1
|
Styles TM, Gangadhara S, Reddy PBJ, Sahoo A, Shiferaw A, Welbourn S, Kozlowski PA, Derdeyn CA, Velu V, Amara RR. V2 hotspot optimized MVA vaccine expressing stabilized HIV-1 Clade C envelope Gp140 delays acquisition of heterologous Clade C Tier 2 challenges in Mamu-A*01 negative Rhesus Macaques. Front Immunol 2022; 13:914969. [PMID: 35935987 PMCID: PMC9353326 DOI: 10.3389/fimmu.2022.914969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/29/2022] [Indexed: 11/13/2022] Open
Abstract
Stabilized HIV envelope (Env) trimeric protein immunogens have been shown to induce strong autologous neutralizing antibody response. However, there is limited data on the immunogenicity and efficacy of stabilized Env expressed by a viral vector-based immunogen. Here, we compared the immunogenicity and efficacy of two modified vaccinia Ankara (MVA) vaccines based on variable loop 2 hotspot (V2 HS) optimized C.1086 envelope (Env) sequences, one expressing the membrane anchored gp150 (MVA-150) and the other expressing soluble uncleaved pre-fusion optimized (UFO) gp140 trimer (MVA-UFO) in a DNA prime/MVA boost approach against heterologous tier 2 SHIV1157ipd3N4 intrarectal challenges in rhesus macaques (RMs). Both MVA vaccines also expressed SIVmac239 Gag and form virus-like particles. The DNA vaccine expressed SIVmac239 Gag, C.1086 gp160 Env and rhesus CD40L as a built-in adjuvant. Additionally, all immunizations were administered intradermally (ID) to reduce induction of vaccine-specific IFNγ+ CD4 T cell responses. Our results showed that both MVA-150 and MVA-UFO vaccines induce comparable Env specific IgG responses in serum and rectal secretions. The vaccine-induced serum antibody showed ADCC and ADCVI activities against the challenge virus. Comparison with a previous study that used similar immunogens via intramuscular route (IM) showed that ID immunizations induced markedly lower SHIV specific CD4 and CD8 T cell responses compared to IM immunizations. Following challenge, MVA-UFO vaccinated animals showed a significant delay in acquisition of SHIV1157ipd3N4 infection but only in Mamu-A*01 negative macaques with an estimated vaccine efficacy of 64% per exposure. The MVA-150 group also showed a trend (p=0.1) for delay in acquisition of SHIV infection with an estimated vaccine efficacy of 57%. The vaccine-induced IFNγ secreting CD8 T cell responses showed a direct association and CD4 T cells showed an inverse association with delay in acquisition of SHIV infection. These results demonstrated that both MVA-150 and MVA-UFO immunogens induce comparable humoral and cellular immunity and the latter provides marginally better protection against heterologous tier 2 SHIV infection. They also demonstrate that DNA/MVA vaccinations delivered by ID route induce better antibody and lower CD4 and CD8 T cell responses compared to IM.
Collapse
Affiliation(s)
- Tiffany M. Styles
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sailaja Gangadhara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Pradeep B. J. Reddy
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Anusmita Sahoo
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Ayalensh Shiferaw
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Sarah Welbourn
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Cynthia A. Derdeyn
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Vijayakumar Velu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Pathology and Laboratory Medicine, Emory School of Medicine, Emory University, Atlanta, GA, United States
| | - Rama Rao Amara
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA, United States
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA, United States
- *Correspondence: Rama Rao Amara,
| |
Collapse
|
2
|
Galula JU, Yang CY, Davis BS, Chang GJJ, Chao DY. Cross-reactivity reduced dengue virus 2 vaccine has no cross-protection against heterotypic dengue viruses. Future Virol 2020. [DOI: 10.2217/fvl-2019-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aim: This study assessed how prime-boost strategies influence the immunogenicity of a cross-reactivity reduced dengue virus 2 vaccine (DENV-2 RD). Materials & methods: Mice were immunized with DENV-2 RD vaccines in a heterologous DNA and virus-like particle (VLP) prime-boost. Elicited antibodies were analyzed for neutralization and protective efficacy against four DENV serotypes. Results: DENV-2 RD DNA-VLP had induced higher and broader levels of total IgG and neutralizing antibodies with statistically significant IgG titers against DENV-2 and -3. Only pups of DENV-2 RD DNA-VLP immunized female mice were fully protected against homotypic DENV challenge and partially protected (60% survival rate) against heterotypic DENV-3 lethal challenge. Conclusion: DENV-2 RD vaccine requires a multivalent format to effectively elicit a balanced and protective immunity across all four DENV serotypes.
Collapse
Affiliation(s)
- Jedhan U Galula
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Chung-Yu Yang
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Brent S Davis
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, US Department of Health & Human Services, Fort Collins, CO 80521, USA
| | - Gwong-Jen J Chang
- Division of Vector-Borne Diseases, Centers for Disease Control & Prevention, US Department of Health & Human Services, Fort Collins, CO 80521, USA
| | - Day-Yu Chao
- Graduate Institute of Microbiology & Public Health, College of Veterinary Medicine, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
3
|
Human Immunodeficiency Virus C.1086 Envelope gp140 Protein Boosts following DNA/Modified Vaccinia Virus Ankara Vaccination Fail To Enhance Heterologous Anti-V1V2 Antibody Response and Protection against Clade C Simian-Human Immunodeficiency Virus Challenge. J Virol 2019; 93:JVI.00934-19. [PMID: 31341049 DOI: 10.1128/jvi.00934-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/17/2019] [Indexed: 12/29/2022] Open
Abstract
The RV144 human immunodeficiency virus type 1 (HIV-1) vaccine trial showed a strong association between anti-gp70 V1V2 scaffold (V1V2) and anti-V2 hot spot peptide (V2 HS) antibody responses and reduced risk of HIV infection. Accordingly, a primary goal for HIV vaccines is to enhance the magnitude and breadth of V1V2 and V2 HS antibody responses in addition to neutralizing antibodies. Here, we tested the immunogenicity and efficacy of HIV-1 C.1086 gp140 boosts administered sequentially after priming with CD40L-adjuvanted DNA/simian-human immunodeficiency virus (SHIV) and boosting with modified vaccinia virus Ankara (MVA)-SHIV vaccines in rhesus macaques. The DNA/MVA vaccination induced robust vaccine-specific CD4 and CD8 T cell responses with a polyfunctional profile. Two gp140 booster immunizations induced very high levels (∼2 mg/ml) of gp140 binding antibodies in serum, with strong reactivity directed against the homologous (C.1086) V1V2, V2 HS, V3, and gp41 immunodominant (ID) proteins. However, the vaccine-induced antibody showed 10-fold (peak) and 32-fold (prechallenge) weaker binding to the challenge virus (SHIV1157ipd3N4) V1V2 and failed to bind to the challenge virus V2 HS due to a single amino acid change. Point mutations in the immunogen V2 HS to match the V2 HS in the challenge virus significantly diminished the binding of vaccine-elicited antibodies to membrane-anchored gp160. Both vaccines failed to protect from infection following repeated SHIV1157ipd3N4 intrarectal challenges. However, only the protein-boosted animals showed enhanced viral control. These results demonstrate that C.1086 gp140 protein immunizations administered following DNA/MVA vaccination do not significantly boost heterologous V1V2 and V2 HS responses and fail to enhance protection against heterologous SHIV challenge.IMPORTANCE HIV, the virus that causes AIDS, is responsible for millions of infections and deaths annually. Despite intense research for the past 25 years, there remains no safe and effective vaccine available. The significance of this work is in identifying the pros and cons of adding a protein boost to an already well-established DNA/MVA HIV vaccine that is currently being tested in the clinic. Characterizing the effects of the protein boost can allow researchers going forward to design vaccines that generate responses that will be more effective against HIV. Our results in rhesus macaques show that boosting with a specific HIV envelope protein does not significantly boost antibody responses that were identified as immune correlates of protection in a moderately successful RV144 HIV vaccine trial in humans and highlight the need for the development of improved HIV envelope immunogens.
Collapse
|
4
|
Petitdemange C, Kasturi SP, Kozlowski PA, Nabi R, Quarnstrom CF, Reddy PBJ, Derdeyn CA, Spicer LM, Patel P, Legere T, Kovalenkov YO, Labranche CC, Villinger F, Tomai M, Vasilakos J, Haynes B, Kang CY, Gibbs JS, Yewdell JW, Barouch D, Wrammert J, Montefiori D, Hunter E, Amara RR, Masopust D, Pulendran B. Vaccine induction of antibodies and tissue-resident CD8+ T cells enhances protection against mucosal SHIV-infection in young macaques. JCI Insight 2019; 4:126047. [PMID: 30830870 PMCID: PMC6478416 DOI: 10.1172/jci.insight.126047] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/11/2019] [Indexed: 12/25/2022] Open
Abstract
Antibodies and cytotoxic T cells represent 2 arms of host defense against pathogens. We hypothesized that vaccines that induce both high-magnitude CD8+ T cell responses and antibody responses might confer enhanced protection against HIV. To test this hypothesis, we immunized 3 groups of nonhuman primates: (a) Group 1, which includes sequential immunization regimen involving heterologous viral vectors (HVVs) comprising vesicular stomatitis virus, vaccinia virus, and adenovirus serotype 5-expressing SIVmac239 Gag; (b) Group 2, which includes immunization with a clade C HIV-1 envelope (Env) gp140 protein adjuvanted with nanoparticles containing a TLR7/8 agonist (3M-052); and (c) Group 3, which includes a combination of both regimens. Immunization with HVVs induced very high-magnitude Gag-specific CD8+ T cell responses in blood and tissue-resident CD8+ memory T cells in vaginal mucosa. Immunization with 3M-052 adjuvanted Env protein induced robust and persistent antibody responses and long-lasting innate responses. Despite similar antibody titers in Groups 2 and 3, there was enhanced protection in the younger animals in Group 3, against intravaginal infection with a heterologous SHIV strain. This protection correlated with the magnitude of the serum and vaginal Env-specific antibody titers on the day of challenge. Thus, vaccination strategies that induce both CD8+ T cell and antibody responses can confer enhanced protection against infection.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/immunology
- Adjuvants, Immunologic/administration & dosage
- Animals
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- CD8-Positive T-Lymphocytes/immunology
- Disease Models, Animal
- Female
- Genetic Vectors/administration & dosage
- Genetic Vectors/immunology
- HIV Infections/blood
- HIV Infections/immunology
- HIV Infections/prevention & control
- HIV Infections/virology
- HIV-1/immunology
- Heterocyclic Compounds, 3-Ring/administration & dosage
- Heterocyclic Compounds, 3-Ring/immunology
- Immunogenicity, Vaccine
- Macaca mulatta
- Mucous Membrane/immunology
- Mucous Membrane/virology
- Simian Acquired Immunodeficiency Syndrome/blood
- Simian Acquired Immunodeficiency Syndrome/immunology
- Simian Acquired Immunodeficiency Syndrome/prevention & control
- Simian Acquired Immunodeficiency Syndrome/virology
- Simian Immunodeficiency Virus/immunology
- Stearic Acids/administration & dosage
- Stearic Acids/immunology
- Treatment Outcome
- Vaccination/methods
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
- Vagina/immunology
- Vagina/virology
- env Gene Products, Human Immunodeficiency Virus/administration & dosage
- env Gene Products, Human Immunodeficiency Virus/genetics
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
Affiliation(s)
- Caroline Petitdemange
- Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, Georgia, USA
| | - Sudhir Pai Kasturi
- Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, Georgia, USA
| | - Pamela A. Kozlowski
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Rafiq Nabi
- Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Clare F. Quarnstrom
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Cynthia A. Derdeyn
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, and Yerkes National Primate Research Center
| | - Lori M. Spicer
- Department of Pathology and Laboratory Medicine, Emory Vaccine Center, and Yerkes National Primate Research Center
| | - Parin Patel
- Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, Georgia, USA
| | - Traci Legere
- Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, Georgia, USA
| | | | - Celia C. Labranche
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - François Villinger
- New Iberia Research Center, University of Louisiana Lafayette, Lafayette, Louisiana, USA
| | - Mark Tomai
- 3M Drug Delivery Systems, Saint Paul, Minnesota, USA
| | | | - Barton Haynes
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - C. Yong Kang
- Schulich School of Medicine & Dentistry, The University of Western Ontario, London, Ontario, Canada
| | - James S. Gibbs
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Jonathan W. Yewdell
- Cellular Biology Section, Laboratory of Viral Diseases, NIAID, NIH, Bethesda, Maryland, USA
| | - Dan Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jens Wrammert
- Emory Vaccine Center, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - David Montefiori
- Duke Human Vaccine Institute, Duke University School of Medicine, Durham, North Carolina, USA
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, Georgia, USA
| | - Rama R. Amara
- Emory Vaccine Center, Yerkes National Primate Research Center at Emory University, Atlanta, Georgia, USA
| | - David Masopust
- Department of Microbiology and Immunology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Bali Pulendran
- Departments of Pathology, and Microbiology & Immunology, Institute for Immunity, Transplantation and Infection, Stanford University, Stanford, California, USA
| |
Collapse
|
5
|
Sequential immunizations with a panel of HIV-1 Env virus-like particles coach immune system to make broadly neutralizing antibodies. Sci Rep 2018; 8:7807. [PMID: 29773829 PMCID: PMC5958130 DOI: 10.1038/s41598-018-25960-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Broadly neutralizing antibodies (bnAbs) are correlated with passive HIV/SHIV protection and are desirable components of a HIV protective immunity. In the current study, we have designed a sequential-immunization strategy with a panel of envelope glycoprotein (Env)-enriched virus-like particles (VLPs) from various HIV-1 clades (A-E) to elicit bnAbs with high breadth and potency of neutralization in rabbits. We have compared this regimen with repetitive immunizations of individual Env (subtype B) VLPs or a mixture of various Env VLPs. Our results demonstrate that the sequential immunization group of animals induced significantly higher IgG endpoint titers against respective HIV Env (autologous) antigen than other control groups. Animals vaccinated sequentially showed an increase in the antibody endpoint titers and IgG antibody secreting cells (ASCs) against Con-S Env protein. Sequential immunizations with various Env VLPs promoted antibody avidity indices and enhanced bnAb responses against a panel of HIV pseudotyped virions including some of the tier 3 pseudostrains. Sequential immunizations with various VLPs displaying "native-like" HIV-1 Envs elicited bnAb responses with increased breadth and potency of neutralization.
