1
|
Lombard J, Stenkamp-Strahm C, McCluskey B, Abdul-Hamid C, Cardona C, Petersen B, Russo K. The One Health challenges and opportunities of the H5N1 outbreak in dairy cattle in the United States. J Dairy Sci 2025:S0022-0302(25)00281-4. [PMID: 40306425 DOI: 10.3168/jds.2024-26222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 03/30/2025] [Indexed: 05/02/2025]
Abstract
The outbreak of H5N1 in dairy cattle in United States revealed challenges in identification and management of a novel disease. The virus showed an exceptional ability to spread between farms and among cows within a farm. The impact of the virus on dairy cattle varied from nonclinical to severe clinical signs and death. Many dairy producers did not report clinical signs in their cows or test for the virus. Cats and peridomestic birds on many affected dairies died from viral exposure. Dairy workers showed signs of conjunctivitis, which was confirmed to be due to H5N1. With the disease affecting multiple species and showing efficient cow-to-cow transmission, the situation only worsened. There was a negative impact on the relationships among dairy producers, dairy workers, poultry producers, and veterinarians, in which professional and personal relationships were severed and some experienced loss of employment. The regulatory response varied by geographic location, and in some states, animal health and human health authorities elevated producer fears of consequences of reporting. Authorities did quickly confirm that pasteurization inactivated the virus in dairy products and showed that it was very rarely detected in beef from affected cows. In this review, we will describe the relationships among the dairy industry and animal and human health and why the H5N1 outbreak requires a One Health perspective of all stakeholders in order to address it effectively.
Collapse
Affiliation(s)
- J Lombard
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1678.
| | - C Stenkamp-Strahm
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1678
| | - B McCluskey
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523-1678
| | - C Abdul-Hamid
- Texas Department of State Health Services, Lubbock, TX 79424
| | - C Cardona
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108
| | - B Petersen
- Sunrise Veterinary Service PLLC, Amarillo, TX 79108
| | - K Russo
- RSM Consulting, Fort Collins, CO 80528
| |
Collapse
|
2
|
Woolums AR, Chase CCL. Biosecurity and Biocontainment for Ruminant Respiratory Disease. Vet Clin North Am Food Anim Pract 2025; 41:39-54. [PMID: 39779448 DOI: 10.1016/j.cvfa.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Respiratory disease in cattle and small ruminants is caused by various factors, including inadequate biosecurity and biocontainment. Biosecurity and biocontainment depend on good husbandry. Testing on arrival and quarantining for 42 to 56 days could improve biosecurity. Controlling visitors and vehicles, maintaining good air quality, and ensuring optimal passive immunity transfer are critical. Endemic respiratory agents are unlikely to transmit beyond 10 m, but environmental factors can affect this. Endemic viruses have a high R0, so achieving high herd immunity is important to limit transmission. While vaccination is an important biosecurity tool, it is not a substitute for other practices.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, 240 Wise Center, MS 39762, USA.
| | - Christopher C L Chase
- Department of Veterinary and Biomedical Sciences, Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD 57007, USA
| |
Collapse
|
3
|
Carroll A, Bell MJ, Bleach ECL, Turner D, Williams LK. Impact of dairy calf management practices on the intestinal tract microbiome pre-weaning. J Med Microbiol 2025; 74. [PMID: 39879083 DOI: 10.1099/jmm.0.001957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025] Open
Abstract
Introduction. Microbiota in the gastrointestinal tract (GIT) consisting of the rumen and hindgut (the small intestine, cecum and colon) in dairy calves play a vital role in their growth and development. This review discusses the development of dairy calf intestinal microbiomes with an emphasis on the impact that husbandry and rearing management have on microbiome development, health and growth of pre-weaned dairy calves.Discussion. The diversity and composition of the microbes that colonize the lower GIT (small and large intestine) can have a significant impact on the growth and development of the calf, through influence on nutrient metabolism, immune modulation, resistance or susceptibility to infection, production outputs and behaviour modification in adult life. The colonization of the calf intestinal microbiome dynamically changes from birth, increasing microbial richness and diversity until weaning, where further dynamic and drastic microbiome change occurs. In dairy calves, neonatal microbiome development prior to weaning is influenced by direct and indirect factors, some of which could be considered stressors, such as maternal interaction, environment, diet, husbandry and weaning practices. The specific impact of these can dictate intestinal microbial colonization, with potential lifelong consequences.Conclusion. Evidence suggests the potential detrimental effect that sudden changes and stress may have on calf health and growth due to management and husbandry practices, and the importance of establishing a stable yet diverse intestinal microbiome population at an early age is essential for calf success. The possibility of improving the health of calves through intestinal microbiome modulation and using alternative strategies including probiotic use, faecal microbiota transplantation and novel approaches of microbiome tracking should be considered to support animal health and sustainability of dairy production systems.
Collapse
Affiliation(s)
- Aisling Carroll
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Matt J Bell
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| | - Emma C L Bleach
- Animal Science Research Centre, Harper Adams University, Edgmond, Newport, TF10 8NB, Shropshire, UK
| | - Dann Turner
- University of the West of England, Bristol, Coldharbour Lane, BS16 1QY, UK
| | - Lisa K Williams
- Animal and Agriculture Department, Hartpury University, Gloucester, GL19 3BE, UK
| |
Collapse
|
4
|
Alvarez I, Banihashem F, Persson A, Hurri E, Kim H, Ducatez M, Geijer E, Valarcher JF, Hägglund S, Zohari S. Detection and Phylogenetic Characterization of Influenza D in Swedish Cattle. Viruses 2024; 17:17. [PMID: 39861806 PMCID: PMC11768518 DOI: 10.3390/v17010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
Increased evidence suggests that cattle are the primary host of Influenza D virus (IDV) and may contribute to respiratory disease in this species. The aim of this study was to detect and characterise IDV in the Swedish cattle population using archived respiratory samples. This retrospective study comprised a collection of a total 1763 samples collected between 1 January 2021 and 30 June 2024. The samples were screened for IDV and other respiratory pathogens using real-time reverse transcription quantitative PCR (rRT-qPCR). Fifty-one IDV-positive samples were identified, with a mean cycle threshold (Ct) value of 27 (range: 15-37). Individual samples with a Ct value of <30 for IDV RNA were further analysed by deep sequencing. Phylogenetic analysis was performed by the maximum likelihood estimation method on the whole IDV genome sequence from 16 samples. The IDV strains collected in 2021 (n = 7) belonged to the D/OK clade, whereas samples from 2023 (n = 4) and 2024 (n = 5) consisted of reassortants between the D/OK and D/660 clades, for the PB2 gene. This study reports the first detection of IDV in Swedish cattle and the circulation of D/OK and reassortant D/OK-D/660 in this population.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 756 51 Uppsala, Sweden
| | - Fereshteh Banihashem
- Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden (S.Z.)
| | - Annie Persson
- Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden (S.Z.)
| | - Emma Hurri
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, 756 51 Uppsala, Sweden
- Department of Animal Health and Antimicrobial Strategies, Swedish Veterinary Agency, 751 89 Uppsala, Sweden
| | - Hyeyoung Kim
- Department of Epidemiology, Surveillance and Risk Assessment, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden
| | - Mariette Ducatez
- Interactions Hôtes-Agents-Pathogènes, Ecole Vétérinaire de Toulouse (ENVT), Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, 31300 Toulouse, France
| | - Erika Geijer
- Gård & Djurhälsan, Kungsängens Gård, 753 23 Uppsala, Sweden
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 756 51 Uppsala, Sweden
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agricultural Sciences, P.O. Box 7054, 756 51 Uppsala, Sweden
| | - Siamak Zohari
- Department of Microbiology, Swedish Veterinary Agency, Ulls väg 2B, 751 89 Uppsala, Sweden (S.Z.)
| |
Collapse
|
5
|
Buczinski S, Broes A, Savard C. Frequency of Bovine Respiratory Disease Complex Bacterial and Viral Agents Using Multiplex Real-Time qPCR in Quebec, Canada, from 2019 to 2023. Vet Sci 2024; 11:631. [PMID: 39728971 DOI: 10.3390/vetsci11120631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 12/28/2024] Open
Abstract
The bovine respiratory disease complex (BRD) is a multifactorial disease caused by various bacterial and viral pathogens. Using rapid pathogen detection techniques is helpful for tailoring therapeutic and preventive strategies in affected animals and herds. The objective of this study was to report the frequency of 10 pathogens by multiplex RT-qPCR on samples submitted for BRD diagnosis to a diagnostic laboratory (Biovet Inc., QC, Canada) in the Province of Quebec, Eastern Canada. From the 1st of January 2019 to the 31st of December 2023, a total of 1875 samples were analyzed. Most samples collected were individual samples (1547 of 1860 samples for which information was available (83.17%)), and the rest were from pooled samples of 2 (8.55%, n = 159) or ≥3 specimens (8.28%, n = 154). In 19.3% of the samples (n = 362), no pathogen was found, whereas 54.1% of samples had two or more different pathogens. Among the viruses, bovine coronavirus (BCV) was the most commonly found (27.5% of samples, n = 516), followed by bovine respiratory syncytial virus (BRSV) (17.7%, n = 332), whereas, for bacteria, Pasteurella multocida (50.1%, n = 940) and Mannheimia haemolytica (26.9%, n = 505) were the most common. The frequency of samples positive for Histophilus somni, Mycoplasmopsis bovis, influenza type D virus (IDV), bovine parainfluenza virus type 3 (BPI3V), bovine herpesvirus type 1 (BHV1), and bovine viral diarrhea virus (BVDV) was 22.6%, 22.4%, 4.6%, 4.3%, 2.7%, and 0.9%, respectively. In the multivariable Poisson regression model, the total number of pathogens increased with the number of animals in the pool, with an incidence risk ratio (IRR) of 1.15 (95% CI 1.02-1.29) and 1.32 (1.18-1.47) for 2 individuals in the pool and ≥3 individuals vs. individual samples, respectively. An increased number of pathogens were isolated in the winter season (IRR = 1.28 (95% CI 1.17-1.40)) compared to fall, and a lower number of pathogens were isolated in the summer compared to fall (IRR = 0.82 (95% CI 0.73-0.92)). These seasonal differences were mostly driven by the number of viruses isolated. This study gives interesting insights on the circulation of BRD pathogens in cattle from Eastern Canada.
Collapse
Affiliation(s)
- Sébastien Buczinski
- Département des Sciences Cliniques, Faculté de Médecine Vétérinaire, Université de Montréal, 3200 rue Sicotte, Saint-Hyacinthe, QC J2S 2M2, Canada
| | - André Broes
- Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada
| | - Christian Savard
- Biovet Inc., Division of Antech Diagnostics and Mars Petcare Science & Diagnostics Company, Saint-Hyacinthe, QC J2S 8W2, Canada
| |
Collapse
|
6
|
Yu J, Wen Z, Hu W, Chen M, Zhang Y, Liu S, Wang G, Wang Z, Wang D, Zhai SL, Wei WK, Li T, Liao M. Influenza D virus infection in China, 2022-2023. Emerg Microbes Infect 2024; 13:2343907. [PMID: 38738553 PMCID: PMC11097708 DOI: 10.1080/22221751.2024.2343907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/11/2024] [Indexed: 05/14/2024]
Abstract
Influenza D virus (IDV) plays an important role in the bovine respiratory disease (BRD) complex. Its potential for the zoonotic transmission is of particular concern. In China, IDV has previously been identified in agricultural animals by molecular surveys with no live virus isolates reported. In this study, live IDVs were successfully isolated from cattle in China, which prompted us to further investigate the national prevalence, antigenic property, and infection biology of the virus. IDV RNA was detected in 11.1% (51/460) of cattle throughout the country in 2022-2023. Moreover, we conducted the first IDV serosurveillance in China, revealing a high seroprevalence (91.4%, 393/430) of IDV in cattle during the 2022-2023 winter season. Notably, all the 16 provinces from which cattle originated possessed seropositive animals, and 3 of them displayed the 100% IDV-seropositivity rate. In contrast, a very low seroprevalence of IDV was observed in pigs (3%, 3/100) and goats (1%, 1/100) during the same period of investigation. Furthermore, besides D/Yama2019 lineage-like IDVs, we discovered the D/660 lineage-like IDV in Chinese cattle, which has not been detected to date in Asia. Finally, the Chinese IDVs replicated robustly in diverse cell lines but less efficiently in the swine cell line. Considering the nationwide distribution, high seroprevalence, and appreciably genetic diversity, further studies are required to fully evaluate the risk of Chinese IDVs for both animal and human health in China, which can be evidently facilitated by IDV isolates reported in this study.
