Department of Immunology, Harvard Medical School, Boston, MA, 02115, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Microbiology, Harvard Medical School, Boston, MA, 02115, USA.
- Howard Hughes Medical Institute, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Cossarini F, Shang J, Krek A, Al-Taie Z, Hou R, Canales-Herrerias P, Tokuyama M, Tankelevich M, Tillowiz A, Jha D, Livanos AE, Leyre L, Uzzan M, Martinez-Delgado G, Taylor MD, Sharma K, Bourgonje AR, Cruz M, Ioannou G, Dawson T, D'Souza D, Kim-Schulze S, Akm A, Aberg JA, Chen BK, Kwon DS, Gnjatic S, Polydorides AD, Cerutti A, Argmann C, Vujkovic-Cvijin I, Suarez-Fariñas M, Petralia F, Faith JJ, Mehandru S. Gastrointestinal germinal center B cell depletion and reduction in IgA + plasma cells in HIV-1 infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.17.590425. [PMID: 38826293 PMCID: PMC11142040 DOI: 10.1101/2024.05.17.590425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Gastrointestinal (GI) B cells and plasma cells (PCs) are critical to mucosal homeostasis and the host response to HIV-1 infection. Here, high resolution mapping of human B cells and PCs sampled from the colon and ileum during both viremic and suppressed HIV-1 infection identified a reduction in germinal center (GC) B cells and follicular dendritic cells (FDCs) during HIV-1 viremia. IgA + PCs are the major cellular output of intestinal GCs and were significantly reduced during viremic HIV-1 infection. PC-associated transcriptional perturbations, including type I interferon signaling, persisted in antiretroviral therapy (ART)-treated individuals, suggesting ongoing disruption of the intestinal immune milieu during ART. GI humoral immune perturbations were associated with changes in the intestinal microbiome composition and systemic inflammation. These findings highlight a key immune defect in the GI mucosa due to HIV-1 viremia. One Sentence Summary Intestinal germinal center B cell reduction in HIV-1 infection linked to reduced IgA + plasma cells and systemic inflammation.
Collapse
|
23
|
Montiel-Armendariz A, Roe K, Lagos-Orellana J, MartinezCastro LV, Lacy-Hulbert A, Acharya M. B cell αv integrin regulates germinal center derived lung-resident IgA B cell responses following influenza virus infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.03.587969. [PMID: 39386536 PMCID: PMC11463618 DOI: 10.1101/2024.04.03.587969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Emerging studies have highlighted the importance of tissue-resident B cells in the lungs, for protective immunity against respiratory viruses. However, the mechanisms controlling generation and maintenance of such tissue-resident B cells at respiratory sites remain obscure. We have previously shown that αv integrins limit B cell responses to antigens containing Toll-like receptor ligands, and that deletion of B cell αv integrins, in mice, enhances germinal center (GC)-derived long-lived B cell responses after systemic immunization with viral antigens. Here we investigated whether αv also regulates B cell responses at the respiratory tract during viral infection. Our data show that αv integrin restricts tissue-resident B cell responses in the airway, and that deletion of B cell αv promotes generation of lung-resident IgA B cell responses following influenza A virus (IAV) infection. Investigating the mechanism for this, we found that loss of B cell αv, promotes persistence of GC reactions locally in the lungs, which leads to increases in lung-resident IgA+ memory B cells, cross-reactive to antigenic variants. Thus, these studies reveal how IgA B cells are maintained in the lungs and point to a new strategy to improve the durability of lung-resident IgA B cell responses for IAV vaccine efficacy.
Collapse
Affiliation(s)
| | - Kelsey Roe
- Seattle Children’s Research Institute, Seattle, WA
| | | | | | | | - Mridu Acharya
- Seattle Children’s Research Institute, Seattle, WA
- Department of Pediatrics, University of Washington, Seattle, WA
| |
Collapse
|
24
|
Carreto-Binaghi LE, Sztein MB, Booth JS. Role of cellular effectors in the induction and maintenance of IgA responses leading to protective immunity against enteric bacterial pathogens. Front Immunol 2024; 15:1446072. [PMID: 39324143 PMCID: PMC11422102 DOI: 10.3389/fimmu.2024.1446072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
The mucosal immune system is a critical first line of defense to infectious diseases, as many pathogens enter the body through mucosal surfaces, disrupting the balanced interactions between mucosal cells, secretory molecules, and microbiota in this challenging microenvironment. The mucosal immune system comprises of a complex and integrated network that includes the gut-associated lymphoid tissues (GALT). One of its primary responses to microbes is the secretion of IgA, whose role in the mucosa is vital for preventing pathogen colonization, invasion and spread. The mechanisms involved in these key responses include neutralization of pathogens, immune exclusion, immune modulation, and cross-protection. The generation and maintenance of high affinity IgA responses require a delicate balance of multiple components, including B and T cell interactions, innate cells, the cytokine milieu (e.g., IL-21, IL-10, TGF-β), and other factors essential for intestinal homeostasis, including the gut microbiota. In this review, we will discuss the main cellular components (e.g., T cells, innate lymphoid cells, dendritic cells) in the gut microenvironment as mediators of important effector responses and as critical players in supporting B cells in eliciting and maintaining IgA production, particularly in the context of enteric infections and vaccination in humans. Understanding the mechanisms of humoral and cellular components in protection could guide and accelerate the development of more effective mucosal vaccines and therapeutic interventions to efficiently combat mucosal infections.
Collapse
Affiliation(s)
- Laura E. Carreto-Binaghi
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Laboratorio de Inmunobiologia de la Tuberculosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City, Mexico
| | - Marcelo B. Sztein
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
- Tumor Immunology and Immunotherapy Program, University of Maryland Marlene and Stewart Greenebaum Comprehensive Cancer Center, Baltimore, MD, United States
| | - Jayaum S. Booth
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, United States
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
25
|
Kou Y, Zhang S, Chen J, Shen Y, Zhang Z, Huang H, Ma Y, Xiang Y, Liao L, Zhou J, Cheng W, Zhou Y, Yang H, Liu Z, Wei Y, Wang H, Wang Y. A mouse protozoan boosts antigen-specific mucosal IgA responses in a specific lipid metabolism- and signaling-dependent manner. Nat Commun 2024; 15:7914. [PMID: 39256385 PMCID: PMC11387640 DOI: 10.1038/s41467-024-52336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
IgA antibodies play an important role in mucosal immunity. However, there is still no effective way to consistently boost mucosal IgA responses, and the factors influencing these responses are not fully understood. We observed that colonization with the murine intestinal symbiotic protozoan Tritrichomonas musculis (T.mu) boosted antigen-specific mucosal IgA responses in wild-type C57BL/6 mice. This enhancement was attributed to the accumulation of free arachidonic acid (ARA) in the intestinal lumen, which served as a signal to stimulate the production of antigen-specific mucosal IgA. When ARA was prevented from undergoing its downstream metabolic transformation using the 5-lipoxygenase inhibitor zileuton or by blocking its downstream biological signaling through genetic deletion of the Leukotriene B4 receptor 1 (Blt1), the T.mu-mediated enhancement of antigen-specific mucosal IgA production was suppressed. Moreover, both T.mu transfer and dietary supplementation of ARA augmented the efficacy of an oral vaccine against Salmonella infection, with this effect being dependent on Blt1. Our findings elucidate a tripartite circuit linking nutrients from the diet or intestinal microbiota, host lipid metabolism, and the mucosal humoral immune response.
