1
|
Li X, Feng M, Zhao Y, Zhang Y, Zhou R, Zhou H, Pang Z, Tachibana H, Cheng X. A Novel TLR4-Binding Domain of Peroxiredoxin From Entamoeba histolytica Triggers NLRP3 Inflammasome Activation in Macrophages. Front Immunol 2021; 12:758451. [PMID: 34659265 PMCID: PMC8515043 DOI: 10.3389/fimmu.2021.758451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Macrophages promote early host responses to infection by releasing pro-inflammatory cytokines, and they are crucial to combat amoebiasis, a disease affecting millions of people worldwide. Macrophages elicit pro-inflammatory responses following direct cell/cell interaction of Entamoeba histolytica, inducing NLRP3 inflammasome activation with high-output IL-1β/IL-18 secretion. Here, we found that trophozoites could upregulate peroxiredoxins (Prx) expression and abundantly secrete Prxs when encountering host cells. The C-terminal of Prx was identified as the key functional domain in promoting NLRP3 inflammasome activation, and a recombinant C-terminal domain could act directly on macrophage. The Prxs derived from E. histolytica triggered toll-like receptor 4-dependent activation of NLRP3 inflammasome in a cell/cell contact-independent manner. Through genetic, immunoblotting or pharmacological inhibition methods, NLRP3 inflammasome activation was induced through caspase-1-dependent canonical pathway. Our data suggest that E. histolytica Prxs had stable and durable cell/cell contact-independent effects on macrophages following abundantly secretion during invasion, and the C-terminal of Prx was responsible for activating NLRP3 inflammasome in macrophages. This new alternative pathway may represent a potential novel therapeutic approach for amoebiasis, a global threat to millions.
Collapse
Affiliation(s)
- Xia Li
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng Feng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yanqing Zhao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuhan Zhang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ruixue Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hang Zhou
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhen Pang
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| | - Xunjia Cheng
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China.,Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
2
|
Nagaraja S, Ankri S. Target identification and intervention strategies against amebiasis. Drug Resist Updat 2019; 44:1-14. [PMID: 31112766 DOI: 10.1016/j.drup.2019.04.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 04/27/2019] [Accepted: 04/30/2019] [Indexed: 12/22/2022]
Abstract
Entamoeba histolytica is the etiological agent of amebiasis, which is an endemic parasitic disease in developing countries and is the cause of approximately 70,000 deaths annually. E. histolytica trophozoites usually reside in the colon as a non-pathogenic commensal in most infected individuals (90% of infected individuals are asymptomatic). For unknown reasons, these trophozoites can become virulent and invasive, cause amebic dysentery, and migrate to the liver where they cause hepatocellular damage. Amebiasis is usually treated either by amebicides which are classified as (a) luminal and are active against the luminal forms of the parasite, (b) tissue and are effective against those parasites that have invaded tissues, and (c) mixed and are effective against the luminal forms of the parasite and those forms which invaded the host's tissues. Of the amebicides, the luminal amebicide, metronidazole (MTZ), is the most widely used drug to treat amebiasis. Although well tolerated, concerns about its adverse effects and the possible emergence of MTZ-resistant strains of E. histolytica have led to the development of new therapeutic strategies against amebiasis. These strategies include improving the potency of existing amebicides, discovering new uses for approved drugs (repurposing of existing drugs), drug rediscovery, vaccination, drug targeting of essential E. histolytica components, and the use of probiotics and bioactive natural products. This review examines each of these strategies in the light of the current knowledge on the gut microbiota of patients with amebiasis.
Collapse
Affiliation(s)
- Shruti Nagaraja
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Serge Ankri
- Department of Molecular Microbiology, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
3
|
Cornick S, Chadee K. Entamoeba histolytica: Host parasite interactions at the colonic epithelium. Tissue Barriers 2018; 5:e1283386. [PMID: 28452682 DOI: 10.1080/21688370.2017.1283386] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Entamoeba histolytica (Eh) is the protozoan parasite responsible for intestinal amebiasis and interacts dynamically with the host intestinal epithelium during disease pathogenesis. A multifaceted pathogenesis profile accounts for why 90% of individuals infected with Eh are largely asymptomatic. For 100 millions individuals that are infected each year, key interactions within the intestinal mucosa dictate disease susceptibility. The ability for Eh to induce amebic colitis and disseminate into extraintestinal organs depends on the parasite competing with indigenous bacteria and overcoming the mucus barrier, binding to host cells inducing their cell death, invasion through the mucosa and outsmarting the immune system. In this review we summarize how Eh interacts with the intestinal epithelium and subverts host defense mechanisms in disease pathogenesis.
Collapse
Affiliation(s)
- Steve Cornick
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| | - Kris Chadee
- a Department of Microbiology, Immunology and Infectious Diseases , Snyder Institute for Chronic Diseases, University of Calgary , Calgary , Alberta , Canada
| |
Collapse
|
4
|
Bayih AG, Daifalla NS, Gedamu L. DNA-protein immunization using Leishmania peroxidoxin-1 induces a strong CD4+ T cell response and partially protects mice from cutaneous leishmaniasis: role of fusion murine granulocyte-macrophage colony-stimulating factor DNA adjuvant. PLoS Negl Trop Dis 2014; 8:e3391. [PMID: 25500571 PMCID: PMC4263403 DOI: 10.1371/journal.pntd.0003391] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2014] [Accepted: 10/31/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To date, no universally effective and safe vaccine has been developed for general human use. Leishmania donovani Peroxidoxin-1 (LdPxn-1) is a member of the antioxidant family of proteins and is predominantly expressed in the amastigote stage of the parasite. The aim of this study was to evaluate the immunogenicity and protective efficacy of LdPxn-1 in BALB/c mice in heterologous DNA-Protein immunization regimen in the presence of fusion murine granulocyte-macrophage colony-stimulating factor (mGMCSF) DNA adjuvant. METHODOLOGY AND PRINCIPAL FINDINGS A fusion DNA of LdPxn1 and mGMCSF was cloned into a modified pcDNA vector. To confirm the expression in mammalian system, Chinese hamster ovary cells were transfected with the plasmid vector containing LdPxn1 gene. BALB/c mice were immunized twice with pcDNA-mGMCSF-LdPxn-1 or pcDNA-LdPxn1 DNA and boosted once with recombinant LdPxn-1 protein. Three weeks after the last immunization, mice were infected with Leishmania major promastigotes. The result showed that immunization with pcDNA-mGMCSF-LdPxn1 elicited a mixed Th-1/Th-2 immune response with significantly higher production of IFN-γ than controls. Intracellular cytokine staining of antigen-stimulated spleen cells showed that immunization with this antigen elicited significantly higher proportion of CD4+ T cells that express IFN-γ, TNF-α, or IL-2. The antigen also induced significantly higher proportion of multipotent CD4+ cells that simultaneously express the three Th-1 cytokines. Moreover, a significant reduction in the footpad swelling was seen in mice immunized with pcDNA-mGMCSF-LdPxn1 antigen. Expression study in CHO cells demonstrated that pcDNA-mGMCSF-LdPxn-1 was expressed in mammalian system. CONCLUSION The result demonstrates that immunization of BALB/c mice with a plasmid expressing LdPxn1 in the presence of mGMCSF adjuvant elicits a strong specific immune response with high level induction of multipotent CD4+ cells that mediate protection of the mice from Leishmania major infection. To our knowledge, this is the first study showing the vaccine potential of Leishmania peroxidoxin -1.
Collapse
Affiliation(s)
- Abebe Genetu Bayih
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| | - Nada S. Daifalla
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lashitew Gedamu
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
5
|
Immunization with the Entamoeba histolytica surface metalloprotease EhMSP-1 protects hamsters from amebic liver abscess. Infect Immun 2014; 83:713-20. [PMID: 25452550 DOI: 10.1128/iai.02490-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Diarrhea and amebic liver abscesses due to invasive Entamoeba histolytica infections are an important cause of morbidity and mortality in the developing world. Entamoeba histolytica adherence and cell migration, two phenotypes linked to virulence, are both aberrant in trophozoites deficient in the metallosurface protease EhMSP-1, which is a homologue of the Leishmania vaccine candidate leishmanolysin (GP63). We examined the potential of EhMSP-1 for use as a vaccine antigen to protect against amebic liver abscesses. First, existing serum samples from South Africans naturally infected with E. histolytica were examined by enzyme-linked immunosorbent assay (ELISA) for the presence of EhMSP-1-specific IgG. Nine of 12 (75%) people with anti-E. histolytica IgG also had EhMSP-1-specific IgG antibodies. We next used a hamster model of amebic liver abscess to determine the effect of immunization with a mixture of four recombinant EhMSP-1 protein fragments. EhMSP-1 immunization stimulated a robust IgG antibody response. Furthermore, EhMSP-1 immunization of hamsters reduced development of severe amebic liver abscesses following intrahepatic injection of E. histolytica by a combined rate of 68% in two independent animal experiments. Purified IgG from immunized compared to control animals bound to the surface of E. histolytica trophozoites and accelerated amebic lysis via activation of the classical complement cascade. We concluded that EhMSP-1 is a promising antigen that warrants further study to determine its full potential as a target for therapy and/or prevention of invasive amebiasis.
Collapse
|
6
|
Peroxynitrite and peroxiredoxin in the pathogenesis of experimental amebic liver abscess. BIOMED RESEARCH INTERNATIONAL 2014; 2014:324230. [PMID: 24822193 PMCID: PMC4009108 DOI: 10.1155/2014/324230] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 03/12/2014] [Indexed: 12/21/2022]
Abstract
The molecular mechanisms by which Entamoeba histolytica causes amebic liver abscess (ALA) are still not fully understood. Amebic mechanisms of adherence and cytotoxic activity are pivotal for amebic survival but apparently do not directly cause liver abscess. Abundant evidence indicates that chronic inflammation (resulting from an inadequate immune response) is probably the main cause of ALA. Reports referring to inflammatory mechanisms of liver damage mention a repertoire of toxic molecules by the immune response (especially nitric oxide and reactive oxygen intermediates) and cytotoxic substances released by neutrophils and macrophages after being lysed by amoebas (e.g., defensins, complement, and proteases). Nevertheless, recent evidence downplays these mechanisms in abscess formation and emphasizes the importance of peroxynitrite (ONOO−). It seems that the defense mechanism of amoebas against ONOO−, namely, the amebic thioredoxin system (including peroxiredoxin), is superior to that of mammals. The aim of the present text is to define the importance of ONOO− as the main agent of liver abscess formation during amebic invasion, and to explain the superior capacity of amoebas to defend themselves against this toxic agent through the peroxiredoxin and thioredoxin system.