Collapse
Affiliation(s)
- Jieshi Yu
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhenyu Wen
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Wanke Hu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Mingwang Chen
- Zhongshan Animal Disease Control Center, Zhongshan, People’s Republic of China
| | - Yuanlong Zhang
- Guangdong Animal Disease Control Center, Guangzhou, People’s Republic of China
| | - Shasha Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Gang Wang
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Zhao Wang
- School of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Shao-lun Zhai
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Wen-kang Wei
- State Key Laboratory of Swine and Poultry Breeding Industry, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
| | - Tianyu Li
- Zhongshan Animal Disease Control Center, Zhongshan, People’s Republic of China
- College of Animal Science and Technology, Guangxi University, Nanning, People’s Republic of China
| | - Ming Liao
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangdong Provincial Key Laboratory of Zoonosis Prevention and Control, College of Veterinary Medicine, South China Agricultural University, Guangzhou, People’s Republic of China
- Key Laboratory of Livestock Disease Prevention of Guangdong Province, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, People’s Republic of China
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, People’s Republic of China
| |
Collapse
|
7
|
Itarte M, Calvo M, Martínez-Frago L, Mejías-Molina C, Martínez-Puchol S, Girones R, Medema G, Bofill-Mas S, Rusiñol M. Assessing environmental exposure to viruses in wastewater treatment plant and swine farm scenarios with next-generation sequencing and occupational risk approaches. Int J Hyg Environ Health 2024; 259:114360. [PMID: 38555823 DOI: 10.1016/j.ijheh.2024.114360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Occupational exposure to pathogens can pose health risks. This study investigates the viral exposure of workers in a wastewater treatment plant (WWTP) and a swine farm by analyzing aerosol and surfaces samples. Viral contamination was evaluated using quantitative polymerase chain reaction (qPCR) assays, and target enrichment sequencing (TES) was performed to identify the vertebrate viruses to which workers might be exposed. Additionally, Quantitative Microbial Risk Assessment (QMRA) was conducted to estimate the occupational risk associated with viral exposure for WWTP workers, choosing Human Adenovirus (HAdV) as the reference pathogen. In the swine farm, QMRA was performed as an extrapolation, considering a hypothetical zoonotic virus with characteristics similar to Porcine Adenovirus (PAdV). The modelled exposure routes included aerosol inhalation and oral ingestion through contaminated surfaces and hand-to-mouth contact. HAdV and PAdV were widespread viruses in the WWTP and the swine farm, respectively, by qPCR assays. TES identified human and other vertebrate viruses WWTP samples, including viruses from families such as Adenoviridae, Circoviridae, Orthoherpesviridae, Papillomaviridae, and Parvoviridae. In the swine farm, most of the identified vertebrate viruses were porcine viruses belonging to Adenoviridae, Astroviridae, Circoviridae, Herpesviridae, Papillomaviridae, Parvoviridae, Picornaviridae, and Retroviridae. QMRA analysis revealed noteworthy risks of viral infections for WWTP workers if safety measures are not taken. The probability of illness due to HAdV inhalation was higher in summer compared to winter, while the greatest risk from oral ingestion was observed in workspaces during winter. Swine farm QMRA simulation suggested a potential occupational risk in the case of exposure to a hypothetical zoonotic virus. This study provides valuable insights into WWTP and swine farm worker's occupational exposure to human and other vertebrate viruses. QMRA and NGS analyses conducted in this study will assist managers in making evidence-based decisions, facilitating the implementation of protection measures, and risk mitigation practices for workers.
Collapse
Affiliation(s)
- Marta Itarte
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain.
| | - Miquel Calvo
- Secció d'Estadística, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Lola Martínez-Frago
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Cristina Mejías-Molina
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Sandra Martínez-Puchol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain
| | - Rosina Girones
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | | | - Sílvia Bofill-Mas
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Marta Rusiñol
- Laboratory of Viruses Contaminants of Water and Food, Secció de Microbiologia, Departament de Genètica, Microbiologia i Estadística, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona, Spain; Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| |
Collapse
|
8
|
Gorin S, Richard G, Quéguiner S, Chastagner A, Barbier N, Deblanc C, Hervé S, Blanchard Y, Paboeuf F, Simon G. Pathogenesis, Transmission, and Within-Host Evolution of Bovine-Origin Influenza D Virus in Pigs. Transbound Emerg Dis 2024; 2024:9009051. [PMID: 40303028 PMCID: PMC12016950 DOI: 10.1155/2024/9009051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/27/2024] [Accepted: 04/06/2024] [Indexed: 05/02/2025]
Abstract
Whereas bovine has been demonstrated as the main reservoir of influenza D virus (IDV), this virus was first isolated in a pig and is regularly detected in some swine populations. However, the role of swine in IDV ecology, as well as the outcomes of IDV infection in pigs, is still unclear. This study aimed to provide additional information on pathogenesis, transmission, and adaptation of a bovine-origin IDV in swine. An infection and transmission study, using an IDV strain isolated following a first passage on pig of a bovine IDV, was conducted on specific pathogen-free pigs, including inoculated and direct contact pigs. Two routes of inoculation were tested, i.e., nasal and tracheal. None of the inoculated or their contact pigs showed clinical signs, but all of them shed the virus in nasal secretions and seroconverted. Virus shedding started earlier in pigs inoculated intranasally as well as in their contact pigs, compared to pigs inoculated intratracheally and associated contacts, suggesting that the viral replication occurred preferentially in the upper respiratory tract. Sequencing data brought to light a mutation on hemagglutinin-esterase-fusion protein (L118F) in the bovine IDV-derived isolate obtained after the first passage on pig. This mutation was fixed in all viral strains obtained in this study, either from inoculated or contact pigs, and was maintained over the second and third passages on swine. The L118F mutation could be linked to the adaptation of the parental bovine IDV to the swine host and might have contributed to an efficient viral multiplication and subsequent pig-to-pig transmission.
Collapse
Affiliation(s)
- Stéphane Gorin
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Gautier Richard
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Stéphane Quéguiner
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Amélie Chastagner
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Nicolas Barbier
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Céline Deblanc
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Séverine Hervé
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Yannick Blanchard
- Ploufragan-Plouzané-Niort Laboratory, Viral Genetics and Biosecurity Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Frédéric Paboeuf
- Ploufragan-Plouzané-Niort Laboratory, SPF Pig Production and Experimentation, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| | - Gaëlle Simon
- Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, French Agency for Food, Environmental and Occupational Health and Safety, Ploufragan, France
| |
Collapse
|
9
|
Alvarez I, Ducatez M, Guo Y, Lion A, Widgren A, Dubourdeau M, Baillif V, Saias L, Zohari S, Bergquist J, Meyer G, Valarcher JF, Hägglund S. Proteomic and Lipidomic Profiling of Calves Experimentally Co-Infected with Influenza D Virus and Mycoplasma bovis: Insights into the Host-Pathogen Interactions. Viruses 2024; 16:361. [PMID: 38543727 PMCID: PMC10975297 DOI: 10.3390/v16030361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/23/2024] Open
Abstract
The role of Influenza D virus (IDV) in bovine respiratory disease remains unclear. An in vivo experiment resulted in increased clinical signs, lesions, and pathogen replication in calves co-infected with IDV and Mycoplasma bovis (M. bovis), compared to single-infected calves. The present study aimed to elucidate the host-pathogen interactions and profile the kinetics of lipid mediators in the airways of these calves. Bronchoalveolar lavage (BAL) samples collected at 2 days post-infection (dpi) were used for proteomic analyses by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Additionally, lipidomic analyses were performed by LC-MS/MS on BAL samples collected at 2, 7 and 14 dpi. Whereas M. bovis induced the expression of proteins involved in fibrin formation, IDV co-infection counteracted this coagulation mechanism and downregulated other acute-phase response proteins, such as complement component 4 (C4) and plasminogen (PLG). The reduced inflammatory response against M. bovis likely resulted in increased M. bovis replication and delayed M. bovis clearance, which led to a significantly increased abundance of oxylipids in co-infected calves. The identified induced oxylipids mainly derived from arachidonic acid; were likely oxidized by COX-1, COX-2, and LOX-5; and peaked at 7 dpi. This paper presents the first characterization of BAL proteome and lipid mediator kinetics in response to IDV and M. bovis infection in cattle and raises hypotheses regarding how IDV acts as a co-pathogen in bovine respiratory disease.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Mariette Ducatez
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Yongzhi Guo
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Adrien Lion
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Anna Widgren
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; (A.W.); (J.B.)
| | | | | | - Laure Saias
- Ambiotis SAS, 3 Rue des Satellites, 31400 Toulouse, France
| | - Siamak Zohari
- Department of Microbiology, Swedish Veterinary Agency, Ullsvägen 2B, 75189 Uppsala, Sweden;
| | - Jonas Bergquist
- Department of Chemistry-BMC, Analytical Chemistry and Neurochemistry, Uppsala University, Husargatan 3, 75124 Uppsala, Sweden; (A.W.); (J.B.)
- Department of Animal Biosciences, Swedish University of Agricultural Sciences, Ulls väg 26, 75007 Uppsala, Sweden
| | - Gilles Meyer
- IHAP, Université de Tolouse, INRAE, ENVT, 31076 Toulouse, France
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden (J.-F.V.); (S.H.)
| |
Collapse
|
10
|
Werid GM, Miller D, Hemmatzadeh F, Messele YE, Petrovski K. An overview of the detection of bovine respiratory disease complex pathogens using immunohistochemistry: emerging trends and opportunities. J Vet Diagn Invest 2024; 36:12-23. [PMID: 37982437 PMCID: PMC10734592 DOI: 10.1177/10406387231210489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023] Open
Abstract
The bovine respiratory disease complex (BRDC) is caused by a variety of pathogens, as well as contributing environmental and host-related risk factors. BRDC is the costliest disease for feedlot cattle globally. Immunohistochemistry (IHC) is a valuable tool for enhancing our understanding of BRDC given its specificity, sensitivity, cost-effectiveness, and capacity to provide information on antigen localization and immune response. Emerging trends in IHC include the use of multiplex IHC for the detection of coinfections, the use of digital imaging and automation, improved detection systems using enhanced fluorescent dyes, and the integration of IHC with spatial transcriptomics. Overall, identifying biomarkers for early detection, utilizing high-throughput IHC for large-scale studies, developing standardized protocols and reagents, and integrating IHC with other technologies are some of the opportunities to enhance the accuracy and applicability of IHC. We summarize here the various techniques and protocols used in IHC and highlight their current and potential role in BRDC research.
Collapse
Affiliation(s)
- Gebremeskel Mamu Werid
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Darren Miller
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Farhid Hemmatzadeh
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Yohannes E. Messele
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Kiro Petrovski
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
- Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
11
|
Kwasnik M, Rola J, Rozek W. Influenza D in Domestic and Wild Animals. Viruses 2023; 15:2433. [PMID: 38140674 PMCID: PMC10748149 DOI: 10.3390/v15122433] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza D virus (IDV) infections have been observed in animals worldwide, confirmed through both serological and molecular tests, as well as virus isolation. IDV possesses unique properties that distinguish it from other influenza viruses, primarily attributed to the hemagglutinin-esterase fusion (HEF) surface glycoprotein, which determines the virus' tropism and wide host range. Cattle are postulated to be the reservoir of IDV, and the virus is identified as one of the causative agents of bovine respiratory disease (BRD) syndrome. Animals associated with humans and susceptible to IDV infection include camels, pigs, small ruminants, and horses. Notably, high seroprevalence towards IDV, apart from cattle, is also observed in camels, potentially constituting a reservoir of the virus. Among wild and captive animals, IDV infections have been confirmed in feral pigs, wild boars, deer, hedgehogs, giraffes, wildebeests, kangaroos, wallabies, and llamas. The transmission potential and host range of IDV may contribute to future viral differentiation. It has been confirmed that influenza D may pose a threat to humans as a zoonosis, with seroprevalence noted in people with professional contact with cattle.
Collapse
Affiliation(s)
| | | | - Wojciech Rozek
- Department of Virology, National Veterinary Research Institute, Al. Partyzantow 57, 24-100 Pulawy, Poland; (M.K.); (J.R.)
| |
Collapse
|
12
|
Uprety T, Sreenivasan CC, Thomas M, Hause B, Christopher-Hennings J, Miskimis D, Pillatzki A, Nelson E, Wang D, Li F. Prevalence and characterization of seven-segmented influenza viruses in bovine respiratory disease complex. Virology 2023; 587:109859. [PMID: 37544044 PMCID: PMC10592214 DOI: 10.1016/j.virol.2023.109859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/08/2023]
Abstract
Bovine respiratory disease (BRD) complex is a multifactorial respiratory disease of cattle. Seven-segmented influenza C (ICV) and D (IDV) viruses have been identified in cattle with BRD, however, molecular epidemiology and prevalence of IDV and ICV in the diseased population remain poorly characterized. Here, we conducted a molecular screening of 208 lung samples of bovine pneumonia cases for the presence of IDV and ICV. Our results demonstrated that both viruses were prevalent in BRD cases and the overall positivity rates of IDV and ICV were 20.88% and 5.99% respectively. Further analysis of three IDV strains isolated from lungs of cattle with BRD showed that these lung-tropic strains belonged to D/Michigan/2019 clade and diverged antigenically from the circulating dominant IDV clades D/OK and D/660. Our results reveal that IDV and ICV are associated with BRD complex and support a role for IDV and ICV in the etiology of BRD.