Collapse
Affiliation(s)
- Yanbo Kou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Shenghan Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
- Department of Central Laboratory, Xuzhou Central Hospital, Xuzhou, China
| | - Junru Chen
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yusi Shen
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Zhiwei Zhang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Haohan Huang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yulu Ma
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yaoyao Xiang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Longxiang Liao
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Junyang Zhou
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Wanpeng Cheng
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yuan Zhou
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, China
| | - Huan Yang
- Xuzhou Key Laboratory of Laboratory Diagnostics, Medical Technology School, Xuzhou Medical University, Xuzhou, China
| | - Zhuanzhuan Liu
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yanxia Wei
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Hui Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism, Xuzhou Medical University, Xuzhou, China.
- Laboratory of Infection and Immunity, Department of Pathogenic Biology and Immunology, School of Basic Medical Sciences, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
26
|
Seefeld ML, Templeton EL, Lehtinen JM, Sinclair N, Yadav D, Hartwell BL. Harnessing the potential of the NALT and BALT as targets for immunomodulation using engineering strategies to enhance mucosal uptake. Front Immunol 2024; 15:1419527. [PMID: 39286244 PMCID: PMC11403286 DOI: 10.3389/fimmu.2024.1419527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/08/2024] [Indexed: 09/19/2024] Open
Abstract
Mucosal barrier tissues and their mucosal associated lymphoid tissues (MALT) are attractive targets for vaccines and immunotherapies due to their roles in both priming and regulating adaptive immune responses. The upper and lower respiratory mucosae, in particular, possess unique properties: a vast surface area responsible for frontline protection against inhaled pathogens but also simultaneous tight regulation of homeostasis against a continuous backdrop of non-pathogenic antigen exposure. Within the upper and lower respiratory tract, the nasal and bronchial associated lymphoid tissues (NALT and BALT, respectively) are key sites where antigen-specific immune responses are orchestrated against inhaled antigens, serving as critical training grounds for adaptive immunity. Many infectious diseases are transmitted via respiratory mucosal sites, highlighting the need for vaccines that can activate resident frontline immune protection in these tissues to block infection. While traditional parenteral vaccines that are injected tend to elicit weak immunity in mucosal tissues, mucosal vaccines (i.e., that are administered intranasally) are capable of eliciting both systemic and mucosal immunity in tandem by initiating immune responses in the MALT. In contrast, administering antigen to mucosal tissues in the absence of adjuvant or costimulatory signals can instead induce antigen-specific tolerance by exploiting regulatory mechanisms inherent to MALT, holding potential for mucosal immunotherapies to treat autoimmunity. Yet despite being well motivated by mucosal biology, development of both mucosal subunit vaccines and immunotherapies has historically been plagued by poor drug delivery across mucosal barriers, resulting in weak efficacy, short-lived responses, and to-date a lack of clinical translation. Development of engineering strategies that can overcome barriers to mucosal delivery are thus critical for translation of mucosal subunit vaccines and immunotherapies. This review covers engineering strategies to enhance mucosal uptake via active targeting and passive transport mechanisms, with a parallel focus on mechanisms of immune activation and regulation in the respiratory mucosa. By combining engineering strategies for enhanced mucosal delivery with a better understanding of immune mechanisms in the NALT and BALT, we hope to illustrate the potential of these mucosal sites as targets for immunomodulation.
Collapse
Affiliation(s)
- Madison L Seefeld
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Erin L Templeton
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Justin M Lehtinen
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Noah Sinclair
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Daman Yadav
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
| | - Brittany L Hartwell
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, United States
- Center for Immunology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Siniscalco ER, Williams A, Eisenbarth SC. All roads lead to IgA: Mapping the many pathways of IgA induction in the gut. Immunol Rev 2024; 326:66-82. [PMID: 39046160 DOI: 10.1111/imr.13369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The increasing prevalence of food allergy and related pathologies in recent years has underscored the need to understand the factors affecting adverse reactions to food. Food allergy is caused when food-specific IgE triggers the release of histamine from mast cells. However, other food-specific antibody isotypes exist as well, including IgG and IgA. IgA is the main antibody isotype in the gut and mediates noninflammatory reactions to toxins, commensal bacteria, and food antigens. It has also been thought to induce tolerance to food, thus antagonizing the role of food-specific IgE. However, this has remained unclear as food-specific IgA generation is poorly understood. Particularly, the location of IgA induction, the role of T cell help, and the fates of food-specific B cells remain elusive. In this review, we outline what is known about food-specific IgA induction and highlight areas requiring further study. We also explore how knowledge of food-specific IgA induction can be informed by and subsequently contribute to our overall knowledge of gut immunity.
Collapse
Affiliation(s)
- Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Adam Williams
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
- Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Allergy and Immunology, The Department Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
28
|
Wang W, Li N, Guo X. The crosstalk between ILC3s and adaptive immunity in diseases. FEBS J 2024; 291:3965-3977. [PMID: 37994218 DOI: 10.1111/febs.17014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/26/2023] [Accepted: 11/21/2023] [Indexed: 11/24/2023]
Abstract
RORγt+ group 3 innate lymphoid cells (ILC3s), the innate counterpart of Th17 cells, are enriched in the mucosal area and lymphoid tissues. ILC3s interact with a variety of cells through their effector molecules and play an important role in the host defense against a spectrum of infections. Recent studies suggest that the extensive crosstalk between ILC3s and adaptive immune cells, especially T cells, is essential for maintaining tissue homeostasis. Here we discuss recent advances in the crosstalk between ILC3s and adaptive immune responses in multiple tissues and diseases. Understanding how ILC3s engage with adaptive immune cells will enhance our comprehension of diseases and facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Wenyan Wang
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Na Li
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| | - Xiaohuan Guo
- Institute for Immunology, Tsinghua University, Beijing, China
- Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing, China
- Beijing Key Lab for Immunological Research on Chronic Diseases, Tsinghua University, Beijing, China
| |
Collapse
|
29
|
Liu EG, Yin X, Siniscalco ER, Eisenbarth SC. Dendritic cells in food allergy, treatment, and tolerance. J Allergy Clin Immunol 2024; 154:511-522. [PMID: 38971539 PMCID: PMC11414995 DOI: 10.1016/j.jaci.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/13/2024] [Indexed: 07/08/2024]
Abstract
Food allergy is a growing problem with limited treatment options. It is important to understand the mechanisms of food tolerance and allergy to promote the development of directed therapies. Dendritic cells (DCs) are specialized antigen-presenting cells (APCs) that prime adaptive immune responses, such as those involved in the development of oral tolerance and food allergies. The DC subsets in the gut and skin are defined by their surface markers and function. The default response to an ingested innocuous antigen is oral tolerance, which requires either gut DCs or a subset of newly identified RORγt+ APCs to induce the development of gut peripheral regulatory T cells. However, DCs in the skin, gut, and lung can also promote allergic sensitization when they are activated under certain inflammatory conditions, such as with alarmin release or gut dysbiosis. DCs also play a role in the responses to the various modalities of food immunotherapy. Langerhans cells in the skin appear to be necessary for the response to epicutaneous immunotherapy. It will be important to determine which real-world stimuli activate the DCs that prime allergic sensitization and discover methods to selectively initiate a tolerogenic program in APCs.
