1
|
Shentu W, Kong Q, Zhang Y, Li W, Chen Q, Yan S, Wang J, Lai Q, Xu Q, Qiao S. Functional abnormalities of the glymphatic system in cognitive disorders. Neural Regen Res 2025; 20:3430-3447. [PMID: 39820293 PMCID: PMC11974647 DOI: 10.4103/nrr.nrr-d-24-01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/30/2024] [Accepted: 11/25/2024] [Indexed: 01/19/2025] Open
Abstract
Various pathological mechanisms represent distinct therapeutic targets for cognitive disorders, but a balance between clearance and production is essential for maintaining the stability of the brain's internal environment. Thus, the glymphatic system may represent a common pathway by which to address cognitive disorders. Using the established model of the glymphatic system as our foundation, this review disentangles and analyzes the components of its clearance mechanism, including the initial inflow of cerebrospinal fluid, the mixing of cerebrospinal fluid with interstitial fluid, and the outflow of the mixed fluid and the clearance. Each section summarizes evidence from experimental animal models and human studies, highlighting the normal physiological properties of key structures alongside their pathological manifestations in cognitive disorders. The same pathologic manifestations of different cognitive disorders appearing in the glymphatic system and the same upstream influences are main points of interest of this review. We conclude this article by discussing new findings and outlining the limitations identified in current research progress.
Collapse
Affiliation(s)
- Wuyue Shentu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qi Kong
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Yier Zhang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Wenyao Li
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, Zhejiang Province, China
| | - Qiulu Chen
- Department of Neurology, Zhejiang Medical & Health Group Hangzhou Hospital, Hangzhou, Zhejiang Province, China
| | - Sicheng Yan
- Department of Neurology, Liuzhou People’s Hospital, Liuzhou, Guangxi Zhuang Autonomous Region, China
| | - Junjun Wang
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qilun Lai
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Qi Xu
- Department of Radiology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| | - Song Qiao
- Department of Neurology, Zhejiang Hospital, Hangzhou, Zhejiang Province, China
| |
Collapse
|
2
|
Tong M, Xu Z, Wang L, Chen H, Wan X, Xu H, Yang S, Tu Q. An analysis of prognostic risk and immunotherapy response of glioblastoma patients based on single-cell landscape and nitrogen metabolism. Neurobiol Dis 2025; 211:106935. [PMID: 40348204 DOI: 10.1016/j.nbd.2025.106935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/03/2025] [Accepted: 04/28/2025] [Indexed: 05/14/2025] Open
Abstract
Glioblastoma (GBM) is a highly invasive brain tumor of astrocytic origin. Nitrogen metabolism plays an instrumental role in the growth and progression of various tumors, including GBM. This study intended to mine nitrogen metabolism-related biomarkers for GBM-related research of prognosis and immunotherapy. Through single-cell data analysis of GBM, we identified four cell types (Astrocytes, Macrophages, Fibroblasts, and Endothelial cells). We calculated the nitrogen metabolism scores and conducted trajectory analysis for the most abundant cells, Astrocytes, revealing 6 differentiation directions of Astrocytes, which included the main differentiation direction from cells with low nitrogen metabolism scores to cells with high nitrogen metabolism scores. Furthermore, based on the differentially expressed genes (DEGs) with high/low nitrogen metabolism scores, we constructed a 7-gene prognostic model by utilizing regression analysis. qRT-PCR analysis showed that IGFBP2, CHPF, CTSZ, UPP1, TCF12, ZBTB20 and RBP1 were all significantly up-regulated in the GBM cells. Through differential analysis, a protein-protein interaction (PPI) network, and enrichment analyses, we identified and analyzed the DEGs in the high RiskScore subgroup, revealing complex interactions among DEGs, which were mainly related to pathways such as TNF signaling pathway and NF-κB signaling pathway. By leveraging univariate analysis, survival-related genes were selected from the nitrogen metabolism-related gene sets. Clustering, survival, immune, and mutation analyses manifested that the collected nitrogen metabolism-related genes had good classification performance, presenting notable differences in survival rates, immune levels, gene mutations, and sensitivity to drugs between cluster1 and cluster2. In conclusion, the project investigated the prognosis and classification value of nitrogen metabolism-related genes in GBM from multiple perspectives, predicting the sensitivity of different subtypes of patients to immunotherapy response and drug sensitivity. These findings are expected to show new research directions for further exploration in these fields.
Collapse
Affiliation(s)
- Minfeng Tong
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Zhijian Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Lude Wang
- Central Laboratory, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Huahui Chen
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Xing Wan
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Hu Xu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Song Yang
- Department of Neurosurgery, Jiaozhou Branch, East Hospital Affiliated to Tongji University, Jiaozhou 266300, China.
| | - Qi Tu
- Department of Neurosurgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China.
| |
Collapse
|
3
|
Patton AP, Krogager TP, Maywood ES, Smyllie NJ, Morris EL, Skehel M, Hastings MH. Multi-Omic Analysis Reveals Astrocytic Annexin-A2 as Critical for Network-Level Circadian Timekeeping in the Suprachiasmatic Nucleus. Glia 2025; 73:1483-1501. [PMID: 40171808 PMCID: PMC12121465 DOI: 10.1002/glia.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 04/04/2025]
Abstract
The mammalian suprachiasmatic nucleus (SCN) orchestrates daily (circadian) rhythms of physiology and behavior by broadcasting timing cues generated autonomously by its mutually reinforcing network of ~10,000 neurons and ~3000 astrocytes. Although astrocytic control of extracellular glutamate and GABA has been implicated in driving circadian oscillations in SCN gene expression and neuronal activity, the full scale of the network-level signaling mechanisms is unknown. To understand better how this astrocyte-neuron network operates, we adopted a multi-omics approach, first using SILAC-based mass spectrometry to generate an SCN proteome where ~7% of identified proteins were circadian. This circadian proteome was analyzed bioinformatically alongside existing single-cell RNAseq transcriptomic data to identify the cell-types and processes to which they contribute. This highlighted "S100 protein binding," tracked to astrocytes, and revealed annexin-A2 (Anxa2) as an astrocyte-enriched circadian protein for further investigation. We show that Anxa2 and its partner S100a10 are co-expressed and enriched in SCN astrocytes. We also show that pharmacological disruption of their association acutely and reversibly dysregulated the circadian cycle of astrocytic calcium levels and progressively compromised SCN neuronal oscillations. Anxa2 and S100a10 interaction therefore constitutes an astrocytic cellular signaling axis that regulates circadian neuronal excitability and ultimately SCN network coherence necessary for circadian timekeeping.
Collapse
Affiliation(s)
- Andrew P. Patton
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Toke P. Krogager
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Elizabeth S. Maywood
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Nicola J. Smyllie
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| | - Emma L. Morris
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
- Department for Neural Systems and CodingMax Planck Institute for Brain ResearchFrankfurt am MainGermany
| | - Mark Skehel
- Medical Research Council Laboratory of Molecular BiologyCambridgeUK
- Proteomics Science Technology PlatformThe Francis Crick InstituteLondonUK
| | - Michael H. Hastings
- Division of NeurobiologyMedical Research Council Laboratory of Molecular BiologyCambridgeUK
| |
Collapse
|
4
|
Zhou C, Hardin EJ, Zimmer TS, Jackvony S, Barnett D, Khobrekar N, Giacomelli E, Studer L, Orr AL, Orr AG. Neuroimmune signaling mediates astrocytic nucleocytoplasmic disruptions and stress granule formation associated with TDP-43 pathology. Neurobiol Dis 2025; 211:106939. [PMID: 40339618 DOI: 10.1016/j.nbd.2025.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025] Open
Abstract
Alterations in transactivating response region DNA-binding protein 43 (TDP-43) are prevalent in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neurological disorders. TDP-43 influences neuronal functions and might also affect glial cells. However, specific intracellular effects of TDP-43 alterations on glial cells and underlying mechanisms are not clear. We report that TDP-43 dysregulation in mouse and human cortical astrocytes causes nucleoporin mislocalization, nuclear envelope remodeling, and changes in nucleocytoplasmic protein transport. These effects are dependent on interleukin-1 (IL-1) receptor activity and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling and are associated with the formation of cytoplasmic stress granules. Stimulation of IL-1 receptors and NF-κB signaling are necessary and sufficient to induce astrocytic stress granules and rapid nucleocytoplasmic changes, which are broadly alleviated by inhibition of the integrated stress response. These findings establish that TDP-43 alterations and neuroimmune factors can induce nucleocytoplasmic changes through NF-κB signaling, revealing mechanistic convergence of proteinopathy and neuroimmune pathways onto glial nucleocytoplasmic disruptions that may occur in diverse neurological conditions.
Collapse
Affiliation(s)
- Constance Zhou
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Evelyn J Hardin
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Till S Zimmer
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA
| | - Stephanie Jackvony
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Daniel Barnett
- Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Noopur Khobrekar
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Elisa Giacomelli
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA; Developmental Biology Program, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Adam L Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA; Helen and Robert Appel Alzheimer's Disease Research Institute, New York, NY, USA; Feil Family Brain and Mind Research Institute, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
5
|
Augustin E, Vinasco‐Sandoval T, Riquelme‐Perez M, Plassard D, Gaudin M, Aurégan G, Mitja J, Bernier S, Joséphine C, Petit F, Jan C, Hérard A, Gaillard M, Launay A, Faivre E, Buée L, Boutillier A, Blum D, Bemelmans A, Bonvento G, Cambon K. Hippocampal Astrocyte Morphology Follows an Unexpected Trajectory With Age in a Transgenic Rodent Model of Tauopathy. Glia 2025; 73:1502-1519. [PMID: 40119587 PMCID: PMC12121468 DOI: 10.1002/glia.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/12/2025] [Accepted: 03/14/2025] [Indexed: 03/24/2025]
Abstract
Individual protoplasmic astrocytes have very complex and diverse spongiform shapes. The morphological diversity of astrocytes is determined by the structural and functional interactions of the astrocyte with its microenvironment. When faced with pathological conditions, astrocytes reorganize their morphology. Yet, little is known about the astrocytic response in pure tauopathies and its evolution over time. Here, we aimed to investigate the consequences of a primary neuronal tau pathology on astrocyte fine morphology at three stages of the disease using the transgenic Thy-Tau22 mouse model. We first showed that hippocampal astrocytes in Thy-Tau22 mice progressively accumulate hyperphosphorylated tau with age. We then developed a pipeline of analyses, including 3D reconstruction of hippocampal tdTomato-labeled astrocytes via a PHP.eB adeno-associated virus, confocal microscopy, Imaris software morphometric analysis, and an advanced statistical analysis. During normal aging, the complexity of astrocyte morphology peaked at adulthood, then declined. In contrast, in Thy-Tau22 mice, tauopathy was associated with a simpler initial morphology, followed by the appearance of a cluster of complex cells at the most advanced stage. Using principal component analysis and hierarchical clustering based on 10 morphological features, we were able to identify different astrocyte morphotypes whose relative proportion varies differently with age between WT and Thy-Tau22 mice. Interestingly, we revealed that a fraction of astrocytes with a complex morphology re-emerges late in tauopathy-affected animals. Our data highlight the concept of significant and reversible structural plasticity of astrocytes when faced with chronic pathological conditions.
