1
|
Abba Moussa D, Vazquez M, Chable-Bessia C, Roux-Portalez V, Tamagnini E, Pedotti M, Simonelli L, Ngo G, Souchard M, Lyonnais S, Chentouf M, Gros N, Marsile-Medun S, Dinter H, Pugnière M, Martineau P, Varani L, Juan M, Calderon H, Naranjo-Gomez M, Pelegrin M. Discovery of a pan anti-SARS-CoV-2 monoclonal antibody with highly efficient infected cell killing capacity for novel immunotherapeutic approaches. Emerg Microbes Infect 2025; 14:2432345. [PMID: 39584380 PMCID: PMC11632933 DOI: 10.1080/22221751.2024.2432345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/24/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Unlocking the potential of broadly reactive coronavirus monoclonal antibodies (mAbs) and their derivatives offers a transformative therapeutic avenue against severe COVID-19, especially crucial for safeguarding high-risk populations. Novel mAb-based immunotherapies may help address the reduced efficacy of current vaccines and neutralizing mAbs caused by the emergence of variants of concern (VOCs). Using phage display technology, we discovered a pan-SARS-CoV-2 mAb (C10) that targets a conserved region within the receptor-binding domain (RBD) of the virus. Noteworthy, C10 demonstrates exceptional efficacy in recognizing all assessed VOCs, including recent Omicron variants. While C10 lacks direct neutralization capacity, it efficiently binds to infected lung epithelial cells and induces their lysis via natural killer (NK) cell-mediated antibody-dependent cellular cytotoxicity (ADCC). Building upon this pan-SARS-CoV-2 mAb, we engineered C10-based, Chimeric Antigen Receptor (CAR)-T cells endowed with efficient killing capacity against SARS-CoV-2-infected lung epithelial cells. Notably, NK and CAR-T-cell mediated killing of lung infected cells effectively reduces viral titers. These findings highlight the potential of non-neutralizing mAbs in providing immune protection against emerging infectious diseases. Our work reveals a pan-SARS-CoV-2 mAb effective in targeting infected cells and demonstrates the proof-of-concept for the potential application of CAR-T cell therapy in combating SARS-CoV-2 infections. Furthermore, it holds promise for the development of innovative antibody-based and cell-based therapeutic strategies against severe COVID-19 by expanding the array of therapeutic options available for high-risk populations.Trial registration: ClinicalTrials.gov identifier: NCT04093596.
Collapse
Affiliation(s)
| | - Mario Vazquez
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Vincent Roux-Portalez
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Giang Ngo
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Manon Souchard
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | | | - Myriam Chentouf
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Nathalie Gros
- CEMIPAI, University of Montpellier, UAR3725 CNRS, Montpellier, France
| | | | - Heiko Dinter
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Martine Pugnière
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- PPM, BioCampus Plateforme de Protéomique de Montpellier CNRS, Montpellier, France
| | - Pierre Martineau
- IRCM, University of Montpellier, ICM, INSERM, Montpellier, France
- GenAc, Siric Plateform, INSERM, Montpellier, France
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona, Switzerland
| | - Manel Juan
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Hugo Calderon
- IDIBAPS, Immunogenetics and Immunotherapy in Autoinflammatory and Immune Responses, Barcelona, Spain
- Department of Immunology, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Mireia Pelegrin
- IRMB, University of Montpellier, INSERM, CNRS, Montpellier, France
| |
Collapse
|
2
|
Peng X, Han Y, Xue S, Zhou Y, Jiang W, Xia A, Wu W, Gao Y, Wu F, Wang Q. Low Antibody-Dependent Enhancement of Viral Entry Activity Supports the Safety of Inactivated SARS-CoV-2 Vaccines. Vaccines (Basel) 2025; 13:425. [PMID: 40333308 PMCID: PMC12031465 DOI: 10.3390/vaccines13040425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
BACKGROUND/OBJECTIVES The antibody-dependent enhancement (ADE) of viral entry has been documented for SARS-CoV-2 infection both in vitro and in vivo. However, the potential for the SARS-CoV-2 vaccination to elicit similar ADE effects remains unclear. METHODS In this study, we assessed the in vitro ADE potential of monoclonal antibodies (mAbs) derived from individuals vaccinated with the inactivated SARS-CoV-2 vaccine and compared them to those from one convalescent donor. RESULTS Our analysis revealed no significant difference in binding affinity or neutralizing capacity between the vaccinated and convalescent mAbs. However, the inactivated SARS-CoV-2 vaccination induced fewer ADE-inducing mAbs, particularly those targeting the Class III epitope on the receptor-binding domain (RBD) compared to those from the convalescent individual. Moreover, no significant in vitro ADE was detected in either vaccinated or convalescent sera, indicating low levels of ADE-inducing antibodies in the sera. CONCLUSIONS An inactivated SARS-CoV-2 vaccination induces fewer ADE-inducing antibodies compared to natural infection, further emphasizing the safety of inactivated SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Xiaofang Peng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai 201619, China;
| | - Weiyu Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Fan Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Fudan University, Shanghai 200040, China; (X.P.); (Y.H.); (S.X.); (W.J.); (A.X.); (W.W.); (Y.G.)
| |
Collapse
|
3
|
Guo L, Chen Z, Lin S, Yang F, Yang J, Wang L, Zhang X, Yuan X, He B, Cao Y, Li J, Zhao Q, Lu G. Structural basis and mode of action for two broadly neutralizing nanobodies targeting the highly conserved spike stem-helix of sarbecoviruses including SARS-CoV-2 and its variants. PLoS Pathog 2025; 21:e1013034. [PMID: 40215243 PMCID: PMC12052392 DOI: 10.1371/journal.ppat.1013034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 05/05/2025] [Accepted: 03/11/2025] [Indexed: 05/07/2025] Open
Abstract
The persistent emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants highlights the need for developing broad-spectrum antiviral agents. Here, we report the identification of two sarbecovirus S2-specific alpaca nanobodies, namely H17 and H145, that effectively neutralize known SARS-CoV-2 variants (including the Omicron subvariants) and other sarbecoviruses (such as SARS-CoV, PANG/GD, WIV1, and HKU3). The two nanobodies recognize a linear epitope (D1139PLQPELDSFKEEL1152) in the upper region of the S2 stem-helix (SH), which is highly conserved among SARS-CoV-2 variants and other sarbecoviruses. The complex structure of the nanobody bound to the epitope SH-peptide reveal that nanobody binding will impede the refolding of S2, effectively neutralizing the virus. Moreover, the nanobodies bind viral S2 in an acidification-insensitive manner, demonstrating their capacity for entry inhibition especially when viruses enter via the endosomal route. Finally, H17 and H145 possess a better taking-action window for virus neutralization, superior to the RBD-targeting nanobodies that exert neutralization by competing against ACE2 binding. Taken together, the results suggest that anti-SH nanobodies H17 and H145 are promising broad-spectrum drug candidates for preventing and treating the pandemic infections by SARS-CoV-2 variants and other sarbecoviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Hematology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fanli Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingling Wang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xindan Zhang
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xin Yuan
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian Li
- School of Basic Medical Sciences, Chengdu University, Chengdu, Sichuan China
| | - Qi Zhao
- College of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan China
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
4
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
5
|
Sun S, He J, Liu L, Zhu Y, Zhang Q, Qiu Y, Han Y, Xue S, Peng X, Long Y, Lu T, Wu W, Xia A, Zhou Y, Yan Y, Gao Y, Lu L, Sun L, Xie M, Wang Q. Anti-S2 antibodies responsible for the SARS-CoV-2 infection-induced serological cross-reactivity against MERS-CoV and MERS-related coronaviruses. Front Immunol 2025; 16:1541269. [PMID: 40226608 PMCID: PMC11985752 DOI: 10.3389/fimmu.2025.1541269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/06/2025] [Indexed: 04/15/2025] Open
Abstract
Sarbecoviruses, such as SARS-CoV-2, utilize angiotensin-converting enzyme 2 (ACE2) as the entry receptor; while merbecoviruses, such as MERS-CoV, use dipeptidyl peptidase 4 (DPP4) for viral entry. Recently, several MERS-related coronaviruses, NeoCoV and PDF-2180, were reported to use ACE2, the same receptor as SARS-CoV-2, to enter cells, raising the possibility of potential recombination between SARS-CoV-2 and MERS-related coronaviruses within the co-infected ACE2-expressing cells. However, facing this potential recombination risk, the serum and antibody cross-reactivity against MERS/MERS-related coronaviruses after SARS-CoV-2 vaccination and/or infection is still elusive. Here, in this study, we showed that the serological cross-reactivity against MERS/MERS-related S proteins could be induced by SARS-CoV-2 infection but not by inactivated SARS-CoV-2 vaccination. Further investigation revealed that this serum cross-reactivity is due to monoclonals recognizing relatively conserved S2 epitopes, such as fusion peptide and stem helix, but not by antibodies against the receptor-binding domain (RBD), N-terminal domain (NTD) or subdomain-1 (SD1). Some of these anti-S2 cross-reactive mAbs showed cross-neutralizing activity, while none of them exhibited antibody-dependent enhancement (ADE) effect of viral entry in vitro. Together, these results dissected the SARS-CoV-2 infection-induced serological cross-reactivity against MERS/MERS-related coronaviruses, and highlighted the significance of conserved S2 region for the design and development of pan-β-coronaviruses vaccines.
Collapse
Affiliation(s)
- Siyuan Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jiaying He
- Microbiological Testing Department, Baoshan District Center for Disease Control and Prevention, Shanghai, China
| | - Luotian Liu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuzhen Zhu
- Department of Gastroenterology, Jingan District Central Hospitals, Fudan University, Shanghai, China
| | - Qingsong Zhang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yinong Qiu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuru Han
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Song Xue
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xiaofang Peng
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yiming Long
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tianyu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Wei Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Anqi Xia
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yunjiao Zhou
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, China
| | - Yan Yan
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yidan Gao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Minxiang Xie
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, Shanghai Fifth People’s Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Yu L, Wang Y, Liu Y, Xing X, Li C, Wang X, Shi J, Ma W, Li J, Chen Y, Qiao R, Zhao X, Tian S, Gao M, Wen S, Xue Y, Qiu T, Yu H, Guan Y, Chu H, Sun L, Wang P. Potent and broadly neutralizing antibodies against sarbecoviruses elicited by single ancestral SARS-CoV-2 infection. Commun Biol 2025; 8:378. [PMID: 40050417 PMCID: PMC11885566 DOI: 10.1038/s42003-025-07769-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
The emergence of various SARS-CoV-2 variants presents challenges for antibody therapeutics, emphasizing the need for more potent and broadly neutralizing antibodies. Here, we employed an unbiased screening approach and successfully isolated two antibodies from individuals with only exposure to ancestral SARS-CoV-2. One of these antibodies, CYFN1006-1, exhibited robust cross-neutralization against a spectrum of SARS-CoV-2 variants, including the latest KP.2, KP.3 and XEC, with consistent IC50 values ranging from ~1 to 5 ng/mL. It also displayed broad neutralization activity against SARS-CoV and related sarbecoviruses. Structural analysis revealed that these antibodies target shared hotspot but mutation-resistant epitopes, with their Fabs locking receptor binding domains (RBDs) in the "down" conformation through interactions with adjacent Fabs and RBDs, and cross-linking Spike trimers into di-trimers. In vivo studies conducted in a JN.1-infected hamster model validated the protective efficacy of CYFN1006-1. These findings suggest that antibodies with cross-neutralization activities can be identified from individuals with exclusively ancestral virus exposure.