Collapse
Affiliation(s)
- Tirth Uprety
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Chithra C Sreenivasan
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Milton Thomas
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Ben Hause
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Jane Christopher-Hennings
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dale Miskimis
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Angela Pillatzki
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Eric Nelson
- Department of Veterinary and Biomedical Science, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| | - Feng Li
- Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
13
|
Brito BP, Frost MJ, Anantanawat K, Jaya F, Batterham T, Djordjevic SP, Chang WS, Holmes EC, Darling AE, Kirkland PD. Expanding the range of the respiratory infectome in Australian feedlot cattle with and without respiratory disease using metatranscriptomics. MICROBIOME 2023; 11:158. [PMID: 37491320 PMCID: PMC10367309 DOI: 10.1186/s40168-023-01591-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/03/2023] [Indexed: 07/27/2023]
Abstract
BACKGROUND Bovine respiratory disease (BRD) is one of the most common diseases in intensively managed cattle, often resulting in high morbidity and mortality. Although several pathogens have been isolated and extensively studied, the complete infectome of the respiratory complex consists of a more extensive range unrecognised species. Here, we used total RNA sequencing (i.e., metatranscriptomics) of nasal and nasopharyngeal swabs collected from animals with and without BRD from two cattle feedlots in Australia. RESULTS A high abundance of bovine nidovirus, influenza D, bovine rhinitis A and bovine coronavirus was found in the samples. Additionally, we obtained the complete or near-complete genome of bovine rhinitis B, enterovirus E1, bovine viral diarrhea virus (sub-genotypes 1a and 1c) and bovine respiratory syncytial virus, and partial sequences of other viruses. A new species of paramyxovirus was also identified. Overall, the most abundant RNA virus, was the bovine nidovirus. Characterisation of bacterial species from the transcriptome revealed a high abundance and diversity of Mollicutes in BRD cases and unaffected control animals. Of the non-Mollicutes species, Histophilus somni was detected, whereas there was a low abundance of Mannheimia haemolytica. CONCLUSION This study highlights the use of untargeted sequencing approaches to study the unrecognised range of microorganisms present in healthy or diseased animals and the need to study previously uncultured viral species that may have an important role in cattle respiratory disease. Video Abstract.
Collapse
Affiliation(s)
- Barbara P Brito
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia.
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia.
- Present Address: Biosecurity and Food Safety, NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute (EMAI), Menangle, New South Wales, Australia.
| | - Melinda J Frost
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| | - Kay Anantanawat
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- Illumina Australia, Ultimo, New South Wales, Australia
| | - Frederick Jaya
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | | | - Steven P Djordjevic
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
| | - Wei-Shan Chang
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Edward C Holmes
- Sydney Institute for Infectious Diseases, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Aaron E Darling
- Australian Institute for Microbiology & Infection, University of Technology Sydney, Ultimo, New South Wales, Australia
- Illumina Australia, Ultimo, New South Wales, Australia
| | - Peter D Kirkland
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, New South Wales, Australia
| |
Collapse
|
14
|
Alvarez I, Hägglund S, Näslund K, Eriksson A, Ahlgren E, Ohlson A, Ducatez MF, Meyer G, Valarcher JF, Zohari S. Detection of Influenza D-Specific Antibodies in Bulk Tank Milk from Swedish Dairy Farms. Viruses 2023; 15:v15040829. [PMID: 37112809 PMCID: PMC10141034 DOI: 10.3390/v15040829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
Influenza D virus (IDV) has been detected in bovine respiratory disease (BRD) outbreaks, and experimental studies demonstrated this virus's capacity to cause lesions in the respiratory tract. In addition, IDV-specific antibodies were detected in human sera, which indicated that this virus plays a potential zoonotic role. The present study aimed to extend our knowledge about the epidemiologic situation of IDV in Swedish dairy farms, using bulk tank milk (BTM) samples for the detection of IDV antibodies. A total of 461 and 338 BTM samples collected during 2019 and 2020, respectively, were analyzed with an in-house indirect ELISA. In total, 147 (32%) and 135 (40%) samples were IDV-antibody-positive in 2019 and 2020, respectively. Overall, 2/125 (2%), 11/157 (7%) and 269/517 (52%) of the samples were IDV-antibody-positive in the northern, middle and southern regions of Sweden. The highest proportion of positive samples was repeatedly detected in the south, in the county of Halland, which is one of the counties with the highest cattle density in the country. In order to understand the epidemiology of IDV, further research in different cattle populations and in humans is required.
Collapse
Affiliation(s)
- Ignacio Alvarez
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Sara Hägglund
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Katarina Näslund
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, 75189 Uppsala, Sweden
| | - Axel Eriksson
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Evelina Ahlgren
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, 75189 Uppsala, Sweden
| | - Anna Ohlson
- Växa Sverige AB, Uppsala, Ulls Väg 29A, 75651 Uppsala, Sweden
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, 31076 Toulouse, France
| | - Jean-Francois Valarcher
- Division of Ruminant Medicine, Department of Clinical Sciences, Swedish University of Agriculture Sciences, 8 Almas Allé, 75007 Uppsala, Sweden
| | - Siamak Zohari
- Department of Microbiology, National Veterinary Institute, Ulls väg 2B, 75189 Uppsala, Sweden
| |
Collapse
|
15
|
Gaudino M, Lion A, Sagné E, Nagamine B, Oliva J, Terrier O, Errazuriz-Cerda E, Scribe A, Sikht FZ, Simon E, Foret-Lucas C, Gausserès B, Lion J, Moreno A, Dordet-Frisoni E, Baranowski E, Volmer R, Ducatez MF, Meyer G. The Activation of the RIG-I/MDA5 Signaling Pathway upon Influenza D Virus Infection Impairs the Pulmonary Proinflammatory Response Triggered by Mycoplasma bovis Superinfection. J Virol 2023; 97:e0142322. [PMID: 36692289 PMCID: PMC9972951 DOI: 10.1128/jvi.01423-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 12/21/2022] [Indexed: 01/25/2023] Open
Abstract
Concurrent infections with multiple pathogens are often described in cattle with respiratory illness. However, how the host-pathogen interactions influence the clinical outcome has been only partially explored in this species. Influenza D virus (IDV) was discovered in 2011. Since then, IDV has been detected worldwide in different hosts. A significant association between IDV and bacterial pathogens in sick cattle was shown in epidemiological studies, especially with Mycoplasma bovis. In an experimental challenge, IDV aggravated M. bovis-induced pneumonia. However, the mechanisms through which IDV drives an increased susceptibility to bacterial superinfections remain unknown. Here, we used the organotypic lung model precision-cut lung slices to study the interplay between IDV and M. bovis coinfection. Our results show that a primary IDV infection promotes M. bovis superinfection by increasing the bacterial replication and the ultrastructural damages in lung pneumocytes. In our model, IDV impaired the innate immune response triggered by M. bovis by decreasing the expression of several proinflammatory cytokines and chemokines that are important for immune cell recruitment and the bacterial clearance. Stimulations with agonists of cytosolic helicases and Toll-like receptors (TLRs) revealed that a primary activation of RIG-I/MDA5 desensitizes the TLR2 activation, similar to what was observed with IDV infection. The cross talk between these two pattern recognition receptors leads to a nonadditive response, which alters the TLR2-mediated cascade that controls the bacterial infection. These results highlight innate immune mechanisms that were not described for cattle so far and improve our understanding of the bovine host-microbe interactions and IDV pathogenesis. IMPORTANCE Since the spread of the respiratory influenza D virus (IDV) infection to the cattle population, the question about the impact of this virus on bovine respiratory disease (BRD) remains still unanswered. Animals affected by BRD are often coinfected with multiple pathogens, especially viruses and bacteria. In particular, viruses are suspected to enhance secondary bacterial superinfections. Here, we use an ex vivo model of lung tissue to study the effects of IDV infection on bacterial superinfections. Our results show that IDV increases the susceptibility to the respiratory pathogen Mycoplasma bovis. In particular, IDV seems to activate immune pathways that inhibit the innate immune response against the bacteria. This may allow M. bovis to increase its proliferation and to delay its clearance from lung tissue. These results suggest that IDV could have a negative impact on the respiratory pathology of cattle.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Adrien Lion
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Justine Oliva
- Centre International de Recherche en Infectiologie – U1111 (Equipe VirPath) – Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Lyon, France
- Centre National de la Recherche Scientifique – UMR5308, Lyon, France
| | - Olivier Terrier
- Centre International de Recherche en Infectiologie – U1111 (Equipe VirPath) – Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure, Lyon, France
- Centre National de la Recherche Scientifique – UMR5308, Lyon, France
| | | | - Anaëlle Scribe
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Elisa Simon
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Julie Lion
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna “Bruno Ubertini,” Brescia, Italy
| | | | | | - Romain Volmer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| |
Collapse
|
16
|
Protection against Bovine Respiratory Syncytial Virus Afforded by Maternal Antibodies from Cows Immunized with an Inactivated Vaccine. Vaccines (Basel) 2023; 11:vaccines11010141. [PMID: 36679988 PMCID: PMC9864491 DOI: 10.3390/vaccines11010141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
The passive protection afforded by the colostrum from cattle that were vaccinated prepartum with an inactivated combination vaccine against the bovine respiratory syncytial virus (BRSV) was evaluated after an experimental challenge of calves. Pregnant cows without or with a low ELISA and neutralizing BRSV antibody titers were twice vaccinated or not vaccinated, the last immunization being at one month prior to calving. Vaccination was followed by a rapid increase in BRSV antibody titers after the second immunization. Twenty-eightnewborn calves were fed during the 6 h following birth, with 4 L of colostrum sourced from vaccinated cows (14 vaccine calves) or non-vaccinated cows (14 control calves) and were challenged with BRSV at 21 days of age. We showed that maternal immunity to BRSV provides a significant reduction in the clinical signs of BRSV in calves, especially for severe clinical forms. This protection was correlated with reduced BRSV detection in the lower respiratory tract but not in nasal swabs, indicating an absence of protection against BRSV nasal excretion. Finally, transcriptomic assays in bronchoalveolar lavages showed no statistical differences between groups for chemokine and cytokine mRNA transcriptions, with the exception of the overexpression of IL-9 at days 6 and 10 post-challenge, and a severe downregulation of CXCL-1 at day 3 post-challenge, in the vaccine group.
Collapse
|
17
|
Influenza D Virus: A Review and Update of Its Role in Bovine Respiratory Syndrome. Viruses 2022; 14:v14122717. [PMID: 36560721 PMCID: PMC9785601 DOI: 10.3390/v14122717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/30/2022] [Accepted: 12/04/2022] [Indexed: 12/07/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most prevalent, deadly, and costly diseases in young cattle. BRD has been recognized as a multifactorial disease caused mainly by viruses (bovine herpesvirus, BVDV, parainfluenza-3 virus, respiratory syncytial virus, and bovine coronavirus) and bacteria (Mycoplasma bovis, Pasteurella multocida, Mannheimia haemolytica and Histophilus somni). However, other microorganisms have been recognized to cause BRD. Influenza D virus (IDV) is a novel RNA pathogen belonging to the family Orthomyxoviridae, first discovered in 2011. It is distributed worldwide in cattle, the main reservoir. IDV has been demonstrated to play a role in BRD, with proven ability to cause respiratory disease, a high transmission rate, and potentiate the effects of other pathogens. The transmission mechanisms of this virus are by direct contact and by aerosol route over short distances. IDV causes lesions in the upper respiratory tract of calves and can also replicate in the lower respiratory tract and cause pneumonia. There is currently no commercial vaccine or specific treatment for IDV. It should be noted that IDV has zoonotic potential and could be a major public health concern if there is a drastic change in its pathogenicity to humans. This review summarizes current knowledge regarding IDV structure, pathogenesis, clinical significance, and epidemiology.
Collapse
|
18
|
Lou C, Bai Y, Chai T, Yu H, Lin T, Hu G, Guan Y, Wu B. Research progress on distribution and exposure risk of microbial aerosols in animal houses. Front Vet Sci 2022; 9:1015238. [PMID: 36439349 PMCID: PMC9684608 DOI: 10.3389/fvets.2022.1015238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/19/2022] [Indexed: 11/11/2022] Open
Abstract
Environmental aerosols in animal houses are closely related to the productive performance and health level of animals living in the houses. Preferable housing environments can improve animal welfare and production efficiency, so it is necessary to monitor and study these environments. In recent years, there have been many large-scale outbreaks of respiratory diseases related to biological aerosols, especially the novel coronavirus that has been sweeping the world. This has attracted much attention to the mode of aerosol transmission. With the rapid development of large-scale and intensive breeding, microbial aerosols have gradually become the main factor of environmental pollution in animal houses. They not only lead to a large-scale outbreak of infectious diseases, but they also have a certain impact on the health of animals and employees in the houses and increase the difficulty of prevention and control of animal-borne diseases. This paper reviews the distribution, harm, and control measures of microbial aerosols in animal house environments in order to improve people's understanding of them.
