1
|
García-Navas V, Martín Del Campo A, Rodríguez-Rey M, Laiolo P. Syntopy promotes song divergence in a Neotropical avian radiation. Evolution 2025; 79:791-799. [PMID: 39946306 DOI: 10.1093/evolut/qpaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 01/29/2025] [Accepted: 02/11/2025] [Indexed: 05/17/2025]
Abstract
Theory predicts that selection against maladaptive hybridization leads to divergence of sexual characters in co-occurring closely related species. Consequently, signal disparity should be greater between sympatric vs. allopatric lineage pairs. However, this pattern may also result from species sorting or the greater evolutionary age of sympatric pairs. We used species pairs comparisons to examine the existence of acoustic divergence in a Neotropical montane radiation, the Rhinocryptidae, whose members tend to occupy different elevational ranges. Most rhinocryptids exhibit conservative morphology and are only differentiated by song attributes. Our results show that sympatric species pairs that overlap in elevation exhibited overall greater song divergence compared to allopatric species pairs after controlling for morphological differences, age and phylogenetic effects. Song divergence decreased when excluding sympatric pairs that do not overlap in elevation, suggesting that selection for improved species identification between co-occurring (syntopic) species accentuates signal differentiation. Comparative evolutionary models of signal differentiation over time revealed a similar pattern, which suggests that sexual selection in syntopy might have driven reproductive character displacement in this radiation. We conclude that selection against the production of unfit hybrids could favor acoustic traits that reliably signal species identity in tropical environments where many taxa are poorly differentiated by visual attributes.
Collapse
Affiliation(s)
- Vicente García-Navas
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Alba Martín Del Campo
- Department of Ecology and Evolution, Estación Biológica de Doñana EBD (CSIC), Seville, Spain
| | | | - Paola Laiolo
- Department of Biodiversity and Global Change, Biodiversity Research Institute (CSIC-UO-PA), Asturias, Spain
| |
Collapse
|
2
|
Fernández-Gómez RA, Prieto-Torres DA, Navarro-Sigüenza AG, Sánchez-González LA. Understanding the role of ecological divergence in the evolution of isolated populations in the Arremonops rufivirgatus species complex across Mesoamerica. BMC Ecol Evol 2025; 25:34. [PMID: 40234759 PMCID: PMC12001624 DOI: 10.1186/s12862-025-02373-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 04/07/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND The topographic complexity and wide range of environmental conditions of the Neotropical region have allowed the evolution of the most diverse avifauna in the world. Distributional patterns within this avian diversity mirror this complexity, and many species show allopatric distributions in environmentally continuous regions. Here, we used environmental variables and historical presence records to understand the evolution of the distribution of three isolated groups (Gulf, Pacific, and Yucatan Peninsula) of the Olive Sparrow (Arremonops rufivirgatus) species complex. We assessed the role of environmental factors underlying geographic distribution patterns in the complex based on ecological niche modeling and performed paleoclimatic reconstructions to assess distributional changes based on suitable areas during the Late Pleistocene. RESULTS Niche similarity was not rejected in the Pacific/Yucatan comparison, but the Gulf/Pacific and Gulf/Yucatan comparisons showed niche differentiation. We found regions with low climatic suitability representing a biogeographic barrier for the Pacific and the Yucatan groups, but not for the Yucatan and the Gulf groups, suggesting that biotic factors, such as competition with ecologically similar species, may be involved in geographic isolation. CONCLUSIONS Our results suggest that allopatric distributions in the three groups within the A. rufivirgatus complex probably evolved due to biotic interactions with ecologically similar species in the relatively environmentally continuous areas across the Gulf Slope, but to range contractions leading to isolation in the Yucatan and the Pacific groups.
Collapse
Affiliation(s)
- Ronald A Fernández-Gómez
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - David A Prieto-Torres
- Laboratorio de Biodiversidad y Cambio Global (LABIOCG), Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Mexico
| | - Adolfo G Navarro-Sigüenza
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Campus Juriquilla, Querétaro, 76230, Mexico
| | - Luis A Sánchez-González
- Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
3
|
Stefanini MI, Milla Carmona PS, Gómez-Bahamón V, Mongiardino Koch N, Soto IM, Gómez RO, Zyskowski K, Tambussi CP. Craniofacial modularity and the evolution of cranial kinesis in the adaptive radiation of Furnariidae (Aves: Passeriformes). Evolution 2025; 79:625-640. [PMID: 39878561 DOI: 10.1093/evolut/qpaf013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/30/2024] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
The role of phenotypic modularity in the evolution of skull morphology in birds has been a subject of debate in recent years. Furnariids (ovenbirds and woodcreepers), a spectacular avian adaptive radiation, are distinguished in their cranial morphology as the only passerines with two types of cranial kinesis, constituting a great model to test whether the evolution of novelties linked to kinesis was associated with shifts in patterns of evolutionary modularity and allometry in the avian skull. Our analyses by means of geometric morphometric tools and phylogenetic comparative methods show that the beak and neurocranium of furnariids evolved in a modular fashion and shaped by the cranial kinesis evolution. Besides, species with prokinesis show a higher degree of modularity and morphological disparity, lower phenotypic rates, as well as higher contribution of allometry in the evolution of the beak morphology than species with proximal rhynchokinesis, suggesting, as observed in several vertebrates, that the functional demands associated with higher degrees of cranial kinesis promoted rapid integration throughout the skull. Prokinetic-robust morphotypes and proximal rhynchokinetic-gracile morphotypes, have repeatedly evolved by evolutionary convergence in both modules, which suggests the existence of functional trade-offs and long-standing adaptive optima related to cranial kinesis.
Collapse
Affiliation(s)
- Manuel I Stefanini
- Laboratorio de Biología Integral de Sistemas Evolutivos, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET). DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428 EHA), CABA, Buenos Aires, Argentina
- Laboratorio de Biología Floral y Ecología Evolutiva, Instituto Multidisciplinario de Biología Vegetal (IMBIV-CONICET). Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Pablo S Milla Carmona
- The Palaeobiology Research Group, School of Earth Sciences, University of Bristol, Bristol, United Kingdom
| | - Valentina Gómez-Bahamón
- Negaunee Integrative Research Center, The Field Museum of Natural History, Chicago, United States
- Biological Sciences Department, Virginia Tech, Blacksburg, VA, United States
| | - Nicolás Mongiardino Koch
- Department of Geology and Geophysics and Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| | - Ignacio M Soto
- Laboratorio de Biología Integral de Sistemas Evolutivos, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA-CONICET). DEGE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II (C1428 EHA), CABA, Buenos Aires, Argentina
| | - Raúl O Gómez
- CONICET-Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Kristof Zyskowski
- Peabody Museum of Natural History, Yale University, New Haven, CT, United States
| | - Claudia P Tambussi
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, Córdoba, Argentina
| |
Collapse
|
4
|
Worm AJ, Donahue ER, Boves TJ, Sweet AD. Repeated Successful Nest Sharing and Cooperation Between Western Kingbirds ( Tyrannus verticalis) and a Female Western Kingbird × Scissor-Tailed Flycatcher ( T. forficatus) Hybrid. Ecol Evol 2025; 15:e70818. [PMID: 39816452 PMCID: PMC11733080 DOI: 10.1002/ece3.70818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/09/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Nest sharing by birds, or the phenomenon where multiple individuals of different species contribute genetically and parentally to offspring in a single nest, is a rare form of cooperative breeding that has only occasionally been reported in socially monogamous birds. Here we describe, both behaviorally and genetically, the unique case of two female birds, a western kingbird (Tyrannus verticalis) and a western kingbird × scissor-tailed flycatcher (T. forficatus) hybrid, simultaneously occupying (and likely co-incubating eggs in) a single nest. Both females provisioned nestlings, and they did this in two consecutive years (producing four fledglings each year). Genomic data from the females revealed that they were unrelated, and parentage analyses revealed that both females contributed genetically to at least one of the offspring, and at least two fathers were involved. These observations represent the first reported case of nest sharing involving a hybrid individual and the first case within the family Tyrannidae.
Collapse
Affiliation(s)
- Alexander J. Worm
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | - Emily R. Donahue
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | - Than J. Boves
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| | - Andrew D. Sweet
- Department of Biological SciencesArkansas State UniversityJonesboroArkansasUSA
| |
Collapse
|
5
|
Smart U, McCracken SF, Brunner RM, Rivera C, Rodriguez D. Detection of the Batrachochytrium dendrobatidis global panzootic lineage in Ecuadorian anurans of the Amazonian lowlands. DISEASES OF AQUATIC ORGANISMS 2024; 160:115-125. [PMID: 39665309 DOI: 10.3354/dao03830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Considerable attention has been directed to studying the infection dynamics of the fungal pathogen Batrachochytrium dendrobatidis (Bd) affecting amphibians in the high elevations of the Neotropics. However, lowland forests of the same realm remain comparatively understudied in this context. Herein, we attempt to bridge this gap by measuring the prevalence of Bd via quantitative polymerase chain reaction (qPCR) in several anuran taxa inhabiting the Amazonian lowlands in the northeast of Ecuador. To this end, we sampled 207 anurans from 10 different families, 25 different genera, and 55 distinct host species originally collected in 2008. Taxonomy (at the family level), morphology (i.e. weight and snout-vent length), and life-long aquatic dependency of hosts (i.e. aquatic index) were also compiled to serve as potential predictors of Bd infection status. Our findings revealed a relatively high Bd prevalence of 58%, with 88% of sampled anuran families testing positive for the fungus at varying proportions. Model selection involving fitting and testing several different linear models, including mixed linear models, revealed a significant negative relationship between host weight and Bd infection status (p < 0.01). However, no significant associations were observed between taxonomy, aquatic dependency, snout-vent length, and Bd infections. In addition, we only detected the global panzootic lineage of Bd (Bd-GPL) and not the Bd-Asia-2/Bd-Brazil lineage via qPCR single nucleotide polymorphism (SNP) genotyping. Our findings contribute to the understanding of Bd dynamics in the Neotropical lowlands and emphasize the need for future research on the ecological factors influencing Bd in the Amazon and their implications for amphibian conservation.
Collapse
Affiliation(s)
- Utpal Smart
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - Shawn F McCracken
- Department of Life Sciences, College of Science, Texas A&M University - Corpus Christi, TX 78412, USA
| | - Rebecca M Brunner
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA 94720, USA
| | - Clarissa Rivera
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| | - David Rodriguez
- Department of Biology, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
6
|
Castro‐Astor IN, Cracraft J, Tello JG, Alves MAS, Mauck WM, Aleixo A, Duca C, Carnaval AC. Phylogeography, Historical Population Demography, and Climatic Modeling of Two Bird Species Uncover Past Connections Between Amazonia and the Atlantic Forest. Ecol Evol 2024; 14:e70587. [PMID: 39659732 PMCID: PMC11628634 DOI: 10.1002/ece3.70587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/20/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
We combined mitochondrial DNA sequence data and paleoclimatic distribution models to document phylogeographic patterns and investigate the historical demography of two manakins, Ceratopipra rubrocapilla and Pseudopipra pipra, as well as to explore connections between Amazonia and the Atlantic Forest. ND2 sequences of C. rubrocapilla (75 individuals, 24 sites) and P. pipra (196, 77) were used in Bayesian inference and maximum likelihood analyses. We estimated mitochondrial nucleotide diversity, employed statistical tests to detect deviations from neutral evolution and constant population sizes, and used species distribution modeling to infer the location of suitable climate for both species under present-day conditions, the Last Glacial Maximum (LGM), and the Last Interglacial Maximum (LIG). Mitochondrial sequence data from C. rubrocapilla indicate one Amazonian and one Atlantic Forest haplogroup. In P. pipra, we recovered a highly supported and differentiated Atlantic Forest haplogroup embedded within a large Southern Amazonian clade. Genetic and taxonomic structure in Amazonia differs widely between these two species; older P. pipra has a more marked genetic structure and taxonomic differentiation relative to the younger C. rubrocapilla. Both species have similar genetic patterns in the Atlantic Forest. Paleoclimatic distribution models suggest connections between southwestern Amazonia and the southern Atlantic Forest during the LIG, but not between eastern Amazonia and the northeastern Atlantic Forest, as suggested by previous studies. This indicates that multiple corridors, and at different locations, may have been available over the Pliocene and Pleistocene between these two regions.