Collapse
|
6
|
Virus-Like-Vaccines against HIV. Vaccines (Basel) 2018; 6:vaccines6010010. [PMID: 29439476 PMCID: PMC5874651 DOI: 10.3390/vaccines6010010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 02/02/2018] [Accepted: 02/10/2018] [Indexed: 12/27/2022] Open
Abstract
Protection against chronic infections has necessitated the development of ever-more potent vaccination tools. HIV seems to be the most challenging foe, with a remarkable, poorly immunogenic and fragile surface glycoprotein and the ability to overpower the cell immune system. Virus-like-particle (VLP) vaccines have emerged as potent inducers of antibody and helper T cell responses, while replication-deficient viral vectors have yielded potent cytotoxic T cell responses. Here, we review the emerging concept of merging these two technologies into virus-like-vaccines (VLVs) for the targeting of HIV. Such vaccines are immunologically perceived as viruses, as they infect cells and produce VLPs in situ, but they only resemble viruses, as the replication defective vectors and VLPs cannot propagate an infection. The inherent safety of such a platform, despite robust particle production, is a distinct advantage over live-attenuated vaccines that must balance safety and immunogenicity. Previous studies have delivered VLVs encoded in modified Vaccinia Ankara vectors and we have developed the concept into a single-reading adenovirus-based technology capable of eliciting robust CD8+ and CD4+ T cells responses and trimer binding antibody responses. Such vaccines offer the potential to display the naturally produced immunogen directly and induce an integrated humoral and cellular immune response.
Collapse
|
7
|
Vaccination with Combination DNA and Virus-Like Particles Enhances Humoral and Cellular Immune Responses upon Boost with Recombinant Modified Vaccinia Virus Ankara Expressing Human Immunodeficiency Virus Envelope Proteins. Vaccines (Basel) 2017; 5:vaccines5040052. [PMID: 29257056 PMCID: PMC5748618 DOI: 10.3390/vaccines5040052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/06/2017] [Accepted: 12/12/2017] [Indexed: 01/13/2023] Open
Abstract
Heterologous prime boost with DNA and recombinant modified vaccinia virus Ankara (rMVA) vaccines is considered as a promising vaccination approach against human immunodeficiency virus (HIV-1). To further enhance the efficacy of DNA-rMVA vaccination, we investigated humoral and cellular immune responses in mice after three sequential immunizations with DNA, a combination of DNA and virus-like particles (VLP), and rMVA expressing HIV-1 89.6 gp120 envelope proteins (Env). DNA prime and boost with a combination of VLP and DNA vaccines followed by an rMVA boost induced over a 100-fold increase in Env-specific IgG antibody titers compared to three sequential immunizations with DNA and rMVA. Cellular immune responses were induced by VLP-DNA and rMVA vaccinations at high levels in CD8 T cells, CD4 T cells, and peripheral blood mononuclear cells secreting interferon (IFN)-γ, and spleen cells producing interleukin (IL)-2, 4, 5 cytokines. This study suggests that a DNA and VLP combination vaccine with MVA is a promising strategy in enhancing the efficacy of DNA-rMVA vaccination against HIV-1.
Collapse
|
8
|
Pathogenic Correlates of Simian Immunodeficiency Virus-Associated B Cell Dysfunction. J Virol 2017; 91:JVI.01051-17. [PMID: 28931679 DOI: 10.1128/jvi.01051-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/12/2017] [Indexed: 01/08/2023] Open
Abstract
We compared and contrasted pathogenic (in pig-tailed macaques [PTMs]) and nonpathogenic (in African green monkeys [AGMs]) SIVsab infections to assess the significance of the B cell dysfunction observed in simian (SIV) and human immunodeficiency virus (HIV) infections. We report that the loss of B cells is specifically associated with the pathogenic SIV infection, while in the natural hosts, in which SIV is nonpathogenic, B cells rapidly increase in both lymph nodes (LNs) and intestine. SIV-associated B cell dysfunction associated with the pathogenic SIV infection is characterized by loss of naive B cells, loss of resting memory B cells due to their redistribution to the gut, increases of the activated B cells and circulating tissue-like memory B cells, and expansion of the B regulatory cells (Bregs). While circulating B cells are virtually restored to preinfection levels during the chronic pathogenic SIV infection, restoration is mainly due to an expansion of the "exhausted," virus-specific B cells, i.e., activated memory cells and tissue-like memory B cells. Despite of the B cell dysfunction, SIV-specific antibody (Ab) production was higher in the PTMs than in AGMs, with the caveat that rapid disease progression in PTMs was strongly associated with lack of anti-SIV Ab. Neutralization titers and the avidity and maturation of immune responses did not differ between pathogenic and nonpathogenic infections, with the exception of the conformational epitope recognition, which evolved from low to high conformations in the natural host. The patterns of humoral immune responses in the natural host are therefore more similar to those observed in HIV-infected subjects, suggesting that natural hosts may be more appropriate for modeling the immunization strategies aimed at preventing HIV disease progression. The numerous differences between the pathogenic and nonpathogenic infections with regard to dynamics of the memory B cell subsets point to their role in the pathogenesis of HIV/SIV infections and suggest that monitoring B cells may be a reliable approach for assessing disease progression.IMPORTANCE We report here that the HIV/SIV-associated B cell dysfunction (defined by loss of total and memory B cells, increased B regulatory cell [Breg] counts, and B cell activation and apoptosis) is specifically associated with pathogenic SIV infection and absent during the course of nonpathogenic SIV infection in natural nonhuman primate hosts. Alterations of the B cell population are not correlated with production of neutralizing antibodies, the levels of which are similar in the two species. Rapid progressive infections are associated with a severe impairment in SIV-specific antibody production. While we did not find major differences in avidity and maturation between the pathogenic and nonpathogenic SIV infections, we identified a major difference in conformational epitope recognition, with the nonpathogenic infection being characterized by an evolution from low to high conformations. B cell dysfunction should be considered in designing immunization strategies aimed at preventing HIV disease progression.
Collapse
|
9
|
French MA, Tjiam MC, Abudulai LN, Fernandez S. Antiviral Functions of Human Immunodeficiency Virus Type 1 (HIV-1)-Specific IgG Antibodies: Effects of Antiretroviral Therapy and Implications for Therapeutic HIV-1 Vaccine Design. Front Immunol 2017; 8:780. [PMID: 28725225 PMCID: PMC5495868 DOI: 10.3389/fimmu.2017.00780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/19/2017] [Indexed: 12/24/2022] Open
Abstract
Contemporary antiretroviral therapy (ART) is effective and tolerable for long periods of time but cannot eradicate human immunodeficiency virus type 1 (HIV-1) infection by either elimination of viral reservoirs or enhancement of HIV-1-specific immune responses. Boosting "protective" HIV-1-specific immune responses by active or passive immunization will therefore be necessary to control or eradicate HIV-1 infection and is currently the topic of intense investigation. Recently reported studies conducted in HIV patients and non-human primate (NHP) models of HIV-1 infection suggest that HIV-1-specific IgG antibody responses may contribute to the control of HIV-1 infection. However, production of IgG antibodies with virus neutralizing activity by vaccination remains problematic and while vaccine-induced natural killer cell-activating IgG antibodies have been shown to prevent the acquisition of HIV-1 infection, they may not be sufficient to control or eradicate established HIV-1 infection. It is, therefore, important to consider other functional characteristics of IgG antibody responses. IgG antibodies to viruses also mediate opsonophagocytic antibody responses against virions and capsids that enhance the function of phagocytic cells playing critical roles in antiviral immune responses, particularly conventional dendritic cells and plasmacytoid dendritic cells. Emerging evidence suggests that these antibody functions might contribute to the control of HIV-1 infection. In addition, IgG antibodies contribute to the intracellular degradation of viruses via binding to the cytosolic fragment crystallizable (Fc) receptor tripartite motif containing-21 (TRIM21). The functional activity of an IgG antibody response is influenced by the IgG subclass content, which affects binding to antigens and to Fcγ receptors on phagocytic cells and to TRIM21. The IgG subclass content and avidity of IgG antibodies is determined by germinal center (GC) reactions in follicles of lymphoid tissue. As HIV-1 infects cells in GCs and induces GC dysfunction, which may persist during ART, strategies for boosting HIV-1-specific IgG antibody responses should include early commencement of ART and possibly the use of particular antiretroviral drugs to optimize drug levels in lymphoid follicles. Finally, enhancing particular functions of HIV-1-specific IgG antibody responses by using adjuvants or cytokines to modulate the IgG subclass content of the antibody response might be investigated in NHP models of HIV-1 infection and during trials of therapeutic vaccines in HIV patients.
Collapse
Affiliation(s)
- Martyn A. French
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- Medical School, University of Western Australia, Perth, WA, Australia
- Department of Clinical Immunology, Royal Perth Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| | - M. Christian Tjiam
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Laila N. Abudulai
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Sonia Fernandez
- School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
10
|
Antibody responses to prime-boost vaccination with an HIV-1 gp145 envelope protein and chimpanzee adenovirus vectors expressing HIV-1 gp140. AIDS 2016; 30:2405-2414. [PMID: 27525550 DOI: 10.1097/qad.0000000000001224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
OBJECTIVES Over 2 million individuals are infected with HIV type 1 (HIV-1) each year, yet an effective vaccine remains elusive. The most successful HIV-1 vaccine to date demonstrated 31% efficacy. Immune correlate analyses associated HIV-1 envelope (Env)-specific antibodies with protection, thus providing a path toward a more effective vaccine. We sought to test the antibody response from novel prime-boost vaccination with a chimpanzee-derived adenovirus (AdC) vector expressing a subtype C Env glycoprotein (gp)140 combined with either a serologically distinct AdC vector expressing gp140 of a different subtype C isolate or an alum-adjuvanted, partially trimeric gp145 from yet another subtype C isolate. DESIGN Three different prime-boost regimens were tested in mice: AdC prime-protein boost, protein prime-AdC boost, and AdC prime-AdC boost. Each regimen was tested at two different doses of AdC vector in a total of six experimental groups. METHODS Sera were collected at various time points and evaluated by ELISA for Env-specific antibody binding, isotype, and avidity. Antibody functionality was assessed by pseudovirus neutralization assay. RESULTS Priming with AdC followed by a protein boost or sequential immunizations with two AdC vectors induced HIV-1 Env-specific binding antibodies, including those to the variable region 2, whereas priming with protein followed by an AdC boost was relatively ineffective. Antibodies that cross-neutralized tier 1 HIV-1 from different subtypes were elicited with vaccine regimens that included immunizations with protein. CONCLUSION Our study warrants further investigation of AdC vector and gp145 protein prime-boost vaccines and their ability to protect against acquisition in animal challenge studies.