Collapse
|
7
|
Quach J, St-Pierre J, Chadee K. The future for vaccine development against Entamoeba histolytica. Hum Vaccin Immunother 2014; 10:1514-21. [PMID: 24504133 DOI: 10.4161/hv.27796] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Entamoeba histolytica is the causative agent of amebiasis, one of the top three parasitic causes of mortality worldwide. In the majority of infected individuals, E. histolytica asymptomatically colonizes the large intestine, while in others, the parasite breaches the mucosal epithelial barrier to cause amebic colitis and can disseminate to soft organs to cause abscesses. Vaccinations using native and recombinant forms of the parasite Gal-lectin have been successful in protecting animals against intestinal amebiasis and amebic liver abscess. Protection against amebic liver abscesses has also been reported by targeting other E. histolytica components including the serine-rich protein and the 29-kDa-reductase antigen. To date, vaccines against the Gal-lectin hold the most promise but clinical trials will be required to validate its efficacy in humans. Here, we review the current strategies and future perspectives involved in the development of a vaccine against E. histolytica.
Collapse
Affiliation(s)
- Jeanie Quach
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Joëlle St-Pierre
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| | - Kris Chadee
- Faculty of Medicine; Department of Microbiology, Immunology, and Infectious Diseases; Snyder Institute for Chronic Diseases; Gastrointestinal Research Group; University of Calgary; Calgary, AB Canada
| |
Collapse
|
8
|
Kaur U, Khurana S, Saikia UN, Dubey ML. Immunogenicity and protective efficacy of heparan sulphate binding proteins of Entamoeba histolytica in a guinea pig model of intestinal amoebiasis. Exp Parasitol 2013; 135:486-96. [PMID: 24007700 DOI: 10.1016/j.exppara.2013.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 08/07/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
Abstract
Entamoeba histolytica infection is associated with considerable morbidity and mortality in the form of intestinal and extraintestinal amoebiasis. No vaccine is yet available for amoebiasis. Heparan Sulphate Binding Proteins (HSBPs) from E. histolytica were evaluated for immunogenicity and protective efficacy in a Guinea pig model. Animals were immunized subcutaneously with 30μg of HSBP by three weekly inoculations. The immunogenicity of HSBP was determined by antibody response (IgG, IgM and IgA), splenocyte proliferation assay and in vitro direct amoebicidal assay with splenic lymphocytes and monocytes from vaccinated and control animals. The efficacy of the vaccine was evaluated by challenge infection to vaccinated and control animals by intra-caecal inoculation of E. histolytica trophozoites and comparing gross and histopathological findings in caeca of these animals. HSBP was found to induce specific anti-amoebic response as seen by specific antibody production and direct amoebicidal activity of splenocytes. The vaccine also showed partial protection against challenge infection in vaccinated animals as shown by mild/absent lesions and histopathological findings.
Collapse
Affiliation(s)
- Upninder Kaur
- Departments of Parasitology, Postgraduate Institute of Medical Education and Research, Chandigarh 160012, India
| | | | | | | |
Collapse
|
9
|
Barroso L, Abhyankar M, Noor Z, Read K, Pedersen K, White R, Fox C, Petri WA, Lyerly D. Expression, purification, and evaluation of recombinant LecA as a candidate for an amebic colitis vaccine. Vaccine 2013; 32:1218-24. [PMID: 23827311 DOI: 10.1016/j.vaccine.2013.06.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 06/06/2013] [Accepted: 06/19/2013] [Indexed: 11/25/2022]
Abstract
Entamoeba histolytica, which causes amebic colitis and liver abscess, is considered a major enteric pathogen in residents and travelers to developing countries where the disease is endemic. Interaction of this protozoan parasite with the intestine is mediated through the binding of the trophozoite stage to intestinal mucin and epithelium via a galactose and N-acetyl-d-galactosamine (Gal/GalNAc) lectin comprised of a disulfide linked heavy (ca. 180 kDa) and light chain (ca. 35 kDa) and a noncovalently bound intermediate subunit (ca. 150 kDa). Our efforts to develop a vaccine against this pathogen have focused on an internal 578 amino acid fragment, designated LecA, located within the cysteine-rich region of the heavy chain subunit because: (i) it is a major target of adherence-blocking antibodies of seropositive individuals and (ii) vaccination with his-tagged LecA provides protection in animal models. We developed a purification process for preparing highly purified non-tagged LecA using a codon-optimized gene expressed in Escherichia coli. The process consisted of: (i) cell lysis, collection and washing of inclusion bodies; (ii) solubilization and refolding of denatured LecA; and (iii) a polishing gel filtration step. The purified fragment existed primarily as a random coil with β-sheet structure, contained low endotoxin and nucleic acid, was highly immunoreactive, and elicited antibodies that recognized native lectin and that inhibited in vitro adherence of trophozoites to CHO cells. Immunization of CBA mice with LecA resulted in significant protection against cecal colitis. Our procedure yields sufficient amounts of highly purified LecA for future studies on stability, immunogenicity, and protection with protein-adjuvant formulations.
Collapse
Affiliation(s)
- L Barroso
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - M Abhyankar
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - Z Noor
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - K Read
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - K Pedersen
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - R White
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA
| | - C Fox
- Infectious Disease Research Institute, Seattle, WA, USA
| | - W A Petri
- Division of Infectious Diseases and International Health University of Virginia Health System, Carter Harrison Building, Room 1709A, 345 Crispell Drive, P.O. Box 801340, Charlottesville, VA 22908-1340, USA
| | - D Lyerly
- TECHLAB, Inc., 2001 Kraft Drive, Blacksburg, VA 24060-6158, USA.
| |
Collapse
|
10
|
Gretes MC, Poole LB, Karplus PA. Peroxiredoxins in parasites. Antioxid Redox Signal 2012; 17:608-33. [PMID: 22098136 PMCID: PMC3373223 DOI: 10.1089/ars.2011.4404] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 11/18/2011] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Parasite survival and virulence relies on effective defenses against reactive oxygen and nitrogen species produced by the host immune system. Peroxiredoxins (Prxs) are ubiquitous enzymes now thought to be central to such defenses and, as such, have potential value as drug targets and vaccine antigens. RECENT ADVANCES Plasmodial and kinetoplastid Prx systems are the most extensively studied, yet remain inadequately understood. For many other parasites our knowledge is even less well developed. Through parasite genome sequencing efforts, however, the key players are being discovered and characterized. Here we describe what is known about the biochemistry, regulation, and cell biology of Prxs in parasitic protozoa, helminths, and fungi. At least one Prx is found in each parasite with a sequenced genome, and a notable theme is the common patterns of expression, localization, and functionality among sequence-similar Prxs in related species. CRITICAL ISSUES The nomenclature of Prxs from parasites is in a state of disarray, causing confusion and making comparative inferences difficult. Here we introduce a systematic Prx naming convention that is consistent between organisms and informative about structural and evolutionary relationships. FUTURE DIRECTIONS The new nomenclature should stimulate the crossfertilization of ideas among parasitologists and with the broader redox research community. The diverse parasite developmental stages and host environments present complex systems in which to explore the variety of roles played by Prxs, with a view toward parlaying what is learned into novel therapies and vaccines that are urgently needed.
Collapse
Affiliation(s)
- Michael C. Gretes
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| | - Leslie B. Poole
- Department of Biochemistry, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - P. Andrew Karplus
- Department of Biochemistry & Biophysics, Oregon State University, Corvallis, Oregon
| |
Collapse
|
11
|
Yang B, Chen Y, Wu L, Xu L, Tachibana H, Cheng X. Seroprevalence of Entamoeba histolytica infection in China. Am J Trop Med Hyg 2012; 87:97-103. [PMID: 22764298 PMCID: PMC3391064 DOI: 10.4269/ajtmh.2012.11-0626] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2011] [Accepted: 04/14/2012] [Indexed: 12/23/2022] Open
Abstract
The seroprevalence of Entamoeba histolytica infection in the residents of seven provinces in China was examined by using an enzyme-linked immunosorbent assay with a crude antigen and a recombinant surface antigen, C-Igl, of the parasites. A total of 1,312 serum samples were investigated. The positivity rates for these two antigens were 11.05% and 6.25%, respectively. There was no significant difference in the seropositivity to E. histolytica between men and women. We used a logistic regression model and maximal-likelihood methods to estimate the prevalence of E. histolytica infection from sequential serologic data. Seropositivity in Sichuan, Guizhou, and Sinkiang Provinces was higher than that in Beijing, Shanghai, and Qinghai Provinces. The present study provides an overview of seropositivity to E. histolytica infection in seven provinces in China and use the logistic regression model estimation method to achieve a more accurate measure of amebiasis prevalence.
