1
|
Zubair A, Bibi B, Habib F, Sujan A, Ali M. Clinical trials and recent progress in HIV vaccine development. Funct Integr Genomics 2024; 24:143. [PMID: 39192058 DOI: 10.1007/s10142-024-01425-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 08/29/2024]
Abstract
The greatest obstacle for scientists is to develop an effective HIV vaccine. An effective vaccine represents the last hope for halting the unstoppable global spread of HIV and its catastrophic clinical consequences. Creating this vaccine has been challenging due to the virus's extensive genetic variability and the unique role of cytotoxic T lymphocytes (CTL) in containing it. Innovative methods to stimulate CTL have demonstrated significant therapeutic advantages in nonhuman primate model systems, unlike traditional vaccination techniques that are not expected to provide safe and efficient protection against HIV. Human clinical trials are currently evaluating these vaccination strategies, which involve plasmid DNA and live recombinant vectors. This review article covers the existing vaccines and ongoing trial vaccines. It also explores the different approaches used in developing HIV vaccines, including their molecular mechanisms, target site effectiveness, and potential side effects.
Collapse
Affiliation(s)
- Akmal Zubair
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| | - Bushra Bibi
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Faiza Habib
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Arooba Sujan
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan
| | - Muhammad Ali
- Department of Biotechnology Quaid-i, Azam University Islamabad Pakistan, Islamabad Capital Territory, Pakistan.
| |
Collapse
|
2
|
Kaur A, Vaccari M. Exploring HIV Vaccine Progress in the Pre-Clinical and Clinical Setting: From History to Future Prospects. Viruses 2024; 16:368. [PMID: 38543734 PMCID: PMC10974975 DOI: 10.3390/v16030368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The human immunodeficiency virus (HIV) continues to pose a significant global health challenge, with millions of people affected and new cases emerging each year. While various treatment and prevention methods exist, including antiretroviral therapy and non-vaccine approaches, developing an effective vaccine remains the most crucial and cost-effective solution to combating the HIV epidemic. Despite significant advancements in HIV research, the HIV vaccine field has faced numerous challenges, and only one clinical trial has demonstrated a modest level of efficacy. This review delves into the history of HIV vaccines and the current efforts in HIV prevention, emphasizing pre-clinical vaccine development using the non-human primate model (NHP) of HIV infection. NHP models offer valuable insights into potential preventive strategies for combating HIV, and they play a vital role in informing and guiding the development of novel vaccine candidates before they can proceed to human clinical trials.
Collapse
Affiliation(s)
- Amitinder Kaur
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Monica Vaccari
- Division of Immunology, Tulane National Primate Research Center, Covington, LA 70433, USA;
- School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Song Y, Mehl F, Zeichner SL. Vaccine Strategies to Elicit Mucosal Immunity. Vaccines (Basel) 2024; 12:191. [PMID: 38400174 PMCID: PMC10892965 DOI: 10.3390/vaccines12020191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
Vaccines are essential tools to prevent infection and control transmission of infectious diseases that threaten public health. Most infectious agents enter their hosts across mucosal surfaces, which make up key first lines of host defense against pathogens. Mucosal immune responses play critical roles in host immune defense to provide durable and better recall responses. Substantial attention has been focused on developing effective mucosal vaccines to elicit robust localized and systemic immune responses by administration via mucosal routes. Mucosal vaccines that elicit effective immune responses yield protection superior to parenterally delivered vaccines. Beyond their valuable immunogenicity, mucosal vaccines can be less expensive and easier to administer without a need for injection materials and more highly trained personnel. However, developing effective mucosal vaccines faces many challenges, and much effort has been directed at their development. In this article, we review the history of mucosal vaccine development and present an overview of mucosal compartment biology and the roles that mucosal immunity plays in defending against infection, knowledge that has helped inform mucosal vaccine development. We explore new progress in mucosal vaccine design and optimization and novel approaches created to improve the efficacy and safety of mucosal vaccines.
Collapse
Affiliation(s)
- Yufeng Song
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Frances Mehl
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
| | - Steven L. Zeichner
- Department of Pediatrics, University of Virginia, Charlottesville, VA 22908, USA; (Y.S.)
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
4
|
Yang Y, Iwasaki A. Impact of Chronic HIV Infection on SARS-CoV-2 Infection, COVID-19 Disease and Vaccines. Curr HIV/AIDS Rep 2022; 19:5-16. [PMID: 34843064 PMCID: PMC8628277 DOI: 10.1007/s11904-021-00590-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
PURPOSE OF REVIEW The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has developed into a global pandemic that affect the health of hundreds of millions worldwide. In particular, SARS-CoV-2 infection in people with chronic human immune deficiency virus (HIV) infection is of concern, due to their already immunocompromised status. Yet, whether and how the immunological changes brought about by HIV will affect the immune responses against SARS-CoV-2 acute infection and impact the effectiveness of vaccines remain unclear. We discuss the intersection of COVID-19 in HIV-infected individuals. RECENT FINDINGS People living with HIV (PLWH) may be at increased risk of severe SARS-CoV-2 mediated disease complication due to functional impairment of the immune system and persistent inflammation, which can be ameliorated by antiretroviral therapy. Importantly, limited data suggest that current approved vaccines may be safe and efficacious in PLWH. To address remaining questions and supplement limited experimental evidence, more studies examining the interplay between HIV and SARS-CoV-2 through their impact on the host immune system are required.
Collapse
Affiliation(s)
- Yexin Yang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
5
|
Abstract
HIV is a virus that remains a major health concern and results in an infection that has no cure even after over 30 years since its discovery. As such, HIV vaccine discovery continues to be an area of intensive research. In this review, we summarize the most recent HIV vaccine efficacy trials, clinical trials initiated within the last 3 years, and discuss prominent improvements that have been made in prophylactic HIV vaccine designs.
Collapse
Affiliation(s)
- Jeong Hyun Lee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA.
| | - Shane Crotty
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, USA.
| |
Collapse
|
6
|
Buchbinder SP, McElrath MJ, Dieffenbach C, Corey L. Use of adenovirus type-5 vectored vaccines: a cautionary tale. Lancet 2020; 396:e68-e69. [PMID: 33091364 PMCID: PMC7571904 DOI: 10.1016/s0140-6736(20)32156-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/17/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Susan P Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA 94102, USA; Department of Medicine and Department of Epidemiology, University of California, San Francisco, CA, USA.
| | - M Juliana McElrath
- Fred Hutchinson Cancer Research Institute, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, University of Washington, Seattle, WA, USA
| | - Carl Dieffenbach
- Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lawrence Corey
- Fred Hutchinson Cancer Research Institute, Seattle, WA, USA; Fred Hutchinson Cancer Research Center, Vaccine and Infectious Disease Division, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Matchett WE, Malewana GBR, Mudrick H, Medlyn MJ, Barry MA. Genetic Adjuvants in Replicating Single-Cycle Adenovirus Vectors Amplify Systemic and Mucosal Immune Responses against HIV-1 Envelope. Vaccines (Basel) 2020; 8:E64. [PMID: 32024265 PMCID: PMC7158672 DOI: 10.3390/vaccines8010064] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 12/22/2022] Open
Abstract
Most infections occur at mucosal surfaces. Providing a barrier of protection at these surfaces may be a useful strategy to combat the earliest events in infection when there are relatively few pathogens to address. The majority of vaccines are delivered systemically by the intramuscular (IM) route. While IM vaccination can drive mucosal immune responses, mucosal immunization at intranasal (IN) or oral sites can lead to better immune responses at mucosal sites of viral entry. In macaques, IN immunization with replicating single-cycle adenovirus (SC-Ads) and protein boosts generated favorable mucosal immune responses. However, there was an apparent "distance effect" in generating mucosal immune responses. IN immunization generated antibodies against HIV envelope (env) nearby in the saliva, but weaker responses in samples collected from the distant vaginal samples. To improve on this, we tested here if SC-Ads expressing genetic adjuvants could be used to amplify antibody responses in distant vaginal samples when they are codelivered with SC-Ads expressing clade C HIV env immunogen. SC-Ads env 1157 was coadministered with SC-Ads expressing 4-1BBL, granulocyte macrophage colony-stimulating factor (GMCSF), IL-21, or Clostridoides difficile (C. diff.) toxin fragments by IN or IM routes. These data show that vaginal antibody responses were markedly amplified after a single immunization by the IN or IM routes, with SC-Ad expressing HIV env if this vaccine is complemented with SC-Ads expressing genetic adjuvants. Furthermore, the site and combination of adjuvants appear to "tune" these antibody responses towards an IgA or IgG isotype bias. Boosting these priming SC-Ad responses with another SC-Ad or with SOSIP native-like env proteins markedly amplifies env antibody levels in vaginal washes. Together, this data may be useful in informing the choice of route of delivery adenovirus and peptide vaccines against HIV-1.
Collapse
Affiliation(s)
- William E. Matchett
- Virology and Gene Therapy (VGT) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Haley Mudrick
- Molecular Pharmacology and Experimental Therapeutics (MPET) Graduate Program, Mayo Clinic, Rochester, MN 55905, USA;
| | | | - Michael A. Barry
- Department of Internal Medicine, Division of Infectious Diseases, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
8
|
Chamcha V, Reddy PBJ, Kannanganat S, Wilkins C, Gangadhara S, Velu V, Green R, Law GL, Chang J, Bowen JR, Kozlowski PA, Lifton M, Santra S, Legere T, Chea LS, Chennareddi L, Yu T, Suthar MS, Silvestri G, Derdeyn CA, Gale M, Villinger F, Hunter E, Amara RR. Strong T H1-biased CD4 T cell responses are associated with diminished SIV vaccine efficacy. Sci Transl Med 2019; 11:eaav1800. [PMID: 31748228 PMCID: PMC7227795 DOI: 10.1126/scitranslmed.aav1800] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 04/07/2019] [Accepted: 09/13/2019] [Indexed: 12/18/2022]
Abstract
Activated CD4 T cells are a major target of HIV infection. Results from the STEP HIV vaccine trial highlighted a potential role for total activated CD4 T cells in promoting HIV acquisition. However, the influence of vaccine insert-specific CD4 T cell responses on HIV acquisition is not known. Here, using the data obtained from four macaque studies, we show that the DNA prime/modified vaccinia Ankara boost vaccine induced interferon γ (IFNγ+) CD4 T cells [T helper 1 (TH1) cells] rapidly migrate to multiple tissues including colon, cervix, and vaginal mucosa. These mucosal TH1 cells persisted at higher frequencies and expressed higher density of CCR5, a viral coreceptor, compared to cells in blood. After intravaginal or intrarectal simian immunodeficiency virus (SIV)/simian-human immunodeficiency virus (SHIV) challenges, strong vaccine protection was evident only in animals that had lower frequencies of vaccine-specific TH1 cells but not in animals that had higher frequencies of TH1 cells, despite comparable vaccine-induced humoral and CD8 T cell immunity in both groups. An RNA transcriptome signature in blood at 7 days after priming immunization from one study was associated with induction of fewer TH1-type CD4 cells and enhanced protection. These results demonstrate that high and persisting frequencies of HIV vaccine-induced TH1-biased CD4 T cells in the intestinal and genital mucosa can mitigate beneficial effects of protective antibodies and CD8 T cells, highlighting a critical role of priming immunization and vaccine adjuvants in modulating HIV vaccine efficacy.
