1
|
Matz HC, Ellebedy AH. Vaccination against influenza viruses annually: Renewing or narrowing the protective shield? J Exp Med 2025; 222:e20241283. [PMID: 40272481 PMCID: PMC12020744 DOI: 10.1084/jem.20241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Annual vaccines are recommended for the seasonal influenza virus. While yearly updates to the vaccine are necessary due to the constant evolution of influenza viruses, some studies have suggested repeat vaccination may result in a reduction in vaccine effectiveness in subsequent years. This review examines the available evidence that repeated annual influenza virus vaccination may have effects on future vaccine responses, and it synthesizes the available data with studies that may indicate potential immunological mechanisms underlying these effects. The goal is to examine the available literature to determine whether these mechanisms can be subverted to improve seasonal influenza virus vaccine efficacy.
Collapse
Affiliation(s)
- Hanover C. Matz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
2
|
Nelson CS, Podestà MA, Gempler MG, Lee JM, Batty CJ, Mathenge PG, Sainju A, Chang MR, Ke H, Chandrakar P, Bechu E, Richardson S, Cavazzoni CB, Tullius SG, Abdi R, Ghebremichael M, Haigis MC, Marasco WA, Sage PT. The inflammaging microenvironment induces dysfunctional rewiring of Tfh cell differentiation. JCI Insight 2025; 10:e187271. [PMID: 40036082 PMCID: PMC12016926 DOI: 10.1172/jci.insight.187271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/25/2025] [Indexed: 03/06/2025] Open
Abstract
Humoral immunity is orchestrated by follicular helper T (Tfh) cells, which promote cognate B cells to produce high-affinity, protective antibodies. In aged individuals, humoral immunity after vaccination is diminished despite the presence of Tfh cells, suggesting defects after initial Tfh cell formation. In this study, we utilized both murine and human systems to investigate how aging alters Tfh cell differentiation after influenza vaccination. We found that young Tfh cells underwent progressive differentiation after influenza vaccination, culminating in clonal expansion of effector-like cells in both draining lymph nodes and blood. In aging, early stages of Tfh cell development occurred normally. However, aging rewired the later stages of development in Tfh cells, resulting in a transcriptional program reflective of cellular senescence, sustained pro-inflammatory cytokine production, and metabolic reprogramming. We investigated the extent to which this rewiring of aged Tfh cells is due to the age-associated inflammatory ("inflammaging") microenvironment and found that this setting was sufficient to both block the transition of Tfh cells to a post-effector resting state and skew Tfh cells toward the age-rewired state. Together, these data suggest that aging dampens humoral immunity by cytokine-mediated rewiring of late effector Tfh cell differentiation into an activated, yet less functional, cellular state.
Collapse
Affiliation(s)
- Cody S. Nelson
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
- Division of Allergy and Clinical Immunology, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Manuel A. Podestà
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
- Unit of Nephrology, Dialysis, and Renal Transplantation, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Maya G. Gempler
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Jeong-Mi Lee
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Cole J. Batty
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peterson G. Mathenge
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Asra Sainju
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Matthew R. Chang
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Hanzhong Ke
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Elsa Bechu
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Sierra Richardson
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| | - Musie Ghebremichael
- Ragon Institute of Mass General Brigham, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Marcia C. Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Wayne A. Marasco
- Department of Cancer Immunology and Virology, Dana Farber Cancer Institute, Boston, Massachusetts, USA
| | - Peter T. Sage
- Transplantation Research Center, Division of Renal Medicine, Department of Medicine; and
| |
Collapse
|
3
|
Grewe I, Friedrich M, Dieck ML, Spohn M, Ly ML, Krähling V, Mayer L, Mellinghoff SC, Rottstegge M, Kraemer R, Volz A, Becker S, Fathi A, Dahlke C, Weskamm LM, Addo MM. MVA-based SARS-CoV-2 vaccine candidates encoding different spike protein conformations induce distinct early transcriptional responses which may impact subsequent adaptive immunity. Front Immunol 2024; 15:1500615. [PMID: 39749328 PMCID: PMC11693667 DOI: 10.3389/fimmu.2024.1500615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/27/2024] [Indexed: 01/04/2025] Open
Abstract
Introduction Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity. Integrating data on both innate and adaptive immunity, systems vaccinology approaches can improve the understanding of vaccine-induced immune mechanisms. Methods Two vaccine candidates against SARS-CoV-2, both based on the viral vector Modified Vaccinia virus Ankara (MVA) and encoding the native (MVA-SARS-2-S) or prefusion-stabilized spike protein (MVA-SARS-2-ST), were evaluated in phase 1 clinical trials (ClinicalTrials.gov: NCT04569383, NCT04895449). Longitudinal dynamics of innate and early adaptive immune responses induced by vaccination in SARS-CoV-2-naïve individuals were analyzed based on transcriptome and flow cytometry data, in comparison to the licensed ChAd and mRNA vaccines. Results Compared to MVA-SARS-2-S, MVA-SARS-2-ST (encoding the prefusion-stabilized spike protein) induced a stronger transcriptional activation early after vaccination, as well as higher virus neutralizing antibodies. Positive correlations were observed between innate and adaptive immune responses induced by a second MVA-SARS-2-ST vaccination. MVA-, ChAd- and mRNA-based vaccines induced distinct immune signatures, with the overall strongest transcriptional activation as well as monocyte and circulating T follicular helper (cTFH) cell responses induced by ChAd. Discussion Our findings suggest a potential impact of the spike protein conformation not only on adaptive but also on innate immune responses. As indicated by positive correlations between several immune parameters induced by MVA-SARS-2-ST, the distinct transcriptional activation early after vaccination may be linked to the induction of classical monocytes and activation of cTFH1 cells, which may in turn result in the superior adaptive immunogenicity of MVA-SARS-2-ST, compared to MVA-SARS-2-S. Overall, our data demonstrate that both the vaccine platform and antigen insert can affect innate immune responses and subsequent vaccine immunogenicity in humans.
Collapse
Affiliation(s)
- Ilka Grewe
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marie-Louise Dieck
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Michael Spohn
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - My Linh Ly
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Verena Krähling
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Leonie Mayer
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Sibylle C. Mellinghoff
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Institute of Translational Research, Cluster of Excellence for Aging Research (CECAD), Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Düsseldorf (CIO ABCD), Department I of Internal Medicine, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Monika Rottstegge
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Rebekka Kraemer
- Institute of Clinical Molecular Biology, Christian-Albrechts-University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Asisa Volz
- Institute of Virology, University of Veterinary Medicine Hannover, Hanover, Germany
- German Center for Infection Research, Partner Site Hannover-Braunschweig, Hannover, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- First Department of Medicine, Division of Infectious Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Leonie M. Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Marylyn M. Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
4
|
Tomita Y, Uehara S, Terada M, Yamamoto N, Nakamura M. Impaired SARS-CoV-2-specific responses via activated T follicular helper cells in immunocompromised kidney transplant recipients. Sci Rep 2024; 14:24571. [PMID: 39427014 PMCID: PMC11490627 DOI: 10.1038/s41598-024-76251-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024] Open
Abstract
Activated T follicular helper (aTfh) cells are likely important in host immune responses to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccination. We characterized the immune responses of aTfh cells to the second (D2) and third (booster; D3) doses of an mRNA vaccine in the peripheral blood of 40 kidney transplant recipients (KTRs) and 17 healthy control volunteers (HCs). A significant increase in SARS-CoV-2-specific IgG antibody was seen after D3 in the KTRs; nonetheless, the levels after D2 and D3 were significantly lower than in the HCs. After D2, dramatic increases in activated CD45RA-CXCR5+ICOS+PD1+ circulating Tfh (acTfh) cells were observed in the HCs, as well as the seropositive patients among the KTRs, when compared with the seronegative patients among the KTRs. Unlike the HCs, KTRs had less prominent immune responses, including the acTfh and T cells that produce interferon gamma, tumor necrosis factor alpha, and interleukin 21. In addition, the increase in acTfh cells was significantly associated with anti-IgG antibody levels after D3. These results indicate impaired SARS-CoV-2-specific responses via acTfh cells in KTRs, and they suggest that acTfh cells in peripheral blood may play an important role in antibody maintenance following SARS-CoV-2 mRNA vaccination.
Collapse
Affiliation(s)
- Yusuke Tomita
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan.
| | - Saeko Uehara
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Mari Terada
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Norio Yamamoto
- Department of Virology, Division of Host Defense Mechanism, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| | - Michio Nakamura
- Department of Transplant Surgery, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, 259-1193, Japan
| |
Collapse
|
5
|
Jeger-Madiot R, Planas D, Staropoli I, Debarnot H, Kervevan J, Mary H, Collina C, Fonseca BF, Robinot R, Gellenoncourt S, Schwartz O, Ewart L, Bscheider M, Gobaa S, Chakrabarti LA. Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting. J Exp Med 2024; 221:e20240289. [PMID: 39240335 PMCID: PMC11383861 DOI: 10.1084/jem.20240289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/26/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.
Collapse
Affiliation(s)
- Raphaël Jeger-Madiot
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Delphine Planas
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Isabelle Staropoli
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Hippolyte Debarnot
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Jérôme Kervevan
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Héloïse Mary
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Camilla Collina
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Barbara F. Fonseca
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Rémy Robinot
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Stacy Gellenoncourt
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | - Olivier Schwartz
- Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| | | | - Michael Bscheider
- Roche Pharma Research & Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Samy Gobaa
- Biomaterials and Microfluidics Core Facility, Institut Pasteur, Université de Paris Cité, Paris, France
| | - Lisa A. Chakrabarti
- Control of Chronic Viral Infections Group, Virus and Immunity Unit, Institut Pasteur, Université de Paris Cité, Centre National de la Recherche Scientifique UMR3569, Paris, France
| |
Collapse
|
6
|
Nguyen THO, Rowntree LC, Chua BY, Thwaites RS, Kedzierska K. Defining the balance between optimal immunity and immunopathology in influenza virus infection. Nat Rev Immunol 2024; 24:720-735. [PMID: 38698083 DOI: 10.1038/s41577-024-01029-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/05/2024]
Abstract
Influenza A viruses remain a global threat to human health, with continued pandemic potential. In this Review, we discuss our current understanding of the optimal immune responses that drive recovery from influenza virus infection, highlighting the fine balance between protective immune mechanisms and detrimental immunopathology. We describe the contribution of innate and adaptive immune cells, inflammatory modulators and antibodies to influenza virus-specific immunity, inflammation and immunopathology. We highlight recent human influenza virus challenge studies that advance our understanding of susceptibility to influenza and determinants of symptomatic disease. We also describe studies of influenza virus-specific immunity in high-risk groups following infection and vaccination that inform the design of future vaccines to promote optimal antiviral immunity, particularly in vulnerable populations. Finally, we draw on lessons from the COVID-19 pandemic to refocus our attention to the ever-changing, highly mutable influenza A virus, predicted to cause future global pandemics.
Collapse
Affiliation(s)
- Thi H O Nguyen
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Louise C Rowntree
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Brendon Y Chua
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Ryan S Thwaites
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia.
| |
Collapse
|
7
|
Lang HP, Osum KC, Friedenberg SG. A review of CD4 + T cell differentiation and diversity in dogs. Vet Immunol Immunopathol 2024; 275:110816. [PMID: 39173398 PMCID: PMC11421293 DOI: 10.1016/j.vetimm.2024.110816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/24/2024]
Abstract
CD4+ T cells are an integral component of the adaptive immune response, carrying out many functions to combat a diverse range of pathogenic challenges. These cells exhibit remarkable plasticity, differentiating into specialized subsets such as T helper type 1 (TH1), TH2, TH9, TH17, TH22, regulatory T cells (Tregs), and follicular T helper (TFH) cells. Each subset is capable of addressing a distinct immunological need ranging from pathogen eradication to regulation of immune homeostasis. As the immune response subsides, CD4+ T cells rest down into long-lived memory phenotypes-including central memory (TCM), effector memory (TEM), resident memory (TRM), and terminally differentiated effector memory cells (TEMRA) that are localized to facilitate a swift and potent response upon antigen re-encounter. This capacity for long-term immunological memory and rapid reactivation upon secondary exposure highlights the role CD4+ T cells play in sustaining both adaptive defense mechanisms and maintenance. Decades of mouse, human, and to a lesser extent, pig T cell research has provided the framework for understanding the role of CD4+ T cells in immune responses, but these model systems do not always mimic each other. Although our understanding of pig immunology is not as extensive as mouse or human research, we have gained valuable insight by studying this model. More akin to pigs, our understanding of CD4+ T cells in dogs is much less complete. This disparity exists in part because canine immunologists depend on paradigms from mouse and human studies to characterize CD4+ T cells in dogs, with a fraction of available lineage-defining antibody markers. Despite this, every major CD4+ T cell subset has been described to some extent in dogs. These subsets have been studied in various contexts, including in vitro stimulation, homeostatic conditions, and across a range of disease states. Canine CD4+ T cells have been categorized according to lineage-defining characteristics, trafficking patterns, and what cytokines they produce upon stimulation. This review addresses our current understanding of canine CD4+ T cells from a comparative perspective by highlighting both the similarities and differences from mouse, human, and pig CD4+ T cell biology. We also discuss knowledge gaps in our current understanding of CD4+ T cells in dogs that could provide direction for future studies in the field.