Collapse
Affiliation(s)
- Bin Yang
- Department of Microbiology and Parasitology, Shanghai Medical College, Fudan University, Shanghai, China.
| | | | | | | | | | | |
Collapse
|
12
|
González-Vázquez MC, Carabarin-Lima A, Baylón-Pacheco L, Talamás-Rohana P, Rosales-Encina JL. Obtaining of three recombinant antigens of Entamoeba histolytica and evaluation of their immunogenic ability without adjuvant in a hamster model of immunoprotection. Acta Trop 2012; 122:169-76. [PMID: 22266120 DOI: 10.1016/j.actatropica.2011.12.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 11/24/2011] [Accepted: 12/16/2011] [Indexed: 01/08/2023]
Abstract
A 30-kDa surface collagen binding protein peroxiredoxin of Entamoeba histolytica (EhCBP30) was evaluated either alone or fused to the chaperone (CHP) or ATPase (ATP) domains of heat shock protein 70 of Trypanosoma cruzi (TcHSP70) as a vaccine candidate in a hamster model of experimental amoebic liver abscess (ALA) development. Three constructs were produced containing the EhCBP30 DNA sequence, one expressing EhCBP30 and two expressing EhCBP30 fused to either CHP or ATP domains of TcHSP70. High purity recombinant proteins rEhCBP30, rEhCBP30-CHP and rEhCBP30-ATP with N-terminal His tag were obtained by single step affinity purification. Hamsters were immunized without adjuvant with the antigenic recombinant proteins and then challenged intrahepatically with E. histolytica trophozoites. A 70% decrease in ALA development was detected in hamsters immunized with rEhCBP30 and rEhCBP30-CHP, while animals immunized with rEhCBP30-ATP did not show a statistically significant decrease in ALA formation compared with non-immunized animals. Histological analysis of liver tissue showed that the inflammatory infiltrate was discrete or moderate in hamsters immunized with rEhCBP30 or rEhCBP30-CHP compared with that observed in control hamsters or hamsters immunized with rEhCBP30-ATP. These results suggest that rEhCBP30 and rEhCBP30-CHP are able to induce an effective immune response that may protect hamsters against ALA development.
Collapse
|
13
|
Daifalla NS, Bayih AG, Gedamu L. Immunogenicity of Leishmania donovani iron superoxide dismutase B1 and peroxidoxin 4 in BALB/c mice: the contribution of Toll-like receptor agonists as adjuvant. Exp Parasitol 2011; 129:292-8. [PMID: 21835175 DOI: 10.1016/j.exppara.2011.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Revised: 06/23/2011] [Accepted: 07/01/2011] [Indexed: 01/19/2023]
Abstract
In this study, we assessed the immune response of two Leishmania donovani recombinant proteins: iron superoxide dismutase B1 (SODB1) and peroxidoxin 4 (Pxn4) in BALB/c mice. Assessment of the immunogenicity of these proteins alone or combined with Toll-like receptor 9 (TLR-9) agonist (CpG ODN) or TLR-4 agonist (GLA-SE) showed that they elicit specific antibody as well as cytokine production in response to the respective antigen in vitro. The use of adjuvants augmented immunogenicity of these antigens and more importantly, skewed the immune response to a Th1-type. These results indicate that recombinant SODB1 and Pxn4 proteins are potential vaccine candidates when administered with appropriate adjuvants.
Collapse
Affiliation(s)
- Nada S Daifalla
- University of Calgary, Department of Biological Sciences, Room 374, 2500 University Drive NW, Calgary, AB, Canada T2N 1N4
| | | | | |
Collapse
|
14
|
Abstract
Peroxidoxins are a recently described family of antioxidants. They have an ancient origin, being present in organisms as primitive as the archaea, and they appear to be ubiquitous in living cells. Here, Sharon McGonigle, John Dalton and Eric James review the present understanding of the functions and mechanism of action of these enzymes and suggest that these antioxidants may represent the ;missing link' in the metabolism of reactive oxygen species by some protozoan and helminth parasites. Also, by performing sequence comparisons of homologues entered in the public databases, they have classified the parasite peroxidoxins as 1-cys or 2-cys enzymes. The discovery of these antioxidants may change our understanding of how reactive oxygen species, of parasite or host origin, are managed by parasites.
Collapse
Affiliation(s)
- S McGonigle
- Department of Ophthalmology, Medical University of South Carolina, 171 Ashley Ave, Charleston, SC 29425, USA
| | | | | |
Collapse
|
15
|
Abstract
Entameba histolytica causes amebiasis, which includes both intestinal and extraintestinal amebiasis. E. histolytica causes 34 million to 50 million symptomatic cases of amebiasis worldwide every year, causing 40 thousand to 100 thousand deaths annually. E. histolytica, the pathogenic species of amebae is indistinguishable in its cyst and trophozoite stages from those of E. moshkovskii, a free-living ameba, and E. dispar, a non-invasive ameba, by microscopy, except in cases of invasive disease, where E. histolytica trophozoite may contain ingested red blood cells, but such a finding is rarely seen. This leads to a confusing scenario for the definite identification and differentiation of E. histolytica from E. moshkovskii and E. dispar by conventional microscopy, in the diagnosis of intestinal amebiasis. The advent of molecular methods such as multiplex PCR and real time PCR have facilitated a better and accurate diagnosis of E. histolytica, E. moshkovskii, and E. dispar in stool, urine, saliva, and other specimens. Multiplex PCR for the diagnosis of amebic liver abscess, using urine and saliva as clinical specimens, has been used, and the results have been encouraging. Real-time PCR is a new and a very attractive methodology for laboratory diagnosis of amebiasis, because of its characteristics that eliminate post-PCR analysis, leading to a shorter turnaround time. Microarray-based approaches represent an attractive diagnostic tool for the detection and identification of amebae in clinical and epidemiological investigations. Development of vaccines against amebiasis is still in its infancy. However, in recent years, progress has been made in the identification of possible vaccine candidates, the route of application, and the understanding of the immune response, which is required for protection against amebiasis. Thus, it is just a matter of time, and hopefully, amebiasis vaccine for human trials will be available in the next few years.
Collapse
Affiliation(s)
- Subhash Chandra Parija
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| |
Collapse
|
16
|
Carrero JC, Contreras-Rojas A, Sánchez-Hernández B, Petrosyan P, Bobes RJ, Ortiz-Ortiz L, Laclette JP. Protection against murine intestinal amoebiasis induced by oral immunization with the 29 kDa antigen of Entamoeba histolytica and cholera toxin. Exp Parasitol 2010; 126:359-65. [PMID: 20303954 DOI: 10.1016/j.exppara.2010.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/05/2010] [Accepted: 03/12/2010] [Indexed: 10/19/2022]
Abstract
Entamoeba histolytica antigens recognized by salivary IgA from infected patients include the 29 kDa antigen (Eh29), an alkyl hydroperoxide reductase. Here, we investigate the potential of recombinant Eh29 and an Eh29-cholera toxin subunit B (CTxB) fusion protein to confer protection against intestinal amoebiasis after oral immunization. The purified Eh29-CTxB fusion retained the critical ability to bind ganglioside GM(1), as determined by ELISA. Oral immunization of C3H/HeJ mice with Eh29 administered in combination with a subclinical dose of whole cholera toxin, but not as an Eh29-CTxB fusion, induced elevated levels of intestinal IgA and serum IgG anti-Eh29 antibodies that inhibited trophozoites adherence to MDCK cell monolayers. The 80% of immunized mice seen to develop IgA and IgG immune responses showed no evidence of infection in tissue sections harvested following intracecal challenge with virulent E. histolytica trophozoites. These results suggest that Eh29 is capable of inducing protective anti-amoebic immune responses in mice following oral immunization and could be used in the development of oral vaccines against amoebiasis.
Collapse
Affiliation(s)
- J C Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, A.P. 70228, 04510 México D.F., Mexico.
| | | | | | | | | | | | | |
Collapse
|
17
|
Protection against intestinal amebiasis by a recombinant vaccine is transferable by T cells and mediated by gamma interferon. Infect Immun 2009; 77:3909-18. [PMID: 19564375 DOI: 10.1128/iai.00487-09] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have previously shown that vaccination with purified Entamoeba histolytica Gal/GalNAc lectin or recombinant subunits can protect mice from intestinal amebiasis upon intracecal challenge. In this study, we demonstrated with adoptive-transfer experiments that this lectin vaccine protection is mediated by T cells but not serum. The cell-mediated immune (CMI) response was characterized by significant gamma interferon (IFN-gamma), interleukin 12 (IL-12), IL-2, IL-10, and IL-17 production. To move toward a human vaccine, we switched to a recombinant protein and tested a range of adjuvants and routes appropriate for humans. We found that subcutaneous delivery of LecA with IDRI's adjuvant system EM014 elicited a potent Th1-type CMI profile and provided significant protection, as measured by culture negativity (79% efficacy); intranasal immunization with cholera toxin provided 56% efficacy; and alum induced a Th2-type response that protected 62 to 68% of mice. Several antibody and CMI cytokine responses were examined for correlates of protection, and prechallenge IFN-gamma(+) or IFN-gamma-, IL-2-, and tumor necrosis factor alpha-triple-positive CD4 cells in blood were statistically associated with protection. To test the role of IFN-gamma in LecA-mediated protection, we neutralized IFN-gamma in LecA-immunized mice and found that it abrogated the protection conferred by vaccination. These data demonstrate that CMI is sufficient for vaccine protection from intestinal amebiasis and reveal an important role for IFN-gamma, even in the setting of alum.
Collapse
|
18
|
Abstract
Entamoeba histolytica is a eukaryotic protozoan parasite and is the causative agent of amebic colitis and amebic liver abscess. Many insights into the innate and acquired immune responses to infection with E. histolytica have been made in recent years. These findings have provided a foundation for producing a vaccine that could help to prevent the initial establishment of infection in the intestinal wall. The galactose and N-acetyl-D-galactosamine-specific lectin on the surface of the ameba is an immunodominant molecule that is highly conserved and has an integral role in the stimulation of these immune responses. The structure of the lectin has been defined, and the heavy subunit with its cysteine-rich region has been demonstrated in animal models to have some efficacy as a possible vaccine agent for prevention of amebic infection. Finding an ideal animal model of amebic intestinal infection has been difficult, but the C3H mouse and severe combined immunodeficient mouse-human intestinal xenograft models have both provided valuable insights into the first line of immune defense at the mucosal wall of the colon. Providing safe food and water to all people in the developing world is a formidable task that is not achievable in the foreseeable future. However, a vaccine for amebiasis could make a significant impact on the morbidity and mortality from the disease. Many components of the ameba are immunogenic and may serve as targets for a future vaccine, including the galactose and N-acetyl-D-galactosamine lectin, the serine-rich E. histolytica protein, cysteine proteinases, lipophosphoglycans, amebapores and the 29-kDa protein.