Collapse
Affiliation(s)
- Venkateswarlu Chamcha
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Pradeep B J Reddy
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Sunil Kannanganat
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Courtney Wilkins
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - Sailaja Gangadhara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Vijayakumar Velu
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Richard Green
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - G Lynn Law
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - Jean Chang
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - James R Bowen
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Pamela A Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Michelle Lifton
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Sampa Santra
- Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Traci Legere
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Lynette S Chea
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lakshmi Chennareddi
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Tianwei Yu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA 30322, USA
| | - Mehul S Suthar
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Division of Infectious Diseases, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guido Silvestri
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Cynthia A Derdeyn
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, University of Washington School of Medicine, Seattle, WA 981909, USA
| | - Francois Villinger
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Eric Hunter
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Rama Rao Amara
- Emory Vaccine Center, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
- Department of Microbiology and Immunology, Emory School of Medicine, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
9
|
Vaccari M, Fourati S, Brown DR, Silva de Castro I, Bissa M, Schifanella L, Doster MN, Foulds KE, Roederer M, Koup RA, Sui Y, Berzofsky JA, Sekaly RP, Franchini G. Myeloid Cell Crosstalk Regulates the Efficacy of the DNA/ALVAC/gp120 HIV Vaccine Candidate. Front Immunol 2019; 10:1072. [PMID: 31139193 PMCID: PMC6527580 DOI: 10.3389/fimmu.2019.01072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 12/11/2022] Open
Abstract
Vaccination with DNA-SIV + ALVAC-SIV + gp120 alum results in inflammasome activation, high levels of IL-1β production, emergency myelopoiesis, and the egress of CXCR4+ CD14+ pre-monocytes from bone marrow. Previously we have shown that this vaccine-induced innate monocyte memory is associated with decreased risk of SIVmac251 acquisition. Because IL-1β also promotes the propagation of monocyte-derived suppressor (M-MDSC)-like cells, here we extended our analysis to this negative regulator subset, characterizing its levels and functions in macaques. Interestingly, we found that DNA prime engages M-MDSC-like cells and their levels are positively associated with the frequency of CD14+ classical monocytes, and negatively with the levels of CD16+ monocytes, correlates of decreased and increased risk of SIV acquisition, respectively. Accordingly, M-MDSC frequency, arginase activity, and NO were all associated with decrease of CD8 T cells responses and worse vaccination outcome. DNA vaccination thus induces innate immunity by engaging three subsets of myeloid cells, M-MDSCs, CD14+ innate monocyte memory, and CD16+ monocytes all playing different role in protection. The full characterization of the immunological space created by myeloid cell crosstalk will likely provide clues to improve the efficacy of HIV vaccine candidates.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Dallas R. Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Massimiliano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Melvin N. Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Kathryn E. Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Richard A. Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Yongjun Sui
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jay A. Berzofsky
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University, Cleveland, OH, United States
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
10
|
Current advances in HIV vaccine preclinical studies using Macaque models. Vaccine 2019; 37:3388-3399. [PMID: 31088747 DOI: 10.1016/j.vaccine.2019.04.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/02/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023]
Abstract
The macaque simian or simian/human immunodeficiency virus (SIV/SHIV) challenge model has been widely used to inform and guide human vaccine trials. Substantial advances have been made recently in the application of repeated-low-dose challenge (RLD) approach to assess SIV/SHIV vaccine efficacies (VE). Some candidate HIV vaccines have shown protective effects in preclinical studies using the macaque SIV/SHIV model but the model's true predictive value for screening potential HIV vaccine candidates needs to be evaluated further. Here, we review key parameters used in the RLD approach and discuss their relevance for evaluating VE to improve preclinical studies of candidate HIV vaccines.
Collapse
|
11
|
Rahman MA, Robert-Guroff M. Accelerating HIV vaccine development using non-human primate models. Expert Rev Vaccines 2018; 18:61-73. [PMID: 30526159 DOI: 10.1080/14760584.2019.1557521] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION The search for a preventative HIV vaccine is ongoing after three decades of research. Contributions of non-human primate (NHP) models to this research are irrefutable, however interpreting data obtained for translation to humans has been problematic. As knowledge concerning NHP models has accumulated, their utility and value in assessing immunogenicity and efficacy of novel vaccines have become apparent. NHP models have become a critical component of vaccine design. AREAS COVERED Beginning with early vaccine studies, we trace the development and evolution of NHP models concurrent with changes in HIV vaccine concepts and in response to their ability to predict clinical trial efficacy. The value of NHP studies in guiding vaccine design is highlighted along with their importance in opening new areas of investigation and facilitating movement of promising approaches into the clinic. EXPERT COMMENTARY Due to their close relatedness to humans, NHPs are an excellent choice for immunogenicity studies. The ability of NHP models to predict clinical efficacy has improved with the introduction of low-dose challenge viruses and recognition of confounding variables in study outcomes. Use of NHP models has opened new research areas with outstanding potential for generating vaccine efficacy against HIV and other infectious agents.
Collapse
Affiliation(s)
- Mohammad Arif Rahman
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| | - Marjorie Robert-Guroff
- a Vaccine Branch, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Bethesda , MD , USA
| |
Collapse
|
12
|
Vaccine-Induced Protection from Homologous Tier 2 SHIV Challenge in Nonhuman Primates Depends on Serum-Neutralizing Antibody Titers. Immunity 2018; 50:241-252.e6. [PMID: 30552025 PMCID: PMC6335502 DOI: 10.1016/j.immuni.2018.11.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 11/05/2018] [Indexed: 01/13/2023]
Abstract
Passive administration of HIV neutralizing antibodies (nAbs) can protect macaques from hard-to-neutralize (tier 2) chimeric simian-human immunodeficiency virus (SHIV) challenge. However, conditions for nAb-mediated protection after vaccination have not been established. Here, we selected groups of 6 rhesus macaques with either high or low serum nAb titers from a total of 78 animals immunized with recombinant native-like (SOSIP) Env trimers. Repeat intrarectal challenge with homologous tier 2 SHIVBG505 led to rapid infection in unimmunized and low-titer animals. High-titer animals, however, demonstrated protection that was gradually lost as nAb titers waned over time. An autologous serum ID50 nAb titer of ∼1:500 afforded more than 90% protection from medium-dose SHIV infection. In contrast, antibody-dependent cellular cytotoxicity and T cell activity did not correlate with protection. Therefore, Env protein-based vaccination strategies can protect against hard-to-neutralize SHIV challenge in rhesus macaques by inducing tier 2 nAbs, provided appropriate neutralizing titers can be reached and maintained.
Collapse
|
13
|
Srivastava R, Coulon PG, Roy S, Chilukuri S, Garg S, BenMohamed L. Phenotypic and Functional Signatures of Herpes Simplex Virus-Specific Effector Memory CD73 +CD45RA highCCR7 lowCD8 + T EMRA and CD73 +CD45RA lowCCR7 lowCD8 + T EM Cells Are Associated with Asymptomatic Ocular Herpes. THE JOURNAL OF IMMUNOLOGY 2018; 201:2315-2330. [PMID: 30201808 DOI: 10.4049/jimmunol.1800725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/06/2018] [Indexed: 02/06/2023]
Abstract
HSV type 1 (HSV-1)-specific CD8+ T cells protect from herpes infection and disease. However, the nature of protective CD8+ T cells in HSV-1 seropositive healthy asymptomatic (ASYMP) individuals (with no history of clinical herpes disease) remains to be determined. In this study, we compared the phenotype and function of HSV-specific CD8+ T cells from HLA-A*02:01-positive ASYMP and symptomatic (SYMP) individuals (with a documented history of numerous episodes of recurrent ocular herpetic disease). We report that although SYMP and ASYMP individuals have similar frequencies of HSV-specific CD8+ T cells, the "naturally" protected ASYMP individuals have a significantly higher proportion of multifunctional HSV-specific effector memory CD8+ T cells (CD73+CD45RAhighCCR7lowCD8+ effector memory RA (TEMRA) and CD73+CD45RAlowCCR7lowCD8+ effector memory (TEM) as compared with SYMP individuals. Similar to humans, HSV-1-infected ASYMP B6 mice had frequent multifunctional HSV-specific CD73+CD8+ T cells in the cornea, as compared with SYMP mice. Moreover, in contrast to wild type B6, CD73-/- deficient mice infected ocularly with HSV-1 developed more recurrent corneal herpetic infection and disease. This was associated with less functional CD8+ T cells in the cornea and trigeminal ganglia, the sites of acute and latent infection. The phenotypic and functional characteristics of HSV-specific circulating and in situ CD73+CD8+ T cells, demonstrated in both ASYMP humans and mice, suggest a positive role for effector memory CD8+ T cells expressing the CD73 costimulatory molecule in the protection against ocular herpes infection and disease. These findings are important for the development of safe and effective T cell-based herpes immunotherapy.
Collapse
Affiliation(s)
- Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Pierre-Grégoire Coulon
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Sravya Chilukuri
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Sumit Garg
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697; .,Department of Molecular Biology and Biochemistry, University of California Irvine, School of Medicine, Irvine, CA 92697; and.,Institute for Immunology, University of California Irvine, School of Medicine, Irvine, CA 92697
| |
Collapse
|
14
|
Tackling HIV and AIDS: contributions by non-human primate models. Lab Anim (NY) 2018; 46:259-270. [PMID: 28530684 DOI: 10.1038/laban.1279] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 04/19/2017] [Indexed: 12/21/2022]
Abstract
During the past three decades, non-human primate (NHP) models have gained an increasing importance in HIV basic and translational research. In contrast to natural host models, infection of macaques with virulent simian or simian-human immunodeficiency viruses (SIV, SHIV) results in a disease that closely resembles HIV infection and AIDS. Although there is no perfect animal model, and each of the available models has its benefits and limitations, carefully designed NHP studies with selection of experimental variables have unraveled important questions of basic pathogenesis and have provided the tools to explore and screen intervention strategies. For example, NHP studies have advanced our understanding of the crucial events during early infection, and have provided proof-of-concept of antiretroviral drug treatment and prevention strategies such as pre-exposure prophylaxis (PrEP) regimes that are increasingly used worldwide, and upon overcoming further barriers of implementation, have the potential to make the next generation AIDS-free. Remaining goals include the pursuit of an effective HIV vaccine, and HIV cure strategies that would allow HIV-infected people to ultimately stop taking antiretroviral drugs. Through a reiterative process with feed-back from results of human studies, NHP models can be further validated and strengthened to advance our scientific knowledge and guide clinical trials.