Collapse
|
11
|
Mohanram V, Demberg T, Musich T, Tuero I, Vargas-Inchaustegui DA, Miller-Novak L, Venzon D, Robert-Guroff M. B Cell Responses Associated with Vaccine-Induced Delayed SIVmac251 Acquisition in Female Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2016; 197:2316-24. [PMID: 27534560 DOI: 10.4049/jimmunol.1600544] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 07/19/2016] [Indexed: 11/19/2022]
Abstract
An established sex bias in HIV pathogenesis is linked to immune responses. Recently we reported a vaccine-induced sex bias: vaccinated female but not male rhesus macaques exhibited delayed SIV acquisition. This outcome was correlated with SIV Env-specific rectal IgA, rectal memory B cells, and total rectal plasma cells. To uncover additional contributing factors, using samples from the same study, we investigated memory B cell population dynamics in blood, bone marrow, and rectal tissue during immunization and postchallenge; IgG subtypes and Ab avidity; and regulatory B (Breg) cell frequency and function. Few sex differences were seen in Env-specific memory B cell, plasmablast, or plasma cell frequencies in the three compartments. Males had higher IgG Ab titers and avidity indices than females. However, females had elevated levels of Env-specific IgG1, IgG2, and IgG3 Abs compared with males. gp140-specific IgG3 Abs of females but not males were correlated with Ab-dependent cell-mediated cytotoxicity activity against gp120 targets (p = 0.026) and with Ab-dependent phagocytic activity (p = 0.010). IgG3 Ab of females but not males also correlated with decreased peak viremia (p = 0.028). Peripheral blood CD19(+)CD25(+) Breg cells suppressed T cell proliferation compared with CD19(+)CD25(-) cells (p = 0.031) and exhibited increased IL-10 mRNA expression (p = 0.031). Male macaques postvaccination (p = 0.018) and postinfection (p = 0.0048) exhibited higher Breg frequencies than females. Moreover, male Breg frequencies correlated with peak viremia (p = 0.0071). Our data suggest that vaccinated females developed better Ab quality, contributing to better functionality. The elevated Breg frequencies in males may have facilitated SIV acquisition.
Collapse
Affiliation(s)
- Venkatramanan Mohanram
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Thorsten Demberg
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Thomas Musich
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Iskra Tuero
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Diego A Vargas-Inchaustegui
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - Leia Miller-Novak
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892
| | - Marjorie Robert-Guroff
- Section on Immune Biology of Retroviral Infection, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892; and
| |
Collapse
|
12
|
Klasse PJ. How to assess the binding strength of antibodies elicited by vaccination against HIV and other viruses. Expert Rev Vaccines 2016; 15:295-311. [PMID: 26641943 DOI: 10.1586/14760584.2016.1128831] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Vaccines that protect against viral infections generally induce neutralizing antibodies. When vaccines are evaluated, the need arises to assess the affinity maturation of the antibody responses. Binding titers of polyclonal sera depend not only on the affinities of the constituent antibodies but also on their individual concentrations, which are difficult to ascertain. Therefore an assay based on chaotrope disruption of antibody-antigen complexes was designed for measuring binding strength. This assay works well with many viral antigens but gives differential results depending on the conformational dependence of epitopes on complex antigens such as the envelope glycoprotein of HIV-1. Kinetic binding assays might offer alternatives, since they can measure average off-rate constants for polyclonal antibodies in a serum. Here, potentials and fallacies of these techniques are discussed.
Collapse
Affiliation(s)
- P J Klasse
- a Department of Microbiology and Immunology, Weill Cornell Medical College , Cornell University , New York , NY , USA
| |
Collapse
|
13
|
Vzorov AN, Wang L, Chen J, Wang BZ, Compans RW. Effects of modification of the HIV-1 Env cytoplasmic tail on immunogenicity of VLP vaccines. Virology 2016; 489:141-50. [PMID: 26761396 DOI: 10.1016/j.virol.2015.09.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/30/2022]
Abstract
We investigated the effects on assembly and antigenic properties of specific modifications of the transmembrane spanning (TMS) and cytoplasmic tail (CT) domains of HIV-1 Env from a transmitted/founder (T/F) ZM53 Env glycoprotein. A construct containing a short version of the TMS domain derived from the mouse mammary tumor virus (MMTV) Env with or without a GCN4 trimerization sequence in the CT exhibited the highest levels of incorporation into VLPs and induced the highest titers of anti-Env IgG immune responses in a VLP context. Sera from guinea pigs immunized by VLPs with high Env content, and containing the CT trimerization sequence, had increased neutralization activity and antibody avidity. A cross-clade prime-boost regimen with clade B SF162 or clade C ZM53 Env DNA priming and boosting with VLPs containing modified ZM53 Env further enhanced these immune responses. The modified VLPs demonstrate improved potential as HIV-1 vaccine antigens.
Collapse
Affiliation(s)
- Andrei N Vzorov
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Li Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jianjun Chen
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Richard W Compans
- Department of Microbiology and Immunology and Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
14
|
Feng H, Zhang H, Deng J, Wang L, He Y, Wang S, Seyedtabaei R, Wang Q, Liu L, Galipeau J, Compans RW, Wang BZ. Incorporation of a GPI-anchored engineered cytokine as a molecular adjuvant enhances the immunogenicity of HIV VLPs. Sci Rep 2015; 5:11856. [PMID: 26150163 PMCID: PMC4493578 DOI: 10.1038/srep11856] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/22/2015] [Indexed: 12/15/2022] Open
Abstract
HIV vaccines should elicit immune responses at both the mucosal portals of entry to block transmission and systemic compartments to clear disseminated viruses. Co-delivery of mucosal adjuvants has been shown to be essential to induce effective mucosal immunity by non-replicating vaccines. A novel cytokine, GIFT4, engineered by fusing GM-CSF and interleukin-4, was previously found to simulate B cell proliferation and effector function. Herein a membrane-anchored form of GIFT4 was constructed by fusing a glycolipid (GPI)-anchoring sequence and incorporated into Env-enriched HIV virus-like particles (VLPs) as a molecular adjuvant. Guinea pigs were immunized with the resulting HIV VLPs through an intramuscular priming-intranasal boosting immunization route. The GIFT4-containing VLPs induced higher levels of systemic antibody responses with significantly increased binding avidity and improved neutralizing breadth and potency to a panel of selected strains, as well as higher levels of IgG and IgA at several mucosal sites. Thus, the novel GPI-GIFT4-containging VLPs have the potential to be developed into a prophylactic HIV vaccine. Incorporation of GPI-anchored GIFT4 into VLPs as a molecular adjuvant represents a novel approach to increase their immunogenicity.
Collapse
Affiliation(s)
- Hao Feng
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Han Zhang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Jiusheng Deng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Li Wang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Yuan He
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Shelly Wang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Roheila Seyedtabaei
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Qing Wang
- Department of Bioengineering, Henan University of Technology, Zhengzhou 450052, China
| | - Laiting Liu
- Department of Bioengineering, Henan University of Technology, Zhengzhou 450052, China
| | - Jacques Galipeau
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Richard W Compans
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| | - Bao-Zhong Wang
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
15
|
Fuchs JD, Bart PA, Frahm N, Morgan C, Gilbert PB, Kochar N, DeRosa SC, Tomaras GD, Wagner TM, Baden LR, Koblin BA, Rouphael NG, Kalams SA, Keefer MC, Goepfert PA, Sobieszczyk ME, Mayer KH, Swann E, Liao HX, Haynes BF, Graham BS, McElrath MJ. Safety and Immunogenicity of a Recombinant Adenovirus Serotype 35-Vectored HIV-1 Vaccine in Adenovirus Serotype 5 Seronegative and Seropositive Individuals. ACTA ACUST UNITED AC 2015; 6. [PMID: 26587311 DOI: 10.4172/2155-6113.1000461] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Recombinant adenovirus serotype 5 (rAd5)-vectored HIV-1 vaccines have not prevented HIV-1 infection or disease and pre-existing Ad5 neutralizing antibodies may limit the clinical utility of Ad5 vectors globally. Using a rare Ad serotype vector, such as Ad35, may circumvent these issues, but there are few data on the safety and immunogenicity of rAd35 directly compared to rAd5 following human vaccination. METHODS HVTN 077 randomized 192 healthy, HIV-uninfected participants into one of four HIV-1 vaccine/placebo groups: rAd35/rAd5, DNA/rAd5, and DNA/rAd35 in Ad5-seronegative persons; and DNA/rAd35 in Ad5-seropositive persons. All vaccines encoded the HIV-1 EnvA antigen. Antibody and T-cell responses were measured 4 weeks post boost immunization. RESULTS All vaccines were generally well tolerated and similarly immunogenic. As compared to rAd5, rAd35 was equally potent in boosting HIV-1-specific humoral and cellular immunity and responses were not significantly attenuated in those with baseline Ad5 seropositivity. Like DNA, rAd35 efficiently primed rAd5 boosting. All vaccine regimens tested elicited cross-clade antibody responses, including Env V1/V2-specific IgG responses. CONCLUSIONS Vaccine antigen delivery by rAd35 is well-tolerated and immunogenic as a prime to rAd5 immunization and as a boost to prior DNA immunization with the homologous insert. Further development of rAd35-vectored prime-boost vaccine regimens is warranted.
Collapse
Affiliation(s)
- Jonathan D Fuchs
- Population Health Division, San Francisco Department of Public Health, San Francisco, CA, USA ; Department of Medicine, University of California, San Francisco, San Francisco, USA
| | | | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Cecilia Morgan
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter B Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Nidhi Kochar
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Stephen C DeRosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - Theresa M Wagner
- Population Health Division, San Francisco Department of Public Health, San Francisco, CA, USA
| | - Lindsey R Baden
- Division of Infectious Disease, Brigham and Women's Hospital, Boston, MA, USA
| | - Beryl A Koblin
- Laboratory of Infectious Disease Prevention, New York Blood Center, New York, NY, USA
| | - Nadine G Rouphael
- The Hope Clinic, Division of Infectious Diseases, Emory University, Atlanta, GA, USA
| | - Spyros A Kalams
- Infectious Diseases Division, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Michael C Keefer
- University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Magdalena E Sobieszczyk
- Division of Infectious Diseases, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Kenneth H Mayer
- Fenway Health and the Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, USA
| | - Edith Swann
- Division of AIDS, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - Hua-Xin Liao
- Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, USA
| | - M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | |
Collapse
|
16
|
What Do Chaotrope-Based Avidity Assays for Antibodies to HIV-1 Envelope Glycoproteins Measure? J Virol 2015; 89:5981-95. [PMID: 25810537 DOI: 10.1128/jvi.00320-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/16/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED When HIV-1 vaccine candidates that include soluble envelope glycoproteins (Env) are tested in humans and other species, the resulting antibody responses to Env are sifted for correlates of protection or risk. One frequently used assay measures the reduction in antibody binding to Env antigens by an added chaotrope (such as thiocyanate). Based on that assay, an avidity index was devised for assessing the affinity maturation of antibodies of unknown concentration in polyclonal sera. Since a high avidity index was linked to protection in animal models of HIV-1 infection, it has become a criterion for evaluating antibody responses to vaccine candidates. But what does the assay measure and what does an avidity index mean? Here, we have used a panel of monoclonal antibodies to well-defined epitopes on Env (gp120, gp41, and SOSIP.664 trimers) to explore how the chaotrope acts. We conclude that the chaotrope sensitivity of antibody binding to Env depends on several properties of the epitopes (continuity versus tertiary- and quaternary-structural dependence) and that the avidity index has no simple relationship to antibody affinity for functional Env spikes on virions. We show that the binding of broadly neutralizing antibodies against quaternary-structural epitopes is particularly sensitive to chaotrope treatment, whereas antibody binding to epitopes in variable loops and to nonneutralization epitopes in gp41 is generally resistant. As a result of such biases, the avidity index may at best be a mere surrogate for undefined antibody or other immune responses that correlate weakly with protection. IMPORTANCE An effective HIV-1 vaccine is an important goal. Such a vaccine will probably need to induce antibodies that neutralize typically transmitted variants of HIV-1, preventing them from infecting target cells. Vaccine candidates have so far failed to induce such antibody responses, although some do protect weakly against infection in animals and, possibly, humans. In the search for responses associated with protection, an avidity assay based on chemical disruption is often used to measure the strength of antibody binding. We have analyzed this assay mechanistically and found that the epitope specificity of an antibody has a greater influence on the outcome than does its affinity. As a result, the avidity assay is biased toward the detection of some antibody specificities while disfavoring others. We conclude that the assay may yield merely indirect correlations with weak protection, specifically when Env vaccination has failed to induce broad neutralizing responses.
