1
|
Yu Y, Zhang L, Wang B, Zhao J, Han K, Qi Y, Li J, Wang X, Sun B, Zhang J, Cao J, Ma B, Peng X, Cao J, Ke Y, Wang W. Synergistic π-Tunnel Clamps in β-Sheets for Long-Range Dry-State Conduction: Toward Neural Restoration. J Am Chem Soc 2025; 147:11049-11061. [PMID: 40129037 DOI: 10.1021/jacs.4c16008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
The ordered arrangement of π-π networks within nanostructures is advantageous for the construction of artificial electronic transport (ETp) systems. Building such structures with biocompatible peptides offers a potential for prescribed structural addressability and enhanced ETp capability with implications for targeted neural tissue engineering. However, creating ordered π-π tunnels in peptide nanostructures composed entirely of natural amino acids presents challenges resulting from the flexible side chains and the free movement of aromatic residues, causing unpredictable orientation. In this study, a novel peptide nanostructure was constructed through rational design and high-throughput screening leveraging hierarchical β-sheets to achieve molecular programmability. Precise regulation of key residues at the aromatic-hydrophilic junctions within the peptide chain facilitated the transition from single interaction forces (hydrophobic or hydrogen bonding) to synergistic forces, enabling the formation of supramolecular clamps during the lateral stacking of β-sheets. The clamps compel the torsion-angle alternation between aromatic residues and the β-plane, increasing the stacking order of aromatic rings and reducing the π-π distance in the optimized RT peptide system. The RT system promotes the formation of an orderly delocalized electron tunnel, achieving dry-state molecular conductivity composed entirely of natural amino acids. Besides ETp, the RT system also provides neural-targeting capability, flexibility, and mechanical strength, allowing it to support axon elongation and neural restoration, serving as an advanced neuro-electronic interface.
Collapse
Affiliation(s)
- Yao Yu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
- China FAW Group Co. Ltd, National Key Laboratory of Advanced Vehicle Integration & Control, Changchun 130013, PR China
| | - Limin Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bo Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jinge Zhao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Kai Han
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Ying Qi
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jiaqing Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Xin Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Beilei Sun
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jingtian Cao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Bokai Ma
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical and Chemical Analysis), Beijing 100089, PR China
| | - Xubiao Peng
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jie Cao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yubin Ke
- China Spallation Neutron Source, Dongguan 523803, PR China
| | - Weizhi Wang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Center for Quantum Technology Research and School of Physics, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
2
|
Honkamäki L, Kulta O, Puistola P, Hopia K, Emeh P, Isosaari L, Mörö A, Narkilahti S. Hyaluronic Acid-Based 3D Bioprinted Hydrogel Structure for Directed Axonal Guidance and Modeling Innervation In Vitro. Adv Healthc Mater 2025; 14:e2402504. [PMID: 39502022 DOI: 10.1002/adhm.202402504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/25/2024] [Indexed: 01/03/2025]
Abstract
Neurons form predefined connections and innervate target tissues through elongating axons, which are crucial for the development, maturation, and function of these tissues. However, innervation is often overlooked in tissue engineering (TE) applications. Here, multimaterial 3D bioprinting is used to develop a novel 3D axonal guidance structure in vitro. The approach uses the stiffness difference of acellular hyaluronic acid-based bioink printed as two alternating, parallel-aligned filaments. The structure has soft passages incorporated with guidance cues for axonal elongation while the stiff bioink acts as a structural support and contact guidance. The mechanical properties and viscosity differences of the bioinks are confirmed. Additionally, human pluripotent stem cell (hPSC) -derived neurons form a 3D neuronal network in the softer bioink supplemented with guidance cues whereas the stiffer restricts the network formation. Successful 3D multimaterial bioprinting of the axonal structure enables complete innervation by peripheral neurons via soft passages within 14 days of culture. This model provides a novel, stable, and long-term platform for studies of 3D innervation and axonal dynamics in health and disease.
Collapse
Affiliation(s)
- Laura Honkamäki
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Oskari Kulta
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Paula Puistola
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Karoliina Hopia
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Promise Emeh
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Lotta Isosaari
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Anni Mörö
- Eye Regeneration Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| | - Susanna Narkilahti
- Neuro Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, 33520, Finland
| |
Collapse
|
3
|
Marin D, Kralj S, Stehlik S, Marchesan S. Nanocomposite Hydrogels from Nanodiamonds and a Self-Assembling Tripeptide. Chemistry 2024; 30:e202402961. [PMID: 39325557 DOI: 10.1002/chem.202402961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 09/28/2024]
Abstract
We report the successful assembly of a tripeptide in the presence of nanodiamonds (NDs) into nanocomposite hydrogels. While the presence of NDs does not hinder peptide self-assembly and gelation kinetics are not affected, NDs improve the viscoelastic properties and significantly increase the elastic moduli of the peptide hydrogels. Increased resistance of the gels against applied stress can also be attained depending on the amount of NDs loaded in the nanocomposite. Raman micro-spectroscopy and TEM confirmed the presence of NDs on the surface, and not in the interior, of peptide nanofibers. Peptide-ND non-covalent interactions are also probed by Raman and Fourier-transformed infrared spectroscopies. Overall, this work enables the embedding of NDs into nanocomposite hydrogels formed through the self-assembly of a simple tripeptide at physiological pH, and it provides key insights to open the way for their future applications in biomaterials, for instance exploiting their luminescence and near-infrared responsiveness.
Collapse
Affiliation(s)
- Davide Marin
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Department of Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Pharmaceutical Technology Department -, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Stepan Stehlik
- Department of Semiconductors, Institute of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 16200, Praha, Czechia
- New Technologies Research Centre, University of West Bohemia, Univerzitni 8, 30100, Plzeň, Czechia
| | - Silvia Marchesan
- Department of Chemical & Pharmaceutical Sciences, University of Trieste, Via Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
4
|
Rašović I, Piacenti AR, Contera S, Porfyrakis K. Hierarchical Self-Assembly of Water-Soluble Fullerene Derivatives into Supramolecular Hydrogels. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401963. [PMID: 38850187 DOI: 10.1002/smll.202401963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Controlling the self-assembly of nanoparticle building blocks into macroscale soft matter structures is an open question and of fundamental importance to fields as diverse as nanomedicine and next-generation energy storage. Within the vast library of nanoparticles, the fullerenes-a family of quasi-spherical carbon allotropes-are not explored beyond the most common, C60. Herein, a facile one-pot method is demonstrated for functionalizing fullerenes of different sizes (C60, C70, C84, and C90-92), yielding derivatives that self-assemble in aqueous solution into supramolecular hydrogels with distinct hierarchical structures. It is shown that the mechanical properties of these resultant structures vary drastically depending on the starting material. This work opens new avenues in the search for control of macroscale soft matter structures through tuning of nanoscale building blocks.
Collapse
Affiliation(s)
- Ilija Rašović
- Department of Materials, University of Oxford, Parks Road, Oxford, OX1 3PH, UK
- School of Metallurgy and Materials, University of Birmingham, Elms Road, Birmingham, B15 2TT, UK
- EPSRC Centre for Doctoral Training in Topological Design, University of Birmingham, Birmingham, B15 2TT, UK
| | - Alba R Piacenti
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Sonia Contera
- Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - Kyriakos Porfyrakis
- Faculty of Engineering and Science, University of Greenwich, Central Avenue, Chatham Maritime, Kent, ME4 4TB, UK
| |
Collapse
|
5
|
Zhou W, Rahman MSU, Sun C, Li S, Zhang N, Chen H, Han CC, Xu S, Liu Y. Perspectives on the Novel Multifunctional Nerve Guidance Conduits: From Specific Regenerative Procedures to Motor Function Rebuilding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307805. [PMID: 37750196 DOI: 10.1002/adma.202307805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Peripheral nerve injury potentially destroys the quality of life by inducing functional movement disorders and sensory capacity loss, which results in severe disability and substantial psychological, social, and financial burdens. Autologous nerve grafting has been commonly used as treatment in the clinic; however, its rare donor availability limits its application. A series of artificial nerve guidance conduits (NGCs) with advanced architectures are also proposed to promote injured peripheral nerve regeneration, which is a complicated process from axon sprouting to targeted muscle reinnervation. Therefore, exploring the interactions between sophisticated NGC complexes and versatile cells during each process including axon sprouting, Schwann cell dedifferentiation, nerve myelination, and muscle reinnervation is necessary. This review highlights the contribution of functional NGCs and the influence of microscale biomaterial architecture on biological processes of nerve repair. Progressive NGCs with chemical molecule induction, heterogenous topographical morphology, electroactive, anisotropic assembly microstructure, and self-powered electroactive and magnetic-sensitive NGCs are also collected, and they are expected to be pioneering features in future multifunctional and effective NGCs.