Collapse
Affiliation(s)
- Ivandy N. Castro‐Astor
- Department of Biology, City College of New York and Biology Program at CUNY Graduate CenterCity University of New YorkNew York CityNew YorkUSA
| | - Joel Cracraft
- Department of OrnithologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
| | - José G. Tello
- Department of OrnithologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
- Department of BiologyLong Island UniversityBrooklynNew YorkUSA
| | - Maria Alice S. Alves
- Departamento de EcologiaUniversidade do Estado do Rio de JaneiroRio de JaneiroBrazil
| | - William M. Mauck
- Department of OrnithologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
- IQVIA IncDurhamNorth CarolinaUSA
| | - Alexandre Aleixo
- Coordenação de ZoologiaMuseu Paraense Emílio GoeldiBelémBrazil
- Instituto Tecnológico Vale Desenvolvimento SustentávelBelémBrazil
| | - Charles Duca
- Universidade Vila Velha, Unidade Acadêmica II – BiomédicasVila VelhaBrazil
| | - Ana Carolina Carnaval
- Department of Biology, City College of New York and Biology Program at CUNY Graduate CenterCity University of New YorkNew York CityNew YorkUSA
- Biology Ph.D. ProgramCUNY Graduate CenterNew York CityNew YorkUSA
| |
Collapse
|
7
|
Bjornson S, Verbruggen H, Upham NS, Steenwyk JL. Reticulate evolution: Detection and utility in the phylogenomics era. Mol Phylogenet Evol 2024; 201:108197. [PMID: 39270765 DOI: 10.1016/j.ympev.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/13/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
Phylogenomics has enriched our understanding that the Tree of Life can have network-like or reticulate structures among some taxa and genes. Two non-vertical modes of evolution - hybridization/introgression and horizontal gene transfer - deviate from a strictly bifurcating tree model, causing non-treelike patterns. However, these reticulate processes can produce similar patterns to incomplete lineage sorting or recombination, potentially leading to ambiguity. Here, we present a brief overview of a phylogenomic workflow for inferring organismal histories and compare methods for distinguishing modes of reticulate evolution. We discuss how the timing of coalescent events can help disentangle introgression from incomplete lineage sorting and how horizontal gene transfer events can help determine the relative timing of speciation events. In doing so, we identify pitfalls of certain methods and discuss how to extend their utility across the Tree of Life. Workflows, methods, and future directions discussed herein underscore the need to embrace reticulate evolutionary patterns for understanding the timing and rates of evolutionary events, providing a clearer view of life's history.
Collapse
Affiliation(s)
- Saelin Bjornson
- School of BioSciences, University of Melbourne, Victoria, Australia
| | - Heroen Verbruggen
- School of BioSciences, University of Melbourne, Victoria, Australia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, 4485-661 Vairão, Portugal
| | - Nathan S Upham
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| | - Jacob L Steenwyk
- Howards Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
8
|
Lim HC, Bennett KFP, Justyn NM, Powers MJ, Long KM, Kingston SE, Lindsay WR, Pease JB, Fuxjager MJ, Bolton PE, Balakrishnan CN, Day LB, Parsons TJ, Brawn JD, Hill GE, Braun MJ. Sequential introgression of a carotenoid processing gene underlies sexual ornament diversity in a genus of manakins. SCIENCE ADVANCES 2024; 10:eadn8339. [PMID: 39565864 PMCID: PMC11578183 DOI: 10.1126/sciadv.adn8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
In a hybrid zone between two tropical lekking birds, yellow male plumage of one species has introgressed asymmetrically replacing white plumage of another via sexual selection. Here, we present a detailed analysis of the plumage trait to uncover its physical and genetic bases and trace its evolutionary history. We determine that the carotenoid lutein underlies the yellow phenotype and describe microstructural feather features likely to enhance color appearance. These same features reduce predicted water shedding capacity of feathers, a potential liability in the tropics. Through genome-scale DNA sequencing of hybrids and each species in the genus, we identify BCO2 as the major gene responsible for the color polymorphism. The BCO2 gene tree and genome-wide allele frequency patterns suggest that carotenoid-pigmented collars initially arose in a third species and reached the hybrid zone through historical gene flow. Complex interplay between sexual selection and hybridization has thus shaped phenotypes of these species, where conspicuous sexual traits are key to male reproductive success.
Collapse
Affiliation(s)
- Haw Chuan Lim
- Department of Biology, George Mason University, Fairfax, VA 22030, USA
- National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington, DC 20013, USA
| | - Kevin F. P. Bennett
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Nicholas M. Justyn
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Matthew J. Powers
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Kira M. Long
- Program in Ecology Evolution and Conservation Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | | | - Willow R. Lindsay
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - James B. Pease
- Department of Biology, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Matthew J. Fuxjager
- Department of Ecology Evolution and Organismal Biology, Brown University, Providence, RI 02912, USA
| | - Peri E. Bolton
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Christopher N. Balakrishnan
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
- Division of Environmental Biology, National Science Foundation, Alexandria, VA 22314, USA
| | - Lainy B. Day
- Department of Biology and Interdisciplinary Neuroscience Minor, University of Mississippi, University, MS 38677, USA
| | - Thomas J. Parsons
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jeffrey D. Brawn
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Geoffrey E. Hill
- Department of Biological Sciences, Auburn University, Auburn, AL 36830, USA
| | - Michael J. Braun
- Department of Biology and Biological Sciences Graduate Program, University of Maryland, College Park, MD 20742, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| |
Collapse
|
9
|
Sagar HSSC, Anand A, Persche ME, Pidgeon AM, Zuckerberg B, Şekercioğlu ÇH, Buřivalová Z. Global analysis of acoustic frequency characteristics in birds. Proc Biol Sci 2024; 291:20241908. [PMID: 39501883 PMCID: PMC11538988 DOI: 10.1098/rspb.2024.1908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/13/2024] [Accepted: 09/24/2024] [Indexed: 11/08/2024] Open
Abstract
Animal communication plays a crucial role in biology, yet the wide variability in vocalizations is not fully understood. Previous studies in birds have been limited in taxonomic and analytical breadth. Here, we analyse an extensive dataset of >140 000 recordings of vocalizations from 8450 bird species, representing nearly every avian order and family, under a structural causal model framework, to explore the influence of eco-evolutionary traits on acoustic frequency characteristics. We find that body mass, beak size, habitat associations and geography influence acoustic frequency characteristics, with varying degrees of interaction with song acquisition type. We find no evidence for the influence of vegetation density, sexual dimorphism, range size and competition on our measures of acoustic frequency characteristics. Our results, built on decades of researchers' empirical observations collected across the globe, provide a new breadth of evidence about how eco-evolutionary processes shape bird communication.
Collapse
Affiliation(s)
- H. S. Sathya Chandra Sagar
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| | - Akash Anand
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Maia E. Persche
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Anna M. Pidgeon
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
| | - Benjamin Zuckerberg
- School of Biological Sciences, The University of Utah, Salt LakeUT 84112, USA
| | | | - Zuzana Buřivalová
- Department of Forest and Wildlife Ecology, University of Wisconsin, MadisonWI 53706, USA
- Nelson Institute for Environmental Studies, University of Wisconsin, MadisonWI 53726, USA
| |
Collapse
|
10
|
Berv JS, Singhal S, Field DJ, Walker-Hale N, McHugh SW, Shipley JR, Miller ET, Kimball RT, Braun EL, Dornburg A, Parins-Fukuchi CT, Prum RO, Winger BM, Friedman M, Smith SA. Genome and life-history evolution link bird diversification to the end-Cretaceous mass extinction. SCIENCE ADVANCES 2024; 10:eadp0114. [PMID: 39083615 PMCID: PMC11290531 DOI: 10.1126/sciadv.adp0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024]
Abstract
Complex patterns of genome evolution associated with the end-Cretaceous [Cretaceous-Paleogene (K-Pg)] mass extinction limit our understanding of the early evolutionary history of modern birds. Here, we analyzed patterns of avian molecular evolution and identified distinct macroevolutionary regimes across exons, introns, untranslated regions, and mitochondrial genomes. Bird clades originating near the K-Pg boundary exhibited numerous shifts in the mode of molecular evolution, suggesting a burst of genomic heterogeneity at this point in Earth's history. These inferred shifts in substitution patterns were closely related to evolutionary shifts in developmental mode, adult body mass, and patterns of metabolic scaling. Our results suggest that the end-Cretaceous mass extinction triggered integrated patterns of evolution across avian genomes, physiology, and life history near the dawn of the modern bird radiation.
Collapse
Affiliation(s)
- Jacob S. Berv
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Daniel J. Field
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK
- Museum of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Nathanael Walker-Hale
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Sean W. McHugh
- Department of Evolution, Ecology, and Population Biology, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - J. Ryan Shipley
- Department of Forest Dynamics, Swiss Federal Institute for Forest, Snow, and Landscape Research WSL, Zürcherstrasse 111 8903, Birmensdorf, Switzerland
| | - Eliot T. Miller
- Center for Avian Population Studies, Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA
| | - Rebecca T. Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Edward L. Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Alex Dornburg
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, Charlotte, NC 28223, USA
| | - C. Tomomi Parins-Fukuchi
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Richard O. Prum
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520, USA
- Peabody Museum of Natural History, Yale University, New Haven, CT 06520, USA
| | - Benjamin M. Winger
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Museum of Zoology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| | - Matt Friedman
- Museum of Paleontology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Earth and Environmental Sciences, University of Michigan, 1100 North University Avenue, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, 1105 North University Avenue, Biological Sciences Building, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Willink B, Ware JL, Svensson EI. Tropical Origin, Global Diversification, and Dispersal in the Pond Damselflies (Coenagrionoidea) Revealed by a New Molecular Phylogeny. Syst Biol 2024; 73:290-307. [PMID: 38262741 PMCID: PMC11282367 DOI: 10.1093/sysbio/syae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 12/22/2023] [Accepted: 01/23/2024] [Indexed: 01/25/2024] Open
Abstract
The processes responsible for the formation of Earth's most conspicuous diversity pattern, the latitudinal diversity gradient (LDG), remain unexplored for many clades in the Tree of Life. Here, we present a densely sampled and dated molecular phylogeny for the most speciose clade of damselflies worldwide (Odonata: Coenagrionoidea) and investigate the role of time, macroevolutionary processes, and biome-shift dynamics in shaping the LDG in this ancient insect superfamily. We used process-based biogeographic models to jointly infer ancestral ranges and speciation times and to characterize within-biome dispersal and biome-shift dynamics across the cosmopolitan distribution of Coenagrionoidea. We also investigated temporal and biome-dependent variation in diversification rates. Our results uncover a tropical origin of pond damselflies and featherlegs ~105 Ma, while highlighting the uncertainty of ancestral ranges within the tropics in deep time. Even though diversification rates have declined since the origin of this clade, global climate change and biome-shifts have slowly increased diversity in warm- and cold-temperate areas, where lineage turnover rates have been relatively higher. This study underscores the importance of biogeographic origin and time to diversify as important drivers of the LDG in pond damselflies and their relatives, while diversification dynamics have instead resulted in the formation of ephemeral species in temperate regions. Biome-shifts, although limited by tropical niche conservatism, have been the main factor reducing the steepness of the LDG in the last 30 Myr. With ongoing climate change and increasing northward range expansions of many damselfly taxa, the LDG may become less pronounced. Our results support recent calls to unify biogeographic and macroevolutionary approaches to improve our understanding of how latitudinal diversity gradients are formed and why they vary across time and among taxa.
Collapse
Affiliation(s)
- Beatriz Willink
- Department of Zoology, Stockholm University, Svante Arrhenius väg 18b, Stockholm 106-91, Sweden
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore 117558, Singapore
| | - Jessica L Ware
- Division of Invertebrate Zoology, American Museum of Natural History, 200 Central Park West, New York, NY, 10024, USA
| | - Erik I Svensson
- Department of Biology, Evolutionary Ecology Unit, Lund University, Sölvegatan 37, Lund 223-62, Sweden
| |
Collapse
|
12
|
Ghimire P, Palacios C, Trimble J, Lamichhaney S. Museum genomics approach to study the taxonomy and evolution of Woolly-necked storks using historic specimens. G3 (BETHESDA, MD.) 2024; 14:jkae081. [PMID: 38626302 PMCID: PMC11771223 DOI: 10.1093/g3journal/jkae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/16/2024] [Accepted: 04/05/2024] [Indexed: 04/18/2024]
Abstract
The accessibility of genomic tools in evolutionary biology has allowed for a thorough exploration of various evolutionary processes associated with adaptation and speciation. However, genomic studies in natural systems present numerous challenges, reflecting the inherent complexities of studying organisms in their native habitats. The utilization of museum specimens for genomics research has received increased attention in recent times, facilitated by advancements in ancient DNA techniques. In this study, we have utilized a museum genomics approach to analyze historic specimens of Woolly-necked storks (Ciconia spp.) and examine their genetic composition and taxonomic status and explore the evolutionary and adaptive trajectories of populations over the years. The Woolly-necked storks are distributed in Asia and Africa with a taxonomic classification that has been a matter of ambiguity. Asian and African Woollynecks were recently recognized as different species based on their morphological differences; however, their genomic validation was lacking. In this study, we have used ∼70-year-old museum samples for whole-genome population-scale sequencing. Our study has revealed that Asian and African Woollynecks are genetically distinct, consistent with the current taxonomic classification based on morphological features. However, we also found a high genetic divergence between the Asian subspecies Ciconia episcopus neglecta and Ciconia episcopus episcopus, suggesting this classification requires a detailed examination to explore processes of ongoing speciation. Because taxonomic classification directly impacts conservation efforts, and there is evidence of declining populations of Asian Woollynecks in Southeast Asia, our results highlight that population-scale studies are urgent to determine the genetic, ecological, and phylogenetic diversity of these birds.
