1
|
Bonavia A, Levi M, Rouha H, Badarau A, Terstappen J, Watson S, Anderson AB, White JT, Ananworanich J, Taylor D, Radivojevic A, Shaffer M, Stamm LM, Dunne MW. RSM01, a novel respiratory syncytial virus monoclonal antibody: preclinical characterization and results of a first-in-human, randomised clinical trial. BMC Infect Dis 2024; 24:1378. [PMID: 39627701 PMCID: PMC11616243 DOI: 10.1186/s12879-024-10120-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 10/25/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Respiratory syncytial virus (RSV) is a leading cause of lower respiratory tract disease among infants and young children worldwide, especially in low- and middle-income countries (LMICs). RSM01 is a novel, highly potent, half-life-extended anti-RSV monoclonal antibody (mAb) candidate primarily being developed for LMICs. Here we present the preclinical characterisation and results of a phase 1 trial of RSM01. METHODS Preclinical characterisation of RSM01 was conducted using in-vitro neutralization assays and cotton rat models. In the first-in-human, double-blind, phase 1 trial, 56 healthy adults were randomised 6:1 within dose cohorts to receive a single dose of RSM01 (n = 48) or placebo (n = 8): 300 mg intravenously (IV), 300 mg intramuscularly (IM) or 1000 mg IV (parallel cohorts), 3000 mg IV, and an expansion cohort of 600 mg IM. Systemic solicited adverse events (AEs) were assessed through day 7; unsolicited AEs were collected through day 151. Pharmacokinetics and anti-drug antibodies (ADA) to RSM01 were assessed using immunoassays. A population pharmacokinetics model predicted paediatric pharmacokinetics parameters using allometric scaling and age-specific population weight statistics of North American and African infants. RESULTS RSM01 exhibited highly potent neutralizing activity in the single ng/mL range (0.7-6.4) against diverse RSV-A and RSV-B isolates in vitro. RSM01 also demonstrated prophylactic efficacy in cotton rat models with both RSV subtypes. In the phase 1 clinical trial, the most common unsolicited AEs were COVID-19 (2/48), headache (2/48), and nausea (2/48), all in RSM01-treated participants. The only systemic solicited AEs reported were headache (5/48) and tiredness (2/48) in participants receiving RSM01. No serious AEs or deaths were reported. The half-life of RSM01 was 78 days with dose-proportional increases in Tmax and AUClast after IV administration. Among RSM01-treated participants, 2/48 were ADA positive at baseline, and 1/48 seroconverted to ADA-positive post-baseline. CONCLUSIONS RSM01 is a highly potent, half-life-extended, RSV-neutralising mAb candidate that was shown to be well tolerated in healthy adults. The rate of ADA to RSM01 was low. The long half-life of RSM01 and pharmacokinetics profile support further development of RSM01 as a potential single dose per season prophylaxis to prevent RSV disease in infants. TRIAL REGISTRATION Clinicaltrials.gov NCT05118386, Nov 12, 2021.
Collapse
Affiliation(s)
- Aurelio Bonavia
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Micha Levi
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA.
| | | | | | - Jonne Terstappen
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Shayne Watson
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | | | - Joleen T White
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | | | | | | | - Michael Shaffer
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Luisa M Stamm
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| | - Michael W Dunne
- Bill & Melinda Gates Medical Research Institute, Cambridge, MA, USA
| |
Collapse
|
2
|
Tramuto F, Maida CM, Randazzo G, Guzzetta V, Santino A, Li Muli R, Costantino C, Graziano G, Amodio E, Mazzucco W, Vitale F. Whole-Genome Sequencing and Genetic Diversity of Human Respiratory Syncytial Virus in Patients with Influenza-like Illness in Sicily (Italy) from 2017 to 2023. Viruses 2024; 16:851. [PMID: 38932144 PMCID: PMC11209242 DOI: 10.3390/v16060851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024] Open
Abstract
Monitoring the genetic variability of human respiratory syncytial virus (hRSV) is of paramount importance, especially for the potential implication of key antigenic mutations on the emergence of immune escape variants. Thus, to describe the genetic diversity and evolutionary dynamics of hRSV circulating in Sicily (Italy), a total of 153 hRSV whole-genome sequences collected from 770 hRSV-positive subjects between 2017 and 2023, before the introduction of expanded immunization programs into the population, were investigated. The phylogenetic analyses indicated that the genotypes GA.2.3.5 (ON1) for hRSV-A and GB.5.0.5a (BA9) for hRSV-B co-circulated in our region. Amino acid (AA) substitutions in the surface and internal proteins were evaluated, including the F protein antigenic sites, as the major targets of immunoprophylactic monoclonal antibodies and vaccines. Overall, the proportion of AA changes ranged between 1.5% and 22.6% among hRSV-A, whereas hRSV-B varied in the range 0.8-16.9%; the latter was more polymorphic than hRSV-A within the key antigenic sites. No AA substitutions were found at site III of both subgroups. Although several non-synonymous mutations were found, none of the polymorphisms known to potentially affect the efficacy of current preventive measures were documented. These findings provide new insights into the global hRSV molecular epidemiology and highlight the importance of defining a baseline genomic picture to monitor for future changes that might be induced by the selective pressures of immunological preventive measures, which will soon become widely available.
Collapse
Affiliation(s)
- Fabio Tramuto
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Carmelo Massimo Maida
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giulia Randazzo
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Valeria Guzzetta
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Arianna Santino
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Rita Li Muli
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Claudio Costantino
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Giorgio Graziano
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Emanuele Amodio
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
| | - Walter Mazzucco
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| | - Francesco Vitale
- Department of Health Promotion Sciences Maternal and Infant Care, Internal Medicine and Medical Specialties “G. D’Alessandro”—Hygiene Section, University of Palermo, 90133 Palermo, Italy; (C.M.M.); (C.C.); (E.A.); (W.M.); (F.V.)
- Regional Reference Laboratory for Molecular Surveillance of Influenza, Clinical Epidemiology Unit, University Hospital “Paolo Giaccone”, 90133 Palermo, Italy; (G.R.); (V.G.); (A.S.); (R.L.M.); (G.G.)