Collapse
Affiliation(s)
- Weixian Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Muhammad Saif Ur Rahman
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chengmei Sun
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education Guangdong province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shilin Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Nuozi Zhang
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hao Chen
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Charles C Han
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Shanshan Xu
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
- Materials Science and Engineering, University of Maryland, College Park, MD, 20742, USA
| | - Ying Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
6
|
Rozhin P, Adorinni S, Iglesias D, Mackiol T, Kralj S, Bisetto M, Abrami M, Grassi M, Bevilacqua M, Fornasiero P, Marchesan S. Nanocomposite Hydrogels with Self-Assembling Peptide-Functionalized Carbon Nanostructures. Chemistry 2023; 29:e202301708. [PMID: 37740618 DOI: 10.1002/chem.202301708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Carbon nanostructures (CNSs) are attractive components to attain nanocomposites, yet their hydrophobic nature and strong tendency to aggregate often limit their use in aqueous conditions and negatively impact their properties. In this work, carbon nanohorns (CNHs), multi-walled carbon nanotubes (CNTs), and graphene (G) are first oxidized, and then reacted to covalently anchor the self-assembling tripeptide L-Leu-D-Phe-D-Phe to improve their dispersibility in phosphate buffer, and favor the formation of hydrogels formed by the self-organizing L-Leu-D-Phe-D-Phe present in solution. The obtained nanocomposites are then characterized by transmission electron microscopy (TEM), oscillatory rheology, and conductivity measurements to gain useful insights as to the key factors that determine self-healing ability for the future design of this type of nanocomposites.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Simone Adorinni
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Daniel Iglesias
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Tino Mackiol
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Department of Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Matteo Bisetto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Michela Abrami
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127, Trieste, Italy
| | - Mario Grassi
- Department of Engineering and Architecture, University of Trieste, Via Valerio 6/A, 34127, Trieste, Italy
| | - Manuela Bevilacqua
- Institute for the Chemistry of Organometallic Compounds (ICCOM-CNR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto, Fiorentino (FI), Italy
- Third Parties Research Unit (URT-ICCOM), Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
- National Interuniversity Consortium of Materials Science and Technology (INSTM) Unit of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
7
|
Alegret N, Dominguez-Alfaro A, Mecerreyes D, Prato M, Mestroni L, Peña B. Neonatal rat ventricular myocytes interfacing conductive polymers and carbon nanotubes. Cell Biol Toxicol 2023; 39:1627-1639. [PMID: 36029423 PMCID: PMC10243189 DOI: 10.1007/s10565-022-09753-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/17/2022] [Indexed: 11/02/2022]
Abstract
Carbon nanotubes (CNTs) have become promising advanced materials and a new tool to specifically interact with electroresponsive cells. Likewise, conductive polymers (CP) appear promising electroactive biomaterial for proliferation of cells. Herein, we have investigated CNT blends with two different conductive polymers, polypyrrole/CNT (PPy/CNT) and PEDOT/CNT to evaluate the growth, survival, and beating behavior of neonatal rat ventricular myocytes (NRVM). The combination of CP/CNT not only shows excellent biocompatibility on NRVM, after 2 weeks of culture, but also exerts functional effects on networks of cardiomyocytes. NRVMs cultured on CNT-based substrates exhibited improved cellular function, i.e., homogeneous, non-arrhythmogenic, and more frequent spontaneous beating; particularly PEDOT/CNT substrates, which yielded to higher beating amplitudes, thus suggesting a more mature cardiac phenotype. Furthermore, cells presented enhanced structure: aligned sarcomeres, organized and abundant Connexin 43 (Cx43). Finally, no signs of induced hypertrophy were observed. In conclusion, the combination of CNT with CP produces high viability and promotes cardiac functionality, suggesting great potential to generate scaffolding supports for cardiac tissue engineering.
Collapse
Affiliation(s)
- Nuria Alegret
- School of Medicine, Division of Cardiology, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, CO, 80045, USA.
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain.
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain.
| | - Antonio Dominguez-Alfaro
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Electrical Engineering Divison, Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - David Mecerreyes
- POLYMAT University of the Basque Country UPV/EHU, Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Maurizio Prato
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Department of Chemical and Pharmaceutical Sciences, INSTM Unit of Trieste, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Luisa Mestroni
- School of Medicine, Division of Cardiology, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, CO, 80045, USA
| | - Brisa Peña
- School of Medicine, Division of Cardiology, Cardiovascular Institute, University of Colorado Denver Anschutz Medical Campus, 12700 E. 19th Avenue, Bldg. P15, Aurora, CO, 80045, USA.
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
8
|
Rozhin P, Kralj S, Soula B, Marchesan S, Flahaut E. Hydrogels from a Self-Assembling Tripeptide and Carbon Nanotubes (CNTs): Comparison between Single-Walled and Double-Walled CNTs. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13050847. [PMID: 36903725 PMCID: PMC10005271 DOI: 10.3390/nano13050847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 05/14/2023]
Abstract
Supramolecular hydrogels obtained from the self-organization of simple peptides, such as tripeptides, are attractive soft materials. Their viscoelastic properties can be enhanced through the inclusion of carbon nanomaterials (CNMs), although their presence can also hinder self-assembly, thus requiring investigation of the compatibility of CNMs with peptide supramolecular organization. In this work, we compared single-walled carbon nanotubes (SWCNTs) and double-walled carbon nanotubes (DWCNTs) as nanostructured additives for a tripeptide hydrogel, revealing superior performance by the latter. Several spectroscopic techniques, as well as thermogravimetric analyses, microscopy, and rheology data, provide details to elucidate the structure and behavior of nanocomposite hydrogels of this kind.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Brigitte Soula
- Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
- Correspondence: (S.M.); (E.F.)
| | - Emmanuel Flahaut
- Centre Interuniversitaire de Recherche et d’Ingénierie des Matériaux, Université Paul Sabatier, UMR CNRS N°5085, 31062 Toulouse, France
- Correspondence: (S.M.); (E.F.)
| |
Collapse
|
9
|
Bellotto O, D'Andrea P, Marchesan S. Nanotubes and water-channels from self-assembling dipeptides. J Mater Chem B 2023. [PMID: 36790014 DOI: 10.1039/d2tb02643k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Dipeptides are attractive building blocks for biomaterials in light of their inherent biocompatibility, biodegradability, and simplicity of preparation. Since the discovery of diphenylalanine (Phe-Phe) self-assembling ability into nanotubes, research efforts have been devoted towards the identification of other dipeptide sequences capable of forming these interesting nanomorphologies, although design rules towards nanotube formation are still elusive. In this review, we analyze the dipeptide sequences reported thus far for their ability to form nanotubes, which often feature water-filled supramolecular channels as revealed by single-crystal X-ray diffraction, as well as their properties, and their potential biological applications, which span from drug delivery and regenerative medicine, to bioelectronics and bioimaging.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy.
| | - Paola D'Andrea
- Life Sc. Dept., University of Trieste, Via Weiss 2, 34128 Trieste, Italy
| | - Silvia Marchesan
- Chem. Pharm. Sc. Dept., University of Trieste, Via Giorgieri 1, 34127 Trieste, Italy. .,INSTM, Unit of Trieste, Via Giorgieri 1, 34127 Trieste, Italy
| |
Collapse
|
10
|
Marin D, Bartkowski M, Kralj S, Rosetti B, D’Andrea P, Adorinni S, Marchesan S, Giordani S. Supramolecular Hydrogels from a Tripeptide and Carbon Nano-Onions for Biological Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:nano13010172. [PMID: 36616081 PMCID: PMC9824889 DOI: 10.3390/nano13010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 05/27/2023]
Abstract
Nanocomposite hydrogels have attracted researchers' attention in recent years to achieve superior performances in a variety of materials applications. In this work, we describe the outcome of three different strategies to combine a self-assembling tripeptide and carbon nano-onions (CNOs), through covalent and non-covalent approaches, into supramolecular and nanostructured hydrogels. Importantly, the tripeptide coated the nano-onions and extended their aqueous dispersions' stability by several hours. Furthermore, CNOs could be loaded in the tripeptide hydrogels at the highest level ever reported for nanocarbons, indicating high compatibility between the components. The materials were formed in phosphate-buffered solutions, thus paving the way for biological applications, and were characterized by several spectroscopic, microscopic, thermogravimetric, and rheological techniques. In vitro experiments demonstrated excellent cytocompatibility.