Collapse
Affiliation(s)
- Lei Yu
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
| | - Yajie Wang
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Yuanchen Liu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Xiaomin Xing
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Xun Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Jialu Shi
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China
| | - Wentai Ma
- Beijing Institute of Genomics, Chinese Academy of Sciences, University of Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, China
| | - Jiayan Li
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Yanjia Chen
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Rui Qiao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Xiaoyu Zhao
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Shilei Tian
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China
| | - Ming Gao
- Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shuhua Wen
- Changyuan Funeng (Shanghai) Life Technology Co., Ltd., Shanghai, China
| | - Yingxue Xue
- Changyuan Funeng (Shanghai) Life Technology Co., Ltd., Shanghai, China
| | - Tianyi Qiu
- Institute of Clinical Science, Zhongshan Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Intelligent Medicine Institute, Fudan University, Shanghai, China
| | - Hongjie Yu
- School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Yongjun Guan
- Changyuan Funeng (Shanghai) Life Technology Co., Ltd., Shanghai, China.
- Antibody BioPharm, Inc., Gaithersburg, MD, USA.
| | - Hin Chu
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, China.
| | - Lei Sun
- Shanghai Fifth People's Hospital, Shanghai Institute of Infectious Disease and Biosecurity, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Pengfei Wang
- Shanghai Pudong Hospital, Fudan University Pudong Medical Center, State Key Laboratory of Genetic Engineering, MOE Engineering Research Center of Gene Technology, School of Life Sciences, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai Key Laboratory of Oncology Target Discovery and Antibody Drug Development, Fudan University, Shanghai, China.
| |
Collapse
|
7
|
Rubio AA, Baharani VA, Dadonaite B, Parada M, Abernathy ME, Wang Z, Lee YE, Eso MR, Phung J, Ramos I, Chen T, El Nesr G, Bloom JD, Bieniasz PD, Nussenzweig MC, Barnes CO. Bispecific antibodies targeting the N-terminal and receptor binding domains potently neutralize SARS-CoV-2 variants of concern. Sci Transl Med 2025; 17:eadq5720. [PMID: 40043139 DOI: 10.1126/scitranslmed.adq5720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 01/29/2025] [Indexed: 05/13/2025]
Abstract
The ongoing emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized amino-terminal domain (NTD)- and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from coronavirus disease 2019 (COVID-19) convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-electron microscopy structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596's favorable binding profile, we designed a series of bispecific antibodies (bsAbs), termed CoV2-biRNs, that featured both NTD and RBD specificities. Two of the C1596-inclusive bsAbs, CoV2-biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, BA.2.86, and JN.1, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 reduced the viral load within the lungs of K18-hACE2 mice after challenge with SARS-CoV-2 XBB.1.5. In conclusion, NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.
Collapse
MESH Headings
- SARS-CoV-2/immunology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Antibodies, Bispecific/pharmacology
- Animals
- Antibodies, Neutralizing/immunology
- Humans
- COVID-19/immunology
- COVID-19/virology
- Mice
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Antibodies, Viral/immunology
- Antibodies, Monoclonal/immunology
- Protein Domains
- Epitopes/immunology
- Female
- Mice, Inbred BALB C
- Cryoelectron Microscopy
Collapse
Affiliation(s)
- Adonis A Rubio
- Stanford Biosciences, Stanford School of Medicine, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Viren A Baharani
- Laboratory of Retrovirology, Rockefeller University, New York, NY 10065, USA
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Megan Parada
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Zijun Wang
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
| | - Yu E Lee
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Michael R Eso
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jennie Phung
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Israel Ramos
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Teresia Chen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Gina El Nesr
- Stanford Biosciences, Stanford School of Medicine, Stanford, CA 94305, USA
| | - Jesse D Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Paul D Bieniasz
- Laboratory of Retrovirology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, Rockefeller University, New York, NY 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Christopher O Barnes
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| |
Collapse
|
8
|
Roederer AL, Cao Y, Li CJ, Lim E, Canaday DH, Gravenstein S, Balazs AB. SARS-CoV-2 Fusion Peptide-Directed Antibodies Elicited by Natural Infection Mediate Broad Sarbecovirus Neutralization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.01.25323010. [PMID: 40093263 PMCID: PMC11908342 DOI: 10.1101/2025.03.01.25323010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Studies have demonstrated that repeated mRNA vaccination enhances the breadth of neutralization against diverse SARS-CoV-2 variants. However, the development of antibodies capable of neutralizing across the Coronavirinae subfamily is poorly understood. In this study, we analyze serum samples to determine their neutralization breadth and potency and identify their antigenic targets. Using a cohort of older individuals and healthcare workers, we track correlates of broad neutralizing responses, including fusion peptide (FP) antibody elicitation. We find that although broadly neutralizing responses are often a result of RBD-specific antibodies, a rare subset of donors produce FP-specific broadly neutralizing responses. Interestingly, FP-specific antibodies are not observed in COVID-naive individuals irrespective of vaccination regimen, but rather, they occur following natural infection or vaccine breakthrough. This study highlights the epitope targets underpinning broadly neutralizing antibody responses to coronaviruses and suggests that existing vaccines are insufficient to promote the elicitation of FP-directed broadly neutralizing coronavirus antibodies.
Collapse
Affiliation(s)
- Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Eunice Lim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, Rhode Island
| | | |
Collapse
|
9
|
Yuan M, Wilson IA. Structural Immunology of SARS-CoV-2. Immunol Rev 2025; 329:e13431. [PMID: 39731211 PMCID: PMC11727448 DOI: 10.1111/imr.13431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/29/2024]
Abstract
The SARS-CoV-2 spike (S) protein has undergone significant evolution, enhancing both receptor binding and immune evasion. In this review, we summarize ongoing efforts to develop antibodies targeting various epitopes of the S protein, focusing on their neutralization potency, breadth, and escape mechanisms. Antibodies targeting the receptor-binding site (RBS) typically exhibit high neutralizing potency but are frequently evaded by mutations in SARS-CoV-2 variants. In contrast, antibodies targeting conserved regions, such as the S2 stem helix and fusion peptide, exhibit broader reactivity but generally lower neutralization potency. However, several broadly neutralizing antibodies have demonstrated exceptional efficacy against emerging variants, including the latest omicron subvariants, underscoring the potential of targeting vulnerable sites such as RBS-A and RBS-D/CR3022. We also highlight public classes of antibodies targeting different sites on the S protein. The vulnerable sites targeted by public antibodies present opportunities for germline-targeting vaccine strategies. Overall, developing escape-resistant, potent antibodies and broadly effective vaccines remains crucial for combating future variants. This review emphasizes the importance of identifying key epitopes and utilizing antibody affinity maturation to inform future therapeutic and vaccine design.
Collapse
Affiliation(s)
- Meng Yuan
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
- The Skaggs Institute for Chemical BiologyThe Scripps Research InstituteLa JollaCaliforniaUSA
| |
Collapse
|
10
|
Krasnova L, Wong CH. Making Universal Vaccines and Antibodies Through Glycoengineering. Methods Mol Biol 2025; 2926:35-50. [PMID: 40266515 DOI: 10.1007/978-1-0716-4542-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Biological glycosylation is a process used by nature to modulate the structure and function of biomolecules, particularly the glycoproteins on the surface of cells. Most human viruses, for example, depend on the host glycosylation machinery to create a sugar coat on the viral surface to facilitate infection and escape immune surveillance. The main immunogens of influenza and COVID viruses are mostly shielded by the sugar coat from immune response, so deletion of the sugar coat would expose the highly conserved epitopes and elicit broadly protective antibody and T cell responses against the virus and different variants. In addition to increased memory T cell response, the antibodies induced by such low-sugar vaccines are more diverse with higher titers against the immunogen, especially the highly conserved epitopes, thus broadening the scope of protection. Furthermore, the Fc-glycans on the antibody can be engineered to improve antibody-mediated killing. This review highlights the impact of glycosylation engineering on the development of universal vaccines and antibodies with improved Fc-mediated killing.
Collapse
Affiliation(s)
- Larissa Krasnova
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Chi-Huey Wong
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Roederer AL, Cao Y, St Denis K, Sheehan ML, Li CJ, Lam EC, Gregory DJ, Poznansky MC, Iafrate AJ, Canaday DH, Gravenstein S, Garcia-Beltran WF, Balazs AB. Ongoing evolution of SARS-CoV-2 drives escape from mRNA vaccine-induced humoral immunity. Cell Rep Med 2024; 5:101850. [PMID: 39657661 PMCID: PMC11722104 DOI: 10.1016/j.xcrm.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
With the onset of the COVID-19 pandemic 4 years ago, viral sequencing continues to document numerous individual mutations in the viral spike protein across many variants. To determine the ability of vaccine-mediated humoral immunity to combat continued SARS-CoV-2 evolution, we construct a comprehensive panel of pseudoviruses harboring each individual mutation spanning 4 years of the pandemic to understand the fitness cost and resistance benefits of each. These efforts identify numerous mutations that escape from vaccine-induced humoral immunity. Across 50 variants and 131 mutants we construct, we observe progressive loss of neutralization across variants, irrespective of vaccine doses, as well as increasing infectivity and ACE2 binding. Importantly, the recent XBB.1.5 booster significantly increases titers against most variants but not JN.1, KP.2, or KP.3. These findings demonstrate that variants continue to evade updated mRNA vaccines, highlighting the need for different approaches to control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - David J Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI, USA; Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, RI, USA; Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
12
|
Clark JJ, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. Cell Rep 2024; 43:114922. [PMID: 39504245 PMCID: PMC11804229 DOI: 10.1016/j.celrep.2024.114922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/22/2024] [Accepted: 10/14/2024] [Indexed: 11/08/2024] Open
Abstract
Neutralizing antibodies correlate with protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection against disease progression. Non-neutralizing antibodies cannot directly protect against infection but may recruit effector cells and thus contribute to the clearance of infected cells. Additionally, they often bind conserved epitopes across multiple variants. Here, we characterize 42 human monoclonal antibodies (mAbs) from coronavirus disease 2019 (COVID-19)-vaccinated individuals. Most of these antibodies exhibit no neutralizing activity in vitro, but several non-neutralizing antibodies provide protection against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs shows a clear dependence on Fc-mediated effector functions. We have determined the structures of three non-neutralizing antibodies, with two targeting the receptor-binding domain and one that binds the subdomain 1 region. Our data confirm the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan J Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel C Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Iden A Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP 04023-062, Brazil
| | - Jeremy S Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - Julia E Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ali H Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA; The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Medical University of Vienna, 1090 Vienna, Austria.