| |
Collapse
|
3
|
Fröhlich GC, Gregianini TS, Pinheiro FG, Nascimento R, Cezar TM, Pscheidt VM, Selayaran T, Martins LG, Gomes MFDC, Salvato RS, Pereira EC, Guimarães-Ribeiro V, Scalioni LDP, Siqueira MM, Resende PC, Veiga ABG. Resurgence of human respiratory syncytial virus during COVID-19 pandemic in Southern Brazil. J Med Virol 2024; 96:e29551. [PMID: 38506236 DOI: 10.1002/jmv.29551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 03/21/2024]
Abstract
Respiratory Syncytial Virus (RSV) is an important cause of respiratory infection in humans. Severe cases are common in children ≤2 years old, immunocompromised individuals, and the elderly. In 2020, RSV infection reduced in Rio Grande do Sul (RS), southern Brazil; however, in 2021 resurgence of RSV was observed. This study analyzed epidemiological and genetic features of RSV infection cases reported in 2021 in RS. Nasopharyngeal samples collected from individuals with respiratory infection negative for SARS-CoV-2, Influenza A and B viruses were assessed for the presence of RSV by real time RT-qPCR. RSV-A and RSV-B genomic sequencing and phylogenetic reconstructions were performed for genotyping and clade characterization. Among 21,035 respiratory samples analyzed, 2,947 were positive for RSV, 947 of which were hospitalized patients. Positive cases were detected year-round, with the highest number in June-July (winter). Children <1 year comprised 56.28% (n = 533) of the hospitalized patients infected with RSV, whereas 14.46% (n = 137) were individuals >60 years. Of a total of 361 deaths, 14.68% (n = 53) were RSV positive, mostly patients >60 years old (73.58%, n = 39). Chronic kidney disease, cardiopathy, Down syndrome and neurological diseases were associated with RSV infection. RSV-A was identified in 58.5% (n = 117/200) of the patients, and RSV-B in 41.5% (n = 83/200). Of 95 RSV genomes recovered from SARI cases, 66 were RSV-A GA.2.3.5 genotype, while 29 were RSV-B GB.5.0.5a genotype. This study provides epidemiological and molecular data on RSV cases in RS during the COVID-19 pandemic and highlights that investigation of different respiratory viruses is essential for decision-making and disease prevention and control measures.
Collapse
Affiliation(s)
- Guilherme C Fröhlich
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-LACEN/CEVS/SES-RS, Porto Alegre, Brazil
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Tatiana S Gregianini
- Laboratório Central de Saúde Pública, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-LACEN/CEVS/SES-RS, Porto Alegre, Brazil
| | - Felipe G Pinheiro
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Rodrigo Nascimento
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Thiago M Cezar
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Veridiane M Pscheidt
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| | - Tainá Selayaran
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-CDCT/CEVS/SES-RS, Porto Alegre, Brazil
| | - Letícia G Martins
- Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-CEVS/SES-RS, Porto Alegre, Brazil
| | | | - Richard S Salvato
- Centro de Desenvolvimento Científico e Tecnológico, Centro Estadual de Vigilância em Saúde da Secretaria de Saúde do Estado do Rio Grande do Sul-CDCT/CEVS/SES-RS, Porto Alegre, Brazil
| | - Elisa C Pereira
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Victor Guimarães-Ribeiro
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Letícia de Paula Scalioni
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Marilda M Siqueira
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Paola C Resende
- Laboratório Vírus Respiratórios, Exantemáticos, Enterovírus e Emergências Virais - LVRE/FIOCRUZ-RJ, Porto Alegre, Brazil
| | - Ana B G Veiga
- Universidade Federal de Ciências da Saúde de Porto Alegre-UFCSPA, Porto Alegre, Brazil
| |
Collapse
|
4
|
Bergeron HC, Murray J, Arora A, Nuñez Castrejon AM, DuBois RM, Anderson LJ, Kauvar LM, Tripp RA. Immune Prophylaxis Targeting the Respiratory Syncytial Virus (RSV) G Protein. Viruses 2023; 15:1067. [PMID: 37243153 PMCID: PMC10221658 DOI: 10.3390/v15051067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The respiratory syncytial virus (RSV) causes significant respiratory disease in young infants and the elderly. Immune prophylaxis in infants is currently limited to palivizumab, an anti-RSV fusion (F) protein monoclonal antibody (mAb). While anti-F protein mAbs neutralize RSV, they are unable to prevent aberrant pathogenic responses provoked by the RSV attachment (G) protein. Recently, the co-crystal structures of two high-affinity anti-G protein mAbs that bind the central conserved domain (CCD) at distinct non-overlapping epitopes were solved. mAbs 3D3 and 2D10 are broadly neutralizing and block G protein CX3C-mediated chemotaxis by binding antigenic sites γ1 and γ2, respectively, which is known to reduce RSV disease. Previous studies have established 3D3 as a potential immunoprophylactic and therapeutic; however, there has been no similar evaluation of 2D10 available. Here, we sought to determine the differences in neutralization and immunity to RSV Line19F infection which recapitulates human RSV infection in mouse models making it useful for therapeutic antibody studies. Prophylactic (24 h prior to infection) or therapeutic (72 h post-infection) treatment of mice with 3D3, 2D10, or palivizumab were compared to isotype control antibody treatment. The results show that 2D10 can neutralize RSV Line19F both prophylactically and therapeutically, and can reduce disease-causing immune responses in a prophylactic but not therapeutic context. In contrast, 3D3 was able to significantly (p < 0.05) reduce lung virus titers and IL-13 in a prophylactic and therapeutic regimen suggesting subtle but important differences in immune responses to RSV infection with mAbs that bind distinct epitopes.
Collapse
Affiliation(s)
- Harrison C. Bergeron
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Jackelyn Murray
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Aakash Arora
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Ana M. Nuñez Castrejon
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.M.N.C.)
| | - Rebecca M. DuBois
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA; (A.M.N.C.)
| | - Larry J. Anderson
- Division of Pediatric Infectious Disease, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | | | - Ralph A. Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Marano JM, Weger-Lucarelli J. Replication in the presence of dengue convalescent serum impacts Zika virus neutralization sensitivity and fitness. Front Cell Infect Microbiol 2023; 13:1130749. [PMID: 36968111 PMCID: PMC10034770 DOI: 10.3389/fcimb.2023.1130749] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction Flaviviruses like dengue virus (DENV) and Zika virus (ZIKV) are mosquito-borne viruses that cause febrile, hemorrhagic, and neurological diseases in humans, resulting in 400 million infections annually. Due to their co-circulation in many parts of the world, flaviviruses must replicate in the presence of pre-existing adaptive immune responses targeted at serologically closely related pathogens, which can provide protection or enhance disease. However, the impact of pre-existing cross-reactive immunity as a driver of flavivirus evolution, and subsequently the implications on the emergence of immune escape variants, is poorly understood. Therefore, we investigated how replication in the presence of convalescent dengue serum drives ZIKV evolution. Methods We used an in vitro directed evolution system, passaging ZIKV in the presence of serum from humans previously infected with DENV (anti-DENV) or serum from DENV-naïve patients (control serum). Following five passages in the presence of serum, we performed next-generation sequencing to identify mutations that arose during passaging. We studied two non-synonymous mutations found in the anti-DENV passaged population (E-V355I and NS1-T139A) by generating individual ZIKV mutants and assessing fitness in mammalian cells and live mosquitoes, as well as their sensitivity to antibody neutralization. Results and discussion Both viruses had increased fitness in Vero cells with and without the addition of anti-DENV serum and in human lung epithelial and monocyte cells. In Aedes aegypti mosquitoes-using blood meals with and without anti-DENV serum-the mutant viruses had significantly reduced fitness compared to wild-type ZIKV. These results align with the trade-off hypothesis of constrained mosquito-borne virus evolution. Notably, only the NS1-T139A mutation escaped neutralization, while E-V335I demonstrated enhanced neutralization sensitivity to neutralization by anti-DENV serum, indicating that neutralization escape is not necessary for viruses passaged under cross-reactive immune pressures. Future studies are needed to assess cross-reactive immune selection in humans and relevant animal models or with different flaviviruses.