Collapse
Affiliation(s)
- Davide Marin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Michał Bartkowski
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland
| | - Slavko Kralj
- Department for Materials Synthesis, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Beatrice Rosetti
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Paola D’Andrea
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | - Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland
| |
Collapse
|
11
|
Zhao D, Huang R, Gan JM, Shen QD. Photoactive Nanomaterials for Wireless Neural Biomimetics, Stimulation, and Regeneration. ACS NANO 2022; 16:19892-19912. [PMID: 36411035 DOI: 10.1021/acsnano.2c08543] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanomaterials at the neural interface can provide the bridge between bioelectronic devices and native neural tissues and achieve bidirectional transmission of signals with our brain. Photoactive nanomaterials, such as inorganic and polymeric nanoparticles, nanotubes, nanowires, nanorods, nanosheets or related, are being explored to mimic, modulate, control, or even substitute the functions of neural cells or tissues. They show great promise in next generation technologies for the neural interface with excellent spatial and temporal accuracy. In this review, we highlight the discovery and understanding of these nanomaterials in precise control of an individual neuron, biomimetic retinal prosthetics for vision restoration, repair or regeneration of central or peripheral neural tissues, and wireless deep brain stimulation for treatment of movement or mental disorders. The most intriguing feature is that the photoactive materials fit within a minimally invasive and wireless strategy to trigger the flux of neurologically active molecules and thus influences the cell membrane potential or key signaling molecule related to gene expression. In particular, we focus on worthy pathways of photosignal transduction at the nanomaterial-neural interface and the behavior of the biological system. Finally, we describe the challenges on how to design photoactive nanomaterials specific to neurological disorders. There are also some open issues such as long-term interface stability and signal transduction efficiency to further explore for clinical practice.
Collapse
Affiliation(s)
- Di Zhao
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Institute of Brain Science and Disease, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266001, China
| | - Rui Huang
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jia-Min Gan
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qun-Dong Shen
- Department of Polymer Science and Engineering and Key Laboratory of High-Performance Polymer Materials and Technology of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Medical School of Nanjing University, Nanjing 210008, China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, China
| |
Collapse
|
12
|
Marin D, Marchesan S. Carbon Graphitization: Towards Greener Alternatives to Develop Nanomaterials for Targeted Drug Delivery. Biomedicines 2022; 10:1320. [PMID: 35740342 PMCID: PMC9220131 DOI: 10.3390/biomedicines10061320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/16/2022] Open
Abstract
Carbon nanomaterials have attracted great interest for their unique physico-chemical properties for various applications, including medicine and, in particular, drug delivery, to solve the most challenging unmet clinical needs. Graphitization is a process that has become very popular for their production or modification. However, traditional conditions are energy-demanding; thus, recent efforts have been devoted to the development of greener routes that require lower temperatures or that use waste or byproducts as a carbon source in order to be more sustainable. In this concise review, we analyze the progress made in the last five years in this area, as well as in their development as drug delivery agents, focusing on active targeting, and conclude with a perspective on the future of the field.
Collapse
Affiliation(s)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
13
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
14
|
Sirkkunan D, Pingguan-Murphy B, Muhamad F. Directing Axonal Growth: A Review on the Fabrication of Fibrous Scaffolds That Promotes the Orientation of Axons. Gels 2021; 8:gels8010025. [PMID: 35049560 PMCID: PMC8775123 DOI: 10.3390/gels8010025] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 12/17/2022] Open
Abstract
Tissues are commonly defined as groups of cells that have similar structure and uniformly perform a specialized function. A lesser-known fact is that the placement of these cells within these tissues plays an important role in executing its functions, especially for neuronal cells. Hence, the design of a functional neural scaffold has to mirror these cell organizations, which are brought about by the configuration of natural extracellular matrix (ECM) structural proteins. In this review, we will briefly discuss the various characteristics considered when making neural scaffolds. We will then focus on the cellular orientation and axonal alignment of neural cells within their ECM and elaborate on the mechanisms involved in this process. A better understanding of these mechanisms could shed more light onto the rationale of fabricating the scaffolds for this specific functionality. Finally, we will discuss the scaffolds used in neural tissue engineering (NTE) and the methods used to fabricate these well-defined constructs.
Collapse
|
15
|
Malik S, Marchesan S. Growth, Properties, and Applications of Branched Carbon Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2728. [PMID: 34685169 PMCID: PMC8540255 DOI: 10.3390/nano11102728] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
Nanomaterials featuring branched carbon nanotubes (b-CNTs), nanofibers (b-CNFs), or other types of carbon nanostructures (CNSs) are of great interest due to their outstanding mechanical and electronic properties. They are promising components of nanodevices for a wide variety of advanced applications spanning from batteries and fuel cells to conductive-tissue regeneration in medicine. In this concise review, we describe the methods to produce branched CNSs, with particular emphasis on the most widely used b-CNTs, the experimental and theoretical studies on their properties, and the wide range of demonstrated and proposed applications, highlighting the branching structural features that ultimately allow for enhanced performance relative to traditional, unbranched CNSs.
Collapse
Affiliation(s)
- Sharali Malik
- Karlsruhe Institute of Technology, Institute of Quantum Materials and Technology, Hermann-von-Helmholtz-Platz 1, 76131 Karlsruhe, Germany
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy;
| |
Collapse
|
16
|
Application of "Magnetic Anchors" to Align Collagen Fibres for Axonal Guidance. Gels 2021; 7:gels7040154. [PMID: 34698174 PMCID: PMC8544430 DOI: 10.3390/gels7040154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/21/2022] Open
Abstract
The use of neural scaffolds with a highly defined microarchitecture, fabricated with standard techniques such as electrospinning and microfluidic spinning, requires surgery for their application to the site of injury. To circumvent the risk associated with aciurgy, new strategies for treatment are sought. This has led to an increase in the quantity of research into injectable hydrogels in recent years. However, little research has been conducted into controlling the building blocks within these injectable hydrogels to produce similar scaffolds with a highly defined microarchitecture. “Magnetic particle string” and biomimetic amphiphile self-assembly are some of the methods currently available to achieve this purpose. Here, we developed a “magnetic anchor” method to improve the orientation of collagen fibres within injectable 3D scaffolds. This procedure uses GMNP (gold magnetic nanoparticle) “anchors” capped with CMPs (collagen mimetic peptides) that “chain” them to collagen fibres. Through the application of a magnetic field during the gelling process, these collagen fibres are aligned accordingly. It was shown in this study that the application of CMP functionalised GMNPs in a magnetic field significantly improves the alignment of the collagen fibres, which, in turn, improves the orientation of PC12 neurites. The growth of these neurite extensions, which were shown to be significantly longer, was also improved. The PC12 cells grown in collagen scaffolds fabricated using the “magnetic anchor” method shows comparable cellular viability to that of the untreated collagen scaffolds. This capability of remote control of the alignment of fibres within injectable collagen scaffolds opens up new strategic avenues in the research for treating debilitating neural tissue pathologies.
Collapse
|
17
|
Rozhin P, Melchionna M, Fornasiero P, Marchesan S. Nanostructured Ceria: Biomolecular Templates and (Bio)applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2259. [PMID: 34578575 PMCID: PMC8467784 DOI: 10.3390/nano11092259] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 12/27/2022]
Abstract
Ceria (CeO2) nanostructures are well-known in catalysis for energy and environmental preservation and remediation. Recently, they have also been gaining momentum for biological applications in virtue of their unique redox properties that make them antioxidant or pro-oxidant, depending on the experimental conditions and ceria nanomorphology. In particular, interest has grown in the use of biotemplates to exert control over ceria morphology and reactivity. However, only a handful of reports exist on the use of specific biomolecules to template ceria nucleation and growth into defined nanostructures. This review focusses on the latest advancements in the area of biomolecular templates for ceria nanostructures and existing opportunities for their (bio)applications.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
| | - Michele Melchionna
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| | - Paolo Fornasiero
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
- Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche (ICCOM-CNR), 34127 Trieste, Italy
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (P.R.); (P.F.)
- Unit of Trieste, INSTM, 34127 Trieste, Italy
| |
Collapse
|
18
|
Rozhin P, Charitidis C, Marchesan S. Self-Assembling Peptides and Carbon Nanomaterials Join Forces for Innovative Biomedical Applications. Molecules 2021; 26:4084. [PMID: 34279424 PMCID: PMC8271590 DOI: 10.3390/molecules26134084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023] Open
Abstract
Self-assembling peptides and carbon nanomaterials have attracted great interest for their respective potential to bring innovation in the biomedical field. Combination of these two types of building blocks is not trivial in light of their very different physico-chemical properties, yet great progress has been made over the years at the interface between these two research areas. This concise review will analyze the latest developments at the forefront of research that combines self-assembling peptides with carbon nanostructures for biological use. Applications span from tissue regeneration, to biosensing and imaging, and bioelectronics.