| |
Collapse
|
13
|
Izadi A, Godzwon M, Söderlund Strand A, Schmidt T, Kumlien Georén S, Drosten C, Ohlin M, Nordenfelt P. Protective Non-neutralizing anti-N-terminal Domain mAb Maintains Fc-mediated Function against SARS-COV-2 Variants up to BA.2.86-JN.1 with Superfluous In Vivo Protection against JN.1 Due to Attenuated Virulence. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:678-689. [PMID: 39018495 PMCID: PMC11335326 DOI: 10.4049/jimmunol.2300675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 06/25/2024] [Indexed: 07/19/2024]
Abstract
Substantial evidence supports that Fc-mediated effector functions of anti-spike Abs contribute to anti-SARS-Cov-2 protection. We have previously shown that two non-neutralizing but opsonic mAbs targeting the receptor-binding domain and N-terminal domain (NTD), Ab81 and Ab94, respectively, are protective against lethal Wuhan SARS-CoV-2 infection in K18-hACE2 mice. In this article, we investigated whether these protective non-neutralizing Abs maintain Fc-mediated function and Ag binding against mutated SARS-CoV-2 variants. Ab81 and Ab94 retained their nanomolar affinity and Fc-mediated function toward Omicron and its subvariants, such as BA.2, BA.4, BA.5, XBB, XBB1.5, and BQ1.1. However, when encountering the more heavily mutated BA.2.86, Ab81 lost its function, whereas the 10 new mutations in the NTD did not affect Ab94. In vivo experiments with Ab94 in K18-hACE2 mice inoculated with a stringent dose of 100,000 PFU of the JN.1 variant revealed unexpected results. Surprisingly, this variant exhibited low disease manifestation in this animal model with no weight loss or death in the control group. Still, assessment of mice using a clinical scoring system showed better protection for Ab94-treated mice, indicating that Fc-mediated functions are still beneficial. Our work shows that a protective anti-receptor-binding domain non-neutralizing mAb lost reactivity when BA.2.86 emerged, whereas the anti-NTD mAb was still functional. Finally, this work adds new insight into the evolution of the SARS-CoV-2 virus by reporting that JN.1 is substantially less virulent in vivo than previous strains.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Anna Söderlund Strand
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
- Wallenberg Center for Molecular Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | | | - Christian Drosten
- German Center for Infection Research, Berlin, Germany
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Mats Ohlin
- Department of Immunotechnology, Lund University, Lund, Sweden
- SciLifeLab Drug Discovery and Development, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Division of Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Guenthoer J, Garrett ME, Lilly M, Depierreux DM, Ruiz F, Chi M, Stoddard CI, Chohan V, Yaffe ZA, Sung K, Ralph D, Chu HY, Matsen FA, Overbaugh J. The S2 subunit of spike encodes diverse targets for functional antibody responses to SARS-CoV-2. PLoS Pathog 2024; 20:e1012383. [PMID: 39093891 PMCID: PMC11324185 DOI: 10.1371/journal.ppat.1012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Margaret Chi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
15
|
Liu B, Niu X, Deng Y, Zhang Z, Wang Y, Gao X, Liang H, Li Z, Wang Q, Cheng Y, Chen Q, Huang S, Pan Y, Su M, Lin X, Niu C, Chen Y, Yang W, Zhang Y, Yan Q, He J, Zhao J, Chen L, Xiong X. An unconventional VH1-2 antibody tolerates escape mutations and shows an antigenic hotspot on SARS-CoV-2 spike. Cell Rep 2024; 43:114265. [PMID: 38805396 DOI: 10.1016/j.celrep.2024.114265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/29/2023] [Accepted: 05/07/2024] [Indexed: 05/30/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike (S) protein continues to evolve antigenically, impacting antibody immunity. D1F6, an affinity-matured non-stereotypic VH1-2 antibody isolated from a patient infected with the SARS-CoV-2 ancestral strain, effectively neutralizes most Omicron variants tested, including XBB.1.5. We identify that D1F6 in the immunoglobulin G (IgG) form is able to overcome the effect of most Omicron mutations through its avidity-enhanced multivalent S-trimer binding. Cryo-electron microscopy (cryo-EM) and biochemical analyses show that three simultaneous epitope mutations are generally needed to substantially disrupt the multivalent S-trimer binding by D1F6 IgG. Antigenic mutations at spike positions 346, 444, and 445, which appeared in the latest variants, have little effect on D1F6 binding individually. However, these mutations are able to act synergistically with earlier Omicron mutations to impair neutralization by affecting the interaction between D1F6 IgG and the S-trimer. These results provide insight into the mechanism by which accumulated antigenic mutations facilitate evasion of affinity-matured antibodies.
Collapse
Affiliation(s)
- Banghui Liu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Xuefeng Niu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yijun Deng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xijie Gao
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huan Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zimu Li
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Qian Wang
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, China
| | - Yuanyi Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuluan Chen
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health - Guangdong Laboratory), Guangzhou, China
| | - Shuangshuang Huang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yingxian Pan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mengzhen Su
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Science and Technology of China, Hefei, China
| | - Xiancheng Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chuanying Niu
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Science and Technology of China, Hefei, China
| | - Yinglin Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenyi Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yudi Zhang
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China; University of Chinese Academy of Sciences, Beijing, China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jun He
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Ling Chen
- Guangzhou Laboratory & Bioland Laboratory, Guangzhou, China.
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| |
Collapse
|
16
|
Cervantes Rincón T, Kapoor T, Keeffe JR, Simonelli L, Hoffmann HH, Agudelo M, Jurado A, Peace A, Lee YE, Gazumyan A, Guidetti F, Cantergiani J, Cena B, Bianchini F, Tamagnini E, Moro SG, Svoboda P, Costa F, Reis MG, Ko AI, Fallon BA, Avila-Rios S, Reyes-Téran G, Rice CM, Nussenzweig MC, Bjorkman PJ, Ruzek D, Varani L, MacDonald MR, Robbiani DF. Human antibodies in Mexico and Brazil neutralizing tick-borne flaviviruses. Cell Rep 2024; 43:114298. [PMID: 38819991 PMCID: PMC11832053 DOI: 10.1016/j.celrep.2024.114298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/11/2024] [Accepted: 05/14/2024] [Indexed: 06/02/2024] Open
Abstract
Flaviviruses such as dengue virus (DENV), Zika virus (ZIKV), and yellow fever virus (YFV) are spread by mosquitoes and cause human disease and mortality in tropical areas. In contrast, Powassan virus (POWV), which causes severe neurologic illness, is a flavivirus transmitted by ticks in temperate regions of the Northern hemisphere. We find serologic neutralizing activity against POWV in individuals living in Mexico and Brazil. Monoclonal antibodies P002 and P003, which were derived from a resident of Mexico (where POWV is not reported), neutralize POWV lineage I by recognizing an epitope on the virus envelope domain III (EDIII) that is shared with a broad range of tick- and mosquito-borne flaviviruses. Our findings raise the possibility that POWV, or a flavivirus closely related to it, infects humans in the tropics.
Collapse
Affiliation(s)
- Tomás Cervantes Rincón
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Tania Kapoor
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer R Keeffe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Hans-Heinrich Hoffmann
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Marianna Agudelo
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Andrea Jurado
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Avery Peace
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Yu E Lee
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Francesca Guidetti
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Jasmine Cantergiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Benedetta Cena
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Elia Tamagnini
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Simone G Moro
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Pavel Svoboda
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Department of Pharmacology and Pharmacy, Faculty of Veterinary Medicine, University of Veterinary Sciences, Brno, Czech Republic
| | - Federico Costa
- Institute of Collective Health, Federal University of Bahia, Salvador, BA 40025, Brazil; Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, BA 40296, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Mitermayer G Reis
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, BA 40296, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA; Faculty of Medicine of Bahia, Federal University of Bahia, Salvador 40025, Brazil
| | - Albert I Ko
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Ministry of Health, Salvador, BA 40296, Brazil; Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT 06511, USA
| | - Brian A Fallon
- Department of Psychiatry, Columbia University, and New York State Psychiatric Institute, New York, NY 10027, USA
| | | | - Gustavo Reyes-Téran
- National Institute of Respiratory Diseases, Mexico City, CP 14080, Mexico; Coordination of the National Institutes of Health and High Specialty Hospitals, Ministry of Health, Mexico City, CP 14610, Mexico
| | - Charles M Rice
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Ruzek
- Veterinary Research Institute, Brno, Czech Republic; Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland
| | - Margaret R MacDonald
- Laboratory of Virology and Infectious Disease, The Rockefeller University, New York, NY 10065, USA.
| | - Davide F Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, 6500 Bellinzona, Switzerland.
| |
Collapse
|
17
|
Guerrini G, Mehn D, Scaccabarozzi D, Gioria S, Calzolai L. Analytical Ultracentrifugation to Assess the Quality of LNP-mRNA Therapeutics. Int J Mol Sci 2024; 25:5718. [PMID: 38891903 PMCID: PMC11171944 DOI: 10.3390/ijms25115718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
The approval of safe and effective LNP-mRNA vaccines during the SARS-CoV-2 pandemic is catalyzing the development of the next generation of mRNA therapeutics. Proper characterization methods are crucial for assessing the quality and efficacy of these complex formulations. Here, we show that analytical ultracentrifugation (AUC) can measure, simultaneously and without any sample preparation step, the sedimentation coefficients of both the LNP-mRNA formulation and the mRNA molecules. This allows measuring several quality attributes, such as particle size distribution, encapsulation efficiency and density of the formulation. The technique can also be applied to study the stability of the formulation under stress conditions and different buffers.
Collapse
Affiliation(s)
| | | | | | | | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.G.); (D.M.); (D.S.); (S.G.)
| |
Collapse
|
18
|
Karaba AH, Morgenlander WR, Johnston TS, Hage C, Pekosz A, Durand CM, Segev DL, Robien MA, Heeger PS, Larsen CP, Blankson JN, Werbel WA, Larman HB, Tobian AAR. Epitope Mapping of SARS-CoV-2 Spike Antibodies in Vaccinated Kidney Transplant Recipients Reveals Poor Spike Coverage Compared to Healthy Controls. J Infect Dis 2024; 229:1366-1371. [PMID: 38019656 PMCID: PMC11095532 DOI: 10.1093/infdis/jiad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/01/2023] Open
Abstract
Kidney transplant recipients (KTRs) develop decreased antibody titers to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination compared to healthy controls (HCs), but whether KTRs generate antibodies against key epitopes associated with neutralization is unknown. Plasma from 78 KTRs from a clinical trial of third doses of SARS-CoV-2 vaccines and 12 HCs underwent phage display immunoprecipitation and sequencing (PhIP-Seq) to map antibody responses against SARS-CoV-2. KTRs had lower antibody reactivity to SARS-CoV-2 than HCs, but KTRs and HCs recognized similar epitopes associated with neutralization. Thus, epitope gaps in antibody breadth of KTRs are unlikely responsible for decreased efficacy of SARS-CoV-2 vaccines in this immunosuppressed population. Clinical Trials Registration. NCT04969263.
Collapse
Affiliation(s)
- Andrew H Karaba
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William R Morgenlander
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Trevor S Johnston
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Camille Hage
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrew Pekosz
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Christine M Durand
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Dorry L Segev
- Department of Surgery, NewYork University Grossman School of Medicine, New York, New York, USA
| | - Mark A Robien
- Transplantation Branch, Division of Allergy Immunology and Transplantation, National Institute of Allergy and Infectious Diseases, Rockville, Maryland, USA
| | - Peter S Heeger
- Department of Medicine, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles California, USA
| | | | - Joel N Blankson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - William A Werbel
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - H Benjamin Larman
- Institute for Cell Engineering, Division of Immunology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aaron A R Tobian
- Division of Transfusion Medicine, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Lei R, Qing E, Odle A, Yuan M, Gunawardene CD, Tan TJC, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. Nat Commun 2024; 15:4056. [PMID: 38744813 PMCID: PMC11094058 DOI: 10.1038/s41467-024-48104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024] Open
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we perform a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identify mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we show that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chaminda D Gunawardene
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA
| | - Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, 60153, USA.
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Pediatrics, University of Iowa, Iowa City, IA, 52242, USA.
| | - Nicholas C Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, 52242, USA.
- Center for Virus-Host Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ, 07103, USA.
| |
Collapse
|
20
|
Ishimaru H, Nishimura M, Shigematsu H, Marini MI, Hasegawa N, Takamiya R, Iwata S, Mori Y. Epitopes of an antibody that neutralizes a wide range of SARS-CoV-2 variants in a conserved subdomain 1 of the spike protein. J Virol 2024; 98:e0041624. [PMID: 38624232 PMCID: PMC11092320 DOI: 10.1128/jvi.00416-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/17/2024] Open
Abstract
The evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has continued, enabling the virus to escape from host immunity by changing its spike antigen, while biased toward the receptor-binding domain and N-terminal domain. Here, we isolated a novel pan-SARS-CoV-2 neutralizing antibody (which we named MO11) for even the recent dominators XBB.1.16 and EG.5.1, from a convalescent patient who had received three doses of an original mRNA COVID-19 vaccination. A cryo-electron microscopy analysis of the spike-MO11 complex at 2.3 Å atomic resolution revealed that it recognizes a conserved epitope hidden behind a glycan shield at N331 on subdomain 1 (SD1), holding both the N- and C-terminal segments comprising SD1. Our identification of MO11 unveiled the functional importance of SD1 for the spike's function, and we discuss the potential availability of a novel common epitope among the SARS-CoV-2 variants.IMPORTANCENovel severe acute respiratory syndrome coronavirus 2 variants with immune evasion ability are still repeatedly emerging, nonetheless, a part of immunity developed in responding to the antigen of earlier variants retains efficacy against recent variants irrespective of the numerous mutations. In exploration for the broadly effective antibodies, we identified a cross-neutralizing antibody, named MO11, from the B cells of the convalescent patient. MO11 targets a novel epitope in subdomain 1 (SD1) and was effective against all emerging variants including XBB.1.16 and EG.5.1. The neutralizing activity covering from D614G to EG.5.1 variants was explained by the conservation of the epitope, and it revealed the importance of the subdomain on regulating the function of the antigen for viral infection. Demonstrated identification of the neutralizing antibody that recognizes a conserved epitope implies basal contribution of such group of antibodies for prophylaxis against COVID-19.