Collapse
Affiliation(s)
- Emma Augustin
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Tatiana Vinasco‐Sandoval
- CEA, CNRS, DRF, IBFJ, IRCMLaboratoire de Génomique et Radiobiologie de la KératinopoeièseEvryFrance
| | - Miriam Riquelme‐Perez
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Damien Plassard
- GenomEast Platform, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR 7104, INSERM U1258Université de StrasbourgIllkirchFrance
| | - Mylène Gaudin
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Gwenaëlle Aurégan
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Julien Mitja
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Sueva Bernier
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Charlène Joséphine
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Fanny Petit
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Caroline Jan
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
- Université Paris‐SaclayCNRS, Institut Des Neurosciences Paris‐SaclaySaclayFrance
| | - Anne‐Sophie Hérard
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Marie‐Claude Gaillard
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Agathe Launay
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Emilie Faivre
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Luc Buée
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Anne‐Laurence Boutillier
- Laboratoire de Neurosciences Cognitives et Adaptatives (LNCA)Université de StrasbourgStrasbourgFrance
- UMR 7364Centre National de la Recherche Scientifique (CNRS)StrasbourgFrance
| | - David Blum
- Université de Lille, Inserm, CHU LilleLilleFrance
- Alzheimer and TauopathiesLabEx DISTALZLilleFrance
| | - Alexis‐Pierre Bemelmans
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| | - Gilles Bonvento
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
- Université Paris‐SaclayCNRS, Institut Des Neurosciences Paris‐SaclaySaclayFrance
| | - Karine Cambon
- Université Paris‐Saclay, CEA, CNRS, MIRCenLaboratoire Des Maladies NeurodegenerativesFontenay‐aux‐RosesFrance
| |
Collapse
|
6
|
Everett A, Elsheikha HM. Neuroinflammation and schizophrenia: The role of Toxoplasma gondii infection and astrocytic dysfunction. J Neuroimmunol 2025; 403:578588. [PMID: 40139129 DOI: 10.1016/j.jneuroim.2025.578588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 03/11/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Obligate intracellular pathogens such as the protozoan Toxoplasma gondii exploit host cell mechanisms to facilitate their survival and replication. While T. gondii can infect any nucleated mammalian cell, it exhibits a particular affinity for central nervous system cells, including neurons, astrocytes, and microglia. Among these, astrocytes play a pivotal role in maintaining neuroimmune balance, and their infection by T. gondii induces structural and functional alterations. Emerging evidence suggests that these changes may contribute to the pathophysiology of schizophrenia (SCZ). Although a direct causal link between T. gondii-induced astrocytic dysfunction and SCZ remains unproven, infection has been associated with increased kynurenic acid production, elevated dopamine levels, and heightened inflammatory cytokines-all of which are implicated in SCZ pathology. Additionally, T. gondii infection disrupts crucial neurobiological processes, including N-methyl-d-aspartate receptor signaling, blood-brain barrier integrity, and gray matter volume, further aligning with SCZ-associated neuropathology. This review underscores the need for targeted research into T. gondii-mediated astrocytic dysfunction as a potential factor in SCZ development. Understanding the mechanistic links between T. gondii infection, astrocytic alterations, and psychiatric disorders may open new avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Abigail Everett
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK.
| |
Collapse
|
7
|
Martins YA, Cardinali CAEF, Torrão AS. Age-related differences in long-term memory performance and astrocyte morphology in rat hippocampus. Neurobiol Aging 2025; 150:19-43. [PMID: 40043468 DOI: 10.1016/j.neurobiolaging.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/10/2025] [Accepted: 02/24/2025] [Indexed: 04/10/2025]
Abstract
Astrocytes are neuromodulator cells. Their complex and dynamic morphology regulates neuronal signaling, synaptic plasticity, and neurogenesis. The impact of aging on astrocyte morphology is still under ongoing debate. Therefore, this study aimed to characterize astrocyte morphology in the hippocampus of older rats. 2-, 18-, and 20-month-old male Wistar rats were submitted to the object recognition test to assess their short- and long-term memories. CA1, CA2, CA3, and the dentate gyrus were collected for immunohistochemistry analysis and glial fibrillary acid protein (GFAP) immunostaining. Our results indicate that 20-month-old rats did not recognize or discriminate the novel object in the long-term memory test. Also, GFAP staining was greater in the oldest group for all analyzed areas. Morphometric and fractal analysis indicated shorter branch lengths and smaller sizes for astrocytes of 20-month-old rats. Overall, our results suggest that 20-month-old rats have long-term memory impairment, increased GFAP staining, and astrocyte dystrophy. These age-related alterations in astrocyte morphology are a resource for future studies exploring the role of astrocytes in age-related cognitive decline and age-related diseases.
Collapse
Affiliation(s)
- Yandara A Martins
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| | | | - Andréa S Torrão
- Departamento de Fisiologia e Biofisica, Universidade de São Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Li D, Huo X, Shen L, Qian M, Wang J, Mao S, Chen W, Li R, Zhu T, Zhang B, Liu K, Wu F, Bai Y. Astrocyte heterogeneity in ischemic stroke: Molecular mechanisms and therapeutic targets. Neurobiol Dis 2025; 209:106885. [PMID: 40139279 DOI: 10.1016/j.nbd.2025.106885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 03/22/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Ischemic stroke is one of the major causes of death and disability in adults, bringing a significant economic burden to the society and families. Despite significant advancements in stroke treatment, focusing solely on neurons is insufficient for improving disease progression and prognosis. Astrocytes are the most ubiquitous cells in the brain, and they undergo morphological and functional changes after brain insults, which has been known as astrocyte reactivity. Transcriptomics have shown that reactive astrocytes (RA) are heterogeneous, and they can be roughly classified into neurotoxic and neuroprotective types, thereby affecting the development of central nervous system (CNS) diseases. However, the relationship between stroke and reactive astrocyte heterogeneity has not been fully elucidated, and regulating the heterogeneity of astrocytes to play a neuroprotective role may provide a new perspective for the treatment of stroke. Here we systematically review current advancements in astrocyte heterogeneity following ischemic stroke, elucidate the molecular mechanisms underlying their activation, and further summarize promising therapeutic agents and molecular targets capable of modulating astrocyte heterogeneity.
Collapse
Affiliation(s)
- Daxing Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xinchen Huo
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Ling Shen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Minjie Qian
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Jindou Wang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Shijie Mao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Wenjing Chen
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Runheng Li
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tianhao Zhu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Beicheng Zhang
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Kunxuan Liu
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Feifei Wu
- Laboratory for Human Anatomy, School of Medicine, Southeast University, Nanjing 210009, Jiangsu, China.
| | - Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China.
| |
Collapse
|
9
|
Loera-Lopez AL, Lord MN, Noble EE. Astrocytes of the hippocampus and responses to periprandial neuroendocrine hormones. Physiol Behav 2025; 295:114913. [PMID: 40209869 PMCID: PMC12066093 DOI: 10.1016/j.physbeh.2025.114913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/15/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Astrocytes have risen as stars in the field of energy homeostasis and neurocognitive function, acting as a bridge of communication between the periphery and the brain, providing metabolic support, signaling via gliotransmitters, and altering synaptic communication. Dietary factors and energy state have a profound influence on hippocampal function, and the hippocampus is critical for appropriate behavioral responses associated with feeding and internal hunger cues (being in the fasted or full state), but how the hippocampus senses periprandial status and is impacted by diet is largely unknown. Periprandial hormones act within the hippocampus to modulate processes involved in hippocampal-dependent learning and memory function and astrocytes likely play an important role in modulating this signaling. In addition to periprandial hormones, astrocytes are positioned to respond to changes in circulating nutrients like glucose. Here, we review literature investigating how astrocytes mediate changes in hippocampal function, highlighting astrocyte location, morphology, and function in the context of integrating glucose metabolism, neuroendocrine hormone action, and/or cognitive function in the hippocampus. Specifically, we discuss research findings on the effects of insulin, ghrelin, leptin, and GLP-1 on glucose homeostasis, neural activity, astrocyte function, and behavior in the hippocampus. Because obesogenic diets impact neuroendocrine hormones, astrocytes, and cognitive function, we also discuss the effects of diet and diet-induced obesity on these parameters.
Collapse
Affiliation(s)
- Ana L Loera-Lopez
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Magen N Lord
- Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA
| | - Emily E Noble
- Neuroscience Graduate Program, University of Georgia, Athens, GA, 30606, USA; Department of Nutritional Sciences, University of Georgia, Athens, GA, 30606, USA.
| |
Collapse
|
10
|
Zhu Z, Xu Y, Wang K, Xu X, Song Y, Zhao B, Ding W, Liu J, Song Z. The role of astrocyte-derived extracellular vesicles in cellular microenvironment remodeling after spinal cord injury: A study based on quantitative proteomics analysis. Exp Neurol 2025; 391:115321. [PMID: 40441520 DOI: 10.1016/j.expneurol.2025.115321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 05/16/2025] [Accepted: 05/26/2025] [Indexed: 06/02/2025]
Abstract
After spinal cord injury (SCI), astrocytes (AS), the most abundant glial cells in the central nervous system, closely interact with other nerve cells. The precise mechanism by which astrocytes remodel the cellular microenvironment (CME) remains unclear; however, the extracellular vesicles (EVs) they release may facilitate communication between cells by transporting biological macromolecules. This study aimed to elucidate the role of astrocyte-derived EVs in modulating CME after SCI. An in vitro model of reactive astrocytes (RA) was developed under simulated SCI conditions, followed by proteomic analysis of EVs isolated from RA and AS. Differential protein expression was assessed using quantitative proteomics, complemented by gene set enrichment analysis to elucidate the associated biological functions. Our results indicate that AS-EVs provide neuroprotective benefits by attenuating microglial activation, decreasing neuronal apoptosis, promoting axonal growth, and facilitating the maturation of oligodendrocyte precursor cells, thereby improving motor function recovery in murine models. Conversely, RA-EVs exhibited deleterious effects, exacerbating inflammation and impeding functional recovery. CC Motif Chemokine Ligand 7 (CCL7) was identified as a critical secretory protein mediating these adverse effects. These findings elucidate the neuroprotective and regenerative mechanisms mediated by astrocyte-derived EVs, highlighting the therapeutic potential of CCL7-targeted interventions in promoting recovery after SCI.
Collapse
Affiliation(s)
- Zhenghuan Zhu
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China
| | - Yi Xu
- Department of pain treatment, Suzhou Kowloon Hospital, Shanghai Jiaotong University School of Medicine, 118 Wanshen Road, Suzhou, Jiangsu 215028, China
| | - Kejie Wang
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China
| | - Xu Xu
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China
| | - Yu Song
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China
| | - Baizhen Zhao
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China
| | - Wenge Ding
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China.
| | - Jinbo Liu
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China.
| | - Zhiwen Song
- Department of Orthopedics, The First People's Hospital of Changzhou, Third Affiliated Hospital of Soochow University,185 Juqian Road, Changzhou, Jiangsu 213000, China.
| |
Collapse
|
11
|
Valenza M. Dysregulated astrocyte cholesterol synthesis in Huntington's disease: A potential intersection with other cellular dysfunctions. J Huntingtons Dis 2025:18796397251336192. [PMID: 40396448 DOI: 10.1177/18796397251336192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Astrocytes are key elements for synapse development and function. Several astrocytic dysfunctions contribute to the pathophysiology of various neurodegenerative disorders, including Huntington's disease (HD), an autosomal-dominant neurodegenerative disorder that is characterized by motor and cognitive defects with behavioral/psychiatric disturbances. One dysfunction in HD related to astrocytes is reduced cholesterol synthesis, leading to a decreased availability of local cholesterol for synaptic activity. This review describes the specific role of astrocytes in the brain local cholesterol synthesis and presents evidence supporting a defective astrocyte-neuron cholesterol crosstalk in HD, by focusing on SREBP-2, the transcription factor that regulates the majority of genes involved in the cholesterol biosynthetic pathway. The emerging coordination of SREBP-2 with other physiological processes, such as energy metabolism, autophagy, and Sonic Hedgehog signaling, is also discussed. Finally, this review intends to stimulate future research directions to explore whether the impairment of astrocytic SREBP-2-mediated cholesterol synthesis in HD associates with other cellular dysfunctions in the disease.