Collapse
Affiliation(s)
- Omer A Chaudhry
- Division of Infectious Diseases and International Medicine, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA 22908-1340, USA.
| | | |
Collapse
|
19
|
Abstract
Amoebiasis, infection by the protozoan parasite Entamoeba histolytica, remains a global health problem, despite the availability of effective treatment. While improved sanitation could lead to the eradication of this disease, it is unlikely that this will occur worldwide in the foreseeable future; thus alternative measures must be pursued. One approach is to develop a vaccine to prevent this deadly disease. Clinical studies indicate that mucosal immunity may provide some protection against recurrent intestinal infection with E. histolytica, but there is no clear evidence that protective immunity develops after amoebic liver abscess. Over the past decade, progress in vaccine development has been facilitated by new animal models that allow better testing of potential vaccine candidates and the application of recombinant technology to vaccine design. Oral vaccines and DNA-based vaccines have been successfully tested in animals models for immunogenicity and efficacy. There has been significant progress on a number of fronts, but there are unanswered questions regarding the effectiveness of immune responses in preventing disease in man and, as yet, no testing of any of these vaccines in humans has been performed. In addition, there are strong economic barriers to developing an amoebiasis vaccine and questions about how and where an effective vaccine would be utilized.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Sen A, Chatterjee NS, Akbar MA, Nandi N, Das P. The 29-kilodalton thiol-dependent peroxidase of Entamoeba histolytica is a factor involved in pathogenesis and survival of the parasite during oxidative stress. EUKARYOTIC CELL 2007; 6:664-73. [PMID: 17307964 PMCID: PMC1865653 DOI: 10.1128/ec.00308-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The 29-kDa surface antigen (thiol-dependent peroxidase; Eh29) of Entamoeba histolytica exhibits peroxidative and protective antioxidant activities. During tissue invasion, the trophozoites are exposed to oxidative stress and need to deal with highly toxic reactive oxygen species (ROS). In this investigation, attempts have been made to understand the role of the 29-kDa peroxidase gene in parasite survival and pathogenesis. Inhibition of eh29 gene expression by antisense RNA technology has shown approximately 55% inhibition in eh29 expression, maximum ROS accumulation, and significantly lower viability in 29-kDa downregulated trophozoites during oxidative stress. The cytopathic and cytotoxic activities were also found to decrease effectively in the 29-kDa downregulated trophozoites. Size of liver abscesses was substantially lower in hamsters inoculated with 29-kDa downregulated trophozoites compared to the normal HM1:IMSS. These findings clearly suggest that the 29-kDa protein of E. histolytica has a role in both survival of trophozoites in the presence of ROS and pathogenesis of amoebiasis.
Collapse
Affiliation(s)
- Abhik Sen
- Division of Microbiology, National Institute of Cholera and Enteric Diseases, P-33, C.I.T. Road, Scheme-XM, Beliaghata, Kolkata-700 010, India
| | | | | | | | | |
Collapse
|
21
|
Lotter H, Tannich E. The current status of an amebiasis vaccine. Arch Med Res 2006; 37:292-6. [PMID: 16380335 DOI: 10.1016/j.arcmed.2005.09.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2005] [Accepted: 09/30/2005] [Indexed: 11/25/2022]
Abstract
Efficient control of infectious diseases requires the development and application of suitable vaccines. Development of vaccines against amebiasis is still in its infancy. However, in recent years progress has been made in the identification of possible vaccine candidates, the route of application and the understanding of the immune response that is required for protection against amebiasis.
Collapse
Affiliation(s)
- Hannelore Lotter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | |
Collapse
|
22
|
Choi MH, Sajed D, Poole L, Hirata K, Herdman S, Torian BE, Reed SL. An unusual surface peroxiredoxin protects invasive Entamoeba histolytica from oxidant attack. Mol Biochem Parasitol 2005; 143:80-9. [PMID: 15996766 DOI: 10.1016/j.molbiopara.2005.04.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 04/08/2005] [Accepted: 04/20/2005] [Indexed: 10/25/2022]
Abstract
Peroxiredoxins are an important class of antioxidant enzymes found from Archaea to humans, which reduce and thereby detoxify peroxides and peroxynitrites. The major thiol-containing surface antigen of the invasive ameba, Entamoeba histolytica, is a peroxiredoxin and is likely to be important during the transition from the anaerobic environment of the large intestine to human tissues. The closely related species, Entamoeba dispar, is incapable of invasion and more sensitive to hydrogen peroxide, yet also has a peroxiredoxin. We cloned and expressed the two active recombinant enzymes and found that their activity was similar by a fluorometric stopped-flow assay, giving a Km of <10 microM for hydrogen peroxide. Three monoclonal antibodies produced to recombinant E. histolytica peroxiredoxin cross-reacted with Entamoeba dispar.E. histolytica contains as much as 50 times more peroxiredoxin than E. dispar as demonstrated by a sensitive capture ELISA. In addition, the peroxiredoxin is present largely on the outer surface of the cell, in contrast to E. dispar. This unusual peroxiredoxin localizes to the site of parasite-host cell contact where it can effectively counteract oxidants generated by host cells, thus facilitating invasion.
Collapse
Affiliation(s)
- Min-Ho Choi
- Department of Pathology and Medicine, University of California, San Diego, 200 W. Arbor Dr., CA 92103-8416, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Campos-Rodríguezp R, Jarillo-Luna A. The pathogenicity of Entamoeba histolytica is related to the capacity of evading innate immunity. Parasite Immunol 2005; 27:1-8. [PMID: 15813717 DOI: 10.1111/j.1365-3024.2005.00743.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The host and parasite factors that influence susceptibility to Entamoeba histolytica infection and disease are not well understood. Entamoeba histolytica pathogenicity has been considered by focusing principally on parasite rather than host factors. Thus, research has concentrated on explaining the molecular differences between pathogenic E. histolytica and non-pathogenic E. dispar. However, the amoeba molecules considered most important for host tissue destruction (amoebapore, galactose/N-acetyl galactosamine inhibitable lectin, and cysteine proteinases) are present in both pathogenic E. histolytica and non-pathogenic E. dispar. In addition, the genetic differences in pathogenicity among E. histolytica isolates are unlikely to completely explain the different outcomes of infection. Considering that the principal difference between pathogenic and non-pathogenic amoebas lies in their surface coats, we propose that pathogenicity of the amoebas is related to the composition and properties of the surface coat components (or pathogen-associated molecular patterns, PAMPs), and the ability of innate immune response to recognize these components and eliminate the parasite. According to this hypothesis, a key feature that may distinguish pathogenic (E. histolytica) from non-pathogenic (E. dispar) strains is whether or not they can overcome innate immune defences. A corollary of this hypothesis is that in susceptible individuals the PAMPs are either not recognized or they are recognized by a set of Toll-like receptors (TLRs) that leads to an inflammatory response. In both cases, the result is tissue damage. On the contrary, in resistant individuals the innate/inflammatory response, induced through the activation of a different set of TLRs, eliminates the parasite.
Collapse
Affiliation(s)
- Rafael Campos-Rodríguezp
- Departamento de Bioquímica, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, DF.
| | | |
Collapse
|
24
|
Jiménez-Delgadillo B, Chaudhuri PP, Baylón-Pacheco L, López-Monteon A, Talamás-Rohana P, Rosales-Encina JL. Entamoeba histolytica: cDNAs cloned as 30kDa collagen-binding proteins (CBP) belong to an antioxidant molecule family. Protection of hamsters from amoebic liver abscess by immunization with recombinant CBP. Exp Parasitol 2004; 108:7-17. [PMID: 15491543 DOI: 10.1016/j.exppara.2004.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Revised: 05/08/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
A cDNA expression library of Entamoeba histolytica was screened with antiserum to native amoebic collagen binding proteins (CBPs), and two clones C13 and C7 which partially encode for the 30 kDa CBP were obtained. The sequenced clones were 90% homologous. C7 had a 69 bp deletion at the 5' end that is present in C13 and encodes for a Glu-Cys-Lys rich region and a four amino acids repeat (Glu-Lys-Glu-Cys). Purified fusion proteins from these cDNA clones were able to bind native type I collagen gels in a pH, calcium, ionic strength, and temperature dependent way. The binding of pgtC13 to collagen gel was time and temperature stable, while pgtC7 binding was not, suggesting that the deleted region in C7 is important for the binding. The clones reported here partially encode a 30 kDa CBP that also belong to an antioxidant molecule family. We demonstrated that the fusion protein pgtC13 is immunogenic and partially protective as a subunit vaccine in the hamster model of amoebic liver abscess.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antioxidants/chemistry
- Antioxidants/metabolism
- Base Sequence
- Blotting, Western
- Cloning, Molecular
- Collagen/metabolism
- Consensus Sequence
- Cricetinae
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- DNA, Protozoan/chemistry
- DNA, Protozoan/isolation & purification
- Disease Models, Animal
- Electrophoresis, Polyacrylamide Gel
- Entamoeba histolytica/genetics
- Entamoeba histolytica/immunology
- Liver Abscess, Amebic/prevention & control
- Male
- Mesocricetus
- Molecular Sequence Data
- Plasmids/chemistry
- Plasmids/genetics
- Protozoan Proteins/chemistry
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Proteins/metabolism
- Protozoan Vaccines
- Sequence Alignment
- Vaccines, Subunit
Collapse
Affiliation(s)
- Bertha Jiménez-Delgadillo
- Departamento de Patología Experimental, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, México City, D.F. CP 07360, Mexico
| | | | | | | | | | | |
Collapse
|
25
|
Madriz X, Martínez MB, Rodríguez MA, Sierra G, Martínez-López C, Riverón AM, Flores L, Orozco E. Expression in fibroblasts and in live animals of Entamoeba histolytica polypeptides EhCP112 and EhADH112. MICROBIOLOGY-SGM 2004; 150:1251-1260. [PMID: 15133088 DOI: 10.1099/mic.0.26938-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
EhCPADH is an immunogenic, heterodimeric protein that is formed by EhCP112 (cysteine protease) and EhADH112 (adhesin), polypeptides involved in Entamoeba histolytica's cytopathic effect, target-cell adherence and phagocytosis. The EhCPADH complex is located in the plasma membrane and cytoplasmic vacuoles. Here, the independent expression of EhCP112 and EhADH112 in fibroblasts and hamsters was analysed. Also investigated was the immunological response in animals independently inoculated with plasmid pcDNA-Ehcp112, which carries the complete cysteine protease-encoding gene, or with plasmid pcDNA-Ehadh112, which carries the C terminus of the adhesin-encoding gene, or with a mixture of both. Both proteins were expressed in the plasma membranes of the transfected fibroblasts. EhCP112 was toxic for the mammalian cells. Proteins were also independently expressed in hamsters after inoculation with the plasmids. Their expression was indirectly evaluated by the presence of antibodies in the inoculated animals. Remarkably, co-immunization of the animals with the two DNA plasmids resulted in an earlier and higher anti-E. histolytica IgG induction than immunization with separate plasmids. In contrast, the cellular immune response was not noticeably improved by the plasmid mixture. Interestingly, protection against liver abscesses was detected only in animals that received the plasmid mixture and no protection was observed in hamsters independently inoculated with plasmid pcDNA-Ehcp112 or pcDNA-Ehadh112.
