1
|
Sohai DK, Keller MD, Hanley PJ, Hoq F, Kukadiya D, Datar A, Reynolds E, Copertino DC, Lazarski C, McCann CD, Tanna J, Shibli A, Lang H, Zhang A, Chansky PA, Motta C, Huynh TT, Dwyer B, Wilson A, Lynch R, Mota TM, Conce Alberto WD, Brumme ZL, Kinloch NN, Cruz CRY, MacLaren Ehui L, Henn S, Brad Jones R, Bollard CM. Autologous HIV-specific T cell therapy targeting conserved epitopes is well-tolerated in six adults with HIV: an open-label, single-arm phase 1 study. Nat Commun 2025; 16:4510. [PMID: 40374689 PMCID: PMC12081906 DOI: 10.1038/s41467-025-59810-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 05/06/2025] [Indexed: 05/17/2025] Open
Abstract
Novel cellular therapies may enable HIV control or cure. HIV-specific T cells targeting conserved immunogenic protein regions of HIV Gag/Pol and the entirety of HIV Nef, termed HST-NEETs, eliminate HIV infected cells in vitro. Here we enroll seven participants in an open-label, single-arm phase 1 study (NCT03485963) to evaluate the safety (primary endpoint) of two autologous administrations of HST-NEET products without prescribed lymphodepletion. Adults with well-controlled HIV on anti-retroviral therapy are eligible. Six participants completed safety monitoring. No serious product-related toxicities are observed. Secondary endpoints are to assess expansion and persistence of HIV-reactive T cell clones, and changes to the HIV reservoir for each infused participant. HIV-specific T cell and HIV anti-Env antibody responses increase in two participants after infusion two. A trend towards decreasing levels of intact proviruses is observed in 2 participants. Three participants show persistence of HIV-reactive, product-associated T cell clones for ≥40 weeks post infusions. HST-NEETs infusions are well-tolerated. Future trials are needed to evaluate the efficacy of HST-NEETs in this population.
Collapse
Affiliation(s)
- Danielle K Sohai
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Michael D Keller
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Patrick J Hanley
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Fahmida Hoq
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Divyesh Kukadiya
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Anushree Datar
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Emily Reynolds
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Dennis C Copertino
- Infectious Diseases Division, Department of Medicine, Weill-Cornell Medicine, New York, NY, USA
| | - Christopher Lazarski
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Chase D McCann
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Jay Tanna
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Abeer Shibli
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Haili Lang
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Anqing Zhang
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Pamela A Chansky
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Cecilia Motta
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
| | - Tan T Huynh
- Infectious Diseases Division, Department of Medicine, Weill-Cornell Medicine, New York, NY, USA
| | - Bridget Dwyer
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Andrew Wilson
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Rebecca Lynch
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | - Talia M Mota
- Infectious Diseases Division, Department of Medicine, Weill-Cornell Medicine, New York, NY, USA
| | | | - Zabrina L Brumme
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Natalie N Kinloch
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
- British Columbia Centre for Excellence in HIV/AIDS, Vancouver, BC, Canada
| | - Conrad Russell Y Cruz
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA
| | | | - Sarah Henn
- Whitman-Walker Health, Washington, DC, USA
| | - R Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill-Cornell Medicine, New York, NY, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, and Division of Biostatistics and Study Methodology, Children's National Hospital, Washington, DC, USA.
- Integrated Biomedical Sciences, Department of Microbiology, Immunology, and Tropical Medicine, and Department of Pediatrics, The George Washington University, Washington, DC, USA.
| |
Collapse
|
2
|
Nag M, Fogle JE, Pillay S, Del Prete GQ, De Paris K. Tissue-Specific DNA Methylation Changes in CD8 + T Cells During Chronic Simian Immunodeficiency Virus Infection of Infant Rhesus Macaques. Viruses 2024; 16:1839. [PMID: 39772149 PMCID: PMC11680437 DOI: 10.3390/v16121839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Robust CD8+ T cell responses are critical for the control of HIV infection in both adults and children. Our understanding of the mechanisms driving these responses is based largely on studies of cells circulating in peripheral blood in adults, but the regulation of CD8+ T cell responses in tissue sites is poorly understood, particularly in pediatric infections. DNA methylation is an epigenetic modification that regulates gene transcription. Hypermethylated gene promoters are associated with transcriptional silencing and, conversely, hypomethylated promoters indicate gene activation. In this study, we evaluated DNA methylation signatures of CD8+ T cells isolated from several different anatomic compartments during pediatric AIDS-virus infection by utilizing the SIVmac239/251 infected infant rhesus macaque model. We performed a stepwise methylation analysis starting with total cellular DNA, to immunomodulatory cytokine promoters, to specific CpG sites within the cytokine promoters in CD8+ T cells isolated from peripheral blood, lymph nodes, and intestinal tissue during the chronic phase of infection. Tissue-specific methylation patterns were determined for transcriptionally active promoters of key immunomodulatory cytokines: interferon gamma (IFNγ), interleukin-2 (IL-2), and tumor necrosis factor alpha (TNFα). In this study, we observed tissue-specific differences in CD8+ T cell modulation by DNA methylation in SIV-infected infant macaques, highlighting the importance of evaluating cells from both blood and tissues to obtain a complete picture of CD8+ T cell regulation during pediatric HIV infection.
Collapse
Affiliation(s)
- Mukta Nag
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | | | - Santhoshan Pillay
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| | - Gregory Q. Del Prete
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Kristina De Paris
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA (K.D.P.)
| |
Collapse
|
3
|
Rosen BC, Sawatzki K, Ricciardi MJ, Smith E, Golez I, Mauter JT, Pedreño-López N, Yrizarry-Medina A, Weisgrau KL, Vosler LJ, Voigt TB, Louw JJ, Tisoncik-Go J, Whitmore LS, Panayiotou C, Ghosh N, Furlott JR, Parks CL, Desrosiers RC, Lifson JD, Rakasz EG, Watkins DI, Gale M. Acute-phase innate immune responses in SIVmac239-infected Mamu-B*08+ Indian rhesus macaques may contribute to the establishment of elite control. Front Immunol 2024; 15:1478063. [PMID: 39502699 PMCID: PMC11534762 DOI: 10.3389/fimmu.2024.1478063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/25/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Spontaneous control of chronic-phase HIV/SIV viremia is often associated with the expression of specific MHC class I allotypes. HIV/SIV-specific CD8+ cytotoxic T lymphocytes (CTLs) restricted by these MHC class I allotypes appear to be critical for viremic control. Establishment of the elite controller (EC) phenotype is predictable in SIVmac239-infected Indian rhesus macaques (RMs), with approximately 50% of Mamu-B*08+ RMs and 20% of Mamu-B*17+ RMs becoming ECs. Despite extensive characterization of EC-associated CTLs in HIV/SIV-infected individuals, the precise mechanistic basis of elite control remains unknown. Because EC and non-EC viral load trajectories begin diverging by day 14 post-infection, we hypothesized that hyperacute innate immune responses may contribute to viremic control. Methods To gain insight into the immunological factors involved in the determination of EC status, we vaccinated 16 Mamu-B*08+ RMs with Vif and Nef to elicit EC-associated CTLs, then subjected these 16 vaccinees and an additional 16 unvaccinated Mamu-B*08+ controls to repeated intrarectal SIVmac239 challenges. We then performed whole-blood transcriptomic analysis of all 32 SIVmac239-infected Mamu-B*08+ RMs and eight SIVmac239-infected Mamu-B*08 - RMs during the first 14 days of infection. Results Vaccination did not provide protection against acquisition, but peak and setpoint viremia were significantly lower in vaccinees relative to controls. We did not identify any meaningful correlations between vaccine-induced CTL parameters and SIVmac239 acquisition rate or chronic-phase viral loads. Ultimately, 13 of 16 vaccinees (81%) and 7 of 16 controls (44%) became ECs (viremia ≤ 10,000 vRNA copies/mL plasma for ≥ 4 weeks). We identified subsets of immunomodulatory genes differentially expressed (DE) between RM groupings based on vaccination status, EC status, and MHC class I genotype. These DE genes function in multiple innate immune processes, including the complement system, cytokine/chemokine signaling, pattern recognition receptors, and interferon-mediated responses. Discussion A striking difference in the kinetics of differential gene expression among our RM groups suggests that Mamu-B*08-associated elite control is characterized by a robust, rapid innate immune response that quickly resolves. These findings indicate that, despite the association between MHC class I genotype and elite control, innate immune factors in hyperacute SIV infection preceding CTL response development may facilitate the establishment of the EC phenotype.
Collapse
Affiliation(s)
- Brandon C. Rosen
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Kaitlin Sawatzki
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Michael J. Ricciardi
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elise Smith
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Inah Golez
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Jack T. Mauter
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Núria Pedreño-López
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Aaron Yrizarry-Medina
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Kim L. Weisgrau
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Logan J. Vosler
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Thomas B. Voigt
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Johan J. Louw
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jennifer Tisoncik-Go
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Leanne S. Whitmore
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| | - Christakis Panayiotou
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Noor Ghosh
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Jessica R. Furlott
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Ronald C. Desrosiers
- Department of Pathology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Eva G. Rakasz
- Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - David I. Watkins
- Department of Pathology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Michael Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
4
|
van Pul L, Stunnenberg M, Kroeze S, van Dort KA, Boeser-Nunnink BDM, Harskamp AM, Geijtenbeek TBH, Kootstra NA. Energy demanding RNA and protein metabolism drive dysfunctionality of HIV-specific T cell changes during chronic HIV infection. PLoS One 2024; 19:e0298472. [PMID: 39356699 PMCID: PMC11446443 DOI: 10.1371/journal.pone.0298472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Antiretroviral treatment of HIV infected individuals cannot eliminate the HIV reservoir and immune control of HIV is rarely seen upon treatment interruption. In long-term non-progressors (LTNP), an effective CD8 T cell response is thought to contribute to be immune control of HIV. Here we studied the transcriptional profile of virus specific CD8 T cells during the asymptomatic phase of disease, to gain molecular insights in CD8 T cell functionality in HIV progressors and different groups of LTNP: HLA-B*57 LTNP, non-HLA-B*57 LTNP and individuals carrying the MAVS minor genotype (rs7262903/rs7269320). Principal component analysis revealed distinct overall transcriptional profiles between the groups. The transcription profile of HIV-specific CD8 T cells of LTNP groups was associated with increased cytokine/IL-12 signaling and protein/RNA metabolism pathways, indicating an increased CD8 T cell functionality. Although the transcription profile of CMV-specific CD8 T cells differed from that of HIV-specific CD8 T cells, with mainly an upregulation of gene expression in progressors, similar affected pathways were identified. Moreover, CMV-specific CD8 T cells from progressors showed increased expression of genes related to effector functions and suggests recent antigen exposure. Our data shows that changes in cytokine signaling and the energy demanding RNA and protein metabolism are related to CD8 T cell dysfunction, which may indicate that mitochondrial dysfunction is an important driver of T cell dysfunctionality during chronic HIV infection. Indeed, improvement of mitochondrial function by IL-12 and mitoTempo treatment, enhanced in vitro IFNγ release by PBMC from PWH upon HIV gag and CMV pp65 peptide stimulation. Our study provides new insights into the molecular pathways associated with CD8 T cell mediated immune control of chronic HIV infection which is important for the design of novel treatment strategies to restore or improve the HIV-specific immune response.
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melissa Stunnenberg
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Stefanie Kroeze
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Brigitte D M Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Agnes M Harskamp
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Anes E, Azevedo-Pereira JM, Pires D. Role of Type I Interferons during Mycobacterium tuberculosis and HIV Infections. Biomolecules 2024; 14:848. [PMID: 39062562 PMCID: PMC11275242 DOI: 10.3390/biom14070848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis and AIDS remain two of the most relevant human infectious diseases. The pathogens that cause them, Mycobacterium tuberculosis (Mtb) and HIV, individually elicit an immune response that treads the line between beneficial and detrimental to the host. Co-infection further complexifies this response since the different cytokines acting on one infection might facilitate the dissemination of the other. In these responses, the role of type I interferons is often associated with antiviral mechanisms, while for bacteria such as Mtb, their importance and clinical relevance as a suitable target for manipulation are more controversial. In this article, we review the recent knowledge on how these interferons play distinct roles and sometimes have opposite consequences depending on the stage of the pathogenesis. We highlight the dichotomy between the acute and chronic infections displayed by both infections and how type I interferons contribute to an initial control of each infection individually, while their chronic induction, particularly during HIV infection, might facilitate Mtb primo-infection and progression to disease. We expect that further findings and their systematization will allow the definition of windows of opportunity for interferon manipulation according to the stage of infection, contributing to pathogen clearance and control of immunopathology.
Collapse
Affiliation(s)
- Elsa Anes
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - José Miguel Azevedo-Pereira
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
| | - David Pires
- Host-Pathogen Interactions Unit, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (J.M.A.-P.); (D.P.)
- Center for Interdisciplinary Research in Health, Católica Medical School, Universidade Católica Portuguesa, Estrada Octávio Pato, 2635-631 Rio de Mouro, Portugal
| |
Collapse
|
6
|
Symmonds J, Gaufin T, Xu C, Raehtz KD, Ribeiro RM, Pandrea I, Apetrei C. Making a Monkey out of Human Immunodeficiency Virus/Simian Immunodeficiency Virus Pathogenesis: Immune Cell Depletion Experiments as a Tool to Understand the Immune Correlates of Protection and Pathogenicity in HIV Infection. Viruses 2024; 16:972. [PMID: 38932264 PMCID: PMC11209256 DOI: 10.3390/v16060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding the underlying mechanisms of HIV pathogenesis is critical for designing successful HIV vaccines and cure strategies. However, achieving this goal is complicated by the virus's direct interactions with immune cells, the induction of persistent reservoirs in the immune system cells, and multiple strategies developed by the virus for immune evasion. Meanwhile, HIV and SIV infections induce a pandysfunction of the immune cell populations, making it difficult to untangle the various concurrent mechanisms of HIV pathogenesis. Over the years, one of the most successful approaches for dissecting the immune correlates of protection in HIV/SIV infection has been the in vivo depletion of various immune cell populations and assessment of the impact of these depletions on the outcome of infection in non-human primate models. Here, we present a detailed analysis of the strategies and results of manipulating SIV pathogenesis through in vivo depletions of key immune cells populations. Although each of these methods has its limitations, they have all contributed to our understanding of key pathogenic pathways in HIV/SIV infection.