Collapse
Affiliation(s)
- Prashant Ghimire
- Department of Biological Sciences, Kent State University,
Kent, OH 44240, USA
| | - Catalina Palacios
- Department of Biological Sciences, Kent State University,
Kent, OH 44240, USA
| | - Jeremiah Trimble
- Museum of Comparative Zoology, Harvard University,
Cambridge, MA 02138, USA
| | - Sangeet Lamichhaney
- Department of Biological Sciences, Kent State University,
Kent, OH 44240, USA
- School of Biomedical Sciences, Kent State University,
Kent, OH 44240, USA
| |
Collapse
|
13
|
Fu S, Chen X, Wang K, Chen J, Zhou J, Yi W, Lyu M, Ye Z, Bu W. Shared phylogeographic patterns and environmental responses of co-distributed soybean pests: Insights from comparative phylogeographic studies of Riptortus pedestris and Riptortus linearis in the subtropics of East Asia. Mol Phylogenet Evol 2024; 195:108055. [PMID: 38485106 DOI: 10.1016/j.ympev.2024.108055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 03/07/2024] [Indexed: 03/19/2024]
Abstract
Comparative phylogeographic studies of closely related species sharing co-distribution areas can elucidate the role of shared historical factors and environmental changes in shaping their phylogeographic pattern. The bean bugs, Riptortus pedestris and Riptortus linearis, which both inhabit subtropical regions in East Asia, are recognized as highly destructive soybean pests. Many previous studies have investigated the biological characteristics, pheromones, chemicals and control mechanisms of these two pests, but few studies have explored their phylogeographic patterns and underlying factors. In this study, we generated a double-digest restriction site-associated DNA sequencing (ddRAD-seq) dataset to investigate phylogeographic patterns and construct ecological niche models (ENM) for both Riptortus species. Our findings revealed similar niche occupancies and population genetic structures between the two species, with each comprising two phylogeographic lineages (i.e., the mainland China and the Indochina Peninsula clades) that diverged approximately 0.1 and 0.3 million years ago, respectively. This divergence likely resulted from the combined effects of temperatures variation and geographical barriers in the mountainous regions of Southwest China. Further demographic history and ENM analyses suggested that both pests underwent rapid expansion prior to the Last Glacial Maximum (LGM). Furthermore, ENM predicts a northward shift of both pests into new soybean-producing regions due to global warming. Our study indicated that co-distribution soybean pests with overlapping ecological niches and similar life histories in subtropical regions of East Asia exhibit congruent phylogeographic and demographic patterns in response to shared historical biogeographic drivers.
Collapse
Affiliation(s)
- Siying Fu
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Xin Chen
- College of Life Sciences, Cangzhou Normal University, Cangzhou, China(2)
| | - Kaibin Wang
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Juhong Chen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiayue Zhou
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Wenbo Yi
- Department of Biology, Xinzhou Normal University, Xinzhou, Shanxi, China(2)
| | - Minhua Lyu
- Nanchang University, Affiliated Hospital 1, Jiangxi, China(2)
| | - Zhen Ye
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Wenjun Bu
- College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
14
|
Musher LJ, Del-Rio G, Marcondes RS, Brumfield RT, Bravo GA, Thom G. Geogenomic Predictors of Genetree Heterogeneity Explain Phylogeographic and Introgression History: A Case Study in an Amazonian Bird (Thamnophilus aethiops). Syst Biol 2024; 73:36-52. [PMID: 37804132 DOI: 10.1093/sysbio/syad061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023] Open
Abstract
Can knowledge about genome architecture inform biogeographic and phylogenetic inference? Selection, drift, recombination, and gene flow interact to produce a genomic landscape of divergence wherein patterns of differentiation and genealogy vary nonrandomly across the genomes of diverging populations. For instance, genealogical patterns that arise due to gene flow should be more likely to occur on smaller chromosomes, which experience high recombination, whereas those tracking histories of geographic isolation (reduced gene flow caused by a barrier) and divergence should be more likely to occur on larger and sex chromosomes. In Amazonia, populations of many bird species diverge and introgress across rivers, resulting in reticulated genomic signals. Herein, we used reduced representation genomic data to disentangle the evolutionary history of 4 populations of an Amazonian antbird, Thamnophilus aethiops, whose biogeographic history was associated with the dynamic evolution of the Madeira River Basin. Specifically, we evaluate whether a large river capture event ca. 200 Ka, gave rise to reticulated genealogies in the genome by making spatially explicit predictions about isolation and gene flow based on knowledge about genomic processes. We first estimated chromosome-level phylogenies and recovered 2 primary topologies across the genome. The first topology (T1) was most consistent with predictions about population divergence and was recovered for the Z-chromosome. The second (T2), was consistent with predictions about gene flow upon secondary contact. To evaluate support for these topologies, we trained a convolutional neural network to classify our data into alternative diversification models and estimate demographic parameters. The best-fit model was concordant with T1 and included gene flow between non-sister taxa. Finally, we modeled levels of divergence and introgression as functions of chromosome length and found that smaller chromosomes experienced higher gene flow. Given that (1) genetrees supporting T2 were more likely to occur on smaller chromosomes and (2) we found lower levels of introgression on larger chromosomes (and especially the Z-chromosome), we argue that T1 represents the history of population divergence across rivers and T2 the history of secondary contact due to barrier loss. Our results suggest that a significant portion of genomic heterogeneity arises due to extrinsic biogeographic processes such as river capture interacting with intrinsic processes associated with genome architecture. Future phylogeographic studies would benefit from accounting for genomic processes, as different parts of the genome reveal contrasting, albeit complementary histories, all of which are relevant for disentangling the intricate geogenomic mechanisms of biotic diversification. [Amazonia; biogeography; demographic modeling; gene flow; gene tree; genome architecture; geogenomics; introgression; linked selection; neural network; phylogenomic; phylogeography; reproductive isolation; speciation; species tree.].
Collapse
Affiliation(s)
- Lukas J Musher
- Department of Ornithology, The Academy of Natural Sciences of Drexel University, Philadelphia, PA 19103, USA
- Department of Ornithology, American Museum of Natural History, New York, NY 10024, USA
| | - Glaucia Del-Rio
- Cornell Laboratory of Ornithology and Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
- Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA
| | - Rafael S Marcondes
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
- Department of BioSciences, Rice University, Houston, TX 77005, USA
| | - Robb T Brumfield
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Gustavo A Bravo
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Claustro de San Agustín, Villa de Leyva, Boyacá 111311, Colombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory Thom
- Department of Biology and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
15
|
Stiller J, Feng S, Chowdhury AA, Rivas-González I, Duchêne DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldså J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Székely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen MF, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, Zhang G. Complexity of avian evolution revealed by family-level genomes. Nature 2024; 629:851-860. [PMID: 38560995 PMCID: PMC11111414 DOI: 10.1038/s41586-024-07323-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.
Collapse
Affiliation(s)
- Josefin Stiller
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Shaohong Feng
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China
| | - Al-Aabid Chowdhury
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | | | - David A Duchêne
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Qi Fang
- BGI Research, Shenzhen, China
| | - Yuan Deng
- BGI Research, Shenzhen, China
- BGI Research, Wuhan, China
| | - Alexey Kozlov
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Alexandros Stamatakis
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
- Department of Natural History, Royal Ontario Museum, Toronto, Ontario, Canada
| | - Jacqueline M T Nguyen
- College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
- Australian Museum Research Institute, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Brant C Faircloth
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
| | - Julia Haag
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
| | - Peter Houde
- Department of Biology, New Mexico State University, Las Cruces, NM, USA
| | - Joel Cracraft
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| | - Metin Balaban
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Uyen Mai
- Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Guangji Chen
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rongsheng Gao
- BGI Research, Wuhan, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | | | - Yulong Xie
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zijian Huang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhen Cao
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Zhi Yan
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Huw A Ogilvie
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, TX, USA
| | - Bent Lindow
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Greece
| | - Jon Fjeldså
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Peter A Hosner
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Rute R da Fonseca
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Bent Petersen
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Centre of Excellence for Omics-Driven Computational Biodiscovery, Faculty of Applied Sciences, AIMST University, Bedong, Malaysia
| | - Joseph A Tobias
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Tamás Székely
- Milner Centre for Evolution, University of Bath, Bath, UK
- ELKH-DE Reproductive Strategies Research Group, University of Debrecen, Debrecen, Hungary
| | - Jonathan David Kennedy
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Andrew Hart Reeve
- Natural History Museum Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Andras Liker
- HUN-REN-PE Evolutionary Ecology Research Group, University of Pannonia, Veszprém, Hungary
- Behavioural Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary
| | | | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Porto, Portugal
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Fumin Lei
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Institute of Ecology, Peking University, Beijing, China
- Danish Institute for Advanced Study, University of Southern Denmark, Odense, Denmark
| | - Gary R Graves
- Center for Macroecology, Evolution, and Climate, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
| | | | - Tandy Warnow
- University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The Globe Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Durham, NC, USA
| | | | - Guojie Zhang
- Center for Evolutionary & Organismal Biology, Liangzhu Laboratory & Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, China.
- BGI Research, Wuhan, China.
- Villum Center for Biodiversity Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
16
|
Augustijnen H, Bätscher L, Cesanek M, Chkhartishvili T, Dincă V, Iankoshvili G, Ogawa K, Vila R, Klopfstein S, de Vos JM, Lucek K. A macroevolutionary role for chromosomal fusion and fission in Erebia butterflies. SCIENCE ADVANCES 2024; 10:eadl0989. [PMID: 38630820 PMCID: PMC11023530 DOI: 10.1126/sciadv.adl0989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024]
Abstract
The impact of large-scale chromosomal rearrangements, such as fusions and fissions, on speciation is a long-standing conundrum. We assessed whether bursts of change in chromosome numbers resulting from chromosomal fusion or fission are related to increased speciation rates in Erebia, one of the most species-rich and karyotypically variable butterfly groups. We established a genome-based phylogeny and used state-dependent birth-death models to infer trajectories of karyotype evolution. We demonstrated that rates of anagenetic chromosomal changes (i.e., along phylogenetic branches) exceed cladogenetic changes (i.e., at speciation events), but, when cladogenetic changes occur, they are mostly associated with chromosomal fissions rather than fusions. We found that the relative importance of fusion and fission differs among Erebia clades of different ages and that especially in younger, more karyotypically diverse clades, speciation is more frequently associated with cladogenetic chromosomal changes. Overall, our results imply that chromosomal fusions and fissions have contrasting macroevolutionary roles and that large-scale chromosomal rearrangements are associated with bursts of species diversification.
Collapse
Affiliation(s)
- Hannah Augustijnen
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Livio Bätscher
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Martin Cesanek
- Slovak Entomological Society, Slovak Academy of Sciences, Bratislava 1, Slovakia
| | | | - Vlad Dincă
- Ecology and Genetics Research Unit, University of Oulu, 90570 Oulu, Finland
| | | | - Kota Ogawa
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka 819-0395, Japan
- Insect Sciences and Creative Entomology Center, Kyushu University, Fukuoka 819-0395, Japan
| | - Roger Vila
- Institut de Biologia Evolutiva (CSIC-Univ. Pompeu Fabra), 08003 Barcelona, Spain
| | - Seraina Klopfstein
- Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland
- Life Sciences, Natural History Museum Basel, 4051 Basel, Switzerland
| | - Jurriaan M. de Vos
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
| | - Kay Lucek
- Department of Environmental Science, University of Basel, 4056 Basel, Switzerland
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| |
Collapse
|
17
|
Bolívar‐Leguizamón SD, Bocalini F, Silveira LF, Bravo GA. The role of biogeographical barriers on the historical dynamics of passerine birds with a circum-Amazonian distribution. Ecol Evol 2024; 14:e10860. [PMID: 38450322 PMCID: PMC10915597 DOI: 10.1002/ece3.10860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 03/08/2024] Open
Abstract
Common distributional patterns have provided the foundations of our knowledge of Neotropical biogeography. A distinctive pattern is the "circum-Amazonian distribution", which surrounds Amazonia across the forested lowlands south and east of the basin, the Andean foothills, the Venezuelan Coastal Range, and the Tepuis. The underlying evolutionary and biogeographical mechanisms responsible for this widespread pattern of avian distribution have yet to be elucidated. Here, we test the effects of biogeographical barriers in four species in the passerine family Thamnophilidae by performing comparative demographic analyses of genome-scale data. Specifically, we used flanking regions of ultraconserved regions to estimate population historical parameters and genealogical trees and tested demographic models reflecting contrasting biogeographical scenarios explaining the circum-Amazonian distribution. We found that taxa with circum-Amazonian distribution have at least two main phylogeographical clusters: (1) Andes, often extending into Central America and the Tepuis; and (2) the remaining of their distribution. These clusters are connected through corridors along the Chaco-Cerrado and southeastern Amazonia, allowing gene flow between Andean and eastern South American populations. Demographic histories are consistent with Pleistocene climatic fluctuations having a strong influence on the diversification history of circum-Amazonian taxa, Refugia played a crucial role, enabling both phenotypic and genetic differentiation, yet maintaining substantial interconnectedness to keep considerable levels of gene flow during different dry/cool and warm/humid periods. Additionally, steep environmental gradients appear to play a critical role in maintaining both genetic and phenotypic structure.