Collapse
Affiliation(s)
- Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
| | - Costas Charitidis
- School of Chemical Engineering, National Technical University of Athens, Iroon Polytechneiou 9, Zografou, 157 80 Athens, Greece;
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy;
- INSTM, Unit of Trieste, 34127 Trieste, Italy
| |
Collapse
|
19
|
Adorinni S, Rozhin P, Marchesan S. Smart Hydrogels Meet Carbon Nanomaterials for New Frontiers in Medicine. Biomedicines 2021; 9:570. [PMID: 34070138 PMCID: PMC8158376 DOI: 10.3390/biomedicines9050570] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/12/2022] Open
Abstract
Carbon nanomaterials include diverse structures and morphologies, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. They have attracted great interest in medicine for their high innovative potential, owing to their unique electronic and mechanical properties. In this review, we describe the most recent advancements in their inclusion in hydrogels to yield smart systems that can respond to a variety of stimuli. In particular, we focus on graphene and carbon nanotubes, for applications that span from sensing and wearable electronics to drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Simone Adorinni
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Petr Rozhin
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
| | - Silvia Marchesan
- Chemical and Pharmaceutical Sciences Department, University of Trieste, 34127 Trieste, Italy; (S.A.); (P.R.)
- National Interuniversity Consortium of Materials Science and Technology (INSTM), University of Trieste, 34127 Trieste, Italy
| |
Collapse
|
20
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
21
|
Santos J, Moschetta M, Rodrigues J, Alpuim P, Capasso A. Interactions Between 2D Materials and Living Matter: A Review on Graphene and Hexagonal Boron Nitride Coatings. Front Bioeng Biotechnol 2021; 9:612669. [PMID: 33585432 PMCID: PMC7873463 DOI: 10.3389/fbioe.2021.612669] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/04/2021] [Indexed: 12/24/2022] Open
Abstract
Two-dimensional material (2DM) coatings exhibit complex and controversial interactions with biological matter, having shown in different contexts to induce bacterial cell death and contribute to mammalian cell growth and proliferation in vitro and tissue differentiation in vivo. Although several reports indicate that the morphologic and electronic properties of the coating, as well as its surface features (e.g., crystallinity, wettability, and chemistry), play a key role in the biological interaction, these kinds of interactions have not been fully understood yet. In this review, we report and classify the cellular interaction mechanisms observed in graphene and hexagonal boron nitride (hBN) coatings. Graphene and hBN were chosen as study materials to gauge the effect of two atomic-thick coatings with analogous lattice structure yet dissimilar electrical properties upon contact with living matter, allowing to discern among the observed effects and link them to specific material properties. In our analysis, we also considered the influence of crystallinity and surface roughness, detailing the mechanisms of interaction that make specific coatings of these 2DMs either hostile toward bacterial cells or innocuous for mammalian cells. In doing this, we discriminate among the material and surface properties, which are often strictly connected to the 2DM production technique, coating deposition and post-processing method. Building on this knowledge, the selection of 2DM coatings based on their specific characteristics will allow to engineer desired functionalities and devices. Antibacterial coatings to prevent biofouling, biocompatible platforms suitable for biomedical applications (e.g., wound healing, tissue repairing and regeneration, and novel biosensing devices) could be realized in the next future. Overall, a clear understanding on how the 2DM coating's properties may modulate a specific bacterial or cellular response is crucial for any future innovation in the field.
Collapse
Affiliation(s)
- João Santos
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Matteo Moschetta
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia, Genova, Italy
| | - João Rodrigues
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| | - Pedro Alpuim
- International Iberian Nanotechnology Laboratory, Braga, Portugal
- Centro de Física das Universidades do Minho e do Porto, Braga, Portugal
| | - Andrea Capasso
- International Iberian Nanotechnology Laboratory, Braga, Portugal
| |
Collapse
|
22
|
Structural and functional properties of astrocytes on PCL based electrospun fibres. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 118:111363. [DOI: 10.1016/j.msec.2020.111363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/03/2020] [Accepted: 08/03/2020] [Indexed: 01/18/2023]
|
23
|
Novel carbon film induces precocious calcium oscillation to promote neuronal cell maturation. Sci Rep 2020; 10:17661. [PMID: 33077786 PMCID: PMC7573613 DOI: 10.1038/s41598-020-74535-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 10/01/2020] [Indexed: 11/09/2022] Open
Abstract
Different types of carbon materials are biocompatible with neural cells and can promote maturation. The mechanism of this effect is not clear. Here we have tested the capacity of a carbon material composed of amorphous sp3 carbon backbone, embedded with a percolating network of sp2 carbon domains to sustain neuronal cultures. We found that cortical neurons survive and develop faster on this novel carbon material. After 3 days in culture, there is a precocious increase in the frequency of neuronal activity and in the expression of maturation marker KCC2 on carbon films as compared to a commonly used glass surface. Accelerated development is accompanied by a dramatic increase in neuronal dendrite arborization. The mechanism for the precocious maturation involves the activation of intracellular calcium oscillations by the carbon material already after 1 day in culture. Carbon-induced oscillations are independent of network activity and reflect intrinsic spontaneous activation of developing neurons. Thus, these results reveal a novel mechanism for carbon material-induced neuronal survival and maturation.
Collapse
|
24
|
Abstract
The regrowth of severed axons is fundamental to reestablish motor control after spinal-cord injury (SCI). Ongoing efforts to promote axonal regeneration after SCI have involved multiple strategies that have been only partially successful. Our study introduces an artificial carbon-nanotube based scaffold that, once implanted in SCI rats, improves motor function recovery. Confocal microscopy analysis plus fiber tracking by magnetic resonance imaging and neurotracer labeling of long-distance corticospinal axons suggest that recovery might be partly attributable to successful crossing of the lesion site by regenerating fibers. Since manipulating SCI microenvironment properties, such as mechanical and electrical ones, may promote biological responses, we propose this artificial scaffold as a prototype to exploit the physics governing spinal regenerative plasticity.
Collapse
|
25
|
Liu H, Gough CR, Deng Q, Gu Z, Wang F, Hu X. Recent Advances in Electrospun Sustainable Composites for Biomedical, Environmental, Energy, and Packaging Applications. Int J Mol Sci 2020; 21:E4019. [PMID: 32512793 PMCID: PMC7312508 DOI: 10.3390/ijms21114019] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 12/13/2022] Open
Abstract
Electrospinning has gained constant enthusiasm and wide interest as a novel sustainable material processing technique due to its ease of operation and wide adaptability for fabricating eco-friendly fibers on a nanoscale. In addition, the device working parameters, spinning solution properties, and the environmental factors can have a significant effect on the fibers' morphology during electrospinning. This review summarizes the newly developed principles and influence factors for electrospinning technology in the past five years, including these factors' interactions with the electrospinning mechanism as well as its most recent applications of electrospun natural or sustainable composite materials in biology, environmental protection, energy, and food packaging materials.
Collapse
Affiliation(s)
- Hao Liu
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Christopher R. Gough
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA
| | - Qianqian Deng
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Zhenggui Gu
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Fang Wang
- Center of Analysis and Testing, Nanjing Normal University, Nanjing 210023, China; (H.L.); (Q.D.)
- School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China;
| | - Xiao Hu
- Department of Physics and Astronomy, Rowan University, Glassboro, NJ 08028, USA;
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
26
|
Higgins SG, Becce M, Belessiotis-Richards A, Seong H, Sero JE, Stevens MM. High-Aspect-Ratio Nanostructured Surfaces as Biological Metamaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1903862. [PMID: 31944430 PMCID: PMC7610849 DOI: 10.1002/adma.201903862] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/02/2019] [Indexed: 04/14/2023]
Abstract
Materials patterned with high-aspect-ratio nanostructures have features on similar length scales to cellular components. These surfaces are an extreme topography on the cellular level and have become useful tools for perturbing and sensing the cellular environment. Motivation comes from the ability of high-aspect-ratio nanostructures to deliver cargoes into cells and tissues, access the intracellular environment, and control cell behavior. These structures directly perturb cells' ability to sense and respond to external forces, influencing cell fate, and enabling new mechanistic studies. Through careful design of their nanoscale structure, these systems act as biological metamaterials, eliciting unusual biological responses. While predominantly used to interface eukaryotic cells, there is growing interest in nonanimal and prokaryotic cell interfacing. Both experimental and theoretical studies have attempted to develop a mechanistic understanding for the observed behaviors, predominantly focusing on the cell-nanostructure interface. This review considers how high-aspect-ratio nanostructured surfaces are used to both stimulate and sense biological systems.