Collapse
Affiliation(s)
- Jen Symmonds
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Thaidra Gaufin
- Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Kevin D. Raehtz
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Ruy M. Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Ivona Pandrea
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (J.S.); (C.X.); (K.D.R.); (I.P.)
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Division of Infectious Diseases, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
7
|
de Armas LR, Dinh V, Iyer A, Pallikkuth S, Pahwa R, Cotugno N, Rinaldi S, Palma P, Vaz P, Lain MG, Pahwa S. Accelerated CD8 + T cell maturation in infants with perinatal HIV infection. iScience 2024; 27:109720. [PMID: 38706858 PMCID: PMC11068557 DOI: 10.1016/j.isci.2024.109720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/30/2024] [Accepted: 04/08/2024] [Indexed: 05/07/2024] Open
Abstract
In perinatal HIV infection, early antiretroviral therapy (ART) initiation is recommended but questions remain regarding infant immune responses to HIV and its impact on immune development. Using single cell transcriptional and phenotypic analysis we evaluated the T cell compartment at pre-ART initiation of infants with perinatally acquired HIV from Maputo, Mozambique (Towards AIDS Remission Approaches cohort). CD8+ T cell maturation subsets exhibited altered distribution in HIV exposed infected (HEI) infants relative to HIV exposed uninfected infants with reduced naive, increased effectors, higher frequencies of activated T cells, and lower frequencies of cells with markers of self-renewal. Additionally, a cluster of CD8+ T cells identified in HEI displayed gene profiles consistent with cytotoxic T lymphocytes and showed evidence for hyper expansion. Longitudinal phenotypic analysis revealed accelerated maturation of CD8+ T cells was maintained in HEI despite viral control. The results point to an HIV-directed immune response that is likely to influence reservoir establishment.
Collapse
Affiliation(s)
- Lesley R. de Armas
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Vinh Dinh
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Akshay Iyer
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Suresh Pallikkuth
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rajendra Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Nicola Cotugno
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Rinaldi
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Paolo Palma
- Research Unit of Clinical Immunology and Vaccinology, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Chair of Pediatrics, Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Paula Vaz
- Instituto Nacional de Saúde, Marracuene, Maputo Province, Mozambique
| | | | - Savita Pahwa
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
8
|
Pinzone MR, Shan L. Pharmacological approaches to promote cell death of latent HIV reservoirs. Curr Opin HIV AIDS 2024; 19:56-61. [PMID: 38169429 PMCID: PMC10872923 DOI: 10.1097/coh.0000000000000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW HIV requires lifelong antiviral treatment due to the persistence of a reservoir of latently infected cells. Multiple strategies have been pursued to promote the death of infected cells. RECENT FINDINGS Several groups have focused on multipronged approaches to induce apoptosis of infected cells. One approach is to combine latency reversal agents with proapoptotic compounds and cytotoxic T cells to first reactivate and then clear infected cells. Other strategies include using natural killer cells or chimeric antigen receptor cells to decrease the size of the reservoir.A novel strategy is to promote cell death by pyroptosis. This mechanism relies on the activation of the caspase recruitment domain-containing protein 8 (CARD8) inflammasome by the HIV protease and can be potentiated by nonnucleoside reverse transcriptase inhibitors. SUMMARY The achievement of a clinically significant reduction in the size of the reservoir will likely require a combination strategy since none of the approaches pursued so far has been successful on its own in clinical trials. This discrepancy between promising in vitro findings and modest in vivo results highlights the hurdles of identifying a universally effective strategy given the wide heterogeneity of the HIV reservoirs in terms of tissue location, capability to undergo latency reversal and susceptibility to cell death.
Collapse
Affiliation(s)
- Marilia Rita Pinzone
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | |
Collapse
|
9
|
Chikata T, Gatanaga H, Nguyen HT, Mizushima D, Zhang Y, Kuse N, Oka S, Takiguchi M. HIV-1 protective epitope-specific CD8 + T cells in HIV-1-exposed seronegative individuals. iScience 2023; 26:108089. [PMID: 37867946 PMCID: PMC10589889 DOI: 10.1016/j.isci.2023.108089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/08/2023] [Accepted: 09/26/2023] [Indexed: 10/24/2023] Open
Abstract
Although previous studies have reported HIV-1-specific T cell responses in HIV-1-exposed seronegative (HESN) individuals, there has been no detailed analysis of these T cells against HIV-1 infection. We investigated HIV-1-specific CD8+ T cell responses in 200 Japanese HESN men who have sex with men (MSM). T cell responses to 143 well-characterized HIV-1 epitope peptides were analyzed by intracellular cytokine staining assay consisting of 3-week cultures of PBMCs stimulated with peptides. HLA-B∗51:01-restricted Pol TI8-specific and HLA-A∗02:06-restricted Pol SV9-specific CD8+ T cells were identified in two and one individuals, respectively, whereas CD8+ T cells specific for other HLA-A∗02:06-restricted or HLA-B∗51:01 epitopes were not present in these individuals. These epitope-specific T cells recognized HIV-1-infected cells. Because these two epitopes were previously reported to be protective in HIV-1-infected individuals, these protective epitope-specific T cells might suppress HIV-1 replication in HESN-MSM individuals. The present study suggests the contribution of protective epitope-specific T cells to protection against HIV-1 infection.
Collapse
Affiliation(s)
- Takayuki Chikata
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Hiroyuki Gatanaga
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Hung The Nguyen
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Daisuke Mizushima
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Yu Zhang
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Nozomi Kuse
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| | - Shinichi Oka
- AIDS Clinical Center, National Center for Global Health and Medicine, Shinjuku, Tokyo 162-8655, Japan
| | - Masafumi Takiguchi
- Tokyo Laboratory and Division of International Collaboration Research, Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto 162-0052, Japan
| |
Collapse
|
10
|
van Pul L, Maurer I, Boeser-Nunnink BD, Harskamp AM, van Dort KA, Kootstra NA. A genetic variation in fucosyltransferase 8 accelerates HIV-1 disease progression indicating a role for N-glycan fucosylation. AIDS 2023; 37:1959-1969. [PMID: 37598360 PMCID: PMC10552802 DOI: 10.1097/qad.0000000000003689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/25/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
OBJECTIVES Core fucosylation by fucosyltransferase 8 (FUT8) is an important posttranslational modification that impacts components of the immune system. Genetic variations in FUT8 can alter its function and could, therefore, play a role in the antiviral immune response and pathogenesis of HIV-1. This study analysed the effect of a single nucleotide polymorphism (SNP) in FUT8 on the clinical course of HIV-1 infection. DESIGN/METHODS The effect of SNPs in FUT8 on untreated HIV-1 disease outcome were analysed in a cohort of 304 people with HIV-1 (PWH) using survival analysis. Flow-cytometry was used to determine the effect of SNP on T-cell activation, differentiation and exhaustion/senescence. T-cell function was determined by proliferation assay and by measuring intracellular cytokine production. The effect of the SNP on HIV-1 replication was determined by in-vitro HIV-1 infections. Sensitivity of HIV-1 produced in PBMC with or without the SNP to broadly neutralizing antibodies was determined using a TZM-bl based neutralization assay. RESULTS Presence of the minor allele of SNP rs4131564 was associated with accelerated disease progression. The SNP had no effect on T-cell activation and T-cell differentiation in PWH. Additionally, no differences in T-cell functionality as determined by proliferation and cytokine production was observed. HIV-1 replication and neutralization sensitivity was also unaffected by the SNP in FUT8. CONCLUSION SNP rs4131564 in FUT8 showed a major impact on HIV-1 disease course underscoring a role for N-glycan fucosylation even though no clear effect on the immune system or HIV-1 could be determined in vitro .
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Irma Maurer
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Brigitte D.M. Boeser-Nunnink
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Agnes M. Harskamp
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Karel A. van Dort
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| | - Neeltje A. Kootstra
- Amsterdam Institute for Infection and Immunity
- Department of Experimental Immunology, Amsterdam UMC, location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
van Duijn J, Stieh D, Fernandez N, King D, Gilmour J, Tolboom J, Callewaert K, Willems W, Pau MG, De Rosa SC, McElrath MJ, Barouch DH, Hayes P. Mosaic HIV-1 vaccination induces anti-viral CD8 + T cell functionality in the phase 1/2a clinical trial APPROACH. J Virol 2023; 97:e0112623. [PMID: 37811993 PMCID: PMC10617392 DOI: 10.1128/jvi.01126-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/28/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE The functionality of CD8+ T cells against human immunodeficiency virus-1 (HIV-1) antigens is indicative of HIV-progression in both animal models and people living with HIV. It is, therefore, of interest to assess CD8+ T cell responses in a prophylactic vaccination setting, as this may be an important component of the immune system that inhibits HIV-1 replication. T cell responses induced by the adenovirus serotype 26 (Ad26) mosaic vaccine regimen were assessed previously by IFN-γ ELISpot and flow cytometric assays, yet these assays only measure cytokine production but not the capacity of CD8+ T cells to inhibit replication of HIV-1. In this study, we demonstrate direct anti-viral function of the clinical Ad26 mosaic vaccine regimen through ex vivo inhibition of replication of diverse clades of HIV-1 isolates in the participant's own CD4+ T cells.
Collapse
Affiliation(s)
| | - Daniel Stieh
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Deborah King
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| | - Jeroen Tolboom
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | | | | | - Maria G. Pau
- Janssen Vaccines & Prevention B.V., Leiden, the Netherlands
| | - Stephen C. De Rosa
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - M. Juliana McElrath
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dan H. Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London, United Kingdom
| |
Collapse
|
12
|
Policicchio BB, Cardozo-Ojeda EF, Xu C, Ma D, He T, Raehtz KD, Sivanandham R, Kleinman AJ, Perelson AS, Apetrei C, Pandrea I, Ribeiro RM. CD8 + T cells control SIV infection using both cytolytic effects and non-cytolytic suppression of virus production. Nat Commun 2023; 14:6657. [PMID: 37863982 PMCID: PMC10589330 DOI: 10.1038/s41467-023-42435-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Whether CD8+ T lymphocytes control human immunodeficiency virus infection by cytopathic or non-cytopathic mechanisms is not fully understood. Multiple studies highlighted non-cytopathic effects, but one hypothesis is that cytopathic effects of CD8+ T cells occur before viral production. Here, to examine the role of CD8+ T cells prior to virus production, we treated SIVmac251-infected macaques with an integrase inhibitor combined with a CD8-depleting antibody, or with either reagent alone. We analyzed the ensuing viral dynamics using a mathematical model that included infected cells pre- and post- viral DNA integration to compare different immune effector mechanisms. Macaques receiving the integrase inhibitor alone experienced greater viral load decays, reaching lower nadirs on treatment, than those treated also with the CD8-depleting antibody. Models including CD8+ cell-mediated reduction of viral production (non-cytolytic) were found to best explain the viral profiles across all macaques, in addition an effect in killing infected cells pre-integration (cytolytic) was supported in some of the best models. Our results suggest that CD8+ T cells have both a cytolytic effect on infected cells before viral integration, and a direct, non-cytolytic effect by suppressing viral production.
Collapse
Affiliation(s)
- Benjamin B Policicchio
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | | | - Cuiling Xu
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dongzhu Ma
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Tianyu He
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Kevin D Raehtz
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ranjit Sivanandham
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Adam J Kleinman
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Alan S Perelson
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Cristian Apetrei
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ivona Pandrea
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Ruy M Ribeiro
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
- Laboratório de Biomatemática, Faculdade de Medicina da Universidade de Lisboa (previous address), Lisboa, Portugal.
| |
Collapse
|
13
|
Copertino DC, Holmberg CS, Weiler J, Ward AR, Howard JN, Levinger C, Pang AP, Corley MJ, Dündar F, Zumbo P, Betel D, Gandhi RT, McMahon DK, Bosch RJ, Linden N, Macatangay BJ, Cyktor JC, Eron JJ, Mellors JW, Kovacs C, Benko E, Bosque A, Jones RB, for the AIDS Clinical Trials Group (ACTG) A5321 Team. The latency-reversing agent HODHBt synergizes with IL-15 to enhance cytotoxic function of HIV-specific T cells. JCI Insight 2023; 8:e169028. [PMID: 37581929 PMCID: PMC10561764 DOI: 10.1172/jci.insight.169028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 08/10/2023] [Indexed: 08/17/2023] Open
Abstract
IL-15 is under clinical investigation toward the goal of curing HIV infection because of its abilities to reverse HIV latency and enhance immune effector function. However, increased potency through combination with other agents may be needed. 3-Hydroxy-1,2,3-benzotriazin-4(3H)-one (HODHBt) enhances IL-15-mediated latency reversal and NK cell function by increasing STAT5 activation. We hypothesized that HODHBt would also synergize with IL-15, via STAT5, to directly enhance HIV-specific cytotoxic T cell responses. We showed that ex vivo IL-15 + HODHBt treatment markedly enhanced HIV-specific granzyme B-releasing T cell responses in PBMCs from antiretroviral therapy-suppressed (ART-suppressed) donors. We also observed upregulation of antigen processing and presentation in CD4+ T cells and increased surface MHC-I. In ex vivo PBMCs, IL-15 + HODHBt was sufficient to reduce intact proviruses in 1 of 3 ART-suppressed donors. Our findings reveal the potential for second-generation IL-15 studies incorporating HODHBt-like therapeutics. Iterative studies layering on additional latency reversal or other agents are needed to achieve consistent ex vivo reservoir reductions.