Collapse
Affiliation(s)
- Elise G Liu
- Section of Rheumatology, Allergy and Immunology, Department of Medicine, Yale University School of Medicine, New Haven, Conn
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn
| | - Emily R Siniscalco
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill
| | - Stephanie C Eisenbarth
- Department of Immunobiology, Yale University School of Medicine, New Haven, Conn; Division of Allergy and Immunology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Ill; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, Ill.
| |
Collapse
|
30
|
Liu J, Stoler-Barak L, Hezroni-Bravyi H, Biram A, Lebon S, Davidzohn N, Kedmi M, Chemla M, Pilzer D, Cohen M, Brenner O, Biton M, Shulman Z. Turbinate-homing IgA-secreting cells originate in the nasal lymphoid tissues. Nature 2024; 632:637-646. [PMID: 39085603 DOI: 10.1038/s41586-024-07729-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024]
Abstract
Nasal vaccination elicits a humoral immune response that provides protection from airborne pathogens1, yet the origins and specific immune niches of antigen-specific IgA-secreting cells in the upper airways are unclear2. Here we define nasal glandular acinar structures and the turbinates as immunological niches that recruit IgA-secreting plasma cells from the nasal-associated lymphoid tissues (NALTs)3. Using intact organ imaging, we demonstrate that nasal vaccination induces B cell expansion in the subepithelial dome of the NALT, followed by invasion into commensal-bacteria-driven chronic germinal centres in a T cell-dependent manner. Initiation of the germinal centre response in the NALT requires pre-expansion of antigen-specific T cells, which interact with cognate B cells in interfollicular regions. NALT ablation and blockade of PSGL-1, which mediates interactions with endothelial cell selectins, demonstrated that NALT-derived IgA-expressing B cells home to the turbinate region through the circulation, where they are positioned primarily around glandular acinar structures. CCL28 expression was increased in the turbinates in response to vaccination and promoted homing of IgA+ B cells to this site. Thus, in response to nasal vaccination, the glandular acini and turbinates provide immunological niches that host NALT-derived IgA-secreting cells. These cellular events could be manipulated in vaccine design or in the treatment of upper airway allergic responses.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Liat Stoler-Barak
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Hezroni-Bravyi
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Biram
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Sacha Lebon
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Natalia Davidzohn
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Merav Kedmi
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Muriel Chemla
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - David Pilzer
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
- The Nancy & Stephen Grand Israel National Center for Personalized Medicine (G-INCPM), Weizmann Institute of Science, Rehovot, Israel
| | - Marina Cohen
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Ori Brenner
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Moshe Biton
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Shulman
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
31
|
Liu X, Li S, Wang L, Ma K. Microecological regulation in HCC therapy: Gut microbiome enhances ICI treatment. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167230. [PMID: 38734322 DOI: 10.1016/j.bbadis.2024.167230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/13/2024]
Abstract
The exploration of the complex mechanisms of cancer immunotherapy is rapidly evolving worldwide, and our focus is on the interaction of hepatocellular carcinoma (HCC) with immune checkpoint inhibitors (ICIs), particularly as it relates to the regulatory role of the gut microbiome. An important basis for the induction of immune responses in HCC is the presence of specific anti-tumor cells that can be activated and reinforced by ICIs, which is why the application of ICIs results in sustained tumor response rates in the majority of HCC patients. However, mechanisms of acquired resistance to immunotherapy in unresectable HCC result in no long-term benefit for some patients. The significant heterogeneity of inter-individual differences in the gut microbiome in response to treatment with ICIs makes it possible to target modulation of specific gut microbes to assist in augmenting checkpoint blockade therapies in HCC. This review focuses on the complex relationship between the gut microbiome, host immunity, and HCC, and emphasizes that manipulating the gut microbiome to improve response rates to cancer ICI therapy is a clinical strategy with unlimited potential.
Collapse
Affiliation(s)
- Xuliang Liu
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shiyao Li
- Department of Respiratory Medicine, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Liming Wang
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China; Engineering Research Center for New Materials and Precision Treatment Technology of Malignant Tumors Therapy, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China; Engineering Technology Research Center for Translational Medicine, The Second Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China.
| | - Kexin Ma
- Division of Hepatobiliary and Pancreatic Surgery, Department of General Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| |
Collapse
|
32
|
Gribonika I, Strömberg A, Chandode RK, Schön K, Lahl K, Bemark M, Lycke N. Migratory CD103 +CD11b + cDC2s in Peyer's patches are critical for gut IgA responses following oral immunization. Mucosal Immunol 2024; 17:509-523. [PMID: 38492746 DOI: 10.1016/j.mucimm.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Induction and regulation of specific intestinal immunoglobulin (Ig)A responses critically depend on dendritic cell (DC) subsets and the T cells they activate in the Peyer's patches (PP). We found that oral immunization with cholera toxin (CT) as an adjuvant resulted in migration-dependent changes in the composition and localization of PP DC subsets with increased numbers of cluster of differentiation (CD)103- conventional DC (cDC)2s and lysozyme-expressing DC (LysoDCs) in the subepithelial dome and of CD103+ cDC2s that expressed CD101 in the T cell zones, while oral ovalbumin (OVA) tolerization was instead associated with greater accumulation of cDC1s and peripherally induced regulatory T cells (pTregs) in this area. Decreased IgA responses were observed after CT-adjuvanted immunization in huCD207DTA mice lacking CD103+ cDC2s, while oral OVA tolerization was inefficient in cDC1-deficient Batf3-/- mice. Using OVA transgenic T cell receptor CD4 T cell adoptive transfer models, we found that co-transferred endogenous wildtype CD4 T cells can hinder the induction of OVA-specific IgA responses through secretion of interleukin-10. CT could overcome this blocking effect, apparently through a modulating effect on pTregs while promoting an expansion of follicular helper T cells. The data support a model where cDC1-induced pTreg normally suppresses PP responses for any given antigen and where CT's oral adjuvanticity effect is dependent on promoting follicular helper T cell responses through induction of CD103+ cDC2s.
Collapse
Affiliation(s)
- Inta Gribonika
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| | - Anneli Strömberg
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Rakesh K Chandode
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Katharina Lahl
- Immunology Section, Lund University, Lund, Sweden; Calvin, Phoebe and Joan Snyder Institute for Chronic Diseases, University of Calgary, Calgary, Alberta, Canada; Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada; Section for Experimental and Translational Immunology, Institute for Health Technology, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Translational Medicine - Human Immunology, Lund University, Malmö, Sweden.