Collapse
Affiliation(s)
- Hanako Ishimaru
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Mitsuhiro Nishimura
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Hideki Shigematsu
- Structural Biology Division, Japan Synchrotron Radiation Research Institute SPring-8, Sayo, Hyogo, Japan
| | - Maria Istiqomah Marini
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Natsumi Hasegawa
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Rei Takamiya
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| | - Sachiyo Iwata
- Division of Cardiovascular Medicine, Hyogo Prefectural Kakogawa Medical Center, Kakogawa, Hyogo, Japan
| | - Yasuko Mori
- Division of Clinical Virology, Center for Infectious Diseases, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
| |
Collapse
|
21
|
Rubio AA, Baharani VA, Dadonaite B, Parada M, Abernathy ME, Wang Z, Lee YE, Eso MR, Phung J, Ramos I, Chen T, Nesr GE, Bloom JD, Bieniasz PD, Nussenzweig MC, Barnes CO. Bispecific antibodies with broad neutralization potency against SARS-CoV-2 variants of concern. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.05.592584. [PMID: 38766244 PMCID: PMC11100608 DOI: 10.1101/2024.05.05.592584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The ongoing emergence of SARS-CoV-2 variants of concern (VOCs) that reduce the effectiveness of antibody therapeutics necessitates development of next-generation antibody modalities that are resilient to viral evolution. Here, we characterized N-terminal domain (NTD) and receptor binding domain (RBD)-specific monoclonal antibodies previously isolated from COVID-19 convalescent donors for their activity against emergent SARS-CoV-2 VOCs. Among these, the NTD-specific antibody C1596 displayed the greatest breadth of binding to VOCs, with cryo-EM structural analysis revealing recognition of a distinct NTD epitope outside of the site i antigenic supersite. Given C1596's favorable binding profile, we designed a series of bispecific antibodies (bsAbs) termed CoV2-biRNs, that featured both NTD and RBD specificities. Notably, two of the C1596-inclusive bsAbs, CoV2-biRN5 and CoV2-biRN7, retained potent in vitro neutralization activity against all Omicron variants tested, including XBB.1.5, EG.5.1, and BA.2.86, contrasting the diminished potency of parental antibodies delivered as monotherapies or as a cocktail. Furthermore, prophylactic delivery of CoV2-biRN5 significantly reduced the viral load within the lungs of K18-hACE2 mice following challenge with SARS-CoV-2 XBB.1.5. In conclusion, our NTD-RBD bsAbs offer promising potential for the design of resilient, next-generation antibody therapeutics against SARS-CoV-2 VOCs.
Collapse
Affiliation(s)
- Adonis A. Rubio
- Stanford Biosciences, Stanford School of Medicine; Stanford, USA
- Department of Biology, Stanford University; Stanford, USA
| | - Viren A. Baharani
- Laboratory of Retrovirology, The Rockefeller University; New York, USA
- Laboratory of Molecular Immunology, The Rockefeller University; New York, USA
| | - Bernadeta Dadonaite
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, USA
| | - Megan Parada
- Department of Biology, Stanford University; Stanford, USA
| | | | - Zijun Wang
- Laboratory of Molecular Immunology, The Rockefeller University; New York, USA
| | - Yu E. Lee
- Department of Biology, Stanford University; Stanford, USA
| | - Michael R. Eso
- Department of Biology, Stanford University; Stanford, USA
| | - Jennie Phung
- Department of Biology, Stanford University; Stanford, USA
| | - Israel Ramos
- Department of Biology, Stanford University; Stanford, USA
| | - Teresia Chen
- Department of Biology, Stanford University; Stanford, USA
| | - Gina El Nesr
- Stanford Biosciences, Stanford School of Medicine; Stanford, USA
| | - Jesse D. Bloom
- Basic Sciences Division and Computational Biology Program, Fred Hutchinson Cancer Center; Seattle, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | - Paul D. Bieniasz
- Laboratory of Retrovirology, The Rockefeller University; New York, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University; New York, USA
- Howard Hughes Medical Institute; Chevy Chase, USA
| | - Christopher O. Barnes
- Department of Biology, Stanford University; Stanford, USA
- ChEM-H Institute, Stanford University; Stanford, CA
- Chan Zuckerberg Biohub; San Francisco, USA
| |
Collapse
|
22
|
Tan TJC, Verma AK, Odle A, Lei R, Meyerholz DK, Matreyek KA, Perlman S, Wong LYR, Wu NC. Evidence of antigenic drift in the fusion machinery core of SARS-CoV-2 spike. Proc Natl Acad Sci U S A 2024; 121:e2317222121. [PMID: 38557175 PMCID: PMC11009667 DOI: 10.1073/pnas.2317222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines.
Collapse
Affiliation(s)
- Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Department of Pediatrics, University of Iowa, Iowa City, IA52242
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ07103
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
23
|
Li Z, Zhang Z, Rosen ST, Feng M. Function and mechanism of bispecific antibodies targeting SARS-CoV-2. CELL INSIGHT 2024; 3:100150. [PMID: 38374826 PMCID: PMC10875118 DOI: 10.1016/j.cellin.2024.100150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/15/2024] [Accepted: 01/18/2024] [Indexed: 02/21/2024]
Abstract
As the dynamic evolution of SARS-CoV-2 led to reduced efficacy in monoclonal neutralizing antibodies and emergence of immune escape, the role of bispecific antibodies becomes crucial in bolstering antiviral activity and suppressing immune evasion. This review extensively assesses a spectrum of representative bispecific antibodies targeting SARS-CoV-2, delving into their characteristics, design formats, mechanisms of action, and associated advantages and limitations. The analysis encompasses factors influencing the selection of parental antibodies and strategies for incorporating added benefits in bispecific antibody design. Furthermore, how different classes of parental antibodies contribute to augmenting the broad-spectrum neutralization capability within bispecific antibodies is discussed. In summary, this review presents analyses and discussions aimed at offering valuable insights for shaping future strategies in bispecific antibody design to effectively confront the challenges posed by SARS-CoV-2 and propel advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Zhaohui Li
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zengyuan Zhang
- Department of Molecular Microbiology & Immunology, University of Southern California, CA, USA
| | - Steven T. Rosen
- Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA, USA
| | - Mingye Feng
- Department of Immuno-Oncology, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
24
|
Zhou D, Supasa P, Liu C, Dijokaite-Guraliuc A, Duyvesteyn HME, Selvaraj M, Mentzer AJ, Das R, Dejnirattisai W, Temperton N, Klenerman P, Dunachie SJ, Fry EE, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR. The SARS-CoV-2 neutralizing antibody response to SD1 and its evasion by BA.2.86. Nat Commun 2024; 15:2734. [PMID: 38548763 PMCID: PMC10978878 DOI: 10.1038/s41467-024-46982-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/15/2024] [Indexed: 04/01/2024] Open
Abstract
Under pressure from neutralising antibodies induced by vaccination or infection the SARS-CoV-2 spike gene has become a hotspot for evolutionary change, leading to the failure of all mAbs developed for clinical use. Most potent antibodies bind to the receptor binding domain which has become heavily mutated. Here we study responses to a conserved epitope in sub-domain-1 (SD1) of spike which have become more prominent because of mutational escape from antibodies directed to the receptor binding domain. Some SD1 reactive mAbs show potent and broad neutralization of SARS-CoV-2 variants. We structurally map the dominant SD1 epitope and provide a mechanism of action by blocking interaction with ACE2. Mutations in SD1 have not been sustained to date, but one, E554K, leads to escape from mAbs. This mutation has now emerged in several sublineages including BA.2.86, reflecting selection pressure on the virus exerted by the increasing prominence of the anti-SD1 response.
Collapse
Affiliation(s)
- Daming Zhou
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Piyada Supasa
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chang Liu
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Helen M E Duyvesteyn
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK
| | - Muneeswaran Selvaraj
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexander J Mentzer
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Raksha Das
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Wanwisa Dejnirattisai
- Division of Emerging Infectious Disease, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok-Noi, Bangkok, 10700, Thailand
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich Chatham Maritime, Kent, ME4 4TB, UK
| | - Paul Klenerman
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Susanna J Dunachie
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NDM Centre For Global Health Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand
| | - Elizabeth E Fry
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - Juthathip Mongkolsapaya
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Mahidol-Oxford Tropical Medicine Research Unit, Bangkok, Thailand.
| | - Jingshan Ren
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
| | - David I Stuart
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Centre for Human Genetics, Oxford, UK.
- Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot, UK.
| | - Gavin R Screaton
- Chinese Academy of Medical Science (CAMS) Oxford Institute (COI), University of Oxford, Oxford, UK.
- Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Girard B, Baum-Jones E, Best RL, Campbell TW, Coupart J, Dangerfield K, Dhal A, Jhatro M, Martinez B, Reifert J, Shon J, Zhang M, Waitz R, Chalkias S, Edwards DK, Maglinao M, Paris R, Pajon R. Profiling antibody epitopes induced by mRNA-1273 vaccination and boosters. Front Immunol 2024; 15:1285278. [PMID: 38562934 PMCID: PMC10983613 DOI: 10.3389/fimmu.2024.1285278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Background Characterizing the antibody epitope profiles of messenger RNA (mRNA)-based vaccines against SARS-CoV-2 can aid in elucidating the mechanisms underlying the antibody-mediated immune responses elicited by these vaccines. Methods This study investigated the distinct antibody epitopes toward the SARS-CoV-2 spike (S) protein targeted after a two-dose primary series of mRNA-1273 followed by a booster dose of mRNA-1273 or a variant-updated vaccine among serum samples from clinical trial adult participants. Results Multiple S-specific epitopes were targeted after primary vaccination; while signal decreased over time, a booster dose after >6 months largely revived waning antibody signals. Epitope identity also changed after booster vaccination in some subjects, with four new S-specific epitopes detected with stronger signals after boosting than with primary vaccination. Notably, the strength of antibody responses after booster vaccination differed by the exact vaccine formulation, with variant-updated mRNA-1273.211 and mRNA-1273.617.2 booster formulations inducing significantly stronger S-specific signals than a mRNA-1273 booster. Conclusion Overall, these results identify key S-specific epitopes targeted by antibodies induced by mRNA-1273 primary and variant-updated booster vaccination.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - John Shon
- Serimmune, Goleta, CA, United States
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Roederer AL, Cao Y, Denis KS, Sheehan ML, Li CJ, Lam EC, Gregory DJ, Poznansky MC, Iafrate AJ, Canaday DH, Gravenstein S, Garcia-Beltran WF, Balazs AB. Ongoing evolution of SARS-CoV-2 drives escape from mRNA vaccine-induced humoral immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.05.24303815. [PMID: 38496628 PMCID: PMC10942518 DOI: 10.1101/2024.03.05.24303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Since the COVID-19 pandemic began in 2020, viral sequencing has documented 131 individual mutations in the viral spike protein across 48 named variants. To determine the ability of vaccine-mediated humoral immunity to keep pace with continued SARS-CoV-2 evolution, we assessed the neutralization potency of sera from 76 vaccine recipients collected after 2 to 6 immunizations against a comprehensive panel of mutations observed during the pandemic. Remarkably, while many individual mutations that emerged between 2020 and 2022 exhibit escape from sera following primary vaccination, few escape boosted sera. However, progressive loss of neutralization was observed across newer variants, irrespective of vaccine doses. Importantly, an updated XBB.1.5 booster significantly increased titers against newer variants but not JN.1. These findings demonstrate that seasonal boosters improve titers against contemporaneous strains, but novel variants continue to evade updated mRNA vaccines, demonstrating the need for novel approaches to adequately control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Alex L. Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Kerri St. Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - David J. Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
- Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, 02114, USA
| | - A. John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David H. Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, Rhode Island
| | - Wilfredo F. Garcia-Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | |
Collapse
|
27
|
Clark J, Hoxie I, Adelsberg DC, Sapse IA, Andreata-Santos R, Yong JS, Amanat F, Tcheou J, Raskin A, Singh G, González-Domínguez I, Edgar JE, Bournazos S, Sun W, Carreño JM, Simon V, Ellebedy AH, Bajic G, Krammer F. Protective effect and molecular mechanisms of human non-neutralizing cross-reactive spike antibodies elicited by SARS-CoV-2 mRNA vaccination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.28.582613. [PMID: 38464151 PMCID: PMC10925278 DOI: 10.1101/2024.02.28.582613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Neutralizing antibodies correlate with protection against SARS-CoV-2. Recent studies, however, show that binding antibody titers, in the absence of robust neutralizing activity, also correlate with protection from disease progression. Non-neutralizing antibodies cannot directly protect from infection but may recruit effector cells thus contribute to the clearance of infected cells. Also, they often bind conserved epitopes across multiple variants. We characterized 42 human mAbs from COVID-19 vaccinated individuals. Most of these antibodies exhibited no neutralizing activity in vitro but several non-neutralizing antibodies protected against lethal challenge with SARS-CoV-2 in different animal models. A subset of those mAbs showed a clear dependence on Fc-mediated effector functions. We determined the structures of three non-neutralizing antibodies with two targeting the RBD, and one that targeting the SD1 region. Our data confirms the real-world observation in humans that non-neutralizing antibodies to SARS-CoV-2 can be protective.