Collapse
Affiliation(s)
- Jeffrey M. Marano
- Translational Biology, Medicine, and Health Graduate Program, Virginia Tech, Roanoke, VA, United States
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| | - James Weger-Lucarelli
- Department of Biomedical Sciences and Pathobiology, Virginia Tech, Virginia-Maryland Regional College of Veterinary Medicine, Blacksburg, VA, United States
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
6
|
Domingo E, García-Crespo C, Soria ME, Perales C. Viral Fitness, Population Complexity, Host Interactions, and Resistance to Antiviral Agents. Curr Top Microbiol Immunol 2023; 439:197-235. [PMID: 36592247 DOI: 10.1007/978-3-031-15640-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fitness of viruses has become a standard parameter to quantify their adaptation to a biological environment. Fitness determinations for RNA viruses (and some highly variable DNA viruses) meet with several uncertainties. Of particular interest are those that arise from mutant spectrum complexity, absence of population equilibrium, and internal interactions among components of a mutant spectrum. Here, concepts, fitness measurements, limitations, and current views on experimental viral fitness landscapes are discussed. The effect of viral fitness on resistance to antiviral agents is covered in some detail since it constitutes a widespread problem in antiviral pharmacology, and a challenge for the design of effective antiviral treatments. Recent evidence with hepatitis C virus suggests the operation of mechanisms of antiviral resistance additional to the standard selection of drug-escape mutants. The possibility that high replicative fitness may be the driver of such alternative mechanisms is considered. New broad-spectrum antiviral designs that target viral fitness may curtail the impact of drug-escape mutants in treatment failures. We consider to what extent fitness-related concepts apply to coronaviruses and how they may affect strategies for COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Esteban Domingo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Carlos García-Crespo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Eugenia Soria
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain
| | - Celia Perales
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28029, Madrid, Spain.,Department of Clinical Microbiology, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), Av. Reyes Católicos 2, 28040, Madrid, Spain.,Department of Molecular and Cell Biology, Centro Nacional de Biotecnología (CNB-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Campus de Cantoblanco, 28049, Madrid, Spain
| |
Collapse
|
7
|
Bergeron HC, Tripp RA. RSV Replication, Transmission, and Disease Are Influenced by the RSV G Protein. Viruses 2022; 14:v14112396. [PMID: 36366494 PMCID: PMC9692685 DOI: 10.3390/v14112396] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/24/2022] [Accepted: 10/28/2022] [Indexed: 01/31/2023] Open
Abstract
It is important to understand the features affecting virus replication, fitness, and transmissibility as they contribute to the outcome of infection and affect disease intervention approaches. Respiratory syncytial virus (RSV) is a major contributor to respiratory disease, particularly in the infant and elderly populations. Although first described over 60 years ago, there are no approved vaccines and there are limited specific antiviral treatments due in part to our incomplete understanding of the features affecting RSV replication, immunity, and disease. RSV studies have typically focused on using continuous cell lines and conventional RSV strains to establish vaccine development and various antiviral countermeasures. This review outlines how the RSV G protein influences viral features, including replication, transmission, and disease, and how understanding the role of the G protein can improve the understanding of preclinical studies.
Collapse
|
8
|
Beach SS, Hull MA, Ytreberg FM, Patel JS, Miura TA. Molecular Modeling Predicts Novel Antibody Escape Mutations in the Respiratory Syncytial Virus Fusion Glycoprotein. J Virol 2022; 96:e0035322. [PMID: 35678603 PMCID: PMC9278155 DOI: 10.1128/jvi.00353-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Monoclonal antibodies are increasingly used for the prevention and/or treatment of viral infections. One caveat of their use is the ability of viruses to evolve resistance to antibody binding and neutralization. Computational strategies to identify viral mutations that may disrupt antibody binding would leverage the wealth of viral genomic sequence data to monitor for potential antibody-resistant mutations. The respiratory syncytial virus is an important pathogen for which monoclonal antibodies against the fusion (F) protein are used to prevent severe disease in high-risk infants. In this study, we used an approach that combines molecular dynamics simulations with FoldX to estimate changes in free energy in F protein folding and binding to the motavizumab antibody upon each possible amino acid change. We systematically selected 8 predicted escape mutations and tested them in an infectious clone. Consistent with our F protein stability predictions, replication-effective viruses were observed for each selected mutation. Six of the eight variants showed increased resistance to neutralization by motavizumab. Flow cytometry was used to validate the estimated (model-predicted) effects on antibody binding to F. Using surface plasmon resonance, we determined that changes in the on-rate of motavizumab binding were associated with the reduced affinity for two novel escape mutations. Our study empirically validated the accuracy of our molecular modeling approach and emphasized the role of biophysical protein modeling in predicting viral resistance to antibody-based therapeutics that can be used to monitor the emergence of resistant viruses and to design improved therapeutic antibodies. IMPORTANCE Respiratory syncytial virus (RSV) causes severe disease in young infants, particularly those with heart or lung diseases or born prematurely. Because no vaccine is currently available, monoclonal antibodies are used to prevent severe RSV disease in high-risk infants. While it is known that RSV evolves to avoid recognition by antibodies, screening tools that can predict which changes to the virus may lead to antibody resistance are greatly needed.
Collapse
Affiliation(s)
- Sierra S. Beach
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - McKenna A. Hull
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - F. Marty Ytreberg
- Department of Physics, University of Idahogrid.266456.5, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - Jagdish Suresh Patel
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idahogrid.266456.5, Moscow, Idaho, USA
| | - Tanya A. Miura
- Department of Biological Sciences, University of Idahogrid.266456.5, Moscow, Idaho, USA
- Institute for Modeling Collaboration and Innovation, University of Idahogrid.266456.5, Moscow, Idaho, USA
| |
Collapse
|
9
|
Blockus S, Sake SM, Wetzke M, Grethe C, Graalmann T, Pils M, Le Goffic R, Galloux M, Prochnow H, Rox K, Hüttel S, Rupcic Z, Wiegmann B, Dijkman R, Rameix-Welti MA, Eléouët JF, Duprex WP, Thiel V, Hansen G, Brönstrup M, Haid S, Pietschmann T. Labyrinthopeptins as virolytic inhibitors of respiratory syncytial virus cell entry. Antiviral Res 2020; 177:104774. [PMID: 32197980 DOI: 10.1016/j.antiviral.2020.104774] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 10/25/2022]
Abstract
Acute lower respiratory tract infections (ALRI) caused by respiratory syncytial virus (RSV) are associated with a severe disease burden among infants and elderly patients. Treatment options are limited. While numerous drug candidates with different viral targets are under development, the utility of RSV entry inhibitors is challenged by a low resistance barrier and by single mutations causing cross-resistance against a wide spectrum of fusion inhibitor chemotypes. We developed a cell-based screening assay for discovery of compounds inhibiting infection with primary RSV isolates. Using this system, we identified labyrinthopeptin A1 and A2 (Laby A1/A2), lantibiotics isolated from Actinomadura namibiensis, as effective RSV cell entry inhibitors with IC50s of 0.39 μM and 4.97 μM, respectively, and with favourable therapeutic index (>200 and > 20, respectively). Both molecules were active against multiple RSV strains including primary isolates and their antiviral activity against RSV was confirmed in primary human airway cells ex vivo and a murine model in vivo. Laby A1/A2 were antiviral in prophylactic and therapeutic treatment regimens and displayed synergistic activity when applied in combination with each other. Mechanistic studies showed that Laby A1/A2 exert virolytic activity likely by binding to phosphatidylethanolamine moieties within the viral membrane and by disrupting virus particle membrane integrity. Probably due to its specific mode of action, Laby A1/A2 antiviral activity was not affected by common resistance mutations to known RSV entry inhibitors. Taken together, Laby A1/A2 represent promising candidates for development as RSV inhibitors. Moreover, the cell-based screening system with primary RSV isolates described here should be useful to identify further antiviral agents.