Collapse
Affiliation(s)
- Sergio D. Bolívar‐Leguizamón
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
- Laboratório de Zoologia de Vertebrados, Departamento de Ciências Biológicas, Escola Superior de Agricultura “Luiz de Queiroz” –ESALQ–Universidade de São PauloPiracicabaBrazil
| | - Fernanda Bocalini
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
| | - Luís F. Silveira
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
| | - Gustavo A. Bravo
- Seção de AvesMuseu de Zoologia da Universidade de São PauloSão PauloBrazil
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von HumboldtClaustro de San AgustínVilla de Leyva, BoyacáColombia
- Museum of Comparative Zoology and Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMassachusettsUSA
| |
Collapse
|
18
|
Wacker KS, Winger BM. An Elevational Phylogeographic Diversity Gradient in Neotropical Birds Is Decoupled from Speciation Rates. Am Nat 2024; 203:362-381. [PMID: 38358813 DOI: 10.1086/728598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractA key question about macroevolutionary speciation rates is whether they are controlled by microevolutionary processes operating at the population level. For example, does spatial variation in population genetic differentiation underlie geographical gradients in speciation rates? Previous work suggests that speciation rates increase with elevation in Neotropical birds, but underlying population-level gradients remain unexplored. Here, we characterize elevational phylogeographic diversity between montane and lowland birds in the megadiverse Andes-Amazonian system and assess its relationship to speciation rates to evaluate the link between population-level differentiation and species-level diversification. We aggregated and georeferenced nearly 7,000 mitochondrial DNA sequences across 103 species or species complexes in the Andes and Amazonia and used these sequences to describe phylogeographic differentiation across both regions. Our results show increased levels of both discrete and continuous metrics of population structure in the Andean mountains compared with the Amazonian lowlands. However, higher levels of population differentiation do not predict higher rates of speciation in our dataset. Multiple potential factors may lead to our observed decoupling of initial population divergence and speciation rates, including the ephemerality of incipient species and the multifaceted nature of the speciation process, as well as methodological challenges associated with estimating rates of population differentiation and speciation.
Collapse
|
19
|
Harmáčková L, Remeš V. The Evolution of Local Co-occurrence in Birds in Relation to Latitude, Degree of Sympatry, and Range Symmetry. Am Nat 2024; 203:432-443. [PMID: 38358810 DOI: 10.1086/728687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
AbstractRecent speciation rates and the degree of range-wide sympatry are usually higher farther from the equator. Is there also a higher degree of secondary syntopy (coexistence in local assemblages in sympatry) at higher latitudes and, subsequently, an increase in local species richness? We studied the evolution of syntopy in passerine birds using worldwide species distribution data. We chose recently diverged species pairs from subclades not older than 5 or 7 million years, range-wide degree of sympatry not lower than 5% or 25%, and three definitions of the breeding season. We related their syntopy to latitude, the degree of sympatry (breeding range overlap), range symmetry, and the age of split. Syntopy was positively related to latitude, but it did not differ between tropical and temperate regions, instead increasing from the Southern to the Northern Hemisphere. Syntopy was also higher in species pairs with a higher degree of sympatry and more symmetric ranges, but it did not predict local species richness. Following speciation, species in the Northern Hemisphere presumably achieve positive local co-occurrence faster than elsewhere, which could facilitate their higher speciation rates. However, this does not seem to be linked to local species richness, which is probably governed by other processes.
Collapse
|
20
|
Title PO, Singhal S, Grundler MC, Costa GC, Pyron RA, Colston TJ, Grundler MR, Prates I, Stepanova N, Jones MEH, Cavalcanti LBQ, Colli GR, Di-Poï N, Donnellan SC, Moritz C, Mesquita DO, Pianka ER, Smith SA, Vitt LJ, Rabosky DL. The macroevolutionary singularity of snakes. Science 2024; 383:918-923. [PMID: 38386744 DOI: 10.1126/science.adh2449] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 01/02/2024] [Indexed: 02/24/2024]
Abstract
Snakes and lizards (Squamata) represent a third of terrestrial vertebrates and exhibit spectacular innovations in locomotion, feeding, and sensory processing. However, the evolutionary drivers of this radiation remain poorly known. We infer potential causes and ultimate consequences of squamate macroevolution by combining individual-based natural history observations (>60,000 animals) with a comprehensive time-calibrated phylogeny that we anchored with genomic data (5400 loci) from 1018 species. Due to shifts in the dynamics of speciation and phenotypic evolution, snakes have transformed the trophic structure of animal communities through the recurrent origin and diversification of specialized predatory strategies. Squamate biodiversity reflects a legacy of singular events that occurred during the early history of snakes and reveals the impact of historical contingency on vertebrate biodiversity.
Collapse
Affiliation(s)
- Pascal O Title
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY 11794, USA
- Environmental Resilience Institute, Indiana University, Bloomington, IN 47408, USA
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sonal Singhal
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology, California State University, Dominguez Hills, Carson, CA 90747, USA
| | - Michael C Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gabriel C Costa
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biology and Environmental Sciences, Auburn University at Montgomery, Montgomery, AL 36117, USA
| | - R Alexander Pyron
- Department of Biological Sciences, The George Washington University, Washington, DC 20052, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
| | - Timothy J Colston
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA
- Biology Department, University of Puerto Rico at Mayagüez, Mayagüez 00680, Puerto Rico
| | - Maggie R Grundler
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, Berkeley, CA 94720, USA
- Museum of Vertebrate Zoology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Ivan Prates
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Natasha Stepanova
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marc E H Jones
- Science Group: Fossil Reptiles, Amphibians and Birds Section, Natural History Museum, London SW7 5BD, UK
- Research Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia
| | - Lucas B Q Cavalcanti
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Guarino R Colli
- Departamento de Zoologia, Universidade de Brasília, Brasília, Distrito Federal 70910-900, Brazil
| | - Nicolas Di-Poï
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | | | - Craig Moritz
- Research School of Biology, The Australian National University, Canberra, ACT 2600, Australia
| | - Daniel O Mesquita
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Paraíba 58051-900, Brazil
| | - Eric R Pianka
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Stephen A Smith
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Laurie J Vitt
- Sam Noble Museum and Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Daniel L Rabosky
- Museum of Zoology and Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
21
|
Bello-González OC, Andersen T, Mercado-Silva N. A revised, annotated checklist of Mexican non-biting midges (Diptera, Chironomidae). Zookeys 2024; 1191:237-286. [PMID: 38389584 PMCID: PMC10882552 DOI: 10.3897/zookeys.1191.117223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/12/2024] [Indexed: 02/24/2024] Open
Abstract
An updated checklist of Mexican non-biting midges (Chironomidae) is presented. A total of 110 species of Chironomidae are known for Mexico: 52 species in 25 genera belong to the subfamily Chironominae, 30 species in 13 genera to Orthocladiinae, 21 species in nine genera to Tanypodinae, five species in two genera to Telmatogetoninae, and two species in one genus to Diamesinae. In addition, 41 genera without identified species are listed. The highest number of species (29) is recorded from the state of Campeche, while 19 species have been found in Veracruz and 15 in Nuevo León. Few or no records exist for states in Central and Northern Mexico, or those on the Pacific coast. The type localities for 34 species are in Mexico; of these, 27 species (25% of the total number of species recorded in the country) are endemic. Twenty-nine species recorded in Mexico have a Neotropical distribution, 15 a Nearctic distribution, and 39 species are distributed in both the Neotropical and Nearctic regions or more widely. It has been suggested that as many as 1000 species might occur in Mexico; so only a little more than 10% of the expected diversity has so far been recorded.
Collapse
Affiliation(s)
- Orestes C Bello-González
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| | - Trond Andersen
- Department of Natural History, University Museum of Bergen, University of Bergen, P.O. Box 7800, NO-5020, Bergen, Norway
| | - Norman Mercado-Silva
- Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, Mexico
| |
Collapse
|
22
|
Schultz ED, Thom G, Zuquim G, Hickerson MJ, Tuomisto H, Ribas CC. Habitat specialization predicts demographic response and vulnerability of floodplain birds in Amazonia. Mol Ecol 2024; 33:e17221. [PMID: 38018028 DOI: 10.1111/mec.17221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
The annual flooding cycle of Amazonian rivers sustains the largest floodplains on Earth, which harbour a unique bird community. Recent studies suggest that habitat specialization drove different patterns of population structure and gene flow in floodplain birds. However, the lack of a direct estimate of habitat affinity prevents a proper test of its effects on population histories. In this work, we used occurrence data, satellite images and genomic data (ultra-conserved elements) from 24 bird species specialized on a variety of seasonally flooded environments to classify habitat affinities and test its influence on evolutionary histories of Amazonian floodplain birds. We demonstrate that birds with higher specialization in river islands and dynamic environments have gone through more recent demographic expansion and currently have less genetic diversity than floodplain generalist birds. Our results indicate that there is an intrinsic relationship between habitat affinity and environmental dynamics, influencing patterns of population structure, demographic history and genetic diversity. Within the floodplains, historical landscape changes have had more severe impacts on island specialists, making them more vulnerable to current and future anthropogenic changes, as those imposed by hydroelectric dams in the Amazon Basin.
Collapse
Affiliation(s)
- Eduardo D Schultz
- Programa de Pós-Graduação em Biologia (Ecologia), Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
- Department of Ornithology, American Museum of Natural History, New York, New York, USA
| | - Gregory Thom
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Gabriela Zuquim
- Department of Biology, University of Turku, Turku, Finland
- Department of Biology, Aarhus University, Aarhus, Denmark
| | | | - Hanna Tuomisto
- Department of Biology, University of Turku, Turku, Finland
| | - Camila C Ribas
- Coordenação de Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| |
Collapse
|
23
|
Thom G, Moreira LR, Batista R, Gehara M, Aleixo A, Smith BT. Genomic Architecture Predicts Tree Topology, Population Structuring, and Demographic History in Amazonian Birds. Genome Biol Evol 2024; 16:evae002. [PMID: 38236173 PMCID: PMC10823491 DOI: 10.1093/gbe/evae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/26/2023] [Accepted: 12/12/2023] [Indexed: 01/19/2024] Open
Abstract
Geographic barriers are frequently invoked to explain genetic structuring across the landscape. However, inferences on the spatial and temporal origins of population variation have been largely limited to evolutionary neutral models, ignoring the potential role of natural selection and intrinsic genomic processes known as genomic architecture in producing heterogeneity in differentiation across the genome. To test how variation in genomic characteristics (e.g. recombination rate) impacts our ability to reconstruct general patterns of differentiation between species that cooccur across geographic barriers, we sequenced the whole genomes of multiple bird populations that are distributed across rivers in southeastern Amazonia. We found that phylogenetic relationships within species and demographic parameters varied across the genome in predictable ways. Genetic diversity was positively associated with recombination rate and negatively associated with species tree support. Gene flow was less pervasive in genomic regions of low recombination, making these windows more likely to retain patterns of population structuring that matched the species tree. We further found that approximately a third of the genome showed evidence of selective sweeps and linked selection, skewing genome-wide estimates of effective population sizes and gene flow between populations toward lower values. In sum, we showed that the effects of intrinsic genomic characteristics and selection can be disentangled from neutral processes to elucidate spatial patterns of population differentiation.