Collapse
Affiliation(s)
- Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irene Hoxie
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel C. Adelsberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Iden A. Sapse
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert Andreata-Santos
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Retrovirology Laboratory, Department of Microbiology, Immunology and Parasitology, Paulista School of Medicine, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Jeremy S. Yong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johnstone Tcheou
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ariel Raskin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Julia E. Edgar
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Stylianos Bournazos
- Laboratory of Molecular Genetics and Immunology, The Rockefeller University, New York, NY, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ali H. Ellebedy
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO 63110, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Goran Bajic
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VARPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
28
|
Hsieh CL, Leist SR, Miller EH, Zhou L, Powers JM, Tse AL, Wang A, West A, Zweigart MR, Schisler JC, Jangra RK, Chandran K, Baric RS, McLellan JS. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat Commun 2024; 15:1553. [PMID: 38378768 PMCID: PMC10879192 DOI: 10.1038/s41467-024-45404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine-Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
29
|
Li R, Chang Z, Liu H, Wang Y, Li M, Chen Y, Fan L, Wang S, Sun X, Liu S, Cheng A, Ding P, Zhang G. Double-layered N-S1 protein nanoparticle immunization elicits robust cellular immune and broad antibody responses against SARS-CoV-2. J Nanobiotechnology 2024; 22:44. [PMID: 38291444 PMCID: PMC10825999 DOI: 10.1186/s12951-024-02293-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
BACKGROUND The COVID-19 pandemic is a persistent global threat to public health. As for the emerging variants of SARS-CoV-2, it is necessary to develop vaccines that can induce broader immune responses, particularly vaccines with weak cellular immunity. METHODS In this study, we generated a double-layered N-S1 protein nanoparticle (N-S1 PNp) that was formed by desolvating N protein into a protein nanoparticle as the core and crosslinking S1 protein onto the core surface against SARS-CoV-2. RESULTS Vaccination with N-S1 PNp elicited robust humoral and vigorous cellular immune responses specific to SARS-CoV-2 in mice. Compared to soluble protein groups, the N-S1 PNp induced a higher level of humoral response, as evidenced by the ability of S1-specific antibodies to block hACE2 receptor binding and neutralize pseudovirus. Critically, N-S1 PNp induced Th1-biased, long-lasting, and cross-neutralizing antibodies, which neutralized the variants of SARS-CoV-2 with minimal loss of activity. N-S1 PNp induced strong responses of CD4+ and CD8+ T cells, mDCs, Tfh cells, and GCs B cells in spleens. CONCLUSIONS These results demonstrate that N-S1 PNp vaccination is a practical approach for promoting protection, which has the potential to counteract the waning immune responses against SARS-CoV-2 variants and confer broad efficacy against future new variants. This study provides a new idea for the design of next-generation SARS-CoV-2 vaccines based on the B and T cells response coordination.
Collapse
Affiliation(s)
- Ruiqi Li
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China
- Longhu Laboratory, Zhengzhou, 450046, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Zejie Chang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hongliang Liu
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China
| | - Yanan Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minghui Li
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilan Chen
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lu Fan
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Siqiao Wang
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Xueke Sun
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Siyuan Liu
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Anchun Cheng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China
| | - Peiyang Ding
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| | - Gaiping Zhang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, China.
- School of Advanced Agricultural Sciences , Peking University, Beijing, 100080, China.
- Longhu Laboratory, Zhengzhou, 450046, China.
- Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China.
- College of Animal Medicine, Henan Agricultural University, Zhengzhou, 450046, China.
- School of Life Sciences , Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
30
|
Marcotte H, Cao Y, Zuo F, Simonelli L, Sammartino JC, Pedotti M, Sun R, Cassaniti I, Hagbom M, Piralla A, Yang J, Du L, Percivalle E, Bertoglio F, Schubert M, Abolhassani H, Sherina N, Guerra C, Borte S, Rezaei N, Kumagai-Braesch M, Xue Y, Su C, Yan Q, He P, Grönwall C, Klareskog L, Calzolai L, Cavalli A, Wang Q, Robbiani DF, Hust M, Shi Z, Feng L, Svensson L, Chen L, Bao L, Baldanti F, Xiao J, Qin C, Hammarström L, Yang X, Varani L, Xie XS, Pan-Hammarström Q. Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages. Proc Natl Acad Sci U S A 2024; 121:e2315354120. [PMID: 38194459 PMCID: PMC10801922 DOI: 10.1073/pnas.2315354120] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal immunoglobulin A (IgA) response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal secretory IgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric, and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies (mAbs 01A05, rmAb23, DXP-604, and XG014) targeting the receptor-binding domain of the spike protein. Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2, and BA.4/5 with a 25- to 75-fold increase in potency. In human angiotensin converting enzyme 2 (ACE2) transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by the current circulating subvariants and, potentially, future VOCs.
Collapse
Affiliation(s)
- Harold Marcotte
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Yunlong Cao
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Fanglei Zuo
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Josè Camilla Sammartino
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Rui Sun
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Irene Cassaniti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Marie Hagbom
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
| | - Antonio Piralla
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Jinxuan Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Likun Du
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Elena Percivalle
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
| | - Federico Bertoglio
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Maren Schubert
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Hassan Abolhassani
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Natalia Sherina
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Concetta Guerra
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Leipzig04129, Germany
- ImmunoDeficiencyCenter Leipzig, Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Leipzig04129, Germany
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children’s Medical Center, Tehran University of Medical Sciences, Tehran14194, Iran
| | - Makiko Kumagai-Braesch
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm14186, Sweden
| | - Yintong Xue
- Department of Immunology, Peking University Health Science Center, Beijing100191, People’s Republic of China
| | - Chen Su
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Qihong Yan
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Ping He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Caroline Grönwall
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
| | - Lars Klareskog
- Division of Rheumatology, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm17176, Sweden
- Rheumatology Unit, Karolinska University Hospital, Stockholm17176, Sweden
| | - Luigi Calzolai
- European Commission, Joint Research Centre, Ispra21027, Italy
| | - Andrea Cavalli
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Qiao Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education/National Health Commission/Chinese Academy of Medical Sciences), Shanghai Institute of Infectious Disease and Biosecurity, School of Basic Medical Sciences, Fudan University, 200032 Shanghai200032, People’s Republic of China
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Michael Hust
- Department of Medical Biotechnology, Institute of Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig38106, Germany
| | - Zhengli Shi
- State Key laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei430071, People’s Republic of China
| | - Liqiang Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences,Guangzhou510530, People’s Republic of China
| | - Lennart Svensson
- Division of Molecular Medicine and Virology, Department of Biomedical and Clinical Sciences, Linköping University, Linköping 58185, Sweden
- Division of Infectious Diseases, Department of Medicine, Karolinska Institute, Stockholm17177, Sweden
| | - Ling Chen
- Guangzhou Laboratory, Guangzhou510005, People’s Republic of China
| | - Linlin Bao
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Fausto Baldanti
- Microbiology and Virology Department, Fondazione Istituto di ricovero e cura a carattere scientifico (IRCCS) Policlinico San Matteo, Pavia27100, Italy
- Department of Clinical, Surgical, Diagnostic and Paediatric Sciences, University of Pavia, Pavia27100, Italy
| | - Junyu Xiao
- Changping Laboratory, Beijing102206, People’s Republic of China
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing100871, People’s Republic of China
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Remerging Infectious Diseases, National Health Commission Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing100021, People’s Republic of China
- National Center of Technology Innovation for Animal Model, Beijing102206, People’s Republic of China
| | - Lennart Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| | - Xinglou Yang
- Yunnan Key Laboratory of Biodiversity Information, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming650023, People’s Republic of China
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona6500, Switzerland
| | - Xiaoliang Sunney Xie
- Changping Laboratory, Beijing102206, People’s Republic of China
- School of Life Sciences, Biomedical Pioneering Innovation Center, Peking University, Beijing100871, People’s Republic of China
| | - Qiang Pan-Hammarström
- Division of Immunology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm17165, Sweden
| |
Collapse
|
31
|
Yamamoto Y, Inoue T. Current Status and Perspectives of Therapeutic Antibodies Targeting the Spike Protein S2 Subunit against SARS-CoV-2. Biol Pharm Bull 2024; 47:917-923. [PMID: 38692869 DOI: 10.1248/bpb.b23-00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has devastated public health and the global economy. New variants are continually emerging because of amino acid mutations within the SARS-CoV-2 spike protein. Existing neutralizing antibodies (nAbs) that target the receptor-binding domain (RBD) within the spike protein have been shown to have reduced neutralizing activity against these variants. In particular, the recently expanding omicron subvariants BQ 1.1 and XBB are resistant to nAbs approved for emergency use by the United States Food and Drug Administration. Therefore, it is essential to develop broad nAbs to combat emerging variants. In contrast to the massive accumulation of mutations within the RBD, the S2 subunit remains highly conserved among variants. Therefore, nAbs targeting the S2 region may provide effective cross-protection against novel SARS-CoV-2 variants. Here, we provide a detailed summary of nAbs targeting the S2 subunit: the fusion peptide, stem helix, and heptad repeats 1 and 2. In addition, we provide prospects to solve problems such as the weak neutralizing potency of nAbs targeting the S2 subunit.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
32
|
Hulst M, Kant A, Harders-Westerveen J, Hoffmann M, Xie Y, Laheij C, Murk JL, Van der Poel WHM. Cross-Reactivity of Human, Wild Boar, and Farm Animal Sera from Pre- and Post-Pandemic Periods with Alpha- and Βeta-Coronaviruses (CoV), including SARS-CoV-2. Viruses 2023; 16:34. [PMID: 38257734 PMCID: PMC10821012 DOI: 10.3390/v16010034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
Panels of pre- and post-pandemic farm animals, wild boar and human sera, including human sera able to neutralize SARS-CoV-2 in vitro, were tested in serological tests to determine their cross-reactivity with β- and α-CoV originating from farm animals. Sera were tested in neutralization assays with high ascending concentrations (up to 1 × 104 TCID50 units/well) of β-CoV Bovine coronavirus (BCV), SARS-CoV-2, and porcine α-CoV-transmissible gastroenteritis virus (TGEV). In addition, sera were tested for immunostaining of cells infected with β-CoV porcine hemagglutinating encephalomyelitis (PHEV). Testing revealed a significantly higher percentage of BCV neutralization (78%) for sera of humans that had experienced a SARS-CoV-2 infection (SARS-CoV-2 convalescent sera) than was observed for human pre-pandemic sera (37%). Also, 46% of these human SARS-CoV-2 convalescent sera neutralized the highest concentration of BCV (5 × 103 TCID50/well) tested, whereas only 9.6% of the pre-pandemic sera did. Largely similar percentages were observed for staining of PHEV-infected cells by these panels of human sera. Furthermore, post-pandemic sera collected from wild boars living near a densely populated area in The Netherlands also showed a higher percentage (43%) and stronger BCV neutralization than was observed for pre-pandemic sera from this area (21%) and for pre- (28%) and post-pandemic (20%) sera collected from wild boars living in a nature reserve park with limited access for the public. High percentages of BCV neutralization were observed for pre- and post-pandemic sera of cows (100%), pigs (up to 45%), sheep (36%) and rabbits (60%). However, this cross-neutralization was restricted to sera collected from specific herds or farms. TGEV was neutralized only by sera of pigs (68%) and a few wild boar sera (4.6%). None of the BCV and PHEV cross-reacting human pre-pandemic, wild boar and farm animal sera effectively neutralized SARS-CoV-2 in vitro. Preexisting antibodies in human sera effectively neutralized the animal β-CoV BCV in vitro. This cross-neutralization was boosted after humans had experienced a SARS-CoV-2 infection, indicating that SARS-CoV-2 activated a "memory" antibody response against structurally related epitopes expressed on the surface of a broad range of heterologous CoV, including β-CoV isolated from farm animals. Further research is needed to elucidate if a symptomless infection or environmental exposure to SARS-CoV-2 or another β-CoV also triggers such a "memory" antibody response in wild boars and other free-living animals.