Collapse
|
15
|
Vaccari M, Fourati S, Gordon SN, Brown DR, Bissa M, Schifanella L, Silva de Castro I, Doster MN, Galli V, Omsland M, Fujikawa D, Gorini G, Liyanage NPM, Trinh HV, McKinnon KM, Foulds KE, Keele BF, Roederer M, Koup RA, Shen X, Tomaras GD, Wong MP, Munoz KJ, Gach JS, Forthal DN, Montefiori DC, Venzon DJ, Felber BK, Rosati M, Pavlakis GN, Rao M, Sekaly RP, Franchini G. HIV vaccine candidate activation of hypoxia and the inflammasome in CD14 + monocytes is associated with a decreased risk of SIV mac251 acquisition. Nat Med 2018; 24:847-856. [PMID: 29785023 PMCID: PMC5992093 DOI: 10.1038/s41591-018-0025-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/07/2018] [Indexed: 01/10/2023]
Abstract
Qualitative differences in the innate and adaptive responses elicited by different HIV vaccine candidates have not been thoroughly investigated. We tested the ability of the Aventis Pasteur live recombinant canarypox vector (ALVAC)-SIV, DNA-SIV and Ad26-SIV vaccine prime modalities together with two ALVAC-SIV + gp120 protein boosts to reduce the risk of SIVmac251 acquisition in rhesus macaques. We found that the DNA and ALVAC prime regimens were effective, but the Ad26 prime was not. The activation of hypoxia and the inflammasome in CD14+CD16- monocytes, gut-homing CCR5-negative CD4+ T helper 2 (TH2) cells and antibodies to variable region 2 correlated with a decreased risk of SIVmac251 acquisition. By contrast, signal transducer and activator of transcription 3 activation in CD16+ monocytes was associated with an increased risk of virus acquisition. The Ad26 prime regimen induced the accumulation of CX3CR1+CD163+ macrophages in lymph nodes and of long-lasting CD4+ TH17 cells in the gut and lungs. Our data indicate that the selective engagement of monocyte subsets following a vaccine prime influences long-term immunity, uncovering an unexpected association of CD14+ innate monocytes with a reduced risk of SIVmac251 acquisition.
Collapse
Affiliation(s)
- Monica Vaccari
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Slim Fourati
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Shari N Gordon
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dallas R Brown
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Massimilano Bissa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Luca Schifanella
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Isabela Silva de Castro
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Veronica Galli
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Maria Omsland
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Dai Fujikawa
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Giacomo Gorini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hung V Trinh
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Katherine M McKinnon
- Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory, Frederick, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Richard A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiaoying Shen
- Duke Human Vaccine Institute, Duke University, Durham, NC, USA
| | | | - Marcus P Wong
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Karissa J Munoz
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Johannes S Gach
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA, USA
| | - David C Montefiori
- Division of Surgical Sciences, Duke University School of Medicine, Durham, NC, USA
| | - David J Venzon
- Biostatistics and Data Management Section, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Barbara K Felber
- Human Retrovirus Pathogenesis Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Margherita Rosati
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - George N Pavlakis
- Human Retrovirus Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mangala Rao
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | | | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, Vaccine Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
16
|
Martins MA, Watkins DI. What Is the Predictive Value of Animal Models for Vaccine Efficacy in Humans? Rigorous Simian Immunodeficiency Virus Vaccine Trials Can Be Instructive. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a029504. [PMID: 28348034 DOI: 10.1101/cshperspect.a029504] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Simian immunodeficiency virus (SIV) challenge of rhesus macaques provides an invaluable tool to evaluate the clinical prospects of HIV-1 vaccine concepts. However, as with any animal model of human disease, it is crucial to understand the advantages and limitations of this system to maximize the translational value of SIV vaccine studies. Here, we discuss the importance of assessing the efficacy of vaccine prototypes using stringent SIV challenge regimens that mimic HIV-1 transmission and pathogenesis. We also review some of the cautionary tales of HIV-1 vaccine research because they provide general lessons for the preclinical assessment of vaccine candidates.
Collapse
Affiliation(s)
| | - David I Watkins
- Department of Pathology, University of Miami, Miami, Florida 33136
| |
Collapse
|
17
|
Garber DA, Mitchell J, Adams D, Guenthner P, Deyounks F, Ellis S, Kelley K, Johnson R, Dobard C, Heneine W, McNicholl J. Development of a repeat-exposure penile SHIV infection model in macaques to evaluate biomedical preventions against HIV. PLoS One 2018; 13:e0194837. [PMID: 29584769 PMCID: PMC5870976 DOI: 10.1371/journal.pone.0194837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
Penile acquisition of HIV infection contributes substantially to the global epidemic. Our goal was to establish a preclinical macaque model of penile HIV infection for evaluating the efficacy of new HIV prevention modalities. Rhesus macaques were challenged once or twice weekly with consistent doses of SHIVsf162P3 (a chimeric simian-human immunodeficiency virus containing HIV env) ranging from 4–600 TCID50 (50% tissue culture infective dose), via two penile routes, until systemic SHIV infection was confirmed. One route exposed the inner foreskin, glans and urethral os to virus following deposition into the prepuce (foreskin) pouch. The second route introduced the virus non-traumatically into the distal urethra only. Single-route challenges resulted in dose-dependent rates of SHIV acquisition informing selection of optimal SHIV dosing. Concurrent SHIV challenges via the prepuce pouch (200 TCID50) and urethra (16 TCID50) resulted in infection of 100% (10/10) animals following a median of 2.5 virus exposures (range, 1–12). We describe the first rhesus macaque repeat-exposure SHIV challenge model of penile HIV acquisition. Utilization of the model should further our understanding of penile HIV infection and facilitate the development of new HIV prevention strategies for men.
Collapse
Affiliation(s)
- David A. Garber
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| | - James Mitchell
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Debra Adams
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Patricia Guenthner
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Frank Deyounks
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Shanon Ellis
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristen Kelley
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ryan Johnson
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Charles Dobard
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Walid Heneine
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Janet McNicholl
- Laboratory Branch, Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| |
Collapse
|
18
|
Abstract
Since the discovery of acquired immunodeficiency syndrome (AIDS) in 1981, it has been extremely difficult to develop an effective vaccine or a therapeutic cure despite over 36 years of global efforts. One of the major reasons is due to the lack of an immune-competent animal model that supports live human immunodeficiency virus (HIV) infection and disease progression such that vaccine-induced correlates of protection and efficacy can be determined clearly before human trials. Nevertheless, rhesus macaques infected with simian immunodeficiency virus (SIV) and chimeric simian human immunodeficiency virus (SHIV) have served as invaluable models not only for understanding AIDS pathogenesis but also for studying HIV vaccine and cure. In this chapter, therefore, we summarize major scientific evidence generated in these models since the beginning of the AIDS pandemic. Hopefully, the accumulated knowledge and lessons contributed by thousands of scientists will be useful in promoting the search of an ultimate solution to end HIV/AIDS.
Collapse
|
19
|
Dorta-Estremera S, Nehete PN, Yang G, He H, Nehete BP, Shelton KK, Barry MA, Sastry KJ. Minimally invasive monitoring of CD4 T cells at multiple mucosal tissues after intranasal vaccination in rhesus macaques. PLoS One 2017; 12:e0188807. [PMID: 29220358 PMCID: PMC5722341 DOI: 10.1371/journal.pone.0188807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023] Open
Abstract
Studies in nonhuman primates (NHP) for prospective immune cell monitoring subsequent to infection and/or vaccination usually rely on periodic sampling of the blood samples with only occasional collections of biopsies from mucosal tissues because of safety concerns and practical constraints. Here we present evidence in support of cytobrush sampling of oral, rectal, and genital mucosal tissues as a minimally invasive approach for the phenotypic analyses of different T cells subsets de novo as well as prospectively after intranasal immunization in rhesus macaques. Significant percentages of viable lymphocytes were obtained consistently from both naïve and chronically SIV-infected rhesus macaques. The percentages of CD3+ T cells in the blood were significantly higher compared to those in the mucosal tissues analyzed in the naïve animals, while in the SIV+ animals the CD3+ T cells were significantly elevated in the rectal tissues, relative to all other sites analyzed. In the naïve, but not SIV+ macaques, the rectal and vaginal mucosal tissues, compared to oral mucosa and blood, showed higher diversity and percentages of CD4+ T cells expressing the HIV entry co-receptor CCR5 and mucosal specific adhesion (CD103) as well as activation (HLA-DR) and proliferation (Ki67) markers. Sequential daily cytobrush sampling from the oral, rectal, and genital mucosal tissues was performed in SIV+ animals from an ongoing study where they were administered intranasal immunization with adenoviral vectored vaccines incorporating the green fluorescent protein (GFP) reporter gene. We detected a transient increase in GFP+ CD4 T cells in only oral mucosa suggesting limited mucosal trafficking. In general, CD4+ and CD8+ T cells expressing Ki67 transiently increased in all mucosal tissues, but those expressing the CCR5, HLA-DR, and CD103 markers exhibited minor changes. We propose the minimally invasive cytobrush sampling as a practical approach for effective and prospective immune monitoring of the oral-genital mucosal tissues in NHP.