Collapse
Affiliation(s)
- Marta Valenza
- Department of Biosciences, University of Milan, Milan, Italy
| |
Collapse
|
12
|
Samokhina E, Mangat A, Malladi CS, Gyengesi E, Morley JW, Buskila Y. Potassium homeostasis during disease progression of Alzheimer's disease. J Physiol 2025. [PMID: 40366190 DOI: 10.1113/jp287903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Alzheimer's disease (AD) is an age-dependent neurodegenerative disorder characterized by neuronal loss leading to dementia and ultimately death. Whilst the loss of neurons is central to this disease, it is becoming clear that glia, specifically astrocytes, contribute to the onset and progression of neurodegeneration. The role of astrocytes in maintaining ion homeostasis in the extracellular milieu is fundamental for multiple brain functions, including synaptic plasticity and neuronal excitability, which are compromised during AD and affect neuronal signalling. In this study, we measured the astrocytic K+ clearance rate in the hippocampus and somatosensory cortex of a mouse model for AD during disease progression. Our results establish that astrocytic [K+]o (extracellular K+ concentration) clearance in the hippocampus is reduced in symptomatic 5xFAD mice, and this decrease is region-specific, as no significant alterations were detected in the superficial layers of the somatosensory cortex. The decrease in the [K+]o clearance rate correlated with a significant reduction in the expression and conductivity of Kir4.1 channels and a decline in the number of primary connected astrocytes. Moreover, astrocytes in the hippocampus of symptomatic 5xFAD mice demonstrated increased reactivity which was accompanied by an increased excitability and altered spiking profile of nearby neurons. These findings indicate that the supportive function astrocytes typically provide to nearby neurons is diminished during disease progression, which affects the neuronal circuit signalling in this area and provides a potential explanation for the increased vulnerability of neurons in AD. KEY POINTS: Astrocytic potassium clearance from the extracellular milleu is fundamental for multiple brain functions. Alterations in the clearance rate can affect the excitability and overall viability of neurons. A symptomatic mouse model for Alzheimer's disease (5xFAD) exhibits a significant decline in astrocytic K+ clearance at the hippocampus, but not the somatosensory cortex. The decrease in the clearance rate correlated with a reduction in the expression and conductivity of astrocytic Kir4.1 channels and a decrease in the number of primary connected astrocytes, specifically at the stratum lacunosum moleculare layer of the CA1 region. Astrocytes in the hippocampus of symptomatic 5xFAD mice displayed increased reactivity. The excitability profile and firing patterns of neurons at the hippocampus were affected by alterations in K+ homeostasis, indicating that the supportive function astrocytes typically provide to nearby neurons is diminished during progression of Alzheimer's disease.
Collapse
Affiliation(s)
- Evgeniia Samokhina
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Armaan Mangat
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Chandra S Malladi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Erika Gyengesi
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - John W Morley
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
- The MARCS Institute, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
13
|
Raghunathan K, Eroglu C. Developmental roles of astrocytes in circuit wiring. Curr Opin Neurobiol 2025; 92:103042. [PMID: 40367704 DOI: 10.1016/j.conb.2025.103042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/26/2025] [Accepted: 04/16/2025] [Indexed: 05/16/2025]
Abstract
Astrocytes, the perisynaptic glial cells of the brain, play fundamental roles in sculpting synaptic circuits and instructing their remodeling and maturation during development. Astrocytes do so through a plethora of cell adhesion and secretory signaling to neurons. This rich communication between astrocytes and neurons is critical for balancing inhibitory and excitatory synaptic connectivity. Additionally, astrocytes refine neural circuits via synaptic engulfment and elimination. Here, we will review recent findings highlighting the diversity and significance of astrocyte-to-neuron communication during developmental circuit wiring. Moreover, we will point out emerging mechanisms of how neurons instruct astrocytes' maturation and synaptic functions to spotlight the essential bidirectional communication between these two cell types in shaping synaptic circuits during neurodevelopment.
Collapse
Affiliation(s)
- Kavya Raghunathan
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Cagla Eroglu
- The Department of Cell Biology, Duke University Medical Center, Durham, NC, USA; The Department of Neurobiology, Duke University Medical Center, Durham, NC, USA; Howard Hughes Medical Institute, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
14
|
Westerlund LH, Bergström CK, Laakkonen PM, Le Joncour V. Deciphering the Dialogue between Brain Tumors, Neurons, and Astrocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2025:S0002-9440(25)00153-1. [PMID: 40345526 DOI: 10.1016/j.ajpath.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/19/2025] [Accepted: 04/02/2025] [Indexed: 05/11/2025]
Abstract
Glioblastoma (GB) and brain metastases (BM) from peripheral tumors account for most cases of tumors in the central nervous system (CNS) while also being the deadliest. From a structural point of view, malignant brain tumors are classically characterized by hypercellularity of glioma and vascular endothelial cells. Given these atypical histologic features, GB and BM have long been considered as "foreign" entities with few to no connections to the brain parenchyma. The identification of intricate connections established between GB cells and the brain parenchyma paired with the ability of peripheral metastatic cells to form functional synapses with neurons challenged the concept of brain tumors disconnected from the CNS. Tumor cell integration to the CNS alters brain functionality in patients and accelerates cancer progression. Next-generation precision medicine should therefore attempt to disconnect brain cancer cells from the brain. This review encompasses recent discoveries on the mechanisms underlying these relationships and discusses the impact of these connections on tumor progression. It also summarizes the therapeutic opportunities of interrupting the dialogue between healthy and neoplastic brains.
Collapse
Affiliation(s)
- Leevi H Westerlund
- Translational Cancer Medicine Research Program-CAN-PRO, Faculty of Medicine, Helsinki, Finland; Helsinki University Central Hospital, Helsinki, Finland
| | - Camilla K Bergström
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
| | - Pirjo M Laakkonen
- Translational Cancer Medicine Research Program-CAN-PRO, Faculty of Medicine, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Laboratory Animal Centre, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland.
| | - Vadim Le Joncour
- Neuroscience Center, HiLIFE-Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship Program, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
15
|
Wei S, Song X, Mou Y, Yang T, Wang Y, Wang H, Ren C, Song X. New insights into pathogenisis and therapies of P2X7R in Parkinson's disease. NPJ Parkinsons Dis 2025; 11:108. [PMID: 40325043 PMCID: PMC12053563 DOI: 10.1038/s41531-025-00980-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/27/2025] [Indexed: 05/07/2025] Open
Abstract
Parkinson's disease (PD), a prevalent neurodegenerative disorder, is linked to genetics and environment, but its mechanisms remain unclear. Emerging evidence connects purinergic signaling-particularly ATP-sensitive P2X7 receptor (P2X7R)-to PD. P2X7R expression is elevated in PD patients, and its antagonist BBG mitigates 6-OHDA-induced dopaminergic neuron death. This review discusses P2X7R's structure, neural functions, PD-related mechanisms, and therapeutic potential as a targert.
Collapse
Affiliation(s)
- Shizhuang Wei
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Xiaoyu Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yakui Mou
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Ting Yang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Yao Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Hanrui Wang
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
| | - Chao Ren
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Department of Neurology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| | - Xicheng Song
- Department of Otorhinolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
- Shandong Provincial Key Laboratory of Neuroimmune Interaction and Regulation, Yantai Yuhuangding Hospital, Yantai, China.
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Yantai, China.
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China.
| |
Collapse
|
16
|
Kim H, Jeon Y, Kim S, Guo Y, Kim D, Jang G, Brasch J, Um JW, Ko J. EphB2 receptor tyrosine kinase-mediated excitatory synaptic functions are negatively modulated by MDGA2. Prog Neurobiol 2025; 250:102772. [PMID: 40316130 DOI: 10.1016/j.pneurobio.2025.102772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/24/2025] [Accepted: 04/24/2025] [Indexed: 05/04/2025]
Abstract
MDGA2 is an excitatory synapse-specific suppressor that uses distinct extracellular mechanisms to negatively regulate various postsynaptic properties. Here, we identify EphB2, an excitatory synapse-specific receptor tyrosine kinase, as a new binding partner for MDGA2. The first three immunoglobulin domains of MDGA2 undergo cis-binding to the ligand-binding domain of EphB2, enabling MDGA2 to compete with Ephrin-B1 for binding to EphB2. Moreover, EphB2 forms complexes with MDGA2 and GluN2B-containing NMDA receptors (NMDARs) in mouse brains. MDGA2 deletion promotes formation of the EphB2/Ephrin-B1 complex but does not alter the surface expression levels and Ephrin-stimulated activation of EphB2 receptors and downstream GluN2B-containing NMDARs in cultured neurons. AlphaFold-based molecular replacement experiments reveal that MDGA2 must bind EphB2 to suppress spontaneous synaptic transmission and NMDAR-mediated, but not AMPAR-mediated, postsynaptic responses at excitatory synapses in cultured neurons. These results collectively suggest that MDGA2 is a versatile factor that suppresses distinct excitatory postsynaptic properties via different transsynaptic pathways.
Collapse
Affiliation(s)
- Hyeonho Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Younghyeon Jeon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Seunghye Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Yuxuan Guo
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT 84112, USA
| | - Dongwook Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Gyubin Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea
| | - Julia Brasch
- Department of Biochemistry, Spencer Fox Eccles School of Medicine, The University of Utah, Salt Lake City, UT 84112, USA
| | - Ji Won Um
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea.
| | - Jaewon Ko
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), 333 Techno Jungangdae-Ro, Hyeonpoong-Eup, Dalseong-Gun, Daegu 42988, South Korea; Center for Synapse Diversity and Specificity, DGIST, Daegu 42988, South Korea.
| |
Collapse
|
17
|
Chen D, Yang YY, Yang Y. Astrocyte Loss Augments Body Weight Through Reduction in Adipose Sympathetic Outflows. Glia 2025; 73:1068-1076. [PMID: 39780483 PMCID: PMC11922664 DOI: 10.1002/glia.24673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/24/2024] [Accepted: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Emerging evidence indicates that astrocytes modulate energy metabolism and homeostasis. However, one important but poorly understood element is the necessity of astrocytes in the control of body weight. Here, we apply viral vector-assisted brain-region selective loss of astrocytes to define physiological roles played by astrocytes in the arcuate nucleus of the hypothalamus (ARH) and to elucidate the involved mechanism. We find that astrocyte loss potently augments body weight in adult mice fed chow or high-fat diet. Mechanistically, we find that the loss of astrocytes reduces adipose tissue norepinephrine (NE) contents and chemogenetic stimulation of adipose tissue sympathetic inputs reverses the astrocyte loss-induced increase in body weight. Collectively, our findings in this study suggest a crucial physiological role of astrocytes in preventing diet-induced energy surfeit and obesity by modulating adipose tissue lipid metabolism through central sympathetic outflows to adipose tissues.
Collapse
Affiliation(s)
- Dan Chen
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Yunlei Yang
- Department of Medicine Division of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- The Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
18
|
Chung EN, Lee J, Polonio CM, Choi J, Akl CF, Kilian M, Weiß WM, Gunner G, Ye M, Heo TH, Drake SS, Yang L, d'Eca CRGL, Lee JH, Deng L, Farrenkopf D, Schüle AM, Lee HG, Afolabi O, Ghaznavi S, Smirnakis SM, Chiu IM, Kuchroo VK, Quintana FJ, Wheeler MA. Psychedelic control of neuroimmune interactions governing fear. Nature 2025; 641:1276-1286. [PMID: 40269152 PMCID: PMC12119215 DOI: 10.1038/s41586-025-08880-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025]
Abstract
Neuroimmune interactions-signals transmitted between immune and brain cells-regulate many aspects of tissue physiology1, including responses to psychological stress2-5, which can predispose individuals to develop neuropsychiatric diseases6-9. Still, the interactions between haematopoietic and brain-resident cells that influence complex behaviours are poorly understood. Here, we use a combination of genomic and behavioural screens to show that astrocytes in the amygdala limit stress-induced fear behaviour through epidermal growth factor receptor (EGFR). Mechanistically, EGFR expression in amygdala astrocytes inhibits a stress-induced, pro-inflammatory signal-transduction cascade that facilitates neuron-glial crosstalk and stress-induced fear behaviour through the orphan nuclear receptor NR2F2 in amygdala neurons. In turn, decreased EGFR signalling and fear behaviour are associated with the recruitment of meningeal monocytes during chronic stress. This set of neuroimmune interactions is therapeutically targetable through the administration of psychedelic compounds, which reversed the accumulation of monocytes in the brain meninges along with fear behaviour. Together with validation in clinical samples, these data suggest that psychedelics can be used to target neuroimmune interactions relevant to neuropsychiatric disorders and potentially other inflammatory diseases.