Collapse
Affiliation(s)
- Sebastian Blockus
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Svenja M Sake
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Martin Wetzke
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Christina Grethe
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Theresa Graalmann
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; Clinic for Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Marina Pils
- Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Ronan Le Goffic
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France
| | - Marie Galloux
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France
| | - Hans Prochnow
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Katharina Rox
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Stephan Hüttel
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeljka Rupcic
- Department Microbial Drugs, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Bettina Wiegmann
- Lower Saxony Center for Biomedical Engineering, Implant Research and Development, Hannover Medical School, Hannover, Germany; Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany; Member of the German Centre for Lung Research (DZL), Hannover, Germany
| | - Ronald Dijkman
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland; Institute for Infectious Diseases, University of Bern, Switzerland
| | - Marie-Anne Rameix-Welti
- UMR1173, Institute National de la Santé et de la Recherche Médicale (INSERM), Université de Versailles St. Quentin, Montigny-le-Bretonneux, France
| | - Jean-François Eléouët
- Unité de Virologie et Immunologie Moléculaires, INRA, Université Paris Saclay, Jouy-en-Josas, France
| | - W Paul Duprex
- University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Volker Thiel
- Institute of Virology and Immunology (IVI), Bern and Mittelhäusern, Switzerland; Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Switzerland
| | - Gesine Hansen
- Department for Pediatric Pneumology, Allergy and Neonatology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany
| | - Sibylle Haid
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany.
| | - Thomas Pietschmann
- Institute for Experimental Virology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany; German Centre of Infection Research (DZIF), Partner Site Hannover-Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| |
Collapse
|
10
|
Zhu Q, Lu B, McTamney P, Palaszynski S, Diallo S, Ren K, Ulbrandt ND, Kallewaard N, Wang W, Fernandes F, Wong S, Svabek C, Moldt B, Esser MT, Jing H, Suzich JA. Prevalence and Significance of Substitutions in the Fusion Protein of Respiratory Syncytial Virus Resulting in Neutralization Escape From Antibody MEDI8897. J Infect Dis 2019; 218:572-580. [PMID: 29617879 DOI: 10.1093/infdis/jiy189] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 03/28/2018] [Indexed: 11/13/2022] Open
Abstract
Background Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection among infants and young children. To date, no vaccine is approved for the broad population of healthy infants. MEDI8897, a potent anti-RSV fusion antibody with extended serum half-life, is currently under clinical investigation as a potential passive RSV vaccine for all infants. As a ribonucleic acid virus, RSV is prone to mutation, and the possibility of viral escape from MEDI8897 neutralization is a potential concern. Methods We generated RSV monoclonal antibody (mAb)-resistant mutants (MARMs) in vitro and studied the effect of the amino acid substitutions identified on binding and viral neutralization susceptibility to MEDI8897. The impact of resistance-associated mutations on in vitro growth kinetics and the prevalence of these mutations in currently circulating strains of RSV in the United States was assessed. Results Critical residues identified in MARMs for MEDI8897 neutralization were located in the MEDI8897 binding site defined by crystallographic analysis. Substitutions in these residues affected the binding of mAb to virus, without significant impact on viral replication in vitro. The frequency of natural resistance-associated polymorphisms was low. Conclusions Results from this study provide insights into the mechanism of MEDI8897 escape and the complexity of monitoring for emergence of resistance.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Bin Lu
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Patrick McTamney
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Susan Palaszynski
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Seme Diallo
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Kuishu Ren
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Nancy D Ulbrandt
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Nicole Kallewaard
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Weijia Wang
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Fiona Fernandes
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Steve Wong
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Catherine Svabek
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Brian Moldt
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Mark T Esser
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - Hong Jing
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| | - JoAnn A Suzich
- Department of Infectious Diseases-Vaccines, MedImmune, LLC, Gaithersburg, Maryland
| |
Collapse
|
11
|
Hashimoto K, Hosoya M. Neutralizing epitopes of RSV and palivizumab resistance in Japan. Fukushima J Med Sci 2017; 63:127-134. [PMID: 28867684 PMCID: PMC5792496 DOI: 10.5387/fms.2017-09] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 07/20/2017] [Indexed: 01/26/2023] Open
Abstract
Respiratory Syncytial Virus (RSV) is one of the most important viral pathogen related to acute lower respiratory infection in young children. The virus surface envelope contains the G, F, and SH proteins as spike proteins. The F protein is considered to be a major antigenic target for the neutralizing (NT) epitope as only the F protein is essential for cell infection among the three viral envelope proteins, and it is more highly conserved than the G protein. Recently, four antigenic targets related to NT activity have been reported;site I, site II, site IV, and site zero (0). Site II is the target for palivizumab used throughout the world to suppress severe RSV infection as passive immunity in high-risk children since 1998. Under the recent conditions in which indications for palivizumab administered subjects are being expanded, palivizumab-resistant mutations have been confirmed overseas in children with RSV infection, although they remain infrequent. Therefore, continuous genetic analysis of the palivizumab-binding region of the F protein is necessary. In addition, as vaccine development progresses, RSV infection control is expected to improve greatly over the next decade.