Collapse
|
17
|
Establishment of an antibody avidity test to differentiate vaccinated cattle from those naturally infected with Mycoplasma bovis. Vet J 2014; 203:79-84. [PMID: 25467991 DOI: 10.1016/j.tvjl.2014.10.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/08/2014] [Accepted: 10/11/2014] [Indexed: 01/13/2023]
Abstract
Mycoplasma bovis is a major pathogen of bovine respiratory disease (BRD) in China and a live attenuated vaccine has recently been developed. This study aimed to establish an IgG avidity test to differentiate between naturally infected and vaccinated animals. An indirect ELISA (iELISA) was first established in the laboratory to detect antibodies specific to M. bovis using whole cell proteins as coating antigens and serum samples from experimentally infected cattle. The specificity and sensitivity of the iELISA was confirmed using a commercial ELISA kit as a reference standard. Both tests showed substantial agreement as indicated by a κ value of 0.78 (95% confidence interval, CI, 0.62, 0.93), and an overall 92.0% (80/87) agreement between the two tests. Based on the laboratory iELISA, a sodium thiocyanate (NaSCN) competitive iELISA was then developed for the detection of IgG avidity, expressed as relative avidity index (AI). Two-hundred and one experimentally immunised and naturally infected animals were used. These comprised 36 immunised calves, 38 negative control calves, 37 naturally infected calves, 87 calves of unknown status, and an additional three immunised calves that were used for a time trial. By testing true positive and negative antisera from either naturally infected or immunised calves, the AI cut-off value was defined as 70.4%. The diagnostic accuracy of the in-house NaSCN competitive iELISA was determined using serum samples collected from the experimental animals. The IgG avidity test demonstrated 96.0% sensitivity (95% CI 80.5%, 99.3%) and 95.8% specificity (95% CI 79.8%, 99.3%), and was successfully established as a valuable first test for differentiating vaccinated animals from those infected with M. bovis. This test may be a useful tool for clarifying the magnitude of M. bovis infection and in assessing the efficacy of vaccination in exposed animal populations.
Collapse
|
18
|
Chen H, Gao N, Wu J, Zheng X, Li J, Fan D, An J. Variable effects of the co-administration of a GM-CSF-expressing plasmid on the immune response to flavivirus DNA vaccines in mice. Immunol Lett 2014; 162:140-8. [DOI: 10.1016/j.imlet.2014.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 08/05/2014] [Accepted: 08/05/2014] [Indexed: 11/26/2022]
|
19
|
Envelope variants circulating as initial neutralization breadth developed in two HIV-infected subjects stimulate multiclade neutralizing antibodies in rabbits. J Virol 2014; 88:12949-67. [PMID: 25210191 DOI: 10.1128/jvi.01812-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
UNLABELLED Identifying characteristics of the human immunodeficiency virus type 1 (HIV-1) envelope that are effective in generating broad, protective antibodies remains a hurdle to HIV vaccine design. Emerging evidence of the development of broad and potent neutralizing antibodies in HIV-infected subjects suggests that founder and subsequent progeny viruses may express unique antigenic motifs that contribute to this developmental pathway. We hypothesize that over the course of natural infection, B cells are programmed to develop broad antibodies by exposure to select populations of emerging envelope quasispecies variants. To test this hypothesis, we identified two unrelated subjects whose antibodies demonstrated increasing neutralization breadth against a panel of HIV-1 isolates over time. Full-length functional env genes were cloned longitudinally from these subjects from months after infection through 2.6 to 5.8 years of infection. Motifs associated with the development of breadth in published, cross-sectional studies were found in both subjects. We compared the immunogenicity of envelope vaccines derived from time points obtained during and after broadening of neutralization activity within these subjects. Rabbits were coimmunized four times with selected multiple gp160 DNAs and gp140-trimeric envelope proteins. The affinity of the polyclonal response increased as a function of boosting. The most rapid and persistent neutralization of multiclade tier 1 viruses was elicited by envelopes that were circulating in plasma at time points prior to the development of 50% neutralization breadth in both human subjects. The breadth elicited in rabbits was not improved by exposure to later envelope variants. These data have implications for vaccine development in describing a target time point to identify optimal envelope immunogens. IMPORTANCE Vaccine protection against viral infections correlates with the presence of neutralizing antibodies; thus, vaccine components capable of generating potent neutralization are likely to be critical constituents in an effective HIV vaccine. However, vaccines tested thus far have elicited only weak antibody responses and very modest, waning protection. We hypothesized that B cells develop broad antibodies by exposure to the evolving viral envelope population and tested this concept using multiple envelopes from two subjects who developed neutralization breadth within a few years of infection. We compared different combinations of envelopes from each subject to identify the most effective immunogens and regimens. In each subject, use of HIV envelopes circulating during the early development and maturation of breadth generated more-potent antibodies that were modestly cross neutralizing. These data suggest a new approach to identifying envelope immunogens that may be more effective in generating protective antibodies in humans.
Collapse
|
20
|
Felber BK, Valentin A, Rosati M, Bergamaschi C, Pavlakis GN. HIV DNA Vaccine: Stepwise Improvements Make a Difference. Vaccines (Basel) 2014; 2:354-79. [PMID: 26344623 PMCID: PMC4494255 DOI: 10.3390/vaccines2020354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/11/2014] [Accepted: 04/18/2014] [Indexed: 12/15/2022] Open
Abstract
Inefficient DNA delivery methods and low expression of plasmid DNA have been major obstacles for the use of plasmid DNA as vaccine for HIV/AIDS. This review describes successful efforts to improve DNA vaccine methodology over the past ~30 years. DNA vaccination, either alone or in combination with other methods, has the potential to be a rapid, safe, and effective vaccine platform against AIDS. Recent clinical trials suggest the feasibility of its translation to the clinic.
Collapse
Affiliation(s)
- Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Antonio Valentin
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - Cristina Bergamaschi
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute at Frederick, P.O. Box B, Frederick, MD 21702, USA.
| |
Collapse
|
21
|
Chang HT, He XY, Liu YF, Chen L, Guo QH, Yu QY, Zhao J, Wang XW, Yang X, Wang CQ. Enhancing mucosal immunity in mice by recombinant adenovirus expressing major epitopes of porcine circovirus-2 capsid protein delivered with cytosine-phosphate-guanosine oligodeoxynucleotides. J Vet Sci 2014; 15:399-407. [PMID: 24675838 PMCID: PMC4178141 DOI: 10.4142/jvs.2014.15.3.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/22/2014] [Indexed: 11/23/2022] Open
Abstract
A recombinant replication-defective adenovirus expressing the major epitopes of porcine circovirus-2 (PCV-2) capsid protein (rAd/Cap/518) was previously constructed and shown to induce mucosal immunity in mice following intranasal delivery. In the present study, immune responses induced by intranasal immunization with a combination of rAd/Cap/518 and cytosine-phosphate-guanosine oligodeoxynucleotides (CpG ODN) were evaluated in mice. The levels of PCV-2-specific IgG in serum and IgA in saliva, lung, and intestinal fluids were significantly higher in the group immunized with rAd/Cap/518 and CpG ODN than animals immunized with rAd/Cap/518 alone. The frequencies of IL-2-secreting CD4+ T cells and IFN-γ-producing CD8+ T cells were significantly higher in the combined immunization group than mice immunized with rAd/Cap/518 alone. The frequencies of CD3+, CD3+CD4+CD8-, and CD3+CD4-CD8+ T cells in the combined immunization group were similar to that treated with CpG ODN alone, but significantly higher than mice that did not receive CpG ODN. PCV-2 load after challenge in the combined immunization group was significantly lower than that in the phosphate-buffered saline placebo group and approximately 7-fold lower in the group treated with CpG ODN alone. These results indicate that rAd/Cap/518 combined with CpG ODN can enhance systemic and local mucosal immunity in mice, and represent a promising synergetic mucosal vaccine against PCV-2.
Collapse
Affiliation(s)
- Hong-Tao Chang
- Animal Infectious Disease Lab, College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nilsson C, Godoy-Ramirez K, Hejdeman B, Bråve A, Gudmundsdotter L, Hallengärd D, Currier JR, Wieczorek L, Hasselrot K, Earl PL, Polonis VR, Marovich MA, Robb ML, Sandström E, Wahren B, Biberfeld G. Broad and potent cellular and humoral immune responses after a second late HIV-modified vaccinia virus ankara vaccination in HIV-DNA-primed and HIV-modified vaccinia virus Ankara-boosted Swedish vaccinees. AIDS Res Hum Retroviruses 2014; 30:299-311. [PMID: 24090081 PMCID: PMC3938943 DOI: 10.1089/aid.2013.0149] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that an HIV vaccine regimen including three HIV-DNA immunizations and a single HIV-modified vaccinia virus Ankara (MVA) boost was safe and highly immunogenic in Swedish volunteers. A median 38 months after the first HIV-MVA vaccination, 24 volunteers received 10(8) plaque-forming units of HIV-MVA. The vaccine was well tolerated. Two weeks after this HIV-MVA vaccination, 18 (82%) of 22 evaluable vaccinees were interferon (IFN)-γ enzyme-linked immunospot (ELISpot) reactive: 18 to Gag and 10 (45%) to Env. A median minimal epitope count of 4 to Gag or Env was found in a subset of 10 vaccinees. Intracellular cytokine staining revealed CD4(+) and/or CD8(+) T cell responses in 23 (95%) of 24 vaccinees, 19 to Gag and 19 to Env. The frequency of HIV-specific CD4(+) and CD8(+) T cell responses was equally high (75%). A high proportion of CD4(+) and CD8(+) T cell responses to Gag was polyfunctional with production of three or more cytokines (40% and 60%, respectively). Of the Env-specific CD4(+) T cells 40% were polyfunctional. Strong lymphoproliferative responses to Aldrithiol-2 (AT-2)-treated subtype A, B, C, and A_E virus were demonstrable in 21 (95%) of 22 vaccinees. All vaccinees developed binding antibodies to Env and Gag. Neutralizing antibodies were detected in a peripheral blood mononuclear cell (PBMC)-based assay against subtype B and CRF01_AE viruses. The neutralizing antibody response rates were influenced by the vaccine dose and/or mode of delivery used at the previous HIV-MVA vaccination. Thus, a second late HIV-MVA boost induced strong and broad cellular immune responses and improved antibody responses. The data support further exploration of this vaccine concept.
Collapse
Affiliation(s)
- Charlotta Nilsson
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden
| | | | - Bo Hejdeman
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Andreas Bråve
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lindvi Gudmundsdotter
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - David Hallengärd
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jeffrey R. Currier
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Lindsay Wieczorek
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Klara Hasselrot
- Department of Medicine, Infectious Disease Unit, Center for Molecular Medicine (CMM) and Karolinska University Hospital, Solna, Sweden
| | - Patricia L. Earl
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Victoria R. Polonis
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Mary A. Marovich
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Merlin L. Robb
- Walter Reed Army Institute of Research, Department of Retrovirology, Rockville, Maryland
| | - Eric Sandström
- Venhälsan, Department of Education and Clinical Research, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
| | - Britta Wahren
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Gunnel Biberfeld
- Swedish Institute for Communicable Disease Control, Solna, Sweden
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
23
|
Roederer M, Keele BF, Schmidt SD, Mason RD, Welles HC, Fischer W, Labranche C, Foulds KE, Louder MK, Yang ZY, Todd JPM, Buzby AP, Mach LV, Shen L, Seaton KE, Ward BM, Bailer RT, Gottardo R, Gu W, Ferrari G, Alam SM, Denny TN, Montefiori DC, Tomaras GD, Korber BT, Nason MC, Seder RA, Koup RA, Letvin NL, Rao SS, Nabel GJ, Mascola JR. Immunological and virological mechanisms of vaccine-mediated protection against SIV and HIV. Nature 2014; 505:502-8. [PMID: 24352234 PMCID: PMC3946913 DOI: 10.1038/nature12893] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 11/21/2013] [Indexed: 02/07/2023]
Abstract
A major challenge for the development of a highly effective AIDS vaccine is the identification of mechanisms of protective immunity. To address this question, we used a nonhuman primate challenge model with simian immunodeficiency virus (SIV). We show that antibodies to the SIV envelope are necessary and sufficient to prevent infection. Moreover, sequencing of viruses from breakthrough infections revealed selective pressure against neutralization-sensitive viruses; we identified a two-amino-acid signature that alters antigenicity and confers neutralization resistance. A similar signature confers resistance of human immunodeficiency virus (HIV)-1 to neutralization by monoclonal antibodies against variable regions 1 and 2 (V1V2), suggesting that SIV and HIV share a fundamental mechanism of immune escape from vaccine-elicited or naturally elicited antibodies. These analyses provide insight into the limited efficacy seen in HIV vaccine trials.