Collapse
Affiliation(s)
- Xochil Madriz
- División de Biología Molecular, Instituto Finlay, AP 16017 Ciudad de la Habana, C.P. 11600, Cuba
- Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera #239, DF 07320, Mexico
| | - Máximo B Martínez
- División de Biología Molecular, Instituto Finlay, AP 16017 Ciudad de la Habana, C.P. 11600, Cuba
| | - Mario A Rodríguez
- Departamento de Patología Experimental, CINVESTAV, IPN, AP 14-740, DF 07000, Mexico
| | - Gustavo Sierra
- División de Biología Molecular, Instituto Finlay, AP 16017 Ciudad de la Habana, C.P. 11600, Cuba
| | - Carolina Martínez-López
- Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera #239, DF 07320, Mexico
| | - Ana M Riverón
- Departamento de Biología Molecular, CENIC, AP 6690 Ciudad de La Habana, Cuba
| | - Leopoldo Flores
- Departamento de Patología Experimental, CINVESTAV, IPN, AP 14-740, DF 07000, Mexico
| | - Esther Orozco
- Departamento de Patología Experimental, CINVESTAV, IPN, AP 14-740, DF 07000, Mexico
| |
Collapse
|
26
|
Martínez-López C, Orozco E, Sánchez T, García-Pérez RM, Hernández-Hernández F, Rodríguez MA. The EhADH112 recombinant polypeptide inhibits cell destruction and liver abscess formation by Entamoeba histolytica trophozoites. Cell Microbiol 2004; 6:367-76. [PMID: 15009028 DOI: 10.1111/j.1462-5822.2004.00363.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Entamoeba histolytica EhCPADH complex, formed by a cysteine proteinase (EhCP112) and an adhesin (EhADH112), is involved in adherence, phagocytosis and cytolysis. This makes this complex an attractive candidate as a vaccine against amoebiasis. Here, we produced the recombinant polypeptide EhADH243, which includes the adherence epitope detected by a monoclonal antibody against the EhCPADH complex. EhADH243 was purified, and the effect of the polypeptide on in vitro and in vivo virulence was studied. Antibodies against EhADH243 reacted with the EhCPADH complex and with the recombinant polypeptide. EhADH243 and antibodies against this polypeptide inhibited adherence, phagocytosis and destruction of cell monolayers by live trophozoites, but had little effect on cell monolayer destruction by trophozoite extracts. EhADH243 recognized a 97 kDa protein in the MDCK membrane fraction that could be a putative receptor for E. histolytica trophozoites. Hamsters immunized with EhADH243 developed humoral response against EhCPADH, and animals were partially protected from amoebic liver abscess.
Collapse
Affiliation(s)
- Carolina Martínez-López
- Escuela Nacional de Medicina y Homeopatía, IPN, Guillermo Massieu Helguera #239, México, DF, 07320
| | | | | | | | | | | |
Collapse
|
27
|
Tachibana H, Cheng XJ, Masuda G, Horiki N, Takeuchi T. Evaluation of recombinant fragments of Entamoeba histolytica Gal/GalNAc lectin intermediate subunit for serodiagnosis of amebiasis. J Clin Microbiol 2004; 42:1069-74. [PMID: 15004055 PMCID: PMC356887 DOI: 10.1128/jcm.42.3.1069-1074.2004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have recently identified a 150-kDa surface antigen of Entamoeba histolytica as an intermediate subunit (Igl) of galactose- and N-acetyl-D-galactosamine-inhibitable lectin, which is a cysteine-rich protein consisting of 1,101 amino acids (aa) and containing multiple CXXC motifs in amino acid sequences. In the present study, full-length Igl except for the signal sequences (aa 14 to 1088) and three fragments of Igl-the N-terminal part (aa 14 to 382), the middle part (aa 294 to 753), and the C-terminal part (aa 603 to 1088)-were prepared in Escherichia coli, and the reactivity of these recombinant proteins with sera from patients with amebiasis was examined by means of enzyme-linked immunosorbent assay (ELISA). Sera from 57 symptomatic patients with amebic liver abscess or amebic colitis, sera from 15 asymptomatic cyst passers, sera from 40 individuals with other protozoan infections, and sera from 50 healthy controls were used. The sensitivity and specificity of the recombinant full-length Igl in the ELISA were 90 and 94%, respectively. When three fragments were used as antigens in the ELISA, the sensitivities were 56% in the N terminus, 92% in the middle part, and 97% in the C terminus. The specificities of the three antigens were 96% in the N terminus and 99% in both the middle and C-terminal fragments. These results demonstrate that Igl is well recognized in not only symptomatic but also asymptomatic patients with E. histolytica infection and that the carboxyl terminus of Igl is an especially useful antigen for the serodiagnosis of amebiasis.
Collapse
Affiliation(s)
- Hiroshi Tachibana
- Department of Infectious Diseases, Tokai University School of Medicine, Isehara, Kanagawa, Japan.
| | | | | | | | | |
Collapse
|
28
|
Houpt E, Barroso L, Lockhart L, Wright R, Cramer C, Lyerly D, Petri WA. Prevention of intestinal amebiasis by vaccination with the Entamoeba histolytica Gal/GalNac lectin. Vaccine 2004; 22:611-7. [PMID: 14741152 DOI: 10.1016/j.vaccine.2003.09.003] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prevention of intestinal infection by Entamoeba histolytica would block both invasive disease and parasite transmission. The amebic Gal/GalNAc lectin mediates parasite adherence to the colonic surface and fecal anti-lectin IgA is associated with protection from intestinal reinfection in children. We tested if vaccination with the E. histolytica Gal/GalNAc lectin could prevent cecal infection in a C3H mouse model of amebic colitis. Two trials using native lectin purified from the parasite and two trials using a 64 kDa recombinant fragment ("LecA") were performed with a combined intranasal and intraperitoneal immunization regimen using cholera toxin and Freund's adjuvants, respectively. Two weeks after immunization mice were challenged intracecally with trophozoites, and 4-12 weeks after challenge mice were sacrificed for histopathologic evaluation of infection. Vaccination prevented intestinal infection with efficacies of 84 and 100% in the two native lectin trials and 91 and 34% in the two LecA trials. Mice with detectable pre-challenge fecal anti-lectin IgA responses were significantly more resistant to infection than mice without fecal anti-lectin IgA responses. These results show for the first time that immunization with the Gal/GalNAc lectin can prevent intestinal amebiasis in mice and suggest a protective role for fecal anti-lectin IgA in vivo.
Collapse
Affiliation(s)
- Eric Houpt
- Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, 300 Lane Rd, PO Box 801340, MR4 Building Room 2115, Charlottesville, VA 22908, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Chavez-Rueda K, Agundis-Mata C, Zenteno E, Shibayama M, Tsutsumi V, Muñoz O, Leaños-Miranda A, Blanco-Favela F. Development of a diagnostic test for Entamoeba histolytica using idiotype expression in human. J Immunol Methods 2002; 262:29-40. [PMID: 11983217 DOI: 10.1016/s0022-1759(01)00564-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The protozoan parasite Entamoeba histolytica is the etiological agent of human amebiasis. The pathology of the disease starts with the cytolysis of the host target cells by amoebae. It is initiated by the adhesion of trophozoites to the host cells, through surface lectin via specific receptors. These adherence lectins have been demonstrated to be highly conserved, and can be recognised by serum antibodies from patients with invasive amebiasis. Some of these molecules have been used as antigens in serologic studies, which has been very helpful in the diagnosis of invasive intestinal amebiasis. However, false-positive serologic reactivity can occur using E. histolytica extracts and purified antigens. Additional problems are because the extracts display a great enzymatic activity. Several diagnostic methods, using different molecules and techniques, have been described. However, the problem still remains since these tests are not capable of differentiating between amoebic liver abscess (ALA) and intestinal amebiasis.Here, the research has been addressed to the 66-kDa antigen, which is a part of the outer membrane proteins from the E. histolytica strain HM1-IMSS trophozoites. First of all, we characterized the 66-kDa antigen in order to prove the relevance. We found that the 66-kDa antigen is a part of the plasma membranes and is distributed rather homogeneously on the cell surface of trophozoites. Apparently, the 66-kDa antigen is a glycoprotein. Using a monoclonal antibody (MAb), we found 25% of inhibition in the erythrophagocytosis by the trophozoites. Starting form one monoclonal antibody, we prepared an anti-idiotype (anti-Id) antibody reagent, with the purpose of searching for the different expressions of the idiotype between the sera from ALA and the intestinal amebiasis patients. Moreover, we produced the antibody Ab3 that is capable of recognising the 66-kDa antigen; it means that the Ab2 displays the internal image of the antigen. We found that 91.6% of the serum from ALA patients displayed the expression of the Id. In contrast, 15.7% of the E. histolytica asymtomatic cyst carriers displayed the Id expression, 6.6% of the patients with another parasite infection, and 11% of the negative controls (serum from umbilical cords of newborn babies). Our results showed that the expression of the Id could be differentiated among the AHA patients from the other groups with a 91.6% sensibility and 88.3% specificity.