Collapse
Affiliation(s)
- Koichi Hashimoto
- Department of Pediatrics, School of Medicine, Fukushima Medical University
| | - Mitsuaki Hosoya
- Department of Pediatrics, School of Medicine, Fukushima Medical University
| |
Collapse
|
12
|
Trivalency of a Nanobody Specific for the Human Respiratory Syncytial Virus Fusion Glycoprotein Drastically Enhances Virus Neutralization and Impacts Escape Mutant Selection. Antimicrob Agents Chemother 2016; 60:6498-6509. [PMID: 27550346 DOI: 10.1128/aac.00842-16] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022] Open
Abstract
ALX-0171 is a trivalent Nanobody derived from monovalent Nb017 that binds to antigenic site II of the human respiratory syncytial virus (hRSV) fusion (F) glycoprotein. ALX-0171 is about 6,000 to 10,000 times more potent than Nb017 in neutralization tests with strains of hRSV antigenic groups A and B. To explore the effect of this enhanced neutralization on escape mutant selection, viruses resistant to either ALX-0171 or Nb017 were isolated after serial passage of the hRSV Long strain in the presence of suboptimal concentrations of the respective Nanobodies. Resistant viruses emerged notably faster with Nb017 than with ALX-0171 and in both cases contained amino acid changes in antigenic site II of hRSV F. Detailed binding and neutralization analyses of these escape mutants as well as previously described mutants resistant to certain monoclonal antibodies (MAbs) offered a comprehensive description of site II mutations which are relevant for neutralization by MAbs and Nanobodies. Notably, ALX-0171 showed a sizeable neutralization potency with most escape mutants, even with some of those selected with the Nanobody, and these findings make ALX-0171 an attractive antiviral for treatment of hRSV infections.
Collapse
|
13
|
Miller CR, Johnson EL, Burke AZ, Martin KP, Miura TA, Wichman HA, Brown CJ, Ytreberg FM. Initiating a watch list for Ebola virus antibody escape mutations. PeerJ 2016; 4:e1674. [PMID: 26925318 PMCID: PMC4768679 DOI: 10.7717/peerj.1674] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 01/18/2016] [Indexed: 12/26/2022] Open
Abstract
The 2014 Ebola virus (EBOV) outbreak in West Africa is the largest in recorded history and resulted in over 11,000 deaths. It is essential that strategies for treatment and containment be developed to avoid future epidemics of this magnitude. With the development of vaccines and antibody-based therapies using the envelope glycoprotein (GP) of the 1976 Mayinga strain, one important strategy is to anticipate how the evolution of EBOV might compromise these efforts. In this study we have initiated a watch list of potential antibody escape mutations of EBOV by modeling interactions between GP and the antibody KZ52. The watch list was generated using molecular modeling to estimate stability changes due to mutation. Every possible mutation of GP was considered and the list was generated from those that are predicted to disrupt GP-KZ52 binding but not to disrupt the ability of GP to fold and to form trimers. The resulting watch list contains 34 mutations (one of which has already been seen in humans) at six sites in the GP2 subunit. Should mutations from the watch list appear and spread during an epidemic, it warrants attention as these mutations may reflect an evolutionary response from the virus that could reduce the effectiveness of interventions such as vaccination. However, this watch list is incomplete and emphasizes the need for more experimental structures of EBOV interacting with antibodies in order to expand the watch list to other epitopes. We hope that this work provokes experimental research on evolutionary escape in both Ebola and other viral pathogens.
Collapse
Affiliation(s)
- Craig R Miller
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Department of Mathematics, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Erin L Johnson
- Center for Modeling Complex Interactions, University of Idaho , Moscow, ID , United States
| | - Aran Z Burke
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Department of Physics, University of Idaho, Moscow, ID, United States
| | - Kyle P Martin
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Department of Physics, University of Idaho, Moscow, ID, United States
| | - Tanya A Miura
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States
| | - Holly A Wichman
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - Celeste J Brown
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States; Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States
| | - F Marty Ytreberg
- Center for Modeling Complex Interactions, University of Idaho, Moscow, ID, United States; Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, ID, United States; Department of Physics, University of Idaho, Moscow, ID, United States
| |
Collapse
|
14
|
Yasui Y, Yamaji Y, Sawada A, Ito T, Nakayama T. Cell fusion assay by expression of respiratory syncytial virus (RSV) fusion protein to analyze the mutation of palivizumab-resistant strains. J Virol Methods 2016; 231:48-55. [PMID: 26794681 DOI: 10.1016/j.jviromet.2016.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 12/11/2015] [Accepted: 01/09/2016] [Indexed: 11/18/2022]
Abstract
Respiratory syncytial virus (RSV) consists of fusion (F), glyco (G), and small hydrophobic (SH) proteins as envelope proteins, and infects through cell fusion. F protein is expressed on the surface of infected cells, and induces cell fusion. In the present report, expression plasmids of the F, G and SH proteins were constructed and cell fusion activity was investigated under T7 RNA polymerase. F protein alone induced cell fusion at a lower concentration than previously reported, and co-expression of F and SH proteins induced cell fusion more efficiently than F protein alone. Palivizumab is the only prophylactic agent against RSV infection. Palivizumab-resistant strains having mutations of the F protein of K272E and S275F were reported. These mutations were introduced into an F-expression plasmid, and exhibited no inhibition of cell fusion with palivizumab. Among the RSV F protein mutants, N276S has been reported to have partial resistance against palivizumab, but the F expression plasmid with the N276S mutation showed a reduction in cell fusion in the presence of palivizumab, showing no resistance to palivizumab. The present expression system was useful for investigating the mechanisms of RSV cell fusion.
Collapse
Affiliation(s)
- Yosuke Yasui
- Keio University, Health Center, 4-1-1 Hiyoshi, Kouhoku, Yokohama, Kanagawa, Japan; Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Yoshiaki Yamaji
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Akihito Sawada
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Takashi Ito
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| | - Tetsuo Nakayama
- Laboratory of Viral Infection I, Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Bates JT, Keefer CJ, Slaughter JC, Kulp DW, Schief WR, Crowe JE. Escape from neutralization by the respiratory syncytial virus-specific neutralizing monoclonal antibody palivizumab is driven by changes in on-rate of binding to the fusion protein. Virology 2014; 454-455:139-44. [PMID: 24725940 DOI: 10.1016/j.virol.2014.02.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 02/09/2014] [Accepted: 02/10/2014] [Indexed: 01/14/2023]
Abstract
The role of binding kinetics in determining neutralizing potency for antiviral antibodies is poorly understood. While it is believed that increased steady-state affinity correlates positively with increased virus-neutralizing activity, the relationship between association or dissociation rate and neutralization potency is unclear. We investigated the effect of naturally-occurring antibody resistance mutations in the RSV F protein on the kinetics of binding to palivizumab. Escape from palivizumab-mediated neutralization of RSV occurred with reduced association rate (Kon) for binding to RSV F protein, while alteration of dissociation rate (Koff) did not significantly affect neutralizing activity. Interestingly, linkage of reduced Kon with reduced potency mirrored the effect of increased Kon found in a high-affinity enhanced potency palivizumab variant (motavizumab). These data suggest that association rate is the dominant factor driving neutralization potency for antibodies to RSV F protein antigenic site A and determines the potency of antibody somatic variants or efficiency of escape of viral glycoprotein variants.