Collapse
Affiliation(s)
- Stephanie Dorta-Estremera
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
| | - Pramod N. Nehete
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
| | - Guojun Yang
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
| | - Hong He
- The University of Texas MD Anderson Cancer Center, Department of Stem Cell Transplantation, Houston, TX, United States of America
| | - Bharti P. Nehete
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
| | - Kathryn K. Shelton
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
| | - Michael A. Barry
- Mayo Clinic, Department of Internal Medicine, Division of Infectious Diseases, Rochester, MN, United States of America
- Mayo Clinic, Department of Molecular Medicine, Rochester, MN, United States of America
- Mayo Clinic, Department of Immunology, Rochester, MN, United States of America
- Mayo Clinic, Translational Immunology Virology and Biodefense Program, Rochester, MN, United States of America
| | - K. Jagannadha Sastry
- The University of Texas MD Anderson Cancer Center, Department of Immunology, Houston, TX, United States of America
- The University of Texas MD Anderson Cancer Center, Department of Veterinary Sciences, Bastrop, TX, United States of America
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, United States of America
- * E-mail:
| |
Collapse
|
20
|
Sauermann U, Radaelli A, Stolte-Leeb N, Raue K, Bissa M, Zanotto C, Krawczak M, Tenbusch M, Überla K, Keele BF, De Giuli Morghen C, Sopper S, Stahl-Hennig C. Vector Order Determines Protection against Pathogenic Simian Immunodeficiency Virus Infection in a Triple-Component Vaccine by Balancing CD4 + and CD8 + T-Cell Responses. J Virol 2017; 91:e01120-17. [PMID: 28904195 PMCID: PMC5686736 DOI: 10.1128/jvi.01120-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/06/2017] [Indexed: 12/15/2022] Open
Abstract
An effective AIDS vaccine should elicit strong humoral and cellular immune responses while maintaining low levels of CD4+ T-cell activation to avoid the generation of target cells for viral infection. The present study investigated two prime-boost regimens, both starting vaccination with single-cycle immunodeficiency virus, followed by two mucosal boosts with either recombinant adenovirus (rAd) or fowlpox virus (rFWPV) expressing SIVmac239 or SIVmac251 gag/pol and env genes, respectively. Finally, vectors were switched and systemically administered to the reciprocal group of animals. Only mucosal rFWPV immunizations followed by systemic rAd boost significantly protected animals against a repeated low-dose intrarectal challenge with pathogenic SIVmac251, resulting in a vaccine efficacy (i.e., risk reduction per exposure) of 68%. Delayed viral acquisition was associated with higher levels of activated CD8+ T cells and Gag-specific gamma interferon (IFN-γ)-secreting CD8+ cells, low virus-specific CD4+ T-cell responses, and low Env antibody titers. In contrast, the systemic rFWPV boost induced strong virus-specific CD4+ T-cell activity. rAd and rFWPV also induced differential patterns of the innate immune responses, thereby possibly shaping the specific immunity. Plasma CXCL10 levels after final immunization correlated directly with virus-specific CD4+ T-cell responses and inversely with the number of exposures to infection. Also, the percentage of activated CD69+ CD8+ T cells correlated with the number of exposures to infection. Differential stimulation of the immune response likely provided the basis for the diverging levels of protection afforded by the vaccine regimen.IMPORTANCE A failed phase II AIDS vaccine trial led to the hypothesis that CD4+ T-cell activation can abrogate any potentially protective effects delivered by vaccination or promote acquisition of the virus because CD4+ T helper cells, required for an effective immune response, also represent the target cells for viral infection. We compared two vaccination protocols that elicited similar levels of Gag-specific immune responses in rhesus macaques. Only the animal group that had a low level of virus-specific CD4+ T cells in combination with high levels of activated CD8+ T cells was significantly protected from infection. Notably, protection was achieved despite the lack of appreciable Env antibody titers. Moreover, we show that both the vector and the route of immunization affected the level of CD4+ T-cell responses. Thus, mucosal immunization with FWPV-based vaccines should be considered a potent prime in prime-boost vaccination protocols.
Collapse
Affiliation(s)
- Ulrike Sauermann
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Antonia Radaelli
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Nicole Stolte-Leeb
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Katharina Raue
- Unit of Infection Models, Deutsches Primatenzentrum GmbH, Goettingen, Germany
| | - Massimiliano Bissa
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carlo Zanotto
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
| | - Michael Krawczak
- Institute of Medical Informatics and Statistics, Christian-Albrechts University, Kiel, Germany
| | - Matthias Tenbusch
- Department of Molecular and Medical Virology, Ruhr University Bochum, Bochum, Germany
| | - Klaus Überla
- University Hospital Erlangen, Institute of Clinical and Molecular Virology, Erlangen, Germany
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Carlo De Giuli Morghen
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, Milan, Italy
- Catholic University Our Lady of Good Counsel, Tirana, Albania
| | - Sieghart Sopper
- Clinic for Hematology and Oncology, Medical University Innsbruck, Tyrolean Cancer Research Center, Innsbruck, Austria
| | | |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Only four HIV-1 vaccine concepts have been tested in six efficacy trials with no product licensed to date. Several scientific and programmatic lessons can be learned from these studies generating new hypotheses and guiding future steps. RECENT FINDINGS RV144 [ALVAC-HIV (canarypox vector) and AIDSVAX B/E (bivalent gp120 HIV-1 subtype B and CRF01_AE)] remains the only efficacy trial that demonstrated a modest vaccine efficacy, which led to the identification of immune correlates of risk. Progress on subtype-specific, ALVAC (canarypox vector) and gp120 vaccine prime-boost approaches has been slow, but we are finally close to the launch of an efficacy study in Africa in 2016. The quest of a globally effective HIV-1 vaccine has led to the development of new approaches. Efficacy studies of combinations of Adenovirus type 26 (Ad26)/Modified Vaccinia Ankara (MVA)/gp140 vaccines with mosaic designs will enter efficacy studies mid-2017 and cytomegalovirus (CMV)-vectored vaccines begin Phase I studies at the same time. Future HIV-1 vaccine efficacy trials face practical challenges as effective nonvaccine prevention programs are projected to decrease HIV-1 incidence. SUMMARY An HIV-1 vaccine is urgently needed. Increased industry involvement, mobilization of resources, expansion of a robust pipeline of new concepts, and robust preclinical challenge studies will be essential to accelerate efficacy testing of next generation HIV-1 vaccine candidates.
Collapse
|
22
|
Spieker AJ, Huang Y. A method to address between-subject heterogeneity for identification of principal surrogate markers in repeated low-dose challenge HIV vaccine studies. Stat Med 2017; 36:4071-4080. [PMID: 28758224 DOI: 10.1002/sim.7419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/15/2017] [Accepted: 06/26/2017] [Indexed: 11/08/2022]
Abstract
Repeated low-dose challenge designs in nonhuman primate studies have recently received attention in the literature as a means of evaluating vaccines for HIV prevention and identifying immune surrogates for their protective effects. Existing methods for surrogate identification in this type of study design rely on the assumption of homogeneity across subjects (namely, independent infection risks after each challenge within each subject and conditional on covariates). In practice, random variation across subjects is likely to occur because of unmeasured biologic factors. Failure to account for this heterogeneity or within-subject correlation can result in biased inference regarding the surrogate value of immune biomarkers and underpowered study designs for detecting surrogate endpoints. In this paper, we adopt a discrete-time survival model with random effects to account for between-subject heterogeneity, and we develop estimators and testing procedures for evaluating principal surrogacy of immune biomarkers. Simulation studies reveal that the heterogeneous model achieves substantial bias reduction compared to the homogeneous model, with little cost of efficiency. We recommend the use of this heterogeneous model as a complementary tool to existing methods when designing and analyzing repeated low-dose challenge studies for evaluating surrogate endpoints.
Collapse
Affiliation(s)
- Andrew J Spieker
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| |
Collapse
|
23
|
Del Prete GQ, Lifson JD, Keele BF. Nonhuman primate models for the evaluation of HIV-1 preventive vaccine strategies: model parameter considerations and consequences. Curr Opin HIV AIDS 2016; 11:546-554. [PMID: 27559710 PMCID: PMC5100008 DOI: 10.1097/coh.0000000000000311] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW Nonhuman primate (NHP) models of AIDS are powerful systems for evaluating HIV vaccine approaches in vivo. Authentic features of HIV-1 transmission, dissemination, target cell tropism, and pathogenesis, and aspects of anti-HIV-1 immune responses, can be recapitulated in NHPs provided the appropriate, specific model parameters are considered. Here, we discuss key model parameter options and their implications for HIV-1 vaccine evaluation. RECENT FINDINGS With the availability of several different NHP host species/subspecies, different challenge viruses and challenge stock production methods, and various challenge routes and schemata, multiple NHP models of AIDS exist for HIV vaccine evaluation. The recent development of multiple new challenge viruses, including chimeric simian-human immunodeficiency viruses and simian immunodeficiency virus clones, improved characterization of challenge stocks and production methods, and increased insight into specific challenge parameters have resulted in an increase in the number of available models and a better understanding of the implications of specific study design choices. SUMMARY Recent progress and technical developments promise new insights into basic disease mechanisms and improved models for better preclinical evaluation of interventions to prevent HIV transmission.
Collapse
Affiliation(s)
- Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD
| |
Collapse
|
24
|
Gordon SN, Liyanage NPM, Doster MN, Vaccari M, Vargas-Inchaustegui DA, Pegu P, Schifanella L, Shen X, Tomaras GD, Rao M, Billings EA, Schwartz J, Prado I, Bobb K, Zhang W, Montefiori DC, Foulds KE, Ferrari G, Robert-Guroff M, Roederer M, Phan TB, Forthal DN, Stablein DM, Phogat S, Venzon DJ, Fouts T, Franchini G. Boosting of ALVAC-SIV Vaccine-Primed Macaques with the CD4-SIVgp120 Fusion Protein Elicits Antibodies to V2 Associated with a Decreased Risk of SIVmac251 Acquisition. THE JOURNAL OF IMMUNOLOGY 2016; 197:2726-37. [PMID: 27591322 DOI: 10.4049/jimmunol.1600674] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/04/2016] [Indexed: 11/19/2022]
Abstract
The recombinant ALVAC vaccine coupled with the monomeric gp120/alum protein have decreased the risk of HIV and SIV acquisition. Ab responses to the V1/V2 regions have correlated with a decreased risk of virus acquisition in both humans and macaques. We hypothesized that the breadth and functional profile of Abs induced by an ALVAC/envelope protein regimen could be improved by substituting the monomeric gp120 boost, with the full-length single-chain (FLSC) protein. FLSC is a CD4-gp120 fusion immunogen that exposes cryptic gp120 epitopes to the immune system. We compared the immunogenicity and relative efficiency of an ALVAC-SIV vaccine boosted either with bivalent FLSC proteins or with monomeric gp120 in alum. FLSC was superior to monomeric gp120 in directing Abs to the C3 α2 helix, the V5 loop, and the V3 region that contains the putative CCR5 binding site. In addition, FLSC boosting elicited significantly higher binding Abs to V2 and increased both the Ab-dependent cellular cytotoxicity activity and the breadth of neutralizing Abs. However, the FLSC vaccine regimen demonstrated only a trend in vaccine efficacy, whereas the monomeric gp120 regimen significantly decreased the risk of SIVmac251 acquisition. In both vaccine regimens, anti-V2 Abs correlated with a decreased risk of virus acquisition but differed with regard to systemic or mucosal origin. In the FLSC regimen, serum Abs to V2 correlated, whereas in the monomeric gp120 regimen, V2 Abs in rectal secretions, the site of viral challenge, were associated with efficacy.