Collapse
Affiliation(s)
- K Chavez-Rueda
- Immunology Research Unit, Paediatric Hospital, National Medical Center Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtemoc 330, P.O. Box 73032, 06725 Mexico City, Mexico
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Williams DL, Asahi H, Botkin DJ, Stadecker MJ. Schistosome infection stimulates host CD4(+) T helper cell and B-cell responses against a novel egg antigen, thioredoxin peroxidase. Infect Immun 2001; 69:1134-41. [PMID: 11160011 PMCID: PMC97995 DOI: 10.1128/iai.69.2.1134-1141.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Egg granuloma formation during schistosome infections is mediated by CD4(+) T helper (Th) cells sensitized to egg antigens; however, most of the relevant sensitizing egg antigens are still unknown. Here we show that schistosome thioredoxin peroxidase (TPx)-1 is a novel T- and B-cell egg antigen in schistosome-infected mice. CD4(+) Th cell responses to fractionated egg components identified a significant response against a 26-kDa antigen; a partial amino acid sequence of this antigen was found to be identical to that of Schistosoma mansoni TPx-1. The native TPx-1 elicited significant proliferative responses as well as gamma interferon (IFN-gamma), interleukin-2 (IL-2), IL-4, and IL-5 secretion in CD4(+) cells from 8.5-week-infected CBA and C57BL/6 mice. By comparison, recombinant TPx-1 elicited a smaller, more type 1-polarized response, with significant production of IFN-gamma and IL-2, less IL-5, and essentially no IL-4. In C57BL/6 mice the responses to TPx-1 were relatively more prominent than that directed against the major egg antigen, Sm-p40, whereas in CBA mice the reverse was true. B-cell responses were also monitored in infected C57BL/6, C3H, CBA, and BALB/c mice. All strains had significant antibody levels against the TPx-1 protein, but the most significant antibody production ensued following parasite oviposition. TPx-1 was localized in eggs and shown to be secreted by eggs. The identification of egg antigens is important to understand the specific basis of granuloma formation in schistosome infections and may prove to be useful in strategies to ameliorate pathological responses.
Collapse
Affiliation(s)
- D L Williams
- Department of Biological Science, Illinois State University, Normal, Illinois 61790, USA.
| | | | | | | |
Collapse
|
31
|
Lee J, Park SJ, Yong TS. Serodiagnosis of amoebiasis using a recombinant protein fragment of the 29 kDa surface antigen of Entamoeba histolytica. Int J Parasitol 2000; 30:1487-91. [PMID: 11428340 DOI: 10.1016/s0020-7519(00)00112-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
To develop an improved serodiagnostic test for amoebiasis, we performed a detailed analysis of the immunodominant epitopes of the 29 kDa surface antigen and evaluated its sensitivity and specificity. Enzyme-linked immunosorbent assay (ELISA) based on the fragment containing the immunodominant epitope was evaluated further and compared with full-length recombinant 29 kDa protein. Specificity and sensitivity of the two ELISAs were assessed using 55 human sera of parasitic protozoa infection cases (25 amoebiasis, 20 giardiasis and 10 toxoplasmosis sera) and 10 healthy control sera. The immunodominant epitope of the 29 kDa antigen is localised only in the N-terminus 14-54 amino acid residues. The sensitivities of the two ELISAs were very high, 92 and 96%, respectively. The specificity of the fragment was 100%, whereas the specificity of the full-length 29 kDa protein was 86.6%. These results indicate that the fragment containing the immunodominant epitope of the 29 kDa protein can be used to accurately serodiagnose amoebiasis without cross-reactivity from other parasites.
Collapse
Affiliation(s)
- J Lee
- Department of Parasitology and Institute of Tropical Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | | |
Collapse
|
32
|
Lotter H, Khajawa F, Stanley SL, Tannich E. Protection of gerbils from amebic liver abscess by vaccination with a 25-mer peptide derived from the cysteine-rich region of Entamoeba histolytica galactose-specific adherence lectin. Infect Immun 2000; 68:4416-21. [PMID: 10899838 PMCID: PMC98337 DOI: 10.1128/iai.68.8.4416-4421.2000] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2000] [Accepted: 05/12/2000] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Entamoeba histolytica causes extensive morbidity and mortality through intestinal infection and amebic liver abscess. Here we show that immunization of gerbils with a single keyhole limpet hemocyanin-coupled 25-mer peptide derived from the 170-kDa subunit of the E. histolytica galactose-binding adhesin is sufficient to confer substantial protection against experimentally induced amebic liver abscesses. Vaccination provided total protection in 5 of 15 immunized gerbils, and abscesses were significantly smaller (P < 0.01) in the remaining vaccinated animals. The degree of protection correlated with the titer of antibodies to the peptide, and results of passive transfer experiments performed with SCID mice were consistent with a role for antibodies in protection. In addition, parenteral or oral vaccination of gerbils with 13-amino-acid subfragments of the peptide N-terminally fused to the B subunit of cholera toxin also significantly inhibited liver abscess formation (P < 0.05). These data indicate that small peptides derived from the galactose-binding adhesin administered by the parenteral or oral route can provide protection against amebic liver abscess and should be considered as components of a subunit vaccine against invasive amoebiasis.
Collapse
Affiliation(s)
- H Lotter
- Department of Molecular Parasitology, Bernhard Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | | | | | | |
Collapse
|
33
|
Abstract
Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.
Collapse
|
34
|
Abstract
Amebiasis is a major cause of morbidity and mortality throughout the tropical world. Entamoeba histolytica is now recognized as a separate species from the morphologically identical E. dispar, which cannot invade. Cysteine proteinases are a key virulence factor of E. histolytica and play a role in intestinal invasion by degrading the extracellular matrix and circumventing the host immune response through cleavage of secretory immunoglobulin A (sIgA), IgG, and activation of complement. Cysteine proteinases are encoded by at least seven genes, several of which are found in E. histolytica but not E. dispar. A number of new animal models, including the formation of liver abscesses in SCID mice and intestinal infection in human intestinal xenografts, have proven useful to confirm the critical role of cysteine proteinases in invasion. Detailed structural analysis of cysteine proteinases should provide further insights into their biochemical function and may facilitate the design of specific inhibitors which could be used as potential chemotherapeutic agents in the future.
Collapse
Affiliation(s)
- X Que
- Departments of Pathology and Medicine, University of California San Diego Medical Center, San Diego, CA 92103-8416, USA
| | | |
Collapse
|
35
|
Abstract
Thiol-dependent hydroperoxide metabolism in parasites is reviewed in respect to potential therapeutic strategies. The hydroperoxide metabolism of Crithidia fasciculata has been characterized to comprise a cascade of three enzymes, trypanothione reductase, tryparedoxin, and tryparedoxin peroxidase, plus two supportive enzymes to synthesize the redox mediator trypanothione from glutathione and spermidine. The essentiality of the system in respect to parasite vitality and virulence has been verified by genetic approaches. The system appears to be common to all genera of the Kinetoplastida. The terminal peroxidase of the system belongs to the protein family of peroxiredoxins which is also represented in Entamoeba and a variety of metazoan parasites. Plasmodial hydroperoxide metabolism displays similarities to the mammalian system in comprising glutathione biosynthesis, glutathione reductase, and at least one glutathione peroxidase homolog having the active site selenocysteine replaced by cysteine. Nothing precise is known about the antioxidant defence systems of Giardia, Toxoplasma, and Trichomonas species. Also, the role of ovothiols and mycothiols reportedly present in several parasites remains to be established. Scrutinizing known enzymes of parasitic antioxidant defence for suitability as drug targets leaves only those of the trypanosomatid system as directly or indirectly validated. By generally accepted criteria of target selection and feasibility considerations tryparedoxin and tryparedoxin peroxidase can at present be rated as the most appealing target structures for the development of antiparasitic drugs.
Collapse
Affiliation(s)
- L Flohé
- Department of Biochemistry, Technical University of Braunschweig, Germany.
| | | | | |
Collapse
|
36
|
Wirth HP, Beins MH, Yang M, Tham KT, Blaser MJ. Experimental infection of Mongolian gerbils with wild-type and mutant Helicobacter pylori strains. Infect Immun 1998; 66:4856-66. [PMID: 9746590 PMCID: PMC108601 DOI: 10.1128/iai.66.10.4856-4866.1998] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Experimental Helicobacter pylori infection was studied in Mongolian gerbils with fresh human isolates that carry or do not carry cagA (cagA-positive or cagA-negative, respectively), multiply passaged laboratory strains, wild-type strain G1.1, or isogenic ureA, cagA, or vacA mutants of G1.1. Animals were sacrificed 1 to 32 weeks after challenge, the stomach was removed from each animal for quantitative culture, urease test, and histologic testing, and blood was collected for antibody determinations. No colonization occurred after >/=20 in vitro passages of wild-type strain G1.1 or with the ureA mutant of G1.1. In contrast, infection occurred in animals challenged with wild-type G1.1 (99 of 101 animals) or the cagA (25 of 25) or vacA (25 of 29) mutant of G1.1. Infection with G1.1 persisted for at least 8 months. All 15 animals challenged with any of three fresh human cagA-positive isolates became infected, in contrast to only 6 (23%) of 26 animals challenged with one of four fresh human cagA-negative isolates (P < 0.001). Similar to infection in humans, H. pylori colonization of gerbils induced gastric inflammation and a systemic antibody response to H. pylori antigens. These data confirm the utility of gerbils as an animal model of H. pylori infection and indicate the importance of bacterial strain characteristics for successful infection.