Collapse
Affiliation(s)
- John T Bates
- The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states
| | - Christopher J Keefer
- The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states
| | - James C Slaughter
- The Vanderbilt Vaccine Center, Departments of Biostatistics and Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states
| | - Daniel W Kulp
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United states
| | - William R Schief
- IAVI Neutralizing Antibody Center and Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, United states; Center for HIV/AIDS Vaccine Immunology and Immunogen Discovery, The Scripps Research Institute, La Jolla, CA, United states
| | - James E Crowe
- The Vanderbilt Vaccine Center, Departments of Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states; The Vanderbilt Vaccine Center, Departments of Pediatrics, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, United states.
| |
Collapse
|
16
|
The role of virulence in in vivo superinfection fitness of the vertebrate RNA virus infectious hematopoietic necrosis virus. J Virol 2013; 87:8145-57. [PMID: 23678165 DOI: 10.1128/jvi.00089-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
We have developed a novel in vivo superinfection fitness assay to examine superinfection dynamics and the role of virulence in superinfection fitness. This assay involves controlled, sequential infections of a natural vertebrate host, Oncorhynchus mykiss (rainbow trout), with variants of a coevolved viral pathogen, infectious hematopoietic necrosis virus (IHNV). Intervals between infections ranged from 12 h to 7 days, and both frequency of superinfection and viral replication levels were examined. Using virus genotype pairs of equal and unequal virulence, we observed that superinfection generally occurred with decreasing frequency as the interval between exposures to each genotype increased. For both the equal-virulence and unequal-virulence genotype pairs, the frequency of superinfection in most cases was the same regardless of which genotype was used in the primary exposure. The ability to replicate in the context of superinfection also did not differ between the genotypes of equal or unequal virulence tested here. For both genotype pairs, the mean viral load of the secondary virus was significantly reduced in superinfection while primary virus replication was unaffected. Our results demonstrate, for the two genotype pairs examined, that superinfection restriction does occur for IHNV and that higher virulence did not correlate with a significant difference in superinfection fitness. To our knowledge, this is the first assay to examine the role of virulence of an RNA virus in determining superinfection fitness dynamics within a natural vertebrate host.
Collapse
|
17
|
Selection and characterization of human respiratory syncytial virus escape mutants resistant to a polyclonal antiserum raised against the F protein. Arch Virol 2012; 157:1071-80. [PMID: 22411099 DOI: 10.1007/s00705-012-1274-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 02/02/2012] [Indexed: 10/28/2022]
Abstract
A human respiratory syncytial virus (HRSV) neutralization escape mutant was obtained after 56 serial passages in the presence of a polyclonal antiserum raised against the F protein. Nucleotide sequence analysis of this escape mutant virus revealed two amino acid substitutions: Asn268Ile and Val533Met. When this virus was allowed to grow in the absence of the anti-F polyclonal serum, only the mutation Asn268Ile was stably maintained. Both the double and single escape mutant viruses lost reactivity with mAbs belonging to antigenic site II of the fusion protein of RSV. Mutation Asn268Ile has already been reported in RS viruses that are resistant to mAbs 47F and 11 and palivizumab (PZ). We have thus identified a novel mutation (Val533Met) in the transmembrane domain of the F protein that was selected under immune pressure.
Collapse
|
18
|
Zhu Q, Patel NK, McAuliffe JM, Zhu W, Wachter L, McCarthy MP, Suzich JA. Natural polymorphisms and resistance-associated mutations in the fusion protein of respiratory syncytial virus (RSV): effects on RSV susceptibility to palivizumab. J Infect Dis 2011; 205:635-8. [PMID: 22184728 DOI: 10.1093/infdis/jir790] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Specific mutations in respiratory syncytial virus (RSV) fusion protein can cause palivizumab resistance. We assessed the incidence of sequence polymorphisms and palivizumab resistance in clinical RSV isolates collected from immunoprophylaxis-naive subjects. Polymorphisms were identified at low frequency, and only polymorphic mutations in antigenic site A (<1% of all polymorphisms) conferred palivizumab resistance.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Infectious Disease-Vaccines, MedImmune, Gaithersburg, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Collins PL, Melero JA. Progress in understanding and controlling respiratory syncytial virus: still crazy after all these years. Virus Res 2011; 162:80-99. [PMID: 21963675 PMCID: PMC3221877 DOI: 10.1016/j.virusres.2011.09.020] [Citation(s) in RCA: 348] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Revised: 09/13/2011] [Accepted: 09/14/2011] [Indexed: 01/25/2023]
Abstract
Human respiratory syncytial virus (RSV) is a ubiquitous pathogen that infects everyone worldwide early in life and is a leading cause of severe lower respiratory tract disease in the pediatric population as well as in the elderly and in profoundly immunosuppressed individuals. RSV is an enveloped, nonsegmented negative-sense RNA virus that is classified in Family Paramyxoviridae and is one of its more complex members. Although the replicative cycle of RSV follows the general pattern of the Paramyxoviridae, it encodes additional proteins. Two of these (NS1 and NS2) inhibit the host type I and type III interferon (IFN) responses, among other functions, and another gene encodes two novel RNA synthesis factors (M2-1 and M2-2). The attachment (G) glycoprotein also exhibits unusual features, such as high sequence variability, extensive glycosylation, cytokine mimicry, and a shed form that helps the virus evade neutralizing antibodies. RSV is notable for being able to efficiently infect early in life, with the peak of hospitalization at 2-3 months of age. It also is notable for the ability to reinfect symptomatically throughout life without need for significant antigenic change, although immunity from prior infection reduces disease. It is widely thought that re-infection is due to an ability of RSV to inhibit or subvert the host immune response. Mechanisms of viral pathogenesis remain controversial. RSV is notable for a historic, tragic pediatric vaccine failure involving a formalin-inactivated virus preparation that was evaluated in the 1960s and that was poorly protective and paradoxically primed for enhanced RSV disease. RSV also is notable for the development of a successful strategy for passive immunoprophylaxis of high-risk infants using RSV-neutralizing antibodies. Vaccines and new antiviral drugs are in pre-clinical and clinical development, but controlling RSV remains a formidable challenge.