Collapse
Affiliation(s)
- Gregory Thom
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
- Museum of Natural Science, Louisiana State University, Baton Rouge, LA, USA
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Lucas Rocha Moreira
- Program in Bioinformatics and Integrative Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Vertebrate Genomics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Romina Batista
- Programa de Coleções Biológicas, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
- School of Science, Engineering and Environment, University of Salford, Manchester, UK
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| | - Alexandre Aleixo
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
- Department of Environmental Genomics, Instituto Tecnológico Vale, Belém, Brazil
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY, USA
| |
Collapse
|
24
|
Lucas KRG, Caldarelli CE, Ventura MU. Agriculture and biodiversity damage: A prospective evaluation of the impact of Brazilian agriculture on its ecoregions through life cycle assessment methodology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165762. [PMID: 37495148 DOI: 10.1016/j.scitotenv.2023.165762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/04/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
The natural ecosystems' replacement by farmland and the consequent biodiversity damage (BD) for agriculture are one of the principal concerns worldwide. The development of the life cycle assessment (LCA) methodology involves enormous efforts to include BD parameters and develop a prospective LCA approach for future evaluations of production and technologies use. Thus, this work aims to determine the current impacts and estimate the future impacts in terms of damage to biodiversity caused by land occupation by agricultural commodities produced in Brazil, such as coffee, corn, oranges, and sugar cane, for the six ecoregions present in the country-Amazon, Atlantic Forest, Caatinga, Cerrado, Pampas, and Pantanal-in the 20-year period from 2015 to 2035. For this and to search for hotpots, we applied the indicators proposed by Chaudhary and Books (2018), for inventories whose functional unit is production per m2 of 1 kg of crop. Although the Cerrado is one of the ecoregions in which deforestation has advanced the most, it has the area/production ratio that has evolved the most. In contrast, Pampas and Caatinga, which are not seen as agricultural frontiers, increased their impacts. The most optimistic scenarios for the future have been those in regions considered agricultural frontiers; however, these are the regions where agriculture is more technologically developed, for example, coffee production in the Atlantic Forest and in the Cerrado. The results indicate that the technological development of agriculture can contribute to mitigating the impacts of damage to biodiversity in the future, and that the implementation of legislative and inspection measures is fundamental to supporting the correct use of the soil and preventing illegal soil change. Otherwise, in the future, we will see the increasing disappearance of species. Thus, we need researchers, farmers, and policy makers to move from development to conservation.
Collapse
Affiliation(s)
- Kássio R G Lucas
- Department of Animal Science, University of California, Davis, CA 95616, USA.
| | - Carlos Eduardo Caldarelli
- Department of Economy, Center of Applied Social Studies, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Cx. Postal 10.011, CEP 86.057-970 Londrina, PR, Brazil
| | - Maurício Ursi Ventura
- Department of Agronomy, Center of Agrarian Sciences, State University of Londrina, Rodovia Celso Garcia Cid, PR 445 Km 380, Campus Universitário, Cx. Postal 10.011, CEP 86.057-970, Londrina, PR, Brazil
| |
Collapse
|
25
|
Sangster G, Harvey MG, Gaudin J, Claramunt S. A new genus for Philydor erythrocercum and P. fuscipenne (Aves: Furnariidae). Zootaxa 2023; 5361:297-300. [PMID: 38220757 DOI: 10.11646/zootaxa.5361.2.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Indexed: 01/16/2024]
Affiliation(s)
- George Sangster
- Naturalis Biodiversity Center; Darwinweg 2; PO Box 9517; 2300 RA Leiden; Netherlands.
| | - Michael G Harvey
- Department of Biological Sciences; The University of Texas at El Paso; El Paso; TX 79968; USA; Biodiversity Collections; The University of Texas at El Paso; El Paso; TX 79968; USA.
| | - Jimmy Gaudin
- 34; avenue Antoine de Saint-Exupry; 17 000 La Rochelle; France.
| | - Santiago Claramunt
- Department of Ecology and Evolutionary Biology; University of Toronto; 25 Harbord Street; Room 537; Toronto; ON M5S 3G5; Canada.
| |
Collapse
|
26
|
Liu Y, Lai YJ, Ye JF, Hu HH, Peng DX, Lu LM, Sun H, Chen ZD. The Sino-Himalayan flora evolved from lowland biomes dominated by tropical floristic elements. BMC Biol 2023; 21:239. [PMID: 37904140 PMCID: PMC10617089 DOI: 10.1186/s12915-023-01746-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 10/24/2023] [Indexed: 11/01/2023] Open
Abstract
BACKGROUND The Sino-Himalayan flora harbors highly diverse high-elevation biotas, but our understanding of its evolutionary history in temporal and spatial dimensions is limited. In this study, we integrated a dated phylogenetic tree with comprehensive species distribution data to investigate changes over time and space in floristic elements, including the tropical, Tethys, northern temperate, and East Asian floristic elements, across the entire Sino-Himalaya and its three floristic regions: the Yunnan Plateau, Hengduan Mountains, and East Himalaya regions. RESULTS Our results revealed that the Sino-Himalayan flora developed from lowland biomes and was predominantly characterized by tropical floristic elements before the collision between the Indian subcontinent and Eurasia during the Early Cenozoic. Subsequently, from the Late Eocene onwards, the uplifts of the Himalaya and Hengduan Mountains transformed the Sino-Himalayan region into a wet and cold plateau, on which harsh and diverse ecological conditions forced the rapid evolution of local angiosperms, giving birth to characteristic taxa adapted to the high altitudes and cold habitat. The percentage of temperate floristic elements increased and exceeded that of tropical floristic elements by the Late Miocene. CONCLUSIONS The Sino-Himalayan flora underwent four significant formation periods and experienced a considerable increase in endemic genera and species in the Miocene, which remain crucial to the present-day patterns of plant diversity. Our findings support the view that the Sino-Himalayan flora is relatively young but has ancient origins. The three major shifts in the divergence of genera and species during the four formation periods were primarily influenced by the uplifts of the Himalaya and Hengduan Mountains and the onset and intensification of the Asian monsoon system. Additionally, the temporal patterns of floristic elements differed among the three floristic regions of the Sino-Himalaya, indicating that the uplift of the Himalaya and surrounding areas was asynchronous. Compared to the Yunnan Plateau region, the East Himalaya and Hengduan Mountains experienced more recent and drastic uplifts, resulting in highly intricate topography with diverse habitats that promoted the rapid radiation of endemic genera and species in these regions.
Collapse
Affiliation(s)
- Yun Liu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang-Jun Lai
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Jian-Fei Ye
- State Key Laboratory of Biocontrol, School of Ecology, Shenzhen Campus, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Hai-Hua Hu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Dan-Xiao Peng
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Li-Min Lu
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Hang Sun
- Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Zhi-Duan Chen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing, 100093, China.
- China National Botanical Garden, Beijing, 100093, China.
- Sino-Africa Joint Research Centre, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
27
|
Els PVAN, Harvey MG, Capurucho JMG, Brumfield RT, Whitney BM, Pacheco JF. Systematics of the Neopelminae (Aves: Passeriformes: Pipridae) with description of a new genus. Zootaxa 2023; 5361:135-141. [PMID: 38220771 DOI: 10.11646/zootaxa.5361.1.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Indexed: 01/16/2024]
Affiliation(s)
- Paul VAN Els
- Groningen Institute for Evolutionary Life Sciences; University of Groningen; 9700 CC; Groningen; The Netherlands. Sovon Dutch Centre for Field Ornithology; 6591 ED; Nijmegen; The Netherlands..
| | - Michael G Harvey
- Department of Biological Sciences; The University of Texas at El Paso; El Paso; TX 79968; USA. Biodiversity Collections; The University of Texas at El Paso; El Paso; TX 79968; USA.
| | - Joo M G Capurucho
- Coordenao de Biodiversidade; Instituto Nacional de Pesquisas da Amaznia; Av. Andr Arajo 2936; Aleixo; Manaus; AM; Brazil.
| | - Robb T Brumfield
- Museum of Natural Science; Louisiana State University; Baton Rouge; LA 70803; USA. Department of Biological Sciences; Louisiana State University; Baton Rouge; LA 70803; USA.
| | | | - Jos F Pacheco
- Museum of Natural Science; Louisiana State University; Baton Rouge; LA 70803; USA.
| |
Collapse
|
28
|
Oswald JA, Smith BT, Allen JM, Guralnick RP, Steadman DW, LeFebvre MJ. Changes in parrot diversity after human arrival to the Caribbean. Proc Natl Acad Sci U S A 2023; 120:e2301128120. [PMID: 37748079 PMCID: PMC10576146 DOI: 10.1073/pnas.2301128120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 07/31/2023] [Indexed: 09/27/2023] Open
Abstract
Humans did not arrive on most of the world's islands until relatively recently, making islands favorable places for disentangling the timing and magnitude of natural and anthropogenic impacts on species diversity and distributions. Here, we focus on Amazona parrots in the Caribbean, which have close relationships with humans (e.g., as pets as well as sources of meat and colorful feathers). Caribbean parrots also have substantial fossil and archaeological records that span the Holocene. We leverage this exemplary record to showcase how combining ancient and modern DNA, along with radiometric dating, can shed light on diversification and extinction dynamics and answer long-standing questions about the magnitude of human impacts in the region. Our results reveal a striking loss of parrot diversity, much of which took place during human occupation of the islands. The most widespread species, the Cuban Parrot, exhibits interisland divergences throughout the Pleistocene. Within this radiation, we identified an extinct, genetically distinct lineage that survived on the Turks and Caicos until Indigenous human settlement of the islands. We also found that the narrowly distributed Hispaniolan Parrot had a natural range that once included The Bahamas; it thus became "endemic" to Hispaniola during the late Holocene. The Hispaniolan Parrot also likely was introduced by Indigenous people to Grand Turk and Montserrat, two islands where it is now also extirpated. Our research demonstrates that genetic information spanning paleontological, archaeological, and modern contexts is essential to understand the role of humans in altering the diversity and distribution of biota.
Collapse
Affiliation(s)
- Jessica A. Oswald
- US Fish and Wildlife Service, National Fish and Wildlife Forensic Laboratory, Ashland, OR97520
- Department of Biology, University of Nevada, Reno, Reno, NV89557
| | - Brian Tilston Smith
- Department of Ornithology, American Museum of Natural History, New York, NY10024
| | - Julie M. Allen
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA24061
| | - Robert P. Guralnick
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | - David W. Steadman
- Florida Museum of Natural History, University of Florida, Gainesville, FL32611
| | | |
Collapse
|
29
|
Cerezer FO, Dambros CS, Coelho MTP, Cassemiro FAS, Barreto E, Albert JS, Wüest RO, Graham CH. Accelerated body size evolution in upland environments is correlated with recent speciation in South American freshwater fishes. Nat Commun 2023; 14:6070. [PMID: 37770447 PMCID: PMC10539357 DOI: 10.1038/s41467-023-41812-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/15/2023] [Indexed: 09/30/2023] Open
Abstract
Speciation rates vary greatly among taxa and regions and are shaped by both biotic and abiotic factors. However, the relative importance and interactions of these factors are not well understood. Here we investigate the potential drivers of speciation rates in South American freshwater fishes, the most diverse continental vertebrate fauna, by examining the roles of multiple biotic and abiotic factors. We integrate a dataset on species geographic distribution, phylogenetic, morphological, climatic, and habitat data. We find that Late Neogene-Quaternary speciation events are strongly associated with body-size evolution, particularly in lineages with small body sizes that inhabit higher elevations near the continental periphery. Conversely, the effects of temperature, area, and diversity-dependence, often thought to facilitate speciation, are negligible. By evaluating multiple factors simultaneously, we demonstrate that habitat characteristics associated with elevation, as well as body size evolution, correlate with rapid speciation in South American freshwater fishes. Our study emphasizes the importance of integrative approaches that consider the interplay of biotic and abiotic factors in generating macroecological patterns of species diversity.
Collapse
Affiliation(s)
- Felipe O Cerezer
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland.
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil.
| | - Cristian S Dambros
- Programa de Pós-Graduação em Biodiversidade Animal, Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, Brazil
| | - Marco T P Coelho
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Fernanda A S Cassemiro
- Programa de Pós-Graduação em Ecologia e Evolução, Universidade Federal de Goiás, Goiânia, Brazil
| | - Elisa Barreto
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - James S Albert
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA, USA
| | - Rafael O Wüest
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| | - Catherine H Graham
- Swiss Federal Research Institute for Forest, Snow, and Landscape (WSL), Birmensdorf, Switzerland
| |
Collapse
|
30
|
Ocampo D, De Silva TN, Sheard C, Stoddard MC. Evolution of nest architecture in tyrant flycatchers and allies. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220148. [PMID: 37427478 PMCID: PMC10331913 DOI: 10.1098/rstb.2022.0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/18/2023] [Indexed: 07/11/2023] Open
Abstract
Innovations in nest design are thought to be one potential factor in the evolutionary success of passerine birds (order: Passeriformes), which colonized new ecological niches as they diversified in the Oligocene and Miocene. In particular, tyrant flycatchers and their allies (parvorder: Tyrannida) are an extremely diverse group of New World suboscine passerines occupying a wide range of habitats and exhibiting substantial extant variation in nest design. To explore the evolution of nest architecture in this clade, we first described nest traits across the Tyrannida phylogeny and estimated ancestral nest conditions. We then quantified macroevolutionary transition rates between nest types, examined a potential coevolutionary relationship between nest type and habitat, and used phylogenetic mixed models to determine possible ecological and environmental correlates of nest design. The Tyrannida ancestor probably built a cup nest in a closed habitat, and dome nests independently evolved at least 15 times within this group. Both cup- and dome-nesting species diversified into semi-open and open habitats, and we did not detect a coevolutionary relationship between nest type and habitat. Furthermore, nest type was not significantly correlated with several key ecological, life-history and environmental traits, suggesting that broad variation in Tyrannida nest architecture may not easily be explained by a single factor. This article is part of the theme issue 'The evolutionary ecology of nests: a cross-taxon approach'.