Collapse
Affiliation(s)
- Marcel Hulst
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| | - Arie Kant
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| | - José Harders-Westerveen
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany;
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Yajing Xie
- Institute of Food Safety and Nutrition Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;
| | | | - Jean-Luc Murk
- Microvida, Elisabeth-Tweesteden Hospital, 5022 GC Tilburg, The Netherlands;
| | - Wim H. M. Van der Poel
- Department Virology & Molecular Biology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands (J.H.-W.)
| |
Collapse
|
33
|
Cheng CW, Wu CY, Wang SW, Chen JY, Kung CC, Liao KS, Wong CH. Low-sugar universal mRNA vaccine against coronavirus variants with deletion of glycosites in the S2 or stem of SARS-CoV-2 spike messenger RNA (mRNA). Proc Natl Acad Sci U S A 2023; 120:e2314392120. [PMID: 38011546 DOI: 10.1073/pnas.2314392120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/25/2023] [Indexed: 11/29/2023] Open
Abstract
Since the outbreak of Severe Acute Respiratory Syndrome Virus-2 (SARS-CoV-2) in 2019, more than 15 million spike protein sequences have been identified, raising a new challenge for the development of a broadly protective vaccine against the various emerging variants. We found that the virus, like most other human viruses, depends on host-made glycans to shield the conserved epitopes on spike protein from immune response and demonstrated that deletion of the glycan shields exposed highly conserved epitopes and elicited broadly protective immune responses. In this study, we identified 17 conserved epitopes from 14 million spike protein sequences and 11 of the conserved epitopes are in the S2 domain, including the six most conserved epitopes in the stem region. We also demonstrated that deletion of the glycosites in the spike messenger RNA (mRNA) S2 domain or the stem region exposed the highly conserved epitopes and elicited broadly protective immune responses, particularly CD-8+ T cell response against various SARS-CoV-2 variants, and other human coronaviruses including MERS, SARS viruses, and those causing common cold.
Collapse
Affiliation(s)
- Cheng-Wei Cheng
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
- The Master Program of AI Application in Health Industry, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Center for Big Data Research, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung City 80708, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
- Rock BioMedical, Inc., Taipei City 115202, Taiwan
| | - Szu-Wen Wang
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
- Rock BioMedical, Inc., Taipei City 115202, Taiwan
| | - Jia-Yan Chen
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
| | - Chih-Chuan Kung
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
| | - Kuo-Shiang Liao
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
| | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica, Taipei City 11529, Taiwan
- Department of Chemistry, Scripps Research, La Jolla, CA 92037
| |
Collapse
|
34
|
Lei R, Qing E, Odle A, Yuan M, Tan TJ, So N, Ouyang WO, Wilson IA, Gallagher T, Perlman S, Wu NC, Wong LYR. Functional and antigenic characterization of SARS-CoV-2 spike fusion peptide by deep mutational scanning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569051. [PMID: 38076875 PMCID: PMC10705381 DOI: 10.1101/2023.11.28.569051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The fusion peptide of SARS-CoV-2 spike protein is functionally important for membrane fusion during virus entry and is part of a broadly neutralizing epitope. However, sequence determinants at the fusion peptide and its adjacent regions for pathogenicity and antigenicity remain elusive. In this study, we performed a series of deep mutational scanning (DMS) experiments on an S2 region spanning the fusion peptide of authentic SARS-CoV-2 in different cell lines and in the presence of broadly neutralizing antibodies. We identified mutations at residue 813 of the spike protein that reduced TMPRSS2-mediated entry with decreased virulence. In addition, we showed that an F823Y mutation, present in bat betacoronavirus HKU9 spike protein, confers resistance to broadly neutralizing antibodies. Our findings provide mechanistic insights into SARS-CoV-2 pathogenicity and also highlight a potential challenge in developing broadly protective S2-based coronavirus vaccines.
Collapse
Affiliation(s)
- Ruipeng Lei
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Timothy J.C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalie So
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Wenhao O. Ouyang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Ian A. Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
| | - Nicholas C. Wu
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
35
|
Yánez Arcos DL, Thirumuruganandham SP. Structural and pKa Estimation of the Amphipathic HR1 in SARS-CoV-2: Insights from Constant pH MD, Linear vs. Nonlinear Normal Mode Analysis. Int J Mol Sci 2023; 24:16190. [PMID: 38003380 PMCID: PMC10671649 DOI: 10.3390/ijms242216190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
A comprehensive understanding of molecular interactions and functions is imperative for unraveling the intricacies of viral protein behavior and conformational dynamics during cellular entry. Focusing on the SARS-CoV-2 spike protein (SARS-CoV-2 sp), a Principal Component Analysis (PCA) on a subset comprising 131 A-chain structures in presence of various inhibitors was conducted. Our analyses unveiled a compelling correlation between PCA modes and Anisotropic Network Model (ANM) modes, underscoring the reliability and functional significance of low-frequency modes in adapting to diverse inhibitor binding scenarios. The role of HR1 in viral processing, both linear Normal Mode Analysis (NMA) and Nonlinear NMA were implemented. Linear NMA exhibited substantial inter-structure variability, as evident from a higher Root Mean Square Deviation (RMSD) range (7.30 Å), nonlinear NMA show stability throughout the simulations (RMSD 4.85 Å). Frequency analysis further emphasized that the energy requirements for conformational changes in nonlinear modes are notably lower compared to their linear counterparts. Using simulations of molecular dynamics at constant pH (cpH-MD), we successfully predicted the pKa order of the interconnected residues within the HR1 mutations at lower pH values, suggesting a transition to a post-fusion structure. The pKa determination study illustrates the profound effects of pH variations on protein structure. Key results include pKa values of 9.5179 for lys-921 in the D936H mutant, 9.50 for the D950N mutant, and a slightly higher value of 10.49 for the D936Y variant. To further understand the behavior and physicochemical characteristics of the protein in a biologically relevant setting, we also examine hydrophobic regions in the prefused states of the HR1 protein mutants D950N, D936Y, and D936H in our study. This analysis was conducted to ascertain the hydrophobic moment of the protein within a lipid environment, shedding light on its behavior and physicochemical properties in a biologically relevant context.
Collapse
|
36
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
37
|
Yang S, Yu Y, Jian F, Song W, Yisimayi A, Chen X, Xu Y, Wang P, Wang J, Yu L, Niu X, Wang J, Xiao T, An R, Wang Y, Gu Q, Shao F, Jin R, Shen Z, Wang Y, Cao Y. Antigenicity and infectivity characterisation of SARS-CoV-2 BA.2.86. THE LANCET. INFECTIOUS DISEASES 2023; 23:e457-e459. [PMID: 37738994 DOI: 10.1016/s1473-3099(23)00573-x] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Affiliation(s)
- Sijie Yang
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Peking-Tsinghua Centre for Life Sciences, Tsinghua University, Beijing, China
| | | | - Fanchong Jian
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Changping Laboratory, Beijing, China
| | - Weiliang Song
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing, China
| | - Ayijiang Yisimayi
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing, China
| | - Xiaosu Chen
- Institute for Immunology, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanli Xu
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Peng Wang
- Changping Laboratory, Beijing, China
| | - Jing Wang
- Changping Laboratory, Beijing, China
| | | | - Xiao Niu
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China
| | - Jing Wang
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing, China
| | - Tianhe Xiao
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Ran An
- Changping Laboratory, Beijing, China
| | - Yao Wang
- Changping Laboratory, Beijing, China
| | | | - Fei Shao
- Changping Laboratory, Beijing, China
| | - Ronghua Jin
- Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhongyang Shen
- Organ Transplant Centre, National Health Commission Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, China
| | - Youchun Wang
- Changping Laboratory, Beijing, China; Institute of Medical Biotechnology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, China
| | - Yunlong Cao
- Biomedical Pioneering Innovation Center, Peking University, Beijing 100871, China; School of Life Sciences, Peking University, Beijing 100871, China; Changping Laboratory, Beijing, China.
| |
Collapse
|
38
|
Guerrini G, Mehn D, Fumagalli F, Gioria S, Pedotti M, Simonelli L, Bianchini F, Robbiani DF, Varani L, Calzolai L. Analytical Ultracentrifugation Detects Quaternary Rearrangements and Antibody-Induced Conformational Selection of the SARS-CoV-2 Spike Trimer. Int J Mol Sci 2023; 24:14875. [PMID: 37834322 PMCID: PMC10573103 DOI: 10.3390/ijms241914875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Analytical ultracentrifugation (AUC) analysis shows that the SARS-CoV-2 trimeric Spike (S) protein adopts different quaternary conformations in solution. The relative abundance of the "open" and "close" conformations is temperature-dependent, and samples with different storage temperature history have different open/close distributions. Neutralizing antibodies (NAbs) targeting the S receptor binding domain (RBD) do not alter the conformer populations; by contrast, a NAb targeting a cryptic conformational epitope skews the Spike trimer toward an open conformation. The results highlight AUC, which is typically applied for molecular mass determination of biomolecules as a powerful tool for detecting functionally relevant quaternary protein conformations.
Collapse
Affiliation(s)
- Giuditta Guerrini
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.G.); (D.M.); (F.F.); (S.G.)