Collapse
Affiliation(s)
- Dennis C. Copertino
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Carissa S. Holmberg
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Jared Weiler
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Adam R. Ward
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - J. Natalie Howard
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Callie Levinger
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - Alina P.S. Pang
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Michael J. Corley
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Friederike Dündar
- Applied Bioinformatics Core and
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, New York, USA
- Catenion GmbH, Berlin, Germany
| | | | - Doron Betel
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
- Applied Bioinformatics Core and
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, New York, USA
| | - Rajesh T. Gandhi
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Deborah K. McMahon
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ronald J. Bosch
- Center for Biostatistics in AIDS Research, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Noemi Linden
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | - Bernard J. Macatangay
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joshua C. Cyktor
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - John W. Mellors
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Alberto Bosque
- Department of Microbiology, Immunology, and Tropical Medicine, George Washington University, Washington, DC, USA
| | - R. Brad Jones
- Infectious Diseases Division, Department of Medicine, Weill Cornell Medicine, New York, New York, USA
| | | |
Collapse
|
14
|
Blanch-Lombarte O, Ouchi D, Jimenez-Moyano E, Carabelli J, Marin MA, Peña R, Pelletier A, Talla A, Sharma A, Dalmau J, Santos JR, Sékaly RP, Clotet B, Prado JG. Selective loss of CD107a TIGIT+ memory HIV-1-specific CD8+ T cells in PLWH over a decade of ART. eLife 2023; 12:e83737. [PMID: 37723971 PMCID: PMC10508883 DOI: 10.7554/elife.83737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
The co-expression of inhibitory receptors (IRs) is a hallmark of CD8+ T-cell exhaustion (Tex) in people living with HIV-1 (PLWH). Understanding alterations of IRs expression in PLWH on long-term antiretroviral treatment (ART) remains elusive but is critical to overcoming CD8+ Tex and designing novel HIV-1 cure immunotherapies. To address this, we combine high-dimensional supervised and unsupervised analysis of IRs concomitant with functional markers across the CD8+ T-cell landscape on 24 PLWH over a decade on ART. We define irreversible alterations of IRs co-expression patterns in CD8+ T cells not mitigated by ART and identify negative associations between the frequency of TIGIT+ and TIGIT+ TIM-3+ and CD4+ T-cell levels. Moreover, changes in total, SEB-activated, and HIV-1-specific CD8+ T cells delineate a complex reshaping of memory and effector-like cellular clusters on ART. Indeed, we identify a selective reduction of HIV-1 specific-CD8+ T-cell memory-like clusters sharing TIGIT expression and low CD107a that can be recovered by mAb TIGIT blockade independently of IFNγ and IL-2. Collectively, these data characterize with unprecedented detail the patterns of IRs expression and functions across the CD8+ T-cell landscape and indicate the potential of TIGIT as a target for Tex precision immunotherapies in PLWH at all ART stages.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Universitat Autònoma de Barcelona, Cerdanyola del VallèsBarcelonaSpain
| | - Dan Ouchi
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
| | | | | | | | - Ruth Peña
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
| | - Adam Pelletier
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | - Aarthi Talla
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | - Ashish Sharma
- Pathology Department, Case Western Reserve UniversityClevelandUnited States
| | | | - José Ramón Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i PujolBarcelonaSpain
- Infectious Diseases Department, Hospital Universitari Germans Trias i PujolBadalonaSpain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i PujolBarcelonaSpain
- Infectious Diseases Department, Hospital Universitari Germans Trias i PujolBadalonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC)CataloniaSpain
| | - Julia G Prado
- IrsiCaixa AIDS Research InstituteBarcelonaSpain
- Germans Trias i Pujol Research Institute (IGTP)BadalonaSpain
- CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
15
|
Arenas VR, Rugeles MT, Perdomo-Celis F, Taborda N. Recent advances in CD8 + T cell-based immune therapies for HIV cure. Heliyon 2023; 9:e17481. [PMID: 37441388 PMCID: PMC10333625 DOI: 10.1016/j.heliyon.2023.e17481] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023] Open
Abstract
Achieving a cure for HIV infection is a global priority. There is substantial evidence supporting a central role for CD8+ T cells in the natural control of HIV, suggesting the rationale that these cells may be exploited to achieve remission or cure of this infection. In this work, we review the major challenges for achieving an HIV cure, the models of HIV remission, and the mechanisms of HIV control mediated by CD8+ T cells. In addition, we discuss strategies based on this cell population that could be used in the search for an HIV cure. Finally, we analyze the current challenges and perspectives to translate this basic knowledge toward scalable HIV cure strategies.
Collapse
Affiliation(s)
| | - María T. Rugeles
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | | | - Natalia Taborda
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
- Grupo de Investigaciones Biomédicas Uniremington, Programa de Medicina, Facultad de Ciencias de la Salud, Corporación Universitaria Remington, Medellin, Colombia
| |
Collapse
|
16
|
Michelo CM, Fiore-Gartland A, Dalel JA, Hayes P, Tang J, McGowan E, Kilembe W, Fernandez N, Gilmour J, Hunter E. Cohort-Specific Peptide Reagents Broaden Depth and Breadth Estimates of the CD8 T Cell Response to HIV-1 Gag Potential T Cell Epitopes. Vaccines (Basel) 2023; 11:472. [PMID: 36851349 PMCID: PMC9961105 DOI: 10.3390/vaccines11020472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
An effective HIV vaccine will need to stimulate immune responses against the sequence diversity presented in circulating virus strains. In this study, we evaluate breadth and depth estimates of potential T-cell epitopes (PTEs) in transmitted founder virus sequence-derived cohort-specific peptide reagents against reagents representative of consensus and global sequences. CD8 T-cells from twenty-six HIV-1+ PBMC donor samples, obtained at 1-year post estimated date of infection, were evaluated. ELISpot assays compared responses to 15mer consensus (n = 121), multivalent-global (n = 320), and 10mer multivalent cohort-specific (n = 300) PTE peptides, all mapping to the Gag antigen. Responses to 38 consensus, 71 global, and 62 cohort-specific PTEs were confirmed, with sixty percent of common global and cohort-specific PTEs corresponding to consensus sequences. Both global and cohort-specific peptides exhibited broader epitope coverage compared to commonly used consensus reagents, with mean breadth estimates of 3.2 (global), 3.4 (cohort) and 2.2 (consensus) epitopes. Global or cohort peptides each identified unique epitope responses that would not be detected if these peptide pools were used alone. A peptide set designed around specific virologic and immunogenetic characteristics of a target cohort can expand the detection of CD8 T-cell responses to epitopes in circulating viruses, providing a novel way to better define the host response to HIV-1 with implications for vaccine development.
Collapse
Affiliation(s)
- Clive M. Michelo
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
| | - Andrew Fiore-Gartland
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jama A. Dalel
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Peter Hayes
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Jianming Tang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Edward McGowan
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - William Kilembe
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
| | - Natalia Fernandez
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Jill Gilmour
- IAVI Human Immunology Laboratory, Imperial College, London SW10 9NH, UK
| | - Eric Hunter
- Center for Family Health Research Zambia, PostNet 412, P/Bag E891, B22/737 Bwembelelo, Emmasdale, Lusaka 10101, Zambia
- Emory Vaccine Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
- Emory National Primate Research Center, Emory University, 954 Gatewood Road NE, Atlanta, GA 30329, USA
| |
Collapse
|
17
|
Marx AF, Kallert SM, Brunner TM, Villegas JA, Geier F, Fixemer J, Abreu-Mota T, Reuther P, Bonilla WV, Fadejeva J, Kreutzfeldt M, Wagner I, Aparicio-Domingo P, Scarpellino L, Charmoy M, Utzschneider DT, Hagedorn C, Lu M, Cornille K, Stauffer K, Kreppel F, Merkler D, Zehn D, Held W, Luther SA, Löhning M, Pinschewer DD. The alarmin interleukin-33 promotes the expansion and preserves the stemness of Tcf-1 + CD8 + T cells in chronic viral infection. Immunity 2023; 56:813-828.e10. [PMID: 36809763 DOI: 10.1016/j.immuni.2023.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/27/2023] [Indexed: 02/22/2023]
Abstract
T cell factor 1 (Tcf-1) expressing CD8+ T cells exhibit stem-like self-renewing capacity, rendering them key for immune defense against chronic viral infection and cancer. Yet, the signals that promote the formation and maintenance of these stem-like CD8+ T cells (CD8+SL) remain poorly defined. Studying CD8+ T cell differentiation in mice with chronic viral infection, we identified the alarmin interleukin-33 (IL-33) as pivotal for the expansion and stem-like functioning of CD8+SL as well as for virus control. IL-33 receptor (ST2)-deficient CD8+ T cells exhibited biased end differentiation and premature loss of Tcf-1. ST2-deficient CD8+SL responses were restored by blockade of type I interferon signaling, suggesting that IL-33 balances IFN-I effects to control CD8+SL formation in chronic infection. IL-33 signals broadly augmented chromatin accessibility in CD8+SL and determined these cells' re-expansion potential. Our study identifies the IL-33-ST2 axis as an important CD8+SL-promoting pathway in the context of chronic viral infection.
Collapse
Affiliation(s)
- Anna-Friederike Marx
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland.
| | - Sandra M Kallert
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Tobias M Brunner
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - José A Villegas
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Florian Geier
- Department of Biomedicine, Bioinformatics Core Facility, University Hospital Basel, 4031 Basel, Switzerland; Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Jonas Fixemer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Tiago Abreu-Mota
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Peter Reuther
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Weldy V Bonilla
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Jelizaveta Fadejeva
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany
| | - Mario Kreutzfeldt
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Ingrid Wagner
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | | | - Leo Scarpellino
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Mélanie Charmoy
- Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Daniel T Utzschneider
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia
| | - Claudia Hagedorn
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Min Lu
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Karen Cornille
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Karsten Stauffer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland
| | - Florian Kreppel
- Witten/Herdecke University (UW/H), Faculty of Health/School of Medicine, Stockumer Str. 10, 58453 Witten, Germany
| | - Doron Merkler
- Department of Pathology and Immunology University of Geneva, Geneva, Switzerland; Division of Clinical Pathology, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | - Werner Held
- Department of Oncology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Sanjiv A Luther
- Department of Immunobiology, University of Lausanne, 1066 Epalinges, Switzerland
| | - Max Löhning
- Experimental Immunology and Osteoarthritis Research, Department of Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany; Pitzer Laboratory of Osteoarthritis Research, German Rheumatism Research Center (DRFZ), a Leibniz Institute, 10117 Berlin, Germany.
| | - Daniel D Pinschewer
- Department of Biomedicine, Division of Experimental Virology, University of Basel, 4055 Basel, Switzerland.
| |
Collapse
|
18
|
Statzu M, Jin W, Fray EJ, Wong AKH, Kumar MR, Ferrer E, Docken SS, Pinkevych M, McBrien JB, Fennessey CM, Keele BF, Liang S, Harper JL, Mutascio S, Franchitti L, Wang H, Cicetti D, Bosinger SE, Carnathan DG, Vanderford TH, Margolis DM, Garcia-Martinez JV, Chahroudi A, Paiardini M, Siliciano J, Davenport MP, Kulpa DA, Siliciano RS, Silvestri G. CD8 + lymphocytes do not impact SIV reservoir establishment under ART. Nat Microbiol 2023; 8:299-308. [PMID: 36690860 PMCID: PMC9894752 DOI: 10.1038/s41564-022-01311-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/15/2022] [Indexed: 01/24/2023]
Abstract
Persistence of the human immunodeficiency virus type-1 (HIV-1) latent reservoir in infected individuals remains a problem despite fully suppressive antiretroviral therapy (ART). While reservoir formation begins during acute infection, the mechanisms responsible for its establishment remain unclear. CD8+ T cells are important during the initial control of viral replication. Here we examined the effect of CD8+ T cells on formation of the latent reservoir in simian immunodeficiency virus (SIV)-infected macaques by performing experimental CD8+ depletion either before infection or before early (that is, day 14 post-infection) ART initiation. We found that CD8+ depletion resulted in slower decline of viremia, indicating that CD8+ lymphocytes reduce the average lifespan of productively infected cells during acute infection and early ART, presumably through SIV-specific cytotoxic T lymphocyte (CTL) activity. However, CD8+ depletion did not change the frequency of infected CD4+ T cells in the blood or lymph node as measured by the total cell-associated viral DNA or intact provirus DNA assay. In addition, the size of the persistent reservoir remained the same when measuring the kinetics of virus rebound after ART interruption. These data indicate that during early SIV infection, the viral reservoir that persists under ART is established largely independent of CTL control.
Collapse
Grants
- P30 AI050409 NIAID NIH HHS
- 75N91019D00024 NCI NIH HHS
- P51 OD011132 NIH HHS
- R01 AI143414 NIAID NIH HHS
- UM1 AI164562 NIAID NIH HHS
- UM1 AI164567 NIAID NIH HHS
- R01 AI125064 NIAID NIH HHS
- CU | National Cancer Institute, Cairo University (NCI)
- National Cancer Institute, National Institutes of Health, under Contract No. 75N91019D00024/HHSN261201500003I.
- This work was supported by UM1AI164562, co-funded by National Heart, Lung and Blood Institute, National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Neurological Disorders and Stroke, National Institute on Drug Abuse and the National Institute of Allergy and Infectious Diseases (to G.S., D.A.K., M.P.1), and NIH NIAID R01-AI143414 (to G.S. and D.A.K), and R01-AI125064 (to G.S., A.C., D.A.K.).