Collapse
Affiliation(s)
- Cheng Lou
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yu Bai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tongjie Chai
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- College of Veterinary Medicine, Shandong Agricultural University, Tai'an, China
- Key Laboratory of Animal Bioengineering and Animal Disease of Shandong Province, Tai'an, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Tai'an, China
| | - Hui Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Tuorong Lin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Guangming Hu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Yuling Guan
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
| | - Bo Wu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, China
- *Correspondence: Bo Wu
| |
Collapse
|
19
|
Gaudino M, Nagamine B, Ducatez MF, Meyer G. Understanding the mechanisms of viral and bacterial coinfections in bovine respiratory disease: a comprehensive literature review of experimental evidence. Vet Res 2022; 53:70. [PMID: 36068558 PMCID: PMC9449274 DOI: 10.1186/s13567-022-01086-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/11/2022] [Indexed: 11/17/2022] Open
Abstract
Bovine respiratory disease (BRD) is one of the most important diseases impacting the global cattle industry, resulting in significant economic loss. Commonly referred to as shipping fever, BRD is especially concerning for young calves during transport when they are most susceptible to developing disease. Despite years of extensive study, managing BRD remains challenging as its aetiology involves complex interactions between pathogens, environmental and host factors. While at the beginning of the twentieth century, scientists believed that BRD was only caused by bacterial infections ("bovine pasteurellosis"), we now know that viruses play a key role in BRD induction. Mixtures of pathogenic bacteria and viruses are frequently isolated from respiratory secretions of animals with respiratory illness. The increased diagnostic screening data has changed our understanding of pathogens contributing to BRD development. In this review, we aim to comprehensively examine experimental evidence from all existing studies performed to understand coinfections between respiratory pathogens in cattle. Despite the fact that pneumonia has not always been successfully reproduced by in vivo calf modelling, several studies attempted to investigate the clinical significance of interactions between different pathogens. The most studied model of pneumonia induction has been reproduced by a primary viral infection followed by a secondary bacterial superinfection, with strong evidence suggesting this could potentially be one of the most common scenarios during BRD onset. Different in vitro studies indicated that viral priming may increase bacterial adherence and colonization of the respiratory tract, suggesting a possible mechanism underpinning bronchopneumonia onset in cattle. In addition, a few in vivo studies on viral coinfections and bacterial coinfections demonstrated that a primary viral infection could also increase the pathogenicity of a secondary viral infection and, similarly, dual infections with two bacterial pathogens could increase the severity of BRD lesions. Therefore, different scenarios of pathogen dynamics could be hypothesized for BRD onset which are not limited to a primary viral infection followed by a secondary bacterial superinfection.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | | | | | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France.
| |
Collapse
|
20
|
Laloli L, Licheri MF, Probst L, Licheri M, Gultom M, Holwerda M, V’kovski P, Dijkman R. Time-resolved characterization of the innate immune response in the respiratory epithelium of human, porcine, and bovine during influenza virus infection. Front Immunol 2022; 13:970325. [PMID: 36059535 PMCID: PMC9437644 DOI: 10.3389/fimmu.2022.970325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Viral cross-species transmission is recognized to be a major threat to both human and animal health, however detailed information on determinants underlying virus host tropism and susceptibility is missing. Influenza C and D viruses (ICV, IDV) are two respiratory viruses that share up to 50% genetic similarity, and both employ 9-O-acetylated sialic acids to enter a host cell. While ICV infections are mainly restricted to humans, IDV possesses a much broader host tropism and has shown to have a zoonotic potential. This suggests that additional virus–host interactions play an important role in the distinct host spectrum of ICV and IDV. In this study, we aimed to characterize the innate immune response of the respiratory epithelium of biologically relevant host species during influenza virus infection to identify possible determinants involved in viral cross-species transmission. To this end, we performed a detailed characterization of ICV and IDV infection in primary airway epithelial cell (AEC) cultures from human, porcine, and bovine origin. We monitored virus replication kinetics, cellular and host tropism, as well as the host transcriptional response over time at distinct ambient temperatures. We observed that both ICV and IDV predominantly infect ciliated cells, independently from host and temperature. Interestingly, temperature had a profound influence on ICV replication in both porcine and bovine AEC cultures, while IDV replicated efficiently irrespective of temperature and host. Detailed time-resolved transcriptome analysis revealed both species-specific and species uniform host responses and highlighted 34 innate immune-related genes with clear virus-specific and temperature-dependent profiles. These data provide the first comprehensive insights into important common and species-specific virus-host dynamics underlying the distinct host tropism of ICV and IDV, as well as possible determinants involved in viral cross-species transmission.
Collapse
Affiliation(s)
- Laura Laloli
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Lukas Probst
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matthias Licheri
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Mitra Gultom
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Melle Holwerda
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Philip V’kovski
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Ronald Dijkman,
| |
Collapse
|
21
|
Robinson E, Schulein C, Jacobson BT, Jones K, Sago J, Huber V, Jutila M, Bimczok D, Rynda-Apple A. Pathophysiology of Influenza D Virus Infection in Specific-Pathogen-Free Lambs with or without Prior Mycoplasma ovipneumoniae Exposure. Viruses 2022; 14:1422. [PMID: 35891403 PMCID: PMC9321583 DOI: 10.3390/v14071422] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 12/04/2022] Open
Abstract
Polymicrobial pneumonias occur frequently in cattle, swine, and sheep, resulting in major economic losses. Individual pathogens comprising these complex infections may be mild on their own but can instead exhibit synergism or increase host susceptibility. Two examples of such pathogens, Mycoplasma ovipneumoniae (M. ovipneumoniae) and influenza D viruses (IDVs), naturally infect domestic sheep. In sheep, the role of M. ovipneumoniae in chronic nonprogressive pneumonia is well-established, but the pathogenesis of IDV infection has not previously been studied. We utilized a specific-pathogen-free sheep flock to study the clinical response to IDV infection in naïve vs. M. ovipneumoniae-exposed lambs. Lambs were inoculated intranasally with M. ovipneumoniae or mock infection, followed after four weeks by infection with IDV. Pathogen shedding was tracked, and immunological responses were evaluated by measuring acute phase response and IDV-neutralizing antibody titers. While lamb health statuses remained subclinical, M. ovipneumoniae-exposed lambs had significantly elevated body temperatures during IDV infection compared to M. ovipneumoniae-naïve, IDV-infected lambs. Moreover, we found a positive correlation between prior M. ovipneumoniae burden, early-infection IDV shedding, and IDV-neutralizing antibody response. Our findings suggest that IDV infection may not induce clinical symptoms in domestic sheep, but previous M. ovipneumoniae exposure may promote mild IDV-associated inflammation.
Collapse
Affiliation(s)
- Ema Robinson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Clyde Schulein
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - B. Tegner Jacobson
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Kerri Jones
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Jonathon Sago
- Montana State Veterinary Diagnostic Laboratory, 1911 West Lincoln Street, Bozeman, MT 59718, USA;
| | - Victor Huber
- Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA;
| | - Mark Jutila
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Diane Bimczok
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| | - Agnieszka Rynda-Apple
- Department of Microbiology and Cell Biology, Montana State University, 2155 Analysis Drive, Bozeman, MT 59718, USA; (E.R.); (C.S.); (B.T.J.); (K.J.); (M.J.); (D.B.)
| |
Collapse
|
22
|
Experimental Infection of Horses with Influenza D Virus. Viruses 2022; 14:v14040661. [PMID: 35458390 PMCID: PMC9029652 DOI: 10.3390/v14040661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/19/2022] [Accepted: 03/20/2022] [Indexed: 02/04/2023] Open
Abstract
Antibodies to influenza D virus (IDV) have been detected in horses, but no evidence of disease in the field has been reported. To determine whether IDV is infectious, immunogenic, and pathogenic in horses, four 2-year-old horses seronegative for both influenza A (H3N8) and D viruses were intranasally inoculated with 6.25 × 107 TCID50/animal of D/bovine/California/0363/2019 (D/CA2019) virus, using a portable equine nebulizer system. Horses were observed daily for clinical signs including rectal temperature, nasal discharge, coughing, lung sounds, tachycardia, and tachypnea. No horses exhibited clinical signs of disease. Nasopharyngeal swabs collected from 1–8 days post-infection demonstrated virus shedding by qRT-PCR. The horses showed evidence of seroconversion as early as 13 days post-infection (dpi) and the geometric mean of the antibody titers (GMT) of all four horses ranged from 16.82–160 as demonstrated by the microneutralization assay. Further, deep RNA sequencing of the virus isolated in embryonated chicken eggs revealed no adaptive mutations indicating that IDV can replicate in horses, suggesting the possibility of interspecies transmission of IDV with bovine reservoir into equids in nature.
Collapse
|
23
|
Development and assessment of a new bioassay for accurate quantification of Type I interferons induced by bovine respiratory viruses. J Immunol Methods 2022; 504:113256. [PMID: 35300990 DOI: 10.1016/j.jim.2022.113256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/10/2022] [Accepted: 03/10/2022] [Indexed: 11/20/2022]
Abstract
Type I interferon (IFN-I) plays a major role in antiviral and inflammatory processes of the infected host. In the bovine industry, the bovine respiratory disease complex is a major cause of economic and health problems. This disease is caused by interactions of pathogens, together with environmental and host factors. Several pathogens have been identified as causal agents of respiratory diseases in cattle. To better understand how primary infections by viruses predispose animals to further infections by pathogenic bacteria, tools to accurately detect antiviral and immunoregulatory cytokines are needed. To facilitate the detection and quantification of bovine IFN-I, we have established a new specific and sensitive bioassay studies in the bovine host. This assay is based on a Madin-Darby Bovine Kidney (MDBK) cell line that carries a luciferase gene under the control of the IFN-I inducible bovine Mx1 promoter. Specific luciferase activity was measured after stimulation with serial dilutions of recombinant bovine alpha and beta IFNs and human IFN-α. With this novel bioassay we have successfully measured IFN-I production in supernatant from MDBK cells after stimulation of Toll-like receptors (TLR3, TLR7 and TLR8) and RIG-I-like receptors (RIG-I and MDA5), after viral infection with bovine respiratory pathogens, but also in samples from infected calves. Finally, this new bioassay is an easy-to-use and low cost tool to measure the production of bovine Type-I Interferon.
Collapse
|
24
|
Chen Z, Zeng Y, Wei Y, Wang Q, Liu M, Zhang B, Liu J, Zhu Q, Xu S. Influenza D virus Matrix protein 1 restricts the type I interferon response by degrading TRAF6. Virology 2022; 568:1-11. [DOI: 10.1016/j.virol.2022.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 01/04/2023]
|
25
|
Characterization of Influenza D Virus in Danish Calves. Viruses 2022; 14:v14020423. [PMID: 35216016 PMCID: PMC8880214 DOI: 10.3390/v14020423] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/17/2022] Open
Abstract
Influenza D virus (IDV) was first described in 2011 and has been found to mainly circulate among cattle and swine populations worldwide. Nasal swab samples were collected from 100 Danish calf herds (83 dairy and 17 veal herds) from 2018-2020. Influenza D virus was detected in 12 of the herds. Samples with the lowest cycle quantification value were selected for full genome sequencing. A hemagglutinin-esterase fusion (HEF) gene sequence from a Danish IDV collected in 2015 was also included in this study. Phylogenetic analysis showed that viruses from seven of the IDV-positive herds belonged to the D/OK lineage and clustered together in the HEF tree with the IDV collected in 2015. Viruses from the four other herds belonged to the D/660 lineage, where three of the viruses clustered closely together, while the fourth virus was more phylogenetically distant in all gene segments. The high level of genetic similarity between viruses from two different herds involved in calf trading suggests that transmission occurred through the movement of calves. This study is, to our knowledge, the first to describe the characterization of IDV in calves in Denmark.
Collapse
|
26
|
Bhattarai S, Lin CM, Temeeyasen G, Palinski R, Li F, Kaushik RS, Hause BM. Bovine rhinitis B virus is highly prevalent in acute bovine respiratory disease and causes upper respiratory tract infection in calves. J Gen Virol 2022; 103. [PMID: 35130139 PMCID: PMC8941992 DOI: 10.1099/jgv.0.001714] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bovine respiratory disease (BRD) is the most significant cause of cattle morbidity and mortality worldwide. This multifactorial disease has a complex aetiology. Dogma posits a primary viral infection followed by secondary bacterial pneumonia. Bovine rhinitis B virus (BRBV) is an established aetiological agent of BRD, but little is known regarding its pathogenesis. Here, a BRD PCR panel identified 18/153 (11.8 %) lung samples and 20/49 (40.8 %) nasal swabs collected from cattle with respiratory signs as positive for BRBV, which was the most prevalent virus in nasal swabs. Primary bovine tracheal epithelial cells were used to isolate BRBV that was phylogenetically related to contemporary sequences from the USA and Mexico and genetically divergent from the previous sole BRBV isolate. To investigate virus pathogenesis, 1-week-old colostrum-deprived dairy calves were inoculated intranasally with 7.0 log10 TCID50 BRBV. Virus was isolated from nasal swabs, nasal turbinates, trachea and the brain of the challenged animals. Neutralizing antibodies were detected beginning 7 days post-inoculation and peaked at day 14. In situ hybridization (ISH) localized BRBV infection in the upper respiratory ciliated epithelial and goblet cells, occasionally associated with small defects of the superficial cilia lining. Sporadically, pinpoint ISH signals were also detected in cells resembling glial cells in the cerebrum in one calf. Together, these results demonstrate the BRBV infection is highly prevalent in acute BRD samples and while the pathogenicity of BRBV is minimal with infection largely limited to the upper respiratory tract, further research is needed to elucidate a possible initiatory role in BRD.