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
33
|
Tian K, Jing D, Lan J, Lv M, Wang T. Commensal microbiome and gastrointestinal mucosal immunity: Harmony and conflict with our closest neighbor. Immun Inflamm Dis 2024; 12:e1316. [PMID: 39023417 PMCID: PMC11256888 DOI: 10.1002/iid3.1316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/06/2024] [Accepted: 06/03/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND The gastrointestinal tract contains a wide range of microorganisms that have evolved alongside the immune system of the host. The intestinal mucosa maintains balance within the intestines by utilizing the mucosal immune system, which is controlled by the complex gut mucosal immune network. OBJECTIVE This review aims to comprehensively introduce current knowledge of the gut mucosal immune system, focusing on its interaction with commensal bacteria. RESULTS The gut mucosal immune network includes gut-associated lymphoid tissue, mucosal immune cells, cytokines, and chemokines. The connection between microbiota and the immune system occurs through the engagement of bacterial components with pattern recognition receptors found in the intestinal epithelium and antigen-presenting cells. This interaction leads to the activation of both innate and adaptive immune responses. The interaction between the microbial community and the host is vital for maintaining the balance and health of the host's mucosal system. CONCLUSION The gut mucosal immune network maintains a delicate equilibrium between active immunity, which defends against infections and damaging non-self antigens, and immunological tolerance, which allows for the presence of commensal microbiota and dietary antigens. This balance is crucial for the maintenance of intestinal health and homeostasis. Disturbance of gut homeostasis leads to enduring or severe gastrointestinal ailments, such as colorectal cancer and inflammatory bowel disease. Utilizing these factors can aid in the development of cutting-edge mucosal vaccines that have the ability to elicit strong protective immune responses at the primary sites of pathogen invasion.
Collapse
Affiliation(s)
- Kexin Tian
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Dehong Jing
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Junzhe Lan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| | - Mingming Lv
- Department of BreastWomen's Hospital of Nanjing Medical University, Nanjing Maternity, and Child Health Care HospitalNanjingChina
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical SchoolNanjing UniversityNanjingChina
| |
Collapse
|
34
|
Liu Y, Zhang J, Yang G, Tang C, Li X, Lu L, Long K, Sun J, Ding Y, Li X, Li M, Ge L, Ma J. Effects of the commensal microbiota on spleen and mesenteric lymph node immune function: investigation in a germ-free piglet model. Front Microbiol 2024; 15:1398631. [PMID: 38933022 PMCID: PMC11201156 DOI: 10.3389/fmicb.2024.1398631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Commensal microbial-host interaction is crucial for host metabolism, growth, development, and immunity. However, research on microbial-host immunity in large animal models has been limited. This study was conducted to investigate the effects of the commensal microbiota on immune function in two model groups: germ-free (GF) and specific-pathogen-free (SPF) piglets. The weight and organ index of the spleen of the GF piglet were larger than those in the SPF piglet (P < 0.05). The histological structure of the red pulp area and mean area of germinal centers were larger in the SPF piglet than in the GF piglet (P < 0.05), whereas the areas of staining of B cells and T cells in the spleen and mesenteric lymph nodes (MLNs) were lower in the GF piglet (P < 0.05). We identified immune-related genes in the spleen and MLNs using RNA sequencing, and used real-time quantitative PCR to analyze the expression of core genes identified in gene set enrichment analysis. The expression levels of genes in the transforming growth factor-β/SMAD3 signaling pathway, Toll-like receptor 2/MyD88/nuclear factor-κB signaling pathway, and pro-inflammatory factor genes IL-6 and TNF-α in the spleen and MLNs were higher in the SPF piglet and in splenic lymphocytes compared with those in the GF and control group, respectively, under treatment with acetic acid, propionic acid, butyric acid, lipopolysaccharide (LPS), or concanavalin A (ConA). The abundances of plasma cells, CD8++ T cells, follicular helper T cells, and resting natural killer cells in the spleen and MLNs were significantly greater in the SPF piglet than in the GF piglet (P < 0.05). In conclusion, the commensal microbiota influenced the immune tissue structure, abundances of immune cells, and expression of immune-related pathways, indicating the importance of the commensal microbiota for spleen and MLNs development and function. In our study, GF piglet was used as the research model, eliminating the interference of microbiota in the experiment, and providing a suitable and efficient large animal research model for exploring the mechanism of "microbial-host" interactions.
Collapse
Affiliation(s)
- Yan Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Guitao Yang
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Chuang Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xiaokai Li
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Lu Lu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Keren Long
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Yuchun Ding
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Xuewei Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing, China
- National Center of Technology Innovation for Pigs, Chongqing, China
- Ministry of Agriculture Key Laboratory of Pig Industry Sciences, Chongqing Key Laboratory of Pig Industry Sciences, Chongqing, China
| | - Jideng Ma
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- Chongqing Academy of Animal Sciences, Chongqing, China
| |
Collapse
|
35
|
Zhang B, Chen S, Yin X, McBride CD, Gertie JA, Yurieva M, Bielecka AA, Hoffmann B, Travis Hinson J, Grassmann J, Xu L, Siniscalco ER, Soldatenko A, Hoyt L, Joseph J, Norton EB, Uthaman G, Palm NW, Liu E, Eisenbarth SC, Williams A. Metabolic fitness of IgA + plasma cells in the gut requires DOCK8. Mucosal Immunol 2024; 17:431-449. [PMID: 38159726 PMCID: PMC11571232 DOI: 10.1016/j.mucimm.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024]
Abstract
Dedicator of cytokinesis 8 (DOCK8) mutations lead to a primary immunodeficiency associated with recurrent gastrointestinal infections and poor antibody responses but, paradoxically, heightened IgE to food antigens, suggesting that DOCK8 is central to immune homeostasis in the gut. Using Dock8-deficient mice, we found that DOCK8 was necessary for mucosal IgA production to multiple T cell-dependent antigens, including peanut and cholera toxin. Yet DOCK8 was not necessary in T cells for this phenotype. Instead, B cell-intrinsic DOCK8 was required for maintenance of antigen-specific IgA-secreting plasma cells (PCs) in the gut lamina propria. Unexpectedly, DOCK8 was not required for early B cell activation, migration, or IgA class switching. An unbiased interactome screen revealed novel protein partners involved in metabolism and apoptosis. Dock8-deficient IgA+ B cells had impaired cellular respiration and failed to engage glycolysis appropriately. These results demonstrate that maintenance of the IgA+ PC compartment requires DOCK8 and suggest that gut IgA+ PCs have unique metabolic requirements for long-term survival in the lamina propria.