Collapse
Affiliation(s)
- Stuart G. Higgins
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | | | | | - Hyejeong Seong
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Julia E. Sero
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Molly M. Stevens
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
- Institute of Biomedical Engineering, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
27
|
Rauti R, Secomandi N, Martín C, Bosi S, Severino FPU, Scaini D, Prato M, Vázquez E, Ballerini L. Tuning Neuronal Circuit Formation in 3D Polymeric Scaffolds by Introducing Graphene at the Bio/Material Interface. ACTA ACUST UNITED AC 2020; 4:e1900233. [DOI: 10.1002/adbi.201900233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/19/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Rossana Rauti
- International School for Advanced Studies (SISSA/ISAS) Trieste 34136 Italy
| | - Nicola Secomandi
- International School for Advanced Studies (SISSA/ISAS) Trieste 34136 Italy
- Instituto Regional de Investigación Científica Aplicada (IRICA) Universidad de Castilla‐La Mancha Avda Camilo José Cela 13071 Ciudad Real Spain
| | - Cristina Martín
- Department of Chemical and Pharmaceutical Sciences Università degli Studi di Trieste Via Licio Giorgieri 1 Trieste 34127 Italy
- Carbon Bionanotechnology Group CIC biomaGUNE Paseo Miramón 182 San Sebastián 20014 Guipúzcoa Spain
| | - Susanna Bosi
- Carbon Bionanotechnology Group CIC biomaGUNE Paseo Miramón 182 San Sebastián 20014 Guipúzcoa Spain
| | | | - Denis Scaini
- International School for Advanced Studies (SISSA/ISAS) Trieste 34136 Italy
- Basque Foundation for Science Ikerbasque Bilbao 48013 Spain
| | - Maurizio Prato
- Carbon Bionanotechnology Group CIC biomaGUNE Paseo Miramón 182 San Sebastián 20014 Guipúzcoa Spain
- Faculty of Chemical Science and Technology Universidad de Castilla‐La Mancha 13071 Ciudad Real Spain
| | - Ester Vázquez
- Department of Chemical and Pharmaceutical Sciences Università degli Studi di Trieste Via Licio Giorgieri 1 Trieste 34127 Italy
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS) Trieste 34136 Italy
| |
Collapse
|
28
|
The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110259. [DOI: 10.1016/j.msec.2019.110259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
29
|
Barrejón M, Rauti R, Ballerini L, Prato M. Chemically Cross-Linked Carbon Nanotube Films Engineered to Control Neuronal Signaling. ACS NANO 2019; 13:8879-8889. [PMID: 31329426 DOI: 10.1021/acsnano.9b02429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, the use of free-standing carbon nanotube (CNT) films for neural tissue engineering has attracted tremendous attention. CNT films show large surface area and high electrical conductivity that combined with flexibility and biocompatibility may promote neuron growth and differentiation while stimulating neural activity. In addition, adhesion, survival, and growth of neurons can be modulated through chemical modification of CNTs. Axonal and synaptic signaling can also be positively tuned by these materials. Here we describe the ability of free-standing CNT films to influence neuronal activity. We demonstrate that the degree of cross-linking between the CNTs has a strong impact on the electrical conductivity of the substrate, which, in turn, regulates neural circuit outputs.
Collapse
Affiliation(s)
- Myriam Barrejón
- Department of Chemical and Pharmaceutical Sciences , Università degli Studi di Trieste , Via Licio Giorgieri 1 , Trieste 34127 , Italy
| | - Rossana Rauti
- International School for Advanced Studies (SISSA/ISAS) , Trieste 34136 , Italy
| | - Laura Ballerini
- International School for Advanced Studies (SISSA/ISAS) , Trieste 34136 , Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences , Università degli Studi di Trieste , Via Licio Giorgieri 1 , Trieste 34127 , Italy
- Carbon Bionanotechnology Group , CIC biomaGUNE , Paseo Miramón 182, San Sebastián , Guipúzcoa 20014 , Spain
- Basque Foundation for Science , Ikerbasque, Bilbao 48013 , Spain
| |
Collapse
|
30
|
Piontkivska H, Plonski NM, Miyamoto MM, Wayne ML. Explaining Pathogenicity of Congenital Zika and Guillain-Barré Syndromes: Does Dysregulation of RNA Editing Play a Role? Bioessays 2019; 41:e1800239. [PMID: 31106880 PMCID: PMC6699488 DOI: 10.1002/bies.201800239] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/28/2019] [Indexed: 12/11/2022]
Abstract
Previous studies of Zika virus (ZIKV) pathogenesis have focused primarily on virus-driven pathology and neurotoxicity, as well as host-related changes in cell proliferation, autophagy, immunity, and uterine function. It is now hypothesized that ZIKV pathogenesis arises instead as an (unintended) consequence of host innate immunity, specifically, as the side effect of an otherwise well-functioning machine. The hypothesis presented here suggests a new way of thinking about the role of host immune mechanisms in disease pathogenesis, focusing on dysregulation of post-transcriptional RNA editing as a candidate driver of a broad range of observed neurodevelopmental defects and neurodegenerative clinical symptoms in both infants and adults linked with ZIKV infections. The authors collect and synthesize existing evidence of ZIKV-mediated changes in the expression of adenosine deaminases acting on RNA (ADARs), known links between abnormal RNA editing and pathogenesis, as well as ideas for future research directions, including potential treatment strategies.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and University, Kent, OH
44242, USA
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | - Noel-Marie Plonski
- School of Biomedical Sciences, Kent State University, Kent,
OH 44242, USA
| | | | - Marta L. Wayne
- Department of Biology, University of Florida, Gainesville,
FL 32611, USA
- Emerging Pathogens Institute, University of Florida,
Gainesville, FL 32611, USA
| |
Collapse
|
31
|
Biagiotti G, Pisaneschi F, Gammon ST, Machetti F, Ligi MC, Giambastiani G, Tuci G, Powell E, Piwnica-Worms H, Pranzini E, Paoli P, Cicchi S, Piwnica-Worms D. Multiwalled Carbon Nanotubes for Combination Therapy: a Biodistribution and Efficacy Pilot Study. J Mater Chem B 2019; 7:2678-2687. [PMID: 31073405 PMCID: PMC6501563 DOI: 10.1039/c8tb03299h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A drug delivery system (DDS) for combined therapy, based on a short oxidized multiwalled carbon nanotube, is reported. It was prepared exploiting a synthetic approach which allowed loading of two drugs, doxorubicin and metformin, the targeting agent biotin and a radiolabeling tag, to enable labeling with Ga-68 or Cu-64 in order to perform an extensive biodistribution study by PET/CT. The DDS biodistribution profile changes with different administration methods. Once administered at therapeutic doses, the DDS showed a marginal beneficial effect on 4T1 tumor bearing mice, a syngeneic and orthotopic model of triple negative breast cancer, with survival extended by 1 week and 2 days in 20% of the mice. This is encouraging given the aggressiveness of the 4T1 tumor. Furthermore our DDS was well tolerated, ruling out concerns regarding the toxicity of carbon nanotubes.
Collapse
Affiliation(s)
- Giacomo Biagiotti
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| | - Federica Pisaneschi
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| | - Seth T. Gammon
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| | - Fabrizio Machetti
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Maria Cristina Ligi
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Giuliano Giambastiani
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
- Kazan Federal University, 420008 Kazan, Russian Federation
| | - Giulia Tuci
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - Emily Powell
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1901 East Road, 77054 Houston, TX USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1901 East Road, 77054 Houston, TX USA
| | - Erica Pranzini
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Paolo Paoli
- Department of Biomedical, Experimental and Clinical Science “Mario Serio”, Università degli Studi di Firenze, viale Morgagni 50, 50134 Firenze, Italy
| | - Stefano Cicchi
- Department of Chemistry “Ugo Schiff”, Università degli Studi di Firenze, via della Lastruccia 3-13, 50019 Sesto Fiorentino, Firenze, Italy
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy
| | - David Piwnica-Worms
- Department of Cancer Systems Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, 1881 East Road, 77054 Houston, TX, USA
| |
Collapse
|
32
|
Wu Y, Peng Y, Bohra H, Zou J, Ranjan VD, Zhang Y, Zhang Q, Wang M. Photoconductive Micro/Nanoscale Interfaces of a Semiconducting Polymer for Wireless Stimulation of Neuron-Like Cells. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4833-4841. [PMID: 30624894 DOI: 10.1021/acsami.8b19631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We report multiscale structured fibers and patterned films based on a semiconducting polymer, poly(3-hexylthiophene) (P3HT), as photoconductive biointerfaces to promote neuronal stimulation upon light irradiation. The micro/nanoscale structures of P3HT used for neuronal interfacing and stimulation include nanofibers with an average diameter of 100 nm, microfibers with an average diameter of about 1 μm, and lithographically patterned stripes with width of 3, 25, and 50 μm, respectively. The photoconductive effect of P3HT upon light irradiation provides electrical stimulation for neuronal differentiation and directed growth. Our results demonstrate that neurons on P3HT nanofibers showed a significantly higher total number of branches, while neurons grown on P3HT microfibers had longer and thinner neurites. Such a combination strategy of topographical and photoconductive stimulation can be applied to further enhance neuronal differentiation and directed growth. These photoconductive polymeric micro/nanostructures demonstrated their great potential for neural engineering and development of novel neural regenerative devices.