Collapse
Affiliation(s)
- Shaurav Bhattarai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Chun-Ming Lin
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Gun Temeeyasen
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| | - Rachel Palinski
- Kansas State Veterinary Diagnostic Laboratory and Department of Diagnostic Medicine/Pathobiology, Kansas State University, Manhattan, KS, USA
| | - Feng Li
- Department of Veterinary Science, University of Kentucky, Lexington, KY, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Ben M Hause
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, USA.,Animal Disease Research and Diagnostic Laboratory, South Dakota State University, Brookings, SD, USA
| |
Collapse
|
27
|
Enhanced Pathogenesis Caused by Influenza D Virus and Mycoplasma bovis Coinfection in Calves: a Disease Severity Linked with Overexpression of IFN-γ as a Key Player of the Enhanced Innate Immune Response in Lungs. Microbiol Spectr 2021; 9:e0169021. [PMID: 34937196 PMCID: PMC8694133 DOI: 10.1128/spectrum.01690-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine respiratory disease (BRD) is a major disease of young cattle whose etiology lies in complex interactions between pathogens and environmental and host factors. Despite a high frequency of codetection of respiratory pathogens in BRD, data on the molecular mechanisms and pathogenesis associated with viral and bacterial interactions are still limited. In this study, we investigated the effects of a coinfection with influenza D virus (IDV) and Mycoplasma bovis in cattle. Naive calves were infected by aerosol with a French IDV strain and an M. bovis strain. The combined infection shortened the incubation period, worsened the disease, and led to more severe macroscopic and microscopic lesions compared to these parameters in calves infected with only one pathogen. In addition, IDV promoted colonization of the lower respiratory tract (LRT) by M. bovis and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The gamma interferon (IFN-γ) gene was shown to be the gene most statistically overexpressed after coinfection at 2 days postinfection (dpi) and at least until 7 dpi, which correlated with the high level of lymphocytes in the LRT. Downregulation of the PACE4 and TMPRSS2 endoprotease genes was also highlighted, being a possible reason for the faster clearance of IDV in the lungs of coinfected animals. Taken together, our coinfection model with two respiratory pathogens that when present alone induce moderate clinical signs of disease was shown to increase the severity of the disease in young cattle and a strong transcriptomic innate immune response in the LRT, especially for IFN-γ. IMPORTANCE Bovine respiratory disease (BRD) is among the most prevalent diseases in young cattle. BRD is due to complex interactions between viruses and/or bacteria, most of which have a moderate individual pathogenicity. In this study, we showed that coinfection with influenza D virus (IDV) and Mycoplasma bovis increased the severity of the respiratory disease in calves in comparison with IDV or M. bovis infection. IDV promoted M. bovis colonization of the lower respiratory tract and increased white cell recruitment to the airway lumen. The transcriptomic analysis highlighted an upregulation of immune genes in the lungs of coinfected calves. The IFN-γ gene in particular was highly overexpressed after coinfection, correlated with the disease severity, immune response, and white cell recruitment in the lungs. In conclusion, we showed that IDV facilitates coinfections within the BRD complex by modulating the local innate immune response, providing new insights into the mechanisms involved in severe respiratory diseases.
Collapse
|
28
|
Hasankhani A, Bahrami A, Sheybani N, Fatehi F, Abadeh R, Ghaem Maghami Farahani H, Bahreini Behzadi MR, Javanmard G, Isapour S, Khadem H, Barkema HW. Integrated Network Analysis to Identify Key Modules and Potential Hub Genes Involved in Bovine Respiratory Disease: A Systems Biology Approach. Front Genet 2021; 12:753839. [PMID: 34733317 PMCID: PMC8559434 DOI: 10.3389/fgene.2021.753839] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022] Open
Abstract
Background: Bovine respiratory disease (BRD) is the most common disease in the beef and dairy cattle industry. BRD is a multifactorial disease resulting from the interaction between environmental stressors and infectious agents. However, the molecular mechanisms underlying BRD are not fully understood yet. Therefore, this study aimed to use a systems biology approach to systematically evaluate this disorder to better understand the molecular mechanisms responsible for BRD. Methods: Previously published RNA-seq data from whole blood of 18 healthy and 25 BRD samples were downloaded from the Gene Expression Omnibus (GEO) and then analyzed. Next, two distinct methods of weighted gene coexpression network analysis (WGCNA), i.e., module-trait relationships (MTRs) and module preservation (MP) analysis were used to identify significant highly correlated modules with clinical traits of BRD and non-preserved modules between healthy and BRD samples, respectively. After identifying respective modules by the two mentioned methods of WGCNA, functional enrichment analysis was performed to extract the modules that are biologically related to BRD. Gene coexpression networks based on the hub genes from the candidate modules were then integrated with protein-protein interaction (PPI) networks to identify hub-hub genes and potential transcription factors (TFs). Results: Four significant highly correlated modules with clinical traits of BRD as well as 29 non-preserved modules were identified by MTRs and MP methods, respectively. Among them, two significant highly correlated modules (identified by MTRs) and six nonpreserved modules (identified by MP) were biologically associated with immune response, pulmonary inflammation, and pathogenesis of BRD. After aggregation of gene coexpression networks based on the hub genes with PPI networks, a total of 307 hub-hub genes were identified in the eight candidate modules. Interestingly, most of these hub-hub genes were reported to play an important role in the immune response and BRD pathogenesis. Among the eight candidate modules, the turquoise (identified by MTRs) and purple (identified by MP) modules were highly biologically enriched in BRD. Moreover, STAT1, STAT2, STAT3, IRF7, and IRF9 TFs were suggested to play an important role in the immune system during BRD by regulating the coexpressed genes of these modules. Additionally, a gene set containing several hub-hub genes was identified in the eight candidate modules, such as TLR2, TLR4, IL10, SOCS3, GZMB, ANXA1, ANXA5, PTEN, SGK1, IFI6, ISG15, MX1, MX2, OAS2, IFIH1, DDX58, DHX58, RSAD2, IFI44, IFI44L, EIF2AK2, ISG20, IFIT5, IFITM3, OAS1Y, HERC5, and PRF1, which are potentially critical during infection with agents of bovine respiratory disease complex (BRDC). Conclusion: This study not only helps us to better understand the molecular mechanisms responsible for BRD but also suggested eight candidate modules along with several promising hub-hub genes as diagnosis biomarkers and therapeutic targets for BRD.
Collapse
Affiliation(s)
- Aliakbar Hasankhani
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Abolfazl Bahrami
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran
| | - Negin Sheybani
- Department of Animal and Poultry Science, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Farhang Fatehi
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Roxana Abadeh
- Department of Animal Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | | | - Ghazaleh Javanmard
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Sadegh Isapour
- Department of Animal Science, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Hosein Khadem
- Department of Agronomy and Plant Breeding, University of Tehran, Karaj, Iran
| | - Herman W. Barkema
- Department of Production Animal Health, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
29
|
Identification of One Critical Amino Acid Residue of the Nucleoprotein as a Determinant for In Vitro Replication Fitness of Influenza D Virus. J Virol 2021; 95:e0097121. [PMID: 34190601 DOI: 10.1128/jvi.00971-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The newly identified influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range with a broad geographical distribution. Despite the first appearance in U.S. pig herds in 2011, subsequent studies demonstrated that IDV is widespread in global cattle populations, supporting a theory that IDV utilizes bovines as a primary reservoir. Our investigation of the two reference influenza D viruses, D/swine/Oklahoma/1334/2011 (OK/11), isolated from swine, and D/Bovine/Oklahoma/660/2013 (660/13), isolated from cattle, revealed that 660/13 replicated to titers approximately 100-fold higher than those for OK/11 in multiple cell lines. By using a recently developed IDV reverse-genetics system derived from low-titer OK/11, we generated recombinant chimeric OK/11 viruses in which one of the seven genome segments was replaced with its counterpart from high-titer 660/13 virus. Further characterization demonstrated that the replication level of the chimeric OK/11 virus was significantly increased only when harboring the 660/13 nucleoprotein (NP) segment. Finally, through both gain-of-function and loss-of-function experiments, we identified that one amino acid residue at position 381, located in the body domain of NP protein, was a key determinant for the replication difference between the low-titer OK/11 virus and the high-titer 660/13 virus. Taken together, our findings provide important insight into IDV replication fitness mediated by the NP protein, which should facilitate future study of the infectious virus particle production mechanism of IDV. IMPORTANCE Little is known about the virus infection and production mechanism for newly discovered influenza D virus (IDV), which utilizes bovines as a primary reservoir, with frequent spillover to new hosts, including swine. In this study, we showed that of two well-characterized IDVs, 660/13 replicated more efficiently (approximately 100-fold higher) than OK/11. Using a recently developed IDV reverse-genetics system, we identified viral nucleoprotein (NP) as a primary determinant of the different replication capacities observed between these two nearly identical viruses. Mechanistic investigation further revealed that a mutation at NP position 381 evidently modulated virus fitness. Taken together, these observations indicate that IDV NP protein performs a critical role in infectious virus particle production. Our study thus illustrates an NP-based mechanism for efficient IDV infection and production in vitro.
Collapse
|
30
|
Messenger RNA biomarkers of Bovine Respiratory Syncytial Virus infection in the whole blood of dairy calves. Sci Rep 2021; 11:9392. [PMID: 33931718 PMCID: PMC8087838 DOI: 10.1038/s41598-021-88878-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
Bovine Respiratory Syncytial Virus (BRSV) is a primary viral cause of Bovine Respiratory Disease (BRD) in young calves, which is responsible for substantial morbidity and mortality. Infection with BRSV induces global gene expression changes in respiratory tissues. If these changes are observed in tissues which are more accessible in live animals, such as whole blood, they may be used as biomarkers for diagnosis of the disease. Therefore, the objective of the current study was to elucidate the whole blood transcriptomic response of dairy calves to an experimental challenge with BRSV. Calves (Holstein–Friesian) were either administered BRSV inoculate (103.5 TCID50/ml × 15 ml) (n = 12) or sterile phosphate buffered saline (n = 6). Clinical signs were scored daily and whole blood was collected in Tempus RNA tubes immediately prior to euthanasia, at day 7 post-challenge. RNA was extracted from blood and sequenced (150 bp paired-end). The sequence reads were aligned to the bovine reference genome (UMD3.1) and EdgeR was subsequently employed for differential gene expression analysis. Multidimensional scaling showed that samples from BRSV challenged and control calves segregated based on whole blood gene expression changes, despite the BRSV challenged calves only displaying mild clinical symptoms of the disease. There were 281 differentially expressed (DE) genes (p < 0.05, FDR < 0.1, fold change > 2) between the BRSV challenged and control calves. The top enriched KEGG pathways and gene ontology terms were associated with viral infection and included “Influenza A”, “defense response to virus”, “regulation of viral life cycle” and “innate immune response”. Highly DE genes involved in these pathways may be beneficial for the diagnosis of subclinical BRD from blood samples.
Collapse
|
31
|
Uprety T, Sreenivasan CC, Bhattarai S, Wang D, Kaushik RS, Li F. Isolation and development of bovine primary respiratory cells as model to study influenza D virus infection. Virology 2021; 559:89-99. [PMID: 33862336 DOI: 10.1016/j.virol.2021.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023]
Abstract
Influenza D virus (IDV) is a novel type of influenza virus that infects and causes respiratory illness in bovines. Lack of host-specific in vitro model that can recapitulate morphology and physiology of in vivo airway epithelial cells has impeded the study of IDV infection. Here, we established and characterized bovine primary respiratory epithelial cells from nasal turbinate, soft palate, and trachea of the same calf. All three cell types showed characteristics peculiar of epithelial cells, polarized into apical-basolateral membrane, and formed tight junctions. Furthermore, these cells expressed both α-2,3- and α-2,6-linked sialic acids with α-2,3 linkage being more abundant. IDV strains replicated to high titers in these cells, while influenza A and B viruses exhibited moderate to low titers, with influenza C virus replication not detected. These findings suggest that bovine primary airway epithelial cells can be utilized to model infection biology and pathophysiology of IDV and other respiratory pathogens.