Collapse
Affiliation(s)
- Biyan Zhang
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Singapore Immunology Network (SIgN), Agency for Science, Technology, and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Shuting Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xiangyun Yin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Caleb D McBride
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jake A Gertie
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Marina Yurieva
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Agata A Bielecka
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Microbial Immunoregulation, Helmholtz Center for Infection Research, 38124 Braunschweig, Germany
| | - Brian Hoffmann
- Mass Spectrometry and Protein Chemistry, The Jackson Laboratory for Genomic Medicine, Bar Harbor, ME 04609, USA
| | - J Travis Hinson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Cardiology center, Department of Medicine, UConn Health, Farmington, CT, USA
| | - Jessica Grassmann
- The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA
| | - Lan Xu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Emily R Siniscalco
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Arielle Soldatenko
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Laura Hoyt
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Julie Joseph
- Department of Laboratory Medicine, USA; Department of Microbiology and Immunology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Elizabeth B Norton
- Department of Microbiology & Immunology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Gowthaman Uthaman
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Noah W Palm
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Elise Liu
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Section of Rheumatology, Allergy & Immunology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Adam Williams
- The Department Medicine, Division of Allergy and Immunology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030, USA; Center for Human Immunobiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
36
|
Lu ZF, Hsu CY, Younis NK, Mustafa MA, Matveeva EA, Al-Juboory YHO, Adil M, Athab ZH, Abdulraheem MN. Exploring the significance of microbiota metabolites in rheumatoid arthritis: uncovering their contribution from disease development to biomarker potential. APMIS 2024; 132:382-415. [PMID: 38469726 DOI: 10.1111/apm.13401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/27/2024] [Indexed: 03/13/2024]
Abstract
Rheumatoid arthritis (RA) is a multifaceted autoimmune disorder characterized by chronic inflammation and joint destruction. Recent research has elucidated the intricate interplay between gut microbiota and RA pathogenesis, underscoring the role of microbiota-derived metabolites as pivotal contributors to disease development and progression. The human gut microbiota, comprising a vast array of microorganisms and their metabolic byproducts, plays a crucial role in maintaining immune homeostasis. Dysbiosis of this microbial community has been linked to numerous autoimmune disorders, including RA. Microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), tryptophan derivatives, Trimethylamine-N-oxide (TMAO), bile acids, peptidoglycan, and lipopolysaccharide (LPS), exhibit immunomodulatory properties that can either exacerbate or ameliorate inflammation in RA. Mechanistically, these metabolites influence immune cell differentiation, cytokine production, and gut barrier integrity, collectively shaping the autoimmune milieu. This review highlights recent advances in understanding the intricate crosstalk between microbiota metabolites and RA pathogenesis and also discusses the potential of specific metabolites to trigger or suppress autoimmunity, shedding light on their molecular interactions with immune cells and signaling pathways. Additionally, this review explores the translational aspects of microbiota metabolites as diagnostic and prognostic tools in RA. Furthermore, the challenges and prospects of translating these findings into clinical practice are critically examined.
Collapse
Affiliation(s)
- Zi-Feng Lu
- Heilongjiang Beidahuang Group General Hospital, Heilongjiang, China
| | - Chou-Yi Hsu
- Department of Pharmacy, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | | | - Mohammed Ahmed Mustafa
- Department of Medical Laboratory Technology, University of Imam Jaafar AL-Sadiq, Kirkuk, Iraq
| | - Elena A Matveeva
- Department of Orthopaedic Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Mohaned Adil
- Pharmacy College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
37
|
Wang C, Lu Y, Yu H, Zhang Y, Savelkoul HFJ, Jansen CA, Liu G. TLR9 mediates IgA production in the porcine small intestine during PEDV infection. Vet Microbiol 2024; 293:110096. [PMID: 38636174 DOI: 10.1016/j.vetmic.2024.110096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/11/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
IgA plays a vital role in defending against the infectious pathogens. However, the specific regulatory pathways involved in IgA secretion in the context of PEDV infection have remained elusive. Therefore, in this study, we explore the molecular mechanisms underlying IgA secretion in response to infection, with a particular focus on PEDV, a devastating enteric virus affecting global swine production. Our investigation begins by examining changes in IgA concentrations in both serum and small intestinal contents following PEDV infection in 2- and 4-week-old pigs. Remarkably, a significant increase in IgA levels in these older pigs post-infection were observed. To delve deeper into the regulatory mechanisms governing IgA secretion in response to PEDV infection, isolated porcine intestinal B cells were co-cultured with monocytes derived DCs (Mo-DCs) in vitro. In the intestinal DC-B cell co-cultures, IgA secretion was found to increase significantly after PEDV infection, as well as upregulating the expression of AID, GLTα and PSTα reflecting isotype switching to IgA. In addition, the expression of TLR9 was upregulated in these cultures, as determined by RT-qPCR and western blotting. Moreover, our findings extend to in vivo observations, where we detected higher levels of TLR9 expression in the ileum of pig post PEDV infection. Collectively, our results highlight the ability of PEDV to stimulate the generation of IgA, particularly in elder pigs, and identify TLR9 as a critical mediator of IgA production within the porcine intestinal microenvironment during PEDV infection.
Collapse
Affiliation(s)
- Caiying Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China; Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Yabin Lu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, China
| | - Haoyuan Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yue Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Huub F J Savelkoul
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Christine A Jansen
- Cell Biology and Immunology Group, Wageningen University and Research, Wageningen, the Netherlands
| | - Guangliang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.
| |
Collapse
|
38
|
Del Castillo D, Lo DD. Deciphering the M-cell niche: insights from mouse models on how microfold cells "know" where they are needed. Front Immunol 2024; 15:1400739. [PMID: 38863701 PMCID: PMC11165056 DOI: 10.3389/fimmu.2024.1400739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024] Open
Abstract
Known for their distinct antigen-sampling abilities, microfold cells, or M cells, have been well characterized in the gut and other mucosa including the lungs and nasal-associated lymphoid tissue (NALT). More recently, however, they have been identified in tissues where they were not initially suspected to reside, which raises the following question: what external and internal factors dictate differentiation toward this specific role? In this discussion, we will focus on murine studies to determine how these cells are identified (e.g., markers and function) and ask the broader question of factors triggering M-cell localization and patterning. Then, through the consideration of unconventional M cells, which include villous M cells, Type II taste cells, and medullary thymic epithelial M cells (microfold mTECs), we will establish the M cell as not just a player in mucosal immunity but as a versatile niche cell that adapts to its home tissue. To this end, we will consider the lymphoid structure relationship and apical stimuli to better discuss how the differing cellular programming and the physical environment within each tissue yield these cells and their unique organization. Thus, by exploring this constellation of M cells, we hope to better understand the multifaceted nature of this cell in its different anatomical locales.