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.G.); (D.M.); (F.F.); (S.G.)
| | - Francesco Fumagalli
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.G.); (D.M.); (F.F.); (S.G.)
| | - Sabrina Gioria
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.G.); (D.M.); (F.F.); (S.G.)
| | - Mattia Pedotti
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; (M.P.); (L.S.); (F.B.); (D.F.R.)
| | - Luca Simonelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; (M.P.); (L.S.); (F.B.); (D.F.R.)
| | - Filippo Bianchini
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; (M.P.); (L.S.); (F.B.); (D.F.R.)
| | - Davide F. Robbiani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; (M.P.); (L.S.); (F.B.); (D.F.R.)
| | - Luca Varani
- Institute for Research in Biomedicine, Università della Svizzera Italiana, 6500 Bellinzona, Switzerland; (M.P.); (L.S.); (F.B.); (D.F.R.)
| | - Luigi Calzolai
- European Commission, Joint Research Centre (JRC), 21027 Ispra, Italy; (G.G.); (D.M.); (F.F.); (S.G.)
| |
Collapse
|
39
|
Bains A, Guan W, LiWang PJ. The Effect of Select SARS-CoV-2 N-Linked Glycan and Variant of Concern Spike Protein Mutations on C-Type Lectin-Receptor-Mediated Infection. Viruses 2023; 15:1901. [PMID: 37766307 PMCID: PMC10535197 DOI: 10.3390/v15091901] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/01/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The SARS-CoV-2 virion has shown remarkable resilience, capable of mutating to escape immune detection and re-establishing infectious capabilities despite new vaccine rollouts. Therefore, there is a critical need to identify relatively immutable epitopes on the SARS-CoV-2 virion that are resistant to future mutations the virus may accumulate. While hACE2 has been identified as the receptor that mediates SARS-CoV-2 susceptibility, it is only modestly expressed in lung tissue. C-type lectin receptors like DC-SIGN can act as attachment sites to enhance SARS-CoV-2 infection of cells with moderate or low hACE2 expression. We developed an easy-to-implement assay system that allows for the testing of SARS-CoV-2 trans-infection. Using our assay, we assessed how SARS-CoV-2 Spike S1-domain glycans and spike proteins from different strains affected the ability of pseudotyped lentivirions to undergo DC-SIGN-mediated trans-infection. Through our experiments with seven glycan point mutants, two glycan cluster mutants and four strains of SARS-CoV-2 spike, we found that glycans N17 and N122 appear to have significant roles in maintaining COVID-19's infectious capabilities. We further found that the virus cannot retain infectivity upon the loss of multiple glycosylation sites, and that Omicron BA.2 pseudovirions may have an increased ability to bind to other non-lectin receptor proteins on the surface of cells. Taken together, our work opens the door to the development of new therapeutics that can target overlooked epitopes of the SARS-CoV-2 virion to prevent C-type lectin-receptor-mediated trans-infection in lung tissue.
Collapse
Affiliation(s)
- Arjan Bains
- Chemistry and Biochemistry, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA;
| | - Patricia J. LiWang
- Molecular Cell Biology, Health Sciences Research Institute, University of California Merced, 5200 North Lake Rd., Merced, CA 95343, USA
| |
Collapse
|
40
|
Frische A, Gunalan V, Krogfelt KA, Fomsgaard A, Lassaunière R. A Candidate DNA Vaccine Encoding the Native SARS-CoV-2 Spike Protein Induces Anti-Subdomain 1 Antibodies. Vaccines (Basel) 2023; 11:1451. [PMID: 37766128 PMCID: PMC10535225 DOI: 10.3390/vaccines11091451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
The ideal vaccine against viral infections should elicit antibody responses that protect against divergent strains. Designing broadly protective vaccines against SARS-CoV-2 and other divergent viruses requires insight into the specific targets of cross-protective antibodies on the viral surface protein(s). However, unlike therapeutic monoclonal antibodies, the B-cell epitopes of vaccine-induced polyclonal antibody responses remain poorly defined. Here we show that, through the combination of neutralizing antibody functional responses with B-cell epitope mapping, it is possible to identify unique antibody targets associated with neutralization breadth. The polyclonal antibody profiles of SARS-CoV-2 index-strain-vaccinated rabbits that demonstrated a low, intermediate, or high neutralization efficiency of different SARS-CoV-2 variants of concern (VOCs) were distinctly different. Animals with an intermediate and high cross-neutralization of VOCs targeted fewer antigenic sites on the spike protein and targeted one particular epitope, subdomain 1 (SD1), situated outside the receptor binding domain (RBD). Our results indicate that a targeted functional antibody response and an additional focus on non-RBD epitopes could be effective for broad protection against different SARS-CoV-2 variants. We anticipate that the approach taken in this study can be applied to other viral vaccines for identifying future epitopes that confer cross-neutralizing antibody responses, and that our findings will inform a rational vaccine design for SARS-CoV-2.
Collapse
Affiliation(s)
- Anders Frische
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Vithiagaran Gunalan
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| | - Karen Angeliki Krogfelt
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Section of Molecular and Medicinal Biology, Department of Science and Environment, Roskilde University, 4000 Roskilde, Denmark
| | - Anders Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
- Infectious Diseases Unit, Clinical Institute, University of Southern Denmark, 5230 Odense, Denmark
| | - Ria Lassaunière
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 2300 Copenhagen, Denmark; (A.F.); (V.G.); (K.A.K.); (A.F.)
| |
Collapse
|
41
|
Qing E, Gallagher T. Adaptive variations in SARS-CoV-2 spike proteins: effects on distinct virus-cell entry stages. mBio 2023; 14:e0017123. [PMID: 37382441 PMCID: PMC10470846 DOI: 10.1128/mbio.00171-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/14/2023] [Indexed: 06/30/2023] Open
Abstract
Evolved SARS-CoV-2 variants of concern (VOCs) spread through human populations in succession. Major virus variations are in the entry-facilitating viral spike (S) proteins; Omicron VOCs have 29-40 S mutations relative to ancestral D614G viruses. The impacts of this Omicron divergence on S protein structure, antigenicity, cell entry pathways, and pathogenicity have been extensively evaluated, yet gaps remain in correlating specific alterations with S protein functions. In this study, we compared the functions of ancestral D614G and Omicron VOCs using cell-free assays that can reveal differences in several distinct steps of the S-directed virus entry process. Relative to ancestral D614G, Omicron BA.1 S proteins were hypersensitized to receptor activation, to conversion into intermediate conformational states, and to membrane fusion-activating proteases. We identified mutations conferring these changes in S protein character by evaluating domain-exchanged D614G/Omicron recombinants in the cell-free assays. Each of the three functional alterations was mapped to specific S protein domains, with the recombinants providing insights on inter-domain interactions that fine-tune S-directed virus entry. Our results provide a structure-function atlas of the S protein variations that may promote the transmissibility and infectivity of current and future SARS-CoV-2 VOCs. IMPORTANCE Continuous SARS-CoV-2 adaptations generate increasingly transmissible variants. These succeeding variants show ever-increasing evasion of suppressive antibodies and host factors, as well as increasing invasion of susceptible host cells. Here, we evaluated the adaptations enhancing invasion. We used reductionist cell-free assays to compare the entry steps of ancestral (D614G) and Omicron (BA.1) variants. Relative to D614G, Omicron entry was distinguished by heightened responsiveness to entry-facilitating receptors and proteases and by enhanced formation of intermediate states that execute virus-cell membrane fusion. We found that these Omicron-specific characteristics arose from mutations in specific S protein domains and subdomains. The results reveal the inter-domain networks controlling S protein dynamics and efficiencies of entry steps, and they offer insights on the evolution of SARS-CoV-2 variants that arise and ultimately dominate infections worldwide.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
42
|
Wayham NP, Niedecken AR, Simons JF, Chiang YY, Medina-Cucurella AV, Mizrahi RA, Wagner EK, Gras A, Segal I, Witte P, Enstrom A, Bountouvas A, Nelson SM, Weinberger T, Tan D, Asensio MA, Subramanian A, Lim YW, Adler AS, Keating SM. A Potent Recombinant Polyclonal Antibody Therapeutic for Protection Against New Severe Acute Respiratory Syndrome Coronavirus 2 Variants of Concern. J Infect Dis 2023; 228:555-563. [PMID: 37062677 PMCID: PMC10469345 DOI: 10.1093/infdis/jiad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/30/2023] [Accepted: 04/13/2023] [Indexed: 04/18/2023] Open
Abstract
Emerging variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) possess mutations that prevent antibody therapeutics from maintaining antiviral binding and neutralizing efficacy. Monoclonal antibodies (mAbs) shown to neutralize Wuhan-Hu-1 SARS-CoV-2 (ancestral) strain have reduced potency against newer variants. Plasma-derived polyclonal hyperimmune drugs have improved neutralization breadth compared with mAbs, but lower titers against SARS-CoV-2 require higher dosages for treatment. We previously developed a highly diverse, recombinant polyclonal antibody therapeutic anti-SARS-CoV-2 immunoglobulin hyperimmune (rCIG). rCIG was compared with plasma-derived or mAb standards and showed improved neutralization of SARS-CoV-2 across World Health Organization variants; however, its potency was reduced against some variants relative to ancestral, particularly omicron. Omicron-specific antibody sequences were enriched from yeast expressing rCIG-scFv and exhibited increased binding and neutralization to omicron BA.2 while maintaining ancestral strain binding and neutralization. Polyclonal antibody libraries such as rCIG can be utilized to develop antibody therapeutics against present and future SARS-CoV-2 threats.
Collapse
Affiliation(s)
| | | | | | - Yao Y Chiang
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | | - Rena A Mizrahi
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Ellen K Wagner
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Ashley Gras
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Ilana Segal
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Peyton Witte
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Alexis Enstrom
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | | | | - Tess Weinberger
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - David Tan
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | | | | - Yoong Wearn Lim
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | - Adam S Adler
- GigaGen, Inc. (A Grifols Company), San Carlos, California, USA
| | | |
Collapse
|
43
|
Szardenings M, Delaroque N, Kern K, Ramirez-Caballero L, Puder M, Ehrentreich-Förster E, Beige J, Zürner S, Popp G, Wolf J, Borte S. Detection of Antibodies against Endemic and SARS-CoV-2 Coronaviruses with Short Peptide Epitopes. Vaccines (Basel) 2023; 11:1403. [PMID: 37766081 PMCID: PMC10535424 DOI: 10.3390/vaccines11091403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: Coronavirus proteins are quite conserved amongst endemic strains (eCoV) and SARS-CoV-2. We aimed to evaluate whether peptide epitopes might serve as useful diagnostic biomarkers to stratify previous infections and COVID-19. (2) Methods: Peptide epitopes were identified at an amino acid resolution that applied a novel statistical approach to generate data sets of potential antibody binding peptides. (3) Results: Data sets from more than 120 COVID-19 or eCoV-infected patients, as well as vaccinated persons, have been used to generate data sets that have been used to search in silico for potential epitopes in proteins of SARS-CoV-2 and eCoV. Peptide epitopes were validated with >300 serum samples in synthetic peptide micro arrays and epitopes specific for different viruses, in addition to the identified cross reactive epitopes. (4) Conclusions: Most patients develop antibodies against non-structural proteins, which are useful general markers for recent infections. However, there are differences in the epitope patterns of COVID-19, and eCoV, and the S-protein vaccine, which can only be explained by a high degree of cross-reactivity between the viruses, a pre-existing immune response against some epitopes, and even an alternate processing of the vaccine proteins.
Collapse
Affiliation(s)
- Michael Szardenings
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Nicolas Delaroque
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Karolin Kern
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Lisbeth Ramirez-Caballero
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Marcus Puder
- epitopic GmbH, Deutscher Platz 5e, 04103 Leipzig, Germany;
| | - Eva Ehrentreich-Förster
- Fraunhofer Institute for Cell Therapy and Immunology, Branch Bioanalytics and Bioprocesses IZI-BB, Am Mühlenberg 13, 14476 Potsdam, Germany;
| | - Joachim Beige
- Martin-Luther-University Halle/Wittenberg, Medical Clinic 2, 06112 Halle, Germany;
| | - Sebastian Zürner
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
- WINF/Informationsmanagement, University Leipzig, Grimmaische Straße 12, 04109 Leipzig, Germany
| | - Georg Popp
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Perlickstr. 1, 04103 Leipzig, Germany; (N.D.); (K.K.); (S.Z.); (G.P.)
| | - Johannes Wolf
- Department of Laboratory Medicine, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany; (J.W.); (S.B.)
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany
| | - Stephan Borte
- Department of Laboratory Medicine, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany; (J.W.); (S.B.)