Collapse
Affiliation(s)
- Tirth Uprety
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Chithra C Sreenivasan
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Shaurav Bhattarai
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | - Dan Wang
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA
| | - Radhey S Kaushik
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA.
| | - Feng Li
- M. H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY, 40546, USA.
| |
Collapse
|
32
|
Tissue Microarrays to Visualize Influenza D Attachment to Host Receptors in the Respiratory Tract of Farm Animals. Viruses 2021; 13:v13040586. [PMID: 33807137 PMCID: PMC8067312 DOI: 10.3390/v13040586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/19/2022] Open
Abstract
The trimeric hemagglutinin-esterase fusion protein (HEF) of influenza D virus (IDV) binds 9-O-acetylated sialic acid receptors, which are expressed in various host species. While cattle are the main reservoir for IDV, the viral genome has also been detected in domestic pigs. In addition, antibodies against IDV have been detected in other farm animals such as sheep, goats, and horses, and even in farmers working with IDV positive animals. Viruses belonging to various IDV clades circulate, but little is known about their differences in host and tissue tropism. Here we used recombinantly produced HEF proteins (HEF S57A) from the major clades D/Oklahoma (D/OK) and D/Oklahoma/660 (D/660) to study their host and tissue tropism and receptor interactions. To this end, we developed tissue microarrays (TMA) composed of respiratory tissues from various farm animals including cattle, domestic pigs, sheep, goats, and horses. Protein histochemical staining of farm animal respiratory tissue-microarrays with HEF proteins showed that cattle have receptors present over the entire respiratory tract while receptors are only present in the nasal and pharyngeal epithelium of pigs, sheep, goats, and horses. No differences in tropism for tissues and animals were observed between clades, while hemagglutination assays showed that D/OK has a 2-fold higher binding affinity than D/660 for receptors on red blood cells. The removal of O-acetylation from receptors via saponification treatment confirmed that receptor-binding of both clades was dependent on O-acetylated sialic acids.
Collapse
|
33
|
Saegerman C, Gaudino M, Savard C, Broes A, Ariel O, Meyer G, Ducatez MF. Influenza D virus in respiratory disease in Canadian, province of Québec, cattle: Relative importance and evidence of new reassortment between different clades. Transbound Emerg Dis 2021; 69:1227-1245. [PMID: 33764631 DOI: 10.1111/tbed.14085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/16/2021] [Accepted: 03/22/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND Influenza D virus (IDV), a segmented single-stranded negative-sense ribonucleic acid (RNA) virus, belongs to the new Delta influenza virus genus of the Orthomyxoviridae family. Cattle were proposed as the natural reservoir of IDV in which infection was associated with mild-to-moderate respiratory clinical signs (i.e. cough, nasal discharge and dyspnoea). METHODS AND PRINCIPAL FINDINGS In order to investigate the role of IDV in bovine respiratory disease, during the period 2017-2020, 883 nasal or naso-pharyngeal swabs from Canadian cattle with respiratory signs (cough and/or dyspnoea) were tested by (RT-)qPCR for IDV and other major bovine viral (bovine herpesvirus 1, bovine viral diarrhoea virus, bovine respiratory syncytial virus, bovine parainfluenza virus 3 and bovine coronavirus) and bacterial (Mannheimia haemolytica, Pasteurella multocida, Histophilus somni and Mycoplasma bovis) respiratory pathogens. In addition, whole-genome sequencing and phylogenetic analyses were carried out on five IDV-positive samples. The prevalence of IDV RT-qPCR (with cut-off: Cq < 38) at animal level was estimated at 5.32% (95% confidence interval: 3.94-7.02). Positive result of IDV was significantly associated with (RT-)qPCR-positive results for bovine respiratory syncytial virus and Mycoplasma bovis. While phylogenetic analyses indicate that most segments belonged to clade D/660, reassortment between clades D/660 and D/OK were evidenced in four samples collected in 2018-2020. CONCLUSIONS AND SIGNIFICANCE Relative importance of influenza D virus and associated pathogens in bovine respiratory disease of Canadian dairy cattle was established. Whole-genome sequencing demonstrated evidence of reassortment between clades D/660 and D/OK. Both these new pieces of information claim for more surveillance of IDV in cattle production worldwide.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | | | | | - André Broes
- Biovet Inc., Saint-Hyacinthe, Québec, Canada
| | | | | | | |
Collapse
|
34
|
Abstract
From its initial isolation in the USA in 2011 to the present, influenza D virus (IDV) has been detected in cattle and swine populations worldwide. IDV has exceptional thermal and acid stability and a broad host range. The virus utilizes cattle as its natural reservoir and amplification host with periodic spillover to other mammalian species, including swine. IDV infection can cause mild to moderate respiratory illnesses in cattle and has been implicated as a contributor to bovine respiratory disease (BRD) complex, which is the most common and costly disease affecting the cattle industry. Bovine and swine IDV outbreaks continue to increase globally, and there is increasing evidence indicating that IDV may have the potential to infect humans. This review discusses recent advances in IDV biology and epidemiology, and summarizes our current understanding of IDV pathogenesis and zoonotic potential.
Collapse
Affiliation(s)
- Jieshi Yu
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky 40546, USA
| |
Collapse
|
35
|
Kaplan BS, Falkenberg S, Dassanayake R, Neill J, Velayudhan B, Li F, Vincent AL. Virus strain influenced the interspecies transmission of influenza D virus between calves and pigs. Transbound Emerg Dis 2020; 68:3396-3404. [PMID: 33259672 DOI: 10.1111/tbed.13943] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 02/01/2023]
Abstract
Influenza D viruses (IDV) belong to a new genus in the family Orthomyxoviridae. IDV is the aetiologic agent of acute, mild respiratory disease in ungulate species with agricultural importance (cattle, pigs, sheep, goats, camels, etc.). Despite the initial isolate being of porcine origin, serological data suggest cattle to be the primary host of IDV. The study aims were twofold: elucidating species-specific replication kinetics of IDV in bovine and porcine hosts and defining the interspecies potential with two different IDV strains. Three calves and three pigs were intranasally inoculated with the prototypic strain D/swine/Oklahoma/1334/2017 or a genetically distinct cattle isolate, D/bovine/Texas/72/2017. Two days following infection, three naïve pigs and three naïve calves were co-housed with inoculated calves and pigs, respectively. The species of IDV origin had no effect on virus replication kinetics in the upper respiratory tract of inoculated calves and pigs; similar shedding profiles were observed for each species and virus. However, interspecies transmission was found to be associated with virus origin species; D/bovine/Texas/72/2017 and D/swine/Oklahoma/1334/2017 were directly transmitted only to contact calves or pigs, respectively. Even so, transmission efficiency was higher for calves compared to pigs. Together, these data show that cattle and pigs are permissive for IDV replication, but IDV transmission may be species dependent. Host-specific mutations likely influenced transmission efficiencies between agriculturally important mammalian species.
Collapse
Affiliation(s)
- Bryan S Kaplan
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Shollie Falkenberg
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Rohana Dassanayake
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - John Neill
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| | - Binu Velayudhan
- North Carolina Veterinary Diagnostic Laboratory System, Raleigh, NC, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Amy L Vincent
- Virus and Prion Research Unit, National Animal Disease Center, USDA-ARS, Ames, IA, USA
| |
Collapse
|
36
|
Nissly RH, Zaman N, Ibrahim PAS, McDaniel K, Lim L, Kiser JN, Bird I, Chothe SK, Bhushan GL, Vandegrift K, Neibergs HL, Kuchipudi SV. Influenza C and D viral load in cattle correlates with bovine respiratory disease (BRD): Emerging role of orthomyxoviruses in the pathogenesis of BRD. Virology 2020; 551:10-15. [PMID: 33010670 PMCID: PMC7519714 DOI: 10.1016/j.virol.2020.08.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 11/29/2022]
Abstract
Bovine respiratory disease (BRD) is the costliest disease affecting the cattle industry globally. Orthomyxoviruses, influenza C virus (ICV) and influenza D virus (IDV) have recently been implicated to play a role in BRD. However, there are contradicting reports about the association of IDV and ICV to BRD. Using the largest cohort study (cattle, n = 599) to date we investigated the association of influenza viruses in cattle with BRD. Cattle were scored for respiratory symptoms and pooled nasal and pharyngeal swabs were tested for bovine viral diarrhea virus, bovine herpesvirus 1, bovine respiratory syncytial virus, bovine coronavirus, ICV and IDV by real-time PCR. Cattle that have higher viral loads of IDV and ICV also have greater numbers of co-infecting viruses than controls. More strikingly, 2 logs higher IDV viral RNA in BRD-symptomatic cattle that are co-infected animals than those infected with IDV alone. Our results strongly suggest that ICV and IDV may be significant contributors to BRD.
Collapse
Affiliation(s)
- Ruth H Nissly
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Noriza Zaman
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Puteri Ainaa S Ibrahim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kaitlin McDaniel
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Levina Lim
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jennifer N Kiser
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Ian Bird
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Shubhada K Chothe
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Gitanjali L Bhushan
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Kurt Vandegrift
- The Center for Infectious Disease Dynamics, Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Holly L Neibergs
- Department of Animal Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, USA
| | - Suresh V Kuchipudi
- Penn State Animal Diagnostic Laboratory, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA; The Center for Infectious Disease Dynamics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
37
|
Saegerman C, Bianchini J, Snoeck CJ, Moreno A, Chiapponi C, Zohari S, Ducatez MF. First expert elicitation of knowledge on drivers of emergence of influenza D in Europe. Transbound Emerg Dis 2020; 68:3349-3359. [PMID: 33249766 DOI: 10.1111/tbed.13938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 10/22/2022]
Abstract
The influenza D virus (IDV) was first identified and characterized in 2011. Considering the virus' zoonotic potential, its genome nature (segmented RNA virus), its worldwide circulation in livestock and its role in bovine respiratory disease, an increased interest is given to IDV. However, few data are available on drivers of emergence of IDV. We first listed fifty possible drivers of emergence of IDV in ruminants and swine. As recently carried out for COVID-19 in pets (Transboundary and Emerging Diseases, 2020), a scoring system was developed per driver and scientific experts (N = 28) were elicited to (a) allocate a score to each driver, (b) weight the drivers' scores within each domain and (c) weight the different domains among themselves. An overall weighted score was calculated per driver, and drivers were ranked in decreasing order. Drivers with comparable likelihoods to play a role in the emergence of IDV in ruminants and swine in Europe were grouped using a regression tree analysis. Finally, the robustness of the expert elicitation was verified. Eight drivers were ranked with the highest probability to play a key role in the emergence of IDV: current species specificity of the causing agent of the disease; influence of (il)legal movements of live animals (ruminants, swine) from neighbouring/European Union member states and from third countries for the disease to (re-)emerge in a given country; detection of emergence; current knowledge of the pathogen; vaccine availability; animal density; and transport vehicles of live animals. As there is still limited scientific knowledge on the topic, expert elicitation of knowledge and multi-criteria decision analysis, in addition to clustering and sensitivity analyses, are very important to prioritize future studies, starting from the top eight drivers. The present methodology could be applied to other emerging animal diseases.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Juana Bianchini
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Chantal J Snoeck
- Clinical and Applied Virology group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini', Brescia, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna 'Bruno Ubertini', Brescia, Italy
| | | | | |
Collapse
|
38
|
Liu R, Sheng Z, Huang C, Wang D, Li F. Influenza D virus. Curr Opin Virol 2020; 44:154-161. [PMID: 32932215 PMCID: PMC7755673 DOI: 10.1016/j.coviro.2020.08.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/31/2022]
Abstract
Influenza D is the only type of influenza virus that mainly affects cattle with frequent spillover to other species. Since the initial description of influenza D virus (IDV) in 2011, the virus has been found to circulate among cattle and swine populations worldwide. Research conducted during the past several years has led to an increased understanding of this novel influenza virus with bovines as a reservoir. In this review, we describe the current knowledge of epidemiology and host range of IDV followed by discussion of infection biology and animal model development for IDV. Finally, we review progress towards understanding of the pathogenesis and host response of IDV as well as developing preventive vaccines for IDV.
Collapse
Affiliation(s)
- Runxia Liu
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Zizhang Sheng
- Zukerman Institute of Mind Brain Behavior, Columbia University, New York, NY, USA
| | - Chen Huang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Dan Wang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA
| | - Feng Li
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, USA.
| |
Collapse
|
39
|
Gaudino M, Moreno A, Snoeck CJ, Zohari S, Saegerman C, O'Donovan T, Ryan E, Zanni I, Foni E, Sausy A, Hübschen JM, Meyer G, Chiapponi C, Ducatez MF. Emerging Influenza D virus infection in European livestock as determined in serology studies: Are we underestimating its spread over the continent? Transbound Emerg Dis 2020; 68:1125-1135. [PMID: 32871031 DOI: 10.1111/tbed.13812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022]
Abstract
Influenza D virus (IDV) is a novel orthomyxovirus that was first isolated in 2011 in the United States from a swine exhibiting influenza-like disease. To date, its detection is extended to all continents and in a broad host range: IDV is circulating in cattle, swine, feral swine, camelids, small ruminants and horses. Evidence also suggests a possible species jump to humans, underlining the issue of zoonotic potential. In Europe, serological investigations in cattle have partially allowed the understanding of the virus diffusion in different countries such as Italy, France, Luxembourg and Ireland. The infection is widespread in cattle but limited in other investigated species, consolidating the assumption of cattle as IDV primary host. We hypothesize that commercial livestock trade could play a role in the observed differences in IDV seroprevalence among these areas. Indeed, the overall level of exposure in cattle and swine in destination countries (e.g. Italy) is higher than in origin countries (e.g. France), leading to the hypothesis of a viral shedding following the transportation of young cattle abroad and thus contributing to larger diffusion at countries of destination. IDV large geographic circulation in cattle from Northern to more Southern European countries also supports the hypothesis of a viral spread through livestock trade. This review summarizes available data on IDV seroprevalence in Europe collected so far and integrates unpublished data from IDV European surveillance framework of the last decade. In addition, the possible role of livestock trade and biosecurity measures in this pathogen's spread is discussed.