Collapse
Affiliation(s)
| | - David D. Lo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, CA, United States
| |
Collapse
|
39
|
Tuz AA, Ghosh S, Karsch L, Ttoouli D, Sata SP, Ulusoy Ö, Kraus A, Hoerenbaum N, Wolf JN, Lohmann S, Zwirnlein F, Kaygusuz V, Lakovic V, Tummes HL, Beer A, Gallert M, Thiebes S, Qefalia A, Cibir Z, Antler M, Korste S, Haj Yehia E, Michel L, Rassaf T, Kaltwasser B, Abdelrahman H, Mohamud Yusuf A, Wang C, Yin D, Haeusler L, Lueong S, Richter M, Engel DR, Stenzel M, Soehnlein O, Frank B, Solo-Nomenjanahary M, Ho-Tin-Noé B, Siveke JT, Totzeck M, Hoffmann D, Grüneboom A, Hagemann N, Hasenberg A, Desilles JP, Mazighi M, Sickmann A, Chen J, Hermann DM, Gunzer M, Singh V. Stroke and myocardial infarction induce neutrophil extracellular trap release disrupting lymphoid organ structure and immunoglobulin secretion. NATURE CARDIOVASCULAR RESEARCH 2024; 3:525-540. [PMID: 39195931 PMCID: PMC11358010 DOI: 10.1038/s44161-024-00462-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/12/2024] [Indexed: 08/29/2024]
Abstract
Post-injury dysfunction of humoral immunity accounts for infections and poor outcomes in cardiovascular diseases. Among immunoglobulins (Ig), IgA, the most abundant mucosal antibody, is produced by plasma B cells in intestinal Peyer's patches (PP) and lamina propria. Here we show that patients with stroke and myocardial ischemia (MI) had strongly reduced IgA blood levels. This was phenocopied in experimental mouse models where decreased plasma and fecal IgA were accompanied by rapid loss of IgA-producing plasma cells in PP and lamina propria. Reduced plasma IgG was detectable in patients and experimental mice 3-10 d after injury. Stroke/MI triggered the release of neutrophil extracellular traps (NETs). Depletion of neutrophils, NET degradation or blockade of NET release inhibited the loss of IgA+ cells and circulating IgA in experimental stroke and MI and in patients with stroke. Our results unveil how tissue-injury-triggered systemic NET release disrupts physiological Ig secretion and how this can be inhibited in patients.
Collapse
Affiliation(s)
- Ali A Tuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Susmita Ghosh
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Laura Karsch
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dimitris Ttoouli
- Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Sai P Sata
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Özgür Ulusoy
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Andreas Kraus
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Nils Hoerenbaum
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jan-Niklas Wolf
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sabrina Lohmann
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Franziska Zwirnlein
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Viola Kaygusuz
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Vivian Lakovic
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hannah-Lea Tummes
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Alexander Beer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Markus Gallert
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Stephanie Thiebes
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Altea Qefalia
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Zülal Cibir
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Medina Antler
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Sebastian Korste
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Elias Haj Yehia
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lars Michel
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Britta Kaltwasser
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Hossam Abdelrahman
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Ayan Mohamud Yusuf
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Chen Wang
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Dongpei Yin
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Lars Haeusler
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Smiths Lueong
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mathis Richter
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Universität Münster, Münster, Germany
| | - Daniel R Engel
- Department of Immunodynamics, Institute of Experimental Immunology and Imaging, University Hospital Essen, Essen, Germany
| | - Martin Stenzel
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Oliver Soehnlein
- Institute for Experimental Pathology (ExPat), Center for Molecular Biology of Inflammation (ZMBE), Universität Münster, Münster, Germany
| | - Benedikt Frank
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Mialitiana Solo-Nomenjanahary
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Benoît Ho-Tin-Noé
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
| | - Jens T Siveke
- Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK, partner site Essen), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology (ZMB), University of Duisburg-Essen, Essen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Nina Hagemann
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Anja Hasenberg
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Jean-Philippe Desilles
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Mikael Mazighi
- Optimisation Thérapeutique en Neuropsychopharmacologie, Université Paris Cité, U1144 Institut National de la Santé et de la Recherche Médicale (INSERM), Paris, France
- Interventional Neuroradiology Department and Biological Resources Center, Rothschild Foundation Hospital, Paris, France
| | - Albert Sickmann
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
- Medizinisches Proteom-Center, Ruhr-Universität Bochum, Bochum, Germany
- Department of Chemistry, College of Physical Sciences, University of Aberdeen, Aberdeen, UK
| | - Jianxu Chen
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany
| | - Dirk M Hermann
- Department of Neurology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Matthias Gunzer
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
- Leibniz-Institut für Analytische Wissenschaften - ISAS-e.V., Dortmund, Germany.
| | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Hospital, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
40
|
Neutrophil extracellular traps trigger IgA loss after stroke and myocardial infarction. NATURE CARDIOVASCULAR RESEARCH 2024; 3:496-497. [PMID: 39195933 DOI: 10.1038/s44161-024-00465-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
|
41
|
Lindeman I, Høydahl LS, Christophersen A, Risnes LF, Jahnsen J, Lundin KEA, Sollid LM, Iversen R. Generation of circulating autoreactive pre-plasma cells fueled by naive B cells in celiac disease. Cell Rep 2024; 43:114045. [PMID: 38578826 DOI: 10.1016/j.celrep.2024.114045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/22/2024] [Accepted: 03/19/2024] [Indexed: 04/07/2024] Open
Abstract
Autoantibodies against the enzyme transglutaminase 2 (TG2) are characteristic of celiac disease (CeD), and TG2-specific immunoglobulin (Ig) A plasma cells are abundant in gut biopsies of patients. Here, we describe the corresponding population of autoreactive B cells in blood. Circulating TG2-specific IgA cells are present in untreated patients on a gluten-containing diet but not in controls. They are clonally related to TG2-specific small intestinal plasma cells, and they express gut-homing molecules, indicating that they are plasma cell precursors. Unlike other IgA-switched cells, the TG2-specific cells are negative for CD27, placing them in the double-negative (IgD-CD27-) category. They have a plasmablast or activated memory B cell phenotype, and they harbor fewer variable region mutations than other IgA cells. Based on their similarity to naive B cells, we propose that autoreactive IgA cells in CeD are generated mainly through chronic recruitment of naive B cells via an extrafollicular response involving gluten-specific CD4+ T cells.
Collapse
Affiliation(s)
- Ida Lindeman
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Lene S Høydahl
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Asbjørn Christophersen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Louise F Risnes
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Jørgen Jahnsen
- Department of Gastroenterology, Akershus University Hospital, Lørenskog, Norway
| | - Knut E A Lundin
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Gastroenterology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Ludvig M Sollid
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway
| | - Rasmus Iversen
- Norwegian Coeliac Disease Research Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Immunology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| |
Collapse
|
42
|
Canales-Herrerias P, Uzzan M, Seki A, Czepielewski RS, Verstockt B, Livanos AE, Raso F, Dunn A, Dai D, Wang A, Al-taie Z, Martin J, Laurent T, Ko HM, Tokuyama M, Tankelevich M, Meringer H, Cossarini F, Jha D, Krek A, Paulsen JD, Taylor MD, Nakadar MZ, Wong J, Erlich EC, Mintz RL, Onufer EJ, Helmink BA, Sharma K, Rosenstein A, Ganjian D, Chung G, Dawson T, Juarez J, Yajnik V, Cerutti A, Faith JJ, Suarez-Farinas M, Argmann C, Petralia F, Randolph GJ, Polydorides AD, Reboldi A, Colombel JF, Mehandru S. Gut-associated lymphoid tissue attrition associates with response to anti-α4β7 therapy in ulcerative colitis. Sci Immunol 2024; 9:eadg7549. [PMID: 38640252 PMCID: PMC11140591 DOI: 10.1126/sciimmunol.adg7549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/20/2024] [Indexed: 04/21/2024]
Abstract
Vedolizumab (VDZ) is a first-line treatment in ulcerative colitis (UC) that targets the α4β7- mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) axis. To determine the mechanisms of action of VDZ, we examined five distinct cohorts of patients with UC. A decrease in naïve B and T cells in the intestines and gut-homing (β7+) plasmablasts in circulation of VDZ-treated patients suggested that VDZ targets gut-associated lymphoid tissue (GALT). Anti-α4β7 blockade in wild-type and photoconvertible (KikGR) mice confirmed a loss of GALT size and cellularity because of impaired cellular entry. In VDZ-treated patients with UC, treatment responders demonstrated reduced intestinal lymphoid aggregate size and follicle organization and a reduction of β7+IgG+ plasmablasts in circulation, as well as IgG+ plasma cells and FcγR-dependent signaling in the intestine. GALT targeting represents a previously unappreciated mechanism of action of α4β7-targeted therapies, with major implications for this therapeutic paradigm in UC.