Collapse
Affiliation(s)
- David Ocampo
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Thilina N. De Silva
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Catherine Sheard
- Palaeobiology Research Group, University of Bristol, Bristol BS8 1TQ, UK
| | - Mary Caswell Stoddard
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
31
|
Kuntner M, Čandek K, Gregorič M, Turk E, Hamilton CA, Chamberland L, Starrett J, Cheng RC, Coddington JA, Agnarsson I, Bond JE. Increasing Information Content and Diagnosability in Family-Level Classifications. Syst Biol 2023; 72:964-971. [PMID: 37161751 PMCID: PMC10405354 DOI: 10.1093/sysbio/syad021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 03/03/2023] [Accepted: 04/13/2023] [Indexed: 05/11/2023] Open
Abstract
Higher-level classifications often must account for monotypic taxa representing depauperate evolutionary lineages and lacking synapomorphies of their better-known, well-defined sister clades. In a ranked (Linnean) or unranked (phylogenetic) classification system, discovering such a depauperate taxon does not necessarily invalidate the rank classification of sister clades. Named higher taxa must be monophyletic to be phylogenetically valid. Ranked taxa above the species level should also maximize information content, diagnosability, and utility (e.g., in biodiversity conservation). In spider classification, families are the highest rank that is systematically catalogued, and incertae sedis is not allowed. Consequently, it is important that family-level taxa be well defined and informative. We revisit the classification problem of Orbipurae, an unranked suprafamilial clade containing the spider families Nephilidae, Phonognathidae, and Araneidae sensu stricto. We argue that, to maximize diagnosability, information content, conservation utility, and practical taxonomic considerations, this "splitting" scheme is superior to its recently proposed alternative, which lumps these families together as Araneidae sensu lato. We propose to redefine Araneidae and recognize a monogeneric spider family, Paraplectanoididae fam. nov. to accommodate the depauperate lineage Paraplectanoides. We present new subgenomic data to stabilize Orbipurae topology which also supports our proposed family-level classification. Our example from spiders demonstrates why classifications must be able to accommodate depauperate evolutionary lineages, for example, Paraplectanoides. Finally, although clade age should not be a criterion to determine rank, other things being equal, comparable ages of similarly ranked taxa do benefit comparative biology. [Classification, family rank, phylogenomics, systematics, monophyly, spider phylogeny.].
Collapse
Affiliation(s)
- Matjaž Kuntner
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, SI-1001, Ljubljana, Slovenia
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- University of Ljubljana, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062 Hubei, China
| | - Klemen Čandek
- Department of Organisms and Ecosystems Research, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
- University of Ljubljana, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Matjaž Gregorič
- Jovan Hadži Institute of Biology, Research Centre of the Slovenian Academy of Sciences and Arts, Novi trg 2, SI-1001, Ljubljana, Slovenia
| | - Eva Turk
- University of Ljubljana, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Chris A Hamilton
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, 875 Perimeter Dr. MS 2329, Moscow, ID 83844-2329, USA
| | - Lisa Chamberland
- Department of Entomology and Nematology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - James Starrett
- Department of Entomology and Nematology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA
| | - Ren-Chung Cheng
- Department of Life Sciences, National Chung Hsing University, No.145 Xingda Rd., South Dist., Taichung City 402, Taiwan
| | - Jonathan A Coddington
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
| | - Ingi Agnarsson
- Department of Entomology, National Museum of Natural History, Smithsonian Institution, 10th and Constitution, NW, Washington, DC 20560-0105, USA
- State Key Laboratory of Biocatalysis and Enzyme Engineering and Centre for Behavioural Ecology and Evolution, School of Life Sciences, Hubei University, Wuhan 430062 Hubei, China
- Faculty of Life- and Environmental Sciences, University of Iceland, Sturlugata 7, 102 Reykjavik, Iceland
| | - Jason E Bond
- Department of Entomology and Nematology, University of California Davis, 1 Shields Ave., Davis, CA 95616, USA
| |
Collapse
|
32
|
Burbrink FT, Ruane S, Rabibisoa N, Raselimanana AP, Raxworthy CJ, Kuhn A. Speciation rates are unrelated to the formation of population structure in Malagasy gemsnakes. Ecol Evol 2023; 13:e10344. [PMID: 37529593 PMCID: PMC10375368 DOI: 10.1002/ece3.10344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/07/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
Speciation rates vary substantially across the tree of life. These rates should be linked to the rate at which population structure forms if a continuum between micro and macroevolutionary patterns exists. Previous studies examining the link between speciation rates and the degree of population formation in clades have been shown to be either correlated or uncorrelated depending on the group, but no study has yet examined the relationship between speciation rates and population structure in a young group that is constrained spatially to a single-island system. We examine this correlation in 109 gemsnakes (Pseudoxyrhophiidae) endemic to Madagascar and originating in the early Miocene, which helps control for extinction variation across time and space. We find no relationship between rates of speciation and the formation rates of population structure over space in 33 species of gemsnakes. Rates of speciation show low variation, yet population structure varies widely across species, indicating that speciation rates and population structure are disconnected. We suspect this is largely due to the persistence of some lineages not susceptible to extinction. Importantly, we discuss how delimiting populations versus species may contribute to problems understanding the continuum between shallow and deep evolutionary processes.
Collapse
Affiliation(s)
- Frank T. Burbrink
- Department of HerpetologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research CenterField Museum of Natural HistoryChicagoIllinoisUSA
| | - Nirhy Rabibisoa
- Sciences de la Vie et de l'Environnement, Faculté des Sciences, de Technologies et de l'EnvironnementUniversité de MahajangaMahajangaMadagascar
| | - Achille P. Raselimanana
- Zoologie et Biodiversité Animale, Faculté des SciencesUniversité d'AntananarivoAntananarivoMadagascar
| | | | - Arianna Kuhn
- Department of HerpetologyAmerican Museum of Natural HistoryNew York CityNew YorkUSA
- Virginia Museum of Natural HistoryMartinsvilleVirginiaUSA
| |
Collapse
|
33
|
Zhao M, Kurtis SM, White ND, Moncrieff AE, Leite RN, Brumfield RT, Braun EL, Kimball RT. Exploring Conflicts in Whole Genome Phylogenetics: A Case Study Within Manakins (Aves: Pipridae). Syst Biol 2023; 72:161-178. [PMID: 36130303 PMCID: PMC10452962 DOI: 10.1093/sysbio/syac062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/13/2022] Open
Abstract
Some phylogenetic problems remain unresolved even when large amounts of sequence data are analyzed and methods that accommodate processes such as incomplete lineage sorting are employed. In addition to investigating biological sources of phylogenetic incongruence, it is also important to reduce noise in the phylogenomic dataset by using appropriate filtering approach that addresses gene tree estimation errors. We present the results of a case study in manakins, focusing on the very difficult clade comprising the genera Antilophia and Chiroxiphia. Previous studies suggest that Antilophia is nested within Chiroxiphia, though relationships among Antilophia+Chiroxiphia species have been highly unstable. We extracted more than 11,000 loci (ultra-conserved elements and introns) from whole genomes and conducted analyses using concatenation and multispecies coalescent methods. Topologies resulting from analyses using all loci differed depending on the data type and analytical method, with 2 clades (Antilophia+Chiroxiphia and Manacus+Pipra+Machaeopterus) in the manakin tree showing incongruent results. We hypothesized that gene trees that conflicted with a long coalescent branch (e.g., the branch uniting Antilophia+Chiroxiphia) might be enriched for cases of gene tree estimation error, so we conducted analyses that either constrained those gene trees to include monophyly of Antilophia+Chiroxiphia or excluded these loci. While constraining trees reduced some incongruence, excluding the trees led to completely congruent species trees, regardless of the data type or model of sequence evolution used. We found that a suite of gene metrics (most importantly the number of informative sites and likelihood of intralocus recombination) collectively explained the loci that resulted in non-monophyly of Antilophia+Chiroxiphia. We also found evidence for introgression that may have contributed to the discordant topologies we observe in Antilophia+Chiroxiphia and led to deviations from expectations given the multispecies coalescent model. Our study highlights the importance of identifying factors that can obscure phylogenetic signal when dealing with recalcitrant phylogenetic problems, such as gene tree estimation error, incomplete lineage sorting, and reticulation events. [Birds; c-gene; data type; gene estimation error; model fit; multispecies coalescent; phylogenomics; reticulation].
Collapse
Affiliation(s)
- Min Zhao
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Sarah M Kurtis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Noor D White
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, Bethesda, MD 20892, USA
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Andre E Moncrieff
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USAand
| | - Rafael N Leite
- Graduate Program in Ecology, National Institute of Amazonian Research, Manaus, AM, Brazil
| | - Robb T Brumfield
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, LA 70803, USAand
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Rebecca T Kimball
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
34
|
Kanel SR, Das TK, Varma RS, Kurwadkar S, Chakraborty S, Joshi TP, Bezbaruah AN, Nadagouda MN. Arsenic Contamination in Groundwater: Geochemical Basis of Treatment Technologies. ACS ENVIRONMENTAL AU 2023; 3:135-152. [PMID: 37215436 PMCID: PMC10197174 DOI: 10.1021/acsenvironau.2c00053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 05/24/2023]
Abstract
Arsenic (As) is abundant in the environment and can be found in both organic (e.g., methylated) and inorganic (e.g., arsenate and arsenite) forms. The source of As in the environment is attributed to both natural reactions and anthropogenic activities. As can also be released naturally to groundwater through As-bearing minerals including arsenopyrites, realgar, and orpiment. Similarly, agricultural and industrial activities have elevated As levels in groundwater. High levels of As in groundwater pose serious health risks and have been regulated in many developed and developing countries. In particular, the presence of inorganic forms of As in drinking water sources gained widespread attention due to their cellular and enzyme disruption activities. The research community has primarily focused on reviewing the natural occurrence and mobilization of As. Yet, As originating from anthropogenic activities, its mobility, and potential treatment techniques have not been covered. This review summarizes the origin, geochemistry, occurrence, mobilization, microbial interaction of natural and anthropogenic-As, and common remediation technologies for As removal from groundwater. In addition, As remediation methods are critically evaluated in terms of practical applicability at drinking water treatment plants, knowledge gaps, and future research needs. Finally, perspectives on As removal technologies and associated implementation limitations in developing countries and small communities are discussed.
Collapse
Affiliation(s)
- Sushil R. Kanel
- Department
of Chemistry, Wright State University, Dayton, Ohio 45435, United States
| | - Tonoy K. Das
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Rajender S. Varma
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Sudarshan Kurwadkar
- Department
of Civil and Environmental Engineering, California State University, Fullerton, California 92831, United States
| | - Sudip Chakraborty
- Laboratory
of Transport Phenomena & Biotechnology, Department of DIMES, Universita della Calabria, Via Pietro Bucci, Cubo 42/a, Rende 87036, (CS), Italy
| | - Tista Prasai Joshi
- Environment
and Climate Study Laboratory, Faculty of Science, Nepal Academy of Science and Technology, Lalitpur 44700, Khumaltar, Nepal
| | - Achintya N. Bezbaruah
- Nanoenvirology
Research Group, Department of Civil and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58108, United States
| | - Mallikarjuna N. Nadagouda
- Office
of Research & Development, Center for Environmental Solutions
and Emergency Response (CESER), United States
Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| |
Collapse
|
35
|
Quintero I, Landis MJ, Jetz W, Morlon H. The build-up of the present-day tropical diversity of tetrapods. Proc Natl Acad Sci U S A 2023; 120:e2220672120. [PMID: 37159475 PMCID: PMC10194011 DOI: 10.1073/pnas.2220672120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/04/2023] [Indexed: 05/11/2023] Open
Abstract
The extraordinary number of species in the tropics when compared to the extra-tropics is probably the most prominent and consistent pattern in biogeography, suggesting that overarching processes regulate this diversity gradient. A major challenge to characterizing which processes are at play relies on quantifying how the frequency and determinants of tropical and extra-tropical speciation, extinction, and dispersal events shaped evolutionary radiations. We address this question by developing and applying spatiotemporal phylogenetic and paleontological models of diversification for tetrapod species incorporating paleoenvironmental variation. Our phylogenetic model results show that area, energy, or species richness did not uniformly affect speciation rates across tetrapods and dispute expectations of a latitudinal gradient in speciation rates. Instead, both neontological and fossil evidence coincide in underscoring the role of extra-tropical extinctions and the outflow of tropical species in shaping biodiversity. These diversification dynamics accurately predict present-day levels of species richness across latitudes and uncover temporal idiosyncrasies but spatial generality across the major tetrapod radiations.