Collapse
Affiliation(s)
- Maura Statzu
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Wang Jin
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Emily J Fray
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Andrew Kam Ho Wong
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Mithra R Kumar
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Elizabeth Ferrer
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Steffen S Docken
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Mykola Pinkevych
- Kirby Institute, University of New South Wales, Sydney, Australia
| | - Julia B McBrien
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Christine M Fennessey
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Brandon F Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Shan Liang
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Justin L Harper
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Simona Mutascio
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Lavinia Franchitti
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Hong Wang
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Davide Cicetti
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Steven E Bosinger
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Diane G Carnathan
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Thomas H Vanderford
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David M Margolis
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - J Victor Garcia-Martinez
- Division of Infectious Diseases, Center for AIDS Research, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Ann Chahroudi
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Pediatrics, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Janet Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Deanna A Kulpa
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Robert S Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guido Silvestri
- Emory National Primate Research Center, Department of Pathology and Laboratory Medicine, and Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
19
|
Chandrasekar AP, Cummins NW, Natesampillai S, Misra A, Alto A, Laird G, Badley AD. The BCL-2 Inhibitor Venetoclax Augments Immune Effector Function Mediated by Fas Ligand, TRAIL, and Perforin/Granzyme B, Resulting in Reduced Plasma Viremia and Decreased HIV Reservoir Size during Acute HIV Infection in a Humanized Mouse Model. J Virol 2022; 96:e0173022. [PMID: 36448802 PMCID: PMC9769373 DOI: 10.1128/jvi.01730-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 12/02/2022] Open
Abstract
The BCL-2 prosurvival protein is implicated in HIV persistence and is a potential therapeutic target for HIV eradication efforts. We now know that cells harboring HIV are preferentially enriched for high BCL-2 expression, enabling their survival, and that the BCL-2 inhibitor venetoclax promotes the death of actively replicating HIV-infected cells in vitro and ex vivo. Herein, we assess the effect of venetoclax on immune clearance of infected cells and show that BCL-2 inhibition significantly enhances target cell killing induced by Fas ligand, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand), and perforin/granzyme B and synergistically enhances autologous NK (natural killer) and CD8 cells' killing of target cells. In a humanized mouse model of acute HIV infection, venetoclax monotherapy significantly decreases plasma viremia and normalizes CD4:CD8 ratios, and results in more mice with undetectable provirus levels than control. In this model, treatment was associated with leukopenia, as has been described clinically in patients receiving venetoclax for other indications. These data confirm meaningful anti-HIV effects of venetoclax during HIV infection but suggest that venetoclax use should be combined with ART (antiretroviral therapy) to reduce toxicity. IMPORTANCE This study is the first to examine the applicability of BCL-2 inhibition in the setting of active HIV infection in vivo. Furthermore, this study demonstrates that venetoclax significantly enhances target cell killing induced by Fas ligand, TRAIL, and perforin/granzyme B and synergistically enhances autologous NK and CD8 cells' killing of target cells.
Collapse
Affiliation(s)
| | - Nathan W. Cummins
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Anisha Misra
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Alecia Alto
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
| | - Greg Laird
- Accelevir Diagnostics, Baltimore, Maryland, USA
| | - Andrew D. Badley
- Division of Infectious Diseases, Mayo Clinic, Rochester, Minnesota, USA
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Harwood OE, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Erickson KN, Matschke LM, Golfinos AE, Vezys V, Skinner PJ, Safrit JT, Edlefsen PT, Reynolds MR, Friedrich TC, O’Connor SL. Transient T Cell Expansion, Activation, and Proliferation in Therapeutically Vaccinated Simian Immunodeficiency Virus-Positive Macaques Treated with N-803. J Virol 2022; 96:e0142422. [PMID: 36377872 PMCID: PMC9749465 DOI: 10.1128/jvi.01424-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vaccine strategies aimed at eliciting human immunodeficiency virus (HIV)-specific CD8+ T cells are one major target of interest in HIV functional cure strategies. We hypothesized that CD8+ T cells elicited by therapeutic vaccination during antiretroviral therapy (ART) would be recalled and boosted by treatment with the interleukin 15 (IL-15) superagonist N-803 after ART discontinuation. We intravenously immunized four simian immunodeficiency virus-positive (SIV+) Mauritian cynomolgus macaques receiving ART with vesicular stomatitis virus (VSV), modified vaccinia virus Ankara strain (MVA), and recombinant adenovirus serotype 5 (rAd-5) vectors all expressing SIVmac239 Gag. Immediately after ART cessation, these animals received three doses of N-803. Four control animals received no vaccines or N-803. The vaccine regimen generated a high-magnitude response involving Gag-specific CD8+ T cells that were proliferative and biased toward an effector memory phenotype. We then compared cells elicited by vaccination (Gag specific) to cells elicited by SIV infection and unaffected by vaccination (Nef specific). We found that N-803 treatment enhanced the frequencies of both bulk and proliferating antigen-specific CD8+ T cells elicited by vaccination and the antigen-specific CD8+ T cells elicited by SIV infection. In sum, we demonstrate that a therapeutic heterologous prime-boost-boost (HPBB) vaccine can elicit antigen-specific effector memory CD8+ T cells that are boosted by N-803. IMPORTANCE While antiretroviral therapy (ART) can suppress HIV replication, it is not a cure. It is therefore essential to develop therapeutic strategies to enhance the immune system to better become activated and recognize virus-infected cells. Here, we evaluated a novel therapeutic vaccination strategy delivered to SIV+ Mauritian cynomolgus macaques receiving ART. ART was then discontinued and we delivered an immunotherapeutic agent (N-803) after ART withdrawal with the goal of eliciting and boosting anti-SIV cellular immunity. Immunologic and virologic analysis of peripheral blood and lymph nodes collected from these animals revealed transient boosts in the frequency, activation, proliferation, and memory phenotype of CD4+ and CD8+ T cells following each intervention. Overall, these results are important in educating the field of the transient nature of the immunological responses to this particular therapeutic regimen and the similar effects of N-803 on boosting T cells elicited by vaccination or elicited naturally by infection.
Collapse
Affiliation(s)
- Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Abigail J. Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| | | | - Lea M. Matschke
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Athena E. Golfinos
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Vaiva Vezys
- Center for Immunology, Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Pamela J. Skinner
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Paul T. Edlefsen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Thomas C. Friedrich
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
- Department of Pathobiological Sciences, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, Madison, Wisconsin, USA
| |
Collapse
|
21
|
Alves E, Al-Kaabi M, Keane NM, Leary S, Almeida CAM, Deshpande P, Currenti J, Chopra A, Smith R, Castley A, Mallal S, Kalams SA, Gaudieri S, John M. Adaptation to HLA-associated immune pressure over the course of HIV infection and in circulating HIV-1 strains. PLoS Pathog 2022; 18:e1010965. [PMID: 36525463 PMCID: PMC9803285 DOI: 10.1371/journal.ppat.1010965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/30/2022] [Accepted: 11/01/2022] [Indexed: 12/23/2022] Open
Abstract
Adaptation to human leukocyte antigen (HLA)-associated immune pressure represents a major driver of human immunodeficiency virus (HIV) evolution at both the individual and population level. To date, there has been limited exploration of the impact of the initial cellular immune response in driving viral adaptation, the dynamics of these changes during infection and their effect on circulating transmitting viruses at the population level. Capturing detailed virological and immunological data from acute and early HIV infection is challenging as this commonly precedes the diagnosis of HIV infection, potentially by many years. In addition, rapid initiation of antiretroviral treatment following a diagnosis is the standard of care, and central to global efforts towards HIV elimination. Yet, acute untreated infection is the critical period in which the diversity of proviral reservoirs is first established within individuals, and associated with greater risk of onward transmissions in a population. Characterizing the viral adaptations evident in the earliest phases of infection, coinciding with the initial cellular immune responses is therefore relevant to understanding which changes are of greatest impact to HIV evolution at the population level. In this study, we utilized three separate cohorts to examine the initial CD8+ T cell immune response to HIV (cross-sectional acute infection cohort), track HIV evolution in response to CD8+ T cell-mediated immunity over time (longitudinal chronic infection cohort) and translate the impact of HLA-driven HIV evolution to the population level (cross-sectional HIV sequence data spanning 30 years). Using next generation viral sequencing and enzyme-linked immunospot interferon-gamma recall responses to peptides representing HLA class I-specific HIV T cell targets, we observed that CD8+ T cell responses can select viral adaptations prior to full antibody seroconversion. Using the longitudinal cohort, we uncover that viral adaptations have the propensity to be retained over time in a non-selective immune environment, which reflects the increasing proportion of pre-adapted HIV strains within the Western Australian population over an approximate 30-year period.
Collapse
Affiliation(s)
- Eric Alves
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marwah Al-Kaabi
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Niamh M. Keane
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Shay Leary
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Coral-Ann M. Almeida
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Pooja Deshpande
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Jennifer Currenti
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Abha Chopra
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
| | - Rita Smith
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Alison Castley
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| | - Simon Mallal
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Spyros A. Kalams
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Division of Infectious Diseases, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Mina John
- Institute for Immunology and Infectious Diseases, Murdoch University, Perth, Western Australia, Australia
- Department of Clinical Immunology, Royal Perth Hospital, Perth, Western Australia, Australia
| |
Collapse
|
22
|
Gao L, Zhou J, Ye L. Role of CXCR5 + CD8 + T cells in human immunodeficiency virus-1 infection. Front Microbiol 2022; 13:998058. [PMID: 36452930 PMCID: PMC9701836 DOI: 10.3389/fmicb.2022.998058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection can be effectively suppressed by life-long administration of combination antiretroviral therapy (cART). However, the viral rebound can occur upon cART cessation due to the long-term presence of HIV reservoirs, posing a considerable barrier to drug-free viral remission. Memory CD4+ T cell subsets, especially T follicular helper (T FH ) cells that reside in B-cell follicles within lymphoid tissues, are regarded as the predominant cellular compartment of the HIV reservoir. Substantial evidence indicates that HIV-specific CD8+ T cell-mediated cellular immunity can sustain long-term disease-free and transmission-free HIV control in elite controllers. However, most HIV cure strategies that rely on expanded HIV-specific CD8+ T cells for virus control are likely to fail due to cellular exhaustion and T FH reservoir-specialized anatomical structures that isolate HIV-specific CD8+ T cell entry into B-cell follicles. Loss of stem-like memory properties is a key feature of exhaustion. Recent studies have found that CXC chemokine receptor type 5 (CXCR5)-expressing HIV-specific CD8+ T cells are memory-like CD8+ T cells that can migrate into B-cell follicles to execute inhibition of viral replication. Furthermore, these unique CD8+ T cells can respond to immune checkpoint blockade (ICB) therapy. In this review, we discuss the functions of these CD8+ T cells as well as the translation of findings into viable HIV treatment and cure strategies.
Collapse
Affiliation(s)
- Leiqiong Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
23
|
Abad-Fernández M, Hernández-Walias FJ, Ruiz de León MJ, Vivancos MJ, Pérez-Elías MJ, Moreno A, Casado JL, Quereda C, Dronda F, Moreno S, Vallejo A. HTLV-2 Enhances CD8 + T Cell-Mediated HIV-1 Inhibition and Reduces HIV-1 Integrated Proviral Load in People Living with HIV-1. Viruses 2022; 14:v14112472. [PMID: 36366570 PMCID: PMC9695633 DOI: 10.3390/v14112472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/07/2022] [Indexed: 11/10/2022] Open
Abstract
People living with HIV-1 and HTLV-2 concomitantly show slower CD4+ T cell depletion and AIDS progression, more frequency of the natural control of HIV-1, and lower mortality rates. A similar beneficial effect of this infection has been reported on HCV coinfection reducing transaminases, increasing the spontaneous clearance of HCV infection and delaying the development of hepatic fibrosis. Given the critical role of CD8+ T cells in controlling HIV-1 infection, we analysed the role of CD8+ T cell-mediated cytotoxic activity in coinfected individuals living with HIV-1. One hundred and twenty-eight individuals living with HIV-1 in four groups were studied: two groups with HTLV-2 infection, including individuals with HCV infection (N = 41) and with a sustained virological response (SVR) after HCV treatment (N = 25); and two groups without HTLV-2 infection, including individuals with HCV infection (N = 25) and with a sustained virological response after treatment (N = 37). We found that CD8+ T cell-mediated HIV-1 inhibition in vitro was higher in individuals with HTLV-2. This inhibition activity was associated with a higher frequency of effector memory CD8+ T cells, higher levels of granzyme A and granzyme B cytolytic enzymes, and perforin. Hence, cellular and soluble cytolytic factors may contribute to the lower HIV-1 pre-ART viral load and the HIV-1 proviral load during ART therapy associated with HTLV-2 infection. Herein, we confirmed and expanded previous findings on the role of HTLV-2 in the beneficial effect on the pathogenesis of HIV-1 in coinfected individuals.
Collapse
Affiliation(s)
- María Abad-Fernández
- Department of Microbiology & Immunology, UNC Chapel Hill School of Medicine, Chapel Hill, NC 27599, USA
- Correspondence: (M.A.-F.); (A.V.)
| | - Francisco J. Hernández-Walias
- Laboratory of Inmunovirología, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J. Ruiz de León
- Laboratory of Inmunovirología, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J. Vivancos
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - María J. Pérez-Elías
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Ana Moreno
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - José L. Casado
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Carmen Quereda
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Fernando Dronda
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Santiago Moreno
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
| | - Alejandro Vallejo
- Laboratory of Inmunovirología, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Department of Infectious Diseases, Ramón y Cajal Institute for Health Investigation (IRyCIS), University Hospital Ramón y Cajal, 28034 Madrid, Spain
- Biomedical Research Center Network in Infectious Diseases (CIBERINFEC), Institute of Health Carlos III (ISCIII), 28029 Madrid, Spain
- Correspondence: (M.A.-F.); (A.V.)
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Immunological studies of spontaneous HIV and simian virus (SIV) controllers have identified virus-specific CD8 + T cells as a key immune mechanism of viral control. The purpose of this review is to consider how knowledge about the mechanisms that are associated with CD8 + T cell control of HIV/SIV in natural infection can be harnessed in HIV remission strategies. RECENT FINDINGS We discuss characteristics of CD8 + T-cell responses that may be critical for suppressing HIV replication in spontaneous controllers comprising HIV antigen recognition including specific human leukocyte antigen types, broadly cross-reactive T cell receptors and epitope targeting, enhanced expansion and antiviral functions, and localization of virus-specific T cells near sites of reservoir persistence. We also discuss the need to better understand the timing of CD8 + T-cell responses associated with viral control of HIV/SIV during acute infection and after treatment interruption as well as the mechanisms by which HIV/SIV-specific CD8 + T cells coordinate with other immune responses to achieve control. SUMMARY We propose implications as to how this knowledge from natural infection can be applied in the design and evaluation of CD8 + T-cell-based remission strategies and offer questions to consider as these strategies target distinct CD8 + T-cell-dependent mechanisms of viral control.