Collapse
Affiliation(s)
- Shari N Gordon
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Namal P M Liyanage
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Melvin N Doster
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Monica Vaccari
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Diego A Vargas-Inchaustegui
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892
| | - Poonam Pegu
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Luca Schifanella
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | | | - Mangala Rao
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | - Erik A Billings
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910
| | | | - Ilia Prado
- Profectus BioSciences Inc., Baltimore, MD 21224
| | | | | | | | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | | | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, Bethesda, MD 20892
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892
| | - Tran B Phan
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92868
| | - Donald N Forthal
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine School of Medicine, Irvine, CA 92868
| | | | | | - David J Venzon
- Biostatistics and Data Management Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | | | - Genoveffa Franchini
- Animal Models and Vaccine Section, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892;
| |
Collapse
|
25
|
Lymphatic Dissemination of Simian Immunodeficiency Virus after Penile Inoculation. J Virol 2016; 90:4093-4104. [PMID: 26865706 PMCID: PMC4810538 DOI: 10.1128/jvi.02947-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 02/01/2016] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED The human immunodeficiency virus (HIV) is primarily transmitted by heterosexual contact, and approximately equal numbers of men and women worldwide are infected with the virus. Understanding the biology of HIV acquisition and dissemination in men exposed to the virus by insertive penile intercourse is likely to help with the rational design of vaccines that can limit or prevent HIV transmission. To characterize the target cells and dissemination pathways involved in establishing systemic simian immunodeficiency virus (SIV) infection, we necropsied male rhesus macaques at 1, 3, 7, and 14 days after penile SIV inoculation and quantified the levels of unspliced SIV RNA and spliced SIV RNA in tissue lysates and the number of SIV RNA-positive cells in tissue sections. We found that penile (glans, foreskin, coronal sulcus) T cells and, to a lesser extent, macrophages and dendritic cells are primary targets of infection and that SIV rapidly reaches the regional lymph nodes. At 7 days after inoculation, SIV had disseminated to the blood, systemic lymph nodes, and mucosal lymphoid tissues. Further, at 7 days postinoculation (p.i.), spliced SIV RNA levels were the highest in the genital lymph nodes, indicating that this is the site where the infection is initially amplified. By 14 days p.i., spliced SIV RNA levels were high in all tissues, but they were the highest in the gastrointestinal tract, indicating that the primary site of virus replication had shifted from the genital lymph nodes to the gut. The stepwise pattern of virus replication and dissemination described here suggests that vaccine-elicited immune responses in the genital lymph nodes could help prevent infection after penile SIV challenge. IMPORTANCE To be the most effective, vaccines should produce antiviral immune responses in the anatomic sites of virus replication. Thus, understanding the path taken by HIV from the mucosal surfaces, which are the site of virus exposure, to the deeper tissues where the virus replicates will provide insight into where AIDS vaccines should produce immunity to be the most effective. In this study, we determined that, by day 7 after penile inoculation, SIV has moved first to the inguinal lymph nodes and replicates to high levels. Although the virus is widely disseminated to other tissues by day 7, replication is largely limited to the inguinal lymph nodes. The step-by-step movement of SIV from penile mucosal surfaces to the draining lymph nodes may allow an HIV vaccine that produces immunity in these lymph nodes to block HIV from establishing an infection in an exposed person.
Collapse
|
26
|
Hu H, Liu F, Kim J, Ratto-Kim S. HIV Susceptibility of human antigen-specific CD4 T cells in AIDS pathogenesis and vaccine response. Expert Rev Vaccines 2016; 15:709-17. [PMID: 26814372 DOI: 10.1586/14760584.2016.1147354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
HIV causes infection and progressive depletion of human CD4 T cells. Emerging data have shown that antigen-specific CD4 T-cell subsets manifest differential susceptibility to HIV, potentially leading to pathogen-specific immune failure and opportunistic infections. This concept was recently explored in context of vectors utilized in HIV vaccine trials, and the data suggest that adenovirus type 5(Ad5)-specific CD4 T cells elicited by Ad5-HIV vaccine may be particularly susceptible to HIV, potentially rendering Ad5 vaccine recipients susceptible to HIV acquisition. We here examined recent data regarding the HIV susceptibility of antigen-specific CD4 T cells induced during infection or HIV vaccination and discussed its potential impact on HIV acquisition risk posed by HIV vaccination.
Collapse
Affiliation(s)
- Haitao Hu
- a Department of Microbiology & Immunology and Sealy Center for Vaccine Development , University of Texas Medical Branch , Galveston , TX , USA
| | - Fengliang Liu
- a Department of Microbiology & Immunology and Sealy Center for Vaccine Development , University of Texas Medical Branch , Galveston , TX , USA
| | - Jerome Kim
- b International Vaccine Institute , Seoul , Republic of Korea
| | - Silvia Ratto-Kim
- c U.S. Military HIV Research Program, Henry M. Jackson Foundation , Walter Reed Army Institute of Research , Silver Spring , MD , USA
| |
Collapse
|
27
|
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis comparing vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent non-human primate (NHP) challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
|
28
|
Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc 2015; 18:20301. [PMID: 26530077 PMCID: PMC4631705 DOI: 10.7448/ias.18.1.20301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Revised: 09/10/2015] [Accepted: 09/28/2015] [Indexed: 12/20/2022] Open
Abstract
Introduction Preclinical testing plays an integral role in the development of HIV prevention modalities. Several models are used including humanized mice, non-human primates and human mucosal tissue cultures. Discussion Pharmaceutical development traditionally uses preclinical models to evaluate product safety. The HIV prevention field has extended this paradigm to include models of efficacy, encompassing humanized mice, non-human primates (typically Asian macaques) and human mucosal tissue (such as cervical and colorectal). As our understanding of the biology of HIV transmission improves and includes the influence of human behaviour/biology and co-pathogens, these models have evolved as well to address more complex questions. These three models have demonstrated the effectiveness of systemic (oral) and topical use of antiretroviral drugs. Importantly, pharmacokinetic/pharmacodynamic relationships are being developed and linked to information gathered from human clinical trials. The models are incorporating co-pathogens (bacterial and viral) and the effects of coitus (mucosal fluids) on drug distribution and efficacy. Humanized mice are being tailored in their immune reconstitution to better represent humans. Importantly, human mucosal tissue cultures are now being used in early clinical trials to provide information on product efficacy to more accurately characterize efficacious products to advance to larger clinical trials. While all of these models have made advancements in product development, each has limitations and the data need to be interpreted by keeping these limitations in mind. Conclusions Development and refinement of each of these models has been an iterative process and linkages to data generated among each of them and from human clinical trials are needed to determine their reliability. Preclinical testing has evolved from simply identifying products that demonstrate efficacy prior to clinical trials to defining essential pharmacokinetic/pharmacodynamic relationships under a variety of conditions and has the potential to improve product selection prior to the initiation of large-scale human clinical trials. The goal is to provide researchers with ample information to make conversant decisions that guide optimized and efficient product development.
Collapse
|
29
|
Abstract
Rigorous testing of new HIV-prevention strategies is a time-consuming and expensive undertaking. Thus, making well informed decisions on which candidate-prevention approaches are most likely to provide the most benefit is critical to appropriately prioritizing clinical testing. In the case of biological interventions, the decision to test a given prevention approach in human trials rests largely on evidence of protection in preclinical studies. The ability of preclinical studies to predict efficacy in humans may depend on how well the model recapitulates key biological features of HIV transmission relevant to the question at hand. Here, we review our current understanding of the biology of HIV transmission based on data from animal models, cell culture, and viral sequence analysis from human infection. We summarize studies of the bottleneck in viral transmission; the characteristics of transmitted viruses; the establishment of infection; and the contribution of cell-free and cell-associated virus. We seek to highlight the implications of HIV-transmission biology for development of prevention interventions, and to discuss the limitations of existing preclinical models.
Collapse
|
30
|
Huang Y, Follmann D, Nason M, Zhang L, Huang Y, Mehrotra DV, Moodie Z, Metch B, Janes H, Keefer MC, Churchyard G, Robb ML, Fast PE, Duerr A, McElrath MJ, Corey L, Mascola JR, Graham BS, Sobieszczyk ME, Kublin JG, Robertson M, Hammer SM, Gray GE, Buchbinder SP, Gilbert PB. Effect of rAd5-Vector HIV-1 Preventive Vaccines on HIV-1 Acquisition: A Participant-Level Meta-Analysis of Randomized Trials. PLoS One 2015; 10:e0136626. [PMID: 26332672 PMCID: PMC4558095 DOI: 10.1371/journal.pone.0136626] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/05/2015] [Indexed: 11/28/2022] Open
Abstract
Background Three phase 2b, double-blind, placebo-controlled, randomized efficacy trials have tested recombinant Adenovirus serotype-5 (rAd5)-vector preventive HIV-1 vaccines: MRKAd5 HIV-1 gag/pol/nef in Step and Phambili, and DNA/rAd5 HIV-1 env/gag/pol in HVTN505. Due to efficacy futility observed at the first interim analysis in Step and HVTN505, participants of all three studies were unblinded to their vaccination assignments during the study but continued follow–up. Rigorous meta-analysis can provide crucial information to advise the future utility of rAd5-vector vaccines. Methods We included participant-level data from all three efficacy trials, and three Phase 1–2 trials evaluating the HVTN505 vaccine regimen. We predefined two co-primary analysis cohorts for assessing the vaccine effect on HIV-1 acquisition. The modified-intention-to-treat (MITT) cohort included all randomly assigned participants HIV-1 uninfected at study entry, who received at least the first vaccine/placebo, and the Ad5 cohort included MITT participants who received at least one dose of rAd5-HIV vaccine or rAd5-placebo. Multivariable Cox regression models were used to estimate hazard ratios (HRs) of HIV-1 infection (vaccine vs. placebo) and evaluate HR variation across vaccine regimens, time since vaccination, and subgroups using interaction tests. Findings Results are similar for the MITT and Ad5 cohorts; we summarize MITT cohort results. Pooled across the efficacy trials, over all follow-up time 403 (n = 224 vaccine; n = 179 placebo) of 6266 MITT participants acquired HIV-1, with a non-significantly higher incidence in vaccine recipients (HR 1.21, 95% CI 0.99–1.48, P = 0.06). The HRs significantly differed by vaccine regimen (interaction P = 0.03; MRKAd5 HR 1.41, 95% CI 1.11–1.78, P = 0.005 vs. DNA/rAd5 HR 0.88, 95% CI 0.61–1.26, P = 0.48). Results were similar when including the Phase 1–2 trials. Exploratory analyses based on the efficacy trials supported that the MRKAd5 vaccine-increased risk was concentrated in Ad5-positive or uncircumcised men early in follow-up, and in Ad5-negative or circumcised men later. Overall, MRKAd5 vaccine-increased risk was evident across subgroups except in circumcised Ad5-negative men (HR 0.97, 95% CI 0.58−1.63, P = 0.91); there was little evidence that the DNA/rAd5 vaccine, that was tested in this subgroup, increased risk (HR 0.88, 95% CI 0.61–1.26, P = 0.48). When restricting the analysis of Step and Phambili to follow-up time before unblinding, 114 (n = 65 vaccine; n = 49 placebo) of 3770 MITT participants acquired HIV-1, with a non-significantly higher incidence in MRKAd5 vaccine recipients (HR 1.30, 95% CI 0.89–1.14, P = 0.18). Interpretation and Significance The data support increased risk of HIV-1 infection by MRKAd5 over all follow-up time, but do not support increased risk of HIV-1 infection by DNA/rAd5. This study provides a rationale for including monitoring plans enabling detection of increased susceptibility to infection in HIV-1 at-risk populations.