Collapse
Affiliation(s)
- Elizabeth N Chung
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Jinsu Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Carolina M Polonio
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Joshua Choi
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Camilo Faust Akl
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael Kilian
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Wiebke M Weiß
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Georgia Gunner
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Mingyu Ye
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - Tae Hyun Heo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sienna S Drake
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Liu Yang
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Catarina R G L d'Eca
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Joon-Hyuk Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Liwen Deng
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Daniel Farrenkopf
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Anton M Schüle
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Hong-Gyun Lee
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Oreoluwa Afolabi
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharmin Ghaznavi
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for the Neuroscience of Psychedelics, Massachusetts General Hospital, Boston, MA, USA
| | - Stelios M Smirnakis
- Department of Neurology, Brigham and Women's Hospital and Jamaica Plain Veterans Administration Hospital, Harvard Medical School, Boston, MA, USA
| | - Isaac M Chiu
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - Vijay K Kuchroo
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Francisco J Quintana
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael A Wheeler
- The Gene Lay Institute of Immunology and Inflammation, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Han W, Bian X, Fu H, Liu M, Wang H, Liu H. Integrating Single-Cell Sequencing and Transcriptome Analysis to Investigate the Role of Ferroptosis in Ischemic Stroke and the Molecular Mechanisms of Immune Checkpoints. World Neurosurg 2025; 197:123908. [PMID: 40118372 DOI: 10.1016/j.wneu.2025.123908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Early diagnosis of ischemic stroke (IS) remains challenging. Given the crucial role of ferroptosis in IS, this study aims to identify key genes associated with ferroptosis in IS, providing insights into its molecular mechanisms and potential biomarkers for early detection. METHODS The single-cell transcriptome dataset GSE247474 from the Gene Expression Omnibus. Ferroptosis scores in astrocytes were calculated using the WP_FERROPTOSIS gene set, and differential analysis was conducted to compare ferroptosis activity between the disease and control groups. Key ferroptosis-related genes were identified using Lasso regression and support vector machine algorithms, and their diagnostic potential was assessed through receiver operating characteristic curve analysis. Additionally, we performed immune infiltration analysis and transcription factor network prediction. Pseudotime analysis was used to explore the differentiation trajectories of astrocytes and T-cell subsets. RESULTS Astrocytes in the disease group showed significantly higher ferroptosis scores than those in the control group. Using machine learning algorithms, we identified 3 key ferroptosis-related genes-SLC3A2 (solute carrier family 3 member 2), FDFT1 (farnesyl-diphosphate farnesyltransferase 1), and BACH1 (BTB and CNC homology 1)-and validated their diagnostic value (area under the curve >0.9). Immune infiltration analysis revealed that SLC3A2 and BACH1 expression levels were positively correlated with CD4+ follicular T cells and negatively correlated with CD4+ memory T cells. FDFT1 showed positive correlations with both mast cells and CD4+ memory T cells. Pseudotime analysis demonstrated dynamic changes in key gene expression along the differentiation trajectories of astrocytes and T cells. CONCLUSIONS SLC3A2, FDFT1, and BACH1 are potential molecular markers for IS diagnosis.
Collapse
Affiliation(s)
- Weidong Han
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Xiaonan Bian
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Haiyang Fu
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Min Liu
- Department of Clinical Laboratory, Liupanshui Maternal and Child Health Hospital, Liupanshui, Guizhou, China
| | - Hongliang Wang
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China
| | - Haimei Liu
- Department of Clinical Laboratory, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Nantong, Jiangsu, China.
| |
Collapse
|
20
|
Rust R, Sagare AP, Zhang M, Zlokovic BV, Kisler K. The blood-brain barrier as a treatment target for neurodegenerative disorders. Expert Opin Drug Deliv 2025; 22:673-692. [PMID: 40096820 DOI: 10.1080/17425247.2025.2480654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a vascular endothelial membrane which restricts entry of toxins, cells, and microorganisms into the brain. At the same time, the BBB supplies the brain with nutrients, key substrates for DNA and RNA synthesis, and regulatory molecules, and removes metabolic waste products from brain to blood. BBB breakdown and/or dysfunction have been shown in neurogenerative disorders including Alzheimer's disease (AD). Current data suggests that these BBB changes may initiate and/or contribute to neuronal, synaptic, and cognitive dysfunction, and possibly other aspects of neurodegenerative processes. AREAS COVERED We first briefly review recent studies uncovering molecular composition of brain microvasculature and examine the BBB as a possible therapeutic target in neurodegenerative disorders with a focus on AD. Current strategies aimed at protecting and/or restoring altered BBB functions are considered. The relevance of BBB-directed approaches to improve neuronal and synaptic function, and to slow progression of neurodegenerative processes are also discussed. Lastly, we review recent advancements in drug delivery across the BBB. EXPERT OPINION BBB breakdown and/or dysfunction can significantly affect neuronal and synaptic function and neurodegenerative processes. More attention should focus on therapeutics to preserve or restore BBB functions when considering treatments of neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
21
|
Gaur P, Vaibhav K, Ahluwalia M, Gupta S. Editorial: Neuro-immune interplay: unraveling the complexities of neurological complications and immunology. Front Mol Neurosci 2025; 18:1607675. [PMID: 40370576 PMCID: PMC12075194 DOI: 10.3389/fnmol.2025.1607675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 05/16/2025] Open
Affiliation(s)
- Pankaj Gaur
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Kumar Vaibhav
- Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Meenakshi Ahluwalia
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| |
Collapse
|
22
|
Wang S, Baumert R, Séjourné G, Sivadasan Bindu D, Dimond K, Sakers K, Vazquez L, Moore JL, Tan CX, Takano T, Rodriguez MP, Brose N, Bradley L, Lessing R, Soderling SH, La Spada AR, Eroglu C. PD-linked LRRK2 G2019S mutation impairs astrocyte morphology and synapse maintenance via ERM hyperphosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.04.09.536178. [PMID: 39253496 PMCID: PMC11383028 DOI: 10.1101/2023.04.09.536178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Astrocytes are highly complex cells that mediate critical roles in synapse formation and maintenance by establishing thousands of direct contacts with synapses through their perisynaptic processes. Here, we found that the most common Parkinsonism gene mutation, LRRK2 G2019S, enhances the phosphorylation of the ERM proteins (Ezrin, Radixin, and Moesin), components of the perisynaptic astrocyte processes in a subset of cortical astrocytes. The ERM hyperphosphorylation was accompanied by decreased astrocyte morphological complexity and reduced excitatory synapse density and function. Dampening ERM phosphorylation levels in LRRK2 G2019S mouse astrocytes restored both their morphology and the excitatory synapse density in the anterior cingulate cortex. To determine how LRRK2 mutation impacts Ezrin interactome, we used an in vivo BioID proteomic approach, and we found that astrocytic Ezrin interacts with Atg7, a master regulator of autophagy. The Ezrin/Atg7 interaction is inhibited by Ezrin phosphorylation, thus diminished in LRRK2 G2019S astrocytes. Importantly, the Atg7 function is required to maintain proper astrocyte morphology. Our data provide a molecular pathway through which the LRRK2 G2019S mutation alters astrocyte morphology and synaptic density in a brain-region-specific manner.
Collapse
|
23
|
Badia-Soteras A, Mak A, Blok TM, Boers-Escuder C, van den Oever MC, Min R, Smit AB, Verheijen MHG. Astrocyte-synapse structural plasticity in neurodegenerative and neuropsychiatric diseases. Biol Psychiatry 2025:S0006-3223(25)01125-4. [PMID: 40254258 DOI: 10.1016/j.biopsych.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 03/18/2025] [Accepted: 04/11/2025] [Indexed: 04/22/2025]
Abstract
Synaptic dysfunction is a common feature across a broad spectrum of brain diseases, spanning from psychopathologies such as post-traumatic stress disorder (PTSD) and substance use disorders (SUD) to neurodegenerative diseases like Alzheimer's and Parkinson's disease (AD and PD). While neuroscience research aiming to understand the mechanisms underlying synaptic dysfunction has traditionally focused on the neuronal elements of the synapse, recent research increasingly acknowledges the contribution of astrocytes as a third element controlling synaptic transmission. This also sparked interest to investigate the tripartite synapse and its role in the etiology of neurological diseases. According to recent evidence, changes in the structural interaction between astrocytes and synapses not only play a pivotal role in modulating synaptic function and behavioral states, but are also implicated in the initiation and progression of various brain diseases. This review aims to integrate recent findings that provide insight into the molecular mechanisms underpinning astrocytic structural changes at the synapse. We offer a comprehensive discussion of the potential implications of compromised astrocyte-synapse interactions, and put forward that astrocytic synaptic coverage is generally reduced in numerous neurological disorders, with the extent of it being disease- and stage- specific. Finally, we propose outstanding questions on astrocyte-synapse structural plasticity that are relevant for future therapeutic strategies to tackle neurodegenerative and neuropsychiatric diseases.
Collapse
Affiliation(s)
- Aina Badia-Soteras
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Brain Scienes, Imperial College London, London , United Kingdom; UK Dementia Research Institute at Imperial College London, London , United Kingdom
| | - Aline Mak
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Thomas M Blok
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Cristina Boers-Escuder
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Michel C van den Oever
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rogier Min
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam, University Medical Center, Amsterdam Neuroscience, Amsterdam, The Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Mark H G Verheijen
- Department of Molecular and Cellular Neuroscience, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
24
|
Zhao X, Zhang S, Wu M, Zhang B, Wan G, Zhang M, Li J, Fei Z, Zhu G, Jiang S, Xiao M, Liu W, Zhao Z, Huang B, Ran J. High urea promotes mitochondrial fission and functional impairments in astrocytes inducing anxiety-like behavior in chronic kidney disease mice. Metab Brain Dis 2025; 40:186. [PMID: 40244426 DOI: 10.1007/s11011-025-01612-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
High urea can induce depression and anxiety. Activation of astrocytes is closely associated with psychiatric disorders. However, the pathological mechanism of whether high urea affects astrocyte structure and function to induce anxiety-like behaviors remain unclear. We established a high-urea chronic kidney disease (CKD) mouse model and found that these mice exhibited elevated levels of anxiety through behavioral experiments. Immunofluorescence and transmission electron microscopy studies of astrocytes revealed a decrease in density and branching of mPFC astrocytes. Additionally, we observed a significant reduction in ATP and BDNF levels in the mPFC and primary astrocytes of CKD mice induced by high urea. Analysis of gene expression differences in astrocytes between WT and high-urea mice indicated alterations in mitochondrial dynamics-related signaling pathways in astrocytes. We established a high-urea primary astrocyte model to assess mitochondrial function and levels of fusion and fission proteins. Treatment of primary astrocytes with high urea led to mitochondrial fragmentation and downregulation of Mfn2 expression. These results suggested that high urea downregulates Mfn2 expression in mPFC astrocytes, induced mitochondrial fusion-fission abnormalities, disrupted astrocyte energy metabolism, and promoted high-urea-related anxiety. Mfn2 may represent a potential therapeutic target for high-urea-related anxiety.
Collapse
Affiliation(s)
- Xi Zhao
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Shengyao Zhang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Mengna Wu
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Binyun Zhang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Guoran Wan
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Meng Zhang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Li
- Department of Stem Cell and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhuo Fei
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Guoqi Zhu
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Shaoqiu Jiang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Mohan Xiao
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Wanjia Liu
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Zhelun Zhao
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China
| | - Boyue Huang
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
| | - Jianhua Ran
- Department of Anatomy, Laboratory of Neuroscience and Tissue Engineering, Basic Medical College, Chongqing Medical University, Chongqing, 400016, China.
- Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing, China.
- Institute for Brain Science and Disease, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
25
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
26
|
Kohro Y, Tsuda M. Astrocytic GPR37L1: A new guardian against the onset and chronicity of neuropathic pain. Neuron 2025; 113:1121-1123. [PMID: 40245840 DOI: 10.1016/j.neuron.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/09/2025] [Accepted: 03/10/2025] [Indexed: 04/19/2025]
Abstract
In this issue of Neuron, Xu et al.1 demonstrate that activating GPR37L1, a G-protein-coupled receptor that negatively regulates astrocytes, suppresses the onset and maintenance of neuropathic pain, an intractable chronic pain caused by nerve damage, thereby serving as a therapeutic target.