Collapse
|
25
|
Nii-Trebi NI, Matsuoka S, Kawana-Tachikawa A, Bonney EY, Abana CZ, Ofori SB, Mizutani T, Ishizaka A, Shiino T, Ohashi J, Naruse TK, Kimura A, Kiyono H, Ishikawa K, Ampofo WK, Matano T. Super high-resolution single-molecule sequence-based typing of HLA class I alleles in HIV-1 infected individuals in Ghana. PLoS One 2022; 17:e0269390. [PMID: 35653364 PMCID: PMC9162337 DOI: 10.1371/journal.pone.0269390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 05/19/2022] [Indexed: 11/18/2022] Open
Abstract
Polymorphisms in human leukocyte antigen (HLA) class I loci are known to have a great impact on disease progression in HIV-1 infection. Prevailing HIV-1 subtypes and HLA genotype distribution are different all over the world, and the HIV-1 and host HLA interaction could be specific to individual areas. Data on the HIV-1 and HLA interaction have been accumulated in HIV-1 subtype B- and C-predominant populations but not fully obtained in West Africa where HIV-1 subtype CRF02_AG is predominant. In the present study, to obtain accurate HLA typing data for analysis of HLA association with disease progression in HIV-1 infection in West African populations, HLA class I (HLA-A, -B, and -C) four-digit allele typing was performed in treatment-naïve HIV-1 infected individuals in Ghana (n = 324) by a super high-resolution single-molecule sequence-based typing (SS-SBT) using next-generation sequencing. Comparison of the SS-SBT-based data with those obtained by a conventional sequencing-based typing (SBT) revealed incorrect assignment of several alleles by SBT. Indeed, HLA-A*23:17, HLA-B*07:06, HLA-C*07:18, and HLA-C*18:02 whose allele frequencies were 2.5%, 0.9%, 4.3%, and 3.7%, respectively, were not determined by SBT. Several HLA alleles were associated with clinical markers, viral load and CD4+ T-cell count. Of note, the impact of HLA-B*57:03 and HLA-B*58:01, known as protective alleles against HIV-1 subtype B and C infection, on clinical markers was not observed in our cohort. This study for the first time presents SS-SBT-based four-digit typing data on HLA-A, -B, and -C alleles in Ghana, describing impact of HLA on viral load and CD4 count in HIV-1 infection. Accumulation of these data would facilitate high-resolution HLA genotyping, contributing to our understanding of the HIV-1 and host HLA interaction in Ghana, West Africa.
Collapse
Affiliation(s)
- Nicholas I. Nii-Trebi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Department of Medical Laboratory Sciences, School of Biomedical and Allied Health Sciences, University of Ghana, Accra, Ghana
| | - Saori Matsuoka
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ai Kawana-Tachikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Evelyn Y. Bonney
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Christopher Z. Abana
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Sampson B. Ofori
- Department of Medicine, Koforidua Government Hospital, Eastern Region, Ghana
| | | | - Aya Ishizaka
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Teiichiro Shiino
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Ohashi
- Department of Biological Sciences, Graduate School of Sciences, University of Tokyo, Tokyo, Japan
| | - Taeko K. Naruse
- Department of Protozoology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akinori Kimura
- Department of Molecular Pathogenesis, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Institute of Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hiroshi Kiyono
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- Future Medicine Education and Research Organization, Chiba University, Chiba, Japan
- CU-UCSD Center for Mucosal Immunology, Allergy and Vaccines, Department of Medicine, University of California San Diego, San Diego, California, United States of America
| | - Koichi Ishikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - William K. Ampofo
- Department of Virology, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
- * E-mail: (WKA); (TM)
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
- Joint Research Center for Human Retrovirus Infection, Kumamoto University, Kumamoto, Japan
- Institute of Medical Science, University of Tokyo, Tokyo, Japan
- * E-mail: (WKA); (TM)
| |
Collapse
|
26
|
Hierarchy of multiple viral CD8+ T-cell epitope mutations in sequential selection in simian immunodeficiency infection. Biochem Biophys Res Commun 2022; 607:124-130. [DOI: 10.1016/j.bbrc.2022.03.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 11/17/2022]
|
27
|
Harris JE. The repeated setbacks of HIV vaccine development laid the groundwork for SARS-CoV-2 vaccines. HEALTH POLICY AND TECHNOLOGY 2022; 11:100619. [PMID: 35340773 PMCID: PMC8935961 DOI: 10.1016/j.hlpt.2022.100619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The decades-long effort to produce a workable HIV vaccine has hardly been a waste of public and private resources. To the contrary, the scientific know-how acquired along the way has served as the critical foundation for the development of vaccines against the novel, pandemic SARS-CoV-2 virus. We retell the real-world story of HIV vaccine research - with all its false leads and missteps - in a way that sheds light on the current state of the art of antiviral vaccines. We find that HIV-related R&D had more than a general spillover effect. In fact, the repeated failures of phase 2 and 3 clinical trials of HIV vaccine candidates have served as a critical stimulus to the development of successful vaccine technologies today. We rebut the counterargument that HIV vaccine development has been no more than a blind alley, and that recently developed vaccines against COVID-19 are really descendants of successful vaccines against Ebola, MERS, and SARS. These successful vaccines likewise owe much to the vicissitudes of HIV vaccine development. We then discuss how the failures of HIV vaccine development have taught us how adapt SARS-CoV-2 vaccines to immune escape from emerging variants. Finally, we inquire whether recent advances in the development of vaccines against SARS-CoV-2 might in turn further the development of an HIV vaccine - what we describe as a reverse spillover effect.
Collapse
Affiliation(s)
- Jeffrey E Harris
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- Eisner Health, Los Angeles, CA 90015, USA
| |
Collapse
|
28
|
Vieira VA, Herbert N, Cromhout G, Adland E, Goulder P. Role of Early Life Cytotoxic T Lymphocyte and Natural Killer Cell Immunity in Paediatric HIV Cure/Remission in the Anti-Retroviral Therapy Era. Front Immunol 2022; 13:886562. [PMID: 35634290 PMCID: PMC9130627 DOI: 10.3389/fimmu.2022.886562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/13/2022] [Indexed: 11/13/2022] Open
Abstract
Only three well-characterised cases of functional cure have been described in paediatric HIV infection over the past decade. This underlines the fact that early initiation of combination antiretroviral therapy (cART), whilst minimising the size of the viral reservoir, is insufficient to achieve cure, unless other factors contribute. In this review, we consider these additional factors that may facilitate functional cure in paediatric infection. Among the early life immune activity, these include HIV-specific cytotoxic T-lymphocyte (CTL) and natural killer (NK) cell responses. The former have less potent antiviral efficacy in paediatric compared with adult infection, and indeed, in early life, NK responses have greater impact in suppressing viral replication than CTL. This fact may contribute to a greater potential for functional cure to be achieved in paediatric versus adult infection, since post-treatment control in adults is associated less with highly potent CTL activity, and more with effective antiviral NK cell responses. Nonetheless, antiviral CTL responses can play an increasingly effective role through childhood, especially in individuals expressing then 'protective' HLA-I molecules HLA-B*27/57/58:01/8101. The role of the innate system on preventing infection, in shaping the particular viruses transmitted, and influencing outcome is discussed. The susceptibility of female fetuses to in utero mother-to-child transmission, especially in the setting of recent maternal infection, is a curiosity that also provides clues to mechanisms by which cure may be achieved, since initial findings are that viral rebound is less frequent among males who interrupt cART. The potential of broadly neutralising antibody therapy to facilitate cure in children who have received early cART is discussed. Finally, we draw attention to the impact of the changing face of the paediatric HIV epidemic on cure potential. The effect of cART is not limited to preventing AIDS and reducing the risk of transmission. cART also affects which mothers transmit. No longer are mothers who transmit those who carry genes associated with poor immune control of HIV. In the cART era, a high proportion (>70% in our South African study) of transmitting mothers are those who seroconvert in pregnancy or who for social reasons are diagnosed late in pregnancy. As a result, now, genes associated with poor immune control of HIV are not enriched in mothers who transmit HIV to their child. These changes will likely influence the effectiveness of HLA-associated immune responses and therefore cure potential among children.
Collapse
Affiliation(s)
- Vinicius A. Vieira
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Nicholas Herbert
- Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa
| | - Gabriela Cromhout
- HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa
| | - Emily Adland
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom
| | - Philip Goulder
- Peter Medawar Building for Pathogen Research, Department of Paediatrics, University of Oxford, Oxford, United Kingdom,Africa Health Research Institute (AHRI), Nelson R Mandela School of Medicine, Durban, South Africa,HIV Pathogenesis Programme, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa,*Correspondence: Philip Goulder,
| |
Collapse
|
29
|
Ta TM, Malik S, Anderson EM, Jones AD, Perchik J, Freylikh M, Sardo L, Klase ZA, Izumi T. Insights Into Persistent HIV-1 Infection and Functional Cure: Novel Capabilities and Strategies. Front Microbiol 2022; 13:862270. [PMID: 35572626 PMCID: PMC9093714 DOI: 10.3389/fmicb.2022.862270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 02/21/2022] [Indexed: 12/23/2022] Open
Abstract
Although HIV-1 replication can be efficiently suppressed to undetectable levels in peripheral blood by combination antiretroviral therapy (cART), lifelong medication is still required in people living with HIV (PLWH). Life expectancies have been extended by cART, but age-related comorbidities have increased which are associated with heavy physiological and economic burdens on PLWH. The obstacle to a functional HIV cure can be ascribed to the formation of latent reservoir establishment at the time of acute infection that persists during cART. Recent studies suggest that some HIV reservoirs are established in the early acute stages of HIV infection within multiple immune cells that are gradually shaped by various host and viral mechanisms and may undergo clonal expansion. Early cART initiation has been shown to reduce the reservoir size in HIV-infected individuals. Memory CD4+ T cell subsets are regarded as the predominant cellular compartment of the HIV reservoir, but monocytes and derivative macrophages or dendritic cells also play a role in the persistent virus infection. HIV latency is regulated at multiple molecular levels in transcriptional and post-transcriptional processes. Epigenetic regulation of the proviral promoter can profoundly regulate the viral transcription. In addition, transcriptional elongation, RNA splicing, and nuclear export pathways are also involved in maintaining HIV latency. Although most proviruses contain large internal deletions, some defective proviruses may induce immune activation by expressing viral proteins or producing replication-defective viral-like particles. In this review article, we discuss the state of the art on mechanisms of virus persistence in the periphery and tissue and summarize interdisciplinary approaches toward a functional HIV cure, including novel capabilities and strategies to measure and eliminate the infected reservoirs and induce immune control.
Collapse
Affiliation(s)
- Tram M. Ta
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Sajjaf Malik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Elizabeth M. Anderson
- Office of the Assistant Secretary for Health, Region 3, U.S. Department of Health and Human Services, Washington, DC, United States
| | - Amber D. Jones
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jocelyn Perchik
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Maryann Freylikh
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States
| | - Luca Sardo
- Department of Infectious Disease and Vaccines, Merck & Co., Inc., Kenilworth, NJ, United States
| | - Zackary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University of Medicine, Philadelphia, PA, United States
| | - Taisuke Izumi
- Department of Biological Sciences, Misher College of Arts and Sciences, University of the Sciences in Philadelphia, Philadelphia, PA, United States,*Correspondence: Taisuke Izumi,
| |
Collapse
|
30
|
Zhang H, He C, Jiang F, Cao S, Zhao B, Ding H, Dong T, Han X, Shang H. A longitudinal analysis of immune escapes from HLA-B*13-restricted T-cell responses at early stage of CRF01_AE subtype HIV-1 infection and implications for vaccine design. BMC Immunol 2022; 23:15. [PMID: 35366796 PMCID: PMC8976269 DOI: 10.1186/s12865-022-00491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 03/24/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Identifying immunogens which can elicit effective T cell responses against human immunodeficiency virus type 1 (HIV-1) is important for developing a T-cell based vaccine. It has been reported that human leukocyte antigen (HLA)-B*13-restricted T-cell responses contributed to HIV control in subtype B' and C infected individuals. However, the kinetics of B*13-restricted T-cell responses, viral evolution within epitopes, and the impact on disease progression in CRF01_AE subtype HIV-1-infected men who have sex with men (MSM) are not known. RESULTS Interferon-γ ELISPOT assays and deep sequencing of viral RNAs were done in 14 early HLA-B*13-positive CRF01_AE subtype HIV-1-infected MSM. We found that responses to RQEILDLWV (Nef106-114, RV9), GQMREPRGSDI (Gag226-236, GI11), GQDQWTYQI (Pol487-498, GI9), and VQNAQGQMV (Gag135-143, VV9) were dominant. A higher relative magnitude of Gag-specific T-cell responses, contributed to viral control, whereas Nef-specific T-cell responses were associated with rapid disease progression. GI11 (Gag) was conserved and strong GI11 (Gag)-specific T-cell responses showed cross-reactivity with a dominant variant, M228I, found in 3/12 patients; GI11 (Gag)-specific T-cell responses were positively associated with CD4 T-cell counts (R = 0.716, P = 0.046). Interestingly, the GI9 (Pol) epitope was also conserved, but GI9 (Pol)-specific T-cell responses did not influence disease progression (P > 0.05), while a D490G variant identified in one patient did not affect CD4 T-cell counts. All the other epitopes studied [VV9 (Gag), RQYDQILIEI (Pol113-122, RI10), HQSLSPRTL (Gag144-152, HL9), and RQANFLGRL (Gag429-437, RL9)] developed escape mutations within 1 year of infection, which may have contributed to overall disease progression. Intriguingly, we found early RV9 (Nef)-specific T-cell responses were associated with rapid disease progression, likely due to escape mutations. CONCLUSIONS Our study strongly suggested the inclusion of GI11 (Gag) and exclusion of RV9 (Nef) for T-cell-based vaccine design for B*13-positive CRF01_AE subtype HIV-1-infected MSM and high-risk individuals.