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Dean Follmann
- National Institute of Allergy and Infectious Diseases and Biostatistics Research Branch, National Institutes of Health, Bethesda, MD, United States of America
| | - Martha Nason
- Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States of America
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Devan V. Mehrotra
- Merck Research Laboratories, North Wales, PA, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Barbara Metch
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Holly Janes
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael C. Keefer
- Infectious Disease Division, University of Rochester School of Medicine and Dentistry, Rochester, NY, United States of America
| | | | - Merlin L. Robb
- HJF HIV Program, US Military HIV Research Program, Bethesda, MD, United States of America
| | - Patricia E. Fast
- Research and Development, International AIDS Vaccine Initiative, New York, New York, United States of America
| | - Ann Duerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Lawrence Corey
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States of America
| | - Barney S. Graham
- Viral Pathogenesis Laboratory, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States of America
| | - Magdalena E. Sobieszczyk
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| | - James G. Kublin
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Michael Robertson
- Infectious Disease Clinical Research, Merck, Philadelphia, Pennsylvania, United States of America
| | - Scott M. Hammer
- Division of Infectious Diseases, Department of Medicine, Columbia University, New York, New York, United States of America
| | - Glenda E. Gray
- University of the Witwatersrand, Johannesburg, South Africa
| | - Susan P. Buchbinder
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
31
|
Mennechet FJD, Tran TTP, Eichholz K, van de Perre P, Kremer EJ. Ebola virus vaccine: benefit and risks of adenovirus-based vectors. Expert Rev Vaccines 2015; 14:1471-8. [PMID: 26325242 DOI: 10.1586/14760584.2015.1083429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In 2014, an outbreak of Ebola virus spread rapidly in West Africa. The epidemic killed more than 10,000 people and resulted in transmissions outside the endemic countries. WHO hopes for effective vaccines by the end of 2015. Numerous vaccine candidates have been proposed, and several are currently being evaluated in humans. Among the vaccine candidates are vectors derived from adenovirus (Ad). Despite previous encouraging preclinical and Phase I/II trials, Ad vectors used in three Phase II trials targeting HIV were prematurely interrupted because of the lack of demonstrated efficacy. The vaccine was not only ineffective but also led to a higher rate of HIV acquisition. In this context, the authors discuss the potential benefits, risks and impact of using Ad-derived vaccines to control Ebola virus disease.
Collapse
Affiliation(s)
- Franck J D Mennechet
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| | - Thi Thu Phuong Tran
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| | - Karsten Eichholz
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| | | | - Eric J Kremer
- a 1 Institut de Génétique Moléculaire de Montpellier, CNRS, Montpellier, France.,b 2 Université de Montpellier, Montpellier, France
| |
Collapse
|
32
|
Excler JL, Robb ML, Kim JH. Prospects for a globally effective HIV-1 vaccine. Vaccine 2015; 33 Suppl 4:D4-12. [PMID: 26100921 DOI: 10.1016/j.vaccine.2015.03.059] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 11/28/2022]
Abstract
A globally effective vaccine strategy must cope with the broad genetic diversity of HIV and contend with multiple transmission modalities. Understanding correlates of protection and the role of diversity in limiting protective vaccines with those correlates is key. RV144 was the first HIV-1 vaccine trial to demonstrate efficacy against HIV-1 infection. A correlates analysis compared vaccine-induced immune responses in vaccinated-infected and vaccinated-uninfected volunteers suggested that IgG specific for the V1V2 region of gp120 was associated with reduced risk of HIV-1 infection and that plasma Env IgA was directly correlated with infection risk. RV144 and recent NHP challenge studies suggest that Env is essential and perhaps sufficient to induce protective antibody responses against mucosally acquired HIV-1. Whether RV144 immune correlates can apply to different HIV vaccines, to populations with different modes and intensity of transmission, or to divergent HIV-1 subtypes remains unknown. Newer prime-boost mosaic and conserved sequence immunization strategies aiming at inducing immune responses of greater breadth and depth as well as the development of immunogens inducing broadly neutralizing antibodies should be actively pursued. Efficacy trials are now planned in heterosexual populations in southern Africa and MSM in Thailand. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key to answer the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
- Jean-Louis Excler
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA.
| | - Merlin L Robb
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jerome H Kim
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Bethesda, MD, USA
| |
Collapse
|
33
|
Henning TR, McNicholl JM, Vishwanathan SA, Kersh EN. Macaque models of enhanced susceptibility to HIV. Virol J 2015; 12:90. [PMID: 26070461 PMCID: PMC4479314 DOI: 10.1186/s12985-015-0320-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 06/03/2015] [Indexed: 01/26/2023] Open
Abstract
There are few nonhuman primate models of enhanced HIV susceptibility. Such models can improve comprehension of HIV acquisition risk factors and provide rigorous testing platforms for preclinical prevention strategies. This paper reviews past, current, and proposed research on macaque HIV acquisition risk models and identifies areas where modeling is significantly lacking. We compare different experimental approaches and provide practical considerations for designing macaque susceptibility studies. Modifiable (mucosal and systemic coinfections, hormonal contraception, and rectal lubricants) and non-modifiable (hormonal fluctuations) risk factors are highlighted. Risk acquisition models via vaginal, rectal, and penile challenge routes are discussed. There is no consensus on the best statistical model for evaluating increased susceptibility, and additional research is required. The use of enhanced susceptibility macaque models would benefit multiple facets of the HIV research field, including basic acquisition and pathogenesis studies as well as the vaccine and other biomedical preventions pipeline.
Collapse
Affiliation(s)
- Tara R Henning
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| | - Janet M McNicholl
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| | - Sundaram A Vishwanathan
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| | - Ellen N Kersh
- Division of HIV/AIDS Prevention, Centers for Disease Control and Prevention, 1600 Clifton Road NE, MS A-25, Atlanta, GA, 30333, USA.
| |
Collapse
|
34
|
Dispelling myths and focusing on notable concepts in HIV pathogenesis. Trends Mol Med 2015; 21:341-53. [PMID: 25883070 DOI: 10.1016/j.molmed.2015.03.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 03/05/2015] [Accepted: 03/13/2015] [Indexed: 01/01/2023]
Abstract
Since the discovery of HIV over three decades ago, major efforts have been made to control and perhaps eliminate HIV infection worldwide. During these studies, certain myths or misconceptions about this infectious disease have been emphasized and other potentially beneficial concepts have received less attention. A true long-term solution to HIV infection merits an appreciation of alternative ideas and findings that could be beneficial in the ultimate control of HIV/AIDS. Here, I discuss six issues and call for more attention to the science of HIV and well-designed clinical trials.
Collapse
|
35
|
Brown J, Excler JL, Kim JH. New prospects for a preventive HIV-1 vaccine. J Virus Erad 2015; 1:78-88. [PMID: 26523292 PMCID: PMC4625840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The immune correlates of risk analysis and recent non-human primate (NHP) challenge studies have generated hypotheses that suggest HIV-1 envelope may be essential and, perhaps, sufficient to induce protective antibody responses against HIV-1 acquisition at the mucosal entry. New prime-boost mosaic and conserved-sequence, together with replicating vector immunisation strategies aiming at inducing immune responses or greater breadth, as well as the development of immunogens inducing broadly neutralising antibodies and mucosal responses, should be actively pursued and tested in humans. Whether the immune correlates of risk identified in RV144 can be extended to other vaccines, other populations, or different modes and intensity of transmission, and against increasing HIV-1 genetic diversity, remains to be demonstrated. Although NHP challenge studies may guide vaccine development, human efficacy trials remain key for answering the critical questions leading to the development of a global HIV-1 vaccine for licensure.
Collapse
Affiliation(s)
| | - Jean-Louis Excler
- US Military HIV Research Program,
Bethesda,
MD,
USA,The Henry M Jackson Foundation for the Advancement of Military Medicine,
Bethesda,
MD,
USA,Corresponding author: Jean-Louis Excler,
US Military HIV Research Program,
6720-A Rockledge Drive, Suite 400Bethesda,
MD20817,
USA
| | - Jerome H Kim
- US Military HIV Research Program,
Walter Reed Army Institute of Research,
Silver Spring,
MD,
USA
| |
Collapse
|
36
|
't Hart BA, Bogers WM, Haanstra KG, Verreck FA, Kocken CH. The translational value of non-human primates in preclinical research on infection and immunopathology. Eur J Pharmacol 2015; 759:69-83. [PMID: 25814254 DOI: 10.1016/j.ejphar.2015.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 02/09/2015] [Accepted: 03/12/2015] [Indexed: 01/01/2023]
Abstract
The immune system plays a central role in the defense against environmental threats - such as infection with viruses, parasites or bacteria - but can also be a cause of disease, such as in the case of allergic or autoimmune disorders. In the past decades the impressive development of biotechnology has provided scientists with biological tools for the development of highly selective treatments for the different types of disorders. However, despite some clear successes the translation of scientific discoveries into effective treatments has remained challenging. The often-disappointing predictive validity of the preclinical animal models that are used in the selection of the most promising vaccine or drug candidates is the Achilles heel in the therapy development process. This publication summarizes the relevance and usage of non-human primates as pre-clinical model in infectious and autoimmune diseases, in particular for biologicals, which due to their high species-specificity are inactive in lower species.