Collapse
Affiliation(s)
- Yuta Kohro
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Tsuda
- Department of Molecular and System Pharmacology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan; Kyushu University Institute for Advanced Study, Fukuoka, Japan.
| |
Collapse
|
27
|
Wang C, He T, Qin J, Jiao J, Ji F. The roles of immune factors in neurodevelopment. Front Cell Neurosci 2025; 19:1451889. [PMID: 40276707 PMCID: PMC12018394 DOI: 10.3389/fncel.2025.1451889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
The development of the nervous system is a highly complex process orchestrated by a multitude of factors, including various immune elements. These immune components play a dual role, not only regulating the immune response but also actively influencing brain development under both physiological and pathological conditions. The brain's immune barrier includes microglia in the brain parenchyma, which act as resident macrophages, astrocytes that support neuronal function and contribute to the inflammatory response, as well as circulating immune cells that reside at the brain's borders, including the choroid plexus, meninges, and perivascular spaces. Cytokines-soluble signaling molecules released by immune cells-play a crucial role in mediating communication between immune cells and the developing nervous system. Cytokines regulate processes such as neurogenesis, synaptic pruning, and inflammation, helping to shape the neural environment. Dysregulation of these immune cells, astrocytes, or cytokine signaling can lead to alterations in neurodevelopment, potentially contributing to neurodevelopmental abnormalities. This article reviews the central role of microglia, astrocytes, cytokines, and other immune factors in neurodevelopment, and explores how neuroinflammation can lead to the onset of neurodevelopmental disorders, shedding new light on their pathogenesis.
Collapse
Affiliation(s)
- Chong Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Tingting He
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jie Qin
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Fen Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| |
Collapse
|
28
|
Natarajan P, Koupourtidou C, de Resseguier T, Thorwirth M, Bocchi R, Fischer‐Sternjak J, Gleiss S, Rodrigues D, Myoga MH, Ninkovic J, Masserdotti G, Götz M. Single Cell Deletion of the Transcription Factors Trps1 and Sox9 in Astrocytes Reveals Novel Functions in the Adult Cerebral Cortex. Glia 2025; 73:737-758. [PMID: 39610085 PMCID: PMC11845849 DOI: 10.1002/glia.24645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/30/2024]
Abstract
Astrocytes play key roles in brain function, but how these are orchestrated by transcription factors (TFs) in the adult brain and aligned with astrocyte heterogeneity is largely unknown. Here we examined the localization and function of the novel astrocyte TF Trps1 (Transcriptional Repressor GATA Binding 1) and the well-known astrocyte TF Sox9 by Cas9-mediated deletion using Mokola-pseudotyped lentiviral delivery into the adult cerebral cortex. Trps1 and Sox9 levels showed heterogeneity among adult cortical astrocytes, which prompted us to explore the effects of deleting either Sox9 or Trps1 alone or simultaneously at the single-cell (by patch-based single-cell transcriptomics) and tissue levels (by spatial transcriptomics). This revealed TF-specific functions in astrocytes, such as synapse maintenance with the strongest effects on synapse number achieved by Trps1 deletion and a common effect on immune response. In addition, spatial transcriptomics showed non-cell-autonomous effects on the surrounding cells, such as oligodendrocytes and other immune cells with TF-specific differences on the type of immune cells: Trps1 deletion affecting monocytes specifically, while Sox9 deletion acting mostly on microglia and deletion of both TF affecting mostly B cells. Taken together, this study reveals novel roles of Trps1 and Sox9 in adult astrocytes and their communication with other glial and immune cells.
Collapse
Affiliation(s)
- Poornemaa Natarajan
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Graduate School of Systemic Neurosciences, BiocenterMartinsriedGermany
- Max‐Planck‐Institute for BiochemistryInternational Max Planck Research School for Life SciencesMunichGermany
| | - Christina Koupourtidou
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Graduate School of Systemic Neurosciences, BiocenterMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Thibault de Resseguier
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
| | - Manja Thorwirth
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Riccardo Bocchi
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Judith Fischer‐Sternjak
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Sarah Gleiss
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
| | - Diana Rodrigues
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Michael H. Myoga
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Max Planck Institute for Biological IntelligenceMartinsriedGermany
| | - Jovica Ninkovic
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Biomedical Center Munich, Department of Cell Biology and AnatomyLMU MunichMartinsriedGermany
- Excellence Cluster of Systems Neurology (SYNERGY)MunichGermany
| | - Giacomo Masserdotti
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
| | - Magdalena Götz
- Biomedical Center Munich, Department of Physiological GenomicsLMU MunichMartinsriedGermany
- Institute for Stem Cell Research, Helmholtz Center MunichGerman Research Center for Environmental Health (GmbH)NeuherbergGermany
- Excellence Cluster of Systems Neurology (SYNERGY)MunichGermany
| |
Collapse
|
29
|
Zhou B, Li Q, Su M, Liao P, Luo Y, Luo R, Yu Y, Luo M, Lei F, Li X, Jiao J, Yi L, Wang J, Yang L, Liao D, Zhou C, Zhang X, Xiao H, Zuo Y, Liu J, Zhu T, Jiang R. Astrocyte morphological remodeling regulates consciousness state transitions induced by inhaled general anesthesia. Mol Psychiatry 2025:10.1038/s41380-025-02978-2. [PMID: 40169801 DOI: 10.1038/s41380-025-02978-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 03/04/2025] [Accepted: 03/21/2025] [Indexed: 04/03/2025]
Abstract
General anesthetics (GAs) are conventionally thought to induce loss of consciousness (LOC) by acting on pre- and post-synaptic targets. However, the mechanism underlying the involvement of astrocytes in LOC remains unclear. Here we report that inhaled GAs cause reversible impairments in the fine processes of astrocytes within the somatosensory cortex, mediated by regulating the phosphorylation level of Ezrin, a protein critical for the fine morphology of astrocytes. Genetically deleting Ezrin or disrupting its phosphorylation was sufficient to decrease astrocyte-synapse interaction and enhance sensitivity to sevoflurane (Sevo) in vivo. Moreover, we show that disrupting astrocytic Ezrin phosphorylation boosted the inhibitory effect of Sevo on pyramidal neurons by enhancing tonic GABA and lowering excitability under anesthesia. Our work reveals previously unappreciated phosphorylation-dependent morphological dynamics, which enable astrocytes to regulate neuronal activity during the transition between two brain consciousness states.
Collapse
Affiliation(s)
- Bin Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qingran Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengchan Su
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ping Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuncheng Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Rong Luo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunqing Yu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meiyan Luo
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Fan Lei
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Xin Li
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
| | - Jiao Jiao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Limei Yi
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Wang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Linghui Yang
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Daqing Liao
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xia Zhang
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, 610213, China
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hong Xiao
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yunxia Zuo
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Ruotian Jiang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Pérez-Núñez R, González MF, Avalos AM, Leyton L. Impacts of PI3K/protein kinase B pathway activation in reactive astrocytes: from detrimental effects to protective functions. Neural Regen Res 2025; 20:1031-1041. [PMID: 38845231 PMCID: PMC11438337 DOI: 10.4103/nrr.nrr-d-23-01756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/07/2024] [Accepted: 05/06/2024] [Indexed: 07/12/2024] Open
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system. Upon injury and inflammation, astrocytes become reactive and undergo morphological and functional changes. Depending on their phenotypic classification as A1 or A2, reactive astrocytes contribute to both neurotoxic and neuroprotective responses, respectively. However, this binary classification does not fully capture the diversity of astrocyte responses observed across different diseases and injuries. Transcriptomic analysis has revealed that reactive astrocytes have a complex landscape of gene expression profiles, which emphasizes the heterogeneous nature of their reactivity. Astrocytes actively participate in regulating central nervous system inflammation by interacting with microglia and other cell types, releasing cytokines, and influencing the immune response. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway is a central player in astrocyte reactivity and impacts various aspects of astrocyte behavior, as evidenced by in silico , in vitro , and in vivo results. In astrocytes, inflammatory cues trigger a cascade of molecular events, where nuclear factor-κB serves as a central mediator of the pro-inflammatory responses. Here, we review the heterogeneity of reactive astrocytes and the molecular mechanisms underlying their activation. We highlight the involvement of various signaling pathways that regulate astrocyte reactivity, including the PI3K/AKT/mammalian target of rapamycin (mTOR), α v β 3 integrin/PI3K/AKT/connexin 43, and Notch/PI3K/AKT pathways. While targeting the inactivation of the PI3K/AKT cellular signaling pathway to control reactive astrocytes and prevent central nervous system damage, evidence suggests that activating this pathway could also yield beneficial outcomes. This dual function of the PI3K/AKT pathway underscores its complexity in astrocyte reactivity and brain function modulation. The review emphasizes the importance of employing astrocyte-exclusive models to understand their functions accurately and these models are essential for clarifying astrocyte behavior. The findings should then be validated using in vivo models to ensure real-life relevance. The review also highlights the significance of PI3K/AKT pathway modulation in preventing central nervous system damage, although further studies are required to fully comprehend its role due to varying factors such as different cell types, astrocyte responses to inflammation, and disease contexts. Specific strategies are clearly necessary to address these variables effectively.
Collapse
Affiliation(s)
- Ramón Pérez-Núñez
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - María Fernanda González
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
31
|
Wu Z, Xu L, Xie Y, Sambangi A, Swaminathan S, Pei Z, Ji W, Li Z, Guo Y, Li Z, Chen G. Brain-Wide Neuroregenerative Gene Therapy Improves Cognition in a Mouse Model of Alzheimer's Disease. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2410080. [PMID: 39951299 PMCID: PMC11984881 DOI: 10.1002/advs.202410080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/09/2025] [Indexed: 04/12/2025]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible brain disorder with extensive neuronal loss in the neocortex and hippocampus. Current therapeutic interventions focus on the early stage of AD but lack effective treatment for the late stage of AD, largely due to the inability to replenish the lost neurons and repair the broken neural circuits. In this study, by using engineered adeno-associated virus vectors that efficiently cross the blood-brain-barrier in the mouse brain, a brain-wide neuroregenerative gene therapy is developed to directly convert endogenous astrocytes into functional neurons in a mouse model of AD. It is found that ≈500 000 new neurons are regenerated and widely distributed in the cerebral cortex and hippocampus. Importantly, it is demonstrated that the converted neurons can integrate into pre-existing neural networks and improve various cognitive performances in AD mice. Chemogenetic inhibition of the converted neurons abolishes memory enhancement in AD mice, suggesting a pivotal role for the newly converted neurons in cognitive restoration. Together, brain-wide neuroregenerative gene therapy may provide a viable strategy for the treatment of AD and other brain disorders associated with massive neuronal loss.
Collapse
Affiliation(s)
- Zheng Wu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Liang Xu
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Yu Xie
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Abhijeet Sambangi
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Shreya Swaminathan
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Zifei Pei
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| | - Wenyu Ji
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Zeru Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Yaowei Guo
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Zhifei Li
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
| | - Gong Chen
- State Key Laboratory of Bioactive Molecules and Druggability AssessmentGuangdong Basic Research Center of Excellence for Natural Bioactive Molecules and Discovery of Innovative DrugsKey Laboratory of CNS Regeneration (Ministry of Education)Guangdong Key Laboratory of Non‐Human Primate ResearchGHM Institute of CNS RegenerationJinan UniversityGuangzhou510632China
- Department of BiologyHuck Institutes of Life SciencesPennsylvania State UniversityUniversity ParkPA16802USA
| |
Collapse
|
32
|
Wu M, Zhang R, Fu P, Mei Y. Disrupted astrocyte-neuron signaling reshapes brain activity in epilepsy and Alzheimer's disease. Neuroscience 2025; 570:132-151. [PMID: 39986432 DOI: 10.1016/j.neuroscience.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/24/2025]
Abstract
Astrocytes establish dynamic interactions with surrounding neurons and synchronize neuronal networks within a specific range. However, these reciprocal astrocyte-neuronal interactions are selectively disrupted in epilepsy and Alzheimer's disease (AD), which contributes to the initiation and progression of network hypersynchrony. Deciphering how disrupted astrocyte-neuronal signaling reshapes brain activity is crucial to prevent subclinical epileptiform activity in epilepsy and AD. In this review, we provide an overview of the diverse astrocyte-neuronal crosstalk in maintaining of network activity via homeostatic control of extracellular ions and transmitters, synapse formation and elimination. More importantly, since AD and epilepsy share the common symptoms of neuronal hyperexcitability and astrogliosis, we then explore the crosstalk between astrocytes and neurons in the context of epilepsy and AD and discuss how these disrupted interactions reshape brain activity in pathological conditions. Collectively, this review sheds light on how disrupted astrocyte-neuronal signaling reshapes brain activity in epilepsy and AD, and highlights that modifying astrocyte-neuronal signaling could be a therapeutic approach to prevent epileptiform activity in AD.