Collapse
Affiliation(s)
- Haeree P Lang
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| | - Kevin C Osum
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA.
| | - Steven G Friedenberg
- Center for Immunology, University of Minnesota, Minneapolis, MN 55414, USA; Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA.
| |
Collapse
|
8
|
Gray-Gaillard SL, Solis SM, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. SARS-CoV-2 inflammation durably imprints memory CD4 T cells. Sci Immunol 2024; 9:eadj8526. [PMID: 38905326 PMCID: PMC11824880 DOI: 10.1126/sciimmunol.adj8526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 05/30/2024] [Indexed: 06/23/2024]
Abstract
Memory CD4 T cells are critical to human immunity, yet it is unclear whether viral inflammation during memory formation has long-term consequences. Here, we compared transcriptional and epigenetic landscapes of Spike (S)-specific memory CD4 T cells in 24 individuals whose first exposure to S was via SARS-CoV-2 infection or mRNA vaccination. Nearly 2 years after memory formation, S-specific CD4 T cells established by infection remained enriched for transcripts related to cytotoxicity and for interferon-stimulated genes, likely because of a chromatin accessibility landscape altered by inflammation. Moreover, S-specific CD4 T cells primed by infection had reduced proliferative capacity in vitro relative to vaccine-primed cells. Furthermore, the transcriptional state of S-specific memory CD4 T cells was minimally altered by booster immunization and/or breakthrough infection. Thus, infection-associated inflammation durably imprints CD4 T cell memory, which affects the function of these cells and may have consequences for long-term immunity.
Collapse
Affiliation(s)
| | - Sabrina M. Solis
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of
Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of
Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School
of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of
Medicine; New York, NY, USA
| |
Collapse
|
9
|
Edner NM, Houghton LP, Ntavli E, Rees-Spear C, Petersone L, Wang C, Fabri A, Elfaki Y, Rueda Gonzalez A, Brown R, Kisand K, Peterson P, McCoy LE, Walker LSK. TIGIT +Tfh show poor B-helper function and negatively correlate with SARS-CoV-2 antibody titre. Front Immunol 2024; 15:1395684. [PMID: 38868776 PMCID: PMC11167088 DOI: 10.3389/fimmu.2024.1395684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.
Collapse
Affiliation(s)
- Natalie M. Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Luke P. Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chunjing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
10
|
Moorton M, Tng PYL, Inoue R, Netherton CL, Gerner W, Schmidt S. Investigation of activation-induced markers (AIM) in porcine T cells by flow cytometry. Front Vet Sci 2024; 11:1390486. [PMID: 38868498 PMCID: PMC11168203 DOI: 10.3389/fvets.2024.1390486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
Activation-induced markers (AIMs) are frequently analyzed to identify re-activated human memory T cells. However, in pigs the analysis of AIMs is still not very common. Based on available antibodies, we designed a multi-color flow cytometry panel comprising pig-specific or cross-reactive antibodies against CD25, CD69, CD40L (CD154), and ICOS (CD278) combined with lineage/surface markers against CD3, CD4, and CD8α. In addition, we included an antibody against tumor necrosis factor alpha (TNF-α), to study the correlation of AIM expression with the production of this abundant T cell cytokine. The panel was tested on peripheral blood mononuclear cells (PBMCs) stimulated with phorbol 12-myristate 13-acetate (PMA)/ionomycin, Staphylococcus enterotoxin B (SEB) or PBMCs from African swine fever virus (ASFV) convalescent pigs, restimulated with homologous virus. PMA/ionomycin resulted in a massive increase of CD25/CD69 co-expressing T cells of which only a subset produced TNF-α, whereas CD40L expression was largely associated with TNF-α production. SEB stimulation triggered substantially less AIM expression than PMA/ionomycin but also here CD25/CD69 expressing T cells were identified which did not produce TNF-α. In addition, CD40L-single positive and CD25+CD69+CD40L+TNF-α- T cells were identified. In ASFV restimulated T cells TNF-α production was associated with a substantial proportion of AIM expressing T cells but also here ASFV-reactive CD25+CD69+TNF-α- T cells were identified. Within CD8α+ CD4 T cells, several CD25/CD40L/CD69/ICOS defined phenotypes expanded significantly after ASFV restimulation. Hence, the combination of AIMs tested will allow the identification of primed T cells beyond the commonly used cytokine panels, improving capabilities to identify the full breadth of antigen-specific T cells in pigs.
Collapse
Affiliation(s)
- Madison Moorton
- The Pirbright Institute, Woking, United Kingdom
- School of Biological Sciences, University of Reading, Whiteknights, Reading, United Kingdom
| | | | - Ryo Inoue
- Laboratory of Animal Science, Setsunan University, Osaka, Japan
| | | | | | | |
Collapse
|
11
|
Park HJ, Shin MS, Shin JJ, Kim H, Kang B, Par-Young J, Unlu S, Afinogenova Y, Catanzaro J, Young J, Kim M, Lee SJ, Jeon S, You S, Racke MK, Bucala R, Kang I. IL-1 receptor 1 signaling shapes the development of viral antigen-specific CD4 + T cell responses following COVID-19 mRNA vaccination. EBioMedicine 2024; 103:105114. [PMID: 38640835 PMCID: PMC11041015 DOI: 10.1016/j.ebiom.2024.105114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The innate immune cytokine interleukin (IL)-1 can affect T cell immunity, a critical factor in host defense. In a previous study, we identified a subset of human CD4+ T cells which express IL-1 receptor 1 (IL-1R1). However, the expression of such receptor by viral antigen-specific CD4+ T cells and its biological implication remain largely unexplored. This led us to investigate the implication of IL-1R1 in the development of viral antigen-specific CD4+ T cell responses in humans, including healthy individuals and patients with primary antibody deficiency (PAD), and animals. METHODS We characterized CD4+ T cells specific for SARS-CoV-2 spike (S) protein, influenza virus, and cytomegalovirus utilizing multiplexed single cell RNA-seq, mass cytometry and flow cytometry followed by an animal study. FINDINGS In healthy individuals, CD4+ T cells specific for viral antigens, including S protein, highly expressed IL-1R1. IL-1β promoted interferon (IFN)-γ expression by S protein-stimulated CD4+ T cells, supporting the functional implication of IL-1R1. Following the 2nd dose of COVID-19 mRNA vaccines, S protein-specific CD4+ T cells with high levels of IL-1R1 increased, likely reflecting repetitive antigenic stimulation. The expression levels of IL-1R1 by such cells correlated with the development of serum anti-S protein IgG antibody. A similar finding of increased expression of IL-1R1 by S protein-specific CD4+ T cells was also observed in patients with PAD following COVID-19 mRNA vaccination although the expression levels of IL-1R1 by such cells did not correlate with the levels of serum anti-S protein IgG antibody. In mice immunized with COVID-19 mRNA vaccine, neutralizing IL-1R1 decreased IFN-γ expression by S protein-specific CD4+ T cells and the development of anti-S protein IgG antibody. INTERPRETATION Our results demonstrate the significance of IL-1R1 expression in CD4+ T cells for the development of viral antigen-specific CD4+ T cell responses, contributing to humoral immunity. This provides an insight into the regulation of adaptive immune responses to viruses via the IL-1 and IL-1R1 interface. FUNDING Moderna to HJP, National Institutes of Health (NIH) 1R01AG056728 and R01AG055362 to IK and KL2 TR001862 to JJS, Quest Diagnostics to IK and RB, and the Mathers Foundation to RB.
Collapse
Affiliation(s)
- Hong-Jai Park
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Min Sun Shin
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Junghee J Shin
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Hyoungsu Kim
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Internal Medicine, Hallym University School of Medicine, Chuncheon, Gangwon-do, 24252, South Korea
| | - Byunghyun Kang
- Mucosal Immunology Section, Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, USA
| | - Jennefer Par-Young
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Serhan Unlu
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Yuliya Afinogenova
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Jason Catanzaro
- Section of Pulmonary, Allergy, Immunology and Sleep Medicine, Department of Pediatrics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Juan Young
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Minhyung Kim
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Sang Jin Lee
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, 41944, South Korea
| | - Sangchoon Jeon
- Yale University School of Nursing, West Haven, CT, 06516, USA
| | - Sungyong You
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | | | - Richard Bucala
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Insoo Kang
- Department of Internal Medicine (Section of Rheumatology, Allergy & Immunology), Yale University School of Medicine, New Haven, CT, 06520, USA.
| |
Collapse
|
12
|
Amarin JZ, Dulek DE, Simmons J, Hayek H, Chappell JD, Nochowicz CH, Kitko CL, Schuster JE, Muñoz FM, Bocchini CE, Moulton EA, Coffin SE, Freedman JL, Ardura MI, Wattier RL, Maron G, Grimley M, Paulsen G, Danziger-Isakov L, Carpenter PA, Englund JA, Halasa NB, Spieker AJ, Kalams SA. Immunophenotypic predictors of influenza vaccine immunogenicity in pediatric hematopoietic cell transplant recipients. Blood Adv 2024; 8:1880-1892. [PMID: 38386973 PMCID: PMC11007439 DOI: 10.1182/bloodadvances.2023012118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/24/2024] Open
Abstract
ABSTRACT Pediatric hematopoietic cell transplant (HCT) recipients exhibit poor serologic responses to influenza vaccination early after transplant. To facilitate the optimization of influenza vaccination timing, we sought to identify B- and T-cell subpopulations associated with influenza vaccine immunogenicity in this population. We used mass cytometry to phenotype peripheral blood mononuclear cells collected from pediatric HCT recipients enrolled in a multicenter influenza vaccine trial comparing high- and standard-dose formulations over 3 influenza seasons (2016-2019). We fit linear regression models to estimate relationships between immune cell subpopulation numbers before vaccination and prevaccination to postvaccination geometric mean fold rises in antigen-specific (A/H3N2, A/H1N1, and B/Victoria) serum hemagglutination inhibition antibody titers (28-42 days, and ∼6 months after 2 doses). For cell subpopulations identified as predictive of a response to all 3 antigens, we conducted a sensitivity analysis including time after transplant as an additional covariate. Among 156 HCT recipients, we identified 33 distinct immune cell subpopulations; 7 significantly predicted responses to all 3 antigens 28 to 42 days after a 2-dose vaccine series, irrespective of vaccine dose. We also found evidence that baseline absolute numbers of naïve B cells, naïve CD4+ T cells, and circulating T follicular helper cells predicted peak and sustained vaccine-induced titers irrespective of dose or timing of posttransplant vaccine administration. In conclusion, several B- and T-cell subpopulations predicted influenza vaccine immunogenicity in pediatric HCT recipients. This study provides insights into the immune determinants of vaccine responses and may help guide the development of tailored vaccination strategies for this vulnerable population.
Collapse
Affiliation(s)
- Justin Z. Amarin
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
- Epidemiology Doctoral Program, School of Medicine, Vanderbilt University, Nashville, TN
| | - Daniel E. Dulek
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Joshua Simmons
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
| | - Haya Hayek
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - James D. Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Carrie L. Kitko
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | | | - Flor M. Muñoz
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
- Department of Molecular Virology and Microbiology, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Claire E. Bocchini
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Elizabeth A. Moulton
- Division of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine and Texas Children’s Hospital, Houston, TX
| | - Susan E. Coffin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Jason L. Freedman
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Monica I. Ardura
- Division of Infectious Diseases and Host Defense Program, Nationwide Children’s Hospital, Columbus, OH
- Department of Pediatrics, The Ohio State University, Columbus, OH
| | - Rachel L. Wattier
- Department of Pediatrics, University of California San Francisco and Benioff Children’s Hospital, San Francisco, CA
| | - Gabriela Maron
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN
| | - Michael Grimley
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Grant Paulsen
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Lara Danziger-Isakov
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Paul A. Carpenter
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA
| | - Janet A. Englund
- Department of Pediatrics, University of Washington and Seattle Children’s Research Institute, Seattle, WA
| | - Natasha B. Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Andrew J. Spieker
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Spyros A. Kalams
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN
| |
Collapse
|
13
|
Tatsi EB, Filippatos F, Bello T, Syriopoulou V, Michos A. Comparative Study of T-Cell Repertoires after COVID-19 Immunization with Homologous or Heterologous Vaccine Booster. Pathogens 2024; 13:284. [PMID: 38668239 PMCID: PMC11054887 DOI: 10.3390/pathogens13040284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/12/2024] [Accepted: 03/25/2024] [Indexed: 04/29/2024] Open
Abstract
Sequencing of the T-cell repertoire is an innovative method to assess the cellular responses after immunization. The purpose of this study was to compare T-cell repertoires after COVID-19 immunization with homologous (HOB) and heterologous (HEB) boosting. The study included 20 participants with a median age of 27.5 (IQR:23) years, who were vaccinated with one dose of the Ad26.COV2.S vaccine and were boosted with either Ad26.COV2.S (n = 10) or BNT162b2 (n = 10) vaccine. Analysis of the T-cell receptor beta locus (TCRβ) sequencing one month after the booster dose identified that the HEB compared to the HOB group exhibited a higher number of both total and COVID-19-related functional T-cell rearrangements [mean of total productive rearrangements (TPRs): 63151.8 (SD ± 18441.5) vs. 34915.4 (SD ± 11121.6), p = 0.001 and COVID-19-TPRs: 522.5 (SD ± 178.0) vs. 298.3 (SD ± 101.1), p = 0.003]. A comparison between the HOB and HEB groups detected no statistically significant differences regarding T-cell Simpson clonality [0.021 (IQR:0.014) vs. 0.019 (IQR:0.007)], richness [8734.5 (IQR:973.3) vs. 8724 (IQR:383.7)] and T-cell fraction [0.19 (IQR:0.08) vs. 0.18 (IQR:0.08)]. HEB also exhibited a substantially elevated humoral immune response one month after the booster dose compared to HOB [median antibody titer (IQR): 10115.0 U/mL (6993.0) vs. 1781.0 U/mL (1314.0), p = 0.001]. T-cell repertoire sequencing indicated that HEB had increased SARS-CoV-2-related T-cell rearrangements, which was in accordance with higher humoral responses and possibly conferring longer protection. Data from the present study indicate that the administration of different COVID-19 vaccines as a booster may provide better protection.