Collapse
MESH Headings
- Aged
- Aged, 80 and over
- Antibodies, Neutralizing/administration & dosage
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/genetics
- Antibodies, Viral/immunology
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antiviral Agents/administration & dosage
- Child
- Communicable Disease Control/organization & administration
- Cytokines/immunology
- Humans
- Immunity, Innate
- Infant
- RNA, Viral/genetics
- RNA, Viral/immunology
- Respiratory Syncytial Virus Infections/drug therapy
- Respiratory Syncytial Virus Infections/immunology
- Respiratory Syncytial Virus Infections/prevention & control
- Respiratory Syncytial Virus Infections/virology
- Respiratory Syncytial Virus Vaccines/administration & dosage
- Respiratory Syncytial Virus, Human/genetics
- Respiratory Syncytial Virus, Human/immunology
- Vaccination
- Vaccines, Attenuated/administration & dosage
- Viral Proteins/chemistry
- Viral Proteins/genetics
- Viral Proteins/immunology
- Virus Replication/genetics
- Virus Replication/immunology
Collapse
Affiliation(s)
- Peter L. Collins
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - José A. Melero
- Centro Nacional de Microbiología and CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Majadahonda, 28220 Madrid, Spain
| |
Collapse
|
20
|
Kumaria R, Iyer LR, Hibberd ML, Simões EAF, Sugrue RJ. Whole genome characterization of non-tissue culture adapted HRSV strains in severely infected children. Virol J 2011; 8:372. [PMID: 21794174 PMCID: PMC3166936 DOI: 10.1186/1743-422x-8-372] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 07/28/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Human respiratory syncytial virus (HRSV) is the most important virus causing lower respiratory infection in young children. The complete genetic characterization of RSV clinical strains is a prerequisite for understanding HRSV infection in the clinical context. Current information about the genetic structure of the HRSV genome has largely been obtained using tissue culture adapted viruses. During tissue culture adaptation genetic changes can be introduced into the virus genome, which may obscure subtle variations in the genetic structure of different RSV strains. METHODS In this study we describe a novel Sanger sequencing strategy which allowed the complete genetic characterisation of 14 clinical HRSV strains. The viruses were sequenced directly in the nasal washes of severely hospitalized children, and without prior passage of the viruses in tissue culture. RESULTS The analysis of nucleotide sequences suggested that vRNA length is a variable factor among primary strains, while the phylogenetic analysis suggests selective pressure for change. The G gene showed the greatest sequence variation (2-6.4%), while small hydrophobic protein and matrix genes were completely conserved across all clinical strains studied. A number of sequence changes in the F, L, M2-1 and M2-2 genes were observed that have not been described in laboratory isolates. The gene junction regions showed more sequence variability, and in particular the intergenic regions showed a highest level of sequence variation. Although the clinical strains grew slower than the HRSVA2 virus isolate in tissue culture, the HRSVA2 isolate and clinical strains formed similar virus structures such as virus filaments and inclusion bodies in infected cells; supporting the clinical relevance of these virus structures. CONCLUSION This is the first report to describe the complete genetic characterization of HRSV clinical strains that have been sequenced directly from clinical material. The presence of novel substitutions and deletions in the vRNA of clinical strains emphasize the importance of genomic characterization of non-tissue culture adapted primary strains.
Collapse
Affiliation(s)
- Rajni Kumaria
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
| | - Laxmi Ravi Iyer
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| | - Martin L Hibberd
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Genome Institute of Singapore, #02-01, Genome Building, 60 Biopolis Street, 138672, Singapore
| | - Eric AF Simões
- University of Colorado, Denver and The Division of Infectious Diseases, The Children's Hospital, 13123 East 16th Avenue, Aurora, CO 80045, USA
| | - Richard J Sugrue
- Singapore-MIT Alliance for Research and Technology, Centre for Life Sciences, #05-06M, 28 Medical Drive, 117456, Singapore
- Division of Molecular and Cell biology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 639798, Singapore
| |
Collapse
|
21
|
Zhu Q, McAuliffe JM, Patel NK, Palmer-Hill FJ, Yang CF, Liang B, Su L, Zhu W, Wachter L, Wilson S, MacGill RS, Krishnan S, McCarthy MP, Losonsky GA, Suzich JA. Analysis of respiratory syncytial virus preclinical and clinical variants resistant to neutralization by monoclonal antibodies palivizumab and/or motavizumab. J Infect Dis 2011; 203:674-82. [PMID: 21208913 PMCID: PMC3072724 DOI: 10.1093/infdis/jiq100] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/22/2010] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Palivizumab is a US Food and Drug Administration-approved monoclonal antibody for the prevention of respiratory syncytial virus (RSV) lower respiratory disease in high-risk infants. Motavizumab, derived from palivizumab with enhanced antiviral activity, has recently been tested in humans. Although palivizumab escape mutants have been generated in the laboratory, the development of resistant RSV in patients receiving palivizumab has not been reported previously. METHODS We generated palivizumab and motavizumab escape mutants in vitro and examined the development of resistant mutants in RSV-breakthrough patients receiving immunoprophylaxis. The effect of these mutations on neutralization by palivizumab and motavizumab and in vitro fitness was studied. RESULTS Antibody-resistant RSV variants selected in vitro had mutations at position 272 of the fusion protein, from lysine to asparagine, methionine, threonine, glutamine, or glutamate. Variants containing mutations at positions 272 and 275 were detected in breakthrough patients. All these variants were resistant to palivizumab, but only the glutamate variant at position 272 demonstrated resistance to motavizumab. Mixtures of wild-type and variant RSV soon lost the resistant phenotype in the absence of selection. CONCLUSIONS Resistant RSV variants were detected in a small subset (∼ 5%) of RSV breakthrough cases. The fitness of these variants was impaired, compared to wild-type RSV.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Infectious Disease-Vaccines, MedImmune, Gaithersburg, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Tregoning JS, Schwarze J. Respiratory viral infections in infants: causes, clinical symptoms, virology, and immunology. Clin Microbiol Rev 2010; 23:74-98. [PMID: 20065326 PMCID: PMC2806659 DOI: 10.1128/cmr.00032-09] [Citation(s) in RCA: 503] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In global terms, respiratory viral infection is a major cause of morbidity and mortality. Infancy, in particular, is a time of increased disease susceptibility and severity. Early-life viral infection causes acute illness and can be associated with the development of wheezing and asthma in later life. The most commonly detected viruses are respiratory syncytial virus (RSV), rhinovirus (RV), and influenza virus. In this review we explore the complete picture from epidemiology and virology to clinical impact and immunology. Three striking aspects emerge. The first is the degree of similarity: although the infecting viruses are all different, the clinical outcome, viral evasion strategies, immune response, and long-term sequelae share many common features. The second is the interplay between the infant immune system and viral infection: the immaturity of the infant immune system alters the outcome of viral infection, but at the same time, viral infection shapes the development of the infant immune system and its future responses. Finally, both the virus and the immune response contribute to damage to the lungs and subsequent disease, and therefore, any prevention or treatment needs to address both of these factors.
Collapse
Affiliation(s)
- John S Tregoning
- Centre for Infection, Department of Cellular and Molecular Medicine, St. George's University of London, London, United Kingdom.
| | | |
Collapse
|
23
|
Affiliation(s)
- Peter M. Colman
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia 3050;
| |
Collapse
|
24
|
Abstract
Respiratory syncytial virus (RSV) is the leading cause of severe respiratory disease in infants and is an important source of morbidity and mortality in the elderly and immunocompromised. This review will discuss the humoral and cellular adaptive immune responses to RSV infection and how these responses are shaped in the immature immune system of the infant and the aged environment of the elderly. Furthermore, we will provide an overview of our current understanding of the role the various arms of the adaptive immune response play in mediating the delicate balance between the successful elimination of the virus from the host and the induction of immunopathology. Efficacious immunization against RSV remains a high priority within the field and we will highlight recent advances made in vaccine design.