Collapse
Affiliation(s)
- Bert A 't Hart
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands; University of Groningen, University Medical Center, Department Neuroscience, Groningen, The Netherlands.
| | - Willy M Bogers
- Department Virology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Krista G Haanstra
- Department Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Frank A Verreck
- Department Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| | - Clemens H Kocken
- Department Parasitology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
| |
Collapse
|
37
|
|
38
|
McElrath MJ. Mucosal Immunity and Vaccines Against Simian Immunodeficiency Virus and Human Immunodeficiency Virus. Mucosal Immunol 2015. [DOI: 10.1016/b978-0-12-415847-4.00060-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Activated CD4+CCR5+ T cells in the rectum predict increased SIV acquisition in SIVGag/Tat-vaccinated rhesus macaques. Proc Natl Acad Sci U S A 2014; 112:518-23. [PMID: 25550504 DOI: 10.1073/pnas.1407466112] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An effective T-cell-based AIDS vaccine should induce strong HIV-specific CD8(+) T cells in mucosal tissues without increasing the availability of target cells for the virus. Here, we evaluated five immunization strategies that include Human adenovirus-5 (AdHu5), Chimpanzee adenovirus-6 (AdC6) or -7 (AdC7), Vaccinia virus (VV), and DNA given by electroporation (DNA/EP), all expressing Simian immunodeficiency virus group specific antigen/transactivator of transcription (SIV(mac239Gag/Tat)). Five groups of six rhesus macaques (RMs) each were vaccinated with DNA/EP-AdC6-AdC7, VV-AdC6-AdC7, DNA/-EP-VV-AdC6, DNA/EP-VV-AdC7, or AdHu5-AdHu5-AdHu5 and were challenged repeatedly with low-dose intrarectal SIVmac239. Upon challenge, there were no significant differences among study groups in terms of virus acquisition or viral load after infection. When taken together, the immunization regimens did not protect against SIV acquisition compared with controls but did result in an ∼ 1.6-log decline in set-point viremia. Although all immunized RMs had detectable SIV-specific CD8(+) T cells in blood and rectal mucosa, we found no correlation between the number or function of these SIV-specific CD8(+) T cells and protection against SIV acquisition. Interestingly, RMs experiencing breakthrough infection showed significantly higher prechallenge levels of CD4(+)C-C chemokine receptor type 5 (CCR5)(+)HLA-DR(+) T cells in the rectal biopsies (RB) than animals that remained uninfected. In addition, among the infected RMs, the percentage of CD4(+)CCR5(+)Ki-67(+) T cells in RBs prechallenge correlated with higher early viremia. Overall, these data suggest that the levels of activated CD4(+)CCR5(+) target T cells in the rectal mucosa may predict the risk of SIV acquisition in RMs vaccinated with vectors that express SIVGag/Tat.
Collapse
|
40
|
Gordon SN, Doster MN, Kines RC, Keele BF, Brocca-Cofano E, Guan Y, Pegu P, Liyanage NPM, Vaccari M, Cuburu N, Buck CB, Ferrari G, Montefiori D, Piatak M, Lifson JD, Xenophontos AM, Venzon D, Robert-Guroff M, Graham BS, Lowy DR, Schiller JT, Franchini G. Antibody to the gp120 V1/V2 loops and CD4+ and CD8+ T cell responses in protection from SIVmac251 vaginal acquisition and persistent viremia. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2014; 193:6172-83. [PMID: 25398324 PMCID: PMC4335709 DOI: 10.4049/jimmunol.1401504] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The human papillomavirus pseudovirions (HPV-PsVs) approach is an effective gene-delivery system that can prime or boost an immune response in the vaginal tract of nonhuman primates and mice. Intravaginal vaccination with HPV-PsVs expressing SIV genes, combined with an i.m. gp120 protein injection, induced humoral and cellular SIV-specific responses in macaques. Priming systemic immune responses with i.m. immunization with ALVAC-SIV vaccines, followed by intravaginal HPV-PsV-SIV/gp120 boosting, expanded and/or recruited T cells in the female genital tract. Using a stringent repeated low-dose intravaginal challenge with the highly pathogenic SIVmac251, we show that although these regimens did not demonstrate significant protection from virus acquisition, they provided control of viremia in a number of animals. High-avidity Ab responses to the envelope gp120 V1/V2 region correlated with delayed SIVmac251 acquisition, whereas virus levels in mucosal tissues were inversely correlated with antienvelope CD4(+) T cell responses. CD8(+) T cell depletion in animals with controlled viremia caused an increase in tissue virus load in some animals, suggesting a role for CD8(+) T cells in virus control. This study highlights the importance of CD8(+) cells and antienvelope CD4(+) T cells in curtailing virus replication and antienvelope V1/V2 Abs in preventing SIVmac251 acquisition.
Collapse
Affiliation(s)
- Shari N Gordon
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Melvin N Doster
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Rhonda C Kines
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | | | - Yongjun Guan
- Division of Basic Science and Vaccine Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Poonam Pegu
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Namal P M Liyanage
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Monica Vaccari
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - Nicolas Cuburu
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Christopher B Buck
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Guido Ferrari
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - David Montefiori
- Department of Surgery, Duke University Medical Center, Durham, NC 27710
| | - Michael Piatak
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 21702
| | - Anastasia M Xenophontos
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892
| | - David Venzon
- Biostatistics and Data Management Section, National Cancer Institute, Bethesda, MD 20892; and
| | | | - Barney S Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892
| | - Douglas R Lowy
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - John T Schiller
- Laboratory of Cellular Oncology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20982
| | - Genoveffa Franchini
- Animal Models and Retroviral Vaccines Section, National Cancer Institute, Bethesda, MD 20892;
| |
Collapse
|
41
|
Rivera-Hernandez T, Carnathan DG, Moyle PM, Toth I, West NP, Young PR, Silvestri G, Walker MJ. The contribution of non-human primate models to the development of human vaccines. DISCOVERY MEDICINE 2014; 18:313-22. [PMID: 25549702 PMCID: PMC4465840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The non-human primates (NHPs) model in biomedical research has contributed to the study of human infectious, autoimmune, oncogenic, and neurological diseases. This review focuses on the importance of NHP models in vaccine development for tuberculosis, pertussis, Dengue, group A streptococcus (Streptococcus pyogenes) infection, HIV infection, and certain diseases in the elderly (influenza, for example). From understanding disease pathogenesis and mechanisms of protection, to assessing vaccine safety and efficacy, we discuss selected cases where the importance of the use of NHP models is highlighted.
Collapse
Affiliation(s)
- Tania Rivera-Hernandez
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Diane G Carnathan
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Peter M Moyle
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, Australian Infectious Diseases Research Centre, and School of Pharmacy, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Nicholas P West
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Paul R Young
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Guido Silvestri
- Emory Vaccine Center and Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
42
|
Huang Y, Duerr A, Frahm N, Zhang L, Moodie Z, De Rosa S, McElrath MJ, Gilbert PB. Immune-correlates analysis of an HIV-1 vaccine efficacy trial reveals an association of nonspecific interferon-γ secretion with increased HIV-1 infection risk: a cohort-based modeling study. PLoS One 2014; 9:e108631. [PMID: 25369172 PMCID: PMC4219669 DOI: 10.1371/journal.pone.0108631] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/19/2014] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Elevated risk of HIV-1 infection among recipients of an adenovirus serotype 5 (Ad5)-vectored HIV-1 vaccine was previously reported in the Step HIV-1 vaccine efficacy trial. We assessed pre-infection cellular immune responses measured at 4 weeks after the second vaccination to determine their roles in HIV-1 infection susceptibility among Step study male participants. METHODS We examined ex vivo interferon-γ (IFN-γ) secretion from peripheral blood mononuclear cells (PBMC) using an ELISpot assay in 112 HIV-infected and 962 uninfected participants. In addition, we performed flow cytometric assays to examine T-cell activation, and ex vivo IFN-γ and interleukin-2 secretion from CD4(+) and CD8(+) T cells. We accounted for the sub-sampling design in Cox proportional hazards models to estimate hazard ratios (HRs) of HIV-1 infection per 1-log(e) increase of the immune responses. FINDINGS We found that HIV-specific immune responses were not associated with risk of HIV-1 infection. However, each 1-log(e) increase of mock responses measured by the ELISpot assay (i.e., IFN-γ secretion in the absence of antigen-specific stimulation) was associated with a 62% increase of HIV-1 infection risk among vaccine recipients (HR = 1.62, 95% CI: (1.28, 2.04), p<0.001). This association remains after accounting for CD4(+) or CD8(+) T-cell activation. We observed a moderate correlation between ELISpot mock responses and CD4(+) T-cells secreting IFN-γ (ρ = 0.33, p = 0.007). In addition, the effect of the Step vaccine on infection risk appeared to vary with ELISpot mock response levels, especially among participants who had pre-existing anti-Ad5 antibodies (interaction p = 0.04). CONCLUSIONS The proportion of cells, likely CD4(+) T-cells, producing IFN-γ without stimulation by exogenous antigen appears to carry information beyond T-cell activation and baseline characteristics that predict risk of HIV-1 infection. These results motivate additional investigation to understand the potential link between IFN-γ secretion and underlying causes of elevated HIV-1 infection risk among vaccine recipients in the Step study.
Collapse
MESH Headings
- AIDS Vaccines/immunology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cohort Studies
- Follow-Up Studies
- HIV Infections/pathology
- HIV Infections/prevention & control
- HIV-1/metabolism
- Humans
- Immunoassay
- Interferon-gamma/metabolism
- Interleukin-2/metabolism
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Lymphocyte Activation
- Male
- Proportional Hazards Models
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/genetics
- Recombinant Proteins/immunology
- Risk
- gag Gene Products, Human Immunodeficiency Virus/genetics
- gag Gene Products, Human Immunodeficiency Virus/immunology
- gag Gene Products, Human Immunodeficiency Virus/metabolism
- nef Gene Products, Human Immunodeficiency Virus/genetics
- nef Gene Products, Human Immunodeficiency Virus/immunology
- nef Gene Products, Human Immunodeficiency Virus/metabolism
- pol Gene Products, Human Immunodeficiency Virus/genetics
- pol Gene Products, Human Immunodeficiency Virus/immunology
- pol Gene Products, Human Immunodeficiency Virus/metabolism
Collapse
Affiliation(s)
- Yunda Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- * E-mail:
| | - Ann Duerr
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - Nicole Frahm
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
| | - Lily Zhang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Zoe Moodie
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Steve De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Global Health, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Peter B. Gilbert
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Public Health Science Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
43
|
Antibody persistence and T-cell balance: two key factors confronting HIV vaccine development. Proc Natl Acad Sci U S A 2014; 111:15614-21. [PMID: 25349379 DOI: 10.1073/pnas.1413550111] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The quest for a prophylactic AIDS vaccine is ongoing, but it is now clear that the successful vaccine must elicit protective antibody responses. Accordingly, intense efforts are underway to identify immunogens that elicit these responses. Regardless of the mechanism of antibody-mediated protection, be it neutralization, Fc-mediated effector function, or both, antibody persistence and appropriate T-cell help are significant problems confronting the development of a successful AIDS vaccine. Here, we discuss the evidence illustrating the poor persistence of antibody responses to Env, the envelope glycoprotein of HIV-1, and the related problem of CD4(+) T-cell responses that compromise vaccine efficacy by creating excess cellular targets of HIV-1 infection. Finally, we propose solutions to both problems that are applicable to all Env-based AIDS vaccines regardless of the mechanism of antibody-mediated protection.