Collapse
Affiliation(s)
- Hui Zhang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Chuan He
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412636.40000 0004 1757 9485Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001 China
| | - Fanming Jiang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412636.40000 0004 1757 9485Department of Laboratory Medicine, The First Affiliated Hospital of China Medical University, Shenyang, 110001 China
| | - Shuang Cao
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China ,grid.412449.e0000 0000 9678 1884Department of Laboratory Medicine, China Medical University Shengjing Hospital Nanhu Branch, Shenyang, 110001 China
| | - Bin Zhao
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Haibo Ding
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Tao Dong
- grid.4991.50000 0004 1936 8948Nuffield Department of Medicine, Chinese Academy of Medical Sciences Oxford Institute, Oxford University, Oxford, UK ,grid.4991.50000 0004 1936 8948Medical Research Council Human Immunology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, Oxford University, Oxford, UK
| | - Xiaoxu Han
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| | - Hong Shang
- grid.412636.40000 0004 1757 9485NHC Key Laboratory of AIDS Immunology (China Medical University), National Clinical Research Center for Laboratory Medicine, The First Affiliated Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang, 110001 Liaoning Province China ,Key Laboratory of AIDS Immunology, Chinese Academy of Medical Sciences, Shenyang, 110001 China ,Key Laboratory of AIDS Immunology of Liaoning Province, Shenyang, 110001 China ,grid.13402.340000 0004 1759 700XCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, 79 Qingchun Street, Hangzhou, 310003 China
| |
Collapse
|
31
|
Enhanced Cross-Reactive and Polyfunctional Effector-Memory T Cell Responses by ICVAX-a Human PD1-Based Bivalent HIV-1 Gag-p41 Mosaic DNA Vaccine. J Virol 2022; 96:e0216121. [PMID: 35297660 PMCID: PMC9006887 DOI: 10.1128/jvi.02161-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vaccine-induced protective T cell immunity is necessary for HIV-1 functional cure. We previously reported that rhesus PD1-Gag-based DNA vaccination sustained simian-human immunodeficiency virus (SHIV) suppression by inducing effector-memory CD8+ T cells. Here, we investigated a human PD1-Gag-based DNA vaccine, namely, ICVAX, for clinical translation. PD1-based dendritic cell targeting and mosaic antigenic designs were combined to generate the ICVAX by fusing the human soluble PD1 domain with a bivalent HIV-1 Gag-p41 mosaic antigen. The mosaic antigen was cross-reactive with patients infected with B, CRF07/08_BC, and CRF01_AE variants. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses than mosaic Gag-p41 alone, and suppressed EcoHIV infection more efficiently. In macaques, ICVAX elicited polyfunctional effector-memory T cell responses that targeted multiple nonoverlapping epitopes of the Gag-p41 antigen. Furthermore, ICVAX manufactured following good manufacturing practices proved potent immunogenicity in macaques after biannual homologous vaccination, warranting clinical evaluation of ICVAX as an immunotherapy against HIV-1. IMPORTANCE This study presents that ICVAX, a PD1-based DNA vaccine against HIV-1, could induce broad and polyfunctional T cell responses against different HIV-1 subtypes. ICVAX encodes a recombinant antigen consisting of the human soluble PD1 domain fused with two mosaic Gag-p41 antigens. The mosaic antigens cover more than 500 HIV-1 strains circulating in China including the subtypes B/B’, CRF01_AE, and CRF07/08_BC. In mice, ICVAX elicited stronger, broader, and more polyfunctional T cell responses, with better EcoHIV suppression than the nontargeting mosaic Gag-p41 DNA vaccine. Moreover, both lab-generated and GMP-grade ICVAX also elicited strong polyfunctional effector-memory T cell responses in rhesus macaques with good immunogenicity against multiple nonoverlapping epitopes of the Gag-p41 antigen. This study therefore highlights the great potential to translate the PD1-based DNA vaccine approach into clinical use, and opens up new avenues for alternative HIV-1 vaccine design for HIV-1 preventive and functional cure.
Collapse
|
32
|
Matavele Chissumba R, Magul C, Macamo R, Monteiro V, Enosse M, Macicame I, Cumbane V, Bhatt N, Viegas E, Imbach M, Eller LA, Polyak CS, Kestens L. Helios expressing regulatory T cells are correlated with decreased IL-2 producing CD8 T cells and antibody diversity in Mozambican individuals living chronically with HIV-1. BMC Immunol 2022; 23:12. [PMID: 35287587 PMCID: PMC8922818 DOI: 10.1186/s12865-022-00487-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Background Human immunodeficiency virus type 1 (HIV-1) causes impairment of T and B cell responses, which begins during the acute phase of infection and is not completely restored by antiretroviral treatment. Regulatory T cell (Tregs) can improve overall disease outcome by controlling chronic inflammation but may also suppress beneficial HIV-1 specific immune responses. We aimed to analyze the profile of Tregs and their correlation with the status of T cells activation, the expression of IL-2 and IFNγ and the profile of HIV-1 specific antibodies response in Mozambican people living chronically with HIV-1 (PLWH-C). Results In PLWH-C, the proportion of total Tregs was positively correlated with the proportion of IL-2+CD4 T cells (r = 0.647; p = 0.032) and IL-2+IFNγ+CD8 T cells (r = 0.551; p = 0.014), while the proportions of Helios+Tregs correlated inversely with levels of IL-2+CD8 T cells (r = − 0.541; p = 0.017). Overall, PLWH-C, with (82%) or without virologic suppression (64%), were seronegative for at least HIV-1 p31, gp160 or p24, and the breadth of antibody responses was positively correlated with proportions of CD38+HLA-DR+CD8 T cells (r = 0.620; p = 0.012), viral load (r = 0.452; p = 0.040) and inversely with absolute CD4 T cells count (r = − 0.481; p = 0.027). Analysis of all individuals living HIV-1 showed that the breadth of HIV-1 antibody responses was inversely correlated with the proportion of Helios+Tregs (r = − 0.45; p = 0.02). Conclusion Among Mozambican people living with HIV-1, seronegativity to some HIV-1 proteins is common, particularly in virologically suppressed individuals. Furthermore, lower diversity of HIV-specific antibodies is correlated to lower immune activation, lower viral replication and higher CD4 counts, in PLWH-C. Elevation in the proportion of Helios+Tregs is related to a reduction of CD8 T expressing intracellular IL-2, in PLWH-C, but may contribute to impairment of B cell function. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-022-00487-3.
Collapse
Affiliation(s)
- Raquel Matavele Chissumba
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique. .,Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium. .,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Cacildo Magul
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Rosa Macamo
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Vânia Monteiro
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Maria Enosse
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Ivalda Macicame
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Victória Cumbane
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Nilesh Bhatt
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Edna Viegas
- Instituto Nacional de Saúde, Distrito de Marracuene, Estrada Nacional N°1, Marracuene, Província de Maputo, Mozambique
| | - Michelle Imbach
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Leigh Anne Eller
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Christina S Polyak
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Luc Kestens
- Institute of Tropical Medicine, Department of Biomedical Sciences, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
33
|
Liu Y, Lei J, San D, Yang Y, Paek C, Xia Z, Chen Y, Yin L. Structural Basis for Unusual TCR CDR3β Usage Against an Immunodominant HIV-1 Gag Protein Peptide Restricted to an HLA-B*81:01 Molecule. Front Immunol 2022; 13:822210. [PMID: 35173732 PMCID: PMC8841528 DOI: 10.3389/fimmu.2022.822210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/12/2022] [Indexed: 12/02/2022] Open
Abstract
In HIV infection, some closely associated human leukocyte antigen (HLA) alleles are correlated with distinct clinical outcomes although presenting the same HIV epitopes. The mechanism that underpins this observation is still unknown, but may be due to the essential features of HLA alleles or T cell receptors (TCR). In this study, we investigate how T18A TCR, which is beneficial for a long-term control of HIV in clinic, recognizes immunodominant Gag epitope TL9 (TPQDLTML180-188) from HIV in the context of the antigen presenting molecule HLA-B*81:01. We found that T18A TCR exhibits differential recognition for TL9 restricted by HLA-B*81:01. Furthermore, via structural and biophysical approaches, we observed that TL9 complexes with HLA-B*81:01 undergoes no conformational change after TCR engagement. Remarkably, the CDR3β in T18A complexes does not contact with TL9 at all but with intensive contacts to HLA-B*81:01. The binding kinetic data of T18A TCR revealed that this TCR can recognize TL9 epitope and several mutant versions, which might explain the correlation of T18A TCR with better clinic outcomes despite the relative high mutation rate of HIV. Collectively, we provided a portrait of how CD8+ T cells engage in HIV-mediated T cell response.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jun Lei
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dan San
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yi Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chonil Paek
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zixiong Xia
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yongshun Chen
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| | - Lei Yin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- *Correspondence: Yongshun Chen, ; Lei Yin,
| |
Collapse
|
34
|
Alexandrova Y, Costiniuk CT, Jenabian MA. Pulmonary Immune Dysregulation and Viral Persistence During HIV Infection. Front Immunol 2022; 12:808722. [PMID: 35058937 PMCID: PMC8764194 DOI: 10.3389/fimmu.2021.808722] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/10/2021] [Indexed: 12/12/2022] Open
Abstract
Despite the success of antiretroviral therapy (ART), people living with HIV continue to suffer from high burdens of respiratory infections, lung cancers and chronic lung disease at a higher rate than the general population. The lung mucosa, a previously neglected HIV reservoir site, is of particular importance in this phenomenon. Because ART does not eliminate the virus, residual levels of HIV that remain in deep tissues lead to chronic immune activation and pulmonary inflammatory pathologies. In turn, continuous pulmonary and systemic inflammation cause immune cell exhaustion and pulmonary immune dysregulation, creating a pro-inflammatory environment ideal for HIV reservoir persistence. Moreover, smoking, gut and lung dysbiosis and co-infections further fuel the vicious cycle of residual viral replication which, in turn, contributes to inflammation and immune cell proliferation, further maintaining the HIV reservoir. Herein, we discuss the recent evidence supporting the notion that the lungs serve as an HIV viral reservoir. We will explore how smoking, changes in the microbiome, and common co-infections seen in PLWH contribute to HIV persistence, pulmonary immune dysregulation, and high rates of infectious and non-infectious lung disease among these individuals.
Collapse
Affiliation(s)
- Yulia Alexandrova
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| | - Cecilia T. Costiniuk
- Infectious Diseases and Immunity in Global Health Program, Research Institute of McGill University Health Centre, Montreal, QC, Canada
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Division of Infectious Diseases and Chronic Viral Illness Service, McGill University Health Centre, Montreal, QC, Canada
| | - Mohammad-Ali Jenabian
- Department of Biological Sciences and CERMO-FC Research Centre, Université du Québec à Montréal, Montreal, QC, Canada
| |
Collapse
|
35
|
Koning D, Quakkelaar ED, Schellens IMM, Spierings E, van Baarle D. Protective HLA Alleles Recruit Biased and Largely Similar Antigen-Specific T Cell Repertoires across Different Outcomes in HIV Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:3-15. [PMID: 34880106 DOI: 10.4049/jimmunol.2001145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 11/01/2021] [Indexed: 11/19/2022]
Abstract
CD8+ T cells play an important role in the control of untreated HIV infection. Several studies have suggested a decisive role of TCRs involved in anti-HIV immunity. HLA-B*27 and B*57 are often associated with a delayed HIV disease progression, but the exact correlates that provide superior immunity against HIV are not known. To investigate if the T cell repertoire underlies the protective effect in disease outcome in HLA-B*27 and B*57+ individuals, we analyzed Ag-specific TCR profiles from progressors (n = 13) and slow progressors (n = 11) expressing either B*27 or B*57. Our data showed no differences in TCR diversity between progressors and slow progressors. Both alleles recruit biased T cell repertoires (i.e., TCR populations skewed toward specific TRBV families or CDR3 regions). This bias was unrelated to disease progression and was remarkably profound for HLA-B*57, in which TRBV family usage and CDR3 sequences were shared to some extent even between epitopes. Conclusively, these data suggest that the T cell repertoires recruited by protective HLA alleles are highly similar between progressors and slow progressors in terms of TCR diversity, TCR usage, and cross-reactivity.
Collapse
Affiliation(s)
- Dan Koning
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Esther D Quakkelaar
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Ingrid M M Schellens
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Eric Spierings
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and
| | - Debbie van Baarle
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands; and .,Center for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
36
|
Two distinct mechanisms leading to loss of virological control in the rare group of antiretroviral therapy-naïve, transiently aviraemic children living with HIV. J Virol 2021; 96:e0153521. [PMID: 34757843 PMCID: PMC8791270 DOI: 10.1128/jvi.01535-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
HIV-specific CD8+ T-cells play a central role in immune control of adult HIV, but their contribution in paediatric infection is less well-characterised. Previously, we identified a group of ART-naïve children with persistently undetectable plasma viraemia, termed 'elite controllers', and a second group who achieved aviraemia only transiently. To investigate the mechanisms of failure to maintain aviraemia, we characterized in three transient aviraemics (TAs), each of whom expressed the disease-protective HLA-B*81:01, longitudinal HIV-specific T-cell activity and viral sequences. In two TAs, a CD8+ T-cell response targeting the immunodominant epitope TPQDLNTML ('Gag-TL9') was associated with viral control, followed by viral rebound and the emergence of escape variants with lower replicative capacity. Both TAs mounted variant-specific responses, but only at low functional avidity, resulting in immunological progression. By contrast, in TA-3, intermittent viraemic episodes followed aviraemia without virus escape or a diminished CD4+ T-cell count. High quality and magnitude of the CD8+ T-cell response was associated with aviraemia. We therefore identify two distinct mechanisms of loss of viral control. In one scenario, CD8+ T-cell responses initially cornered low replicative capacity escape variants, but with insufficient avidity to prevent viraemia and disease progression. In the other, loss of viral control was associated neither with virus escape nor progression, but with a decrease in the quality of the CD8+ T-cell response, followed by recovery of viral control in association with improved antiviral response. These data suggest the potential for a consistently strong and polyfunctional antiviral response to achieve long-term viral control without escape. IMPORTANCE Very early initiation of antiretroviral therapy (ART) in paediatric HIV infection offers a unique opportunity to limit the size and diversity of the viral reservoir. However, only exceptionally is ART alone sufficient to achieve remission. Additional interventions are therefore required that likely include contributions from host immunity. The HIV-specific T-cell response plays a central role in immune control of adult HIV, often mediated through protective alleles such as HLA-B*57/58:01/81:01. However, due to the tolerogenic and type 2 biased immune response in early life, HLA-I-mediated immune suppression of viraemia is seldom observed in children. We describe a rare group of HLA-B*81:01-positive, ART-naïve children who achieved aviraemia, albeit only transiently, and investigate the role of the CD8+ T-cell response in the establishment and loss of viral control. We identify a mechanism by which the HIV-specific response can achieve viraemic control without viral escape, that can be explored in strategies to achieve remission.