Collapse
Affiliation(s)
- Mengjie Wu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Ruonan Zhang
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Peng Fu
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Yufei Mei
- Hubei Clinical Research Center for Alzheimer's Disease, Brain Science and Advanced Technology Institute, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
33
|
Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette U, Kim RD, Ma TC, Groh AMR, Hill EJ, Lewis EM, Januszewski M, Light SEW, Smith CJ, Stratton JA, Sloan SA, Kang UJ, Chao MV, Liddelow SA. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in vertebrates. Cell Rep 2025; 44:115344. [PMID: 39982817 DOI: 10.1016/j.celrep.2025.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2024] [Accepted: 02/01/2025] [Indexed: 02/23/2025] Open
Abstract
Astrocytes are a highly abundant glial cell type and perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogeneous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of the brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: myocilin (Myoc). We show that glia limitans superficialis astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from zebrafish, rodents, and non-human primates to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.
Collapse
Affiliation(s)
- Philip Hasel
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Melissa L Cooper
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Anne E Marchildon
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Uriel Rufen-Blanchette
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel D Kim
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Thong C Ma
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor M Lewis
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Sarah E W Light
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Un Jung Kang
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Moses V Chao
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Mazzitelli M, Kiritoshi T, Presto P, Hurtado Z, Antenucci N, Ji G, Neugebauer V. BDNF Signaling and Pain Modulation. Cells 2025; 14:476. [PMID: 40214430 PMCID: PMC11987912 DOI: 10.3390/cells14070476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is an important neuromodulator of nervous system functions and plays a key role in neuronal growth and survival, neurotransmission, and synaptic plasticity. The effects of BDNF are mainly mediated by the activation of tropomyosin receptor kinase B (TrkB), expressed in both the peripheral and central nervous system. BDNF has been implicated in several neuropsychiatric conditions such as schizophrenia and anxio-depressive disorders, as well as in pain states. This review summarizes the evidence for a critical role of BDNF throughout the pain system and describes contrasting findings of its pro- and anti-nociceptive effects. Different cellular sources of BDNF, its influence on neuroimmune signaling in pain conditions, and its effects in different cell types and regions are described. These and endogenous BDNF levels, downstream signaling mechanisms, route of administration, and approaches to manipulate BDNF functions could explain the bidirectional effects in pain plasticity and pain modulation. Finally, current knowledge gaps concerning BDNF signaling in pain are discussed, including sex- and pathway-specific differences.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Zachary Hurtado
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (M.M.); (T.K.); (P.P.); (Z.H.); (N.A.); (G.J.)
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
35
|
Mongrédien R, Anesio A, Fernandes GJD, Eagle AL, Maldera S, Pham C, Robert S, Bezerra F, Vilette A, Bianchi PC, Franco C, Louis F, Gruszczynski C, Niépon ML, Betancur C, Erdozain AM, Robison AJ, Boucard AA, Cruz FC, Li D, Heck N, Gautron S, Vialou V. Astrocytes Control Cocaine-Induced Synaptic Plasticity and Reward Through the Matricellular Protein Hevin. Biol Psychiatry 2025:S0006-3223(25)01072-8. [PMID: 40113121 DOI: 10.1016/j.biopsych.2025.02.904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND Astrocytes in the nucleus accumbens (NAc) play a dynamic role in regulating synaptic plasticity induced by drugs of abuse through modulation of glutamatergic neurotransmission. Astrocyte-secreted factors may also contribute to the reprogramming of brain circuitry that leads to drug-seeking behavior. Here, we investigated the role of astrocyte Ca2+ signals in vivo and of the astrocyte-secreted protein hevin in the rewarding properties of cocaine. METHODS Ca2+ signals in NAc astrocytes were measured by in vivo fiber photometry during conditioned place preference (CPP) to cocaine. Depletion of Ca2+ and chemogenetic activation were used to evaluate the contribution of astrocyte Ca2+ signals to cocaine CPP. The effects of cocaine in hevin-null mice and after hevin knockdown in NAc astrocytes were evaluated by imaging of medium spiny neuron spines, electrophysiology, and CPP. Hevin secretion was monitored by light-sheet imaging in brain slices. RESULTS Cocaine increased the amplitude of Ca2+ signals in astrocytes during conditioning. Attenuating Ca2+ signals in astrocytes prevented cocaine CPP, whereas augmenting these signals potentiated this conditioning. Astrocyte activation induced a surge in hevin secretion ex vivo. Hevin knockdown in NAc astrocytes led to a decrease in CPP and in structural and synaptic plasticity induced by cocaine in medium spiny neurons. CONCLUSIONS These findings reveal a fine-tuning by cocaine of in vivo Ca2+ signals in NAc astrocytes. Astrocyte Ca2+ signals are sufficient and necessary for the acquisition of cocaine-seeking behavior. Hevin can be released upon astrocyte activation and is a major effector of the action of cocaine and Ca2+ signals on reward and neuronal plasticity.
Collapse
Affiliation(s)
| | - Augusto Anesio
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Gustavo J D Fernandes
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Andrew L Eagle
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Steeve Maldera
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Cuong Pham
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Séverine Robert
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Fernando Bezerra
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Adèle Vilette
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Paula C Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Clara Franco
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Franck Louis
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | | | - Marie-Laure Niépon
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Catalina Betancur
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Amaia M Erdozain
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France; Department of Pharmacology, University of the Basque Country, UPV/EHU, Leioa, Bizkaia, Spain; Biomedical Research Networking Center for Mental Health, Institute of Health Carlos III, Spain
| | - Alfred J Robison
- Department of Physiology, Michigan State University, East Lansing, Michigan
| | - Antony A Boucard
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Mexico City, Mexico
| | - Fabio C Cruz
- Department of Pharmacology, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Dongdong Li
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Nicolas Heck
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Sophie Gautron
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France
| | - Vincent Vialou
- Sorbonne Université, INSERM, CNRS, Neuroscience Paris Seine, Paris, France.
| |
Collapse
|
36
|
Cooper ML, Gildea HK, Selles MC, Katafygiotou E, Liddelow SA, Chao MV. Astrocytes in the mouse brain respond bilaterally to unilateral retinal neurodegeneration. Proc Natl Acad Sci U S A 2025; 122:e2418249122. [PMID: 40063795 PMCID: PMC11929491 DOI: 10.1073/pnas.2418249122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Glaucomatous optic neuropathy, or glaucoma, is the world's primary cause of irreversible blindness. Glaucoma is comorbid with other neurodegenerative diseases, but how it might impact the environment of the full central nervous system to increase neurodegenerative vulnerability is unknown. Two neurodegenerative events occur early in the optic nerve, the structural link between the retina and brain: loss of anterograde transport in retinal ganglion cell (RGC) axons and early alterations in astrocyte structure and function. Here, we used whole-mount tissue clearing of full mouse brains to image RGC anterograde transport function and astrocyte responses across retinorecipient regions early in a unilateral microbead occlusion model of glaucoma. Using light sheet imaging, we found that RGC projections terminating specifically in the accessory optic tract are the first to lose transport function. Although degeneration was induced in one retina, astrocytes in both brain hemispheres responded to transport loss in a retinotopic pattern that mirrored the degenerating RGCs. A subpopulation of these astrocytes in contact with large descending blood vessels were immunopositive for LCN2, a marker associated with astrocyte reactivity. Together, these data suggest that even early stages of unilateral glaucoma have broad impacts on the health of astrocytes across both hemispheres of the brain, implying a glial mechanism behind neurodegenerative comorbidity in glaucoma.
Collapse
Affiliation(s)
- Melissa L. Cooper
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Holly K. Gildea
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Maria Clara Selles
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Eleni Katafygiotou
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
| | - Shane A. Liddelow
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Ophthalmology, New York University Langone Health, New York, NY10016
| | - Moses V. Chao
- Institute for Translational Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Neuroscience, New York University Grossman School of Medicine, New York, NY10016
- Department of Psychiatry, New York University Langone Health, New York, NY10016
| |
Collapse
|
37
|
Zhang X, Cui X, Sun N, Wu X, Pan X, Wang R, Chen Z, Li Y, Hu Y, Liu F, Cao X. Microglial repopulation alleviates surgery-induced neuroinflammation and cognitive impairment in a ZEB1-dependent manner. FASEB J 2025; 39:e70440. [PMID: 40052833 DOI: 10.1096/fj.202402492r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/07/2025] [Accepted: 02/24/2025] [Indexed: 05/13/2025]
Abstract
Microglia play a crucial role in postoperative cognitive dysfunction (POCD). This study investigated the effects of microglial depletion and subsequent repopulation on POCD and its underlying mechanisms. An aged mouse model of POCD was induced by partial hepatectomy, and the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 was administered to facilitate microglial depletion and repopulation. Neutrophil involvement was assessed with anti-Ly6G antibodies, while ZEB1 was manipulated through shRNA knockdown and lentiviral overexpression in the BV2 microglial cell line. A TGF-β1 neutralizing antibody was employed to elucidate the relationship between ZEB1 and its downstream pathways. The results indicated that microglial depletion alone did not reverse cognitive impairments. However, microglial repopulation significantly reduced neutrophil infiltration and improved cognitive function post-surgery. This improvement correlated with ZEB1 upregulation in microglia, which decreased CXCL1 production by astrocytes via TGF-β1 signaling, thereby reducing neutrophil migration to the hippocampus. These findings suggest that microglial repopulation, dependent on ZEB1 and TGF-β1 signaling, effectively alleviates neuroinflammation, reduces neutrophil infiltration, and enhances cognitive function, highlighting microglia as a promising target for the prevention and treatment of POCD.
Collapse
Affiliation(s)
- Xinyue Zhang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xiaotong Cui
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Naihui Sun
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xinyi Wu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xue Pan
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renyi Wang
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Zitong Chen
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yilong Li
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Hu
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Fang Liu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xuezhao Cao
- Department of Anesthesiology, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
38
|
López-González L, Borrell V. Stripe out for brain evolution: Astrocytes go human. Cell Stem Cell 2025; 32:338-340. [PMID: 40054452 DOI: 10.1016/j.stem.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 05/13/2025]
Abstract
Evolution of the human brain involved neuron and glial cell changes. In this issue of Cell Stem Cell, Ciuba et al.1 identify an epigenetic mechanism central in the evolution of human astrocytes, where small enhancer modifications increased transcription factor binding, orchestrating transcriptomic changes that influence astrocyte structure and function.
Collapse
Affiliation(s)
- Lara López-González
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant 03550, Spain.
| |
Collapse
|
39
|
Chen W, Mao T, Ma R, Xiong Y, Han R, Wang L. The role of astrocyte metabolic reprogramming in ischemic stroke (Review). Int J Mol Med 2025; 55:49. [PMID: 39930815 PMCID: PMC11781528 DOI: 10.3892/ijmm.2025.5490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Ischemic stroke, a leading cause of disability and mortality worldwide, is characterized by the sudden loss of blood flow in specific area of the brain. Intravenous thrombolysis with recombinant tissue plasminogen activator is the only approved pharmacological treatment for acute ischemic stroke; however, the aforementioned treatment has significant clinical limitations, thus there is an urgent need for the development of novel mechanisms and therapeutic strategies for ischemic stroke. Astrocytes, abundant and versatile cells in the central nervous system, offer crucial support to neurons nutritionally, structurally and physically. They also contribute to blood‑brain barrier formation and regulate neuronal extracellular ion concentrations. Accumulated evidence has revealed the involvement of astrocytes in the regulation of host neurotransmitter metabolism, immune response and tissue repair, and different metabolic characteristics of astrocytes can contribute to the process and development of ischemic stroke, suggesting that targeted regulation of astrocyte metabolic reprogramming may contribute to the treatment and prognosis of ischemic stroke. In the present review, the current understanding of the multifaceted mechanisms of astrocyte metabolic reprogramming in ischemic stroke, along with its regulatory factors and pathways, as well as the strategies to promote its polarization balance, which hold promise for astrocyte immunometabolism‑targeted therapies in the treatment of ischemic stroke, were summarized.