- ImmunoDeficiencyCenter Leipzig (IDCL), Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiency Diseases, Hospital St. Georg, Delitzscher Strasse 141, 04129 Leipzig, Germany
| |
Collapse
|
44
|
Wagh K, Shen X, Theiler J, Girard B, Marshall JC, Montefiori DC, Korber B. Mutational basis of serum cross-neutralization profiles elicited by infection or vaccination with SARS-CoV-2 variants. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.13.553144. [PMID: 37645950 PMCID: PMC10461964 DOI: 10.1101/2023.08.13.553144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A series of SARS-CoV-2 variants emerged during the pandemic under selection for neutralization resistance. Convalescent and vaccinated sera show consistently different cross-neutralization profiles depending on infecting or vaccine variants. To understand the basis of this heterogeneity, we modeled serum cross-neutralization titers for 165 sera after infection or vaccination with historically prominent lineages tested against 18 variant pseudoviruses. Cross-neutralization profiles were well captured by models incorporating autologous neutralizing titers and combinations of specific shared and differing mutations between the infecting/vaccine variants and pseudoviruses. Infecting/vaccine variant-specific models identified mutations that significantly impacted cross-neutralization and quantified their relative contributions. Unified models that explained cross-neutralization profiles across all infecting and vaccine variants provided accurate predictions of holdout neutralization data comprising untested variants as infecting or vaccine variants, and as test pseudoviruses. Finally, comparative modeling of 2-dose versus 3-dose mRNA-1273 vaccine data revealed that the third dose overcame key resistance mutations to improve neutralization breadth. HIGHLIGHTS Modeled SARS-CoV-2 cross-neutralization using mutations at key sitesIdentified resistance mutations and quantified relative impactAccurately predicted holdout variant and convalescent/vaccine sera neutralizationShowed that the third dose of mRNA-1273 vaccination overcomes resistance mutations.
Collapse
|
45
|
Zhou D, Ren J, Fry EE, Stuart DI. Broadly neutralizing antibodies against COVID-19. Curr Opin Virol 2023; 61:101332. [PMID: 37285620 PMCID: PMC10301462 DOI: 10.1016/j.coviro.2023.101332] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/26/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has led to hundreds of millions of infections and millions of deaths, however, human monoclonal antibodies (mAbs) can be an effective treatment. Since SARS-CoV-2 emerged, a variety of strains have acquired increasing numbers of mutations to gain increased transmissibility and escape from the immune response. Most reported neutralizing human mAbs, including all approved therapeutic ones, have been knocked down or out by these mutations. Broadly neutralizing mAbs are therefore of great value, to treat current and possible future variants. Here, we review four types of neutralizing mAbs against the spike protein with broad potency against previously and currently circulating variants. These mAbs target the receptor-binding domain, the subdomain 1, the stem helix, or the fusion peptide. Understanding how these mAbs retain potency in the face of mutational change could guide future development of therapeutic antibodies and vaccines.
Collapse
Affiliation(s)
- Daming Zhou
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7FZ, UK.
| | - Jingshan Ren
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK
| | - Elizabeth E Fry
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK
| | - David I Stuart
- Division of Structural Biology, University of Oxford, The Wellcome Centre for Human Genetics, Headington, Oxford OX3 7BN, UK; Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford OX3 7FZ, UK; Diamond Light Source Ltd, Harwell Science & Innovation Campus, Didcot OX11 0DE, UK; Nuffield Department of Medicine, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK.
| |
Collapse
|
46
|
Perdiguero B, Marcos-Villar L, López-Bravo M, Sánchez-Cordón PJ, Zamora C, Valverde JR, Sorzano CÓS, Sin L, Álvarez E, Ramos M, Del Val M, Esteban M, Gómez CE. Immunogenicity and efficacy of a novel multi-patch SARS-CoV-2/COVID-19 vaccine candidate. Front Immunol 2023; 14:1160065. [PMID: 37404819 PMCID: PMC10316789 DOI: 10.3389/fimmu.2023.1160065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Introduction While there has been considerable progress in the development of vaccines against SARS-CoV-2, largely based on the S (spike) protein of the virus, less progress has been made with vaccines delivering different viral antigens with cross-reactive potential. Methods In an effort to develop an immunogen with the capacity to induce broad antigen presentation, we have designed a multi-patch synthetic candidate containing dominant and persistent B cell epitopes from conserved regions of SARS-CoV-2 structural proteins associated with long-term immunity, termed CoV2-BMEP. Here we describe the characterization, immunogenicity and efficacy of CoV2-BMEP using two delivery platforms: nucleic acid DNA and attenuated modified vaccinia virus Ankara (MVA). Results In cultured cells, both vectors produced a main protein of about 37 kDa as well as heterogeneous proteins with size ranging between 25-37 kDa. In C57BL/6 mice, both homologous and heterologous prime/boost combination of vectors induced the activation of SARS-CoV-2-specific CD4 and CD8 T cell responses, with a more balanced CD8+ T cell response detected in lungs. The homologous MVA/MVA immunization regimen elicited the highest specific CD8+ T cell responses in spleen and detectable binding antibodies (bAbs) to S and N antigens of SARS-CoV-2. In SARS-CoV-2 susceptible k18-hACE2 Tg mice, two doses of MVA-CoV2-BMEP elicited S- and N-specific bAbs as well as cross-neutralizing antibodies against different variants of concern (VoC). After SARS-CoV-2 challenge, all animals in the control unvaccinated group succumbed to the infection while vaccinated animals with high titers of neutralizing antibodies were fully protected against mortality, correlating with a reduction of virus infection in the lungs and inhibition of the cytokine storm. Discussion These findings revealed a novel immunogen with the capacity to control SARS-CoV-2 infection, using a broader antigen presentation mechanism than the approved vaccines based solely on the S antigen.
Collapse
Affiliation(s)
- Beatriz Perdiguero
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Laura Marcos-Villar
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - María López-Bravo
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Veterinary Pathology Department, Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Zamora
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ramón Valverde
- Scientific Computing, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carlos Óscar S. Sorzano
- Biocomputing Unit and Computational Genomics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Sin
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Enrique Álvarez
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Manuel Ramos
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita Del Val
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid, Madrid, Spain
| | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Carmen Elena Gómez
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| |
Collapse
|
47
|
Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduct Target Ther 2023; 8:197. [PMID: 37164987 PMCID: PMC10170451 DOI: 10.1038/s41392-023-01472-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
48
|
Lorenz P, Steinbeck F, Mai F, Reisinger EC, Müller-Hilke B. A linear B-cell epitope close to the furin cleavage site within the S1 domain of SARS-CoV-2 Spike protein discriminates the humoral immune response of nucleic acid- and protein-based vaccine cohorts. Front Immunol 2023; 14:1192395. [PMID: 37228598 PMCID: PMC10203960 DOI: 10.3389/fimmu.2023.1192395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Background Understanding the humoral immune response towards viral infection and vaccination is instrumental in developing therapeutic tools to fight and restrict the viral spread of global pandemics. Of particular interest are the specificity and breadth of antibody reactivity in order to pinpoint immune dominant epitopes that remain immutable in viral variants. Methods We used profiling with peptides derived from the Spike surface glycoprotein of SARS-CoV-2 to compare the antibody reactivity landscapes between patients and different vaccine cohorts. Initial screening was done with peptide microarrays while detailed results and validation data were obtained using peptide ELISA. Results Overall, antibody patterns turned out to be individually distinct. However, plasma samples of patients conspicuously recognized epitopes covering the fusion peptide region and the connector domain of Spike S2. Both regions are evolutionarily conserved and are targets of antibodies that were shown to inhibit viral infection. Among vaccinees, we discovered an invariant Spike region (amino acids 657-671) N-terminal to the furin cleavage site that elicited a significantly stronger antibody response in AZD1222- and BNT162b2- compared to NVX-CoV2373-vaccinees. Conclusions Understanding the exact function of antibodies recognizing amino acid region 657-671 of SARS-CoV-2 Spike glycoprotein and why nucleic acid-based vaccines elicit different responses from protein-based ones will be helpful for future vaccine design.
Collapse
Affiliation(s)
- Peter Lorenz
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Felix Steinbeck
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
| | - Franz Mai
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Emil C. Reisinger
- Division of Tropical Medicine and Infectious Diseases, Center of Internal Medicine II, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Institute of Immunology, Rostock University Medical Center, Rostock, Germany
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
49
|
Yalcin D, Bennett SJ, Sheehan J, Trauth AJ, Tso FY, West JT, Hagensee ME, Ramsay AJ, Wood C. Longitudinal Variations in Antibody Responses against SARS-CoV-2 Spike Epitopes upon Serial Vaccinations. Int J Mol Sci 2023; 24:ijms24087292. [PMID: 37108460 PMCID: PMC10138620 DOI: 10.3390/ijms24087292] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/08/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The COVID-19 pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) impacted healthcare, the workforce, and worldwide socioeconomics. Multi-dose mono- or bivalent mRNA vaccine regimens have shown high efficacy in protection against SARS-CoV-2 and its emerging variants with varying degrees of efficacy. Amino acid changes, primarily in the receptor-binding domain (RBD), result in selection for viral infectivity, disease severity, and immune evasion. Therefore, many studies have centered around neutralizing antibodies that target the RBD and their generation achieved through infection or vaccination. Here, we conducted a unique longitudinal study, analyzing the effects of a three-dose mRNA vaccine regimen exclusively using the monovalent BNT162b2 (Pfizer/BioNTech) vaccine, systematically administered to nine previously uninfected (naïve) individuals. We compare changes in humoral antibody responses across the entire SARS-CoV-2 spike glycoprotein (S) using a high-throughput phage display technique (VirScan). Our data demonstrate that two doses of vaccination alone can achieve the broadest and highest magnitudes of anti-S response. Moreover, we present evidence of novel highly boosted non-RBD epitopes that strongly correlate with neutralization and recapitulate independent findings. These vaccine-boosted epitopes could facilitate multi-valent vaccine development and drug discovery.
Collapse
Affiliation(s)
- Dicle Yalcin
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Sydney J Bennett
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| | - Jared Sheehan
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Amber J Trauth
- Departments of Medicine, Section of Infectious Diseases, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - For Yue Tso
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - John T West
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michael E Hagensee
- Departments of Medicine, Section of Infectious Diseases, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Alistair J Ramsay
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Charles Wood
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68516, USA
| |
Collapse
|
50
|
Understanding the SARS-CoV-2 Virus Neutralizing Antibody Response: Lessons to Be Learned from HIV and Respiratory Syncytial Virus. Viruses 2023; 15:v15020504. [PMID: 36851717 PMCID: PMC9961721 DOI: 10.3390/v15020504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The SARS-CoV-2 pandemic commenced in 2019 and is still ongoing. Neither infection nor vaccination give long-lasting immunity and, here, in an attempt to understand why this might be, we have compared the neutralizing antibody responses to SARS-CoV-2 with those specific for human immunodeficiency virus type 1 (HIV-1) and respiratory syncytial virus (RSV). Currently, most of the antibodies specific for the SARS-CoV-2 S protein map to three broad antigenic sites, all at the distal end of the S trimer (receptor-binding site (RBD), sub-RBD and N-terminal domain), whereas the structurally similar HIV-1 and the RSV F envelope proteins have six antigenic sites. Thus, there may be several antigenic sites on the S trimer that have not yet been identified. The epitope mapping, quantitation and longevity of the SARS-CoV-2 S-protein-specific antibodies produced in response to infection and those elicited by vaccination are now being reported for specific groups of individuals, but much remains to be determined about these aspects of the host-virus interaction. Finally, there is a concern that the SARS-CoV-2 field may be reprising the HIV-1 experience, which, for many years, used a virus for neutralization studies that did not reflect the neutralizability of wild-type HIV-1. For example, the widely used VSV-SARS-CoV-2-S protein pseudotype has 10-fold more S trimers per virion and a different configuration of the trimers compared with the SARS-CoV-2 wild-type virus. Clarity in these areas would help in advancing understanding and aid countermeasures of the SARS-CoV-2 pandemic.
Collapse
|