Collapse
Affiliation(s)
- Yingjie Wu
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Yanfen Peng
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Hassan Bohra
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| | - Jianping Zou
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Vivek Damodar Ranjan
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Yilei Zhang
- School of Mechanical & Aerospace Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Qing Zhang
- School of Electrical and Electronic Engineering , Nanyang Technological University , 50 Nanyang Avenue , Singapore 639798 , Singapore
| | - Mingfeng Wang
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 62 Nanyang Drive , Singapore 637459 , Singapore
| |
Collapse
|
33
|
Myelinated axons and functional blood vessels populate mechanically compliant rGO foams in chronic cervical hemisected rats. Biomaterials 2019; 192:461-474. [DOI: 10.1016/j.biomaterials.2018.11.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 11/06/2018] [Accepted: 11/13/2018] [Indexed: 11/18/2022]
|
34
|
Alegret N, Dominguez-Alfaro A, González-Domínguez JM, Arnaiz B, Cossío U, Bosi S, Vázquez E, Ramos-Cabrer P, Mecerreyes D, Prato M. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43904-43914. [PMID: 30475577 DOI: 10.1021/acsami.8b16462] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Three-dimensional scaffolds for cellular organization need to enjoy a series of specific properties. On the one hand, the morphology, shape and porosity are critical parameters and eventually related with the mechanical properties. On the other hand, electrical conductivity is an important asset when dealing with electroactive cells, so it is a desirable property even if the conductivity values are not particularly high. Here, we construct three-dimensional (3D) porous and conductive composites, where C8-D1A astrocytic cells were incubated to study their biocompatibility. The manufactured scaffolds are composed exclusively of carbon nanotubes (CNTs), a most promising material to interface with neuronal tissue, and polypyrrole (PPy), a conjugated polymer demonstrated to reduce gliosis, improve adaptability, and increase charge-transfer efficiency in brain-machine interfaces. We developed a new and easy strategy, based on the vapor phase polymerization (VPP) technique, where the monomer vapor is polymerized inside a sucrose sacrificial template containing CNT and an oxidizing agent. After removing the sucrose template, a 3D porous scaffold was obtained and its physical, chemical, and electrical properties were evaluated. The obtained scaffold showed very low density, high and homogeneous porosity, electrical conductivity, and Young's Modulus similar to the in vivo tissue. Its high biocompatibility was demonstrated even after 6 days of incubation, thus paving the way for the development of new conductive 3D scaffolds potentially useful in the field of electroactive tissues.
Collapse
Affiliation(s)
- Nuria Alegret
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Antonio Dominguez-Alfaro
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
- POLYMAT , University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain
| | - Jose M González-Domínguez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Blanca Arnaiz
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Unai Cossío
- Radioimaging and Image Analysis Platform , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Sciences , INSTM. University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Ester Vázquez
- Departamento de Química Orgánica, Facultad de Ciencias y Tecnologías Químicas-IRICA , Universidad de Castilla-La Mancha , 13071 Ciudad Real , Spain
| | - Pedro Ramos-Cabrer
- Radioimaging and Image Analysis Platform , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
- Ikerasque , Basque Foundation for Science , 48013 Bilbao , Spain
| | - David Mecerreyes
- POLYMAT , University of the Basque Country UPV/EHU , Avenida de Tolosa 72 , 20018 Donostia-San Sebastián , Spain
- Ikerasque , Basque Foundation for Science , 48013 Bilbao , Spain
| | - Maurizio Prato
- Carbon Nanobiotechnology Group , CIC biomaGUNE , Paseo de Miramón 182 , 20014 Donostia-San Sebastián , Spain
- Department of Chemical and Pharmaceutical Sciences , INSTM. University of Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
- Ikerasque , Basque Foundation for Science , 48013 Bilbao , Spain
| |
Collapse
|
35
|
|
36
|
Marcus M, Smith A, Maswadeh A, Shemesh Z, Zak I, Motiei M, Schori H, Margel S, Sharoni A, Shefi O. Magnetic Targeting of Growth Factors Using Iron Oxide Nanoparticles. NANOMATERIALS 2018; 8:nano8090707. [PMID: 30201889 PMCID: PMC6163445 DOI: 10.3390/nano8090707] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 12/29/2022]
Abstract
Growth factors play an important role in nerve regeneration and repair. An attractive drug delivery strategy, termed “magnetic targeting”, aims to enhance therapeutic efficiency by directing magnetic drug carriers specifically to selected cell populations that are suitable for the nervous tissues. Here, we covalently conjugated nerve growth factor to iron oxide nanoparticles (NGF-MNPs) and used controlled magnetic fields to deliver the NGF–MNP complexes to target sites. In order to actuate the magnetic fields a modular magnetic device was designed and fabricated. PC12 cells that were plated homogenously in culture were differentiated selectively only in targeted sites out of the entire dish, restricted to areas above the magnetic “hot spots”. To examine the ability to guide the NGF-MNPs towards specific targets in vivo, we examined two model systems. First, we injected and directed magnetic carriers within the sciatic nerve. Second, we injected the MNPs intravenously and showed a significant accumulation of MNPs in mouse retina while using an external magnet that was placed next to one of the eyes. We propose a novel approach to deliver drugs selectively to injured sites, thus, to promote an effective repair with minimal systemic side effects, overcoming current challenges in regenerative therapeutics.
Collapse
Affiliation(s)
- Michal Marcus
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Alexandra Smith
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Ahmad Maswadeh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Department of Neurosurgery, Sheba Medical Center, Ramat Gan 5290002, Israel.
| | - Ziv Shemesh
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Idan Zak
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Menachem Motiei
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Hadas Schori
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| | - Shlomo Margel
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Amos Sharoni
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
- Department of Physics, Bar Ilan University, Ramat Gan 5290002, Israel.
| | - Orit Shefi
- Faculty of Engineering, Bar Ilan University, Ramat Gan 5290002, Israel.
- Bar Ilan Institute of Nanotechnologies and Advanced Materials, Ramat Gan 5290002, Israel.
| |
Collapse
|
37
|
Abedini M, Tekieh T, Sasanpour P. Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis. Front Comput Neurosci 2018; 12:61. [PMID: 30123119 PMCID: PMC6085840 DOI: 10.3389/fncom.2018.00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023] Open
Abstract
An all optical, non-destructive method for monitoring neural activity has been proposed and its performance in detection has been analyzed computationally. The proposed method is based on excitation of Surface Plasmon Resonance (SPR) through the structure of optical fibers. The sensor structure consists of a multimode optical fiber where, the cladding of fiber has been removed and thin film of gold structure has been deposited on the surface. Impinging the laser light with appropriate wavelength inside the fiber and based on the total internal reflection, the evanescent wave will excite surface plasmons in the gold thin film. The absorption of light by surface plasmons in the gold structure is severely dependent on the dielectric properties at its vicinity. The electrical activity of neural cells (action potential) can modulate the dielectric properties at its vicinity and hence can modify the absorption of light inside the optical fiber. We have computationally analyzed the performance of the proposed sensor with different available geometries using Finite Element Method (FEM). In this regard, we have shown that the optical response of proposed sensor will track the action potential of the neuron at its vicinity. Based on different geometrical structure, the sensor has absorption in different regions of visible spectrum.