Collapse
Affiliation(s)
- Ignacio Quintero
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université Paris Science & Lettres, Paris75005, France
| | - Michael J. Landis
- Landis Lab, Department of Biology, Washington University in St. Louis, St. Louis, MO63130
| | - Walter Jetz
- Jetz Lab, Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06511
- Center for Biodiversity and Global Change, Yale University, New Haven, CT06511
| | - Hélène Morlon
- Institut de Biologie de l’ENS, Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université Paris Science & Lettres, Paris75005, France
| |
Collapse
|
36
|
Steell EM, Nguyen JMT, Benson RBJ, Field DJ. Comparative anatomy of the passerine carpometacarpus helps illuminate the early fossil record of crown Passeriformes. J Anat 2023; 242:495-509. [PMID: 36070480 PMCID: PMC9919509 DOI: 10.1111/joa.13761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
The hyper-diverse clade Passeriformes (crown group passerines) comprises over half of extant bird diversity, yet disproportionately few studies have targeted passerine comparative anatomy on a broad phylogenetic scale. This general lack of research attention hinders efforts to interpret the passerine fossil record and obscures patterns of morphological evolution across one of the most diverse clades of extant vertebrates. Numerous potentially important crown passeriform fossils have proven challenging to place phylogenetically, due in part to a paucity of phylogenetically informative characters from across the passerine skeleton. Here, we present a detailed analysis of the morphology of extant passerine carpometacarpi, which are relatively abundant components of the passerine fossil record. We sampled >70% of extant family-level passerine clades (132 extant species) as well as several fossils from the Oligocene of Europe and scored them for 54 phylogenetically informative carpometacarpus characters optimised on a recently published phylogenomic scaffold. We document a considerable amount of previously undescribed morphological variation among passerine carpometacarpi, and, despite high levels of homoplasy, our results support the presence of representatives of both crown Passeri and crown Tyranni in Europe during the Oligocene.
Collapse
Affiliation(s)
| | - Jacqueline M. T. Nguyen
- Australian Museum Research InstituteAustralian MuseumSydneyNew South WalesAustralia
- College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | | | - Daniel J. Field
- Department of Earth SciencesUniversity of CambridgeCambridgeUK
- Museum of ZoologyUniversity of CambridgeCambridgeUK
| |
Collapse
|
37
|
Brasseur MV, Astrin JJ, Geiger MF, Mayer C. MitoGeneExtractor
: Efficient extraction of mitochondrial genes from next‐generation sequencing libraries. Methods Ecol Evol 2023. [DOI: 10.1111/2041-210x.14075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Affiliation(s)
- Marie V. Brasseur
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| | - Jonas J. Astrin
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| | - Matthias F. Geiger
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| | - Christoph Mayer
- Leibniz Institute for the Analysis of Biodiversity Change, Museum Koenig Bonn Germany
| |
Collapse
|
38
|
Johnson O, Ribas CC, Aleixo A, Naka LN, Harvey MG, Brumfield RT. Amazonian birds in more dynamic habitats have less population genetic structure and higher gene flow. Mol Ecol 2023; 32:2186-2205. [PMID: 36798996 DOI: 10.1111/mec.16886] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome-wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual-level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long-term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat-specific diversification dynamics over evolutionary time scales.
Collapse
Affiliation(s)
- Oscar Johnson
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Camila C Ribas
- Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, Amazonas, Brazil
| | - Alexandre Aleixo
- Museu Paraense Emílio Goeldi (MPEG), Belém, Pará, Brazil.,Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland.,Instituto Tecnológico Vale, Belém, Brazil
| | - Luciano N Naka
- Laboratório de Ecologia & Evolução de Aves, Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | - Michael G Harvey
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Robb T Brumfield
- Department of Biological Sciences and Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, USA
| |
Collapse
|
39
|
Basham EW, Baecher JA, Klinges DH, Scheffers BR. Vertical stratification patterns of tropical forest vertebrates: a meta-analysis. Biol Rev Camb Philos Soc 2023; 98:99-114. [PMID: 36073113 DOI: 10.1111/brv.12896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 01/12/2023]
Abstract
Tropical forests harbour the highest levels of terrestrial biodiversity and represent some of the most complex ecosystems on Earth, with a significant portion of this diversity above ground. Although the vertical dimension is a central aspect of the ecology of forest communities, there is little consensus as to prominence, evenness, and consistency of community-level stratification from ground to canopy. Here, we gather the results of 62 studies across the tropics to synthesise and assess broad patterns of vertical stratification of abundance and richness in vertebrates, the best studied taxonomic group for which results have not been collated previously. Our review of the literature yielded sufficient data for bats, small mammals, birds and amphibians. We show that variation in the stratification of abundance and richness exists within and among all taxa considered. Bat richness stratification was variable among studies, although bat abundance was weighted towards the canopy. Both bird richness and abundance stratification were variable, with no overriding pattern. On the contrary, both amphibians and small mammals showed consistent patterns of decline in abundance and richness towards the canopy. We descriptively characterise research trends in drivers of stratification cited or investigated within studies, finding local habitat structure and food distribution/foraging to be the most commonly attributed drivers. Further, we analyse the influence of macroecological variables on stratification patterns, finding latitude and elevation to be key predictors of bird stratification in particular. Prominent differences among taxa are likely due to taxon-specific interactions with local drivers such as vertical habitat structure, food distribution, and vertical climate gradients, which may vary considerably across macroecological gradients such as elevation and biogeographic realm. Our study showcases the complexity with which animal communities organise within tropical forest ecosystems, while demonstrating the canopy as a critical niche space for tropical vertebrates, thereby highlighting the inherent vulnerability of tropical vertebrate communities to forest loss and canopy disturbance. We recognise that analyses were constrained due to variation in study designs and methods which produced a variety of abundance and richness metrics recorded across different arrangements of vertical strata. We therefore suggest the application of best practices for data reporting and highlight the significant effort required to fill research gaps in terms of under-sampled regions, taxa, and environments.
Collapse
Affiliation(s)
- Edmund W Basham
- School of Natural Resources and Environment, University of Florida, 103 Black Hall, PO Box 116455, Gainesville, FL, 32611, USA
| | - J Alex Baecher
- School of Natural Resources and Environment, University of Florida, 103 Black Hall, PO Box 116455, Gainesville, FL, 32611, USA
| | - David H Klinges
- School of Natural Resources and Environment, University of Florida, 103 Black Hall, PO Box 116455, Gainesville, FL, 32611, USA
| | - Brett R Scheffers
- School of Natural Resources and Environment, University of Florida, 103 Black Hall, PO Box 116455, Gainesville, FL, 32611, USA.,Department of Wildlife Ecology and Conservation, University of Florida, 110 Newins-Ziegler Hall, Gainesville, FL, 32611, USA
| |
Collapse
|
40
|
Crouch NMA, Jablonski D. Is species richness mediated by functional and genetic divergence? A global analysis in birds. Funct Ecol 2023; 37:125-138. [PMID: 37064506 PMCID: PMC10086807 DOI: 10.1111/1365-2435.14153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Abstract
Unravelling why species richness shows such dramatic spatial variation is an ongoing challenge. Common to many theories is that increasing species richness (e.g. with latitude) requires a compensatory trade-off on an axis of species' ecology. Spatial variation in species richness may also affect genetic diversity if large numbers of coexisting, related species result in smaller population sizes.Here, we test whether increasing species richness results in differential occupation of morphospace by the constituent species, or decreases species' genetic diversity. We test for two potential mechanisms of morphological accommodation: denser packing in ecomorphological space, and expansion of the space. We then test whether species differ in their nucleotide diversity depending on allopatry or sympatry with relatives, indicative of potential genetic consequences of coexistence that would reduce genetic diversity in sympatry. We ask these questions in a spatially explicit framework, using a global database of avian functional trait measurements in combination with >120,000 sequences downloaded from GenBank.We find that higher species richness within families is not systematically correlated with either packing in morphological space or overdispersion but, at the Class level, we find a general positive relationship between packing and species richness, but that points sampled in the tropics have comparatively greater packing than temperate ones relative to their species richness. We find limited evidence that geographical co-occurrence with closely related species or tropical distributions decreases nucleotide diversity of nuclear genes; however, this requires further analysis.Our results suggest that avian families can accumulate species regionally with minimal tradeoffs or cost, implying that external biotic factors do not limit species richness. Read the free Plain Language Summary for this article on the Journal blog.
Collapse
Affiliation(s)
| | - David Jablonski
- Department of the Geophysical SciencesThe University of ChicagoChicagoIllinoisUSA
| |
Collapse
|
41
|
Paradis E, Claramunt S, Brown J, Schliep K. Confidence intervals in molecular dating by maximum likelihood. Mol Phylogenet Evol 2023; 178:107652. [PMID: 36306994 DOI: 10.1016/j.ympev.2022.107652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 10/11/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Molecular dating has been widely used to infer the times of past evolutionary events using molecular sequences. This paper describes three bootstrap methods to infer confidence intervals under a penalized likelihood framework. The basic idea is to use data pseudoreplicates to infer uncertainty in the branch lengths of a phylogeny reconstructed with molecular sequences. The three specific bootstrap methods are nonparametric (direct tree bootstrapping), semiparametric (rate smoothing), and parametric (Poisson simulation). Our extensive simulation study showed that the three methods perform generally well under a simple strict clock model of molecular evolution; however, the results were less positive with data simulated using an uncorrelated or a correlated relaxed clock model. Several factors impacted, possibly in interaction, the performance of the confidence intervals. Increasing the number of calibration points had a positive effect, as well as increasing the sequence length or the number of sequences although both latter effects depended on the model of evolution. A case study is presented with a molecular phylogeny of the Felidae (Mammalia: Carnivora). A comparison was made with a Bayesian analysis: the results were very close in terms of confidence intervals and there was no marked tendency for an approach to produce younger or older bounds compared to the other.
Collapse
Affiliation(s)
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, Toronto, ON 5S2C6, Canada
| | - Joseph Brown
- Department of Natural History, Royal Ontario Museum, Toronto, ON 5S2C6, Canada
| | - Klaus Schliep
- Institute of Computational Biotechnology, Technology University Graz, Austria
| |
Collapse
|
42
|
Costa FP, Schrago CG, Mello B. Assessing the relative performance of fast molecular dating methods for phylogenomic data. BMC Genomics 2022; 23:798. [PMID: 36460948 PMCID: PMC9719170 DOI: 10.1186/s12864-022-09030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
Advances in genome sequencing techniques produced a significant growth of phylogenomic datasets. This massive amount of data represents a computational challenge for molecular dating with Bayesian approaches. Rapid molecular dating methods have been proposed over the last few decades to overcome these issues. However, a comparative evaluation of their relative performance on empirical data sets is lacking. We analyzed 23 empirical phylogenomic datasets to investigate the performance of two commonly employed fast dating methodologies: penalized likelihood (PL), implemented in treePL, and the relative rate framework (RRF), implemented in RelTime. They were compared to Bayesian analyses using the closest possible substitution models and calibration settings. We found that RRF was computationally faster and generally provided node age estimates statistically equivalent to Bayesian divergence times. PL time estimates consistently exhibited low levels of uncertainty. Overall, to approximate Bayesian approaches, RelTime is an efficient method with significantly lower computational demand, being more than 100 times faster than treePL. Thus, to alleviate the computational burden of Bayesian divergence time inference in the era of massive genomic data, molecular dating can be facilitated using the RRF, allowing evolutionary hypotheses to be tested more quickly and efficiently.