Collapse
Affiliation(s)
- Maria Gaudino
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Ana Moreno
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Brescia, Italy
| | - Chantal J Snoeck
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | | | - Claude Saegerman
- Fundamental and Applied Research for Animals and Health (FARAH) Center, University of Liège, Liège, Belgium
| | - Tom O'Donovan
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare, Celbridge, Ireland
| | - Eoin Ryan
- Central Veterinary Research Laboratory, Celbridge, Co. Kildare, Celbridge, Ireland
| | - Irene Zanni
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Parma, Italy
| | - Emanuela Foni
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Parma, Italy
| | - Aurelie Sausy
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Judith M Hübschen
- Clinical and Applied Virology Group, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Gilles Meyer
- IHAP, Université de Toulouse, INRAE, ENVT, Toulouse, France
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale Della Lombardia e dell'Emilia Romagna "Bruno Ubertini", Parma, Italy
| | | |
Collapse
|
40
|
Saegerman C, Salem E, Ait Lbacha H, Alali S, Zouagui Z, Meyer G, Ducatez MF. Formal estimation of the seropositivity cut-off of the hemagglutination inhibition assay in field diagnosis of influenza D virus in cattle and estimation of the associated true prevalence in Morocco. Transbound Emerg Dis 2020; 68:1392-1399. [PMID: 32815301 DOI: 10.1111/tbed.13805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 08/15/2020] [Accepted: 08/15/2020] [Indexed: 12/17/2022]
Abstract
The influenza D virus (IDV) was discovered less than ten years ago. Increased interest in this virus is due to its nature (RNA virus with high mutation rate), its worldwide circulation in livestock species, its probable role in bovine respiratory disease and its zoonotic potential. Until currently, the establishment of positivity cut-off of the hemagglutination inhibition (HI) assay was not formalized in field conditions for the detection of antibodies directed against IDV in cattle (i.e. the proposed reservoir). In this study, the positivity cut-off of the HI assays was formally established (titre = 10) using a receiver operating characteristic (ROC) curve. This information was used to estimate the sensitivity (68.04 to 73.20%) and the specificity (94.17 to 96.12%) of two different HI assays (HI1 and HI2 , with two different IDV antigens) relatively to virus micro-neutralization test (VNT) as reference test. Based on the above characteristics, the true prevalence of IDV was then estimated in Morocco using a stochastic approach. Irrespective of the HI assays used, the estimation of the true prevalence was statistically equivalent (between 48.44% and 48.73%). In addition, the Spearman rank correlation between HI titres and VNT titres was statistically good (0.76 and 0.81 for HA1 and HA2 , respectively). The positive (0.82 and 0.79 for HA1 and HA2 , respectively) and the negative (0.86 and 0.85 for HA1 and HA2 , respectively) agreement indices between results of HI assays and VNT were good and similar. This study allowed for a formal establishment of a positivity cut-off in HI assays for the detection of antibodies directed against IDV. This information is of prime importance to estimate the diagnostic sensitivity and specificity of the test relatively to the VNT (i.e. the reference test). Using these characteristics, the true prevalence of IDV should be determined in a country.
Collapse
Affiliation(s)
- Claude Saegerman
- Fundamental and Applied Research for Animal and Health (FARAH) Center, University of Liège, Liege, Belgium
| | | | | | - Said Alali
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | - Zaid Zouagui
- Institut Agronomique et Vétérinaire Hassan II, Rabat, Morocco
| | | | | |
Collapse
|
41
|
Cong Y, Sun Y, Gong T, Li M, Zhao J. Letter to the Editor. J Vet Diagn Invest 2020; 32:633. [DOI: 10.1177/1040638720948695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
42
|
Limited Cross-Protection Provided by Prior Infection Contributes to High Prevalence of Influenza D Viruses in Cattle. J Virol 2020; 94:JVI.00240-20. [PMID: 32611750 DOI: 10.1128/jvi.00240-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/22/2020] [Indexed: 12/12/2022] Open
Abstract
Since its detection in swine, influenza D virus (IDV) has been shown to be present in multiple animal hosts, and bovines have been identified as its natural reservoir. However, it remains unclear how IDVs emerge, evolve, spread, and maintain in bovine populations. Through multiple years of virological and serological surveillance in a single order-buyer cattle facility in Mississippi, we showed consistently high seroprevalence of IDVs in cattle and recovered a total of 32 IDV isolates from both healthy and sick animals, including those with antibodies against IDV. Genomic analyses of these isolates along with those isolated from other areas showed that active genetic reassortment occurred in IDV and that five reassortants were identified in the Mississippian facility. Two antigenic groups were identified through antigenic cartography analyses for these 32 isolates and representative IDVs from other areas. Remarkably, existing antibodies could not protect cattle from experimental reinfection with IDV. Additional phenotypic analyses demonstrated variations in growth dynamics and pathogenesis in mice between viruses independent of genomic constellation. In summary, this study suggests that, in addition to epidemiological factors, the ineffectiveness of preexisting immunity and cocirculation of a diverse viral genetic pool could facilitate its high prevalence in animal populations.IMPORTANCE Influenza D viruses (IDVs) are panzootic in multiple animal hosts, but the underlying mechanism is unclear. Through multiple years of surveillance in the same order-buyer cattle facility, 32 IDV isolates were recovered from both healthy and sick animals, including those with evident antibodies against IDV. Active reassortment occurred in the cattle within this facility and in those across other areas, and multiple reassortants cocirculated in animals. These isolates are shown with a large extent of phenotypic diversity in replication efficiency and pathogenesis but little in antigenic properties. Animal experiments demonstrated that existing antibodies could not protect cattle from experimental reinfection with IDV. This study suggests that, in addition to epidemiological factors, limited protection from preexisting immunity against IDVs in cattle herds and cocirculation of a diverse viral genetic pool likely facilitate the high prevalence of IDVs in animal populations.
Collapse
|
43
|
Alvarez IJ, Fort M, Pasucci J, Moreno F, Gimenez H, Näslund K, Hägglund S, Zohari S, Valarcher JF. Seroprevalence of influenza D virus in bulls in Argentina. J Vet Diagn Invest 2020; 32:585-588. [PMID: 32552516 DOI: 10.1177/1040638720934056] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Influenza D virus (IDV) is considered a new agent involved in bovine respiratory disease (BRD). Based on seroprevalence studies or isolation from clinical samples, this virus has been detected on several continents and in several animal species, including cattle, pigs, camel, horses, and goats. We used an indirect in-house ELISA to detect anti-IDV antibodies in 165 serum samples from bulls on 116 farms in the province of La Pampa, Argentina. Eighty-five of 116 (73%) farms had at least 1 positive animal, and 112 of 165 (68%) of the analyzed samples were positive. There were no significant differences in the proportion of seropositive samples depending on the geographic region in which the samples were taken. Our results suggest that IDV infection is endemic in La Pampa; the clinical importance of IDV in Argentina remains to be investigated.
Collapse
Affiliation(s)
- Ignacio J Alvarez
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Marcelo Fort
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Juan Pasucci
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Fabiana Moreno
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Hugo Gimenez
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Katarina Näslund
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Sara Hägglund
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Siamak Zohari
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| | - Jean François Valarcher
- Laboratorio Alvarez, Bahía Blanca, Buenos Aires, Argentina (Alvarez).,Instituto Nacional de Tecnología Agropecuaria, Anguil, La Pampa, Argentina (Fort, Gimenez).,Centro de Investigacion Veterinaria Tandil, Buenos Aires, Argentina (Pasucci).,Instituto Nacional de Tecnología Agropecuaria, Tandil, Buenos Aires, Argentina (Moreno).,Swedish University of Agricultural Sciences, Host Pathogen Interaction Group, Department of Clinical Sciences, Uppsala, Sweden (Näslund, Hägglund, Valarcher, Zohari).,Department of Microbiology, National Veterinary Institute, Uppsala, Sweden (Näslund, Zohari)
| |
Collapse
|
44
|
Mazzetto E, Bortolami A, Fusaro A, Mazzacan E, Maniero S, Vascellari M, Beato MS, Schiavon E, Chiapponi C, Terregino C, Monne I, Bonfante F. Replication of Influenza D Viruses of Bovine and Swine Origin in Ovine Respiratory Explants and Their Attachment to the Respiratory Tract of Bovine, Sheep, Goat, Horse, and Swine. Front Microbiol 2020; 11:1136. [PMID: 32523585 PMCID: PMC7261881 DOI: 10.3389/fmicb.2020.01136] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 05/05/2020] [Indexed: 12/30/2022] Open
Abstract
Bovine is considered the main reservoir of influenza D virus (IDV), however, low levels of seropositivity in other farmed species suggest a wide range of potential hosts. Nevertheless, it is not clear whether this scenario is the result of rare spillover events upon contact with bovines, or a lack of adaptation of IDV to these hosts. Among these species, sheep represents a crucial component of the rural economy in many developing countries, but little is known about its role in the ecology of the disease. To evaluate the susceptibility of sheep to IDV viruses of different origin, we used ovine respiratory tissues as an ex vivo model and investigated the infective phenotype of two IDV strains isolated from either bovine (IDV-BOV) or swine (IDV-SW). For translatability purposes, we included a parainfluenza type 3 virus, as positive control, given its known respiratory tropism in sheep. We performed a timed evaluation of the viral infectivity, cell tropism and the associated histopathology, by means of tissue culture infectious dose assays on supernatants and histological/immunohistochemical analyses on explanted tissues, respectively. To further investigate differences in the phenotype of these two strains and to identify the potential targets of replication in the most commonly land-based farmed mammalian species, we carried out virus binding assays on histological sections of the respiratory tract of bovine, caprine, ovine, horse and swine. Our results demonstrated that IDV successfully replicates in nasal, tracheal and lung ovine tissues, suggesting a moderate susceptibility of this species to IDV infection. Interestingly, despite the high genetic identity of these strains, IDV- BOV consistently replicated to higher titers than IDV-SW in all respiratory tracts, suggesting IDV viruses might display considerable levels of variability in their phenotype when crossing the species barrier. Virus binding assays confirmed a superior affinity of the IDV viruses for the bovine upper respiratory tract, and a preference for the pharyngeal epithelium of small ruminants, indicating possible targets to improve the sensitivity of virological sampling for diagnostic and post-mortem purposes. Further pathogenesis and cross-species transmission studies will be necessary to elucidate the ecology of IDV and eventually allow the design of cost-effective surveillance strategies.
Collapse
Affiliation(s)
- Eva Mazzetto
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alessio Bortolami
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Alice Fusaro
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Elisa Mazzacan
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Silvia Maniero
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Marta Vascellari
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Maria Serena Beato
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Eliana Schiavon
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Chiara Chiapponi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "Bruno Ubertini" (IZSLER), Brescia, Italy
| | - Calogero Terregino
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Isabella Monne
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| | - Francesco Bonfante
- Istituto Zooprofilattico Sperimentale delle Venezie (IZSVe), Legnaro, Italy
| |
Collapse
|
45
|
Silveira S, Falkenberg SM, Kaplan BS, Crossley B, Ridpath JF, Bauermann FB, Fossler CP, Dargatz DA, Dassanayake RP, Vincent AL, Canal CW, Neill JD. Serosurvey for Influenza D Virus Exposure in Cattle, United States, 2014-2015. Emerg Infect Dis 2020; 25:2074-2080. [PMID: 31625836 PMCID: PMC6810200 DOI: 10.3201/eid2511.190253] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Influenza D virus has been detected predominantly in cattle from several countries. In the United States, regional and state seropositive rates for influenza D have previously been reported, but little information exists to evaluate national seroprevalence. We performed a serosurveillance study with 1,992 bovine serum samples collected across the country in 2014 and 2015. We found a high overall seropositive rate of 77.5% nationally; regional rates varied from 47.7% to 84.6%. Samples from the Upper Midwest and Mountain West regions showed the highest seropositive rates. In addition, seropositive samples were found in 41 of the 42 states from which cattle originated, demonstrating that influenza D virus circulated widely in cattle during this period. The distribution of influenza D virus in cattle from the United States highlights the need for greater understanding about pathogenesis, epidemiology, and the implications for animal health.