Collapse
Affiliation(s)
- Elizabeth-Barbara Tatsi
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| | - Filippos Filippatos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| | - Thomas Bello
- Adaptive Biotechnologies, Seattle 98109, WA, USA;
| | - Vasiliki Syriopoulou
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| | - Athanasios Michos
- Infectious Diseases and Chemotherapy Research Laboratory, First Department of Pediatrics, Medical School, “Aghia Sophia” Children’s Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (E.-B.T.); (F.F.)
| |
Collapse
|
14
|
Abdala-Torres T, Campi-Azevedo AC, da Silva-Pereira RA, Dos Santos LI, Henriques PM, Costa-Rocha IA, Otta DA, Peruhype-Magalhães V, Teixeira-Carvalho A, Araújo MSS, Fernandes EG, Sato HK, Fantinato FFST, Domingues CMAS, Kallás EG, Tomiyama HTI, Lemos JAC, Coelho-Dos-Reis JG, de Lima SMB, Schwarcz WD, de Souza Azevedo A, Trindade GF, Ano Bom APD, da Silva AMV, Fernandes CB, Camacho LAB, de Sousa Maia MDL, Martins-Filho OA, do Antonelli LRDV. Immune response induced by standard and fractional doses of 17DD yellow fever vaccine. NPJ Vaccines 2024; 9:54. [PMID: 38459059 PMCID: PMC10923915 DOI: 10.1038/s41541-024-00836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 02/05/2024] [Indexed: 03/10/2024] Open
Abstract
The re-emergence of yellow fever (YF) urged new mass vaccination campaigns and, in 2017, the World Health Organization approved the use of the fractional dose (FD) of the YF vaccine due to stock shortage. In an observational cross-sectional investigation, we have assessed viremia, antibodies, soluble mediators and effector and memory T and B-cells induced by primary vaccination of volunteers with FD and standard dose (SD). Similar viremia and levels of antibodies and soluble markers were induced early after immunization. However, a faster decrease in the latter was observed after SD. The FD led to a sustained expansion of helper T-cells and an increased expression of activation markers on T-cells early after vaccination. Although with different kinetics, expansion of plasma cells was induced upon SD and FD immunization. Integrative analysis reveals that FD induces a more complex network involving follicular helper T cells and B-cells than SD. Our findings substantiate that FD can replace SD inducing robust correlates of protective immune response against YF.
Collapse
Affiliation(s)
- Thais Abdala-Torres
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Rosiane Aparecida da Silva-Pereira
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Priscilla Miranda Henriques
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Ismael Artur Costa-Rocha
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Dayane Andriotti Otta
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | | | - Eder Gatti Fernandes
- Divisão de Imunização, Secretaria de Estado de Saúde de São Paulo, São Paulo, SP, Brazil
- Departamento de Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Helena Keico Sato
- Divisão de Imunização, Secretaria de Estado de Saúde de São Paulo, São Paulo, SP, Brazil
| | | | | | - Esper Georges Kallás
- Departamento de Doenças Infecciosas e Parasitárias, Escola de Medicina, Universidade de São Paulo, São Paulo, SP, Brazil
| | | | | | - Jordana Grazziela Coelho-Dos-Reis
- Laboratório de Virologia Básica e Aplicada, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Sheila Maria Barbosa de Lima
- Departamento de Desenvolvimento Experimental e Pré-clínico, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Waleska Dias Schwarcz
- Laboratório de Análise Imunomecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Adriana de Souza Azevedo
- Laboratório de Análise Imunomecular, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Gisela Freitas Trindade
- Laboratório de Tecnologia Virológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Dinis Ano Bom
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Andrea Marques Vieira da Silva
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Camilla Bayma Fernandes
- Laboratório de Tecnologia Imunológica, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | | | - Maria de Lourdes de Sousa Maia
- Departamento de Assuntos Médicos, Estudos Clínicos e Vigilância Pós-Registro, Instituto de Tecnologia em Imunobiológicos Bio-Manguinhos, FIOCRUZ, Rio de Janeiro, RJ, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
| | - Lis Ribeiro do Valle do Antonelli
- Laboratório de Biologia e Imunologia de Doenças Infecciosas e Parasitárias, Instituto René Rachou, FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
15
|
Désy O, Béland S, Thivierge MP, Marcoux M, Desgagnés JS, Bouchard-Boivin F, Gama A, Riopel J, Latulippe E, De Serres SA. T follicular helper cells expansion in transplant recipients correlates with graft infiltration and adverse outcomes. Front Immunol 2024; 15:1275933. [PMID: 38384450 PMCID: PMC10879567 DOI: 10.3389/fimmu.2024.1275933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
Introduction The process of immunization following vaccination in humans bears similarities to that of immunization with allografts. Whereas vaccination aims to elicit a rapid response, in the transplant recipient, immunosuppressants slow the immunization to alloantigens. The induction of CD4+CXCR5+ T follicular helper (Tfh) cells has been shown to correlate with the success of vaccine immunization. Method We studied a cohort of 65 transplant recipients who underwent histological evaluation concurrent with PBMC isolation and follow-up sampling to investigate the phenotypic profiles in the blood and allotissue and analyze their association with clinical events. Results The proportion of circulating Tfh cells was heterogeneous over time. Patients in whom this compartment increased had lower CCR7-PD1+CD4+CXCR5+ T cells during follow-up. These patients exhibited more alloreactive CD4+ T cells using HLA-DR-specific tetramers and a greater proportion of detectable circulating plasmablasts than the controls. Examination of baseline biopsies revealed that expansion of the circulating Tfh compartment did not follow prior intragraft leukocyte infiltration. However, multicolor immunofluorescence microscopy of the grafts showed a greater proportion of CXCR5+ T cells than in the controls. CD4+CXCR5+ cells were predominantly PD1+ and were in close contact with B cells in situ. Despite clinical stability at baseline, circulating Tfh expansion was associated with a higher risk of a composite of anti-HLA donor-specific antibodies, rejection, lower graft function, or graft loss. Conclusion In otherwise stable patients post-transplant, circulating Tfh expansion can identify ongoing alloreactivity, detectable before allograft injury. Tfh expansion is relevant clinically because it predicts poor graft prognosis. These findings have implications for immune surveillance.
Collapse
Affiliation(s)
- Olivier Désy
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Stéphanie Béland
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Marie-Pier Thivierge
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Meagan Marcoux
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Jean-Simon Desgagnés
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - François Bouchard-Boivin
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Alcino Gama
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Julie Riopel
- Pathology Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Eva Latulippe
- Pathology Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| | - Sacha A. De Serres
- Transplantation Unit, Renal Division, Department of Medicine, University Health Center of Quebec, Faculty of Medicine, Laval University, Québec, QC, Canada
| |
Collapse
|
16
|
Zhang H, Cavazzoni CB, Podestà MA, Bechu ED, Ralli G, Chandrakar P, Lee JM, Sayin I, Tullius SG, Abdi R, Chong AS, Blazar BR, Sage PT. IL-21-producing effector Tfh cells promote B cell alloimmunity in lymph nodes and kidney allografts. JCI Insight 2023; 8:e169793. [PMID: 37870962 PMCID: PMC10619486 DOI: 10.1172/jci.insight.169793] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 09/12/2023] [Indexed: 10/25/2023] Open
Abstract
Follicular helper T (Tfh) cells have been implicated in controlling rejection after allogeneic kidney transplantation, but the precise subsets, origins, and functions of Tfh cells in this process have not been fully characterized. Here we show that a subset of effector Tfh cells marked by previous IL-21 production is potently induced during allogeneic kidney transplantation and is inhibited by immunosuppressive agents. Single-cell RNA-Seq revealed that these lymph node (LN) effector Tfh cells have transcriptional and clonal overlap with IL-21-producing kidney-infiltrating Tfh cells, implicating common origins and developmental trajectories. To investigate the precise functions of IL-21-producing effector Tfh cells in LNs and allografts, we used a mouse model to selectively eliminate these cells and assessed allogeneic B cell clonal dynamics using a single B cell culture system. We found that IL-21-producing effector Tfh cells were essential for transplant rejection by regulating donor-specific germinal center B cell clonal dynamics both systemically in the draining LN and locally within kidney grafts. Thus, IL-21-producing effector Tfh cells have multifaceted roles in Ab-mediated rejection after kidney transplantation by promoting B cell alloimmunity.
Collapse
Affiliation(s)
- Hengcheng Zhang
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Cecilia B. Cavazzoni
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Manuel A. Podestà
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elsa D. Bechu
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Garyfallia Ralli
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Pragya Chandrakar
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeong-Mi Lee
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ismail Sayin
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Stefan G. Tullius
- Division of Transplant Surgery & Transplant Surgery Research Laboratory, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Anita S. Chong
- Department of Surgery, Section of Transplantation, University of Chicago, Chicago, Illinois, USA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapies, University of Minnesota, Minneapolis, Minnesota, USA
| | - Peter T. Sage
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Smith CL, Bednarchik B, Aung H, Wilk DJ, Boxer RS, Daddato AE, Wilson BM, Gravenstein S, Canaday DH. Humoral and Cellular Immunity Induced by Adjuvanted and Standard Trivalent Influenza Vaccine in Older Nursing Home Residents. J Infect Dis 2023; 228:704-714. [PMID: 36951196 DOI: 10.1093/infdis/jiad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Despite wide use of adjuvanted influenza vaccine in nursing home residents (NHR), little immunogenicity data exist for this population. METHODS We collected blood from NHR (n = 85) living in nursing homes participating in a cluster randomized clinical trial comparing MF59-adjuvanted trivalent inactivated influenza vaccine (aTIV) with nonadjuvanted vaccine (TIV) (parent trial, NCT02882100). NHR received either vaccine during the 2016-2017 influenza season. We assessed cellular and humoral immunity using flow cytometry and hemagglutinin inhibition, antineuraminidase (enzyme-linked lectin assay), and microneutralization assays. RESULTS Both vaccines were similarly immunogenic and induced antigen-specific antibodies and T cells, but aTIV specifically induced significantly larger 28 days after vaccination (D28) titers against A/H3N2 neuraminidase than TIV. CONCLUSIONS NHRs respond immunologically to TIV and aTIV. From these data, the larger aTIV-induced antineuraminidase response at D28 may help explain the increased clinical protection observed in the parent clinical trial for aTIV over TIV in NHR during the A/H3N2-dominant 2016-2017 influenza season. Additionally, a decline back to prevaccination titers at 6 months after vaccination emphasizes the importance of annual vaccination against influenza. CLINICAL TRIALS REGISTRATION NCT02882100.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Beth Bednarchik
- Department of Medicine, University Hospitals Case Medical Center, Cleveland, OH, USA
| | - Htin Aung
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Dennis J Wilk
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Rebecca S Boxer
- Institute for Health Research, Kaiser Permanente of Colorado, Aurora, CO, USA
| | - Andrea E Daddato
- Institute for Health Research, Kaiser Permanente of Colorado, Aurora, CO, USA
| | - Brigid M Wilson
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve School of Medicine, Cleveland, OH, USA
| | - Stefan Gravenstein
- Division of Geriatrics and Palliative Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
- Center on Innovation in Long-Term Services and Supports, Providence Veterans Administration Medical Center, Providence, RI, USA
| | - David H Canaday
- Division of Infectious Diseases & HIV Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Geriatric Research, Education and Clinical Center, Louis Stokes Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
| |
Collapse
|
18
|
Mudd P, Borcherding N, Kim W, Quinn M, Han F, Zhou J, Sturtz A, Schmitz A, Lei T, Schattgen S, Klebert M, Suessen T, Middleton W, Goss C, Liu C, Crawford J, Thomas P, Teefey S, Presti R, O'Halloran J, Turner J, Ellebedy A. Antigen-specific CD4 + T cells exhibit distinct transcriptional phenotypes in the lymph node and blood following vaccination in humans. RESEARCH SQUARE 2023:rs.3.rs-3304466. [PMID: 37790414 PMCID: PMC10543502 DOI: 10.21203/rs.3.rs-3304466/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
SARS-CoV-2 infection and mRNA vaccination induce robust CD4+ T cell responses that are critical for the development of protective immunity. Here, we evaluated spike-specific CD4+ T cells in the blood and draining lymph node (dLN) of human subjects following BNT162b2 mRNA vaccination using single-cell transcriptomics. We analyze multiple spike-specific CD4+ T cell clonotypes, including novel clonotypes we define here using Trex, a new deep learning-based reverse epitope mapping method integrating single-cell T cell receptor (TCR) sequencing and transcriptomics to predict antigen-specificity. Human dLN spike-specific T follicular helper cells (TFH) exhibited distinct phenotypes, including germinal center (GC)-TFH and IL-10+ TFH, that varied over time during the GC response. Paired TCR clonotype analysis revealed tissue-specific segregation of circulating and dLN clonotypes, despite numerous spike-specific clonotypes in each compartment. Analysis of a separate SARS-CoV-2 infection cohort revealed circulating spike-specific CD4+ T cell profiles distinct from those found following BNT162b2 vaccination. Our findings provide an atlas of human antigen-specific CD4+ T cell transcriptional phenotypes in the dLN and blood following vaccination or infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Charles Goss
- Division of Biostatistics, Washington University in St.Louis
| | - Chang Liu
- Washington University School of Medicine
| | | | | | | | | | - Jane O'Halloran
- Department of Emergency Medicine, Washington University in St.Louis
| | | | | |
Collapse
|
19
|
Schattgen SA, Turner JS, Ghonim MA, Crawford JC, Schmitz AJ, Kim H, Zhou JQ, Awad W, Kim W, McIntire KM, Haile A, Klebert MK, Suessen T, Middleton WD, Teefey SA, Presti RM, Ellebedy AH, Thomas PG. Spatiotemporal development of the human T follicular helper cell response to Influenza vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555186. [PMID: 37693531 PMCID: PMC10491263 DOI: 10.1101/2023.08.29.555186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
We profiled blood and draining lymph node (LN) samples from human volunteers after influenza vaccination over two years to define evolution in the T follicular helper cell (TFH) response. We show LN TFH cells expanded in a clonal-manner during the first two weeks after vaccination and persisted within the LN for up to six months. LN and circulating TFH (cTFH) clonotypes overlapped but had distinct kinetics. LN TFH cell phenotypes were heterogeneous and mutable, first differentiating into pre-TFH during the month after vaccination before maturing into GC and IL-10+ TFH cells. TFH expansion, upregulation of glucose metabolism, and redifferentiation into GC TFH cells occurred with faster kinetics after re-vaccination in the second year. We identified several influenza-specific TFH clonal lineages, including multiple responses targeting internal influenza proteins, and show each TFH state is attainable within a lineage. This study demonstrates that human TFH cells form a durable and dynamic multi-tissue network.