Collapse
Affiliation(s)
- Fernanda P. Costa
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| | - Carlos G. Schrago
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| | - Beatriz Mello
- grid.8536.80000 0001 2294 473XDepartment of Genetics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ 21941-617 Brazil
| |
Collapse
|
43
|
Kraus D, Enns A, Hebb A, Murphy S, Drake DAR, Bennett B. Prioritizing nationally endemic species for conservation. CONSERVATION SCIENCE AND PRACTICE 2022. [DOI: 10.1111/csp2.12845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Daniel Kraus
- Faculty of Environment, School of Environment, Resources and Sustainability University of Waterloo Waterloo Ontario Canada
- Wildlife Conservation Society Canada Toronto Ontario Canada
| | - Amie Enns
- NatureServe Canada, National Office Ottawa Ontario Canada
| | - Andrea Hebb
- Nature Conservancy of Canada, National Office Toronto Ontario Canada
| | - Stephen Murphy
- Faculty of Environment, School of Environment, Resources and Sustainability University of Waterloo Waterloo Ontario Canada
| | - D. Andrew R. Drake
- Great Lakes Laboratory for Fisheries and Aquatic Science, Fisheries and Oceans Canada Burlington Ontario Canada
| | - Bruce Bennett
- Yukon Conservation Data Centre, Biodiversity Section, Yukon Environment Whitehorse Yukon Territory Canada
| |
Collapse
|
44
|
Princepe D, de Aguiar MAM, Plotkin JB. Mito-nuclear selection induces a trade-off between species ecological dominance and evolutionary lifespan. Nat Ecol Evol 2022; 6:1992-2002. [PMID: 36216905 DOI: 10.1038/s41559-022-01901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 09/02/2022] [Indexed: 12/15/2022]
Abstract
Mitochondrial and nuclear genomes must be co-adapted to ensure proper cellular respiration and energy production. Mito-nuclear incompatibility reduces individual fitness and induces hybrid infertility, which can drive reproductive barriers and speciation. Here, we develop a birth-death model for evolution in spatially extended populations under selection for mito-nuclear co-adaptation. Mating is constrained by physical and genetic proximity, and offspring inherit nuclear genomes from both parents, with recombination. The model predicts macroscopic patterns including a community's species diversity, species abundance distribution, speciation and extinction rates, as well as intraspecific and interspecific genetic variation. We explore how these long-term outcomes depend upon the parameters of reproduction: individual fitness governed by mito-nuclear compatibility, constraints on mating compatibility and ecological carrying capacity. We find that strong selection for mito-nuclear compatibility reduces the equilibrium number of species after a radiation, increasing species' abundances and simultaneously increasing both speciation and extinction rates. The negative correlation between species diversity and diversification rates in our model agrees with the broad empirical pattern of lower diversity and higher speciation/extinction rates in temperate regions, compared to the tropics. We conclude that these empirical patterns may be caused in part by latitudinal variation in metabolic demands and corresponding variation in selection for mito-nuclear function.
Collapse
Affiliation(s)
- Débora Princepe
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brazil.
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| | - Marcus A M de Aguiar
- Instituto de Física 'Gleb Wataghin', Universidade Estadual de Campinas, Campinas, Brazil
| | - Joshua B Plotkin
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
45
|
Macedo G, Marcondes RS, Biondo C, Bravo GA, Derryberry EP. The evolution of sex similarities in social signals: Climatic seasonality is associated with lower sexual dimorphism and greater elaboration of female and male signals in antbirds (Thamnophilidae). Evolution 2022; 76:2893-2915. [PMID: 36237126 DOI: 10.1111/evo.14638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/22/2023]
Abstract
Selection on signals that mediate social competition varies with resource availability. Climate regulates resource availability, which may affect the strength of competition and selection on signals. Traditionally, this meant that more seasonal, colder, or dryer-overall harsher-environments should favor the elaboration of male signals under stronger male-male competition, increasing sexual dimorphism. However, females also use signals to compete; thus, harsher environments could strengthen competition and favor elaboration of signals in both sexes, decreasing sexual dimorphism. Alternatively, harsher environments could decrease sexual dimorphism due to scarcer resources to invest in signal elaboration in both sexes. We evaluated these contrasting hypotheses in antbirds, a family of Neotropical passerines that varies in female and male signals and occurs across diverse climatic regimes. We tested the association of sexual dimorphism of plumage coloration and songs with temperature, precipitation, and their seasonality. We found that greater seasonality is associated with lower sexual dimorphism in plumage coloration and greater elaboration of visual signals in both sexes, but not acoustic signals. Our results suggest that greater seasonality may be associated with convergent elaboration of female and male visual signals, highlighting the role of signals of both sexes in the evolution of sexual dimorphism.
Collapse
Affiliation(s)
- Gabriel Macedo
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, SP, 09606-045, Brazil.,Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| | - Rafael S Marcondes
- Museum of Natural Science, Louisiana State University, Baton Rouge, Louisiana, 70803.,Current Address: Department of Biosciences, Rice University, Houston, Texas, 77005
| | - Cibele Biondo
- Center for Natural Sciences and Humanities, Federal University of ABC (UFABC), São Bernardo do Campo, SP, 09606-045, Brazil
| | - Gustavo A Bravo
- Sección de Ornitología, Colecciones Biológicas, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Villa de Leyva, 154001, Colombia.,Department of Organismic and Evolutionary Biology and Museum of Comparative Zoology, Harvard University, Cambridge, Massachusetts, 02138
| | - Elizabeth P Derryberry
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, 37996
| |
Collapse
|
46
|
Schmitt CJ, Edwards SV. Passerine birds. Curr Biol 2022; 32:R1149-R1154. [DOI: 10.1016/j.cub.2022.08.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
47
|
Claramunt S. CladeDate
: Calibration information generator for divergence time estimation. Methods Ecol Evol 2022. [DOI: 10.1111/2041-210x.13977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Santiago Claramunt
- Department of Natural History Royal Ontario Museum Toronto Ontario Canada
- Department of Ecology and Evolutionary Biology University of Toronto Toronto Ontario Canada
| |
Collapse
|
48
|
Sonne J, Dalsgaard B, Borregaard MK, Kennedy J, Fjeldså J, Rahbek C. Biodiversity cradles and museums segregating within hotspots of endemism. Proc Biol Sci 2022; 289:20221102. [PMID: 35975440 PMCID: PMC9382217 DOI: 10.1098/rspb.2022.1102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/29/2022] [Indexed: 12/14/2022] Open
Abstract
The immense concentrations of vertebrate species in tropical mountains remain a prominent but unexplained pattern in biogeography. A long-standing hypothesis suggests that montane biodiversity hotspots result from endemic species aggregating within ecologically stable localities. Here, the persistence of ancient lineages coincides with frequent speciation events, making such areas both 'cradles' (where new species arise) and 'museums' (where old species survive). Although this hypothesis refers to processes operating at the scale of valleys, it remains supported primarily by patterns generated from coarse-scale distribution data. Using high-resolution occurrence and phylogenetic data on Andean hummingbirds, we find that old and young endemic species are not spatially aggregated. The young endemic species tend to have non-overlapping distributions scattered along the Andean treeline, a long and narrow habitat where populations easily become fragmented. By contrast, the old endemic species have more aggregated distributions, but mainly within pockets of cloud forests at lower elevations than the young endemic species. These findings contradict the premise that biogeographical cradles and museums should overlap in valley systems where pockets of stable climate persist through periods of climate change. Instead, Andean biodiversity hotspots may derive from large-scale fluctuating climate complexity in conjunction with local-scale variability in available area and habitat connectivity.
Collapse
Affiliation(s)
- Jesper Sonne
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Bo Dalsgaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Section for Molecular Ecology and Evolution, Globe Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Michael K. Borregaard
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Jonathan Kennedy
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK
- Zoological Museum of the Natural History Museum of Denmark, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Jon Fjeldså
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Zoological Museum of the Natural History Museum of Denmark, Universitetsparken 15, Copenhagen 2100, Denmark
| | - Carsten Rahbek
- Center for Global Mountain Biodiversity, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Center for Macroecology, Evolution and Climate, GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
- Department of Ecology and Key Laboratory for Earth Surface Processes of the Ministry of Education, College of Urban and Environmental Sciences, Peking University, Beijing 100871, People's Republic of China
- Danish Institute for Advanced Study, University of Southern Denmark, 5230 Odense, Denmark
| |
Collapse
|
49
|
Montoya P, Cadena CD, Claramunt S, Duchêne DA. Environmental niche and flight intensity are associated with molecular evolutionary rates in a large avian radiation. BMC Ecol Evol 2022; 22:95. [PMID: 35918644 PMCID: PMC9347078 DOI: 10.1186/s12862-022-02047-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 07/20/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Metabolic activity and environmental energy are two of the most studied putative drivers of molecular evolutionary rates. Their extensive study, however, has resulted in mixed results and has rarely included the exploration of interactions among various factors impacting molecular evolutionary rates across large clades. Taking the diverse avian family Furnariidae as a case study, we examined the association between several estimates of molecular evolutionary rates with proxies of metabolic demands imposed by flight (wing loading and wing shape) and proxies of environmental energy across the geographic ranges of species (temperature and UV radiation). RESULTS We found weak evidence of a positive effect of environmental and morphological variables on mitochondrial substitution rates. Additionally, we found that temperature and UV radiation interact to explain molecular rates at nucleotide sites affected by selection and population size (non-synonymous substitutions), contrary to the expectation of their impact on sites associated with mutation rates (synonymous substitutions). We also found a negative interaction between wing shape (as described by the hand-wing index) and body mass explaining mitochondrial molecular rates, suggesting molecular signatures of positive selection or reduced population sizes in small-bodied species with greater flight activity. CONCLUSIONS Our results suggest that the demands of flight and environmental energy pose multiple evolutionary pressures on the genome either by driving mutation rates or via their association with natural selection or population size. Data from whole genomes and detailed physiology across taxa will bring a more complete picture of the impact of metabolism, population size, and the environment on avian genome evolution.
Collapse
Affiliation(s)
- Paola Montoya
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Circunvalar # 16-20, Bogotá, Colombia.
- Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado, 4976, Bogotá, Colombia.
| | - Carlos Daniel Cadena
- Departamento de Ciencias Biológicas, Universidad de los Andes, Apartado, 4976, Bogotá, Colombia
| | - Santiago Claramunt
- Department of Natural History, Royal Ontario Museum, 100 Queen's Park Crescent, Toronto, ON, M5S 2C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - David Alejandro Duchêne
- Centre for Evolutionary Hologenomics, University of Copenhagen, Øster Farimagsgade 5A, 1352, Copenhagen, Denmark
| |
Collapse
|
50
|
Salter JF, Hosner PA, Tsai WLE, McCormack JE, Braun EL, Kimball RT, Brumfield RT, Faircloth BC. Historical specimens and the limits of subspecies phylogenomics in the New World quails (Odontophoridae). Mol Phylogenet Evol 2022; 175:107559. [PMID: 35803448 DOI: 10.1016/j.ympev.2022.107559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 05/19/2022] [Accepted: 05/26/2022] [Indexed: 01/22/2023]
Abstract
As phylogenomics focuses on comprehensive taxon sampling at the species and population/subspecies levels, incorporating genomic data from historical specimens has become increasingly common. While historical samples can fill critical gaps in our understanding of the evolutionary history of diverse groups, they also introduce additional sources of phylogenomic uncertainty, making it difficult to discern novel evolutionary relationships from artifacts caused by sample quality issues. These problems highlight the need for improved strategies to disentangle artifactual patterns from true biological signal as historical specimens become more prevalent in phylogenomic datasets. Here, we tested the limits of historical specimen-driven phylogenomics to resolve subspecies-level relationships within a highly polytypic family, the New World quails (Odontophoridae), using thousands of ultraconserved elements (UCEs). We found that relationships at and above the species-level were well-resolved and highly supported across all analyses, with the exception of discordant relationships within the two most polytypic genera which included many historical specimens. We examined the causes of discordance and found that inferring phylogenies from subsets of taxa resolved the disagreements, suggesting that analyzing subclades can help remove artifactual causes of discordance in datasets that include historical samples. At the subspecies-level, we found well-resolved geographic structure within the two most polytypic genera, including the most polytypic species in this family, Northern Bobwhites (Colinus virginianus), demonstrating that variable sites within UCEs are capable of resolving phylogenetic structure below the species level. Our results highlight the importance of complete taxonomic sampling for resolving relationships among polytypic species, often through the inclusion of historical specimens, and we propose an integrative strategy for understanding and addressing the uncertainty that historical samples sometimes introduce to phylogenetic analyses.
Collapse
Affiliation(s)
- Jessie F Salter
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA.
| | - Peter A Hosner
- Natural History Museum of Denmark, Center for Global Mountain Biodiversity, and Center for Macroecology, Evolution, and Climate, University of Copenhagen, Copenhagen, Denmark; Department of Biology, University of Florida, Gainesville, FL, USA
| | - Whitney L E Tsai
- Moore Laboratory of Biology, Occidental College, Los Angeles, CA, USA
| | - John E McCormack
- Moore Laboratory of Biology, Occidental College, Los Angeles, CA, USA; Biology Department, Occidental College, Los Angeles, CA, USA
| | - Edward L Braun
- Department of Biology, University of Florida, Gainesville, FL, USA
| | | | - Robb T Brumfield
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| | - Brant C Faircloth
- Museum of Natural Science and Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|