Collapse
Affiliation(s)
- Mario Roederer
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Brandon F Keele
- SAIC-Frederick, Frederick National Laboratory, NIH, Frederick, Maryland 21702, USA
| | | | | | - Hugh C Welles
- 1] Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA [2] George Washington University, Washington DC 20052, USA
| | - Will Fischer
- Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA
| | - Celia Labranche
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
| | - Kathryn E Foulds
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Mark K Louder
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Zhi-Yong Yang
- 1] Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA [2] Sanofi-Pasteur, Cambridge, Massachusetts 02139, USA
| | - John-Paul M Todd
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Adam P Buzby
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Linh V Mach
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Ling Shen
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA
| | - Kelly E Seaton
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Brandy M Ward
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
| | - Robert T Bailer
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Raphael Gottardo
- Fred Hutchison Cancer Research Center, Seattle, Washington 98109, USA
| | - Wenjuan Gu
- Biostatistics Research Branch, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Guido Ferrari
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
| | - S Munir Alam
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Thomas N Denny
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - David C Montefiori
- Department of Surgery, Duke University, Durham, North Carolina 27710, USA
| | - Georgia D Tomaras
- Human Vaccine Institute, Duke University, Durham, North Carolina 27710, USA
| | - Bette T Korber
- Los Alamos National Laboratories, Los Alamos, New Mexico 87545, USA
| | - Martha C Nason
- Biostatistics Research Branch, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Robert A Seder
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Richard A Koup
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Norman L Letvin
- 1] Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts 02115, USA [2]
| | - Srinivas S Rao
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| | - Gary J Nabel
- 1] Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA [2] Sanofi-Pasteur, Cambridge, Massachusetts 02139, USA
| | - John R Mascola
- Vaccine Research Center, NIAID, NIH, Bethesda, Maryland 20892, USA
| |
Collapse
|
24
|
Pissani F, Malherbe DC, Schuman JT, Robins H, Park BS, Krebs SJ, Barnett SW, Haigwood NL. Improvement of antibody responses by HIV envelope DNA and protein co-immunization. Vaccine 2013; 32:507-13. [PMID: 24280279 DOI: 10.1016/j.vaccine.2013.11.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/29/2013] [Accepted: 11/06/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Developing HIV envelope (Env) vaccine components that elicit durable and protective antibody responses is an urgent priority, given the results from the RV144 trial. Optimization of both the immunogens and vaccination strategies will be needed to generate potent, durable antibodies. Due to the diversity of HIV, an effective Env-based vaccine will most likely require an extensive coverage of antigenic variants. A vaccine co-delivering Env immunogens as DNA and protein components could provide such coverage. Here, we examine a DNA and protein co-immunization strategy by characterizing the antibody responses and evaluating the relative contribution of each vaccine component. METHOD We co-immunized rabbits with representative subtype A or B HIV gp160 plasmid DNA plus Env gp140 trimeric glycoprotein and compared the responses to those obtained with either glycoprotein alone or glycoprotein in combination with empty vector. RESULTS DNA and glycoprotein co-immunization was superior to immunization with glycoprotein alone by enhancing antibody kinetics, magnitude, avidity, and neutralizing potency. Importantly, the empty DNA vector did not contribute to these responses. Humoral responses elicited by mismatched DNA and protein components were comparable or higher than the responses produced by the matched vaccines. CONCLUSION Our data show that co-delivering DNA and protein can augment antibodies to Env. The rate and magnitude of immune responses suggest that this approach has the potential to streamline vaccine regimens by inducing higher antibody responses using fewer vaccinations, an advantage for a successful HIV vaccine design.
Collapse
Affiliation(s)
- Franco Pissani
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97217, United States; The Vaccine and Gene Therapy Institute, Beaverton, OR 97006, United States; Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | | | - Jason T Schuman
- GE Healthcare, Life Sciences, Piscataway, NJ 08854, United States
| | - Harlan Robins
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, United States
| | - Byung S Park
- Oregon National Primate Research Center, Beaverton, OR 97006, United States; Department of Public Health and Preventive Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Shelly J Krebs
- The Vaccine and Gene Therapy Institute, Beaverton, OR 97006, United States; Oregon National Primate Research Center, Beaverton, OR 97006, United States
| | - Susan W Barnett
- Novartis Institutes for Biomedical Research, Cambridge, MA 02139, United States
| | - Nancy L Haigwood
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR 97217, United States; The Vaccine and Gene Therapy Institute, Beaverton, OR 97006, United States; Oregon National Primate Research Center, Beaverton, OR 97006, United States.
| |
Collapse
|
25
|
Sui Y, Gordon S, Franchini G, Berzofsky JA. Nonhuman primate models for HIV/AIDS vaccine development. ACTA ACUST UNITED AC 2013; 102:12.14.1-12.14.30. [PMID: 24510515 DOI: 10.1002/0471142735.im1214s102] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The development of HIV vaccines has been hampered by the lack of an animal model that can accurately predict vaccine efficacy. Chimpanzees can be infected with HIV-1 but are not practical for research. However, several species of macaques are susceptible to the simian immunodeficiency viruses (SIVs) that cause disease in macaques, which also closely mimic HIV in humans. Thus, macaque-SIV models of HIV infection have become a critical foundation for AIDS vaccine development. Here we examine the multiple variables and considerations that must be taken into account in order to use this nonhuman primate (NHP) model effectively. These include the species and subspecies of macaques, virus strain, dose and route of administration, and macaque genetics, including the major histocompatibility complex molecules that affect immune responses, and other virus restriction factors. We illustrate how these NHP models can be used to carry out studies of immune responses in mucosal and other tissues that could not easily be performed on human volunteers. Furthermore, macaques are an ideal model system to optimize adjuvants, test vaccine platforms, and identify correlates of protection that can advance the HIV vaccine field. We also illustrate techniques used to identify different macaque lymphocyte populations and review some poxvirus vaccine candidates that are in various stages of clinical trials. Understanding how to effectively use this valuable model will greatly increase the likelihood of finding a successful vaccine for HIV.
Collapse
Affiliation(s)
- Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Shari Gordon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Genoveffa Franchini
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| | - Jay A Berzofsky
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland.,These authors contributed equally
| |
Collapse
|
26
|
Kumar R, Tuen M, Liu J, Nàdas A, Pan R, Kong X, Hioe CE. Elicitation of broadly reactive antibodies against glycan-modulated neutralizing V3 epitopes of HIV-1 by immune complex vaccines. Vaccine 2013; 31:5413-21. [PMID: 24051158 DOI: 10.1016/j.vaccine.2013.09.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 07/11/2013] [Accepted: 09/06/2013] [Indexed: 01/25/2023]
Abstract
HIV-1 envelope gp120 is the target for neutralizing antibodies (NAbs) against the virus. Various approaches have been explored to improve immunogenicity of broadly neutralizing epitopes on this antigen with limited success. We previously demonstrated that immunogenicity of gp120 and especially its V3 epitopes was enhanced when gp120 was co-administered as immune-complex vaccines with monoclonal antibodies (mAb) to the CD4-binding site (CD4bs). To define the mechanisms by which immune complexes influence V3 immunogenicity, we compared gp120 complexed with mAbs specific for the C2 region (1006-30), the V2 loop (2158), or the CD4bs (654), and found that the gp120/654 and gp120/2158 complexes elicited anti-V3 NAbs, but the gp120/654 complex was the most effective. gp120 complexed with 654 F(ab')2 was as potent, indicating that V3 immunogenicity is determined by the specificity of the mAb's Fab fragment used to form the complexes. Importantly, the gp120/654 complex not only induced anti-gp120 antibodies (Abs) to higher titers, but also of greater avidity. The Abs were cross-reactive with V3 peptides from most subtype B and some subtype C isolates. Neutralization was detected only against Tier-1 HIV-1 pseudoviruses, while Tier-2 viruses, including the homologous JRFL strain, were not neutralized. However, JRFL produced in the presence of a mannosidase inhibitor was sensitive to anti-V3 NAbs in the immune sera. These results demonstrate that the gp120/654 complex is a potent immunogen for eliciting cross-reactive functional NAbs against V3 epitopes, of which exposure is determined by the specific compositions of glycans shrouding the HIV-1 envelope glycoproteins.
Collapse
Affiliation(s)
- Rajnish Kumar
- VA New York Harbor Healthcare System, Manhattan Campus and New York University School of Medicine, Department of Pathology, New York, NY 10010, United States
| | | | | | | | | | | | | |
Collapse
|
27
|
Vargas-Inchaustegui DA, Robert-Guroff M. Fc receptor-mediated immune responses: new tools but increased complexity in HIV prevention. Curr HIV Res 2013; 11:407-20. [PMID: 24191937 PMCID: PMC6288814 DOI: 10.2174/1570162x113116660063] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2013] [Revised: 06/04/2013] [Accepted: 06/06/2013] [Indexed: 12/21/2022]
Abstract
The modest success of the RV144 HIV vaccine trial in Thailand and the ensuing suggestion that a Fc-receptormediated antibody activity might have played a role in the protection observed have intensified investigations on Fcrelated immune responses. HIV neutralizing antibodies have been and continue to be the focal point of research into humoral immune protection. However, recent knowledge that their protective efficacy can be augmented by Fc-FcR interactions has increased the complexity of identifying immune correlates of protection. If anything, continued studies of both humoral and cellular immune mechanisms point to the lack of a single protective anti-HIV immune response. Here we focus on humoral immunity, analyzing the role played by Fc receptor-related responses and discussing how new knowledge of their interactions requires further investigation, but may also spur novel vaccination approaches. We initially address classical Fc-receptor mediated anti-viral mechanisms including antibody-dependent cellular cytotoxicity (ADCC), antibody-dependent cell mediated viral inhibition (ADCVI), and antibody-dependent cellular phagocytosis (ADCP), as well as the effector cells that mediate these functions. Next, we summarize key aspects of FcR-Fc interactions that are important for potential control of HIV/SIV such as FcR polymorphisms and post-transcriptional modifications. Finally we discuss less commonly studied non-mechanistic anti-HIV immune functions: antibody avidity and envelopespecific B cell memory. Overall, a spectrum of immune responses, reflecting the immune system's redundancy, will likely be needed to prevent HIV infection and/or disease progression. Aside from elicitation of critical immune mechanisms, a successful vaccine will need to induce mature B cell responses and long-lasting immune memory.
Collapse
Affiliation(s)
- Diego A Vargas-Inchaustegui
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, 41 Medlars Drive, Building 41, Room D804, Bethesda, MD 20192-5065, USA.
| | | |
Collapse
|
28
|
Demberg T, Brocca-Cofano E, Kuate S, Aladi S, Vargas-Inchaustegui DA, Venzon D, Kalisz I, Kalyanaraman V, Lee EM, Pal R, DiPasquale J, Ruprecht RM, Montefiori DC, Srivastava I, Barnett SW, Robert-Guroff M. Impact of antibody quality and anamnestic response on viremia control post-challenge in a combined Tat/Env vaccine regimen in rhesus macaques. Virology 2013; 440:210-21. [PMID: 23528732 PMCID: PMC3744165 DOI: 10.1016/j.virol.2013.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/03/2012] [Accepted: 02/27/2013] [Indexed: 11/18/2022]
Abstract
Previously, priming rhesus macaques with Adenovirus type 5 host range mutant-recombinants encoding Tat and Env and boosting with Tat and Env protein in MPL-SE controlled chronic viremia by 4 logs following homologous intravenous SHIV89.6P challenge. Here we evaluated Tat, Env, and Tat/Env regimens for immunogenicity and protective efficacy using clade C Env, alum adjuvant, and a heterologous intrarectal SHIV1157ipd3N4 challenge. Despite induction of strong cellular and humoral immunity, Tat/Env group T and B-cell memory responses were not significantly enhanced over Tat- or Env-only groups. Lack of viremia control post-challenge was attributed to lower avidity Env antibodies and no anamnestic ADCC response or SHIV1157ipd3N4 neutralizing antibody development post-challenge. Poor biologic activity of the Tat immunogen may have impaired Tat immunity. In the absence of sterilizing immunity, strong anamnestic responses to heterologous virus can help control viremia. Both antibody breadth and optimal adjuvanticity are needed to elicit high-quality antibody for protective efficacy.