Collapse
Affiliation(s)
- Weixin Chen
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Tangyou Mao
- Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Rui Ma
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Yuxuan Xiong
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China
| | - Ran Han
- Clinical Laboratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| | - Le Wang
- Cerebrovascular Disease Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
| |
Collapse
|
40
|
Babu M, Rao RM, Babu A, Jerom JP, Gogoi A, Singh N, Seshadri M, Ray A, Shelley BP, Datta A. Antioxidant Effect of Naringin Demonstrated Through a Bayes' Theorem Driven Multidisciplinary Approach Reveals its Prophylactic Potential as a Dietary Supplement for Ischemic Stroke. Mol Neurobiol 2025; 62:3918-3933. [PMID: 39352635 DOI: 10.1007/s12035-024-04525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/23/2024] [Indexed: 01/03/2025]
Abstract
Naringin (NAR), a flavanone glycoside, occurs widely in citrus fruits, vegetables, and alcoholic beverages. Despite evidence of the neuroprotective effects of NAR on animal models of ischemic stroke, brain cell-type-specific data about the antioxidant efficacy of NAR and possible protein targets of such beneficial effects are limited. Here, we demonstrate the brain cell type-specific prophylactic role of NAR, an FDA-listed food additive, in an in vitro oxygen-glucose deprivation (OGD) model of cerebral ischemia using MTT and DCFDA assays. Using Bayes' theorem-based predictive model, we first ranked the top-10 protein targets (ALDH2, ACAT1, CTSB, FASN, LDHA, PTGS1, CTSD, LGALS1, TARDBP, and CDK1) from a curated list of 289 NAR-interacting proteins in neurons that might be mediating its antioxidant effect in the OGD model. When preincubated with NAR for 2 days, N2a and CTX-TNA2 cells could withstand up to 8 h of OGD without a noticeable decrease in cell viability. This cerebroprotective effect is partly mediated by reducing intracellular ROS production in the above two brain cell types. The antioxidant effect of NAR was comparable with the equimolar (50 µM) concentration of clinically used ROS-scavenger and neuroprotective edaravone. Molecular docking of NAR with the top-10 protein targets from Bayes' analysis showed the lowest binding energy for CDK1 (- 8.8 kcal/M). Molecular dynamics simulation analysis showed that NAR acts by inhibiting CDK1 by stably occupying its ATP-binding cavity. Considering diet has been listed as a risk factor for stroke, NAR may be explored as a component of functional food for stroke or related neurological disorders.
Collapse
Affiliation(s)
- Manju Babu
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Rajas M Rao
- Division of Data Analytics, Bioinformatics and Structural Biology, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Anju Babu
- Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, 462066, MP, India
| | | | - Anaekshi Gogoi
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Nikhil Singh
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Meenakshi Seshadri
- Department of Pharmacology, Yenepoya Pharmacy College and Research Center, Naringana, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Animikh Ray
- Father Muller Research Center, Father Muller Medical College, Mangalore, 575002, Karnataka, India
| | - Bhaskara P Shelley
- Department of Neurology, Yenepoya Medical College, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India
| | - Arnab Datta
- Laboratory of Translational Neuroscience, Division of Neuroscience, Yenepoya Research Center, Yenepoya (Deemed to be University), University Road, Deralakatte, Mangalore, 575018, Karnataka, India.
- Department of Pharmacology, Yenepoya Pharmacy College and Research Center, Naringana, Deralakatte, Mangalore, 575018, Karnataka, India.
| |
Collapse
|
41
|
Tadross JA, Steuernagel L, Dowsett GKC, Kentistou KA, Lundh S, Porniece M, Klemm P, Rainbow K, Hvid H, Kania K, Polex-Wolf J, Knudsen LB, Pyke C, Perry JRB, Lam BYH, Brüning JC, Yeo GSH. A comprehensive spatio-cellular map of the human hypothalamus. Nature 2025; 639:708-716. [PMID: 39910307 PMCID: PMC11922758 DOI: 10.1038/s41586-024-08504-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/09/2024] [Indexed: 02/07/2025]
Abstract
The hypothalamus is a brain region that plays a key role in coordinating fundamental biological functions1. However, our understanding of the underlying cellular components and neurocircuitries have, until recently, emerged primarily from rodent studies2,3. Here we combine single-nucleus sequencing of 433,369 human hypothalamic cells with spatial transcriptomics, generating a comprehensive spatio-cellular transcriptional map of the hypothalamus, the 'HYPOMAP'. Although conservation of neuronal cell types between humans and mice, as based on transcriptomic identity, is generally high, there are notable exceptions. Specifically, there are significant disparities in the identity of pro-opiomelanocortin neurons and in the expression levels of G-protein-coupled receptors between the two species that carry direct implications for currently approved obesity treatments. Out of the 452 hypothalamic cell types, we find that 291 neuronal clusters are significantly enriched for expression of body mass index (BMI) genome-wide association study genes. This enrichment is driven by 426 'effector' genes. Rare deleterious variants in six of these (MC4R, PCSK1, POMC, CALCR, BSN and CORO1A) associate with BMI at population level, and CORO1A has not been linked previously to BMI. Thus, HYPOMAP provides a detailed atlas of the human hypothalamus in a spatial context and serves as an important resource to identify new druggable targets for treating a wide range of conditions, including reproductive, circadian and metabolic disorders.
Collapse
Affiliation(s)
- John A Tadross
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- Cambridge Genomics Laboratory, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Lukas Steuernagel
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Georgina K C Dowsett
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Katherine A Kentistou
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Sofia Lundh
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Marta Porniece
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Paul Klemm
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Kara Rainbow
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Henning Hvid
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - Katarzyna Kania
- Genomics Core, Cancer Research UK Cambridge Institute, Cambridge, UK
| | | | | | - Charles Pyke
- Research & Early Development, Novo Nordisk A/S, Måløv, Denmark
| | - John R B Perry
- Medical Research Council Epidemiology Unit, Institute of Metabolic Science, University of Cambridge, Cambridge, UK
| | - Brian Y H Lam
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Jens C Brüning
- Department of Neuronal Control of Metabolism, Max Planck Institute for Metabolism Research, Cologne, Germany.
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
- Center for Endocrinology, Diabetes and Preventive Medicine (CEDP), University Hospital Cologne, Cologne, Germany.
- National Center for Diabetes Research (DZD), Neuherberg, Germany.
| | - Giles S H Yeo
- Medical Research Council Metabolic Diseases Unit, Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK.
| |
Collapse
|
42
|
Yuan X, Long Q, Li W, Yan Q, Zhang P. Characteristics of the Dynamic Evolutionary Pathway of ADSCs Induced Differentiation into Astrocytes Based on scRNA-Seq Analysis. Mol Neurobiol 2025; 62:2926-2944. [PMID: 39190264 DOI: 10.1007/s12035-024-04414-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/30/2024] [Indexed: 08/28/2024]
Abstract
We employed single-cell transcriptome sequencing to reveal the dynamic gene expression changes during the differentiation of adipose-derived stromal cells (ADSCs) into astrocytes. Single-cell RNA sequencing was conducted on cells from the ADSCs group and the induced groups at 2, 7, 14, and 21 days using the 10 × Chromium platform. Data underwent quality control and dimensionality reduction. Cell differentiation trajectories were constructed using Monocle2, and differentially expressed genes (DEGs) in each cell cluster were identified using differential selection algorithms. DEGs at each time point were annotated using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), and regulatory intensities of transcription factors were analyzed using SCENIC. Integrating all groups, a total of five samples were divided into 13 cell clusters (0-12 clusters). DEGs between clusters and those compared with ADSCs at various induced time points showed distinct specificities. Monocle2 constructed cell differentiation trajectories; ADSCs can differentiate into mature astrocytes not only through the direct pathway from the 1 branch to the 3 branch but also through an indirect pathway, involving the 1 branch to the 2 branch before progressing to the 3 branch. SCENIC analysis highlighted the critical regulatory roles of STAT1, MYEF2, and SOX6 transcription factors during the differentiation of ADSCs into astrocytes. ADSCs can differentiate into mature astrocytes through two distinct pathways: direct and indirect. By the 14th day of induction, mature astrocytes have formed, characterized by a cell cycle arrest in mitosis. Further induction leads to degenerative senescence changes in differentiated cells.
Collapse
Affiliation(s)
- Xiaodong Yuan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
- Hebei Provincial Key Laboratory of Neurobiological Function, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Qingxi Long
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Wen Li
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Qi Yan
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China
| | - Pingshu Zhang
- Department of Neurology of Kailuan General Hospital Affiliated North China University of Science and Technology, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
- Hebei Provincial Key Laboratory of Neurobiological Function, 57 Xinhua East Road, Lubei District, Tangshan City, 063000, Hebei Province, China.
| |
Collapse
|
43
|
Bocchi R, Thorwirth M, Simon-Ebert T, Koupourtidou C, Clavreul S, Kolf K, Della Vecchia P, Bottes S, Jessberger S, Zhou J, Wani G, Pilz GA, Ninkovic J, Buffo A, Sirko S, Götz M, Fischer-Sternjak J. Astrocyte heterogeneity reveals region-specific astrogenesis in the white matter. Nat Neurosci 2025; 28:457-469. [PMID: 39994409 PMCID: PMC11893471 DOI: 10.1038/s41593-025-01878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 12/20/2024] [Indexed: 02/26/2025]
Abstract
Astrocyte heterogeneity has been well explored, but our understanding of white matter (WM) astrocytes and their distinctions from gray matter (GM) astrocytes remains limited. Here, we compared astrocytes from cortical GM and WM/corpus callosum (WM/CC) using single-cell RNA sequencing and spatial transcriptomics of the murine forebrain. The comparison revealed similarities but also significant differences between WM and GM astrocytes, including cytoskeletal and metabolic hallmarks specific to WM astrocytes with molecular properties also shared with human WM astrocytes. When we compared murine astrocytes from two different WM regions, the cortex and cerebellum, we found that they exhibited distinct, region-specific molecular properties, with the cerebellum lacking, for example, a specific cluster of WM astrocytes expressing progenitor and proliferation genes. Functional experiments confirmed astrocyte proliferation in the WM/CC, but not in the cerebellar WM, suggesting that the WM/CC may be a source of continued astrogenesis.
Collapse
Affiliation(s)
- Riccardo Bocchi
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
| | - Manja Thorwirth
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Tatiana Simon-Ebert
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Christina Koupourtidou
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Solène Clavreul
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Keegan Kolf
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Patrizia Della Vecchia
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Sara Bottes
- Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Brain Research Institute, University of Zurich, Zurich, Switzerland
| | - Jiafeng Zhou
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Gulzar Wani
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Gregor-Alexander Pilz
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Jovica Ninkovic
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Cell Biology and Anatomy, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, University of Turin, Orbassano, Italy
| | - Swetlana Sirko
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Magdalena Götz
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
- Excellence Cluster of Systems Neurology (SyNergy), Munich, Germany.
| | - Judith Fischer-Sternjak
- Chair of Physiological Genomics, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany.