Collapse
Affiliation(s)
- Stefan A Schattgen
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Jackson S Turner
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Mohamed A Ghonim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Aaron J Schmitz
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Hyunjin Kim
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Julian Q Zhou
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Walid Awad
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Wooseob Kim
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Katherine M McIntire
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Alem Haile
- Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael K Klebert
- Clinical Trials Unit, Washington University School of Medicine, St. Louis, MO, USA
| | - Teresa Suessen
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - William D Middleton
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sharlene A Teefey
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel M Presti
- Division of Infectious Diseases, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, USA
| | - Paul G Thomas
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
20
|
Ivanova EN, Shwetar J, Devlin JC, Buus TB, Gray-Gaillard S, Koide A, Cornelius A, Samanovic MI, Herrera A, Mimitou EP, Zhang C, Karmacharya T, Desvignes L, Ødum N, Smibert P, Ulrich RJ, Mulligan MJ, Koide S, Ruggles KV, Herati RS, Koralov SB. mRNA COVID-19 vaccine elicits potent adaptive immune response without the persistent inflammation seen in SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2021.04.20.21255677. [PMID: 33907755 PMCID: PMC8077568 DOI: 10.1101/2021.04.20.21255677] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
SARS-CoV-2 infection and vaccination elicit potent immune responses. Our study presents a comprehensive multimodal single-cell dataset of peripheral blood of patients with acute COVID-19 and of healthy volunteers before and after receiving the SARS-CoV-2 mRNA vaccine and booster. We compared host immune responses to the virus and vaccine using transcriptional profiling, coupled with B/T cell receptor repertoire reconstruction. COVID-19 patients displayed an enhanced interferon signature and cytotoxic gene upregulation, absent in vaccine recipients. These findings were validated in an independent dataset. Analysis of B and T cell repertoires revealed that, while the majority of clonal lymphocytes in COVID-19 patients were effector cells, clonal expansion was more evident among circulating memory cells in vaccine recipients. Furthermore, while clonal αβ T cell responses were observed in both COVID-19 patients and vaccine recipients, dramatic expansion of clonal γδT cells was found only in infected individuals. Our dataset enables comparative analyses of immune responses to infection versus vaccination, including clonal B and T cell responses. Integrating our data with publicly available datasets allowed us to validate our findings in larger cohorts. To our knowledge, this is the first dataset to include comprehensive profiling of longitudinal samples from healthy volunteers pre/post SARS-CoV-2 vaccine and booster.
Collapse
|
21
|
Kastenschmidt JM, Sureshchandra S, Jain A, Hernandez-Davies JE, de Assis R, Wagoner ZW, Sorn AM, Mitul MT, Benchorin AI, Levendosky E, Ahuja G, Zhong Q, Trask D, Boeckmann J, Nakajima R, Jasinskas A, Saligrama N, Davies DH, Wagar LE. Influenza vaccine format mediates distinct cellular and antibody responses in human immune organoids. Immunity 2023; 56:1910-1926.e7. [PMID: 37478854 PMCID: PMC10433940 DOI: 10.1016/j.immuni.2023.06.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 04/11/2023] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Highly effective vaccines elicit specific, robust, and durable adaptive immune responses. To advance informed vaccine design, it is critical that we understand the cellular dynamics underlying responses to different antigen formats. Here, we sought to understand how antigen-specific B and T cells were activated and participated in adaptive immune responses within the mucosal site. Using a human tonsil organoid model, we tracked the differentiation and kinetics of the adaptive immune response to influenza vaccine and virus modalities. Each antigen format elicited distinct B and T cell responses, including differences in their magnitude, diversity, phenotype, function, and breadth. These differences culminated in substantial changes in the corresponding antibody response. A major source of antigen format-related variability was the ability to recruit naive vs. memory B and T cells to the response. These findings have important implications for vaccine design and the generation of protective immune responses in the upper respiratory tract.
Collapse
Affiliation(s)
- Jenna M Kastenschmidt
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Suhas Sureshchandra
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Aarti Jain
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Jenny E Hernandez-Davies
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Rafael de Assis
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Zachary W Wagoner
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Andrew M Sorn
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Mahina Tabassum Mitul
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Aviv I Benchorin
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Elizabeth Levendosky
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - Gurpreet Ahuja
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA 92868, USA; Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Qiu Zhong
- Department of Pediatric Otolaryngology, Children's Hospital of Orange County, Orange, CA 92868, USA; Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Douglas Trask
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Jacob Boeckmann
- Department of Otolaryngology-Head and Neck Surgery, University of California Irvine, Orange, CA 92868, USA
| | - Rie Nakajima
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Algimantas Jasinskas
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Naresha Saligrama
- Department of Neurology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA; Department of Pathology and Immunology, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA; Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine in St. Louis, St. Louis, MO 63112, USA
| | - D Huw Davies
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA
| | - Lisa E Wagar
- Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92617, USA; Institute for Immunology, University of California Irvine, Irvine, CA 92617, USA; Center for Virus Research, University of California Irvine, Irvine, CA 92617, USA; Vaccine R&D Center, University of California Irvine, Irvine, CA 92617, USA.
| |
Collapse
|
22
|
Boyd MAA, Carey Hoppe A, Kelleher AD, Munier CML. T follicular helper cell responses to SARS-CoV-2 vaccination among healthy and immunocompromised adults. Immunol Cell Biol 2023; 101:504-513. [PMID: 36825370 PMCID: PMC10952589 DOI: 10.1111/imcb.12635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
The worldwide rollout of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccinations in the last 2 years has produced a multitude of studies investigating T-cell responses in the peripheral blood and a limited number in secondary lymphoid tissues. As a key component to an effective immune response, vaccine-specific T follicular helper (Tfh) cells are localized in the draining lymph node (LN) and assist in the selection of highly specific B-cell clones for the production of neutralizing antibodies. While these cells have been noted in the blood as circulating Tfh (cTfh) cells, they are not often taken into consideration when examining effective CD4+ T-cell responses, particularly in immunocompromised groups. Furthermore, site-specific analyses in locations such as the LN have recently become an attractive area of investigation. This is mainly a result of improved sampling methods via ultrasound-guided fine-needle biopsy (FNB)/fine-needle aspiration (FNA), which are less invasive than LN excision and able to be performed longitudinally. While these studies have been undertaken in healthy individuals, data from immunocompromised groups are lacking. This review will focus on both Tfh and cTfh responses after SARS-CoV-2 vaccination in healthy and immunocompromised individuals. This area of investigation could identify key characteristics of a successful LN response required for the prevention of infection and viral clearance. This furthermore may highlight responses that could be fine-tuned to improve vaccine efficacy within immunocompromised groups that are at a risk of more severe disease.
Collapse
Affiliation(s)
| | - Alexandra Carey Hoppe
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| | - Anthony D Kelleher
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
- St Vincent's HospitalSydneyNSW2010Australia
| | - C Mee Ling Munier
- Immunovirology and Pathogenesis ProgramThe Kirby InstituteUNSWSydneyNSW2052Australia
| |
Collapse
|
23
|
Jones MC, Castonguay C, Nanaware PP, Weaver GC, Stadinski B, Kugler-Umana OA, Huseby ES, Stern LJ, McKinstry KK, Strutt TM, Devarajan P, Swain SL. CD4 Effector TCR Avidity for Peptide on APC Determines the Level of Memory Generated. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 210:1950-1961. [PMID: 37093656 PMCID: PMC10247507 DOI: 10.4049/jimmunol.2200337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023]
Abstract
Initial TCR affinity for peptide Ag is known to impact the generation of memory; however, its contributions later, when effectors must again recognize Ag at 5-8 d postinfection to become memory, is unclear. We examined whether the effector TCR affinity for peptide at this "effector checkpoint" dictates the extent of memory and degree of protection against rechallenge. We made an influenza A virus nucleoprotein (NP)-specific TCR transgenic mouse strain, FluNP, and generated NP-peptide variants that are presented by MHC class II to bind to the FluNP TCR over a broad range of avidity. To evaluate the impact of avidity in vivo, we primed naive donor FluNP in influenza A virus-infected host mice, purified donor effectors at the checkpoint, and cotransferred them with the range of peptides pulsed on activated APCs into second uninfected hosts. Higher-avidity peptides yielded higher numbers of FluNP memory cells in spleen and most dramatically in lung and draining lymph nodes and induced better protection against lethal influenza infection. Avidity determined memory cell number, not cytokine profile, and already impacted donor cell number within several days of transfer. We previously found that autocrine IL-2 production at the checkpoint prevents default effector apoptosis and supports memory formation. Here, we find that peptide avidity determines the level of IL-2 produced by these effectors and that IL-2Rα expression by the APCs enhances memory formation, suggesting that transpresentation of IL-2 by APCs further amplifies IL-2 availability. Secondary memory generation was also avidity dependent. We propose that this regulatory pathway selects CD4 effectors of highest affinity to progress to memory.
Collapse
Affiliation(s)
- Michael C. Jones
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Catherine Castonguay
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Padma P. Nanaware
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Grant C. Weaver
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Brian Stadinski
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Olivia A. Kugler-Umana
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Eric S. Huseby
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Lawrence J. Stern
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karl Kai McKinstry
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Tara M. Strutt
- Division of Immunity and Pathogenesis, Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL. 32827,USA
| | - Priyadharshini Devarajan
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Susan L. Swain
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
24
|
Gray-Gaillard SL, Solis S, Chen HM, Monteiro C, Ciabattoni G, Samanovic MI, Cornelius AR, Williams T, Geesey E, Rodriguez M, Ortigoza MB, Ivanova EN, Koralov SB, Mulligan MJ, Herati RS. Inflammation durably imprints memory CD4+ T cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.11.15.516351. [PMID: 36415470 PMCID: PMC9681040 DOI: 10.1101/2022.11.15.516351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Adaptive immune responses are induced by vaccination and infection, yet little is known about how CD4+ T cell memory differs when primed in these two contexts. Notably, viral infection is generally associated with higher levels of systemic inflammation than is vaccination. To assess whether the inflammatory milieu at the time of CD4+ T cell priming has long-term effects on memory, we compared Spike-specific memory CD4+ T cells in 22 individuals around the time of the participants' third SARS-CoV-2 mRNA vaccination, with stratification by whether the participants' first exposure to Spike was via virus or mRNA vaccine. Multimodal single-cell profiling of Spike-specific CD4+ T cells revealed 755 differentially expressed genes that distinguished infection- and vaccine-primed memory CD4+ T cells. Spike-specific CD4+ T cells from infection-primed individuals had strong enrichment for cytotoxicity and interferon signaling genes, whereas Spike-specific CD4+ T cells from vaccine-primed individuals were enriched for proliferative pathways by gene set enrichment analysis. Moreover, Spike-specific memory CD4+ T cells established by infection had distinct epigenetic landscapes driven by enrichment of IRF-family transcription factors, relative to T cells established by mRNA vaccination. This transcriptional imprint was minimally altered following subsequent mRNA vaccination or breakthrough infection, reflecting the strong bias induced by the inflammatory environment during initial memory differentiation. Together, these data suggest that the inflammatory context during CD4+ T cell priming is durably imprinted in the memory state at transcriptional and epigenetic levels, which has implications for personalization of vaccination based on prior infection history.
Collapse
Affiliation(s)
| | - Sabrina Solis
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Han M. Chen
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Clarice Monteiro
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Grace Ciabattoni
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Marie I. Samanovic
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Amber R. Cornelius
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Tijaana Williams
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Emilie Geesey
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Miguel Rodriguez
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Mila Brum Ortigoza
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
| | - Ellie N. Ivanova
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY, USA
| | - Mark J. Mulligan
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| | - Ramin Sedaghat Herati
- Department of Medicine, New York University Grossman School of Medicine; New York, NY, USA
- Department of Microbiology, New York University School of Medicine; New York, NY, USA
| |
Collapse
|
25
|
Tippalagama R, Chihab LY, Kearns K, Lewis S, Panda S, Willemsen L, Burel JG, Lindestam Arlehamn CS. Antigen-specificity measurements are the key to understanding T cell responses. Front Immunol 2023; 14:1127470. [PMID: 37122719 PMCID: PMC10140422 DOI: 10.3389/fimmu.2023.1127470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 05/02/2023] Open
Abstract
Antigen-specific T cells play a central role in the adaptive immune response and come in a wide range of phenotypes. T cell receptors (TCRs) mediate the antigen-specificities found in T cells. Importantly, high-throughput TCR sequencing provides a fingerprint which allows tracking of specific T cells and their clonal expansion in response to particular antigens. As a result, many studies have leveraged TCR sequencing in an attempt to elucidate the role of antigen-specific T cells in various contexts. Here, we discuss the published approaches to studying antigen-specific T cells and their specific TCR repertoire. Further, we discuss how these methods have been applied to study the TCR repertoire in various diseases in order to characterize the antigen-specific T cells involved in the immune control of disease.