Collapse
Affiliation(s)
- H P Wirth
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232-2605, USA
| | | | | | | | | |
Collapse
|
37
|
Huston CD, Petri WA. Host-pathogen interaction in amebiasis and progress in vaccine development. Eur J Clin Microbiol Infect Dis 1998; 17:601-14. [PMID: 9832261 DOI: 10.1007/bf01708342] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Entamoeba histolytica, the causative organism of invasive intestinal and extraintestinal amebiasis, infects approximately 50 million people each year, causing an estimated 40 to 100 thousand deaths annually. Because amebae only infect humans and some higher non-human primates, an anti-amebic vaccine could theoretically eradicate the organism. Uncontrolled epidemiologic studies indicate that acquired immunity to amebic infection probably occurs and that such a vaccine might be feasible. Application of molecular biologic techniques has led to rapid progress towards understanding how Entamoeba histolytica causes disease, and to the identification of several amebic proteins associated with virulence. These proteins are now being evaluated as potential vaccine components. Parenteral and oral vaccine preparations containing recombinant amebic proteins have been effective in preventing disease in a gerbil model of amebic liver abscess. Although systemic and mucosal cellular and humoral immunity both appear to play a role in protection against Entamoeba histolytica, the relative importance of each in the human immune response remains unknown. No animal model of intestinal amebiasis currently exists, moreover, so it has been impossible to evaluate protection against colonization and colitis. Further investigation of the fundamental mechanisms by which Entamoeba histolytica causes disease and of the human immune response to amebic infection is necessary to assess the true feasibility of an anti-amebic vaccine.
Collapse
Affiliation(s)
- C D Huston
- Department of Internal Medicine, University of Vermont College of Medicine, Burlington 05401, USA
| | | |
Collapse
|
38
|
Webb JR, Campos-Neto A, Ovendale PJ, Martin TI, Stromberg EJ, Badaro R, Reed SG. Human and murine immune responses to a novel Leishmania major recombinant protein encoded by members of a multicopy gene family. Infect Immun 1998; 66:3279-89. [PMID: 9632596 PMCID: PMC108343 DOI: 10.1128/iai.66.7.3279-3289.1998] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/1998] [Accepted: 04/20/1998] [Indexed: 02/07/2023] Open
Abstract
Vaccination of BALB/c mice with Leishmania major promastigote culture filtrate proteins plus Corynebacterium parvum confers resistance to infection with L. major. To define immunogenic components of this protein mixture, we used sera from vaccinated mice to screen an L. major amastigote cDNA expression library. One of the immunoreactive clones thus obtained encoded a novel protein of L. major with a molecular mass of 22.1 kDa. The predicted amino acid sequence of this clone exhibited significant homology to eukaryotic thiol-specific-antioxidant (TSA) proteins. Therefore, we have designated this protein L. major TSA protein. Southern blot hybridization analyses indicate that there are multiple copies of the TSA gene in all species of Leishmania analyzed. Northern blot analyses demonstrated that the TSA gene is constitutively expressed in L. major promastigotes and amastigotes. Recombinant TSA protein containing an amino-terminal six-histidine tag was expressed in Escherichia coli with the pET17b system and was purified to homogeneity by affinity chromatography. Immunization of BALB/c mice with recombinant TSA protein resulted in the development of strong cellular immune responses and conferred protective immune responses against infection with L. major when the protein was combined with interleukin 12. In addition, recombinant TSA protein elicited in vitro proliferative responses from peripheral blood mononuclear cells of human leishmaniasis patients and significant TSA protein-specific antibody titers were detected in sera of both cutaneous-leishmaniasis and visceral-leishmaniasis patients. Together, these data suggest that the TSA protein may be useful as a component of a subunit vaccine against leishmaniasis.
Collapse
Affiliation(s)
- J R Webb
- Infectious Disease Research Institute, University of Washington, Seattle, Washington, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Marinets A, Zhang T, Guillén N, Gounon P, Bohle B, Vollmann U, Scheiner O, Wiedermann G, Stanley SL, Duchêne M. Protection against invasive amebiasis by a single monoclonal antibody directed against a lipophosphoglycan antigen localized on the surface of Entamoeba histolytica. J Exp Med 1997; 186:1557-65. [PMID: 9348313 PMCID: PMC2199119 DOI: 10.1084/jem.186.9.1557] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/1997] [Revised: 08/25/1997] [Indexed: 02/05/2023] Open
Abstract
A panel of monoclonal antibodies was raised from mice immunized with a membrane preparation from Entamoeba histolytica, the pathogenic species causing invasive amebiasis in humans. Antibody EH5 gave a polydisperse band in immunoblots from membrane preparations from different E. histolytica strains, and a much weaker signal from two strains of the nonpathogenic species Entamoeba dispar. Although the exact chemical structure of the EH5 antigen is not yet known, the ability of the antigen to be metabolically radiolabeled with [32P]phosphate or [3H]glucose, its sensitivity to digestion by mild acid and phosphatidylinositol-specific phospholipase C, and its specific extraction from E. histolytica trophozoites by a method used to prepare lipophosphoglycans from Leishmania showed that it could be classified as an amebal lipophosphoglycan. Confocal immunofluorescence and immunogold labeling of trophozoites localized the antigen on the outer face of the plasma membrane and on the inner face of internal vesicle membranes. Antibody EH5 strongly agglutinated amebas in a similar way to concanavalin A (Con A), and Con A bound to immunoaffinity-purified EH5 antigen. Therefore, surface lipophosphoglycans may play an important role in the preferential agglutination of pathogenic amebas by Con A. The protective ability of antibody EH5 was tested in a passive immunization experiment in a severe combined immunodeficient (SCID) mouse model. Intrahepatic challenge of animals after administration of an isotype-matched control antibody or without treatment led to the development of a liver abscess in all cases, whereas 11 out of 12 animals immunized with the EH5 antibody developed no liver abscess. Our results demonstrate the importance and, for the first time, the protective capacity of glycan antigens on the surface of the amebas.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/biosynthesis
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal/therapeutic use
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/metabolism
- Antibodies, Protozoan/therapeutic use
- Antigens, Protozoan/chemistry
- Antigens, Protozoan/immunology
- Antigens, Protozoan/ultrastructure
- Binding Sites, Antibody
- Concanavalin A/metabolism
- Entamoeba histolytica/immunology
- Entamoeba histolytica/ultrastructure
- Entamoebiasis/immunology
- Entamoebiasis/parasitology
- Entamoebiasis/prevention & control
- Female
- Fluorescent Antibody Technique, Indirect
- Glycosphingolipids/chemistry
- Glycosphingolipids/immunology
- Immunization, Passive
- Immunoblotting
- Membrane Proteins/chemistry
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mice, SCID
- Microscopy, Confocal
- Microscopy, Electron
- Protein Binding/immunology
- Protozoan Proteins/immunology
Collapse
Affiliation(s)
- A Marinets
- Institute for Specific Prophylaxis and Tropical Medicine, A-1095 Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
The application of molecular biologic techniques over the past decade has seen a tremendous growth in our knowledge of the biology of Entamoeba histolytica, the causative agent of amebic dysentery and amebic liver abscess. This approach has also led to the identification and structural characterization of three amebic antigens, the serine-rich Entamoeba histolytica protein (SREHP), the 170-kDa subunit of the Gal/GalNAc binding lectin, and the 29-kDa cysteine-rich protein, which all show promise as recombinant antigen-based vaccines to prevent amebiasis. In recent studies, an immunogenic dodecapeptide derived from the SREHP molecule has been genetically fused to the B subunit of cholera toxin, to create a recombinant protein capable of inducing both antiamebic and anti-cholera toxin antibodies when administered by the oral route. Continued progress in this area will bring us closer to the goal of a cost-effective oral combination "enteric pathogen" vaccine, capable of inducing protective mucosal immune responses to several clinically important enteric diseases, including amebiasis.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine and Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA.
| |
Collapse
|
41
|
Zhang T, Stanley SL. Expression of the serine rich Entamoeba histolytica protein (SREHP) in the avirulent vaccine strain Salmonella typhi TY2 chi 4297 (delta cya delta crp delta asd): safety and immunogenicity in mice. Vaccine 1997; 15:1319-22. [PMID: 9302737 DOI: 10.1016/s0264-410x(97)00042-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Infection by the intestinal protozoan parasite Entamoeba histolytica remains a significant threat to health in much of the world. Here we describe the successful expression of the serine rich Entamoeba histolytica protein (SREHP), a protective antigen of ameba, in an attenuated vaccine strain Salmonella typhi TY2 chi 4297 (delta cya delta crp delta asd). The attenuation of S. typhi TY2 chi 4297 was not altered by expression of the SREHP-maltose binding protein (MBP) fusion protein and mice parenterally vaccinated with S. typhi TY2 chi 4297 expressing SREHP-MBP developed serum anti-amebic and anti-LPS antibodies. S. typhi TY2 chi 4297 expressing SREHP-MBP represents a prototype combination vaccine designed to prevent both amebiasis and typhoid fever.
Collapse
Affiliation(s)
- T Zhang
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
| | | |
Collapse
|
42
|
Ryan ET, Butterton JR, Zhang T, Baker MA, Stanley SL, Calderwood SB. Oral immunization with attenuated vaccine strains of Vibrio cholerae expressing a dodecapeptide repeat of the serine-rich Entamoeba histolytica protein fused to the cholera toxin B subunit induces systemic and mucosal antiamebic and anti-V. cholerae antibody responses in mice. Infect Immun 1997; 65:3118-25. [PMID: 9234763 PMCID: PMC175440 DOI: 10.1128/iai.65.8.3118-3125.1997] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Entamoeba histolytica is a significant cause of morbidity and mortality worldwide. The serine-rich E. histolytica protein (SREHP) is a surface-expressed trophozoite protein that includes multiple hydrophilic tandem repeats. A purified fusion protein between the dodecapeptide repeat of SREHP and cholera toxin B subunit (CTB) has previously been shown to be immunogenic in mice after oral inoculation when cholera toxin is coadministered as an immunoadjuvant. We engineered a live attenuated El Tor Vibrio cholerae vaccine strain, Peru2, to express the SREHP-12-CTB fusion protein to the supernatant from either a plasmid [Peru2 (pETR5.1)] or from a chromosomal insertion (ETR3). Vector strains were administered orally to germfree mice that were subsequently housed under nongermfree conditions; mice received one (day 0) or two (days 0 and 14) inoculations. No immunoadjuvant or cholera holotoxin was administered. Mice that received two inoculations of Peru2(pETR5.1) had the most pronounced antiamebic systemic and mucosal immunologic responses. Less marked, but significant, anti-SREHP serum immunoglobulin G antibody responses were also induced in mice that received either one or two oral inoculations of strain ETR3. Anti-V. cholerae responses were also induced, as measured by the induction of serum vibriocidal antibodies and by serum and mucosal anti-CTB antibody responses. These results suggest that V. cholerae vector strains can be successful delivery vehicles for the SREHP-12-CTB fusion protein, to induce mucosal and systemic antiamebic and anti-V. cholerae immune responses. The magnitude of these responses is proportional to the amount of SREHP-12-CTB produced by the vector strain.