Collapse
|
46
|
Yilmaz A, Umar S, Turan N, Aydin O, Tali HE, Oguzoglu TC, Yilmaz H, Richt JA, Ducatez MF. First report of influenza D virus infection in Turkish cattle with respiratory disease. Res Vet Sci 2020; 130:98-102. [PMID: 32169811 DOI: 10.1016/j.rvsc.2020.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 01/30/2023]
Abstract
Bovine respiratory infections are the most economically important diseases affecting the cattle industry worldwide including Turkey. Influenza D virus (IDV) could play an important role to trigger bovine respiratory disease (BRD) complex. Since, there is no data about the presence and genotypes of IDV in Turkish cattle herds; this study was performed to investigate IDV in cattle in Turkey. Animals analyzed in this study were from commercial cattle farms having respiratory disease in calves with significant mortality. Nasal swabs and tissue samples from cattle in Marmara, Inner Anatolia and Aegean region of Turkey were analyzed by real-time RT-PCR assay to detect IDV. Among 76 samples form 12 cattle herds, IDV was detected in 3 cattle in a herd. Sequencing and phylogenetic analysis of partial hemagglutinin esterase fusion (HEF) gene showed that the Turkish strain is 95% identical to its European and US counterparts, which suggest intercontinental spread of the virus. These findings highlight the need for future continuous surveillance on larger scale to determine the distribution pattern and evolution of this novel emerging pathogen in Turkish cattle industry.
Collapse
Affiliation(s)
- Aysun Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - Sajid Umar
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey; Department of Veterinary Pathology, PMAS Arid Agriculture University Rawalpindi, Pakistan
| | - Nuri Turan
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - Ozge Aydin
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - H Emre Tali
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey
| | - Tuba C Oguzoglu
- Department of Virology, Veterinary Faculty, Ankara University, Diskapi, Ankara, Turkey
| | - Huseyin Yilmaz
- Department of Virology, Veterinary Faculty, Istanbul University-Cerrahpasa, Büyükcekmece, 35500 Istanbul, Turkey.
| | - Juergen A Richt
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, USA
| | - Mariette F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, 23 Chemin des Capelles, 31076 Toulouse, France
| |
Collapse
|
47
|
Oliva J, Mettier J, Sedano L, Delverdier M, Bourgès-Abella N, Hause B, Loupias J, Pardo I, Bleuart C, Bordignon PJ, Meunier E, Le Goffic R, Meyer G, Ducatez MF. Murine Model for the Study of Influenza D Virus. J Virol 2020; 94:e01662-19. [PMID: 31776281 PMCID: PMC6997775 DOI: 10.1128/jvi.01662-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/24/2019] [Indexed: 12/29/2022] Open
Abstract
A novel genus within the Orthomyxoviridae family was identified in the United States and named influenza D virus (IDV). Bovines have been proposed to be the primary host, and three main viral lineages (D/OK-like, D/660-like, and D/Japan-like) have been described. Experimental infections had previously been performed in swine, ferrets, calves, and guinea pigs in order to study IDV pathogenesis. We developed a murine experimental model to facilitate the study of IDV pathogenesis and the immune response. DBA/2 mice were inoculated with 105 50% tissue culture infective dose (TCID50) of D/bovine/France/5920/2014 (D/OK-like). No clinical signs or weight loss were observed. Viral replication was observed mainly in the upper respiratory tract (nasal turbinates) but also in the lower respiratory tract of infected mice, with a peak at 4 days postinfection. Moreover, the virus was also detected in the intestines. All infected mice seroconverted by 14 days postinfection. Transcriptomic analyses demonstrated that IDV induced the activation of proinflammatory genes, such as gamma interferon (IFN-γ) and CCL2. Inoculation of NF-κB-luciferase and Ifnar1-/- mice demonstrated that IDV induced mild inflammation and that a type I interferon response was not necessary in IDV clearance. Adaptation of IDV by serial passages in mice was not sufficient to induce disease or increased pathogenesis. Taken together, present data and comparisons with the calf model show that our mouse model allows for the study of IDV replication and fitness (before selected viruses may be inoculated on calves) and also of the immune response.IMPORTANCE Influenza D virus (IDV), a new genus of Orthomyxoviridae family, presents a large host range and a worldwide circulation. The pathogenicity of this virus has been studied in the calf model. The mouse model is frequently used to enable a first assessment of a pathogen's fitness, replication, and pathogenesis for influenza A and B viruses. We showed that DBA/2 mice are a relevant in vivo model for the study of IDV replication. This model will allow for rapid IDV fitness and replication evaluation and will enable phenotypic comparisons between isolated viruses. It will also allow for a better understanding of the immune response induced after IDV infection.
Collapse
Affiliation(s)
- J Oliva
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - J Mettier
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - L Sedano
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - M Delverdier
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | | | - B Hause
- Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, USA
| | - J Loupias
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - I Pardo
- Université de Toulouse, ENVT, Toulouse, France
| | - C Bleuart
- Université de Toulouse, ENVT, Toulouse, France
| | - P J Bordignon
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - E Meunier
- Institute of Pharmacology and Structural Biology, CNRS, Toulouse, France
| | - R Le Goffic
- Unité de Virologie et Immunologie Moléculaires (UR0892), INRA, Jouy-en-Josas, France
| | - G Meyer
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - M F Ducatez
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| |
Collapse
|
48
|
Fusade-Boyer M, Pato PS, Komlan M, Dogno K, Batawui K, Go-Maro E, McKenzie P, Guinat C, Secula A, Paul M, Webby RJ, Tran A, Waret-Szkuta A, Ducatez MF. Risk Mapping of Influenza D Virus Occurrence in Ruminants and Swine in Togo Using a Spatial Multicriteria Decision Analysis Approach. Viruses 2020; 12:v12020128. [PMID: 31973026 PMCID: PMC7077333 DOI: 10.3390/v12020128] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/29/2022] Open
Abstract
Influenza D virus (IDV) has been identified in several continents, with serological evidence for the virus in Africa. In order to improve the sensitivity and cost–benefit of IDV surveillance in Togo, risk maps were drawn using a spatial multicriteria decision analysis (MCDA) and experts’ opinion to evaluate the relevance of sampling areas used so far. Areas at highest risk of IDV occurrence were the main cattle markets. The maps were evaluated with previous field surveillance data collected in Togo between 2017 and 2019: 1216 sera from cattle, small ruminants, and swine were screened for antibodies to IDV by hemagglutination inhibition (HI) assays. While further samples collections are needed to validate the maps, the risk maps resulting from the spatial MCDA approach generated here highlight several priority areas for IDV circulation assessment.
Collapse
Affiliation(s)
- Maxime Fusade-Boyer
- IHAP, UMR1225, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France; (M.F.-B.); (C.G.); (A.S.); (M.P.); (A.W.-S.)
| | - Pidemnéwé S. Pato
- Laboratoire Central Vétérinaire de Lomé, 55788 Lomé, Togo; (P.S.P.); (M.K.); (K.D.); (K.B.); (E.G.-M.)
| | - Mathias Komlan
- Laboratoire Central Vétérinaire de Lomé, 55788 Lomé, Togo; (P.S.P.); (M.K.); (K.D.); (K.B.); (E.G.-M.)
| | - Koffi Dogno
- Laboratoire Central Vétérinaire de Lomé, 55788 Lomé, Togo; (P.S.P.); (M.K.); (K.D.); (K.B.); (E.G.-M.)
| | - Komla Batawui
- Laboratoire Central Vétérinaire de Lomé, 55788 Lomé, Togo; (P.S.P.); (M.K.); (K.D.); (K.B.); (E.G.-M.)
| | - Emilie Go-Maro
- Laboratoire Central Vétérinaire de Lomé, 55788 Lomé, Togo; (P.S.P.); (M.K.); (K.D.); (K.B.); (E.G.-M.)
| | - Pamela McKenzie
- St Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.M.); (R.J.W.)
| | - Claire Guinat
- IHAP, UMR1225, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France; (M.F.-B.); (C.G.); (A.S.); (M.P.); (A.W.-S.)
| | - Aurélie Secula
- IHAP, UMR1225, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France; (M.F.-B.); (C.G.); (A.S.); (M.P.); (A.W.-S.)
| | - Mathilde Paul
- IHAP, UMR1225, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France; (M.F.-B.); (C.G.); (A.S.); (M.P.); (A.W.-S.)
| | - Richard J. Webby
- St Jude Children’s Research Hospital, Memphis, TN 38105, USA; (P.M.); (R.J.W.)
| | | | - Agnès Waret-Szkuta
- IHAP, UMR1225, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France; (M.F.-B.); (C.G.); (A.S.); (M.P.); (A.W.-S.)
| | - Mariette F. Ducatez
- IHAP, UMR1225, Université de Toulouse, INRA, ENVT, 31076 Toulouse, France; (M.F.-B.); (C.G.); (A.S.); (M.P.); (A.W.-S.)
- Correspondence:
| |
Collapse
|
49
|
Gorin S, Fablet C, Quéguiner S, Barbier N, Paboeuf F, Hervé S, Rose N, Simon G. Assessment of Influenza D Virus in Domestic Pigs and Wild Boars in France: Apparent Limited Spread within Swine Populations Despite Serological Evidence of Breeding Sow Exposure. Viruses 2019; 12:v12010025. [PMID: 31878133 PMCID: PMC7019313 DOI: 10.3390/v12010025] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
In order to assess influenza D virus (IDV) infections in swine in France, reference reagents were produced in specific pathogen free pigs to ensure serological and virological analyses. Hemagglutination inhibition (HI) assays were carried out on 2090 domestic pig sera collected in 2012-2018 in 102 farms. Only 31 sera from breeding sows sampled in 2014-2015 in six farrow-to-finish herds with respiratory disorders contained IDV-specific antibodies. In two of them, within-herd percentage of positive samples (73.3% and 13.3%, respectively) and HI titers (20-160) suggested IDV infections, but virus persistence was not confirmed following new sampling in 2017. All growing pigs tested seronegative, whatever their age and the sampling year. Moreover, PB1-gene RT-qPCR performed on 452 nasal swabs taken in 2015-2018 on pigs with acute respiratory syndrome (137 farms) gave negative results. In Corse, a Mediterranean island where pigs are mainly bred free-range, 2.3% of sera (n = 177) sampled on adult pigs in 2013-2014 obtained low HI titers. Finally, 0.5% of sera from wild boars hunted in 2009-2016 (n = 644) tested positive with low HI titers. These results provide the first serological evidence that sows were exposed to IDV in France but with a limited spread within the swine population.
Collapse
Affiliation(s)
- Stéphane Gorin
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Christelle Fablet
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (C.F.); (N.R.)
| | - Stéphane Quéguiner
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Nicolas Barbier
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Frédéric Paboeuf
- SPF Pig Production and Experimentation, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France;
| | - Séverine Hervé
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
| | - Nicolas Rose
- Epidemiology, Health and Welfare Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (C.F.); (N.R.)
| | - Gaëlle Simon
- Swine Virology Immunology Unit, Ploufragan-Plouzané-Niort Laboratory, French Agency for Food, Environmental and Occupational Health and Safety (ANSES), 22440 Ploufragan, France; (S.G.); (S.Q.); (N.B.); (S.H.)
- Correspondence: ; Tel.: +33-296-010-163
| |
Collapse
|
50
|
Development and Characterization of a Reverse-Genetics System for Influenza D Virus. J Virol 2019; 93:JVI.01186-19. [PMID: 31413133 DOI: 10.1128/jvi.01186-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/07/2019] [Indexed: 01/23/2023] Open
Abstract
Influenza D virus (IDV) of the Orthomyxoviridae family has a wide host range and a broad geographical distribution. Recent IDV outbreaks in swine along with serological and genetic evidence of IDV infection in humans have raised concerns regarding the zoonotic potential of this virus. To better study IDV at the molecular level, a reverse-genetics system (RGS) is urgently needed, but to date, no RGS had been described for IDV. In this study, we rescued the recombinant influenza D/swine/Oklahoma/1314/2011 (D/OK) virus by using a bidirectional seven-plasmid-based system and further characterized rescued viruses in terms of growth kinetics, replication stability, and receptor-binding capacity. Our results collectively demonstrated that RGS-derived viruses resembled the parental viruses for these properties, thereby supporting the utility of this RGS to study IDV infection biology. In addition, we developed an IDV minigenome replication assay and identified the E697K mutation in PB1 and the L462F mutation in PB2 that directly affected the activity of the IDV ribonucleoprotein (RNP) complex, resulting in either attenuated or replication-incompetent viruses. Finally, by using the minigenome replication assay, we demonstrated that a single nucleotide polymorphism at position 5 of the 3' conserved noncoding region in IDV and influenza C virus (ICV) resulted in the inefficient cross-recognition of the heterotypic promoter by the viral RNP complex. In conclusion, we successfully developed a minigenome replication assay and a robust reverse-genetics system that can be used to further study replication, tropism, and pathogenesis of IDV.IMPORTANCE Influenza D virus (IDV) is a new type of influenza virus that uses cattle as the primary reservoir and infects multiple agricultural animals. Increased outbreaks in pigs and serological and genetic evidence of human infection have raised concerns about potential IDV adaptation in humans. Here, we have developed a plasmid-based IDV reverse-genetics system that can generate infectious viruses with replication kinetics similar to those of wild-type viruses following transfection of cultured cells. Further characterization demonstrated that viruses rescued from the described RGS resembled the parental viruses in biological and receptor-binding properties. We also developed and validated an IDV minireplicon reporter system that specifically measures viral RNA polymerase activity. In summary, the reverse-genetics system and minireplicon reporter assay described in this study should be of value in identifying viral determinants of cross-species transmission and pathogenicity of novel influenza D viruses.
Collapse
|