Collapse
|
26
|
Liu S, Bush WS, Miskimen K, Gonzalez-Vicente A, Bailey JNC, Konidari I, McCauley JL, Sedor JR, O'Toole JF, Crawford DC. T-cell receptor diversity in minimal change disease in the NEPTUNE study. Pediatr Nephrol 2023; 38:1115-1126. [PMID: 35943576 PMCID: PMC10037226 DOI: 10.1007/s00467-022-05696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Minimal change disease (MCD) is the major cause of childhood idiopathic nephrotic syndrome, which is characterized by massive proteinuria and debilitating edema. Proteinuria in MCD is typically rapidly reversible with corticosteroid therapy, but relapses are common, and children often have many adverse events from the repeated courses of immunosuppressive therapy. The pathobiology of MCD remains poorly understood. Prior clinical observations suggest that abnormal T-cell function may play a central role in MCD pathogenesis. Based on these observations, we hypothesized that T-cell responses to specific exposures or antigens lead to a clonal expansion of T-cell subsets, a restriction in the T-cell repertoire, and an elaboration of specific circulating factors that trigger disease onset and relapses. METHODS To test these hypotheses, we sequenced T-cell receptors in fourteen MCD, four focal segmental glomerulosclerosis (FSGS), and four membranous nephropathy (MN) patients with clinical data and blood samples drawn during active disease and during remission collected by the Nephrotic Syndrome Study Network (NEPTUNE). We calculated several T-cell receptor diversity metrics to assess possible differences between active disease and remission states in paired samples. RESULTS Median productive clonality did not differ between MCD active disease (0.0083; range: 0.0042, 0.0397) and remission (0.0088; range: 0.0038, 0.0369). We did not identify dominant clonotypes in MCD active disease, and few clonotypes were shared with FSGS and MN patients. CONCLUSIONS While these data do not support an obvious role of the adaptive immune system T-cells in MCD pathogenesis, further study is warranted given the limited sample size. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Shiying Liu
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Kristy Miskimen
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Agustin Gonzalez-Vicente
- Glickman Urological and Kidney Disease and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - Jessica N Cooke Bailey
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Ioanna Konidari
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Jacob L McCauley
- John P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - John R Sedor
- Glickman Urological and Kidney Disease and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - John F O'Toole
- Glickman Urological and Kidney Disease and Lerner Research Institutes, Cleveland Clinic, Cleveland, OH, USA
| | - Dana C Crawford
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA.
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
27
|
Currenti J, Simmons J, Oakes J, Gaudieri S, Warren CM, Gangula R, Alves E, Ram R, Leary S, Armitage JD, Smith RM, Chopra A, Halasa NB, Pilkinton MA, Kalams SA. Tracking of activated cTfh cells following sequential influenza vaccinations reveals transcriptional profile of clonotypes driving a vaccine-induced immune response. Front Immunol 2023; 14:1133781. [PMID: 37063867 PMCID: PMC10095155 DOI: 10.3389/fimmu.2023.1133781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Introduction A vaccine against influenza is available seasonally but is not 100% effective. A predictor of successful seroconversion in adults is an increase in activated circulating T follicular helper (cTfh) cells after vaccination. However, the impact of repeated annual vaccinations on long-term protection and seasonal vaccine efficacy remains unclear. Methods In this study, we examined the T cell receptor (TCR) repertoire and transcriptional profile of vaccine-induced expanded cTfh cells in individuals who received sequential seasonal influenza vaccines. We measured the magnitude of cTfh and plasmablast cell activation from day 0 (d0) to d7 post-vaccination as an indicator of a vaccine response. To assess TCR diversity and T cell expansion we sorted activated and resting cTfh cells at d0 and d7 post-vaccination and performed TCR sequencing. We also single cell sorted activated and resting cTfh cells for TCR analysis and transcriptome sequencing. Results and discussion The percent of activated cTfh cells significantly increased from d0 to d7 in each of the 2016-17 (p < 0.0001) and 2017-18 (p = 0.015) vaccine seasons with the magnitude of cTfh activation increase positively correlated with the frequency of circulating plasmablast cells in the 2016-17 (p = 0.0001) and 2017-18 (p = 0.003) seasons. At d7 post-vaccination, higher magnitudes of cTfh activation were associated with increased clonality of cTfh TCR repertoire. The TCRs from vaccine-expanded clonotypes were identified and tracked longitudinally with several TCRs found to be present in both years. The transcriptomic profile of these expanded cTfh cells at the single cell level demonstrated overrepresentation of transcripts of genes involved in the type-I interferon pathway, pathways involved in gene expression, and antigen presentation and recognition. These results identify the expansion and transcriptomic profile of vaccine-induced cTfh cells important for B cell help.
Collapse
Affiliation(s)
- Jennifer Currenti
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Joshua Simmons
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jared Oakes
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Silvana Gaudieri
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Christian M. Warren
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Rama Gangula
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Eric Alves
- School of Human Sciences, University of Western Australia, Crawley, WA, Australia
| | - Ramesh Ram
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Jesse D. Armitage
- Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Rita M. Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Murdoch, WA, Australia
| | - Natasha B. Halasa
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Mark A. Pilkinton
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
28
|
Ryan FJ, Norton TS, McCafferty C, Blake SJ, Stevens NE, James J, Eden GL, Tee YC, Benson SC, Masavuli MG, Yeow AEL, Abayasingam A, Agapiou D, Stevens H, Zecha J, Messina NL, Curtis N, Ignjatovic V, Monagle P, Tran H, McFadyen JD, Bull RA, Grubor-Bauk B, Lynn MA, Botten R, Barry SE, Lynn DJ. A systems immunology study comparing innate and adaptive immune responses in adults to COVID-19 mRNA and adenovirus vectored vaccines. Cell Rep Med 2023; 4:100971. [PMID: 36871558 PMCID: PMC9935276 DOI: 10.1016/j.xcrm.2023.100971] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 02/19/2023]
Abstract
Identifying the molecular mechanisms that promote optimal immune responses to coronavirus disease 2019 (COVID-19) vaccination is critical for future rational vaccine design. Here, we longitudinally profile innate and adaptive immune responses in 102 adults after the first, second, and third doses of mRNA or adenovirus-vectored COVID-19 vaccines. Using a multi-omics approach, we identify key differences in the immune responses induced by ChAdOx1-S and BNT162b2 that correlate with antigen-specific antibody and T cell responses or vaccine reactogenicity. Unexpectedly, we observe that vaccination with ChAdOx1-S, but not BNT162b2, induces an adenoviral vector-specific memory response after the first dose, which correlates with the expression of proteins with roles in thrombosis with potential implications for thrombosis with thrombocytopenia syndrome (TTS), a rare but serious adverse event linked to adenovirus-vectored vaccines. The COVID-19 Vaccine Immune Responses Study thus represents a major resource that can be used to understand the immunogenicity and reactogenicity of these COVID-19 vaccines.
Collapse
Affiliation(s)
- Feargal J Ryan
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Todd S Norton
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Conor McCafferty
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Stephen J Blake
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Natalie E Stevens
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Jane James
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Georgina L Eden
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Yee C Tee
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Saoirse C Benson
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Makutiro G Masavuli
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Arthur E L Yeow
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Arunasingam Abayasingam
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia; The Kirby Institute, Sydney, NSW 2052, Australia
| | | | - Hannah Stevens
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - Jana Zecha
- Dynamic Omics, Centre for Genomics Research, Discovery Sciences, R&D, AstraZeneca, Gaithersburg, MD 20878, USA
| | - Nicole L Messina
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Nigel Curtis
- Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; Infectious Diseases Group, Murdoch Children's Research Institute, Parkville, VIC 3052, Australia
| | - Vera Ignjatovic
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Paul Monagle
- Haematology Research, Murdoch Children's Research Institute, Melbourne, VIC 3052, Australia; Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Huyen Tran
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Australian Centre for Blood Diseases, Monash University, Melbourne, VIC 3800, Australia
| | - James D McFadyen
- Clinical Haematology Department, Alfred Hospital, Melbourne, VIC 3004, Australia; Atherothrombosis and Vascular Biology Program, Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia; Baker Department of Cardiometabolic Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Rowena A Bull
- School of Medical Sciences, Faculty of Medicine, UNSW, Sydney, NSW 2052, Australia; The Kirby Institute, Sydney, NSW 2052, Australia
| | - Branka Grubor-Bauk
- Viral Immunology Group, Adelaide Medical School, University of Adelaide and Basil Hetzel Institute for Translational Health Research, Adelaide, SA 5011, Australia
| | - Miriam A Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia
| | - Rochelle Botten
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Simone E Barry
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, SA 5000, Australia
| | - David J Lynn
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia; Flinders Health and Medical Research Institute, Flinders University, Bedford Park, SA 5042, Australia.
| |
Collapse
|
29
|
Marques-Piubelli ML, Amador C, Vega F. Pathologic and molecular insights in nodal T-follicular helper cell lymphomas. Front Oncol 2023; 13:1105651. [PMID: 36793612 PMCID: PMC9923156 DOI: 10.3389/fonc.2023.1105651] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
T-follicular helper (TFH) cells are one of the T-cell subsets with a critical role in the regulation of germinal center (GC) reactions. TFH cells contribute to the positive selection of GC B-cells and promote plasma cell differentiation and antibody production. TFH cells express a unique phenotype characterized by PD-1hi, ICOShi, CD40Lhi, CD95hi, CTLAhi, CCR7lo, and CXCR5hi . Three main subtypes of nodal TFH lymphomas have been described: 1) angioimmunoblastic-type, 2) follicular-type, and 3) not otherwise specified (NOS). The diagnosis of these neoplasms can be challenging, and it is rendered based on a combination of clinical, laboratory, histopathologic, immunophenotypic, and molecular findings. The markers most frequently used to identify a TFH immunophenotype in paraffin-embedded tissue sections include PD-1, CXCL13, CXCR5, ICOS, BCL6, and CD10. These neoplasms feature a characteristic and similar, but not identical, mutational landscape with mutations in epigenetic modifiers (TET2, DNMT3A, IDH2), RHOA, and T-cell receptor signaling genes. Here, we briefly review the biology of TFH cells and present a summary of the current pathologic, molecular, and genetic features of nodal lymphomas. We want to highlight the importance of performing a consistent panel of TFH immunostains and mutational studies in TCLs to identify TFH lymphomas.
Collapse
Affiliation(s)
- Mario L Marques-Piubelli
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Catalina Amador
- Division of Hematopathology, Department of Pathology and Laboratory Medicine, University of Miami, Miami, FL, United States
| | - Francisco Vega
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
30
|
Hu M, Notarbartolo S, Foglierini M, Jovic S, Mele F, Jarrossay D, Lanzavecchia A, Cassotta A, Sallusto F. Clonal composition and persistence of antigen-specific circulating T follicular helper cells. Eur J Immunol 2023; 53:e2250190. [PMID: 36480793 PMCID: PMC10107804 DOI: 10.1002/eji.202250190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/16/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
T follicular helper (TFH ) cells play an essential role in promoting B cell responses and antibody affinity maturation in germinal centers (GC). A subset of memory CD4+ T cells expressing the chemokine receptor CXCR5 has been described in human blood as phenotypically and clonally related to GC TFH cells. However, the antigen specificity and relationship of these circulating TFH (cTFH ) cells with other memory CD4+ T cells remain poorly defined. Combining antigenic stimulation and T cell receptor (TCR) Vβ sequencing, we found T cells specific to tetanus toxoid (TT), influenza vaccine (Flu), or Candida albicans (C.alb) in both cTFH and non-cTFH subsets, although with different frequencies and effector functions. Interestingly, cTFH and non-cTFH cells specific for C.alb or TT had a largely overlapping TCR Vβ repertoire while the repertoire of Flu-specific cTFH and non-cTFH cells was distinct. Furthermore, Flu-specific but not C.alb-specific PD-1+ cTFH cells had a "GC TFH -like" phenotype, with overexpression of IL21, CXCL13, and BCL6. Longitudinal analysis of serial blood donations showed that Flu-specific cTFH and non-cTFH cells persisted as stable repertoires for years. Collectively, our study provides insights on the relationship of cTFH with non-cTFH cells and on the heterogeneity and persistence of antigen-specific human cTFH cells.
Collapse
Affiliation(s)
- Mengyun Hu
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Stanford, CA, USA
| | - Samuele Notarbartolo
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: National Institute of Molecular Genetics, Milano, Italy
| | - Mathilde Foglierini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Present address: Service d'immunologie et d'allergie, CHUV, Lausanne, Switzerland
| | - Sandra Jovic
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federico Mele
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - David Jarrossay
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | | | - Antonino Cassotta
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland.,Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
31
|
Gao X, Luo K, Wang D, Wei Y, Yao Y, Deng J, Yang Y, Zeng Q, Dong X, Xiong L, Gong D, Lin L, Pohl K, Liu S, Liu Y, Liu L, Nguyen THO, Allen LF, Kedzierska K, Jin Y, Du MR, Chen W, Lu L, Shen N, Liu Z, Cockburn IA, Luo W, Yu D. T follicular helper 17 (Tfh17) cells are superior for immunological memory maintenance. eLife 2023; 12:82217. [PMID: 36655976 PMCID: PMC9891720 DOI: 10.7554/elife.82217] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 01/18/2023] [Indexed: 01/20/2023] Open
Abstract
A defining feature of successful vaccination is the ability to induce long-lived antigen-specific memory cells. T follicular helper (Tfh) cells specialize in providing help to B cells in mounting protective humoral immunity in infection and after vaccination. Memory Tfh cells that retain the CXCR5 expression can confer protection through enhancing humoral response upon antigen re-exposure but how they are maintained is poorly understood. CXCR5+ memory Tfh cells in human blood are divided into Tfh1, Tfh2, and Tfh17 cells by the expression of chemokine receptors CXCR3 and CCR6 associated with Th1 and Th17, respectively. Here, we developed a new method to induce Tfh1, Tfh2, and Tfh17-like (iTfh1, iTfh2, and iTfh17) mouse cells in vitro. Although all three iTfh subsets efficiently support antibody responses in recipient mice with immediate immunization, iTfh17 cells are superior to iTfh1 and iTfh2 cells in supporting antibody response to a later immunization after extended resting in vivo to mimic memory maintenance. Notably, the counterpart human Tfh17 cells are selectively enriched in CCR7+ central memory Tfh cells with survival and proliferative advantages. Furthermore, the analysis of multiple human cohorts that received different vaccines for HBV, influenza virus, tetanus toxin or measles revealed that vaccine-specific Tfh17 cells outcompete Tfh1 or Tfh2 cells for the persistence in memory phase. Therefore, the complementary mouse and human results showing the advantage of Tfh17 cells in maintenance and memory function supports the notion that Tfh17-induced immunization might be preferable in vaccine development to confer long-term protection.