Collapse
Affiliation(s)
- Mitra Abedini
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran
| | - Tahereh Tekieh
- Complex System Group, Department of Physics, Sydney University, Sydney, NSW, Australia
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran.,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
38
|
Durso M, Borrachero-Conejo AI, Bettini C, Treossi E, Scidà A, Saracino E, Gazzano M, Christian M, Morandi V, Tuci G, Giambastiani G, Ottaviano L, Perrozzi F, Benfenati V, Melucci M, Palermo V. Biomimetic graphene for enhanced interaction with the external membrane of astrocytes. J Mater Chem B 2018; 6:5335-5342. [PMID: 32254499 DOI: 10.1039/c8tb01410h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Graphene and graphene substrates display huge potential as material interfaces for devices and biomedical tools targeting the modulation or recovery of brain functionality. However, to be considered reliable neural interfaces, graphene-derived substrates should properly interact with astrocytes, favoring their growth and avoiding adverse gliotic reactions. Indeed, astrocytes are the most abundant cells in the human brain and they have a crucial physiological role to maintain its homeostasis and modulate synaptic transmission. In this work, we describe a new strategy based on the chemical modification of graphene oxide (GO) with a synthetic phospholipid (PL) to improve interaction of GO with brain astroglial cells. The PL moieties were grafted on GO sheets through polymeric brushes obtained by atom-transfer radical-polymerization (ATRP) between acryloyl-modified PL and GO nanosheets modified with a bromide initiator. The adhesion of primary rat cortical astrocytes on GO-PL substrates increased by about three times with respect to that on glass substrates coated with standard adhesion agents (i.e. poly-d-lysine, PDL) as well as with respect to that on non-functionalized GO. Moreover, we show that astrocytes seeded on GO-PL did not display significant gliotic reactivity, indicating that the material interface did not cause a detrimental inflammatory reaction when interacting with astroglial cells. Our results indicate that the reported biomimetic approach could be applied to neural prosthesis to improve cell colonization and avoid glial scar formation in brain implants. Additionally, improved adhesion could be extremely relevant in devices targeting neural cell sensing/modulation of physiological activity.
Collapse
Affiliation(s)
- M Durso
- Consiglio Nazionale delle Ricerche, Istituto per la Sintesi Organica e la Fotoreattività (CNR-ISOF), via Piero Gobetti 101, 40129 Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Fischer RA, Zhang Y, Risner ML, Li D, Xu Y, Sappington RM. Impact of Graphene on the Efficacy of Neuron Culture Substrates. Adv Healthc Mater 2018; 7:e1701290. [PMID: 29943431 PMCID: PMC6105445 DOI: 10.1002/adhm.201701290] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 04/11/2018] [Indexed: 01/09/2023]
Abstract
How graphene influences the behavior of living cells or tissues remains a critical issue for its application in biomedical studies, despite the general acceptance that graphene is biocompatible. While direct contact between cells and graphene is not a requirement for all biomedical applications, it is often mandatory for biosensing. Therefore, it is important to clarify whether graphene impedes the ability of cells to interact with biological elements in their environment. Here, a systematic study is reported to determine whether applying graphene on top of matrix substrates masks interactions between these substrates and retinal ganglion cells (RGCs). Six different platforms are tested for primary RGC cultures with three platforms comprised of matrix substrates compatible with these neurons, and another three having a layer of graphene placed on top of the matrix substrates. The results demonstrate that graphene does not impede interactions between RGCs and underlying substrate matrix, such that their positive or negative effects on neuron viability and vitality are retained. However, direct contact between RGCs and graphene reduces the number, but increases basal activity, of functional cation channels. The data indicate that, when proper baselines are established, graphene is a promising biosensing material for in vitro applications in neuroscience.
Collapse
Affiliation(s)
- Rachel A. Fischer
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy and Department of Electrical, Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Yuchen Zhang
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy and Department of Electrical, Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | - Michael L. Risner
- Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Mechanical Engineering, Vanderbilt University, Nashville, TN 37235, USA
- Department of Physics and Astronomy and Department of Electrical, Engineering and Computer Science, Vanderbilt University, Nashville, TN 37235, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt Eye Institute, Vanderbilt University Medical Center, Department of Pharmacology, Vanderbilt University School of Medicine, Vanderbilt University, Nashville, TN 37235, USA
| | | | | | | |
Collapse
|
40
|
Iglesias D, Melle-Franco M, Kurbasic M, Melchionna M, Abrami M, Grassi M, Prato M, Marchesan S. Oxidized Nanocarbons-Tripeptide Supramolecular Hydrogels: Shape Matters! ACS NANO 2018; 12:5530-5538. [PMID: 29787672 DOI: 10.1021/acsnano.8b01182] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Short peptide hydrogels are attractive biomaterials but typically suffer from limited mechanical properties. Inclusion of other nanomaterials can serve the dual purpose of hydrogel reinforcement and of conferring additional physicochemical properties ( e. g., self-healing, conductivity), as long as they do not hamper peptide self-assembly. In particular, nanocarbons are ideal candidates, and their physicochemical properties have demonstrated great potential in nanocarbon-polymer gel biomaterials for tissue engineering or drug delivery. Recently, increasing interest in supramolecular hydrogels drove research also on their enhancement with nanocarbons. However, little is known on the effect of nanocarbon morphology on the self-assembly of short peptides, which are among the most popular hydrogel building blocks. In this work, three different oxidized nanocarbons ( i. e., carbon nanotube or CNT as 1D material, graphene oxide sheet or GO as 2D material, and carbon nanohorn or CNH as 3D material) were evaluated for their effects on the self-assembly of the unprotected tripeptide Leu-DPhe-DPhe at physiological conditions. Supramolecular hydrogels were obtained in all cases, and viscoelastic properties were clearly affected by the nanocarbons, which increased stiffness and resistance to applied stress. Notably, self-healing behavior was observed only in the case of CNTs. Tripeptide-nanotube interaction was noted already in solution prior to self-assembly, with the tripeptide acting as a dispersing agent in phosphate buffer. Experimental and in silico investigation of the interaction between peptide and CNTs suggests that the latter acts as nucleation templates for self-assembly and reassembly. Overall, we provide useful insights for the future design of composite biomaterials with acquired properties.
Collapse
Affiliation(s)
- Daniel Iglesias
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | | | - Marina Kurbasic
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Michele Melchionna
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| | - Michela Abrami
- Dipartimento di Ingegneria e Architettura , Università di Trieste , V. Valerio 6/1 , 34127 Trieste , Italy
| | - Mario Grassi
- Dipartimento di Ingegneria e Architettura , Università di Trieste , V. Valerio 6/1 , 34127 Trieste , Italy
| | - Maurizio Prato
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
- Carbon Nanobiotechnology Laboratory , CIC biomaGUNE , Paseo de Miramón 182 , 20009 Donostia-San Sebastian , Spain
- Basque Foundation for Science , Ikerbasque , Bilbao 48013 , Spain
| | - Silvia Marchesan
- Dipartimento di Scienze Chimiche e Farmaceutiche , Università di Trieste , Via L. Giorgieri 1 , 34127 Trieste , Italy
| |
Collapse
|
41
|
Kumar M, Ing NL, Narang V, Wijerathne NK, Hochbaum AI, Ulijn RV. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat Chem 2018; 10:696-703. [PMID: 29713031 DOI: 10.1038/s41557-018-0047-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 03/14/2018] [Indexed: 12/11/2022]
Abstract
Aqueous compatible supramolecular materials hold promise for applications in environmental remediation, energy harvesting and biomedicine. One remaining challenge is to actively select a target structure from a multitude of possible options, in response to chemical signals, while maintaining constant, physiological conditions. Here, we demonstrate the use of amino acids to actively decorate a self-assembling core molecule in situ, thereby controlling its amphiphilicity and consequent mode of assembly. The core molecule is the organic semiconductor naphthalene diimide, functionalized with D- and L- tyrosine methyl esters as competing reactive sites. In the presence of α-chymotrypsin and a selected encoding amino acid, kinetic competition between ester hydrolysis and amidation results in covalent or non-covalent amino acid incorporation, and variable supramolecular self-assembly pathways. Taking advantage of the semiconducting nature of the naphthalene diimide core, electronic wires could be formed and subsequently degraded, giving rise to temporally regulated electro-conductivity.