Collapse
|
37
|
Collaboration of a Detrimental HLA-B*35:01 Allele with HLA-A*24:02 in Coevolution of HIV-1 with T Cells Leading to Poorer Clinical Outcomes. J Virol 2021; 95:e0125921. [PMID: 34523962 PMCID: PMC8577379 DOI: 10.1128/jvi.01259-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although mutant-specific T cells are elicited in some individuals infected with HIV-1 mutant viruses, the detailed characteristics of these T cells remain unknown. A recent study showed that the accumulation of strains expressing Nef135F, which were selected by HLA-A*24:02-restricted T cells, was associated with poor outcomes in individuals with the detrimental HLA-B*35:01 allele and that HLA-B*35:01-restricted NefYF9 (Nef135-143)-specific T cells failed to recognize target cells infected with Nef135F mutant viruses. Here, we investigated HLA-B*35:01-restricted T cells specific for the NefFF9 epitope incorporating the Nef135F mutation. Longitudinal T-cell receptor (TCR) clonotype analysis demonstrated that 3 types of HLA-B*35:01-restricted T cells (wild-type [WT] specific, mutant specific, and cross-reactive) with different T cell repertoires were elicited during the clinical course. HLA-B*35:01+ individuals possessing wild-type-specific T cells had a significantly lower plasma viral load (pVL) than those with mutant-specific and/or cross-reactive T cells, even though the latter T cells effectively recognized the mutant virus-infected cells. These results suggest that mutant-specific and cross-reactive T cells could only partially suppress HIV-1 replication in vivo. An ex vivo analysis of the T cells showed higher expression of PD-1 on cross-reactive T cells and lower expression of CD160/2B4 on the mutant-specific T cells than other T cells, implying that these inhibitory and stimulatory molecules are key to the reduced function of these T cells. In the present study, we demonstrate that mutant-specific and cross-reactive T cells do not contribute to the suppression of HIV-1 replication in HIV-1-infected individuals, even though they have the capacity to recognize mutant virus-infected cells. Thus, the collaboration of HLA-A*24:02 with the detrimental allele HLA-B*35:01 resulted in the coevolution of HIV-1 alongside virus-specific T cells, leading to poorer clinical outcomes. IMPORTANCE HIV-1 escape mutations are selected under pressure from HIV-1-specific CD8+ T cells. Accumulation of these mutations in circulating viruses impairs the control of HIV-1 by HIV-1-specific T cells. Although it is known that HIV-1-specific T cells recognizing mutant virus were elicited in some individuals infected with a mutant virus, the role of these T cells remains unclear. Accumulation of phenylalanine at HIV-1 Nef135 (Nef135F), which is selected by HLA-A*24:02-restricted T cells, led to poor clinical outcome in individuals carrying the detrimental HLA-B*35:01 allele. In the present study, we found that HLA-B*35:01-restricted mutant-specific and cross-reactive T cells were elicited in HLA-B*35:01+ individuals infected with the Nef135F mutant virus. These T cells could not effectively suppress HIV-1 replication in vivo even though they could recognize mutant virus-infected cells in vitro. Mutant-specific and cross-reactive T cells expressed lower levels of stimulatory molecules and higher levels of inhibitory molecules, respectively, suggesting a potential mechanism whereby these T cells fail to suppress HIV-1 replication in HIV-1-infected individuals.
Collapse
|
38
|
Harwood O, O’Connor S. Therapeutic Potential of IL-15 and N-803 in HIV/SIV Infection. Viruses 2021; 13:1750. [PMID: 34578331 PMCID: PMC8473246 DOI: 10.3390/v13091750] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/23/2022] Open
Abstract
IL-15, a proinflammatory cytokine critical for the generation, maintenance, and homeostasis of T cell responses, is produced naturally in response to HIV/SIV infection, but has also demonstrated therapeutic potential. IL-15 can boost CD4+ and CD8+ T cell and NK cell proliferation, activation, and function. However, IL-15 treatment may cause aberrant immune activation and accelerated disease progression in certain circumstances. Moreover, the relationship between the timing of IL-15 administration and disease progression remains unclear. The IL-15 superagonist N-803 was developed to expand the therapeutic potential of IL-15 by maximizing its tissue distribution and half-life. N-803 has garnered enthusiasm recently as a way to enhance the innate and cellular immune responses to HIV/SIV by improving CD8+ T cell recognition and killing of virus-infected cells and directing immune cells to mucosal sites and lymph nodes, the primary sites of virus replication. N-803 has also been evaluated in "shock and kill" strategies due to its potential to reverse latency (shock) and enhance antiviral immunity (kill). This review examines the current literature about the effects of IL-15 and N-803 on innate and cellular immunity, viral burden, and latency reversal in the context of HIV/SIV, and their therapeutic potential both alone and combined with additional interventions such as antiretroviral therapy (ART) and vaccination.
Collapse
Affiliation(s)
| | - Shelby O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA;
| |
Collapse
|
39
|
Goldstein RH, Mehan WA, Hutchison B, Robbins GK. Case 24-2021: A 63-Year-Old Woman with Fever, Sore Throat, and Confusion. N Engl J Med 2021; 385:641-648. [PMID: 34379926 DOI: 10.1056/nejmcpc2107345] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Robert H Goldstein
- From the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Massachusetts General Hospital, and the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Harvard Medical School - both in Boston
| | - William A Mehan
- From the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Massachusetts General Hospital, and the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Harvard Medical School - both in Boston
| | - Bailey Hutchison
- From the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Massachusetts General Hospital, and the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Harvard Medical School - both in Boston
| | - Gregory K Robbins
- From the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Massachusetts General Hospital, and the Departments of Medicine (R.H.G., G.K.R.), Radiology (W.A.M.), and Pathology (B.H.), Harvard Medical School - both in Boston
| |
Collapse
|
40
|
Shared immunotherapeutic approaches in HIV and hepatitis B virus: combine and conquer. Curr Opin HIV AIDS 2021; 15:157-164. [PMID: 32167944 DOI: 10.1097/coh.0000000000000621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW The aim of this study was to identify similarities, differences and lessons to be shared from recent progress in HIV and hepatitis B virus (HBV) immunotherapeutic approaches. RECENT FINDINGS Immune dysregulation is a hallmark of both HIV and HBV infection, which have shared routes of transmission, with approximately 10% of HIV-positive patients worldwide being coinfected with HBV. Immune modulation therapies to orchestrate effective innate and adaptive immune responses are currently being sought as potential strategies towards a functional cure in both HIV and HBV infection. These are based on activating immunological mechanisms that would allow durable control by triggering innate immunity, reviving exhausted endogenous responses and/or generating new immune responses. Recent technological advances and increased appreciation of humoral responses in the control of HIV have generated renewed enthusiasm in the cure field. SUMMARY For both HIV and HBV infection, a primary consideration with immunomodulatory therapies continues to be a balance between generating highly effective immune responses and mitigating any significant toxicity. A large arsenal of new approaches and ongoing research offer the opportunity to define the pathways that underpin chronic infection and move closer to a functional cure.
Collapse
|
41
|
Chauveau L, Bridgeman A, Tan TK, Beveridge R, Frost JN, Rijal P, Pedroza‐Pacheco I, Partridge T, Gilbert‐Jaramillo J, Knight ML, Liu X, Russell RA, Borrow P, Drakesmith H, Townsend AR, Rehwinkel J. Inclusion of cGAMP within virus-like particle vaccines enhances their immunogenicity. EMBO Rep 2021; 22:e52447. [PMID: 34142428 PMCID: PMC8339669 DOI: 10.15252/embr.202152447] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Cyclic GMP-AMP (cGAMP) is an immunostimulatory molecule produced by cGAS that activates STING. cGAMP is an adjuvant when administered alongside antigens. cGAMP is also incorporated into enveloped virus particles during budding. Here, we investigate whether inclusion of cGAMP within viral vaccine vectors enhances their immunogenicity. We immunise mice with virus-like particles (VLPs) containing HIV-1 Gag and the vesicular stomatitis virus envelope glycoprotein G (VSV-G). cGAMP loading of VLPs augments CD4 and CD8 T-cell responses. It also increases VLP- and VSV-G-specific antibody titres in a STING-dependent manner and enhances virus neutralisation, accompanied by increased numbers of T follicular helper cells. Vaccination with cGAMP-loaded VLPs containing haemagglutinin induces high titres of influenza A virus neutralising antibodies and confers protection upon virus challenge. This requires cGAMP inclusion within VLPs and is achieved at markedly reduced cGAMP doses. Similarly, cGAMP loading of VLPs containing the SARS-CoV-2 Spike protein enhances Spike-specific antibody titres. cGAMP-loaded VLPs are thus an attractive platform for vaccination.
Collapse
Affiliation(s)
- Lise Chauveau
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
- Present address:
Institut de recherche en infectiologie de Montpellier (IRIM)CNRS UMR 9004MontpellierFrance
| | - Anne Bridgeman
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Tiong K Tan
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Ryan Beveridge
- MRC Molecular Hematology UnitMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
- Virus Screening FacilityMRC Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Joe N Frost
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Pramila Rijal
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | | | - Thomas Partridge
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Javier Gilbert‐Jaramillo
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Department of Physiology, Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Michael L Knight
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Xu Liu
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
- Key Laboratory of Human Disease Comparative MedicineNational Health Commission of China (NHC), Institute of Laboratory Animal SciencePeking Union Medicine CollegeChinese Academy of Medical SciencesBeijingChina
| | | | - Persephone Borrow
- Nuffield Department of Clinical MedicineUniversity of OxfordOxfordUK
| | - Hal Drakesmith
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Alain R Townsend
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| | - Jan Rehwinkel
- Medical Research Council Human Immunology UnitRadcliffe Department of MedicineMedical Research Council Weatherall Institute of Molecular MedicineUniversity of OxfordOxfordUK
| |
Collapse
|
42
|
Veenhuis RT, Garliss CC, Bailey JR, Blankson JN. CD8 Effector T Cells Function Synergistically With Broadly Neutralizing Antibodies to Enhance Suppression of HIV Infection. Front Immunol 2021; 12:708355. [PMID: 34394110 PMCID: PMC8358597 DOI: 10.3389/fimmu.2021.708355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
HIV-specific CD8 T cells and broadly neutralizing antibodies (bNAbs) both contribute to the control of viremia, but in most cases, neither can completely suppress viral replication. To date, therapeutic vaccines have not been successful in eliciting HIV-specific CD8 T cell or bNAb responses that are capable of preventing long-term viral rebound upon ART cessation. These challenges suggest that a combinatorial approach that harnesses both bNAbs and CD8 T cell responses may be necessary for long term control of viral replication. In this study we demonstrate a synergistic interaction between CD8 T cells and bNAbs using an in vitro model. Our data suggest that this combinatorial approach is very effective at suppressing viral replication in vitro and should be considered in future therapeutic studies.
Collapse
Affiliation(s)
- Rebecca T Veenhuis
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Caroline C Garliss
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Justin R Bailey
- Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| | - Joel N Blankson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins Medicine, Baltimore, MD, United States.,Department of Medicine, Johns Hopkins Medicine, Baltimore, MD, United States
| |
Collapse
|
43
|
Potential Utility of Natural Killer Cells for Eliminating Cells Harboring Reactivated Latent HIV-1 Following the Removal of CD8 + T Cell-Mediated Pro-Latency Effect(s). Viruses 2021; 13:v13081451. [PMID: 34452317 PMCID: PMC8402732 DOI: 10.3390/v13081451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022] Open
Abstract
An impediment to curing HIV-1 infection is the persistence of latently infected cells in ART-treated people living with HIV (PLWH). A key strategy for curing HIV-1 infection is to activate transcription and translation of latent virus using latency reversing agents (LRAs) and eliminate cells harboring reactivated virus via viral cytopathic effect or immune clearance. In this review, we provide an overview of available LRAs and their use in clinical trials. Furthermore, we describe recent data suggesting that CD8+ T cells promote HIV-1 latency in the context of ART, even in the presence of LRAs, which might at least partially explain the clinical inefficiency of previous “shock and kill” trials. Here, we propose a novel cure strategy called “unlock, shock, disarm, and kill”. The general premise of this strategy is to shut down the pro-latency function(s) of CD8+ T cells, use LRAs to reverse HIV-1 latency, counteract anti-apoptotic molecules, and engage natural killer (NK) cells to mediate the killing of cells harboring reactivated latent HIV-1.
Collapse
|
44
|
Al Bitar S, Ballouz T, Doughan S, Gali-Muhtasib H, Rizk N. Potential role of micro ribonucleic acids in screening for anal cancer in human papilloma virus and human immunodeficiency virus related malignancies. World J Gastrointest Pathophysiol 2021; 12:59-83. [PMID: 34354849 PMCID: PMC8316837 DOI: 10.4291/wjgp.v12.i4.59] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/24/2021] [Accepted: 05/19/2021] [Indexed: 02/06/2023] Open
Abstract
Despite advances in antiretroviral treatment (ART), human immunodeficiency virus (HIV) continues to be a major global public health issue owing to the increased mortality rates related to the prevalent oncogenic viruses among people living with HIV (PLWH). Human papillomavirus (HPV) is the most common sexually transmitted viral disease in both men and women worldwide. High-risk or oncogenic HPV types are associated with the development of HPV-related malignancies, including cervical, penile, and anal cancer, in addition to oral cancers. The incidence of anal squamous cell cancers is increasing among PLWH, necessitating the need for reliable screening methods in this population at risk. In fact, the currently used screening methods, including the Pap smear, are invasive and are neither sensitive nor specific. Investigators are interested in circulatory and tissue micro ribonucleic acids (miRNAs), as these small non-coding RNAs are ideal biomarkers for early detection and prognosis of cancer. Multiple miRNAs are deregulated during HIV and HPV infection and their deregulation contributes to the pathogenesis of disease. Here, we will review the molecular basis of HIV and HPV co-infections and focus on the pathogenesis and epidemiology of anal cancer in PLWH. The limitations of screening for anal cancer and the need for a reliable screening program that involves specific miRNAs with diagnostic and therapeutic values is also discussed.