Collapse
Affiliation(s)
- Thorsten Demberg
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Seraphin Kuate
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Stanley Aladi
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892, USA
| | - Irene Kalisz
- Advanced BioScience Laboratories, Inc., Kensington, MD 20895, USA
| | | | - Eun Mi Lee
- Advanced BioScience Laboratories, Inc., Kensington, MD 20895, USA
| | - Ranajit Pal
- Advanced BioScience Laboratories, Inc., Kensington, MD 20895, USA
| | - Janet DiPasquale
- Vaccine Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
29
|
Novel biopanning strategy to identify epitopes associated with vaccine protection. J Virol 2013; 87:4403-16. [PMID: 23388727 DOI: 10.1128/jvi.02888-12] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Identifying immune correlates of protection is important to develop vaccines against infectious diseases. We designed a novel, universally applicable strategy to profile the antibody (Ab) repertoire of protected vaccine recipients, using recombinant phages encoding random peptide libraries. The new approach, termed "protection-linked (PL) biopanning," probes the Ab paratopes of protected vaccinees versus those with vaccine failure. As proof of concept, we screened plasma samples from vaccinated rhesus macaques (RMs) that had completely resisted multiple mucosal challenges with R5-tropic simian-human immunodeficiency viruses (SHIVs). The animals had been immunized with a multicomponent vaccine (multimeric HIV-1 gp160, HIV-1 Tat, and SIV Gag-Pol particles). After PL biopanning, we analyzed the phagotopes selected for amino acid homologies; in addition to the expected Env mimotopes, one recurring motif reflected the neutralizing Ab epitope at the N terminus (NT) of HIV-1 Tat. Subsequent binding and functional assays indicated that anti-Tat NT Abs were present only in completely or partially protected RMs; peak viremia of the latter was inversely correlated with anti-Tat NT Ab titers. In contrast, highly viremic, unvaccinated controls did not develop detectable Abs against the same epitope. Based upon the protective effect observed in vivo, we suggest that Tat should be included in multicomponent HIV-1 vaccines. Our data highlight the power of the new PL-biopanning strategy to identify Ab responses with significant association to vaccine protection, regardless of the mechanism(s) or targets of the protective Abs. PL biopanning is also unbiased with regard to pathogens or disease model, making it a universal tool.
Collapse
|
30
|
|
31
|
Antibodies with high avidity to the gp120 envelope protein in protection from simian immunodeficiency virus SIV(mac251) acquisition in an immunization regimen that mimics the RV-144 Thai trial. J Virol 2012; 87:1708-19. [PMID: 23175374 DOI: 10.1128/jvi.02544-12] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The recombinant canarypox vector, ALVAC-HIV, together with human immunodeficiency virus (HIV) gp120 envelope glycoprotein, has protected 31.2% of Thai individuals from HIV acquisition in the RV144 HIV vaccine trial. This outcome was unexpected, given the limited ability of the vaccine components to induce CD8(+) T-cell responses or broadly neutralizing antibodies. We vaccinated macaques with an immunization regimen intended to mimic the RV144 trial and exposed them intrarectally to a dose of the simian immunodeficiency virus SIV(mac251) that transmits few virus variants, similar to HIV transmission to humans. Vaccination induced anti-envelope antibodies in all vaccinees and CD4(+) and CD8(+) T-cell responses. Three of the 11 macaques vaccinated with ALVAC-SIV/gp120 were protected from SIV(mac251) acquisition, but the result was not significant. The remaining vaccinees were infected and progressed to disease. The magnitudes of vaccine-induced SIV(mac251)-specific T-cell responses and binding antibodies were not significantly different between protected and infected animals. However, sera from protected animals had higher avidity antibodies to gp120, recognized the variable envelope regions V1/V2, and reduced SIV(mac251) infectivity in cells that express high levels of α(4)β(7) integrins, suggesting a functional role of antibodies to V2. The current results emphasize the utility of determining the titer of repeated mucosal challenge in the preclinical evaluation of HIV vaccines.
Collapse
|
32
|
Abstract
INTRODUCTION One of the challenges facing the development of an AIDS vaccine is eliciting antibody (Ab) capable of preventing the acquisition of HIV. Broadly neutralizing Ab (bnAb) that can prevent HIV infection has proven to be difficult to elicit. Here, we consider the potential for protective non-neutralizing Ab (pnnAb) to provide the much needed Ab component for an HIV vaccine. Such Ab acts by "tagging" virus or infected cells for destruction by the innate immune system. AREAS COVERED We review interactions between the Fc region of immunoglobulin G (IgG) and Fcϒ receptors or complement that can lead to the destruction of HIV or HIV-infected cells, correlations between the presence of pnnAb and the prevention of HIV and simian immunodeficiency virus (SIV) infections, differences between classical HIV-specific bnAb and HIV-specific pnnAb, HIV envelope antigens and adjuvants which have been hypothesized to generate pnnAb, and the use of avidity as a serological correlate for pnnAb. EXPERT OPINION We hypothesize that selection of HIV for the poor ability to elicit bnAb has also selected it for slow entry into cells and a window of opportunity for pnnAb to tag virus for destruction by innate immune responses.
Collapse
|
33
|
Lai RPJ, Seaman MS, Tonks P, Wegmann F, Seilly DJ, Frost SDW, LaBranche CC, Montefiori DC, Dey AK, Srivastava IK, Sattentau Q, Barnett SW, Heeney JL. Mixed adjuvant formulations reveal a new combination that elicit antibody response comparable to Freund's adjuvants. PLoS One 2012; 7:e35083. [PMID: 22509385 PMCID: PMC3324409 DOI: 10.1371/journal.pone.0035083] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 03/08/2012] [Indexed: 12/04/2022] Open
Abstract
Adjuvant formulations capable of inducing high titer and high affinity antibody responses would provide a major advance in the development of vaccines to viral infections such as HIV-1. Although oil-in-water emulsions, such as Freund's adjuvant (FCA/FIA), are known to be potent, their toxicity and reactogenicity make them unacceptable for human use. Here, we explored different adjuvants and compared their ability to elicit antibody responses to FCA/FIA. Recombinant soluble trimeric HIV-1 gp140 antigen was formulated in different adjuvants, including FCA/FIA, Carbopol-971P, Carbopol-974P and the licensed adjuvant MF59, or combinations of MF59 and Carbopol. The antigen-adjuvant formulation was administered in a prime-boost regimen into rabbits, and elicitation of antigen binding and neutralizing antibodies (nAbs) was evaluated. When used individually, only FCA/FIA elicited significantly higher titer of nAbs than the control group (gp140 in PBS (p<0.05)). Sequential prime-boost immunizations with different adjuvants did not offer improvements over the use of FCA/FIA or MF59. Remarkably however, the concurrent use of the combination of Carbopol-971P and MF59 induced potent adjuvant activity with significantly higher titer nAbs than FCA/FIA (p<0.05). This combination was not associated with any obvious local or systemic adverse effects. Antibody competition indicated that the majority of the neutralizing activities were directed to the CD4 binding site (CD4bs). Increased antibody titers to the gp41 membrane proximal external region (MPER) and gp120 V3 were detected when the more potent adjuvants were used. These data reveal that the combination of Carbopol-971P and MF59 is unusually potent for eliciting nAbs to a variety of HIV-1 nAb epitopes.
Collapse
Affiliation(s)
- Rachel P. J. Lai
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Michael S. Seaman
- Division of Viral Pathogenesis, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Paul Tonks
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Frank Wegmann
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - David J. Seilly
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Simon D. W. Frost
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Celia C. LaBranche
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David C. Montefiori
- Department of Surgery, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Antu K. Dey
- Novartis Vaccines and Diagnostics Inc., Massachusetts, United States of America
| | | | - Quentin Sattentau
- The Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Susan W. Barnett
- Novartis Vaccines and Diagnostics Inc., Massachusetts, United States of America
| | - Jonathan L. Heeney
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
34
|
Cox JH, Ferrari MG, Earl P, Lane JR, Jagodzinski LL, Polonis VR, Kuta EG, Boyer JD, Ratto-Kim S, Eller LA, Pham DT, Hart L, Montefiori D, Ferrari G, Parrish S, Weiner DB, Moss B, Kim JH, Birx D, VanCott TC. Inclusion of a CRF01_AE HIV envelope protein boost with a DNA/MVA prime-boost vaccine: Impact on humoral and cellular immunogenicity and viral load reduction after SHIV-E challenge. Vaccine 2012; 30:1830-40. [PMID: 22234262 PMCID: PMC3324265 DOI: 10.1016/j.vaccine.2011.12.131] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 12/21/2011] [Accepted: 12/28/2011] [Indexed: 01/13/2023]
Abstract
The current study assessed the immunogenicity and protective efficacy of various prime-boost vaccine regimens in rhesus macaques using combinations of recombinant DNA (rDNA), recombinant MVA (rMVA), and subunit gp140 protein. The rDNA and rMVA vectors were constructed to express Env from HIV-1 subtype CRF01_AE and Gag-Pol from CRF01_AE or SIVmac 239. One of the rMVAs, MVA/CMDR, has been recently tested in humans. Immunizations were administered at months 0 and 1 (prime) and months 3 and 6 (boost). After priming, HIV env-specific serum IgG was detected in monkeys receiving gp140 alone or rMVA but not in those receiving rDNA. Titers were enhanced in these groups after boosting either with gp140 alone or with rMVA plus gp140. The groups that received the rDNA prime developed env-specific IgG after boosting with rMVA with or without gp140. HIV Env-specific serum IgG binding antibodies were elicited more frequently and of higher titer, and breadth of neutralizing antibodies was increased with the inclusion of the subunit Env boost. T cell responses were measured by tetramer binding to Gag p11c in Mamu-A*01 macaques, and by IFN-γ ELISPOT assay to SIV-Gag. T cell responses were induced after vaccination with the highest responses seen in macaques immunized with rDNA and rMVA. Macaques were challenged intravenously with a novel SHIV-E virus (SIVmac239 Gag-Pol with an HIV-1 subtype E-Env CAR402). Post challenge with SHIV-E, antibody titers were boosted in all groups and peaked at 4 weeks. Robust T cell responses were seen in all groups post challenge and in macaques immunized with rDNA and rMVA a clear boosting of responses was seen. A greater than two-log drop in RNA copies/ml at peak viremia and earlier set point was achieved in macaques primed with rDNA, and boosted with rMVA/SHIV-AE plus gp140. Post challenge viremia in macaques immunized with other regimens was not significantly different to that of controls. These results demonstrate that a gp140 subunit and inclusion of SIV Gag-Pol may be critical for control of SHIV post challenge.