Collapse
Affiliation(s)
- Mohit Kumar
- Advanced Science Research Center, Graduate Center, City University of New York, New York, NY, USA
| | - Nicole L Ing
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, USA
| | - Vishal Narang
- Advanced Science Research Center, Graduate Center, City University of New York, New York, NY, USA
| | - Nadeesha K Wijerathne
- Advanced Science Research Center, Graduate Center, City University of New York, New York, NY, USA.,Department of Chemistry, Hunter College, City University of New York, New York, NY, USA.,Biochemistry and Chemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY, USA
| | - Allon I Hochbaum
- Department of Chemical Engineering and Materials Science, University of California, Irvine, Irvine, CA, USA.,Department of Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Rein V Ulijn
- Advanced Science Research Center, Graduate Center, City University of New York, New York, NY, USA. .,Department of Chemistry, Hunter College, City University of New York, New York, NY, USA. .,Biochemistry and Chemistry Ph.D. Programs, The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
42
|
Huang Y, Jiang Y, Wu Q, Wu X, An X, Chubykin AA, Cheng JX, Xu XM, Yang C. Nanoladders Facilitate Directional Axonal Outgrowth and Regeneration. ACS Biomater Sci Eng 2018; 4:1037-1045. [DOI: 10.1021/acsbiomaterials.7b00981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yimin Huang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Ying Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Qiuyu Wu
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907, United States
| | - Xiangbing Wu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, Indiana 46202, United States
| | - Xingda An
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Alexander A. Chubykin
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, Indiana 47907, United States
| | - Ji-Xin Cheng
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, 8 St Mary’s Street, Boston, Massachusetts 02215, United States
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, Massachusetts 02215, United States
| | - Xiao-Ming Xu
- Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 W. 15th Street, Indianapolis, Indiana 46202, United States
| | - Chen Yang
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- Department of Electrical and Computer Engineering, Boston University, 8 St Mary’s Street, Boston, Massachusetts 02215, United States
| |
Collapse
|
43
|
Beigmoradi R, Samimi A, Mohebbi-Kalhori D. Engineering of oriented carbon nanotubes in composite materials. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2018; 9:415-435. [PMID: 29515955 PMCID: PMC5815271 DOI: 10.3762/bjnano.9.41] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 01/09/2018] [Indexed: 06/01/2023]
Abstract
The orientation and arrangement engineering of carbon nanotubes (CNTs) in composite structures is considered a challenging issue. In this regard, two groups of in situ and ex situ techniques have been developed. In the first, the arrangement is achieved during CNT growth, while in the latter, the CNTs are initially grown in random orientation and the arrangement is then achieved during the device integration process. As the ex situ techniques are free from growth restrictions and more flexible in terms of controlling the alignment and sorting of the CNTs, they are considered by some as the preferred technique for engineering of oriented CNTs. This review focuses on recent progress in the improvement of the orientation and alignment of CNTs in composite materials. Moreover, the advantages and disadvantages of the processes are discussed as well as their future outlook.
Collapse
Affiliation(s)
- Razieh Beigmoradi
- Department of Chemical Engineering, University of Sistan and Baluchestan, University Blvd., Zahedan 98167-45845, Iran
- Innovation Center for Membrane Technology (ICMT), University of Sistan and Baluchestan, University Blvd., Zahedan 98167-45639, Iran
| | - Abdolreza Samimi
- Department of Chemical Engineering, University of Sistan and Baluchestan, University Blvd., Zahedan 98167-45845, Iran
- Innovation Center for Membrane Technology (ICMT), University of Sistan and Baluchestan, University Blvd., Zahedan 98167-45639, Iran
| | - Davod Mohebbi-Kalhori
- Department of Chemical Engineering, University of Sistan and Baluchestan, University Blvd., Zahedan 98167-45845, Iran
- Innovation Center for Membrane Technology (ICMT), University of Sistan and Baluchestan, University Blvd., Zahedan 98167-45639, Iran
| |
Collapse
|
44
|
Calbo J, Sancho-García JC, Ortí E, Aragó J. Quantum-Chemical Insights into the Self-Assembly of Carbon-Based Supramolecular Complexes. Molecules 2018; 23:molecules23010118. [PMID: 29316675 PMCID: PMC6017611 DOI: 10.3390/molecules23010118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/28/2022] Open
Abstract
Understanding how molecular systems self-assemble to form well-organized superstructures governed by noncovalent interactions is essential in the field of supramolecular chemistry. In the nanoscience context, the self-assembly of different carbon-based nanoforms (fullerenes, carbon nanotubes and graphene) with, in general, electron-donor molecular systems, has received increasing attention as a means of generating potential candidates for technological applications. In these carbon-based systems, a deep characterization of the supramolecular organization is crucial to establish an intimate relation between supramolecular structure and functionality. Detailed structural information on the self-assembly of these carbon-based nanoforms is however not always accessible from experimental techniques. In this regard, quantum chemistry has demonstrated to be key to gain a deep insight into the supramolecular organization of molecular systems of high interest. In this review, we intend to highlight the fundamental role that quantum-chemical calculations can play to understand the supramolecular self-assembly of carbon-based nanoforms through a limited selection of supramolecular assemblies involving fullerene, fullerene fragments, nanotubes and graphene with several electron-rich π-conjugated systems.
Collapse
Affiliation(s)
- Joaquín Calbo
- Institute of Molecular Science, University of Valencia, 46980 Paterna (Valencia), Spain.
| | | | - Enrique Ortí
- Institute of Molecular Science, University of Valencia, 46980 Paterna (Valencia), Spain.
| | - Juan Aragó
- Institute of Molecular Science, University of Valencia, 46980 Paterna (Valencia), Spain.
| |
Collapse
|
45
|
Tang N, Peng Z, Guo R, An M, Chen X, Li X, Yang N, Zang J. Thermal Transport in Soft PAAm Hydrogels. Polymers (Basel) 2017; 9:E688. [PMID: 30965991 PMCID: PMC6418834 DOI: 10.3390/polym9120688] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/27/2017] [Accepted: 12/05/2017] [Indexed: 12/31/2022] Open
Abstract
As the interface between human and machine becomes blurred, hydrogel incorporated electronics and devices have emerged to be a new class of flexible/stretchable electronic and ionic devices due to their extraordinary properties, such as softness, mechanically robustness, and biocompatibility. However, heat dissipation in these devices could be a critical issue and remains unexplored. Here, we report the experimental measurements and equilibrium molecular dynamics simulations of thermal conduction in polyacrylamide (PAAm) hydrogels. The thermal conductivity of PAAm hydrogels can be modulated by both the effective crosslinking density and water content in hydrogels. The effective crosslinking density dependent thermal conductivity in hydrogels varies from 0.33 to 0.51 Wm-1K-1, giving a 54% enhancement. We attribute the crosslinking effect to the competition between the increased conduction pathways and the enhanced phonon scattering effect. Moreover, water content can act as filler in polymers which leads to nearly 40% enhancement in thermal conductivity in PAAm hydrogels with water content vary from 23 to 88 wt %. Furthermore, we find the thermal conductivity of PAAm hydrogel is insensitive to temperature in the range of 25⁻40 °C. Our study offers fundamental understanding of thermal transport in soft materials and provides design guidance for hydrogel-based devices.
Collapse
Affiliation(s)
- Ni Tang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Zhan Peng
- Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Rulei Guo
- Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Meng An
- Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Xiandong Chen
- Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Xiaobo Li
- Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Nuo Yang
- Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Nano Interface Center for Energy, School of Energy and Power Engineering, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| | - Jianfeng Zang
- School of Optical and Electronic Information, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
- Innovation Institute, Huazhong University of Science and Technology, 1037 Luoyu Rd., Wuhan 430074, China.
| |
Collapse
|
46
|
Kim D, Kim SM, Lee S, Yoon MH. Investigation of neuronal pathfinding and construction of artificial neuronal networks on 3D-arranged porous fibrillar scaffolds with controlled geometry. Sci Rep 2017; 7:7716. [PMID: 28798490 PMCID: PMC5552865 DOI: 10.1038/s41598-017-08231-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/06/2017] [Indexed: 12/24/2022] Open
Abstract
Herein, we investigated the neurite pathfinding on electrospun microfibers with various fiber densities, diameters, and microbead islands, and demonstrated the development of 3D connected artificial neuronal network within a nanofiber-microbead-based porous scaffold. The primary culture of rat hippocampal embryonic neurons was deposited on geometry-controlled polystyrene (PS) fiber scaffolds while growth cone morphology, neurite outgrowth patterns, and focal adhesion protein expression were cautiously examined by microscopic imaging of immunostained and live neuronal cells derived from actin-GFP transgenic mice. It was demonstrated that the neurite outgrowth was guided by the overall microfiber orientation, but the increase in fiber density induced the neurite path alteration, thus, the reduction in neurite linearity. Indeed, we experimentally confirmed that growth cone could migrate to a neighboring, but, spatially disconnected microfiber by spontaneous filopodium extrusion, which is possibly responsible for the observed neurite steering. Furthermore, thinner microfiber scaffolds showed more pronounced expression of focal adhesion proteins than thicker ones, suggesting that the neuron-microfiber interaction can be delicately modulated by the underlying microfiber geometry. Finally, 3D connected functional neuronal networks were successfully constructed using PS nanofiber-microbead scaffolds where enhanced porosity and vertical fiber orientation permitted cell body inclusion within the scaffold and substantial neurite outgrowth in a vertical direction, respectively.
Collapse
Affiliation(s)
- Dongyoon Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seong-Min Kim
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Seyeong Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea
- Korea Institute of Energy Research (KIER), 152 Gajeong-ro, Yuseong-gu, Daejeon, 34129, Republic of Korea
| | - Myung-Han Yoon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdan-gwagiro, Buk-gu, Gwangju, 61005, Republic of Korea.
| |
Collapse
|