Collapse
Affiliation(s)
- Xin Gao
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Kaiming Luo
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Diya Wang
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Yunbo Wei
- Laboratory of Immunology for Environment and Health, Shandong Analysis and Test Center, Qilu University of Technology, Shandong Academy of SciencesJinanChina
| | - Yin Yao
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Jun Deng
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yang Yang
- Frazer Institute, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| | - Qunxiong Zeng
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Xiaoru Dong
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Le Xiong
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Dongcheng Gong
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lin Lin
- Department of Laboratory Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Kai Pohl
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Shaoling Liu
- Shanghai Children's Medical Centre, Shanghai Jiao Tong UniversityShanghaiChina
| | - Yu Liu
- Shanghai Children's Medical Centre, Shanghai Jiao Tong UniversityShanghaiChina
| | - Lu Liu
- Obstetrics and Gynecology Hospital of Fudan University (Shanghai Red House Obstetrics and Gynecology Hospital)ShanghaiChina
| | - Thi HO Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Lilith F Allen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of MelbourneMelbourneAustralia
| | - Yanliang Jin
- Shanghai Children's Medical Centre, Shanghai Jiao Tong UniversityShanghaiChina
| | - Mei-Rong Du
- Obstetrics and Gynecology Hospital of Fudan University (Shanghai Red House Obstetrics and Gynecology Hospital)ShanghaiChina
| | - Wanping Chen
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Liangjing Lu
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Nan Shen
- China-Australia Centre for Personalised Immunology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
- Department of Rheumatology, Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong UniversityShanghaiChina
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Ian A Cockburn
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
| | - Wenjing Luo
- Department of Occupational and Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical UniversityXi'anChina
| | - Di Yu
- Immunology and Infectious Disease Division, John Curtin School of Medical Research, The Australian National UniversityCanberraAustralia
- Frazer Institute, Faculty of Medicine, University of QueenslandBrisbaneAustralia
- Ian Frazer Centre for Children’s Immunotherapy Research, Children’s Health Research Centre, Faculty of Medicine, University of QueenslandBrisbaneAustralia
| |
Collapse
|
32
|
De Biasi S, Paolini A, Lo Tartaro D, Gibellini L, Cossarizza A. Analysis of Antigen-Specific T and B Cells for Monitoring Immune Protection Against SARS-CoV-2. Curr Protoc 2023; 3:e636. [PMID: 36598346 DOI: 10.1002/cpz1.636] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunological memory is the basis of protection against most pathogens. Long-living memory T and B cells able to respond to specific stimuli, as well as persistent antibodies in plasma and in other body fluids, are crucial for determining the efficacy of vaccination and for protecting from a second infection by a previously encountered pathogen. Antigen-specific cells are represented at a very low frequency in the blood, and indeed, they can be considered "rare events" present in the memory T-cell pool. Therefore, such events should be analyzed with careful attention. In the last 20 years, different methods, mostly based upon flow cytometry, have been developed to identify such rare antigen-specific cells, and the COVID-19 pandemic has given a dramatic impetus to characterize the immune response against the virus. In this regard, we know that the identification, enumeration, and characterization of SARS-CoV-2-specific T and B cells following infection and/or vaccination require i) the use of specific peptides and adequate co-stimuli, ii) the use of appropriate inhibitors to avoid nonspecific activation, iii) the setting of appropriate timing for stimulation, and iv) the choice of adequate markers and reagents to identify antigen-specific cells. Optimization of these procedures allows not only determination of the magnitude of SARS-CoV-2-specific responses but also a comparison of the effects of different combinations of vaccines or determination of the response provided by so-called "hybrid immunity," resulting from a combination of natural immunity and vaccine-generated immunity. Here, we present two methods that are largely used to monitor the response magnitude and phenotype of SARS-CoV-2-specific T and B cells by polychromatic flow cytometry, along with some tips that can be useful for the quantification of these rare events. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Identification of antigen-specific T cells Basic Protocol 2: Identification of antigen-specific B cells.
Collapse
Affiliation(s)
- Sara De Biasi
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Annamaria Paolini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Domenico Lo Tartaro
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Lara Gibellini
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children & Adults, University of Modena and Reggio Emilia, via Campi, Modena, Italy.,Istituto Nazionale per le Ricerche Cardiovascolari - INRC, via Irnerio, Bologna, Italy
| |
Collapse
|
33
|
Clarkson BDS, Johnson RK, Bingel C, Lothaller C, Howe CL. Preservation of antigen-specific responses in cryopreserved CD4 + and CD8 + T cells expanded with IL-2 and IL-7. J Transl Autoimmun 2022; 5:100173. [PMID: 36467614 PMCID: PMC9713293 DOI: 10.1016/j.jtauto.2022.100173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/31/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022] Open
Abstract
Objectives We sought to develop medium throughput standard operating procedures for screening cryopreserved human peripheral blood mononuclear cells (PBMCs) for CD4+ and CD8+ T cell responses to potential autoantigens. Methods Dendritic cells were loaded with a peptide cocktail from ubiquitous viruses or full-length viral protein antigens and cocultured with autologous T cells. We measured expression of surface activation markers on T cells by flow cytometry and cytometry by time of flight 24-72 h later. We tested responses among T cells freshly isolated from healthy control PBMCs, cryopreserved T cells, and T cells derived from a variety of T cell expansion protocols. We also compared the transcriptional profile of CD8+ T cells rested with interleukin (IL)7 for 48 h after 1) initial thawing, 2) expansion, and 3) secondary cryopreservation/thawing of expanded cells. To generate competent antigen presenting cells from PBMCs, we promoted differentiation of PBMCs into dendritic cells with granulocyte macrophage colony stimulating factor and IL-4. Results We observed robust dendritic cell differentiation from human PBMCs treated with 50 ng/mL GM-CSF and 20 ng/mL IL-4 in as little as 3 days. Dendritic cell purity was substantially increased by magnetically enriching for CD14+ monocytes prior to differentiation. We also measured antigen-dependent T cell activation in DC-T cell cocultures. However, polyclonal expansion of T cells with anti-CD3/antiCD28 abolished antigen-dependent upregulation of CD69 in our assay despite minimal transcriptional differences between rested CD8+ T cells before and after expansion. Furthermore, resting these expanded T cells in IL-2, IL-7 or IL-15 did not restore the antigen dependent responses. In contrast, T cells that were initially expanded with IL-2 + IL-7 rather than plate bound anti-CD3 + anti-CD28 retained responsiveness to antigen stimulation and these responses strongly correlated with responses measured at initial thawing. Significance While screening techniques for potential pathological autoantibodies have come a long way, comparable full-length protein target assays for screening patient T cells at medium throughput are noticeably lacking due to technical hurdles. Here we advance techniques that should have broad applicability to translational studies investigating cell mediated immunity in infectious or autoimmune diseases. Future studies are aimed at investigating possible CD8+ T cell autoantigens in MS and other CNS autoimmune diseases.
Collapse
Affiliation(s)
- Benjamin DS. Clarkson
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA,Corresponding author. Mayo Clinic, Guggenheim 1521C, 200 First Street SW, Rochester, MN, 55905.
| | | | - Corinna Bingel
- Clinical Cooperation Unit Pediatric Oncology, German Cancer Research Center, Heidelberg, Germany
| | | | - Charles L. Howe
- Department of Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Center for Multiple Sclerosis and Autoimmune Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Division of Experimental Neurology, Mayo Clinic, Rochester, MN, 55905, USA,Department of Immunology, Mayo Clinic, Rochester, MN, 55905, USA
| |
Collapse
|
34
|
Lai L, Rouphael N, Xu Y, Kabbani S, Beck A, Sherman A, Anderson EJ, Bellamy A, Weiss J, Cross K, Mulligan MJ. An Oil-in-Water adjuvant significantly increased influenza A/H7N9 split virus Vaccine-Induced circulating follicular helper T (cT FH) cells and antibody responses. Vaccine 2022; 40:7065-7072. [PMID: 36273986 DOI: 10.1016/j.vaccine.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 04/09/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Unadjuvanted A/H7N9 vaccines are poorly immunogenic. The immune response is improved with the addition of MF59, an oil-in-water adjuvant. However, the cellular immunologic responses of MF59-adjuvanted A/H7N9 vaccine are not fully understood. METHODS 37 participants were vaccinated with 2 doses of 2013 influenza A/H7N9 vaccine (at Days 1 and 21) with or without MF59 and enrolled in an immunology substudy. Responses were assessed at multiple timepoints (Days 0, 8, 21, 29, and 42) for hemagglutination inhibition (HAI) and neutralizing antibody (Neut) assays, memory B cell responses by enzyme-linked ImmunoSpot; circulating follicular helper T cells (cTFH) and CD4 + T cells by intracellular cytokine staining. RESULTS MF59-adjuvanted influenza A/H7N9 vaccine induced significantly higher hemagglutination inhibition (HAI) and neutralizing antibody (Neut) responses when compared to unadjuvanted vaccine. The adjuvanted vaccine elicited significantly higher levels of Inducible T-cell Co-Stimulator (ICOS) expression by CXCR3+CXCR5+CD4+ cTFH cells, compared to unadjuvanted vaccine. The magnitude of increase in cTFH cells (from baseline to Day 8) and in IL-21 expressing CD154+CD4+ T cells (from baseline to Days 8 and 21) correlated with HAI (at Day 29) and Neut antibody (at Days 8 and 29) titers. The increase in frequency of IL-21 expressing CD154+CD4+T cells (from baseline to Day 21) correlated with memory B cell frequency (at Day 42). CONCLUSION cTFH activation is associated with HAI and Neut responses in recipients of MF59-adjuvanted influenza A/H7N9 vaccine relative to unadjuvanted vaccine. Future studies should focus on optimizing the cTFH response and use cTFH as an early biomarker of serological response to vaccination. This trial was registered at clinicaltrials.gov, trial number NCT01938742.
Collapse
Affiliation(s)
- Lilin Lai
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030
| | - Nadine Rouphael
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030.
| | - Yongxian Xu
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030
| | - Sarah Kabbani
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030
| | - Allison Beck
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030
| | - Amy Sherman
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030
| | - Evan J Anderson
- Departments of Pediatrics and Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta, 2015 Uppergate
| | - Abbie Bellamy
- EMMES Corporation, 401, North Washington Street, Suite 700, Rockville, MD 20850, USA
| | - Julia Weiss
- EMMES Corporation, 401, North Washington Street, Suite 700, Rockville, MD 20850, USA
| | - Kaitlyn Cross
- EMMES Corporation, 401, North Washington Street, Suite 700, Rockville, MD 20850, USA
| | - Mark J Mulligan
- Hope Clinic of the Emory Vaccine Center, Division of Infectious Diseases, Department of Medicine, Emory University, 500, Irvin Court, Decatur GA 30030
| |
Collapse
|
35
|
Different antibody-associated autoimmune diseases have distinct patterns of T follicular cell dysregulation. Sci Rep 2022; 12:17638. [PMID: 36271118 PMCID: PMC9587230 DOI: 10.1038/s41598-022-21576-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/29/2022] [Indexed: 01/18/2023] Open
Abstract
Autoantibodies are produced within germinal centers (GC), in a process regulated by interactions between B, T follicular helper (Tfh), and T follicular regulatory (Tfr) cells. The GC dysregulation in human autoimmunity has been inferred from circulating cells, albeit with conflicting results due to diverse experimental approaches. We applied a consistent approach to compare circulating Tfr and Tfh subsets in patients with different autoimmune diseases. We recruited 97 participants, including 72 patients with Hashimoto's thyroiditis (HT, n = 18), rheumatoid arthritis (RA, n = 16), or systemic lupus erythematosus (SLE, n = 32), and 31 matched healthy donors (HD). We found that the frequency of circulating T follicular subsets differed across diseases. Patients with HT had an increased frequency of blood Tfh cells (p = 0.0215) and a reduced Tfr/Tfh ratio (p = 0.0338) when compared with HD. This was not observed in patients with systemic autoimmune rheumatic diseases (RA, SLE), who had a reduction in both Tfh (p = 0.0494 and p = 0.0392, respectively) and Tfr (p = 0.0003 and p = 0.0001, respectively) cells, resulting in an unchanged Tfr/Tfh ratio. Activated PD-1+ICOS+Tfh and CD4+PD-1+CXCR5-Tph cells were raised only in patients with SLE (p = 0.0022 and p = 0.0054), without association with disease activity. Our data suggest that GC dysregulation, assessed by T follicular subsets, is not uniform in human autoimmunity. Specific patterns of dysregulation may become potential biomarkers for disease and patient stratification.