Collapse
MESH Headings
- AIDS Vaccines/administration & dosage
- AIDS Vaccines/genetics
- AIDS Vaccines/immunology
- Animals
- Antibodies, Neutralizing/blood
- CD8-Positive T-Lymphocytes/immunology
- Female
- Gene Products, gag/immunology
- Gene Products, pol/immunology
- HIV Antibodies/blood
- HIV-1/immunology
- Immunity, Cellular
- Immunity, Humoral
- Immunization, Secondary
- Immunoglobulin G/blood
- Macaca mulatta
- Male
- Simian Immunodeficiency Virus/immunology
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/genetics
- Vaccines, DNA/immunology
- Viral Load
- Viral Vaccines/administration & dosage
- Viral Vaccines/immunology
- env Gene Products, Human Immunodeficiency Virus/immunology
Collapse
|
35
|
Lai L, Kwa SF, Kozlowski PA, Montefiori DC, Nolen TL, Hudgens MG, Johnson WE, Ferrari G, Hirsch VM, Felber BK, Pavlakis GN, Earl PL, Moss B, Amara RR, Robinson HL. SIVmac239 MVA vaccine with and without a DNA prime, similar prevention of infection by a repeated dose SIVsmE660 challenge despite different immune responses. Vaccine 2012; 30:1737-45. [PMID: 22178526 PMCID: PMC3278564 DOI: 10.1016/j.vaccine.2011.12.026] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 11/23/2011] [Accepted: 12/02/2011] [Indexed: 01/09/2023]
Abstract
BACKGROUND Vaccine regimens using different agents for priming and boosting have become popular for enhancing T cell and Ab responses elicited by candidate HIV/AIDS vaccines. Here we use a simian model to evaluate immunogenicity and protective efficacy of a recombinant modified vaccinia Ankara (MVA) vaccine in the presence and absence of a recombinant DNA prime. The simian vaccines and regimens represent prototypes for candidate HIV vaccines currently undergoing clinical testing. METHOD Recombinant DNA and MVA immunogens expressed simian immunodeficiency virus (SIV)mac239 Gag, PR, RT, and Env sequences. Vaccine schedules tested inoculations of MVA at months 0, 2, and 6 (MMM regimen) or priming with DNA at months 0 and 2 and boosting with MVA at months 4 and 6 (DDMM regimen). Twelve weekly rectal challenges with the heterologous SIV smE660 were initiated at 6 months following the last immunization. RESULTS Both regimens elicited similar 61-64% reductions in the per challenge risk of SIVsmE660 transmission despite raising different patterns of immune responses. The DDMM regimen elicited higher magnitudes of CD4 T cells whereas the MMM regimen elicited higher titers and greater avidity Env-specific IgG and more frequent and higher titer SIV-specific IgA in rectal secretions. Both regimens elicited similar magnitudes of CD8 T cells. Magnitudes of T cell responses, specific activities of rectal IgA Ab, and the tested specificities for neutralization and antibody-dependent cellular cytotoxicity did not correlate with risk of infection. However, the avidity of Env-specific IgG had a strong correlation with the per challenge risk of acquisition, but only for the DDMM group. CONCLUSIONS We conclude that for the tested immunogens in rhesus macaques, the simpler MMM regimen is as protective as the more complex DDMM regimen.
Collapse
Affiliation(s)
- Lilin Lai
- Division of Microbiology and Immunology, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, United States
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Lai L, Kwa S, Kozlowski PA, Montefiori DC, Ferrari G, Johnson WE, Hirsch V, Villinger F, Chennareddi L, Earl PL, Moss B, Amara RR, Robinson HL. Prevention of infection by a granulocyte-macrophage colony-stimulating factor co-expressing DNA/modified vaccinia Ankara simian immunodeficiency virus vaccine. J Infect Dis 2011; 204:164-73. [PMID: 21628671 PMCID: PMC3143670 DOI: 10.1093/infdis/jir199] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/11/2011] [Indexed: 02/03/2023] Open
Abstract
A simian immunodeficiency virus (SIV) vaccine coexpressing granulocyte-macrophage colony stimulating factor (GM-CSF) prevented infection in 71% of macaques that received 12 rectal challenges. The SIVsmE660 challenge had the tropism of incident human immunodeficiency virus (HIV) infections and a similar genetic distance from the SIV239 vaccine as intraclade HIV isolates. The heterologous prime-boost vaccine regimen used recombinant DNA for priming and recombinant modified vaccinia Ankara for boosting. Co-expression of GM-CSF in the DNA prime enhanced the avidity of elicited immunoglobulin G for SIV envelope glycoproteins, the titers of neutralizing antibody for easy-to-neutralize SIV isolates, and antibody-dependent cellular cytotoxicity. Impressively, the co-expressed GM-CSF increased vaccine-induced prevention of infection from 25% in the non-GM-CSF co-expressing vaccine group to 71% in the GM-CSF co-expressing vaccine group. The prevention of infection showed a strong correlation with the avidity of the elicited Env-specific antibody for the Env of the SIVsmE660 challenge virus (r = 0.9; P < .0001).
Collapse
Affiliation(s)
- Lilin Lai
- Yerkes National Primate Research Center
| | | | - Pamela A. Kozlowski
- Gene Therapy Program, Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans
| | - David C. Montefiori
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Guido Ferrari
- Laboratory for AIDS Vaccine Research and Development, Department of Surgery, Duke University Medical Center, Durham, North Carolina
| | - Welkin E. Johnson
- New England National Primate Research Center, Harvard University, Southborough, Massachusetts
| | - Vanessa Hirsch
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | | | | | - Patricia L. Earl
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Bernard Moss
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Rama Rao Amara
- Yerkes National Primate Research Center
- Vaccine Research Center, Department of Microbiology and Immunology, Emory University, Atlanta
| | | |
Collapse
|
37
|
Girard MP, Osmanov S, Assossou OM, Kieny MP. Human immunodeficiency virus (HIV) immunopathogenesis and vaccine development: a review. Vaccine 2011; 29:6191-218. [PMID: 21718747 DOI: 10.1016/j.vaccine.2011.06.085] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 06/20/2011] [Accepted: 06/22/2011] [Indexed: 02/08/2023]
Abstract
The development of a safe, effective and globally affordable HIV vaccine offers the best hope for the future control of the HIV-1 pandemic. Since 1987, scores of candidate HIV-1 vaccines have been developed which elicited varying degrees of protective responses in nonhuman primate models, including DNA vaccines, subunit vaccines, live vectored recombinant vaccines and various prime-boost combinations. Four of these candidate vaccines have been tested for efficacy in human volunteers, but, to the exception of the recent RV144 Phase III trial in Thailand, which elicited a modest but statistically significant level of protection against infection, none has shown efficacy in preventing HIV-1 infection or in controlling virus replication and delaying progression of disease in humans. Protection against infection was observed in the RV144 trial, but intensive research is needed to try to understand the protective immune mechanisms at stake. Building-up on the results of the RV144 trial and deciphering what possibly are the immune correlates of protection are the top research priorities of the moment, which will certainly accelerate the development of an highly effective vaccine that could be used in conjunction with other HIV prevention and treatment strategies. This article reviews the state of the art of HIV vaccine development and discusses the formidable scientific challenges met in this endeavor, in the context of a better understanding of the immunopathogenesis of the disease.
Collapse
Affiliation(s)
- Marc P Girard
- University Paris 7, French National Academy of Medicine, 39 rue Seignemartin, FR 69008 Lyon, France.
| | | | | | | |
Collapse
|
38
|
Abstract
Most successful vaccines elicit antibodies that protect against infection. In this issue of Immunity, Bomsel et al. (2011) show in the rhesus macaque model that vaccine-induced mucosal antibodies, rather than circulating neutralizing antibodies, may be critical components for protective immunity against HIV-1.
Collapse
Affiliation(s)
- M Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, and Department of Medicine, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
39
|
Sequential immunization with a subtype B HIV-1 envelope quasispecies partially mimics the in vivo development of neutralizing antibodies. J Virol 2011; 85:5262-74. [PMID: 21430056 DOI: 10.1128/jvi.02419-10] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A major goal of human immunodeficiency virus type 1 (HIV-1) vaccine efforts is the design of Envelope (Env)-based immunogens effective at eliciting heterologous or broad neutralizing antibodies (NAbs). We hypothesized that programming the B-cell response could be achieved by sequentially exposing the host to a collection of env variants representing the viral quasispecies members isolated from an individual that developed broad NAbs over time. This ordered vaccine approach (sequential) was compared to exposure to a cocktail of env clones (mixture) and to a single env variant (clonal). The three strategies induced comparable levels of the autologous and heterologous neutralization of tier 1 pseudoviruses. Sequential and mixture exposure to quasispecies led to epitope targeting similar to that observed in the simian-human immunodeficiency virus (SHIV)-infected animal from which the env variants were cloned, while clonal and sequential exposure led to greater antibody maturation than the mixture. Therefore, the sequential vaccine approach best replicated the features of the NAb response observed in that animal. This study is the first to explore the use of a collection of HIV-1 env quasispecies variants as immunogens and to present evidence that it is possible to educate the B-cell response by sequential exposure to native HIV-1 quasispecies env variants derived from an individual with a broadened NAb response.
Collapse
|
40
|
Goepfert PA, Elizaga ML, Sato A, Qin L, Cardinali M, Hay CM, Hural J, DeRosa SC, DeFawe OD, Tomaras GD, Montefiori DC, Xu Y, Lai L, Kalams SA, Baden LR, Frey SE, Blattner WA, Wyatt LS, Moss B, Robinson HL. Phase 1 safety and immunogenicity testing of DNA and recombinant modified vaccinia Ankara vaccines expressing HIV-1 virus-like particles. J Infect Dis 2011; 203:610-9. [PMID: 21282192 DOI: 10.1093/infdis/jiq105] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Recombinant DNA and modified vaccinia virus Ankara (rMVA) vaccines represent a promising approach to an HIV/AIDS vaccine. This Phase 1 clinical trial compared the safety and immunogenicity of a rMVA vaccine administered with and without DNA vaccine priming METHODS GeoVax pGA2/JS7 DNA (D) and MVA/HIV62 (M) vaccines encode noninfectious virus-like particles. Intramuscular needle injections were used to deliver placebo, 2 doses of DNA followed by 2 doses of rMVA (DDMM), one dose of DNA followed by 2 doses of rMVA (DMM), or 3 doses of rMVA (MMM) to HIV-seronegative participants. RESULTS Local and systemic symptoms were mild or moderate. Immune response rates for CD4 + and CD8 + T cells were highest in the DDMM group and lowest in the MMM group (77% vs 43% CD4 + and 42% vs 17% CD8 +). In contrast, response rates for Env binding and neutralizing Ab were highest in the MMM group. The DMM group had intermediate response rates. A 1/10th-dose DDMM regimen induced similar T cell but reduced Ab response rates compared with the full-dose DDMM. CONCLUSIONS MVA62 was well tolerated and elicited different patterns of T cell and Ab responses when administered alone or in combination with the JS7 DNA vaccine.
Collapse
Affiliation(s)
- Paul A Goepfert
- Department of Medicine, University of Alabama at Birmingham, AL 35294, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Kannanganat S, Nigam P, Velu V, Earl PL, Lai L, Chennareddi L, Lawson B, Wilson RL, Montefiori DC, Kozlowski PA, Moss B, Robinson HL, Amara RR. Preexisting vaccinia virus immunity decreases SIV-specific cellular immunity but does not diminish humoral immunity and efficacy of a DNA/MVA vaccine. THE JOURNAL OF IMMUNOLOGY 2010; 185:7262-73. [PMID: 21076059 DOI: 10.4049/jimmunol.1000751] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The influence of preexisting immunity to viral vectors is a major issue for the development of viral-vectored vaccines. In this study, we investigate the effect of preexisting vaccinia virus immunity on the immunogenicity and efficacy of a DNA/modified vaccinia Ankara (MVA) SIV vaccine in rhesus macaques using a pathogenic intrarectal SIV251 challenge. Preexisting immunity decreased SIV-specific CD8 and CD4 T cell responses but preserved the SIV-specific humoral immunity. In addition, preexisting immunity did not diminish the control of an SIV challenge mediated by the DNA/MVA vaccine. The peak and set point viremia was 150- and 17-fold lower, respectively, in preimmune animals compared with those of control animals. The peak and set point viremia correlated directly with colorectal virus at 2 wk postchallenge suggesting that early control of virus replication at the site of viral challenge was critical for viral control. Factors that correlated with early colorectal viral control included 1) the presence of anti-SIV IgA in rectal secretions, 2) high-avidity binding Ab for the native form of Env, and 3) low magnitude of vaccine-elicited SIV-specific CD4 T cells displaying the CCR5 viral coreceptor. The frequency of SIV-specific CD8 T cells in blood and colorectal tissue at 2 wk postchallenge did not correlate with early colorectal viral control. These results suggest that preexisting vaccinia virus immunity may not limit the potential of recombinant MVA vaccines to elicit humoral immunity and highlight the importance of immunodeficiency virus vaccines achieving early control at the mucosal sites of challenge.