Collapse
|
44
|
Kim JH, Excler JL, Michael NL. Lessons from the RV144 Thai phase III HIV-1 vaccine trial and the search for correlates of protection. Annu Rev Med 2014; 66:423-37. [PMID: 25341006 DOI: 10.1146/annurev-med-052912-123749] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
RV144 remains the only HIV-1 vaccine trial to demonstrate efficacy against HIV-1 acquisition. The prespecified analysis of immune correlates of risk showed that antibodies directed against the V1V2 region of gp120, in particular the IgG1 and IgG3 subclass mediating antibody-dependent cell-mediated cytotoxicity, seem to play a predominant role in protection against HIV-1 acquisition and that plasma envelope (Env)-specific IgA antibodies were directly correlated with risk. RV144 and recent nonhuman primate challenge studies suggest that Env is essential, and perhaps sufficient, to induce protective antibody responses against mucosal HIV-1 acquisition. Follow-up clinical trials are ongoing to further dissect the immune responses elicited by the RV144 ALVAC-HIV and AIDSVAX® B/E regimen. The study of gp120 Env immunogens and immune correlates of risk has resulted in the development of improved antigens. Whether the RV144 immune correlates of risk will generalize to other populations vaccinated with similar immunogens with different modes and intensity of transmission remains to be demonstrated. Efficacy trials are now planned in heterosexual populations in southern Africa and men who have sex with men in Thailand.
Collapse
Affiliation(s)
- Jerome H Kim
- US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910; ,
| | | | | |
Collapse
|
45
|
Temchura V, Tenbusch M. The two faces of vaccine-induced immune response: protection or increased risk of HIV infection?! Virol Sin 2014; 29:7-9. [PMID: 24452542 DOI: 10.1007/s12250-014-3419-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Vladimir Temchura
- Department of Molecular and Medical Virology, Ruhr-University Bochum, Bochum, 44801, Germany
| | | |
Collapse
|
46
|
Qureshi H, Genescà M, Fritts L, McChesney MB, Robert-Guroff M, Miller CJ. Infection with host-range mutant adenovirus 5 suppresses innate immunity and induces systemic CD4+ T cell activation in rhesus macaques. PLoS One 2014; 9:e106004. [PMID: 25203111 PMCID: PMC4159191 DOI: 10.1371/journal.pone.0106004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 07/25/2014] [Indexed: 01/25/2023] Open
Abstract
Ad5 is a common cause of respiratory disease and an occasional cause of gastroenteritis and conjunctivitis, and seroconversion before adolescence is common in humans. To gain some insight into how Ad5 infection affects the immune system of rhesus macaques (RM) 18 RM were infected with a host-range mutant Ad5 (Ad5hr) by 3 mucosal inoculations. There was a delay of 2 to 6 weeks after the first inoculation before plasmacytoid dendritic cell (pDC) frequency and function increased in peripheral blood. Primary Ad5hr infection suppressed IFN-γ mRNA expression, but the second Ad5hr exposure induced a rapid increase in IFN-gamma mRNA in peripheral blood mononuclear cells (PBMC). Primary Ad5hr infection suppressed CCL20, TNF and IL-1 mRNA expression in PBMC, and subsequent virus exposures further dampened expression of these pro-inflammatory cytokines. Primary, but not secondary, Ad5hr inoculation increased the frequency of CXCR3+ CD4+ T cells in blood, while secondary, but not primary, Ad5hr infection transiently increased the frequencies of Ki67+, HLADR+ and CD95+/CCR5+ CD4+ T cells in blood. Ad5hr infection induced polyfunctional CD4 and CD8+ T cells specific for the Ad5 hexon protein in all of the animals. Thus, infection with Ad5hr induced a complex pattern of innate and adaptive immunity in RM that included transient systemic CD4+ T cell activation and suppressed innate immunity on re-exposure to the virus. The complex effects of adenovirus infection on the immune system may help to explain the unexpected results of testing Ad5 vector expressing HIV antigens in Ad5 seropositive people.
Collapse
Affiliation(s)
- Huma Qureshi
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Meritxell Genescà
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
| | - Linda Fritts
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Michael B. McChesney
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
| | - Marjorie Robert-Guroff
- Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher J. Miller
- Center for Comparative Medicine, University of California Davis, Davis, California, United States of America
- California National Primate Research Center, University of California Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
47
|
Ensoli B, Cafaro A, Monini P, Marcotullio S, Ensoli F. Challenges in HIV Vaccine Research for Treatment and Prevention. Front Immunol 2014; 5:417. [PMID: 25250026 PMCID: PMC4157563 DOI: 10.3389/fimmu.2014.00417] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 08/18/2014] [Indexed: 12/17/2022] Open
Abstract
Many attempts have been made or are ongoing for HIV prevention and HIV cure. Many successes are in the list, particularly for HIV drugs, recently proposed also for prevention. However, no eradication of infection has been achieved so far with any drug. Further, a residual immune dysregulation associated to chronic immune activation and incomplete restoration of B and T cell subsets, together with HIV DNA persistence in reservoirs, are still unmet needs of the highly active antiretroviral therapy, causing novel “non-AIDS related” diseases that account for a higher risk of death even in virologically suppressed patients. These “ART unmet needs” represent a problem, which is expected to increase by ART roll out. Further, in countries such as South Africa, where six millions of individuals are infected, ART appears unable to contain the epidemics. Regretfully, all the attempts at developing a preventative vaccine have been largely disappointing. However, recent therapeutic immunization strategies have opened new avenues for HIV treatment, which might be exploitable also for preventative vaccine approaches. For example, immunization strategies aimed at targeting key viral products responsible of virus transmission, activation, and maintenance of virus reservoirs may intensify drug efficacy and lead to a functional cure providing new perspectives also for prevention and future virus eradication strategies. However, this approach imposes new challenges to the scientific community, vaccine developers, and regulatory bodies, such as the identification of novel immunological and virological biomarkers to assess efficacy end-points, taking advantage from the natural history of infection and exploiting lessons from former trials. This review will focus first on recent advancement of therapeutic strategies, then on the progresses made in preventative approaches, discussing concepts, and problems for the way ahead for the development of vaccines for HIV treatment and prevention.
Collapse
Affiliation(s)
- Barbara Ensoli
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | - Aurelio Cafaro
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | - Paolo Monini
- National AIDS Center, Istituto Superiore di Sanità , Rome , Italy
| | | | - Fabrizio Ensoli
- Pathology and Microbiology, San Gallicano Institute, "Istituti Fisioterapici Ospitalieri" , Rome , Italy
| |
Collapse
|
48
|
Kang C, Huang Y, Miller CJ. A discrete-time survival model with random effects for designing and analyzing repeated low-dose challenge experiments. Biostatistics 2014; 16:295-310. [PMID: 25190513 DOI: 10.1093/biostatistics/kxu040] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Repeated low-dose (RLD) challenge designs are important in HIV vaccine research. Current methods for RLD designs rely heavily on an assumption of homogeneous risk of infection among animals, which, upon violation, can lead to invalid inferences and underpowered study designs. We propose to fit a discrete-time survival model with random effects that allows for heterogeneity in the risk of infection among animals and allows for predetermined challenge dose changes over time. Based on this model, we derive likelihood ratio tests and estimators for vaccine efficacy. A two-stage approach is proposed for optimizing the RLD design under cost constraints. Simulation studies demonstrate good finite sample properties of the proposed method and its superior performance compared to existing methods. We illustrate the application of the heterogeneous infection risk model on data from a real simian immunodeficiency virus vaccine study using Rhesus Macaques. The results of our study provide useful guidance for future RLD experimental design.
Collapse
Affiliation(s)
- Chaeryon Kang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Ying Huang
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Christopher J Miller
- Center for Comparative Medicine and California National Primate Research Center, University of California, Davis, CA 95616, USA
| |
Collapse
|
49
|
Preferential infection of human Ad5-specific CD4 T cells by HIV in Ad5 naturally exposed and recombinant Ad5-HIV vaccinated individuals. Proc Natl Acad Sci U S A 2014; 111:13439-44. [PMID: 25197078 DOI: 10.1073/pnas.1400446111] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Efficacy trials of adenovirus 5-vectored candidate HIV vaccines [recombinant Ad5 (rAd5)-HIV] were halted for futility due to lack of vaccine efficacy and unexpected excess HIV infections in the vaccine recipients. The potential immunologic basis for these observations is unclear. We comparatively evaluated the HIV susceptibility and phenotypes of human CD4 T cells specific to Ad5 and CMV, two viruses that have been used as HIV vaccine vectors. We show that Ad5-specific CD4 T cells, either induced by natural Ad5 exposure or expanded by rAd5 vaccination, are highly susceptible to HIV in vitro and are preferentially lost in HIV-infected individuals compared with CMV-specific CD4 T cells. Further investigation demonstrated that Ad5-specific CD4 T cells selectively display a proinflammatory Th17-like phenotype and express macrophage inflammatory protein 3α and α4β7 integrin, suggestive of gut mucosa homing potential of these cells. Analysis of HIV p24 and cytokine coexpression using flow cytometry revealed preferential infection of IL-17- and IL-2-producing, Ad5-specific CD4 T cells by HIV in vitro. Our data suggest a potential mechanism explaining the excess HIV infections in vaccine recipients after rAd5-HIV vaccination and highlight the importance of testing the HIV susceptibility of vaccine-generated, vector and insert-specific CD4 T cells in future HIV vaccine studies.
Collapse
|
50
|
Ondondo BO. The influence of delivery vectors on HIV vaccine efficacy. Front Microbiol 2014; 5:439. [PMID: 25202303 PMCID: PMC4141443 DOI: 10.3389/fmicb.2014.00439] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/03/2014] [Indexed: 12/31/2022] Open
Abstract
Development of an effective HIV/AIDS vaccine remains a big challenge, largely due to the enormous HIV diversity which propels immune escape. Thus novel vaccine strategies are targeting multiple variants of conserved antibody and T cell epitopic regions which would incur a huge fitness cost to the virus in the event of mutational escape. Besides immunogen design, the delivery modality is critical for vaccine potency and efficacy, and should be carefully selected in order to not only maximize transgene expression, but to also enhance the immuno-stimulatory potential to activate innate and adaptive immune systems. To date, five HIV vaccine candidates have been evaluated for efficacy and protection from acquisition was only achieved in a small proportion of vaccinees in the RV144 study which used a canarypox vector for delivery. Conversely, in the STEP study (HVTN 502) where human adenovirus serotype 5 (Ad5) was used, strong immune responses were induced but vaccination was more associated with increased risk of HIV acquisition than protection in vaccinees with pre-existing Ad5 immunity. The possibility that pre-existing immunity to a highly promising delivery vector may alter the natural course of HIV to increase acquisition risk is quite worrisome and a huge setback for HIV vaccine development. Thus, HIV vaccine development efforts are now geared toward delivery platforms which attain superior immunogenicity while concurrently limiting potential catastrophic effects likely to arise from pre-existing immunity or vector-related immuno-modulation. However, it still remains unclear whether it is poor immunogenicity of HIV antigens or substandard immunological potency of the safer delivery vectors that has limited the success of HIV vaccines. This article discusses some of the promising delivery vectors to be harnessed for improved HIV vaccine efficacy.
Collapse
Affiliation(s)
- Beatrice O Ondondo
- Nuffield Department of Medicine, The Jenner Institute, University of Oxford Oxford, UK
| |
Collapse
|