Collapse
|
36
|
Bhuiyan TR, Al Banna H, Kaisar MH, Karmakar PC, Hakim A, Akter A, Ahmed T, Tauheed I, Islam S, Hasnat MA, Sumon MA, Rashed A, Ghosh S, Clemens JD, Banu S, Shirin T, Weiskopf D, Sette A, Chowdhury F, Qadri F. Correlation of antigen-specific immune response with disease severity among COVID-19 patients in Bangladesh. Front Immunol 2022; 13:929849. [PMID: 36248882 PMCID: PMC9554593 DOI: 10.3389/fimmu.2022.929849] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/05/2022] [Indexed: 12/03/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a protean disease causing different degrees of clinical severity including fatality. In addition to humoral immunity, antigen-specific T cells may play a critical role in defining the protective immune response against SARS-CoV-2, the virus that causes this disease. As a part of a longitudinal cohort study in Bangladesh to investigate B and T cell-specific immune responses, we sought to evaluate the activation-induced marker (AIM) and the status of different immune cell subsets during a COVID-19 infection. We analyzed a total of 115 participants, which included participants with asymptomatic, mild, moderate, and severe clinical symptoms. We observed decreased mucosal-associated invariant T (MAIT) cell frequency on the initial days of the COVID-19 infection in symptomatic patients compared to asymptomatic patients. However, natural killer (NK) cells were found to be elevated in symptomatic patients just after the onset of the disease compared to both asymptomatic patients and healthy individuals. Moreover, we found a significant increase of AIM+ (both OX40+CD137+ and OX40+CD40L+) CD4+ T cells in moderate and severe COVID-19 patients in response to SARS-CoV-2 peptides (especially spike peptides) compared to pre-pandemic controls who are unexposed to SARS-CoV-2. Notably, we did not observe any significant difference in the CD8+ AIMs (CD137+CD69+), which indicates the exhaustion of CD8+ T cells during a COVID-19 infection. These findings suggest that patients who recovered from moderate and severe COVID-19 were able to mount a strong CD4+ T-cell response against shared viral determinants that ultimately induced T cells to mount further immune responses to SARS-CoV-2.
Collapse
Affiliation(s)
- Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Hasan Al Banna
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Polash Chandra Karmakar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Tasnuva Ahmed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Shaumik Islam
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Mohammad Abul Hasnat
- Department of Cardiology, Department of Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | - Mostafa Aziz Sumon
- Department of Cardiology, Department of Oncology, Kurmitola General Hospital, Dhaka, Bangladesh
| | - Asif Rashed
- Department of Microbiology, Department of Medicine, Mugda Medical College and Hospital, Dhaka, Bangladesh
| | - Shuvro Ghosh
- Department of Microbiology, Department of Medicine, Mugda Medical College and Hospital, Dhaka, Bangladesh
| | - John D. Clemens
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- Department of Epidemiology, University of California Los Angeles (UCLA) Fielding School of Public Health, Los Angeles, CA, United States
- International Vaccine Institute, Seoul, South Korea
| | - Sayera Banu
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, United States
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, United States
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research Bangladesh (ICDDRB), Dhaka, Bangladesh
- *Correspondence: Firdausi Qadri,
| |
Collapse
|
37
|
Harrer C, Otto F, Radlberger RF, Moser T, Pilz G, Wipfler P, Harrer A. The CXCL13/CXCR5 Immune Axis in Health and Disease—Implications for Intrathecal B Cell Activities in Neuroinflammation. Cells 2022; 11:cells11172649. [PMID: 36078057 PMCID: PMC9454489 DOI: 10.3390/cells11172649] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The chemokine C-X-C- ligand 13 (CXCL13) is a major B cell chemoattractant to B cell follicles in secondary lymphoid organs (SLO) that proposedly recruits B cells to the cerebrospinal fluid (CSF) during neuroinflammation. CXCR5, the cognate receptor of CXCL13, is expressed on B cells and certain T cell subsets, in particular T follicular helper cells (Tfh cells), enabling them to follow CXCL13 gradients towards B cell follicles for spatial proximity, a prerequisite for productive T cell–B cell interaction. Tfh cells are essential contributors to B cell proliferation, differentiation, and high-affinity antibody synthesis and are required for germinal center formation and maintenance. Circulating Tfh cells (cTfh) have been observed in the peripheral blood and CSF. Furthermore, CXCL13/CXCR5-associated immune activities organize and shape adaptive B cell-related immune responses outside of SLO via the formation of ectopic lymphoid structures in inflamed tissues, including the central nervous system (CNS). This review summarizes the recent advances in our understanding of the CXCL13/CXCR5 immune axis and its role in vaccination, autoimmunity, and infection with a special focus on its relevance for intrathecal B cell activities in inflammatory CNS diseases.
Collapse
Affiliation(s)
- Christine Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Clinical Division of Social Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Ferdinand Otto
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Richard Friedrich Radlberger
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Georg Pilz
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Peter Wipfler
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
| | - Andrea Harrer
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, 5020 Salzburg, Austria
- Department of Dermatology and Allergology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Correspondence:
| |
Collapse
|
38
|
Herati RS, Knorr DA, Vella LA, Silva LV, Chilukuri L, Apostolidis SA, Huang AC, Muselman A, Manne S, Kuthuru O, Staupe RP, Adamski SA, Kannan S, Kurupati RK, Ertl HCJ, Wong JL, Bournazos S, McGettigan S, Schuchter LM, Kotecha RR, Funt SA, Voss MH, Motzer RJ, Lee CH, Bajorin DF, Mitchell TC, Ravetch JV, Wherry EJ. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat Immunol 2022; 23:1183-1192. [PMID: 35902637 PMCID: PMC9880663 DOI: 10.1038/s41590-022-01274-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 06/20/2022] [Indexed: 01/31/2023]
Abstract
Anti-programmed death-1 (anti-PD-1) immunotherapy reinvigorates CD8 T cell responses in patients with cancer but PD-1 is also expressed by other immune cells, including follicular helper CD4 T cells (Tfh) which are involved in germinal centre responses. Little is known, however, about the effects of anti-PD-1 immunotherapy on noncancer immune responses in humans. To investigate this question, we examined the impact of anti-PD-1 immunotherapy on the Tfh-B cell axis responding to unrelated viral antigens. Following influenza vaccination, a subset of adults receiving anti-PD-1 had more robust circulating Tfh responses than adults not receiving immunotherapy. PD-1 pathway blockade resulted in transcriptional signatures of increased cellular proliferation in circulating Tfh and responding B cells compared with controls. These latter observations suggest an underlying change in the Tfh-B cell and germinal centre axis in a subset of immunotherapy patients. Together, these results demonstrate dynamic effects of anti-PD-1 therapy on influenza vaccine responses and highlight analytical vaccination as an approach that may reveal underlying immune predisposition to adverse events.
Collapse
Affiliation(s)
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Laura A Vella
- Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Luisa Victoria Silva
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lakshmi Chilukuri
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sokratis A Apostolidis
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander C Huang
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Alexander Muselman
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Immunology, Stanford University, Stanford, CA, USA
| | - Sasikanth Manne
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Oliva Kuthuru
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ryan P Staupe
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Sharon A Adamski
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Jeffrey L Wong
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA
| | - Suzanne McGettigan
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Lynn M Schuchter
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Ritesh R Kotecha
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Samuel A Funt
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Martin H Voss
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Robert J Motzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Chung-Han Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dean F Bajorin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tara C Mitchell
- Department of Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Abramson Cancer Center, Division of Hematology/Oncology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, USA.
| | - E John Wherry
- Institute for Immunology University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
39
|
Abstract
The SARS-CoV-2 pandemic has demonstrated the importance of studying antiviral immunity within sites of infection to gain insights into mechanisms for immune protection and disease pathology. As SARS-CoV-2 is tropic to the respiratory tract, many studies of airway washes, lymph node aspirates, and postmortem lung tissue have revealed site-specific immune dynamics that are associated with the protection or immunopathology but are not readily observed in circulation. This review summarizes the growing body of work identifying immune processes in tissues and their interplay with immune responses in circulation during acute SARS-CoV-2 infection, severe disease, and memory persistence. Establishment of tissue resident immunity also may have implications for vaccination and the durability of immune memory and protection.
Collapse
Affiliation(s)
- Ksenia Rybkina
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Julia Davis‐Porada
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
| | - Donna L. Farber
- Department of Microbiology and ImmunologyColumbia University Vagelos College of Physicians and SurgeonsNew YorkNew YorkUSA
- Department of SurgeryColumbia University Irving Medical CenterNew YorkNew YorkUSA
| |
Collapse
|
40
|
Kedzierska K, Nguyen THO. PD-1 blockade unblocks immune responses to vaccination. Nat Immunol 2022; 23:1135-1137. [PMID: 35902636 DOI: 10.1038/s41590-022-01254-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Katherine Kedzierska
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
41
|
Chan JA, Loughland JR, de la Parte L, Okano S, Ssewanyana I, Nalubega M, Nankya F, Musinguzi K, Rek J, Arinaitwe E, Tipping P, Bourke P, Andrew D, Dooley N, SheelaNair A, Wines BD, Hogarth PM, Beeson JG, Greenhouse B, Dorsey G, Kamya M, Hartel G, Minigo G, Feeney M, Jagannathan P, Boyle MJ. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat Commun 2022; 13:4159. [PMID: 35851033 PMCID: PMC9293980 DOI: 10.1038/s41467-022-31880-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/08/2022] [Indexed: 01/29/2023] Open
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica R Loughland
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | | | - Satomi Okano
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Mayimuna Nalubega
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Peta Tipping
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | - Peter Bourke
- Division of Medicine, Cairns Hospital, Manunda, QLD, Australia
| | - Dean Andrew
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Dooley
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Griffith University, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gunter Hartel
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Margaret Feeney
- University of California San Francisco, San Francisco, CA, USA
| | | | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia.
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
42
|
Jo N, Zhang R, Ueno H, Yamamoto T, Weiskopf D, Nagao M, Yamanaka S, Hamazaki Y. Aging and CMV Infection Affect Pre-existing SARS-CoV-2-Reactive CD8 + T Cells in Unexposed Individuals. FRONTIERS IN AGING 2022; 2:719342. [PMID: 35822004 PMCID: PMC9261342 DOI: 10.3389/fragi.2021.719342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022]
Abstract
Age is a major risk factor for COVID-19 severity, and T cells play a central role in anti-SARS-CoV-2 immunity. Because SARS-CoV-2-cross-reactive T cells have been detected in unexposed individuals, we investigated the age-related differences in pre-existing SARS-CoV-2-reactive T cells. SARS-CoV-2-reactive CD4+ T cells from young and elderly individuals were mainly detected in the central memory fraction and exhibited similar functionalities and numbers. Naïve-phenotype SARS-CoV-2-reactive CD8+ T cell populations decreased markedly in the elderly, while those with terminally differentiated and senescent phenotypes increased. Furthermore, senescent SARS-CoV-2-reactive CD8+ T cell populations were higher in cytomegalovirus seropositive young individuals compared to seronegative ones. Our findings suggest that age-related differences in pre-existing SARS-CoV-2-reactive CD8+ T cells may explain the poor outcomes in elderly patients and that cytomegalovirus infection is a potential factor affecting CD8+ T cell immunity against SARS-CoV-2. Thus, this study provides insights for developing effective therapeutic and vaccination strategies for the elderly.
Collapse
Affiliation(s)
- Norihide Jo
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Alliance Laboratory for Advanced Medical Research, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Rui Zhang
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Hideki Ueno
- Department of Immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Takuya Yamamoto
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, United States
| | - Miki Nagao
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Shinya Yamanaka
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Gladstone Institute of Cardiovascular Disease, San Francisco, CA, United States
| | - Yoko Hamazaki
- Department of Life Science Frontiers, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.,Laboratory of Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Yu D, Walker LSK, Liu Z, Linterman MA, Li Z. Targeting T FH cells in human diseases and vaccination: rationale and practice. Nat Immunol 2022; 23:1157-1168. [PMID: 35817844 DOI: 10.1038/s41590-022-01253-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 05/24/2022] [Indexed: 12/13/2022]
Abstract
The identification of CD4+ T cells localizing to B cell follicles has revolutionized the knowledge of how humoral immunity is generated. Follicular helper T (TFH) cells support germinal center (GC) formation and regulate clonal selection and differentiation of memory and antibody-secreting B cells, thus controlling antibody affinity maturation and memory. TFH cells are essential in sustaining protective antibody responses necessary for pathogen clearance in infection and vaccine-mediated protection. Conversely, aberrant and excessive TFH cell responses mediate and sustain pathogenic antibodies to autoantigens, alloantigens, and allergens, facilitate lymphomagenesis, and even harbor viral reservoirs. TFH cell generation and function are determined by T cell antigen receptor (TCR), costimulation, and cytokine signals, together with specific metabolic and survival mechanisms. Such regulation is crucial to understanding disease pathogenesis and informing the development of emerging therapies for disease or novel approaches to boost vaccine efficacy.