Collapse
Affiliation(s)
- E T Ryan
- Infectious Disease Unit, Massachusetts General Hospital, Boston 02114, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
Genome projects have been established for 7 major groups of human parasitic infections: malaria, leishmaniasis, African trypanosomiasis, American trypanosomiasis, toxoplasmosis, schistosomiasis and filariasis. All except malaria and toxoplasmosis have come under the umbrella of the World Health Organization's Strategic Committee on Parasite Genome Analysis. The focus of this meeting of the Society was to review progress made in the Leishmania and African trypanosome genome projects. This paper introduces the genome projects and reviews briefly progress in pulsed-field gel karyotype mapping and gene identification via expressed sequence tag sequencing for the leishmaniasis genome project. The overall aim of the genome projects is to harness the latest developments in molecular genetic technology and sequence analysis for the rapid-generation of new data which may, in turn, revolutionize our approaches to the study of the biology of these organisms.
Collapse
Affiliation(s)
- J M Blackwell
- Laboratory for Parasite Genome Analysis, Department of Pathology, Cambridge, UK
| |
Collapse
|
44
|
Poole LB, Chae HZ, Flores BM, Reed SL, Rhee SG, Torian BE. Peroxidase activity of a TSA-like antioxidant protein from a pathogenic amoeba. Free Radic Biol Med 1997; 23:955-9. [PMID: 9378375 DOI: 10.1016/s0891-5849(97)00066-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The 29 kDa surface protein of Entamoeba histolytica is an abundant antigenic protein expressed by pathogenic strains of this organism. The protein is a member of a widely-dispersed group of homologues which includes at least two cysteinyl peroxidases, Salmonella typhimurium alkyl hydroperoxidase C-22 protein (AhpC) and Saccharomyces cerevisiae thiol-specific antioxidant protein (TSA). Here, for the first time in a pathogenic eukaryote, we have demonstrated that the amoebic protein also possesses peroxidatic and antioxidant activities in the presence of reductants such as dithiothreitol or thioredoxin reductase plus thioredoxin. Although the S. typhimurium AhpF flavoprotein was not an effective reductant of the amoebic TSA protein, one inhibitory monoclonal antibody directed toward amoebic TSA was also partially inhibitory toward reduced but not oxidized bacterial AhpC. These antioxidant proteins are likely to be important not only in general cell protection, but also in the promotion of infection and invasion by these pathogenic organisms through protection against oxidative attack by activated host phagocytic cells.
Collapse
Affiliation(s)
- L B Poole
- Department of Biochemistry, Wake Forest University Medical Center, Winston-Salem, NC, 27157-1016, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Abstract
The past few years have been significant advances in our understanding of eukaryotic genomes. In the field of parasitology, this is best exemplified by the application of genome mapping techniques to the study of genome structure and function in the protozoan parasite, Leishmania. Although much is known about the organism and the diseases it causes, molecular genetics has only recently begun to play a major part in elucidating some of the unusual characteristics of this interesting parasite. Mapping of the small (35 Mb) genome and determination of the functional role of genes by the application of in vitro homologous gene targeting techniques are revealing novel avenues for the development of prophylactic measures.
Collapse
Affiliation(s)
- A C Ivens
- Department of Biochemistry, Imperial College of Science, Technology and Medicine, London, UK.
| | | |
Collapse
|
46
|
Abstract
The intestinal protozoan parasite Entamoeba histolytica causes amebic dysentery and amebic liver abscess, and ranks third worldwide among parasitic causes of death. The application of molecular techniques to the study of this organism have led to major advances in understanding the pathophysiology of amebic infection. This article reviews what is currently known about the pathogenesis, clinical manifestations, diagnosis, and treatment of amebiasis.
Collapse
Affiliation(s)
- E Li
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
47
|
Kimura A, Hara Y, Kimoto T, Okuno Y, Minekawa Y, Nakabayashi T. Cloning and expression of a putative alcohol dehydrogenase gene of Entamoeba histolytica and its application to immunological examination. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 1996; 3:270-4. [PMID: 8705667 PMCID: PMC170328 DOI: 10.1128/cdli.3.3.270-274.1996] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
To clone and express the genes encoding major antigens of Entamoeba histolytica, we constructed a lambda gt11 cDNA library for E. histolytica HM1:IMSS and screened it with pooled sera from patients with amoebiasis. A 1,223-bp cDNA was cloned (clone 1223), and its nucleotide sequence was determined. The amino acid sequence predicted to be encoded by the open reading frame of clone 1223 consisted of 396 residues and showed 32.5 and 32.3% homology to the NADH-dependent butanol dehydrogenases I and II (bdhA and bdhB) of Clostridium acetobutylicum, respectively. In addition, 29 of the 34 consensus positions of bdhA and bdhB were also well conserved in clone 1223. The recombinant protein expressed from clone 1223 had an estimated molecular mass of 43.5 kDa as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The antigenicity and specificity of the recombinant protein were evaluated by an enzyme-linked immunosorbent assay using sera obtained from two clinical groups of patients with amoebiasis and a group of healthy controls. The recombinant protein had potent and specific antigenicity. In all, 53 serum samples (88.3%) from 60 patients with amoebiasis were positive for immunoglobulin G antibody against the recombinant protein, with a mean optical density value of 0.42. In contrast, 53 of 54 healthy control serum samples were negative, with only 1 positive serum sample showing the lower optical density value. These results suggested that clone 1223 is promising in terms of providing a useful antigen for the accurate serodiagnosis of amoebiasis and that the gene encodes a putative alcohol dehydrogenase of E. histolytica.
Collapse
Affiliation(s)
- A Kimura
- Laboratory of Medical Zoology, Osaka Prefectual Institute of Public Health, Japan.
| | | | | | | | | | | |
Collapse
|
48
|
Zhang T, Stanley SL. Oral immunization with an attenuated vaccine strain of Salmonella typhimurium expressing the serine-rich Entamoeba histolytica protein induces an antiamebic immune response and protects gerbils from amebic liver abscess. Infect Immun 1996; 64:1526-31. [PMID: 8613356 PMCID: PMC173957 DOI: 10.1128/iai.64.5.1526-1531.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Attenuated salmonellae represent attractive candidates for the delivery of foreign antigens by oral vaccination. In this report, we describe the high-level expression of a recombinant fusion protein containing the serine-rich Entamoeba histolytica protein (SREHP), a protective antigen derived from virulent amebae, and a bacterially derived maltose-binding protein (MBP) in an attenuated strain of Salmonella typhimurium. Mice and gerbils immunized with S. typhimurium expressing SREHP-MBP produced mucosal immunoglobulin A antiamebic antibodies and serum immunoglobulin G antiamebic antibodies. Gerbils vaccinated with S typhimurium SREHP-MBP were protected against amebic liver abscess, the most common extraintestinal complication of amebiasis. Our findings indicate that the induction of mucosal and immune responses to the amebic SREHP antigen is dependent on the level of SREHP-MBP expression in S. typhimurium and establish that oral vaccination with SREHP can produce protective immunity to invasive amebiasis.
Collapse
MESH Headings
- Administration, Oral
- Animals
- Antibodies, Protozoan/biosynthesis
- Antibodies, Protozoan/blood
- Antigens, Protozoan/administration & dosage
- Antigens, Protozoan/genetics
- Bacterial Proteins/genetics
- Bacterial Proteins/immunology
- Carrier Proteins/genetics
- Carrier Proteins/immunology
- Entamoeba histolytica/genetics
- Entamoeba histolytica/immunology
- Female
- Gerbillinae
- Immunoglobulin A/biosynthesis
- Immunoglobulin G/blood
- Liver Abscess, Amebic/immunology
- Liver Abscess, Amebic/prevention & control
- Maltose-Binding Proteins
- Membrane Proteins/genetics
- Membrane Proteins/immunology
- Mice
- Mice, Inbred BALB C
- Mucous Membrane/immunology
- Protozoan Proteins/genetics
- Protozoan Proteins/immunology
- Protozoan Vaccines/administration & dosage
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/immunology
- Salmonella typhimurium/genetics
- Salmonella typhimurium/immunology
- Vaccines, Attenuated/administration & dosage
- Vaccines, Synthetic/administration & dosage
Collapse
Affiliation(s)
- T Zhang
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | |
Collapse
|
49
|
Abstract
Amebiasis (infection by Entamoeba histolytica) remains a major health problem in much of the developing world. Morbidity and mortality from amebic dysentery and amebic liver abscess have persisted despite the availability of effective anti-amebic therapy, suggesting a need for alternative measures of disease control. Through the application of recombinant DNA technology, several E. histolytica antigens have now been expressed in prokaryotic systems and tested in animal models as vaccines to prevent invasive amebiasis. In this review, Sam Stanley Jr discusses why a vaccine for amebiasis may be feasible, and describes the recent development of several promising recombinant E. histolytica antigen-based parenteral and oral vaccine candidates.
Collapse
Affiliation(s)
- S L Stanley
- Department of Medicine and Molecular Microbiology, Washington University School of Medicine, Campus Box 8051, 660 South Euclid Avenue, St Louis, MO 63110, USA.
| |
Collapse
|