Collapse
Affiliation(s)
- Pablo Canales-Herrerias
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathieu Uzzan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Paris Est Créteil University UPEC, Assistance Publique-Hôpitaux de Paris (AP-HP), Henri Mondor Hospital, Gastroenterology Department, Fédération Hospitalo–Universitaire TRUE (InnovaTive theRapy for immUne disordErs), Créteil F-94010, France
| | - Akihiro Seki
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Bram Verstockt
- Department of Gastroenterology and Hepatology, University Hospitals Leuven, Leuven, Belgium
- Translational Research in Gastrointestinal Disorders, Department of Chronic Diseases and Metabolism, KU Leuven, Leuven, Belgium
| | - Alexandra E. Livanos
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fiona Raso
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Dunn
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Dai
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew Wang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zainab Al-taie
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jerome Martin
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’immunologie, CIMNA, Nantes, France
| | - Thomas Laurent
- Nantes Université, CHU Nantes, Inserm, Centre de Recherche Translationelle en Transplantation et Immunologie, UMR 1064, Nantes, France
- CHU Nantes, Nantes Université, Laboratoire d’immunologie, CIMNA, Nantes, France
| | - Huaibin M. Ko
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minami Tokuyama
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michael Tankelevich
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadar Meringer
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Cossarini
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Divya Jha
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John D. Paulsen
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D. Taylor
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mohammad Zuber Nakadar
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Wong
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma C. Erlich
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L. Mintz
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Emily J. Onufer
- Division of Pediatric Surgery, Department of Surgery, St. Louis Children's Hospital, Washington University in St. Louis School of Medicine, St. Louis, MO, USA
| | - Beth A. Helmink
- Department of Surgery, Section of Surgical Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Keshav Sharma
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam Rosenstein
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle Ganjian
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Grace Chung
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | - Andrea Cerutti
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Translational Clinical Research Program, Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeremiah J. Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mayte Suarez-Farinas
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen Argmann
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gwendalyn J. Randolph
- Department of Pathology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexandros D. Polydorides
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrea Reboldi
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jean-Frederic Colombel
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Saurabh Mehandru
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Bemark M, Pitcher MJ, Dionisi C, Spencer J. Gut-associated lymphoid tissue: a microbiota-driven hub of B cell immunity. Trends Immunol 2024; 45:211-223. [PMID: 38402045 PMCID: PMC11227984 DOI: 10.1016/j.it.2024.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/26/2024]
Abstract
The diverse gut microbiota, which is associated with mucosal health and general wellbeing, maintains gut-associated lymphoid tissues (GALT) in a chronically activated state, including sustainment of germinal centers in a context of high antigenic load. This influences the rules for B cell engagement with antigen and the potential consequences. Recent data have highlighted differences between GALT and other lymphoid tissues. For example, GALT propagates IgA responses against glycans that show signs of having been generated in germinal centers. Other findings suggest that humans are among those species where GALT supports the diversification, propagation, and possibly selection of systemic B cells. Here, we review novel findings that identify GALT as distinctive, and able to support these processes.
Collapse
Affiliation(s)
- Mats Bemark
- Department of Translational Medicine - Human Immunology, Lund University, J Waldenströms gata 35, Malmö, Sweden; Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Michael J Pitcher
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Chiara Dionisi
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK
| | - Jo Spencer
- Peter Gorer Department of Immunobiology, King's College London, Guy's Hospital Campus, St Thomas' Street, London SE1 9RT, UK.
| |
Collapse
|
44
|
De Giovanni M, Vykunta VS, Biram A, Chen KY, Taglinao H, An J, Sheppard D, Paidassi H, Cyster JG. Mast cells help organize the Peyer's patch niche for induction of IgA responses. Sci Immunol 2024; 9:eadj7363. [PMID: 38427721 PMCID: PMC11008922 DOI: 10.1126/sciimmunol.adj7363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 01/23/2024] [Indexed: 03/03/2024]
Abstract
Peyer's patches (PPs) are lymphoid structures situated adjacent to the intestinal epithelium that support B cell responses that give rise to many intestinal IgA-secreting cells. Induction of isotype switching to IgA in PPs requires interactions between B cells and TGFβ-activating conventional dendritic cells type 2 (cDC2s) in the subepithelial dome (SED). However, the mechanisms promoting cDC2 positioning in the SED are unclear. Here, we found that PP cDC2s express GPR35, a receptor that promotes cell migration in response to various metabolites, including 5-hydroxyindoleacetic acid (5-HIAA). In mice lacking GPR35, fewer cDC2s were found in the SED, and frequencies of IgA+ germinal center (GC) B cells were reduced. IgA plasma cells were reduced in both the PPs and lamina propria. These phenotypes were also observed in chimeric mice that lacked GPR35 selectively in cDCs. GPR35 deficiency led to reduced coating of commensal bacteria with IgA and reduced IgA responses to cholera toxin. Mast cells were present in the SED, and mast cell-deficient mice had reduced PP cDC2s and IgA+ cells. Ablation of tryptophan hydroxylase 1 (Tph1) in mast cells to prevent their production of 5-HIAA similarly led to reduced PP cDC2s and IgA responses. Thus, mast cell-guided positioning of GPR35+ cDC2s in the PP SED supports induction of intestinal IgA responses.
Collapse
Affiliation(s)
- Marco De Giovanni
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Vivasvan S. Vykunta
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Adi Biram
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Kevin Y. Chen
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
- Medical Scientist Training Program, School of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Hanna Taglinao
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jinping An
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Dean Sheppard
- Lung Biology Center, Department of Medicine, University of California San Francisco, 1550 4 Street, San Francisco, CA 94158, USA
| | - Helena Paidassi
- CIRI, Centre International de Recherche en Infectiologie, Univ Lyon, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, France
| | - Jason G. Cyster
- Howard Hughes Medical Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
45
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
46
|
Abstract
Recent advances in studies of immune memory in mice and humans have reinforced the concept that memory B cells play a critical role in protection against repeated infections, particularly from variant viruses. Hence, insights into the development of high-quality memory B cells that can generate broadly neutralizing antibodies that bind such variants are key for successful vaccine development. Here, we review the cellular and molecular mechanisms by which memory B cells are generated and how these processes shape the antibody diversity and breadth of memory B cells. Then, we discuss the mechanisms of memory B cell reactivation in the context of established immune memory; the contribution of antibody feedback to this process has now begun to be reappreciated.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.
- Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan.
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS), Kanagawa, Japan.
| |
Collapse
|
47
|
Huang Y, Sun X, Nie G, Xu H, Zou M. Follicular Helper T Cells in Peyer's Patches and Galactose- Deficient Iga1 Contribute to Iga Nephropathy. Curr Mol Med 2024; 24:1033-1044. [PMID: 37475555 DOI: 10.2174/1566524023666230720112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND Common primary glomerulonephritis with aberrant mucosal immunity is IgA nephropathy (IgAN). T follicular helper (TFH) cells are essential in regulating B cell differentiation. Peyer's patches (PPs) are the main site where IgA+ plasmablasts differentiate. OBJECTIVE Our study aimed to investigate the TFH cell's potential contribution to the etiology of IgA nephropathy. METHODS In PPs from IgAN mouse models, the ratio of the TFH cell, B220+IgA+, B220+IgM+, and B220-IgA+ lymphocytes were assessed. Then, we used Western blot to assess the expression of Bcl-6, Blimp- 1, and IL-21 proteins in PPs and used RTPCR to assess the expression of IL-21 and TGF-β1 mRNA. TFH cells coculture with spleen cells to measure the degree of IL-21 and the ratio of activation marker CD69 on the TFH cells. Naive B cells (CD27-IgD+) from children suffering from IgAN were cultured with TFH cell-related cytokines. The supernatant was detected to assess the excretion of galactose-deficient IgA1 (Gd-IgA1). RESULTS IgAN mice developed noticeably increased degrees of IL-21 and CD69 on TFH cells than controls did, as well as higher percentages of B220+IgA+, B220+IgM+, B220+IgA+, TGF- β1, and IL-21 mRNA and Bcl-6, IL-21 proteins in PPs. The Gd-IgA1 level in the supernatant and IgAN- positive children's serum were noticeably higher than those of the healthy controls (P < 0.05). PPs provide the microenvironment to induce the production of IgA-secreting plasmablasts. CONCLUSION TFH cells may be a key moderator to induce B cell differentiation into IgAsecreting plasmablasts and produce Gd-IgA1, which plays a significant part in IgAN's pathogenesis. It could be a new therapeutic target in the future.
Collapse
Affiliation(s)
- Yuye Huang
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Xunling Sun
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Guoming Nie
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Hongtao Xu
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| | - Minshu Zou
- Department of Pediatrics, General Hospital of Central Theater Command, No. 627, Wuluo Road, Wuhan 430030, Hubei Province, P.R. China
| |
Collapse
|
48
|
Abstract
For our immune system to contain or eliminate malignant solid tumours, both myeloid and lymphoid haematopoietic cells must not only extravasate from the bloodstream into the tumour tissue but also further migrate to various specialized niches of the tumour microenvironment to functionally interact with each other, with non-haematopoietic stromal cells and, ultimately, with cancer cells. These interactions regulate local immune cell survival, proliferative expansion, differentiation and their execution of pro-tumour or antitumour effector functions, which collectively determine the outcome of spontaneous or therapeutically induced antitumour immune responses. None of these interactions occur randomly but are orchestrated and critically depend on migratory guidance cues provided by chemokines, a large family of chemotactic cytokines, and their receptors. Understanding the functional organization of the tumour immune microenvironment inevitably requires knowledge of the multifaceted roles of chemokines in the recruitment and positioning of its cellular constituents. Gaining such knowledge will not only generate new insights into the mechanisms underlying antitumour immunity or immune tolerance but also inform the development of biomarkers (or 'biopatterns') based on spatial tumour tissue analyses, as well as novel strategies to therapeutically engineer immune responses in patients with cancer. Here we will discuss recent observations on the role of chemokines in the tumour microenvironment in the context of our knowledge of their physiological functions in development, homeostasis and antimicrobial responses.
Collapse
Affiliation(s)
- Thorsten R Mempel
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Julia K Lill
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Lukas M Altenburger
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Budeus B, Kibler A, Küppers R. Human IgM-expressing memory B cells. Front Immunol 2023; 14:1308378. [PMID: 38143767 PMCID: PMC10748387 DOI: 10.3389/fimmu.2023.1308378] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
A hallmark of T cell dependent (TD) humoral immune responses is the generation of long-lived memory B cells. The generation of these cells occurs primarily in the germinal center (GC) reaction, where antigen-activated B cells undergo affinity maturation as a major consequence of the combined processes of proliferation, somatic hypermutation of their immunoglobulin V (IgV) region genes, and selection for improved affinity of their B-cell antigen receptors. As many B cells also undergo class-switching to IgG or IgA in these TD responses, there was traditionally a focus on class-switched memory B cells in both murine and human studies on memory B cells. However, it has become clear that there is also a large subset of IgM-expressing memory B cells, which have important phenotypic and functional similarities but also differences to class-switched memory B cells. There is an ongoing discussion about the origin of distinct subsets of human IgM+ B cells with somatically mutated IgV genes. We argue here that the vast majority of human IgM-expressing B cells with somatically mutated IgV genes in adults is indeed derived from GC reactions, even though a generation of some mostly lowly mutated IgM+ B cells from other differentiation pathways, mainly in early life, may exist.
Collapse
Affiliation(s)
| | | | - Ralf Küppers
- Institute of Cell Biology (Cancer Research), Medical Faculty, University of Duisburg–Essen, Essen, Germany
| |
Collapse
|
50
|
Neziraj T, Siewert L, Pössnecker E, Pröbstel AK. Therapeutic targeting of gut-originating regulatory B cells in neuroinflammatory diseases. Eur J Immunol 2023; 53:e2250033. [PMID: 37624875 DOI: 10.1002/eji.202250033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/29/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
Regulatory B cells (Bregs) are immunosuppressive cells that support immunological tolerance by the production of IL-10, IL-35, and TGF-β. Bregs arise from different developmental stages in response to inflammatory stimuli. In that regard, mounting evidence points towards a direct influence of gut microbiota on mucosal B cell development, activation, and regulation in health and disease. While an increasing number of diseases are associated with alterations in gut microbiome (dysbiosis), little is known about the role of microbiota on Breg development and induction in neuroinflammatory disorders. Notably, gut-originating, IL-10- and IgA-producing regulatory plasma cells have recently been demonstrated to egress from the gut to suppress inflammation in the CNS raising fundamental questions about the triggers and functions of mucosal-originating Bregs in systemic inflammation. Advancing our understanding of Bregs in neuroinflammatory diseases could lead to novel therapeutic approaches. Here, we summarize the main aspects of Breg differentiation and functions and evidence about their involvement in neuroinflammatory diseases. Further, we highlight current data of gut-originating Bregs and their microbial interactions and discuss future microbiota-regulatory B cell-targeted therapies in immune-mediated diseases.
Collapse
Affiliation(s)
- Tradite Neziraj
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Lena Siewert
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Elisabeth Pössnecker
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| | - Anne-Katrin Pröbstel
- Department of Neurology, University Hospital of Basel and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital of Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital of Basel and University of Basel, Basel, Switzerland
| |
Collapse
|