Collapse
Affiliation(s)
- Di Yu
- The University of Queensland Diamantina Institute, Faculty of Medicine, The University of Queensland, Brisbane, Australia. .,Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| | - Lucy S K Walker
- Institute of Immunity & Transplantation, Division of Infection & Immunity, University College London, Royal Free Campus, London, UK
| | - Zheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Zhanguo Li
- Department of Rheumatology & Immunology, Peking University People's Hospital, Beijing, China
| |
Collapse
|
44
|
Kramer KJ, Wilfong EM, Voss K, Barone SM, Shiakolas AR, Raju N, Roe CE, Suryadevara N, Walker LM, Wall SC, Paulo A, Schaefer S, Dahunsi D, Westlake CS, Crowe JE, Carnahan RH, Rathmell JC, Bonami RH, Georgiev IS, Irish JM. Single-cell profiling of the antigen-specific response to BNT162b2 SARS-CoV-2 RNA vaccine. Nat Commun 2022; 13:3466. [PMID: 35710908 PMCID: PMC9201272 DOI: 10.1038/s41467-022-31142-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 05/26/2022] [Indexed: 12/15/2022] Open
Abstract
RNA-based vaccines against SARS-CoV-2 have proven critical to limiting COVID-19 disease severity and spread. Cellular mechanisms driving antigen-specific responses to these vaccines, however, remain uncertain. Here we identify and characterize antigen-specific cells and antibody responses to the RNA vaccine BNT162b2 using multiple single-cell technologies for in depth analysis of longitudinal samples from a cohort of healthy participants. Mass cytometry and unbiased machine learning pinpoint an expanding, population of antigen-specific memory CD4+ and CD8+ T cells with characteristics of follicular or peripheral helper cells. B cell receptor sequencing suggest progression from IgM, with apparent cross-reactivity to endemic coronaviruses, to SARS-CoV-2-specific IgA and IgG memory B cells and plasmablasts. Responding lymphocyte populations correlate with eventual SARS-CoV-2 IgG, and a participant lacking these cell populations failed to sustain SARS-CoV-2-specific antibodies and experienced breakthrough infection. These integrated proteomic and genomic platforms identify an antigen-specific cellular basis of RNA vaccine-based immunity.
Collapse
Affiliation(s)
- Kevin J Kramer
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Erin M Wilfong
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
| | - Kelsey Voss
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Sierra M Barone
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - Andrea R Shiakolas
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Nagarajan Raju
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Caroline E Roe
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | | | - Lauren M Walker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Steven C Wall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Ariana Paulo
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
| | - Samuel Schaefer
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Debolanle Dahunsi
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
| | - Camille S Westlake
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, 37232, USA
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA
| | | | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Rachel H Bonami
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Ivelin S Georgiev
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Vaccine Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| | - Jonathan M Irish
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Human Immunology Discovery Initiative of the Vanderbilt Center for Immunobiology, Nashville, TN, 37232, USA.
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, 37232, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, 37232, USA.
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, 37232, USA.
- Vanderbilt Program in Computational Microbiology and Immunology, Nashville, TN, 37232, USA.
| |
Collapse
|
45
|
Wahl I, Obraztsova AS, Puchan J, Hundsdorfer R, Chakravarty S, Sim BKL, Hoffman SL, Kremsner PG, Mordmüller B, Wardemann H. Clonal evolution and TCR specificity of the human T FH cell response to Plasmodium falciparum CSP. Sci Immunol 2022; 7:eabm9644. [PMID: 35687696 DOI: 10.1126/sciimmunol.abm9644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
T follicular helper (TFH) cells play a crucial role in the development of long-lived, high-quality B cell responses after infection and vaccination. However, little is known about how antigen-specific TFH cells clonally evolve in response to complex pathogens and what guides the targeting of different epitopes. Here, we assessed the cell phenotype, clonal dynamics, and T cell receptor (TCR) specificity of human circulating TFH (cTFH) cells during successive malaria immunizations with radiation-attenuated Plasmodium falciparum (Pf) sporozoites. Repeated parasite exposures induced a dynamic, polyclonal cTFH response with high frequency of cells specific to a small number of epitopes in Pf circumsporozoite protein (PfCSP), the primary sporozoite surface protein and well-defined vaccine target. Human leukocyte antigen (HLA) restrictions and differences in TCR generation probability were associated with differences in the epitope targeting frequency and indicated the potential of amino acids 311 to 333 in the Th2R/T* region as a T cell supertope. But most of vaccine-induced anti-amino acid 311 to 333 TCRs, including convergent TCRs with high sequence similarity, failed to tolerate natural polymorphisms in their target peptide sequence, thus demonstrating that the TFH cell response was limited to the vaccine strain. These data suggest that the high parasite diversity in endemic areas will limit boosting of the vaccine-induced TFH cell response by natural infections. Our findings may guide the further design of PfCSP-based malaria vaccines able to induce potent T helper cell responses for broad, long-lasting antibody responses.
Collapse
Affiliation(s)
- Ilka Wahl
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Anna S Obraztsova
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany.,Biosciences Faculty, University of Heidelberg, Heidelberg, Germany
| | - Julia Puchan
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | - Rebecca Hundsdorfer
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Peter G Kremsner
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Benjamin Mordmüller
- Institute of Tropical Medicine and German Center for Infection Research, University of Tübingen, Tübingen, Germany.,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Hedda Wardemann
- Division of B Cell Immunology, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
46
|
Bai J, Chiba A, Murayama G, Kuga T, Tamura N, Miyake S. Sex, Age, and Ethnic Background Shape Adaptive Immune Responses Induced by the SARS-CoV-2 mRNA Vaccine. Front Immunol 2022; 13:786586. [PMID: 35418996 PMCID: PMC8995562 DOI: 10.3389/fimmu.2022.786586] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 12/13/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mRNA vaccine-induced adaptive responses have been well investigated. However, the effects of sex, age, and ethnic background on the immune responses elicited by the mRNA vaccine remain unclear. Here, we performed comprehensive analyses of adaptive immune responses elicited by the SARS-CoV-2 mRNA vaccine. Vaccine-induced antibody and T cell responses declined over time but persisted after 3 months, and switched memory B cells were even increased. Spike-specific CD4+ T and CD8+ T cell responses were decreased against the B.1.351 variant, but not against B.1.1.7. Interestingly, T cell reactivity against B.1.617.1 and B.1.617.2 variants was decreased in individuals carrying HLA-A24, suggesting adaptive immune responses against variants are influenced by different HLA haplotypes. T follicular helper cell responses declined with increasing age in both sexes, but age-related decreases in antibody levels were observed only in males, and this was associated with the decline of T peripheral helper cell responses. In contrast, vaccine-induced CD8+ T cell responses were enhanced in older males. Taken together, these findings highlight that significant differences in the reactogenicity of the adaptive immune system elicited by mRNA vaccine were related to factors including sex, age, and ethnic background.
Collapse
Affiliation(s)
- Jie Bai
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Taiga Kuga
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
Alsén S, Cervin J, Deng Y, Szeponik L, Wenzel UA, Karlsson J, Cucak H, Livingston M, Bryder D, Lu Q, Johansson-Lindbom B, Yrlid U. Antigen-Presenting B Cells Program the Efferent Lymph T Helper Cell Response. Front Immunol 2022; 13:813203. [PMID: 35355990 PMCID: PMC8959485 DOI: 10.3389/fimmu.2022.813203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/03/2022] [Indexed: 11/16/2022] Open
Abstract
B cells interact with T follicular helper (Tfh) cells in germinal centers (GCs) to generate high-affinity antibodies. Much less is known about how cognate T–B-cell interactions influence Th cells that enter circulation and peripheral tissues. Therefore, we generated mice lacking MHC-II expressing B cells and, by thoracic duct cannulation, analyzed Th cells in the efferent lymph at defined intervals post-immunization. Focusing on gut-draining mesenteric lymph nodes (MLNs), we show that antigen-specific α4β7+ gut-homing effector Th cells enter the circulation prior to CXCR5+PD-1+ Tfh-like cells. B cells appear to have no or limited impact on the early generation and egress of gut-homing Th cells but are critical for the subsequent appearance of Tfh-like cells that peak in the lymph before GCs have developed. At this stage, antigen-presenting B cells also reduce the proportion of α4β7+ Th cells in the MLN and efferent lymph. Furthermore, cognate B-cell interaction drives a broad transcriptional program in Th cells, including IL-4 that is confined to the Tfh cell lineage. The IL-4-producing Tfh-like cells originate from Bcl6+ precursors in the LNs and have gut-homing capacity. Hence, B cells program the efferent lymph Th cell response within a limited window of time after antigenic challenge.
Collapse
Affiliation(s)
- Samuel Alsén
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.,Sahlgrenska Center for Cancer Research, Department of Surgery, University of Gothenburg, Gothenburg, Sweden
| | - Jakob Cervin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Yaxiong Deng
- Immunology Section, Lund University, Lund, Sweden.,Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Louis Szeponik
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ulf Alexander Wenzel
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Joakim Karlsson
- Sahlgrenska Center for Cancer Research, Department of Surgery, University of Gothenburg, Gothenburg, Sweden.,Harry Perkins Institute of Medical Research, University of Western Australia, Perth, WA, Australia
| | - Helena Cucak
- Immunology Section, Lund University, Lund, Sweden
| | - Megan Livingston
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Qianjin Lu
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Bengt Johansson-Lindbom
- Immunology Section, Lund University, Lund, Sweden.,Immunological Memory Group, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
48
|
Establishment and recall of SARS-CoV-2 spike epitope-specific CD4+ T cell memory. Nat Immunol 2022; 23:768-780. [DOI: 10.1038/s41590-022-01175-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/02/2022] [Indexed: 12/26/2022]
|
49
|
Samanovic MI, Cornelius AR, Gray-Gaillard SL, Allen JR, Karmacharya T, Wilson JP, Wesley Hyman S, Tuen M, Koralov SB, Mulligan MJ, Sedaghat Herati R. Robust immune responses are observed after one dose of BNT162b2 mRNA vaccine dose in SARS-CoV-2-experienced individuals. Sci Transl Med 2022; 14:eabi8961. [PMID: 34874183 PMCID: PMC9248013 DOI: 10.1126/scitranslmed.abi8961] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 12/01/2021] [Indexed: 01/16/2023]
Abstract
The use of coronavirus disease 2019 (COVID-19) vaccines will play the major role in helping to end the pandemic that has killed millions worldwide. COVID-19 vaccines have resulted in robust humoral responses and protective efficacy in human trials, but efficacy trials excluded individuals with a prior diagnosis of COVID-19. As a result, little is known about how immune responses induced by mRNA vaccines differ in individuals who recovered from COVID-19. Here, we evaluated longitudinal immune responses to two-dose BNT162b2 mRNA vaccination in 15 adults who had experienced COVID-19, compared to 21 adults who did not have prior COVID-19. Consistent with prior studies of mRNA vaccines, we observed robust cytotoxic CD8+ T cell responses in both cohorts after the second dose. Furthermore, SARS-CoV-2–naive individuals had progressive increases in humoral and antigen-specific antibody-secreting cell (ASC) responses after each dose of vaccine, whereas SARS-CoV-2–experienced individuals demonstrated strong humoral and antigen-specific ASC responses to the first dose but these responses were not further enhanced after the second dose of the vaccine at the time points studied. Together, these data highlight the relevance of immunological history for understanding vaccine immune responses and may have implications for personalizing mRNA vaccination regimens used to prevent COVID-19, including for the deployment of booster shots.
Collapse
Affiliation(s)
- Marie I. Samanovic
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Amber R. Cornelius
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Sophie L. Gray-Gaillard
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Joseph Richard Allen
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Trishala Karmacharya
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Jimmy P. Wilson
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Sara Wesley Hyman
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Michael Tuen
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Sergei B. Koralov
- Department of Pathology, New York University School of Medicine; New York, NY 10016, USA
| | - Mark J. Mulligan
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| | - Ramin Sedaghat Herati
- NYU Langone Vaccine Center, Department of Medicine, New York University Grossman School of Medicine; New York, NY 10016, USA
| |
Collapse
|
50
|
Law H, Mach M, Howe A, Obeid S, Milner B, Carey C, Elfis M, Fsadni B, Ognenovska K, Phan TG, Carey D, Xu Y, Venturi V, Zaunders J, Kelleher AD, Munier CML. Early expansion of CD38+ICOS+ GC Tfh in draining lymph nodes during influenza vaccination immune response. iScience 2022; 25:103656. [PMID: 35028536 PMCID: PMC8741621 DOI: 10.1016/j.isci.2021.103656] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/22/2021] [Accepted: 12/14/2021] [Indexed: 01/23/2023] Open
Abstract
T follicular helper (Tfh) cells provide critical help to B cells during the germinal center (GC) reaction to facilitate generation of protective humoral immunity. Accessing the human lymph node (LN) to study the commitment of CD4 T cells to GC Tfh cell differentiation during in vivo vaccine responses is difficult. We used ultrasound guided fine needle biopsy to monitor recall responses in axillary LNs to seasonal influenza vaccination in healthy volunteers. Specific expansion of GC cell subsets occurred exclusively within draining LNs five days postvaccination. Draining LN GC Tfh and precursor-Tfh cells express higher levels of CD38, ICOS, and Ki67, indicating they were significantly more activated, motile, and proliferating, compared to contralateral LN cells. These observations provide insight into the early expansion phase of the human Tfh lineage within LNs during a vaccine induced memory response and highlights early LN immune responses may not be reflected in the periphery. Early response to influenza vaccine is characterized by expansion of GC cell subsets Specific expansion of CD38+ ICOS+ GC Tfh and Pre-Tfh occurs in draining LNs only Activated GC Tfh and Pre-Tfh are also proliferating, expressing high levels of Ki67 Correlation between activated Pre-Tfh and activated c-Tfh suggests a potential origin
Collapse
Affiliation(s)
- Hannah Law
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Melanie Mach
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,The University of Sydney, Sydney 2006, NSW, Australia
| | - Annett Howe
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Solange Obeid
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Brad Milner
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Cate Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Maxine Elfis
- St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia
| | - Bertha Fsadni
- St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | | - Tri Giang Phan
- Garvan Institute of Medical Research, Sydney 2010, NSW, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney 2010, NSW, Australia
| | - Diane Carey
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Yin Xu
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - Vanessa Venturi
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia
| | - John Zaunders
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | - Anthony D Kelleher
- The Kirby Institute, UNSW Sydney, Sydney 2052, NSW, Australia.,St Vincent's Hospital Sydney, Sydney 2010, NSW, Australia.,St Vincent's Centre for Applied Medical Research (AMR), Sydney 2010, NSW, Australia
| | | |
Collapse
|