Collapse
Affiliation(s)
- Samar Al Bitar
- Department of Biology, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Tala Ballouz
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samer Doughan
- Department of Surgery, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Hala Gali-Muhtasib
- Department of Biology and Center for Drug Discovery, American University of Beirut, Beirut 1107 2020, Lebanon
| | - Nesrine Rizk
- Department of Internal Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| |
Collapse
|
45
|
Dalel J, Ung SK, Hayes P, Black SL, Joseph S, King DF, Makinde J, Gilmour J. HIV-1 infection and the lack of viral control are associated with greater expression of interleukin-21 receptor on CD8+ T cells. AIDS 2021; 35:1167-1177. [PMID: 33710028 PMCID: PMC8183476 DOI: 10.1097/qad.0000000000002864] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 01/05/2023]
Abstract
OBJECTIVES Interleukin-21 (IL-21) has been linked with the generation of virus-specific memory CD8+ T cells following acute infection with HIV-1 and reduced exhaustion of CD8+ T cells. IL-21 has also been implicated in the promotion of CD8+ T-cell effector functions during viral infection. Little is known about the expression of interleukin-21 receptor (IL-21R) during HIV-1 infection or its role in HIV-1-specific CD8+ T-cell maintenance and subsequent viral control. METHODS We compared levels of IL-21R expression on total and memory subsets of CD8+ T cells from HIV-1-negative and HIV-1-positive donors. We also measured IL-21R on antigen-specific CD8+ T cells in volunteers who were positive for HIV-1 and had cytomegalovirus-responding T cells. Finally, we quantified plasma IL-21 in treatment-naive HIV-1-positive individuals and compared this with IL-21R expression. RESULTS IL-21R expression was significantly higher on CD8+ T cells (P = 0.0256), and on central memory (P = 0.0055) and effector memory (P = 0.0487) CD8+ T-cell subsets from HIV-1-positive individuals relative to HIV-1-negative individuals. For those infected with HIV-1, the levels of IL-21R expression on HIV-1-specific CD8+ T cells correlated significantly with visit viral load (r = 0.6667, P = 0.0152, n = 13) and inversely correlated with plasma IL-21 (r = -0.6273, P = 0.0440, n = 11). Lastly, CD8+ T cells from individuals with lower set point viral load who demonstrated better viral control had the lowest levels of IL-21R expression and highest levels of plasma IL-21. CONCLUSION Our data demonstrates significant associations between IL-21R expression on peripheral CD8+ T cells and viral load, as well as disease trajectory. This suggests that the IL-21 receptor could be a novel marker of CD8+ T-cell dysfunction during HIV-1 infection.
Collapse
Affiliation(s)
- Jama Dalel
- IAVI Human Immunology Laboratory, Imperial College London, London, UK
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Isnard S, Hatton EX, Iannetta M, Guillerme JB, Hosmalin A. Cell-Associated HIV Cross-Presentation by Plasmacytoid Dendritic Cells Is Potentiated by Noncognate CD8 + T Cell Preactivation. THE JOURNAL OF IMMUNOLOGY 2021; 207:15-22. [PMID: 34183372 DOI: 10.4049/jimmunol.2000392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 05/02/2021] [Indexed: 11/19/2022]
Abstract
IFN-γ secretion by Ag-specific T cells is known to be tightly regulated by engagement of the TCR. Human plasmacytoid dendritic cells (pDC) can cross-present Ags from apoptotic HIV-infected cells or tumor cells to CD8+ T cells. As pDC respond to HIV virions by maturing and secreting cytokines, we hypothesized that this might affect cross-presentation from HIV-infected cells. Purified blood DC were incubated with apoptotic HIV-infected H9 cells in the presence of saquinavir, after which the activation process of HIV-specific cloned CD8+ T cells was studied. IFN-γ secretion by HIV-specific T cells was stimulated by pDC and conventional DC (cDC1) more than by cDC2 and was strictly MHC class I restricted. Surprisingly, intracellular production of IFN-γ was only partly MHC class I restricted for pDC, indicating a noncognate CD8+ T cell activation. pDC, but not cDC, matured and secreted IFN-α in the presence of apoptotic H9HIV cells. A mixture of IFN-α, IFN-β, and TNF-α induced intracellular production of IFN-γ but not granzyme B, mimicking the noncognate mechanism. Neutralization of type I IFN signaling blocked noncognate intracellular production of IFN-γ. Moreover, cognate stimulation was required to induce IFN-γ secretion in addition to the cytokine mixture. Thus, IFN-γ secretion is tightly regulated by engagement of the TCR as expected, but in the context of virus-infected cells, pDC can trigger intracellular IFN-γ accumulation in CD8+ T cells, potentializing IFN-γ secretion once CD8+ T cells make cognate interactions. These findings may help manipulate type I IFN signaling to enhance specifically Ag-specific CD8+ T cell activation against chronic infections or tumors.
Collapse
Affiliation(s)
- Stéphane Isnard
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Etienne X Hatton
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | - Marco Iannetta
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| | | | - Anne Hosmalin
- Université de Paris, Institut Cochin, CNRS, INSERM, Paris, France
| |
Collapse
|
47
|
Duerr R, Crosse KM, Valero-Jimenez AM, Dittmann M. SARS-CoV-2 Portrayed against HIV: Contrary Viral Strategies in Similar Disguise. Microorganisms 2021; 9:1389. [PMID: 34198973 PMCID: PMC8307803 DOI: 10.3390/microorganisms9071389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/06/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
SARS-CoV-2 and HIV are zoonotic viruses that rapidly reached pandemic scale, causing global losses and fear. The COVID-19 and AIDS pandemics ignited massive efforts worldwide to develop antiviral strategies and characterize viral architectures, biological and immunological properties, and clinical outcomes. Although both viruses have a comparable appearance as enveloped viruses with positive-stranded RNA and envelope spikes mediating cellular entry, the entry process, downstream biological and immunological pathways, clinical outcomes, and disease courses are strikingly different. This review provides a systemic comparison of both viruses' structural and functional characteristics, delineating their distinct strategies for efficient spread.
Collapse
Affiliation(s)
- Ralf Duerr
- Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA; (K.M.C.); (A.M.V.-J.); (M.D.)
| | | | | | | |
Collapse
|
48
|
Wong YC, Liu W, Yim LY, Li X, Wang H, Yue M, Niu M, Cheng L, Ling L, Du Y, Chen SMY, Cheung KW, Wang H, Tang X, Tang J, Zhang H, Song Y, Chakrabarti LA, Chen Z. Sustained viremia suppression by SHIVSF162P3CN-recalled effector-memory CD8+ T cells after PD1-based vaccination. PLoS Pathog 2021; 17:e1009647. [PMID: 34125864 PMCID: PMC8202916 DOI: 10.1371/journal.ppat.1009647] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
HIV-1 functional cure requires sustained viral suppression without antiretroviral therapy. While effector-memory CD8+ T lymphocytes are essential for viremia control, few vaccines elicit such cellular immunity that could be potently recalled upon viral infection. Here, we investigated a program death-1 (PD1)-based vaccine by fusion of simian immunodeficiency virus capsid antigen to soluble PD1. Homologous vaccinations suppressed setpoint viremia to undetectable levels in vaccinated macaques following a high-dose intravenous challenge by the pathogenic SHIVSF162P3CN. Poly-functional effector-memory CD8+ T cells were not only induced after vaccination, but were also recalled upon viral challenge for viremia control as determined by CD8 depletion. Vaccine-induced effector memory CD8+ subsets displayed high cytotoxicity-related genes by single-cell analysis. Vaccinees with sustained viremia suppression for over two years responded to boost vaccination without viral rebound. These results demonstrated that PD1-based vaccine-induced effector-memory CD8+ T cells were recalled by AIDS virus infection, providing a potential immunotherapy for functional cure. HIV-1/AIDS remains a major global pandemic although treatment regimen has improved. Identifying efficacious vaccines and therapeutics to achieve long-term viral control with very low/undetectable plasma viral loads in the absence of antiretroviral therapy, a status known as functional cure, would be highly beneficial. We previously demonstrated that antigens fused to a soluble program death-1 (PD1) domain could effectively bind and be cross-presented by dendritic cells that constitutively expressed PD1 ligands. When applied in the form of DNA vaccination, this antigen-targeting strategy was highly immunogenic in mice. Here, we investigated the efficacy of the PD1-based DNA vaccine approach against pathogenic simian-human immunodeficiency virus challenge in rhesus monkeys. Our results showed that homologous PD1-based DNA vaccinations induced highly functional effector-memory CD8+ T cells carrying a unique cytotoxicity gene expression profile. These T cells actively supressed viremia in monkeys and were re-activated via boost vaccination at 2 years after viral challenge without viral rebound. In summary, our study demonstrates the potential application of PD1-based DNA vaccination to control AIDS virus infection.
Collapse
Affiliation(s)
- Yik Chun Wong
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Wan Liu
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Lok Yan Yim
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Xin Li
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- Department of Veterinary Medicine, Foshan University, Foshan, China
| | - Hui Wang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Ming Yue
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Mengyue Niu
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Lin Cheng
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
| | - Lijun Ling
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Yanhua Du
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Samantha M. Y. Chen
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Ka-Wai Cheung
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Haibo Wang
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Xian Tang
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- Virus and Immunity Unit, Pasteur Institute, Paris, France; INSERM U1108, Paris, France
| | - Jiansong Tang
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Haoji Zhang
- Department of Veterinary Medicine, Foshan University, Foshan, China
| | - Youqiang Song
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
| | - Lisa A. Chakrabarti
- Virus and Immunity Unit, Pasteur Institute, Paris, France; INSERM U1108, Paris, France
| | - Zhiwei Chen
- AIDS Institute, Department of Microbiology, State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR, China
- HKU-AIDS Institute Shenzhen Research Laboratory and AIDS Clinical Research Laboratory, Guangdong Key Laboratory of Emerging Infectious Diseases, Shenzhen Key Laboratory of Infection and Immunity, Shenzhen Third People’s Hospital, Shenzhen, China
- * E-mail:
| |
Collapse
|
49
|
Jones AD, Khakhina S, Jaison T, Santos E, Smith S, Klase ZA. CD8 + T-Cell Mediated Control of HIV-1 in a Unique Cohort With Low Viral Loads. Front Microbiol 2021; 12:670016. [PMID: 34122382 PMCID: PMC8192701 DOI: 10.3389/fmicb.2021.670016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
A unique population of HIV-1 infected individuals can control infection without antiretroviral therapy. These individuals fall into a myriad of categories based on the degree of control (low or undetectable viral load), the durability of control over time and the underlying mechanism (i.e., possession of protective HLA alleles or the absence of critical cell surface receptors). In this study, we examine a cohort of HIV-1 infected individuals with a documented history of sustained low viral loads in the absence of therapy. Through in vitro analyses of cells from these individuals, we have determined that infected individuals with naturally low viral loads are capable of controlling spreading infection in vitro in a CD8+ T-cell dependent manner. This control is lost when viral load is suppressed by antiretroviral therapy and correlates with a clinical CD4:CD8 ratio of <1. Our results support the conclusion that HIV-1 controllers with low, but detectable viral loads may be controlling the virus due to an effective CD8+ T-cell response. Understanding the mechanisms of control in these subjects may provide valuable understanding that could be applied to induce a functional cure in standard progressors.
Collapse
Affiliation(s)
- Amber D. Jones
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Svetlana Khakhina
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Tara Jaison
- Department of Biological Sciences, University of the Sciences, Philadelphia, PA, United States
| | - Erin Santos
- The Smith Center for Infectious Diseases and Urban Health, West Orange, NJ, United States
| | - Stephen Smith
- The Smith Center for Infectious Diseases and Urban Health, West Orange, NJ, United States
| | - Zachary A. Klase
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States,Center for Neuroimmunology and CNS Therapeutics, Institute of Molecular Medicine and Infectious Diseases, Drexel University College of Medicine, Philadelphia, PA, United States,*Correspondence: Zachary A. Klase,
| |
Collapse
|
50
|
Guerrero-Martin SM, Rubin LH, McGee KM, Shirk EN, Queen SE, Li M, Bullock B, Carlson BW, Adams RJ, Gama L, Graham DR, Zink C, Clements JE, Mankowski JL, Metcalf Pate KA. Psychosocial Stress Alters the Immune Response and Results in Higher Viral Load During Acute SIV Infection in a Pigtailed Macaque Model of HIV. J Infect Dis 2021; 224:2113-2121. [PMID: 33970274 DOI: 10.1093/infdis/jiab252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/08/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While social distancing is a key public health response during viral pandemics, psychosocial stressors, such as social isolation, have been implicated in adverse health outcomes in general (1) and in the context of infectious disease, such as HIV (2,3). A comprehensive understanding of the direct pathophysiologic effects of psychosocial stress on viral pathogenesis is needed to provide strategic and comprehensive care to patients with viral infection. METHODS To determine the effect of psychosocial stress on HIV pathogenesis during acute viral infection without sociobehavioral confounders inherent in human cohorts, we compared commonly measured parameters of HIV progression between singly (n=35) and socially (n=41) housed SIV-infected pigtailed macaques (Macaca nemestrina). RESULTS Singly housed macaques had a higher viral load in the plasma and cerebrospinal fluid and demonstrated greater CD4 T cell declines and more CD4 and CD8 T cell activation compared to socially housed macaques throughout acute SIV infection. CONCLUSIONS These data demonstrate that psychosocial stress directly impacts the pathogenesis of acute SIV infection and imply that it may act as an integral variable in the progression of HIV infection and potentially of other viral infections.
Collapse
Affiliation(s)
- Selena M Guerrero-Martin
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Leah H Rubin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Kirsten M McGee
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin N Shirk
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suzanne E Queen
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ming Li
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Brandon Bullock
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bess W Carlson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lucio Gama
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David R Graham
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christine Zink
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Janice E Clements
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joseph L Mankowski
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kelly A Metcalf Pate
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Division of Comparative Medicine and Department of Biological Engineering, Massachusetts Institute of Technology, Boston, Massachusetts, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|