Collapse
Affiliation(s)
- Matthew R Olson
- Department of Microbiology, 51 Newton Road, 3−532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA Tel.: +1 319 335 8433 Fax: +1 319 335 9006
| | - Steven M Varga
- Department of Microbiology, Interdisciplinary Graduate Program in Immunology, 51 Newton Road, 3−532 Bowen Science Building, University of Iowa, Iowa City, IA 52242, USA Tel.: +1 319 335 7784 Fax: +1 319 335 9006
| |
Collapse
|
25
|
Sugrue RJ, Tan BH, Yeo DSY, Sutejo R. Antiviral Drugs for the Control of Pandemic Influenza Virus. ANNALS OF THE ACADEMY OF MEDICINE, SINGAPORE 2008. [DOI: 10.47102/annals-acadmedsg.v37n6p518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the advent of an influenza virus pandemic it is likely that the administration of antiviral drugs will be an important first line of defence against the virus. The drugs currently in use are effective against seasonal influenza virus infection, and some cases have been used in the treatment of patients infected with the avian H5N1 influenza virus. However, it is becoming clear that the emergence of drug-resistant viruses will potentially be a major problem in the future efforts to control influenza virus infection. In addition, during a new pandemic, sufficient quantities of these agents will need to be distributed to many different parts of the world, possibly at short notice. In this review we provide an overview of some of the drugs that are currently available for the treatment and prevention of influenza virus infection. In addition, basic research on influenza virus is providing a much better understanding of the biology of the virus, which is offering the possibility of new anti-influenza virus drugs. We therefore also review some new antiviral strategies that are being reported in the scientific literature, which may form the basis of the next generation of antiviral strategies during a future influenza virus pandemic.
Key words: Antiviral, Amantadine, Pandemic influenza virus, Oseltamivir, siRNA
Collapse
|
26
|
Martcheva M, Bolker BM, Holt RD. Vaccine-induced pathogen strain replacement: what are the mechanisms? J R Soc Interface 2008; 5:3-13. [PMID: 17459810 PMCID: PMC2405901 DOI: 10.1098/rsif.2007.0236] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Host immune systems impose natural selection on pathogen populations, which respond by evolving different antigenic signatures. Like many evolutionary processes, pathogen evolution reflects an interaction between different levels of selection; pathogens can win in between-strain competition by taking over individual hosts (within-host level) or by infecting more hosts (population level). Vaccination, which intensifies and modifies selection by protecting hosts against one or more pathogen strains, can drive the emergence of new dominant pathogen strains-a phenomenon called vaccine-induced pathogen strain replacement. Here, we review reports of increased incidence of subdominant variants after vaccination campaigns and extend the current model for pathogen strain replacement, which assumes that pathogen strain replacement occurs only through the differential effectiveness of vaccines against different pathogen strains. Based on a recent theoretical study, we suggest a broader range of possible mechanisms, some of which allow pathogen strain replacement even when vaccines are perfect-that is, they protect all vaccinated individuals completely against all pathogen strains. We draw an analogy with ecological and evolutionary explanations for competitive dominance and coexistence that allow for tradeoffs between different competitive and life-history traits.
Collapse
Affiliation(s)
- Maia Martcheva
- Department of Mathematics, University of Florida, 358 Little Hall, PO Box 118105, Gainesville, FL 32611-8105, USA.
| | | | | |
Collapse
|
27
|
Wu H, Pfarr DS, Losonsky GA, Kiener PA. Immunoprophylaxis of RSV infection: advancing from RSV-IGIV to palivizumab and motavizumab. Curr Top Microbiol Immunol 2007; 317:103-23. [PMID: 17990791 DOI: 10.1007/978-3-540-72146-8_4] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Antibodies mediate humoral immune responses and play key roles in the defense of viral infection by the recognition, neutralization, and elimination of viruses from the circulation. For the prevention of respiratory syncytial virus (RSV) infection, the natural immune response to RSV from pooled human plasma has been harvested and successfully developed as a prophylactic polyclonal RSV hyperimmune globulin, RespiGam (RSV-IGIV; MedImmune, Gaithersburg, MD). The success of RSV-IGIV validated the immunoprophylaxis approach for RSV prevention and led to the development of Synagis (palivizumab; MedImmune, Gaithersburg, MD), a humanized monoclonal antibody (mAb) that binds to the RSV F protein. Palivizumab is a potent anti-RSV mAb that is about 50-fold more potent than RSV-IGIV, and since obtaining regulatory approval in 1998 it has been used extensively to help prevent severe RSV disease in high-risk infants and children. However, a very small number of patients receiving the drug do not appear to be adequately protected. To further improve protection against RSV, we have applied a directed evolution approach to enhance the binding of palivizumab to F protein by manipulation of both the on and off rates. These efforts have yielded a more potent second-generation mAb, motavizumab, which is currently under study in phase III clinical trials. Most recently, a third generation mAb, Numax-YTE, has been generated with the intent to extend the serum half-life of the mAb in humans. If successfully developed, this drug may offer the opportunity for less frequent dosing, obviating the need for the monthly treatments that are required with palivizumab. The development of these anti-RSV approaches exemplifies the accelerated pace of drug development made possible with cutting-edge antibody engineering technologies.
Collapse
Affiliation(s)
- H Wu
- MedImmune, Inc., One MedImmune Way, Gaithersburg, MD 20878, USA.
| | | | | | | |
Collapse
|
28
|
Liu C, Day ND, Branigan PJ, Gutshall LL, Sarisky RT, Del Vecchio AM. Relationship between the loss of neutralizing antibody binding and fusion activity of the F protein of human respiratory syncytial virus. Virol J 2007; 4:71. [PMID: 17623075 PMCID: PMC1947961 DOI: 10.1186/1743-422x-4-71] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2007] [Accepted: 07/10/2007] [Indexed: 11/30/2022] Open
Abstract
To elucidate the relationship between resistance to HRSV neutralizing antibodies directed against the F protein and the fusion activity of the F protein, a recombinant approach was used to generate a panel of mutations in the major antigenic sites of the F protein. These mutant proteins were assayed for neutralizing mAb binding (ch101F, palivizumab, and MAb19), level of expression, post-translational processing, cell surface expression, and fusion activity. Functional analysis of the fusion activity of the panel of mutations revealed that the fusion activity of the F protein is tolerant to multiple changes in the site II and IV/V/VI region in contrast with the somewhat limited spectrum of changes in the F protein identified from the isolation of HRSV neutralizing antibody virus escape mutants. This finding suggests that aspects other than fusion activity may limit the spectrum of changes tolerated within the F protein that are selected for by neutralizing antibodies.
Collapse
Affiliation(s)
- Changbao Liu
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Nicole D Day
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Patrick J Branigan
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Lester L Gutshall
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | - Robert T Sarisky
- Centocor R&D, Inc., 145 King of Prussia Road, Radnor, Pennsylvania, 19087, USA
| | | |
Collapse
|