Collapse
Affiliation(s)
- Sunil Kannanganat
- Department of Microbiology and Immunology, Vaccine Research Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Fiorentini S, Giagulli C, Caccuri F, Magiera AK, Caruso A. HIV-1 matrix protein p17: a candidate antigen for therapeutic vaccines against AIDS. Pharmacol Ther 2010; 128:433-44. [PMID: 20816696 DOI: 10.1016/j.pharmthera.2010.08.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 08/02/2010] [Indexed: 11/26/2022]
Abstract
The success in the development of anti-retroviral therapies (HAART) that contain human immunodeficiency virus type 1 (HIV-1) infection is challenged by the cost of this lifelong therapy and by its toxicity. Immune-based therapeutic strategies that boost the immune response against HIV-1 proteins or protein subunits have been recently proposed to control virus replication in order to provide protection from disease development, reduce virus transmission, and help limit the use of anti-retroviral treatments. HIV-1 matrix protein p17 is a structural protein that is critically involved in most stages of the life cycle of the retrovirus. Besides its well established role in the virus life cycle, increasing evidence suggests that p17 may also be active extracellularly in deregulating biological activities of many different immune cells that are directly or indirectly involved in AIDS pathogenesis. Thus, p17 might represent a promising target for developing a therapeutic vaccine as a contribution to combating AIDS. In this article we review the biological characteristics of HIV-1 matrix protein p17 and we describe why a synthetic peptide representative of the p17 functional epitope may work as a vaccine molecule capable of inducing anti-p17 neutralizing response against p17 derived from divergent HIV-1 strains.
Collapse
Affiliation(s)
- Simona Fiorentini
- Section of Microbiology, Department of Experimental and Applied Medicine, University of Brescia, 25123 Brescia, Italy
| | | | | | | | | |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Major roadblocks persist in the development of vaccines that elicit potent neutralizing antibodies targeting diverse HIV-1 strains, similar to known broadly neutralizing HIV-1 human monoclonal antibodies. Alternatively, other types of anti-HIV-1 envelope antibodies that may not neutralize HIV-1 in traditional neutralization assays but have other anti-HIV-1 activities (hereafter termed HIV-1 inhibitory antibodies) can be elicited by current vaccine strategies, and numerous studies are exploring their roles in preventing HIV-1 acquisition. We review examples of strategies for eliciting potentially protective HIV-1 inhibitory antibodies. RECENT FINDINGS Heterologous prime-boost strategies can yield anti-HIV immune responses, although only one (canarypox prime, Env protein boost) has been tested and shown positive results in an efficacy trial (RV144). Although the immune correlates of protection are as yet undefined, the reduced rate of acquisition without a significant effect on initial viral loads or CD4 T-cell counts, have raised the hypothesis of an RV144 vaccine-elicited transient protective B-cell response. SUMMARY In light of the RV144 trial, there is a critical need to define the entire functional spectrum of anti-HIV-1 antibodies, how easily each can be elicited, and how effective different types of antibody effector mechanisms can be in prevention of HIV-1 transmission.
Collapse
Affiliation(s)
- Georgia D Tomaras
- Duke Human Vaccine Institute, Duke University Medical Center, Durham, North Carolina, USA.
| | | |
Collapse
|
44
|
Immunization with wild-type or CD4-binding-defective HIV-1 Env trimers reduces viremia equivalently following heterologous challenge with simian-human immunodeficiency virus. J Virol 2010; 84:9086-95. [PMID: 20610729 DOI: 10.1128/jvi.01015-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently reported that rhesus macaques inoculated with CD4-binding-competent and CD4-binding-defective soluble YU2-derived HIV-1 envelope glycoprotein (Env) trimers in adjuvant generate comparable levels of Env-specific binding antibodies (Abs) and T cell responses. We also showed that Abs directed against the Env coreceptor binding site (CoRbs) were elicited only in animals immunized with CD4-binding-competent trimers and not in animals immunized with CD4-binding-defective trimers, indicating that a direct interaction between Env and CD4 occurs in vivo. To investigate both the overall consequences of in vivo Env-CD4 interactions and the elicitation of CoRbs-directed Abs for protection against heterologous simian-human immunodeficiency virus (SHIV) challenge, we exposed rhesus macaques immunized with CD4-binding-competent and CD4-binding-defective trimers to the CCR5-tropic SHIV-SF162P4 challenge virus. Compared to unvaccinated controls, all vaccinated animals displayed improved control of plasma viremia, independent of the presence or absence of CoRbs-directed Abs prior to challenge. Immunization resulted in plasma responses that neutralized the heterologous SHIV challenge stock in vitro, with similar neutralizing Ab titers elicited by the CD4-binding-competent and CD4-binding-defective trimers. The neutralizing responses against both the SHIV-SF162P4 stock and a recombinant virus pseudotyped with a cloned SHIV-SF162P4-derived Env were significantly boosted by the SHIV challenge. Collectively, these results suggest that the capacity of soluble Env trimers to interact with primate CD4 in vivo and to stimulate the production of moderate titers of CoRbs-directed Abs did not influence the magnitude of the neutralizing Ab recall response after viral challenge or the subsequent control of viremia in this heterologous SHIV challenge model.
Collapse
|
45
|
Barnett SW, Burke B, Sun Y, Kan E, Legg H, Lian Y, Bost K, Zhou F, Goodsell A, Zur Megede J, Polo J, Donnelly J, Ulmer J, Otten GR, Miller CJ, Vajdy M, Srivastava IK. Antibody-mediated protection against mucosal simian-human immunodeficiency virus challenge of macaques immunized with alphavirus replicon particles and boosted with trimeric envelope glycoprotein in MF59 adjuvant. J Virol 2010; 84:5975-85. [PMID: 20392857 PMCID: PMC2876657 DOI: 10.1128/jvi.02533-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 03/18/2010] [Indexed: 12/19/2022] Open
Abstract
We have previously shown that rhesus macaques were partially protected against high-dose intravenous challenge with simian-human immunodeficiency virus SHIV(SF162P4) following sequential immunization with alphavirus replicon particles (VRP) of a chimeric recombinant VEE/SIN alphavirus (derived from Venezuelan equine encephalitis virus [VEE] and the Sindbis virus [SIN]) encoding human immunodeficiency virus type 1 HIV-1(SF162) gp140DeltaV2 envelope (Env) and trimeric Env protein in MF59 adjuvant (R. Xu, I. K. Srivastava, C. E. Greer, I. Zarkikh, Z. Kraft, L. Kuller, J. M. Polo, S. W. Barnett, and L. Stamatatos, AIDS Res. Hum. Retroviruses 22:1022-1030, 2006). The protection did not require T-cell immune responses directed toward simian immunodeficiency virus (SIV) Gag. We extend those findings here to demonstrate antibody-mediated protection against mucosal challenge in macaques using prime-boost regimens incorporating both intramuscular and mucosal routes of delivery. The macaques in the vaccination groups were primed with VRP and then boosted with Env protein in MF59 adjuvant, or they were given VRP intramuscular immunizations alone and then challenged with SHIV(SF162P4) (intrarectal challenge). The results demonstrated that these vaccines were able to effectively protect the macaques to different degrees against subsequent mucosal SHIV challenge, but most noteworthy, all macaques that received the intramuscular VRP prime plus Env protein boost were completely protected. A statistically significant association was observed between the titer of virus neutralizing and binding antibodies as well as the avidity of anti-Env antibodies measured prechallenge and protection from infection. These results highlight the merit of the alphavirus replicon vector prime plus Env protein boost vaccine approach for the induction of protective antibody responses and are of particular relevance to advancing our understanding of the potential correlates of immune protection against HIV infection at a relevant mucosal portal of entry.
Collapse
Affiliation(s)
- Susan W Barnett
- Novartis Vaccines and Diagnostics, 350 Massachusetts Avenue, Cambridge, MA 02139, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Multiple vaccine-elicited nonneutralizing antienvelope antibody activities contribute to protective efficacy by reducing both acute and chronic viremia following simian/human immunodeficiency virus SHIV89.6P challenge in rhesus macaques. J Virol 2010; 84:7161-73. [PMID: 20444898 DOI: 10.1128/jvi.00410-10] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have shown that following priming with replicating adenovirus type 5 host range mutant (Ad5hr)-human immunodeficiency virus (HIV)/simian immunodeficiency virus (SIV) recombinants, boosting with gp140 envelope protein enhances acute-phase protection against intravenous simian/human immunodeficiency virus (SHIV)(89.6P) challenge compared to results with priming and no boosting or boosting with an HIV polypeptide representing the CD4 binding site of gp120. We retrospectively analyzed antibodies in sera and rectal secretions from these same macaques, investigating the hypothesis that vaccine-elicited nonneutralizing antibodies contributed to the better protection. Compared to other immunized groups or controls, the gp140-boosted group exhibited significantly greater antibody activities mediating antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cell-mediated viral inhibition (ADCVI) in sera and transcytosis inhibition in rectal secretions. ADCC and ADCVI activities were directly correlated with antibody avidity, suggesting the importance of antibody maturation for functionality. Both ADCVI and percent ADCC killing prechallenge were significantly correlated with reduced acute viremia. The latter, as well as postchallenge ADCVI and ADCC, was also significantly correlated with reduced chronic viremia. We have previously demonstrated induction by the prime/boost regimen of mucosal antibodies that inhibit transcytosis of SIV across an intact epithelial cell layer. Here, antibody in rectal secretions was significantly correlated with transcytosis inhibition. Importantly, the transcytosis specific activity (percent inhibition/total secretory IgA and IgG) was strongly correlated with reduced chronic viremia, suggesting that mucosal antibody may help control cell-to-cell viral spread during the course of infection. Overall, the replicating Ad5hr-HIV/SIV priming/gp140 protein boosting approach elicited strong systemic and mucosal antibodies with multiple functional activities associated with control of both acute and chronic viremia.
Collapse
|
47
|
Vaine M, Wang S, Hackett A, Arthos J, Lu S. Antibody responses elicited through homologous or heterologous prime-boost DNA and protein vaccinations differ in functional activity and avidity. Vaccine 2010; 28:2999-3007. [PMID: 20170767 PMCID: PMC2847033 DOI: 10.1016/j.vaccine.2010.02.006] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 12/29/2009] [Accepted: 02/03/2010] [Indexed: 11/25/2022]
Abstract
Using a gp120 envelope glycoprotein from the JR-FL strain of human immunodeficiency virus-1 (HIV-1) as a model antigen, the goal of the current study was to evaluate the level and quality of antibody responses elicited by different prime-boost vaccination regimens (protein only, DNA only, DNA plus protein) in rabbits. Our data demonstrated that incorporating DNA immunization as a prime in a heterologous prime-boost regimen was able to elicit a more diverse and conformational epitope profile, higher antibody avidity, and improved neutralizing activity than immunization with only protein. Additionally, this improved neutralizing activity was observed in spite of similar antibody specificities and avidities seen when only DNA vaccination was used, providing additional evidence that the use of a combination immunization regimen increases the protective antibody response. Insights gained from the current study confirmed that the heterologous DNA prime-protein boost approach is effective in eliciting not only high level but also improved quality of antigen-specific antibody responses, and thus may offer a new technology platform to develop better and safer subunit vaccines.
Collapse
Affiliation(s)
- Michael Vaine
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Shixia Wang
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - Anthony Hackett
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| | - James Arthos
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institute of Health, Bethesda 20892, United States
| | - Shan Lu
- Laboratory of Nucleic Acid Vaccines, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01655
| |
Collapse
|
48
|
Abstract
The HIV vaccines tested in the halted Step efficacy trial and the modestly successful phase 3 RV144 trial were designed to elicit strong systemic immune responses; therefore, strategies to direct immune responses into mucosal sites should be tested in an effort to improve AIDS vaccine efficacy. However, as increased CD4(+) T-cell activation and recruitment to mucosal sites have the potential to enhance HIV transmission, mucosal immune responses to HIV vaccines should primarily consist of effector CD8(+) T cells and plasma cells. Controlling the level of mucosal T-cell activation may be a critical factor in developing an effective mucosal AIDS vaccine. Immunization routes and adjuvants that can boost antiviral immunity in mucosal surfaces offer a reasonable opportunity to improve AIDS vaccine efficacy. Nonhuman primate models offer the best system for preclinical evaluation of these approaches.
Collapse
Affiliation(s)
- Meritxell Genescà
- Center for Comparative Medicine, California National Primate Research Center, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| | - Christopher J. Miller
- Center for Comparative Medicine, California National Primate Research Center, University of California, Davis, One Shields Avenue, Davis, CA 95616 USA
| |
Collapse
|