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
| |
Collapse
|
44
|
Suo Z, Xiao T, Qu Y, Zheng Y, Xu W, Zhou B, Yang J, Yu J, Zheng H, Ni C. Aged hippocampal single-cell atlas screening unveils disrupted neuroglial system in postoperative cognitive impairment. Aging Cell 2025; 24:e14406. [PMID: 39540334 PMCID: PMC11896209 DOI: 10.1111/acel.14406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 10/08/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Glia-neuron interaction is a crucial feature in aged hippocampus during the occurrence of postoperative cognitive impairment. However, the regulatory effects of microglia, astrocytes, and oligodendrocytes in this glia-neuron interaction, the potential mechanisms and gene targets are still to be elucidated. Here, single-cell RNA sequencing was performed to detect the perioperative genomic expression characteristics of neuroglial system in the hippocampus of aged mice, and to investigate the potential cross-cellular mechanisms and valuable treatment options for glia-neuron interaction-related cognitive impairment. We found that postoperative neurons and glia cells exhibited protein dysmetabolism and mitochondrial electron misrouting. Impaired autophagy and circadian rhythm worsened microglia activation/neuroinflammation, and exacerbated these metabolic alterations. Reactive microglia also aggravated astrocyte and oligodendrocyte cytotoxicity through the PGD2/DP and complement pathways, altering glutamate level and synaptic function via the "tripartite synapses" model, and affecting neuronal myelination. Ligand-receptor communication also indicated these synaptic and axonal dysfunctions via enhanced MDK and PTN pathways. Additionally, we found that anesthetic dexmedetomidine hold therapeutic potential within the disrupted neuroglial system. It enhanced neuronal metabolic rebalance (Atf3-related) and reduced neuroinflammation from a multicellular perspective, therefore improving postoperative cognitive impairment. Together, our study proposes an aged hippocampal cell atlas and provides insights into the role of disrupted glia-neuron cycle in postoperative cognitive impairment. Our findings also elucidate the therapeutic potential and mechanism of dexmedetomidine intervention.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yinyin Qu
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Yuxiang Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jing Yang
- Department of AnesthesiologyPeking University Third HospitalBeijingChina
| | - Jie Yu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
45
|
O'Dea MR, Hasel P. Are we there yet? Exploring astrocyte heterogeneity one cell at a time. Glia 2025; 73:619-631. [PMID: 39308429 PMCID: PMC11784854 DOI: 10.1002/glia.24621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 02/01/2025]
Abstract
Astrocytes are a highly abundant cell type in the brain and spinal cord. Like neurons, astrocytes can be molecularly and functionally distinct to fulfill specialized roles. Recent technical advances in sequencing-based single cell assays have driven an explosion of omics data characterizing astrocytes in the healthy, aged, injured, and diseased central nervous system. In this review, we will discuss recent studies which have furthered our understanding of astrocyte biology and heterogeneity, as well as discuss the limitations and challenges of sequencing-based single cell and spatial genomics methods and their potential future utility.
Collapse
Affiliation(s)
- Michael R. O'Dea
- Neuroscience InstituteNYU Grossman School of MedicineNew YorkNew YorkUSA
| | - Philip Hasel
- UK Dementia Research Institute at the University of EdinburghEdinburghScotlandUK
- Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary MedicineThe University of EdinburghEdinburghScotlandUK
| |
Collapse
|
46
|
Gokhale A, Mendez-Vazquez H, Sampson MM, Moctezuma FGR, Harbuzariu A, Sing A, Zlatic SA, Roberts AM, Prajapati M, Roberts BR, Bartnikas TB, Wood LB, Sloan SA, Faundez V, Werner E. Mitochondrially Transcribed dsRNA Mediates Manganese-induced Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.16.638529. [PMID: 40027638 PMCID: PMC11870567 DOI: 10.1101/2025.02.16.638529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Manganese (Mn) is an essential trace element required for various biological functions, but excessive Mn levels are neurotoxic and lead to significant health concerns. The mechanisms underlying Mn-induced neurotoxicity remain poorly understood. Neuropathological studies of affected brain regions reveal astrogliosis, and neuronal loss, along with evidence of neuroinflammation. Here, we present a novel Mn-dependent mechanism linking mitochondrial dysfunction to neuroinflammation. We found that Mn disrupts mitochondrial transcriptome processing, resulting in the accumulation of complementary RNAs that form double-stranded RNA (dsRNA). This dsRNA is released to the cytoplasm, where it activates cytosolic sensor pathways, triggering type I interferon responses and inflammatory cytokine production. This mechanism is present in 100-day human cerebral organoids, where Mn-induced inflammatory responses are observed predominantly in mature astrocytes. Similar effects were observed in vivo in a mouse model carrying mutations in the SLC30A10 gene, which results in Mn accumulation. These findings highlight a previously unrecognized role for mitochondrial dsRNA in Mn-induced neuroinflammation and provide insights into the molecular basis of manganism. We propose that this mitochondrial dsRNA-induced inflammatory pathway has broad implications in for neurodegenerative diseases caused by environmental or genetic insults.
Collapse
Affiliation(s)
- Avanti Gokhale
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | | | - Maureen M. Sampson
- Department of Human Genetics, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Felix G Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Adriana Harbuzariu
- Emory Stem Cell and Organoids Core, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anson Sing
- Department of Human Genetics, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Stephanie A. Zlatic
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Anne M. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Milankumar Prajapati
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Blaine R. Roberts
- Department of Biochemistry, Emory University, 1510 Clifton Rd, Atlanta, Georgia, USA, 30322
- Department of Neurology, Emory University, 12 Executive Park Dr NE, Atlanta, Georgia, USA, 30322
| | - Thomas B. Bartnikas
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, 02912, USA
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology, 315 Ferst Dr, Atlanta, GA 30332
| | - Steven A. Sloan
- Department of Human Genetics, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Victor Faundez
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| | - Erica Werner
- Department of Cell Biology, Emory University, 615 Michael St, Atlanta, GA, USA, 30322
| |
Collapse
|
47
|
Akkouh IA, Osete JR, Szabo A, Andreassen OA, Djurovic S. Neurobiological Perturbations in Bipolar Disorder Compared With Schizophrenia: Evidence From Cell Cultures and Brain Organoids. Biol Psychiatry 2025:S0006-3223(25)00110-6. [PMID: 39983953 DOI: 10.1016/j.biopsych.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Bipolar disorder (BD) and schizophrenia (SCZ) are uniquely human disorders with a complex pathophysiology that involves adverse neuropathological events in brain development. High disease polygenicity and limited access to live human brain tissue make these disorders exceedingly challenging to study mechanistically. Cellular cultures and brain organoids generated from human-derived pluripotent stem cells preserve the genetic background of the donor cells and recapitulate some of the defining characteristics of human brain architecture and early spatiotemporal development. These model systems have already proven successful in deciphering some of the neuropathological perturbations in BD and SCZ, and methodological advancements, such as the functional integration of 2 or more region-specific organoids and organoid transplantation in animals, promise to deliver increasingly refined insights. Here, we review a selection of recent discoveries achieved by stem cell-based models, with a particular focus on patterns of cellular and molecular convergence and divergence between BD and SCZ. First, we provide a brief overview of the evidence from glial and neuronal cell cultures and brain organoids, centering our discussion on several key functional domains, including neuroinflammation, neuronal excitability, and mitochondrial function. Then, we review recent findings demonstrating the power of integrating stem cell-based systems with gene editing technologies to elucidate the functional consequences of risk variants identified through genetic association studies. We end with a discussion of current challenges and some promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
48
|
Liu R, Xiu J. 3D imaging and pathological analysis of microglia in LPS-treated mice with light-sheet fluorescence microscopy. J Neuroimmunol 2025; 399:578525. [PMID: 39827580 DOI: 10.1016/j.jneuroim.2025.578525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 01/12/2025] [Indexed: 01/22/2025]
Abstract
Although two-dimensional (2D) histology and immunohistochemistry techniques have long been established and successfully applied to obtain structural information from tissues, recent advances in tissue clearing and expansion approaches combined with light sheet microscopy have led to the realization of three-dimensional (3D) nondestructive pathology, which may revolutionize our knowledge of the morphology of an organ or the whole body in its true state. Employing these 3D technologies, we obtained imaging data of microglia in whole hippocampus of mice. We established a simple procedure to analyze the 3D structures of microglia using the commercial software Amira. Major 3D structural parameters, including the volume of the whole cell, volume of the cell body, Feret's maximum/minimum diameter, number of total branches, fractal dimension, convex hull, and number of intersections,were measured. We found that lipopolysaccharide administration markedly changed multiple 3D morphological parameters of microglia. 3D analysis of microglial structures provides a more comprehensive evaluation than 2D analysis, which can be applied in future neuroscience research.
Collapse
Affiliation(s)
- Renjie Liu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China
| | - Jianbo Xiu
- State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing 100005, China; Neuroscience Center, Chinese Academy of Medical Sciences, Beijing 100005, China; State Key Laboratory of Complex, Severe and Rare Diseases, Beijing 100005, China.
| |
Collapse
|
49
|
Xu N, He Y, Wei YN, Bai L, Wang L. Possible antidepressant mechanism of acupuncture: targeting neuroplasticity. Front Neurosci 2025; 19:1512073. [PMID: 40018358 PMCID: PMC11865234 DOI: 10.3389/fnins.2025.1512073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/03/2025] [Indexed: 03/01/2025] Open
Abstract
Major depressive disorder (MDD) is a highly prevalent and severely disabling psychiatric disorder that decreases quality of life and imposes substantial economic burden. Acupuncture has emerged as an effective adjunctive treatment for depression, it regulates neurotransmitters involved in mood regulation and modulates the activity of specific brain regions associated with emotional processing, as evidenced by neuroimaging and biochemical studies. Despite these insights, the precise neuroplastic mechanisms through which acupuncture exerts its antidepressant effects remain not fully elucidated. This review aims to summarize the current knowledge on acupuncture's modulation of neuroplasticity in depression, with a focus on the neuroplasticity-based targets associated with acupuncture's antidepressant effects. We encapsulate two decades of research into the neurobiological mechanisms underpinning the efficacy of acupuncture in treating depression. Additionally, we detail the acupoints and electroacupuncture parameters used in the treatment of depression to better serve clinical application.
Collapse
Affiliation(s)
- Ning Xu
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yue He
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yong-Nan Wei
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Lu Bai
- Department of First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Long Wang
- First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
50
|
Otero-Jimenez M, Wojewska MJ, Binding LP, Jogaudaite S, Gray-Rodriguez S, Young AL, Gentleman S, Alegre-Abarrategui J. Neuropathological stages of neuronal, astrocytic and oligodendrocytic alpha-synuclein pathology in Parkinson's disease. Acta Neuropathol Commun 2025; 13:25. [PMID: 39934841 PMCID: PMC11816504 DOI: 10.1186/s40478-025-01944-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/01/2025] [Indexed: 02/13/2025] Open
Abstract
Alpha-synucleinopathies are neurodegenerative diseases characterized by the spread of alpha-synuclein (α-syn) aggregates throughout the central nervous system in a stereotypical manner. These diseases include Lewy body disease (LBD), which encompass Dementia with Lewy bodies (DLB), Parkinson's Disease (PD), and Parkinson's Disease Dementia (PDD), and Multiple System Atrophy (MSA). LBD and MSA chiefly contain α-syn aggregates in neurons and oligodendrocytes, respectively, although glial α-syn pathology in LBD is increasingly being recognized. Semi-quantitative and machine learning-based quantifications of neuronal, oligodendrocytic and astrocytic α-syn pathology were implemented on a cohort of LBD and MSA post-mortem tissue samples. The neuroanatomical distribution of each cell-type specific α-syn pathology was evaluated using conditional probability matrices and Subtype and Stage Inference (SuStaIn) algorithm. We revealed extensive glial α-syn pathology in LBD, emphasizing the disease- and region-specific profile of astrocytic α-syn pathology, which was absent in MSA and minimal in the substantia nigra of LBD. Furthermore, we have described distinct morphologies of astrocytic α-syn pathology, which were found to correlate with the density of astrocytic α-syn inclusions. Astrocytic α-syn pathology was mainly centered in the amygdala and exhibited a unique stereotypical progression whilst oligodendrocytes displayed a distribution akin to the established neuronal progression pattern. SuStaIn modeling was further used to test for heterogeneity in the spatiotemporal progression, revealing that a subset of cases might follow an alternative pattern. Based on these findings, we introduce a novel multimodal progression framework that integrates, for the first time, the temporal and spatial progression of astrocytic and oligodendrocytic α-syn pathology alongside neuronal pathology in PD, providing further information regarding the role of neurons and glia in disease pathogenesis.
Collapse
Affiliation(s)
- Maria Otero-Jimenez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Marcelina J Wojewska
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Lawrence P Binding
- Department of Computer Science, UCL Hawkes Institute, University College London, London, UK
| | - Simona Jogaudaite
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Sandra Gray-Rodriguez
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Alexandra L Young
- Department of Computer Science, UCL Hawkes Institute, University College London, London, UK
| | - Steve Gentleman
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | | |
Collapse
|